
POLITECNICO DI TORINO

Corso di Laurea Magistrale in Ingegneria Elettronica

Tesi di Laurea Magistrale

Open-Source Design of a
Bitline-Computing-SRAM for

Neural Networks Acceleration at
the Edge

Relatore:
Chiar.mo Prof. Mario Roberto Casu

Candidato:
Francesco Falconieri

Aprile 2022

I

A mia nonna Nina,

che piú di ogni altro

sognava questo giorno,

al suo ardente amore

per tutti i nipoti.

To my grandmother Nina,

she who most of all

dreamed of this day,

to her fervid love

for all her grandsons.

II

III

Table of contents

Summary XIII

1 The unbearable communication cost of modern-day computing 1

1.1 The von-Neumann bottleneck . 1

1.2 Artificial intelligence in edge devices 3

1.2.1 Neural networks inference . 3

1.2.2 Reducing computational effort in neural networks 6

1.3 A new computing paradigm . 9

2 Classification of In-Memory Computing architectures 13

2.1 Analog & Mixed-Signal Processing 13

2.1.1 Analog computing fundamentals for in-memory inference . . . 14

2.1.2 Architecture overview . 15

2.1.3 Boosting the classification accuracy 17

2.1.4 On-silicon characterization . 18

2.1.5 Discussion . 20

2.2 Digital processing . 22

2.2.1 Bitline computing . 23

2.2.2 Isolated read-ports . 26

2.2.3 Interleaved bitlines . 28

2.2.4 Sequential pulsed wordlines 31

IV

2.2.5 Discussion . 33

3 Democratizing hardware design 35

3.1 OpenRAM: an open-source memory compiler 37

3.1.1 Module structure . 37

3.1.2 Technology files . 39

3.1.3 Architecture overview . 40

3.2 SKY130: Skywater 130nm process design kit 41

4 Architecture concept and design 46

4.1 Bitcell array . 47

4.2 Sense amplifier array . 50

4.2.1 Computing sense amplifier . 50

4.2.2 Circuit-level design of the BLC logic 52

4.2.3 Carry-ripple logic sizing . 54

4.2.4 A novel circuit topology for single-ended sense amplifiers . . . 56

4.2.5 Time-borrowing sense amplifier 63

4.2.6 Layout . 71

4.3 Address port . 75

4.3.1 Address decoders . 75

4.3.2 Pulse generator . 76

4.3.3 Closed-loop pulse gating technique based on replica bitline . . 81

4.3.4 Pulse generator compiler . 84

4.3.5 Layout . 92

V

4.4 Population-count network . 95

4.4.1 CSA-based binary tree reduction HDL generator 95

4.4.2 Dalalah bit-counting network 100

4.4.3 Bit-counting networks comparison 100

4.4.4 Open-source synthesis and place & route 103

4.4.5 Layout . 107

4.5 Control logic . 107

4.5.1 Timing diagrams and pins configuration 109

4.5.2 Layout . 109

5 Simulation and results 114

5.1 Area occupation . 114

5.2 Simulation results . 118

5.3 Operating frequency and energy consumption 122

6 Conclusions and future perspectives 128

A Custom modules for OpenRAM in SKY130 132

A.1 Schematics . 132

A.2 Layouts . 134

Bibliography 136

Acknowledgments I

VI

List of tables

4.1 CSA - Static CMOS Logic Functions Area Occupation 54

4.2 Sense Amplifiers Area Comparison 60

4.3 Computing Sense Amplifier Design - Area Summary 72

4.4 Dalalah Bit-Counting Network - Hardware Implementation Results . 107

4.5 Bitline Computing SRAM - Command Table 110

5.1 BLC SRAM - Area occupation and partitioning 115

5.2 BLC SRAM Characterization - VDD = 1.8V , T=300K 125

5.3 BLC SRAM Characterization - Process Corner TT, Environmental
Variations . 126

5.4 BLC SRAM Characterization - TTTT, SSSS and FFFF Corners . . . 127

VII

List of figures

1.1 Comparison between the cost of accessing memories and arithmetic
operations in a 45nm CMOS technology. 3

1.2 Analogies between artificial and biological neurons. 5

1.3 Different activation functions for neural-networks. 5

1.4 Hardware characterization of different neural-network implemented
on an FPGA. 8

1.5 Classification results on the ImageNet datasets of AdderNets 9

1.6 Quantization and inference in Binary Neural Networks. 10

1.7 System level representation of the IMC paradigm 11

1.8 IMC introduced improvements in data-centric applications. 12

2.1 Column weak classifier and architecture schematic 16

2.2 WL DAC archictecture and characterization 16

2.3 Error-Adaptive Classifier Boosting (EACB) concept and schematic
view . 19

2.4 Calibration cells for SA offset compensation 19

2.5 Classification accuracy of the system at different abstraction and sim-
ulation levels . 21

2.6 Chip-level simulation results . 21

2.7 Example of a digital column computing instance with 2 bitcells. Input
signals in red, partial results in green, output nodes in blue. 22

2.8 Behavioural representation of the bitline computing scheme. 23

2.9 Bitcell’s content corruption due to cell flipping. 25

VIII

2.10 Issues arising from simultaneous 6T bitcells access 25

2.11 Different SRAM bitcell configurations. 27

2.12 8T BLC configuration and sensing scheme 28

2.13 4+2T bitcell configuration . 29

2.14 DDC versus bulk technology simulation results. 29

2.15 Interleaved wordlines configuration 31

2.16 Bitcell’s layout stretch for interleaved wordlines. 31

2.17 Sequential pulsed wordlines technique 33

3.1 Design technology crisis . 36

3.2 The OpenRAM software framework 38

3.3 Block scheme view of the OpenRAM SRAM architecture 42

3.4 Timing diagram for OpenRAM read operation. 43

3.5 Timing diagram for OpenRAM write operation. 43

3.6 Process stack diagram for SKY130 45

4.1 Primitive Block Scheme of the Computing SRAM Architecture. . . . 48

4.2 6T Bitcell SKY130 Implementation - Schematic and Layout. 50

4.3 6T Bitcell Array - Layout View of a 2x4 Configuration. 51

4.4 Computing Sense Amplifier schematic (a), post-technology mapping
area occupation distribution (b) and mode control signals table (c). . 53

4.5 Computing Sense Amplifier’s critical (in red) and fast (in blue) paths. 54

4.6 Computing Sense Amplifier - Transmission Gate Logic. 55

4.7 Computing Sense Amplifier - Carry Ripple Logic Sizing Results. . . . 57

4.7 Computing Sense Amplifier - Carry Ripple Logic sizing result. 58

IX

4.7 Computing Sense Amplifier - Carry Ripple Logic sizing result. 59

4.8 Proposed Single-Ended Sense-Amplifier’s schematics. 61

4.9 Time-Borrowing Sense Amplifier Waveforms. 62

4.10 Sense Amplifiers area-delay-energy comparison. 64

4.11 Time-Borrowing Sense Amplifier’s Pulse Resilience Simulation Results. 68

4.11 Time-Borrowing Sense Amplifier’s Pulse Resilience Simulation Results. 69

4.12 Sense Amplifier Dynamic Threshold - Monte Carlo and Process Cor-
ners Simulations . 70

4.12 Sense Amplifier Dynamic Threshold - Monte Carlo and Process Cor-
ners Simulations . 71

4.13 Computing Sense Amplifier - Layout Views. 73

4.14 Computing Sense Amplifier Array - Layout Views. 74

4.15 Address Decoding Networks for Multiple Address Words 76

4.16 Pulse Generator - Schematics. 77

4.17 Pulse Generator - 2 Pulses Clock Chopper Characterization. 79

4.17 Pulse Generator - 2 Pulses Clock Chopper Characterization. 80

4.18 Closed Loop RBL Pulse Gating - Block Scheme. 83

4.19 Closed Loop RBL Pulse Gating - Replica Rows. 85

4.20 Closed Loop RBL Pulse Gating - Simulation Results. 86

4.21 Pulse Generator Compiler - Flow Structure 88

4.22 Clock Chopper Characterization - Single Pulse 90

4.22 Clock Chopper Characterization - Single Pulse 91

4.23 Closed Loop Bitline Discharge Times - Simulation Results and Fitting. 92

X

4.24 Pulse Generator Compiler - Layout Results for Different Configurations. 93

4.25 Address Port - Layout View for a 16 Rows Array Configuration. . . . 94

4.26 3D Array - CSA HDL Generator . 97

4.27 Popcount Networks - 8 bits Dalalah. 101

4.28 Popcount Networks - 16 bits Dalalah. 102

4.29 Popcount Networks - Synthesis and Characterization. 104

4.29 Popcount Networks - Synthesis and Characterization. 105

4.30 Popcount Networks - Final Architecture. 105

4.31 Popcount Network - Layout View. 108

4.32 Timing Diagram - Waveforms for Pulsed Bitline Computing. 110

4.33 Control Logic - Logic Level Schematic View. 112

4.34 Control Logic - Layout View. 113

5.1 Layout view of the 32-bits 128x128 BLC SRAM array. 116

5.2 Layout view of the 32-bits 128x128 BLC SRAM array with compo-
nents highlight. 117

5.3 Output waveforms for read and BLC operating modes: pass-transistor
mux.Green waveforms represent the output of the SA array from the
LSB (top) to the MSB (bottom). 119

5.4 Output waveforms for read , BLC and sum operating modes: transmission-
gate mux. 121

5.5 Sense amplifier failure in nominal-threshold pass-transistor mux. . . . 123

5.6 Sense amplifier behaviour in low-threshold pass-transistor mux. . . . 123

5.7 Sense amplifier behaviour in transmission-gate mux. 123

5.8 BLC SRAM waveforms for BLC mode. 124

XI

5.9 BLC SRAM waveforms for standard read mode. 124

A.1 6T SRAM bitcell, only FET widths in micrometers are reported,
LCH = 0.15µm . 132

A.2 Sense amplifier, ratios near FETs are to be intended as absolute chan-
nel widths over channel lengths in micrometers. 132

A.3 Write driver, WN = 0.42µm, WP = 0.84µm, LCH = 0.15µm. 133

A.4 Write driver, WN = 0.42µm, WP = 1.35µm, LCH = 0.15µm. 133

A.5 6T SRAM Bitcell . 134

A.6 Sense amplifier. 134

A.7 Write driver. 134

A.8 D-flip-flop . 135

XII

Summary

The vast majority of state-of-the-art computing platforms are based on the von-

Neumann Architecture, which consists of two different spatial dwellings for handled

data: the main computing unit (i.e., the CPU) and the data storage unit (i.e.,

the memory). This approach allowed for continuous performance improvements in

the last decades but began to reach a dead-end as soon as datacentric applications

started to become pervasive, like the ones involved, for instance, in artificial intel-

ligence, cryptography and signal processing, due to the well-known communication

cost and von-Neumann bottleneck. This problem led to questioning whether this

approach could still be pursued, hence the concept of In-Memory Computing (IMC)

began to attract interest. The IMC paradigm aims to relocate the computing cen-

ter from the CPU to the memory units (e.g., SRAMs or caches) for datacentric

applications, to reduce the number of memory accesses. IMC solutions based on

the CMOS technology can be classified into two main categories: analog and digital

implementations. Analog IMC implementations allow massive parallelism but yield

approximated results due to their analog nature subject to process variations and

mismatches. This limits their applications to error-resilient ones like neural net-

works. Digital IMC implementations, unlike their analog counterparts, always yield

100% accurate results, expanding their applications in a larger number of fields, like

for instance, cryptography, at the expense of reduced parallelism. Several SRAM

or cache memory architectures have been proposed, which embed logic gates in the

memory cells, implement sequential peripheral circuitry for complex computations,

and exploit bitline computation in a wired-or fashion. This approach works flaw-

lessly especially with Binary Neural Networks (BNNs), requiring a single bit for

both activations and weights, hence reducing their product to a simple XNOR. Due

to the ever-growing interest in deploying neural network models in edge devices, the

popularity of the IMC concept is expected to increase, but the fact that the design

of IMC devices is challenging might hinder its practical adoption. Following the

OpenROAD philosophy of ”democratizing hardware design”, an open-source flow

will be used to design a Bitline-Computing-SRAM based on a customized version

XIII

of OpenRAM memory compiler, to take a step forward in the direction of making

viable the adoption of IMC accelerators. Toward this goal, in this thesis, the con-

cept of pulsed wordlines bitline computing will be resumed and expanded to solve

the read-stability problem of simultaneous activation in a 6T bitcell array. A com-

puting sense-amplifier array will be introduced suiting the acceleration of BNN and

AdderNets. A new circuit topology for a single-ended sense-amplifier will be pro-

posed to enhance the system’s performance as well as limit the area overhead while

providing a variation-tolerant design through pulse-width resilient behaviour. Pur-

suant to this, the design of a pulse generator will be carried on, ultimately resulting

in a specifications-to-GDSII compiler script for a memory array implementation.

Moreover, to unlock the acceleration of BNNs, different bit-counting networks will

be reviewed and compared thanks to an automatic HDL generator developed to be

integrated into OpenRAM. Finally, the customized array will be characterized ac-

cording to the main figures of merit regarding digital circuits, ultimately comparing

the obtained results with other bitline computing architectures based on the same

technological node. The work targets SkyWater’s SKY130 180nm-130nm process

open-source PDK, which represents a sweet spot for commercial IoT applications.

XIV

Chapter 1

The unbearable communication

cost of modern-day computing

1.1 The von-Neumann bottleneck

The vast majority of modern days state-of-the-art computing platforms rely on a

computation archetype called the von-Neumann architecture [1], consisting of two

different spatial dwellings for handled data: the main computing unit (i.e. the CPU)

and the data storage unit (i.e. memory). The interfacing between the two follows a

load-store approach, which boils down to the following steps: accessing memory for

data retrieving, computing results and further accessing memory for data storing.

This communication scheme allowed for continuous performance enhancement in

the last decades; following a divide et impera approach, the two different instances

experienced individual optimizations that overall increased the efficiency of the sys-

tem.

Although designers have been pushing the boundaries of throughput and power con-

sumption in nowadays special purpose or application-specific architectures, memory

accesses have always been expensive from a performance perspective. Older prim-

itive architectures fully relied on off-chip memories for data storage (apart from

internal registers for intermediate results) [2], translating into off-chip communi-

cations. Off-chip communications introduce severe throughput limitations related,

and not limited, to connections bandwidth and increased energy consumption arising

from large capacitances of pads, wires and pins switched during the communication.

This has been the fundamental reason that led to research over the years for a mem-

ory organization that could limit the number of off-chip events; the main result is

1

1 – The unbearable communication cost of modern-day computing

a memory hierarchy that exploits the principle of locality [3], both temporal and

spatial, to embed a relatively small set of data (or instructions) in the CPU chip

by integrating small memory arrays called cache memories [4]. This hierarchical

approach has been responsible for a drastic reduction in off-chip memory access op-

erations, limited to cache replacement events, together with a large speedup in the

overall system’s performance.

The von-Neumann computing paradigm reached a dead-end as soon as the in-

volved applications running on platforms started to become data-intensive (or data-

centric), like the ones involved, for instance, in artificial intelligence (AI) and signal

processing. Older computing tasks can be classified as application-centric: the mi-

croprocessor was supplied with a certain set of instructions that were less likely to

change with respect to data sets they were supposed to process. With the advent of

big-data, the number of algorithms to be performed on the same inputs increased,

shifting the stationary asset of the system from instructions to data, hence the epi-

thet of data-centric. Working with a large amount of data weakens all those system

optimizations gained through a hierarchical memory organization. This is because

the required storage space for computations regarding a single context goes beyond

the caching capabilities, thus resulting in an increment of memory accesses. The

larger the data set, the larger the required memory area for storage, the farther

the memory location from the computing cores, resulting in an ever-increasing com-

munication cost. As a result, the cost of accessing memory arrays recently became

larger than the one related to complex arithmetic floating-point operations (Fig. 1.1)

[5]. This led to a shift in the optimization’s target from CPU speed-ups towards

data movement’s efficiency.

All these collateral effects of today’s data-centric applications on conventional ar-

chitectures may be grouped under the so-called memory wall problem also known

as von-Neumann bottleneck [6].

2

1 – The unbearable communication cost of modern-day computing

Figure 1.1: Comparison between the cost of accessing memories and arithmetic
operations in a 45nm CMOS technology [5].

1.2 Artificial intelligence in edge devices

As the previous section introduced the concept of data-centric applications and pro-

cessing, in the following a brief discussion about neural networks will be presented.

Its main aim is to introduce the reader to useful machine-learning concepts for an

easier understanding of the following sections. Key points of this description will be

required computations involved in neural-networks acceleration, a highlight of the

related computational effort and the delivery of an overview of proposed techniques

to unlock artificial intelligence on low-computational resources such as edge devices.

1.2.1 Neural networks inference

Machine Learning (ML) is a branch of Artificial Intelligence (AI) whose aim is to

provide computational models able to dynamically learn from a certain set of data

how to perform some reasoning on a more general ensemble of inputs. Usually, these

operations translate into object and sound detection, image classification, image and

sound recognition.

3

1 – The unbearable communication cost of modern-day computing

Modeled on the human brain, a neural network consists of a large group of ele-

mentary processing unit nodes, called artificial neurons (Fig. 1.2). In the style of

a biological one, each artificial neuron exhibits a certain number of inputs (den-

drites) and a single output (axon). Before reaching the core of the node, each

input is weighted according to the ”strength” chosen for that particular connection

(synaptic-strength). Finally, the processed inputs are combined and the output of

the neuron is activated accordingly. To emulate the complex synaptic interconnec-

tions of the brain, each neuron’s output translates into the input for a large number

of nodes, thus resulting in an artificial neural-network.

Artificial neural networks are organized in stages and can grow in nodes count and

interconnection’s complexity according to their target application; the final stage of

the net is the one that delivers the final decision of the ”machine reasoning”, hence

the classification’s result. This process of evaluation is called inference. To give a

basic understanding of how the aforementioned operation works, it is sufficient to

describe the fundamental mathematical computations carried out by a single neuron.

The processing behind the evaluation of a fundamental node of the network can

be summarized in two macro-steps: a multiply-and-accumulate (MAC) step and an

activation function evaluation; a graph representation of these can be observed in

Fig. 1.2. The MAC step can be further divided into an addition step and many mul-

tiplication steps. The neuron’s input values, called activations, get multiplied by a

set of constants, specific for the single node and called weights, defined during the

training of the network; these are later combined through the last sum operation.

The final step in the neuron’s processing is the application of an activation function

to the MAC result. In older networks this translated into a comparison between the

latter and a given value, called threshold, resulting in the sign function plotted in

Fig. 1.3. If the sum yields a result whose value is larger than the specific threshold,

the output of the single neuron ”fires” (i.e. is 1), otherwise it keeps silent (i.e. is

0). With the advancement of mathematical models behind neural networks, activa-

tion functions evolved, assuming sophisticated shapes like the ones of sigmoids and

hyperbolic tangents as in Fig. 1.3. This widens the range of possible output results

improving the network’s training.

4

1 – The unbearable communication cost of modern-day computing

Figure 1.2: Analogies between artificial (b) and biological (a) neurons [7].

Figure 1.3: Different activation functions for neural-networks.

5

1 – The unbearable communication cost of modern-day computing

1.2.2 Reducing computational effort in neural networks

The introduced mathematical model of a processing node and, more in general, of

a neural network, is both elegant and powerful from a software point of view but,

from a hardware perspective, results in a complex netlist of entities, each performing

heavy arithmetic computations in a floating-point representation. This yields a huge,

slow and energy-hungry processing core, ultimately bounding artificial-intelligence

applications to high-performance computing platforms like graphics processing units

(GPUs) and high-performance computers (HPCs). However, at the expense of re-

duced accuracy, area, performance and energy consumption can be kept under tight

control by employing a more ”hardware-friendly” number representation as well as

lowering the internal parallelism; this operation is called quantization of the net-

work. Fig. 1.4 shows how number representation of weights and activations impacts

the performances of a network at the expense of classification accuracy, ultimately

unleashing the power of artificial intelligence in limited computational resources

devices.

An extreme quantization boils down the number representation of both weights

and activations to a single bit, limiting their values to +1 or -1 (logic 1 or logic

0 respectively). That’s the concept behind Binary Neural Networks (BNN) [8, 9],

a machine learning model that severely reduces the network’s energy consumption,

area occupation and required storage space at the expense of a severe loss of infor-

mation (i.e. reduced accuracy) in the inference process (Fig. 1.6c).

As explained in [11], computational savings in a BNN (Fig. 1.6c) originate from

the regression of required arithmetic operations into simpler ones due to single-bit

quantization. In fact, given the number representation in Fig. 1.6a, the convolu-

tion process turns into the one shown in Fig. 1.6b. The 1-bit signed multiplication

translates into a bitwise XNOR operation and the accumulation is substituted by

a bit-count (population count, popcount hereafter). As a result, BNNs nowadays

represent one of the keys to unlocking artificial intelligence in edge computing smart

devices whose computational power is limited from power consumption and area

occupation.

6

1 – The unbearable communication cost of modern-day computing

(a) Characterization of a neural-network implemented a 65nm CMOS technology node at
a clock frequency of 250MHz with respect to area occupation and power consumption for
different formats of number representation [10].

7

1 – The unbearable communication cost of modern-day computing

(b) Characterization of a neural-network implemented a 65nm CMOS technology node at a
clock frequency of 250MHz with respect to classification accuracy and power consumption
[10].

Figure 1.4: Hardware characterization of different neural-network implemented on
an FPGA.

With the same purpose of BNNs, recently a new mathematical model has been

proposed for reducing computational effort in neural networks. As stated previously,

arithmetic operations involved in network inference boil down to multiplication and

addition. However, a significant difference exists between the two both from latency

and energy consumption perspectives. Multiplications, in fact, translate into com-

plex and power-hungry hardware networks, increasing the power consumption of

the system. Accordingly, authors in [12] developed a new family of networks called

AdderNets, which trades massive multiplications with much cheaper additions to

reduce the computation costs. As can be seen in Fig. 1.5, this new approach allows

for a complete multiplication avoidance in the inference process, while achieving a

8

1 – The unbearable communication cost of modern-day computing

Figure 1.5: Classification results on the ImageNet datasets of AdderNets [12].

classification accuracy higher than binarized neural networks.

1.3 A new computing paradigm

All the formerly introduced issues regarding von-Neumann architectures led to a

huge effort over the last years for a change in the way of conceiving computing, one

key result is the concept of In-Memory Computing (IMC).

The IMC paradigm aims at relocating the computing locus from the CPU to the

memory array (Fig. 1.7) for data-centric applications, ultimately reducing the num-

ber of memory accesses to the ones needed to store input data and retrieve final

results. The idea of exploiting memories for large computations comes from the

intrinsically high parallelism of the array itself, due to the large storage space.

According to the adopted approach when it comes to embedding computation in

the memory instance one can classify this new family of architectures in two different

categories: In-Memory Computing and Near-Memory Computing (NMC).

Near-Memory computing can be seen as a brute force approach to the shift of com-

putational effort; in fact, it only consists of integrating standard digital arithmetic

and/or application-specific architectures in the memory macro nearby the array,

exploiting concurrency between array read/write operations and auxiliary computa-

tions. However, there’s no real innovation in the way of conceiving the two instances.

The concept of NMC however is particularly well suited for large off-chip memory

arrays and has been recently adopted by SamsungTM for AI acceleration under the

9

1 – The unbearable communication cost of modern-day computing

(a) Single bit quantization and XNOR multiplication in Binary Neural Networks

(b) Convolution process in Binary Neural Networks [11].

(c) Computational savings in Binary Neural Networks [11].

Figure 1.6: Quantization and inference in Binary Neural Networks.

10

1 – The unbearable communication cost of modern-day computing

Figure 1.7: System level representation of the IMC paradigm [13]

name of processing-in-memory (PIM)[14].

In-Memory Computing instead aims at exploiting the array for computational pur-

poses, ideally without the need for an off-array computing instance. This imple-

mentation demands more or less invasive array and peripherals customizations while

promising an elevated throughput as well as a low area overhead.

The key result of this relocation of the computational effort is a drastic reduction

in the number of memory accesses, ultimately reducing the overall system’s power

consumption and relieving the throughput degradation. Fig. 1.8a show the results of

a system simulation of an IMC SRAM [15] exploited for the acceleration of crypto-

graphic applications, where thanks to in-memory operations the number of memory

accesses has been reduced by up to 74.7%. Similarly, Fig. 1.8b points out the power

savings resulting from the application of a computing SRAM architecture in an AI

environment, where a 2.16x energy reduction can be appreciated with respect to a

baseline memory system. Due to these results, in-memory computing represents one

key path to overcome the aforementioned memory wall in both high-performance

and low-resources computing platforms. Thence, this work will deal with the inves-

tigation of different implementations of IMC approaches and the design of an SRAM

architecture for AI acceleration. The flow of the project will be entirely based on

open-source tools for IC design and will ultimately result in a memory compiler

supplied with IMC features to allow a fast design space exploration and possibly

boost the deployment of neural networks in edge devices.

11

1 – The unbearable communication cost of modern-day computing

(a) Memory access count of an IMC SRAM (triangle bar) system versus a baseline archi-
tecture (circle bar) in a 128-bit long key cryptographic application [15].

(b) Energy consumption comparison between an IMC SRAM system and a baseline ar-
chitecture in a AI environment [16].

Figure 1.8: IMC introduced improvements in data-centric applications.

12

Chapter 2

Classification of In-Memory

Computing architectures

As soon as memory wall limitations became unbearable, researchers and scientists

challenged themselves in the development of innovative IMC implementations. Dif-

ferent proposals have been presented based on CMOS and beyond-CMOS technolo-

gies, exploiting both Analog & Mixed-Signal (AMS) Processing and Digital Process-

ing. This chapter aims at delivering a detailed overview of state-of-the-art com-

puting SRAMs architectures based on CMOS technology, highlighting the strengths

and drawbacks of each proposal ultimately evaluating their compatibility with a

memory compiler.

2.1 Analog & Mixed-Signal Processing

As explained in Sec. 1.2.2, computations in neural networks can be summarized

into two main categories: MAC operations and threshold comparisons (TC). Ana-

log designers have been working out plenty of mixed-signal circuits to success-

fully achieve an accurate evaluation of the these computations. Concerning MAC

operations, most popular processing methods rely on charge-sum[17, 18, 19] and

current-sum[20, 21, 22], while for TC programmable comparators are widely ex-

ploited [20, 23, 22].

As a way to describe key concepts of analog IMC together with its strengths and

drawbacks, in this section, the proposal in [20] will be investigated with an eye on

final classification accuracy, performance and implementation cost.

13

2 – Classification of In-Memory Computing architectures

2.1.1 Analog computing fundamentals for in-memory infer-

ence

The proposed MAC scheme is the one based on the current sum. Given the proper-

ties of a standard MOSFET device, a rudimentary model for an n-channel device’s

drain-source current while in the saturation region is:

IDS = βN · (VGS − VTH)
2 · (1 + λ · VDS) (2.1)

Linearizing the equation with respect to gate-source voltage and drain-source volt-

age one obtains the small-signal’s equations for the device’s output current, where

transconductance and output’s resistance respectively can be identified:

ids = gm · vgs + go · vds with gm = f

(
W

L

)
, go =

1

ro
≈ f

(
1

L

)
(2.2)

As one can notice, both quantities multiplying the injected signal’s voltage are under

the control of the designer: different transistor sizes and aspect ratios will result in

different values of transconductances and output resistances respectively. Summing

the current sank by N different nFETs, with different sizes and different gate-source

applied voltages one obtains:

iTOT =
N∑

n=0

gm,n · vgs,n = (gm,0vgs,0 + gm,0vgs,0 + ... + gm,Nvgs,N) = g⃗m · v⃗gs (2.3)

iTOT =
N∑

n=0

go,n · vds,n = (go,0vds,0 + go,0vds,0 + ... + go,Nvds,N) = g⃗o · v⃗ds (2.4)

By looking at Eq. 2.3 and Eq. 2.4 one can easily point out an equivalence with the

computational model of the neuron presented in Sec. 1.2.2, by linking for instance

weights to conductances and input activations to input voltages. This unlocks an

alternative to typical digital computing that has been widely explored in literature

due to the memory array topology. In fact, the current sum formalized in Eq. 2.3-2.4

requires the drains of the nFETs to share the same node as in the case of array’s

bitlines, where the access transistors of the cells of a given column are connected to

14

2 – Classification of In-Memory Computing architectures

the same line.

2.1.2 Architecture overview

The core of the architecture is a 6T SRAM array. The authors deliver a memory

instance that can operate in two modes: standard SRAM operations (such as read

and write) and ”classify mode”, where NN inference is performed. Classification is

achieved by noticing that each column of the array can be seen as a linear-classifier,

where the related output equation is:

d = sign

(
N∑
i=1

wi · xi

)
(2.5)

where one can identify the two main operations introduced in former sections:

multiply-and-accumulate (dot product) and threshold comparison (sign function ap-

plied to the MAC result). Given the analog processing scheme introduced previously,

one can relate the accumulation result to the overall current of a column’s bitline.

The i-th weight is represented by the equivalent transconductance of the cell’s access

port (series connection of the access pass-transistor and the saturated FET of the

inverter) while the i-th input is the input voltage of the access transistor (WL volt-

age). The threshold comparison (sign function) is addressed to a comparator at the

end of the column. However, the sign of the equivalent conductance is dependent

on the content of the cell: if the stored value is 1 the current will be sourced from

the inverter’s pFET, if the value is 0 it will be sunk by the nFET. The ultimate re-

sult of these two scenarios is to increase or decrease the bitline voltage respectively.

Assuming the same input value for the wordline voltage of both configurations one

obtains a binary quantization of the current values, resulting in a classifier with

binary weights (Fig. 2.1a).

Input values, instead, are free to assume a broader range of values due to 5-bit

quantization. Features of the classifier are loaded serially in a dedicated Frame Val-

ues Buffer and then fed to an array of WL DACs (Fig. 2.1b). During a classification

cycle, unlike standard read/write operations, all the WLs are driven at once with a

15

2 – Classification of In-Memory Computing architectures

(a) Column weak classifier
with binary weights cur-
rent configurations.

(b) Architecture block scheme.

Figure 2.1: Column weak classifier and architecture schematic [20].

(a) Output waveforms of the
DAC.

(b) Schematic of the binary weighted current source
DAC.

Figure 2.2: WL DAC archictecture and characterization [20].

16

2 – Classification of In-Memory Computing architectures

different value coming from the DAC (Fig. 2.2b) array, resulting in different input

voltages for the access transistors of different rows. This way, the magnitude of the

current sank/sourced by each cell will depend on both the feature value and the

weight value, resulting in a multiplication. To avoid the unwanted corruption of the

cell’s content, the DAC output range has been limited to 0.4V (0.3VDD) (Fig. 2.2a).

2.1.3 Boosting the classification accuracy

The described architecture can support inference for 5-bit input neural networks

and 1-bit weights. However, as anticipated, the mathematical model of the column

processor results in a weak classifier, thus limiting the classification accuracy to

52% (Fig. 2.5). Moreover, process variations, device mismatches and BL discharge

non-idealities additionally degrade the network’s quality introducing non-linearities.

To account for this degradation the authors adopted a boosting algorithm: an ap-

proach from machine learning for constructing a strong classifier from multiple base

weak classifiers. This requires a further MAC operation on the weak classifiers’ out-

puts, resulting in the insertion of additional logic for digital arithmetic operations

(Fig. 2.3). The resulting scheme raises the ideal classification accuracy of the column

classifier to 91%.

A further source of accuracy degradation is the sense amplifier’s input offset volt-

age. The ultimate result of the described MAC operation is to deliver two different

values for BL and BLB voltages depending on weights and features. To perform

threshold comparison, the difference between the two is applied as a differential

voltage to the inputs of a latch-based SA. Ideally, the comparator should exhibit a

threshold equal to half the supply voltage; although, due to devices mismatches, an

input offset voltage will shift the threshold value from ideality. This translates into a

wrong classifier’s activation function, deteriorating the SNM of the inference process.

To restore the quality of threshold comparison, the authors supplied each column

with additional cells. At the device’s start-up, a calibration phase is performed: the

amplifier is driven by the same input voltage (i.e. pre-charged BLs) and its output

is sampled. If it shows a value different from 0.5VDD, a certain number of cells will

17

2 – Classification of In-Memory Computing architectures

be set to 0 or 1 according to the sign of the output (Fig. 2.4). The result of this

calibration is the insertion of a deterministic bias in the MAC operation that will

compensate for the amplifier’s input offset, enhancing the strength of the classifier.

2.1.4 On-silicon characterization

To characterize the performances of the architecture, authors delivered simulations

performed on a 128x128 SRAM custom array implemented in a 130nm CMOS pro-

cess. Thanks to the boosting algorithm and calibration cells, the final accuracy

of the classification sits slightly above 90% (Fig. 2.5). Nonetheless, 18 iterations

were required by the Error-Adaptive Classifier Boosting (EACB) to achieve this

precision, severely increasing the latency of the system. Moreover, the additional

circuitry for strong classifiers translates into a further source of area overhead. The

aforementioned classification accuracy takes into account the presence of a certain

number of calibration cells. In the prototyped configuration this translated into 32

additional rows in the array to achieve sufficient granularity for the SA’s input offset

compensation.

Results regarding the on-silicon characterization of the architecture can be seen

in Fig. 2.6, where the area overhead due to IMC acceleration stands around 90% of

the bitcell array. This is to be addressed mainly to the presence of the feature buffer

and the DACs array. Another source of area increment is the presence of additional

rows for the column calibration, which increases the size of the array of a factor of

1.25x. Ultimately, the SRAM exhibits significant differences in both access time and

energy consumption regarding two modes: the classification cycle results 6x slower

than normal SRAM operations while the energy per cycle increased by a factor of

3.

18

2 – Classification of In-Memory Computing architectures

Figure 2.3: Error-Adaptive Classifier Boosting (EACB) concept and schematic view
[20]

.

Figure 2.4: Calibration cells for SA offset compensation [20].

19

2 – Classification of In-Memory Computing architectures

2.1.5 Discussion

This section presented a detailed overview of an IMC accelerated SRAM memory

array based on analog computing. Albeit yielding a high classification accuracy, the

architecture required the insertion of calibration schemes as well as a more complex

training of the neural network. The resulting area of the system is large compared

to the one of a standard SRAM array implemented in the same technology and both

energy consumption and throughput exhibit a severe degradation. While the latter

may hinder the practical adoption of the architecture from an efficiency perspective,

the increased design complexity and its lowered regularity clash with a memory

generator implementation. The presence of huge AMS peripherals is common to

the vast majority of analog IMC architecture and unlocks the processing of feature

words larger than the single bit, translating, however, into a major source of area-

overhead. This, together with the pronounced sensibility to process variations, shifts

the target of this work towards more reliable digital implementations at the expense

of reduced parallelism. Accordingly, the following section will deliver an overview

of state-of-the-art digital IMC architectures.

20

2 – Classification of In-Memory Computing architectures

Figure 2.5: Classification accuracy of the system at different abstraction and simu-
lation levels [20].

Figure 2.6: Chip-level simulation results [20].

21

2 – Classification of In-Memory Computing architectures

2.2 Digital processing

According to the categorization used in this chapter, the term digital processing IMC

architectures groups all those implementations that completely carry on computa-

tions in the digital domain. Meaning that the voltage of each node of the schematic

ought to be coded on a single bit without any loss of information. The following sec-

tions present an overview of the current state-of-the-art digital IMC architectures,

investigating different inference schemes. The compatibility of each proposal with a

memory generator will be examined, eventually collecting features for the design of a

novel architecture. To preserve the timing interface of the OpenRAM architecture,

further analysis will only deal with single-cycle implementations. These memory

arrays do not require stalling the entire system for complex computations, but their

application is limited to BNNs. This is to be addressed to the structure of the ar-

ray: from the analysis carried on in Sec. 2.1 one can identify the single column as a

computing instance with a given number of input and output nodes. For instance,

in a 6T SRAM column, inputs boil down to WL ports and bitcell’s storage nodes

(Fig. 2.7). BL instead represents the only output port as well as an intermediate

computation node. As stated previously, all signals in a digital IMC architecture

are constrained to own at most 1 bit of information; moreover, the need for ac-

cessing cells further reduces the number of input ports to be used for computation,

thus limiting them to storage nodes solely. As a result, the elementary inference

node translates into a 1-bit inputs 1-bit output device, ultimately limiting its target

application to BNN only.

WLi WLi+1
Qi Qi+1

BL

Figure 2.7: Example of a digital column computing instance with 2 bitcells. Input
signals in red, partial results in green, output nodes in blue.

22

2 – Classification of In-Memory Computing architectures

0

1

CELL

CELL1

0

1

0

CELL=1 CELL=0 CELL=0

BL

BL BLB

XNOR

BLB

Figure 2.8: Behavioural representation of the bitline computing scheme.

2.2.1 Bitline computing

One promising approach for accelerating logical/arithmetical operations when it

comes to BNN is bitline computing (BLC). As described in the previous chapter,

bitline pairs can be exploited successfully for computations. However, their role is to

support sum-like operations in the analog domain, according to the aforementioned

current and charge accumulation methods. By extending the concept to the digital

domain, column bitline pairs translate into a large fan-in wired-or line each, where

inputs are the cells’ contents (Fig. 2.8). If a given bitcell stores a logic 0, its activation

will result in a pull-down device connected to the BL and a pull-up to the BLB, vice-

versa for a cell storing a logic 1. By combining the effects of their concurrent presence

on the BL, one can readily compute the truth table resulting from the activation

of two words (Fig. 2.8). Through a deeper investigation, it is straightforward to

identify the logic functions performed by this scheme, resulting in AND and NOR

operations for BL and BLB respectively (Fig. 2.8). As stated in Sec. 1.2.2, multiply

operations in BNN translate into the computation of a bitwise XNOR between

weights and activations; this can be achieved readily by combining the bitline pair’s

results through an OR operation.

The only drawback of the introduced approach is the simultaneous access of two

bitcells in the same column. A well-known issue in 6T (Fig. 2.11a) SRAM design is

the one of read-stability. When a single bitcell is accessed, a low impedance path

exists between the bitlines and the cell’s storage nodes; for each read operation, one

23

2 – Classification of In-Memory Computing architectures

of the column’s BLs discharges through the pull-down nFET of the cell. During this

transient, the current sank by the transistor will raise its drain’s voltage, ultimately

increasing the potential of the storage node corresponding to logic 0. If this value

exceeds the threshold voltage of the inverters, the bistable loop flips, resulting in

a destructive read. This led to investigating the consequences of accessing two

cells simultaneously. Authors in [24] carried on a punctual analysis of the concerned

scenarios, which boil down to two combinations: accessing two cells storing the same

value or a different one. Two cells exhibiting the same content causes one of the BLs

to discharge through a couple of nFETs. The current sank by the single transistor

is therefore halved as the amount of charge accumulated on the drain nodes. This

ultimately halves the node’s peak voltage during the access transient, thus increasing

the cells’ read margin (Fig. 2.10a-b.1). On the other hand, if the cells store different

values, the bitline charges and discharges simultaneously, creating a conductive path

from VDD to GND due to a pFET-nFET stack where both transistors conduct

(Fig. 2.10b-a.1). As an ultimate result, the BL voltage will settle on an intermediate

value linked to the FETs’ relative sizing, with a large amount of current drawn

from the supply. Moreover, as the cells store different values, both BL and BLB

experience discharging and the storage nodes at logic 1 become vulnerable; if the

BL’s voltage exceeds the trip voltage of the two cross-coupled inverter pairs, the

cells flip (Fig. 2.9). An accurate transient analysis of this scenario can be found in

[24] under the concept of dynamic read disturbance.

The contamination occurring during simultaneous word accessing is the main

factor that hinders a complete adoption of bitline computing. Researchers have

been working out plenty of methods to overcome the read disturbance issue, hence

the focus of the following sections will be to investigate these workarounds and

ultimately pick the best ones for a reliable computing SRAM architecture. At the

same time, the analysis will eventually describe and compare different peripheral

circuits, unlocking the acceleration of various logic functions.

24

2 – Classification of In-Memory Computing architectures

Figure 2.9: Bitcell’s content corruption due to cell flipping [24].

(a.1)

(b.1)

Figure 2.10: Cross conduction issue in simultaneous 6T bitcells access; scenarios
consists of accessing complementary values (a, b.1) and equal values (b, a.1). Con-
ducting devices are in red, current flow is visualized in blue.

25

2 – Classification of In-Memory Computing architectures

2.2.2 Isolated read-ports

Because of the issue of read-disturbance arising from the adoption of a 6T bitcell

as a storage element, one possible approach consists of shifting the circuit topology

towards more compliant configurations. Supplying the bitcell with two isolated read

ports eliminates the electrical connection between the BL and the storage nodes;

that’s the case of 10T bitcells. However, this configuration requires four additional

FETs (Fig. 2.11c) to achieve the desired number of ports, translating into a source

of area overhead which may be unbearable. An example of a 10T computing SRAM

can be found in [25] where the authors sacrificed area for functionality.

A trade-off between area occupation and reliability is dropping one of the two

read ports, thus moving towards an 8T bitcell configuration (Fig. 2.11b). The main

drawback of this implementation is the absence of the complemented BL, hence a

bitline computing result space limited to an AND operation only. However, the iso-

lated read port allows for concurrent bitcell access without disturbance. By recalling

the doubled discharge rate when accessing two cells storing the same value, authors

in [15] decided to shrink the WL assertion pulse. This way, the BL will experience

a full discharge only when the accessed values are ’1-0’ or ’0-1’; otherwise the line

will settle to an intermediate voltage (Fig. 2.12). This scheme allows the system to

discriminate whether the two accessed cells store the same value or not, according

to the final BL value. As a result, NAND and NOR computations can be performed

by sensing the line with different skewed inverters (Fig. 2.12).

Albeit reliable, the increased bitcell’s area of an 8T configuration might still

clash with the tight area constraint of certain designs. Therefore, the transistor’s

count of the bitcell instance has to stick with the one of a 6T cell. To deliver

a reliable architecture while retaining area occupation, authors in [26] designed

a novel bitcell topology with isolated read ports without altering the FETs’ count

(Fig. 2.13). The proposal exploits the large body effect coefficient of deeply-depleted

channel (DDC) technologies to achieve a write operation via the n-well. This way,

the access transistors can be converted from input-output devices to output ones

only; thus resulting in isolated read ports. Although elegant, this implementation

26

2 – Classification of In-Memory Computing architectures

(a) 6T configuration.

(b) 8T configuration.

(c) 10T configuration.

Figure 2.11: Different SRAM bitcell configurations.

27

2 – Classification of In-Memory Computing architectures

Figure 2.12: 8T BLC configuration and sensing scheme (left) and WL pulse width
reduction waveforms for result identification (right) [15].

is strongly technology dependant and process variations sensitive. Fig. 2.14 shows

the result of write margin simulation for bulk and DDC technologies. As stands out

from the plot, bulk technologies severely deteriorate the system’s reliability due to

their high process variations and low body factor. This translates into the major

issue hindering a practical compiler implementation of the architecture. On top of

this, the proposed writing scheme requires supply voltages higher than the nominal

one, thus giving rise to the need for level shifters and charge pump circuits which

severely increase the system’s area occupation.

2.2.3 Interleaved bitlines

A further approach to solving the read-disturbance issue for bitline computing fo-

cuses on the topological aspect of the computation instead. As previously stated,

the disturbance arises from sharing the same BL for the accessed bits, resulting in

a conductive path between their storage nodes. One way to avoid this connection

is to split the BLs, as proposed in [16]. Instead of stacking weights and activations

words vertically in the array, the two are interleaved as shown in Fig. 2.15a. This

way, instead of asserting two rows of the array, only a single one is driven, thus

28

2 – Classification of In-Memory Computing architectures

Figure 2.13: 4+2T bitcell configuration schematic (a) and layout (b) [26].

Figure 2.14: Results of write margin measurements using the proposed n-well scheme
[26].

29

2 – Classification of In-Memory Computing architectures

exhibiting a doubled number of bitlines. The avoidance of BL sharing vanishes the

bitline computations, due to the intrinsic absence of a common node. This led the

authors to address these missing operations to an additional stage in the column

sensing circuitry. The outputs of two adjacent columns are sensed by individual SAs

and sent to a logic circuit shared by the two amplifiers; this processes their results

yielding the final computations (Fig. 2.15b). The ultimate result is a computing

architecture behaving like a bitline computing one without effectively performing

any computation in the single bitline, hence solving the read-disturbance issue.

Implementation results of this approach show an area increment of the array up

to 11% with respect to a standard 6T SRAM, versus the 31% of an 8T array [27].

This is to be addressed to a stretch in the bitcell’s layout, required by the presence of

a further via for parallel wordline routing (Fig. 2.16). The resulting architecture is,

therefore, free from read-stability issues typical of bitline computing; thus resulting

in a viable adoption according to the purposes of this work. Another selling point

is its pronounced design regularity, a strong advantage when dealing with memory

compilers. One drawback of this implementation is its low operating frequency,

which settles to 50MHz for a 64-bit word size and a 65nm technology node. The

authors didn’t investigate the sources of the delay overhead which may be due to

the popcount network as well as an un-optimized computing circuit downstream of

the SA array. Ultimately, the interleaved words arrangement severely reduces the

flexibility of the system. In a standard bitline computing array, the communication

between different cells of the same column is conditional: due to a shared line (BL),

the user is free to choose between all the possible combinations of cells (and, by

extension, words). In an i-SRAM instead, the communication is constrained to

a single combination of two words, due to the hardwiring of the compute logic.

However, a detailed study of this issue is missing. One possible implication would

be the need for storing multiple times the same word in different locations for its

usage with different operands. The ultimate result is data redundancy, leading to

degraded storage capabilities.

30

2 – Classification of In-Memory Computing architectures

Figure 2.15: Interleaved wordlines array configuration (a) and compute circuit (b)
[16].

Figure 2.16: Bitcell’s layout of a standard 8T configuration (a) and its stretched
version for interleaved wordlines. [16].

2.2.4 Sequential pulsed wordlines

One last approach to solving the read-disturbance issue is to adopt a pulsed WL as-

sertion. This final technique is based on a change of conceiving the timing involved

in bitline computing. A constant feature of forenamed proposals was the simultane-

ous access of two words; relaxing this assumption leads to sequential accessing the

operands, avoiding their concurrent presence on the BL.

The first draft of this concept can be found in [15] and is exploited to unlock safe

bitline computing in 6T arrays. A straightforward implementation of this scheme

would result in two consecutive pulses sized to completely discharge the BL when

reading a logic 0 from a cell. However, this leads again to read-stability issues when

accessing the second bit. If two cells storing different values are accessed sequen-

tially, the second one experiences its storage nodes shorted to BL and BLB. These

31

2 – Classification of In-Memory Computing architectures

lines will therefore exhibit complementary values with respect to the ones of the

cross-coupled inverters, potentially corrupting the content of the cell. Accordingly,

the authors shrank the pulse duration to obtain a safe BL voltage after the first

pulse. This way, the second cell will be shorted to a node whose value (∼ VDD/2 in

the proposal) is above the inverter trip voltage, thus avoiding flipping. Waveforms

referring to sequential pulsed WL assertion can be found in Fig. 2.17a.

[28] further elaborates the concept of sequential pulsed WLs by delivering a ded-

icated single-ended sensing scheme based on skewed buffers. As soon as the first

pulse ends, the BL reaches an intermediate voltage which slowly drives the switch-

ing of the first inverter of the chain. This latter’s output node is the gate of a

further nFET having its drain connected to the BL through a pass-transistor in a

bootstrap fashion. When the second pulse has been issued, an enable signal shorts

the feedback FET to the BL, completing its discharge (Fig. 2.17b).

Authors in [28] carried on a comparative analysis of the sequential WL assertion

scheme and the wordline-underdrive (WLUD) technique. This latter consists of

driving the bitcell’s access transistor with a voltage lower than VDD, thus increasing

the impedance of the connection between the storage nodes and the BL. However,

this leads to a degraded discharge rate of the BL which slows down the system.

The study shows how the read access time experienced a 62.2% reduction with the

proposed scheme at the expense of a 2.75% increment in energy consumption. The

ultimate result is a 61.2% reduction of the energy-delay product for read/compute

operations.

Sequential access is not the only fashion in which pulsed WL is exploited. [29,

30, 24] adopt this concept while simultaneously accessing the two words to limit the

BL swing. The pulse width is constrained to the minimum required to make the SA

switch if a discharging event of the line occurs. This technique aims at achieving

a low BL voltage swing to avoid turning on the pFETs of cells storing a logic 1.

Their conduction depends on their drain-source voltage, which translates into the

difference between the potential of the storage node (VDD) and the BL. As soon as

this value exceeds the threshold voltage of the transistor, the device starts sourcing

current, thus resulting in a conductive path from VDD and GND when stacked with

the nFET that’s discharging the BL.

32

2 – Classification of In-Memory Computing architectures

(a) (b)

Figure 2.17: Sequential pulsed wordlines waveforms (a), bitline boosting schematic
for pulsed wordlines bitline computing (b) [28]

2.2.5 Discussion

This section provided a brief summary of the literature relating to digital architec-

tures for BNNs acceleration. As stressed out in this study, the area efficiency of

the SRAM array plays a crucial role in the architecture’s performance, thus prefer-

ring a complex design to an increment in the bitcell’s area occupation. This is to

be addressed to target applications of IMC, mainly consisting of internet-of-things

(IoT) nodes to enhance with artificial intelligence (artificial intelligence-of-things,

AIoT), subjected to tight area and energy consumption constraints. A further as-

pect standing out from the analysis is the issue of read-disturbance, affecting all the

6T SRAM based IMC implementations. This affects the system’s reliability, result-

ing in increased design time, failure rate and expertise required by the designers;

translating into major factors retaining the deployment of IMC in a wider range

of applications. Sequential pulsed WLs potentially represent a viable adoption to

solving the read-stability issue, allowing the exploitation of a low-area 6T array.

However, a full system implementation is missing, hindering a robust comparison

with existing architectures. The next chapter will deal with the design of an IMC

SRAM architecture based on BLC. Each section will introduce a building block of

the system and define its architecture choosing among the features described in this

33

2 – Classification of In-Memory Computing architectures

section.

34

Chapter 3

Democratizing hardware design

Information and communication technology (ICT) has changed our world. Since the

invention of the first transistor, physical computing systems have been growing in

complexity and performance, propelled by Moore’s law. As the number of features

of an electronic system increases, so does the expertise, resources and development

time required by its design, thus constraining it to large industries and engineers

teams. Commercial electronic design automation (EDA) tools have been support-

ing this growth for the last decades; however, the significant expertise required by

current technology nodes is raising their cost, as well as the ones of the overall sys-

tem’s design and verification (Fig. 3.1). To make the design of new hardware devices

quicker, easier and more accessible, in the last few years a new movement emerged

under the theme of ”democratizing hardware design”. One key exponent of this

is the OpenROAD Project [31, 32]. Launched in June 2018, it aims at bringing

down barriers to circuit design by making system prototyping and manufacturing

easier, for both experts and non-experts, even in advanced technologies. Accord-

ingly, it provides a fully automated open-source ”no human in the loop” hardware

design flow, trying to unlock a 24-hour design time for complex IPs. The project is

supported by a team of performers including members from Arm, Qualcomm and

several universities such as UC San Diego and the University of Michigan. Currently

under development, the flow is based on an open-source toolchain for the different

steps of the VLSI design stream, providing facilities for a tapeout-ready result.

Several EDA tools, however, have to be aware of the targeted technology for the

silicon implementation of the design. Accordingly, they are fed with foundry pro-

cess design kits (PDKs), providing models for back-end digital design steps, SPICE

35

3 – Democratizing hardware design

Figure 3.1: Design technology crisis [31].

simulations, parasitic extractions, design rules and process variations. Commer-

cial PDKs are expensive, while freely available ones are either stuck to very old

process nodes or non-manufacturable. To meet the need for a reliable open-source

PDK, Google and Skywater teamed up for the release of SKY130 [33], a completely

accessible 130nm process design kit for product development.

One last crucial aspect in electronic systems design is the development of memory

arrays. An open-source flow for modern systems on chip (SoCs) has to take into

account the presence of hard macros in the system like cache memories and SRAMs.

Due to their pronounced layout regularity, the design of these elements is often

carried on by memory generators, allowing users to benefit from a fast generation

of silicon proved arrays. Due to dedicated layout solutions, most memory memory

generators are strongly technology-dependent, while most open-source PDKs lack an

array generator implementation. Several commercial tools instead, yield black-box

instances or, however, do not allow customization of any of the memory components.

36

3 – Democratizing hardware design

According to this issue, the OpenRAM Project [34] aims at delivering a customizable

memory array design framework. Thanks to the presence of technology files, the

compiler can be ported to different technologies while limiting the performance loss.

As previously stated, this work will deal with the compiler-aided open-source

design of a computing SRAM architecture. Accordingly, this chapter introduces

the main tools exploited to fulfil this purpose; the first section will deliver a brief

overview of the OpenRAM framework structure, while the second one will introduce

key properties of the Skywater 130nm PDK.

3.1 OpenRAM: an open-source memory compiler

The OpenRAM memory compiler is a memory design framework under development

at the University of California Santa Cruz. The script follows an object-oriented

programming approach and is completely based on Python, sticking to the philos-

ophy of an open-source design flow. The framework can be divided into two main

phases, a front-end and a back-end methodology (Fig. 3.2). The first is the effective

generation of the array, starting from a user-defined configuration file (specifying

word size, number of words, number of banks, etc) and producing SPICE, Verilog,

GDSII and Liberty files, with estimated power and delay values resulting from an-

alytical models. The back-end methodology is instead exploited by OpenRAM to

yield a true and precise characterization of the architecture. It relies on external

tools for simulation (e.g. ngspice) and parasitics extraction (e.g. Calibre), resulting

in a timing and power annotated Liberty file (.lib).

3.1.1 Module structure

Each module of the design is derived from an ancestor class (namely design.py),

which holds name, SPICE and layout information about the device. Each in-

stance is further represented by some derived classes: hierarchy spice.py and

hierarchy layout.py. These supply a set of methods for handling SPICE file

37

3 – Democratizing hardware design

Figure 3.2: The OpenRAM software framework [34].

reading/writing and layout geometries drawing respectively.

OpenRAM relies on two types of modules: ”hard” and parametrized ones. Formers

have to be fed to the compiler both in SPICE and GDS files, resulting in the most

customizable instances of the array. Belong to this category sense amplifiers, write

drivers, flip-flops and bitcells. The exploitation of hard macros allows the designer

to optimize the system performance as well as the array density. Latters instead are

dynamically generated by the compiler and their sizing is made dependent on a set

of input constraints. Belong to this category a whole set of logic gates primitives,

including inverters and buffers.

For a new module to be instantiated, the primitive class has to be derived to

create a new one, thus inheriting SPICE and layout file handling methods. Each

module will have its constructor and might be customized with a set of input param-

eters if necessary. Concerning the SPICE file, it is loaded for the custom device and

has to agree with the declared set of input/output/power pins during the module

generation. Further functions are then invoked to connect these pins to the ones of

38

3 – Democratizing hardware design

other modules to compose a netlist. The same thing applies to the layout view of the

new device. Concerning geometries, these are stored in a software representation

through shapes. Each shape has a given layer, net name and set of coordinates.

More or less complex methods are present for an optimized drawing of the layout,

speeding up processes like bus connection. Once the compiler ends the array genera-

tion, some special functions are invoked for translating the set of fictional shapes into

effective geometries in a GDSII file. These functions belong to a dedicated library

for GDS manipulation named GdsMill, developed at the University of Michigan. For

hard modules, this library is exploited to load the layout view and translate it into

fictional shapes for easier handling. Furthermore, the hierarchy design.py side of

the module provides methods for instance placing and pins position extraction. The

global class in charge of constructing modules and instances is called factory.

3.1.2 Technology files

As stated previously, OpenRAM is, ideally, able to efficiently compile memory arrays

on the majority of CMOS process nodes. This is achieved via a technology file called

tech.py, which holds key characteristics of the given PDK. The file starts with a

map that links GDS layers and planes to a more user and compiler friendly format,

where the name of the layer is explicit and recalls its effective purpose. Then, design

rules are listed for each layer, allowing the compiler to produce a violations free

layout by issuing checks on the values passed to the methods. To ease the routing

phase of the layout generation, each metal layer and the polysilicon has a user-

defined preferred direction. By alternating these directions, tracks of nearby layers

are made orthogonal, hence reducing their capacitive coupling. Another type of data

structure is represented by the metal layer stacks. Stacks are arrays containing the

name of two nearby layers in the hierarchy and the name of the via connecting the

two. These structures are exploited by OpenRAM to readily switch layers during

the routing as well as to identify which layer to be used for the supply grid.

To allow the automated generation of SPICE netlists, the technology files stores

the device’s model names and minimum allowed sizes for both pFETs and nFETs.

Moreover, to unlock a parametric sizing of certain logic gates (e.g. drivers) the

39

3 – Democratizing hardware design

values of FETs drain and gate capacitance are listed, together with delay and power

parameters for the system’s characterization. Finally, the file provides names and

paths to auxiliary tools exploited by the compiler for parasitics extraction (PEX),

design rules check (DRC) and layout versus schematic (LVS) correspondence.

3.1.3 Architecture overview

The reference implementation is an SRAM memory array, whose simplest block

scheme architecture can be seen in Fig. 3.3. Among the options to be defined by the

user one can identify:

1. number of read, write or read-write ports;

2. local array size for local bitlines;

3. write size for masked write operations;

4. number of banks (currently only one bank is supported);

5. words per row of the array;

6. whether to provide a ring-type supply network or not.

The possibility of exploiting isolated ports for reading or writing only is subjected

to the availability of customized bitcells. OpenRAM can automatically generate a

layout view for a standard 6T bitcell on any implemented technology; however, it

would not translate into a minimum area occupation design due to the imposition

of a DRC violation-free result. To enhance the array efficiency, the authors promote

making the bitcell a hard-macro, thus requiring a dedicated design. Other custom

modules include sense amplifiers, write drivers and flip-flops. Their layouts have

been designed from scratch for SKY130 and can be found in App.A.

Concerning input-output signals, currently, the architecture relies on the follow-

ings:

40

3 – Democratizing hardware design

1. ADDR for address bits;

2. DIN for input data bits;

3. CLK for the system clock;

4. WEb to select between read or write operation;

5. CSb to trigger the start-up of the device.

Accordingly, one obtains the timing diagrams for read and write operations shown

in Fig. 3.4 and Fig. 3.5 respectively.

3.2 SKY130: Skywater 130nm process design kit

SKY130 is a hybrid 180nm-130nm technology node developed by Cypress Semicon-

ductor and is now available through Skywater Technology Foundry. It is based on

the 8th generation SONOS process node. As can be seen in Fig. 3.6, the process

consists of 5 levels of metal and a layer of titanium nitride (TiN) for local inter-

connections. The feature size of the technology is 130nm, however, the minimum

channel length for transistors is larger, resulting in 150nm. The minimum channel

width is limited to 420nm, yielding a minimum aspect ratio of 2.8. The nominal

supply voltage for the process is 1.8V, however different libraries are present to allow

the interfacing with voltage domains up to 20V.

The content of the PDK is organized in libraries, each exhibiting different properties

and trade-offs between power, performance and area:

1. sky130 fd sc: foundry-provided (fd) standard cells (sc) libraries for digital

design:

(a) sky130 fd sc hs: high speed, 0.48 x 3.33um site (about 11 met1 tracks);

(b) sky130 fd sc ms: medium speed, 0.48 x 3.33um site (about 11 met1

tracks);

41

3 – Democratizing hardware design

Figure 3.3: Block scheme view of the OpenRAM SRAM architecture [34].

42

3 – Democratizing hardware design

Figure 3.4: Timing diagram for OpenRAM read operation [34].

Figure 3.5: Timing diagram for OpenRAM write operation [34].

43

3 – Democratizing hardware design

(c) sky130 fd sc ls: low speed, 0.48 x 3.33um site (about 11 met1 tracks);

(d) sky130 fd sc lp: low power, 0.48 x 3.33um site (about 11 met1 tracks);

(e) sky130 fd sc hd: high density, 0.46 x 2.72um site (about 9 met1 tracks);

(f) sky130 fd sc hdll: high density, low leakage, 0.46 x 2.72um site (about

9 met1 tracks);

(g) sky130 fd sc hvl: high voltage (5V), 0.48 x 4.07um site (about 14 met1

tracks).

2. sky130 fd pr: foundry-provided device primitives (pr), stores SPICE models

of elementary devices like FETs, BJTs, resistors, capacitors, inductors, etc;

3. sky130 fd io: foundry-provided input-output (io) and periphery cells, stores

macros and SPICE models of peripherals like GPIOs and pads;

4. sky130 fd bd: foundry-provided build spaces (bs), stores macros for special

purpose applications like SRAMs and flash memories (none of them has been

released yet).

The presence of such different libraries broadens the design space of target ap-

plications, allowing full-chip tapeout-capable implementation. Although wide, this

PDK is not intended for commercial purposes and is to be intended as an experi-

mental preview. Different designs have been manufactured and tested, however for

prototyping purposes only. Each new batch of chips helps the developers fix bugs

and model properties for the improvement of the design kit. Due to the open-source

nature of the PDK, Skywater is open to collaborations to enrich the content of

the libraries. New build spaces are currently under development like the one for

SRAM arrays, featuring shrunken transistor sizes and optical proximity corrections

for increased density.

44

3 – Democratizing hardware design

Figure 3.6: Process stack diagram for SKY130 [33].

45

Chapter 4

Architecture concept and design

Based on what has been previously discussed, an architectural concept of the com-

puting SRAM to be implemented in SKY130 can now be investigated. Since, as

previously stated, the aim is to exploit OpenRAM for the macro development and

to introduce IMC features in a memory compiler, enhancements have been picked

among the proposals to be least-invasive as possible, this for both preserving the

compiler-introduced native optimizations and reducing the amount of additional

code.

For the sake of the digital nature of this implementation and its target applica-

tions consisting of BNN accelerations, the fundamental computing scheme would be

based on bitline-computing (BLC), given this one can highlight the building blocks

of the memory architecture to be customized or designed from scratch:

1. Bitcell Array: needed for data storage, its density is determined by the type

of bitcell (6T, 8T, 10T, Custom, etc) and the associated layout, resulting in

the major area occupation source for an SRAM design.

2. Address Decoder: for BNN inference acceleration two addresses are needed

at once: one for pointing at the word storing the weighs related to a neuron

and pointing at its activations values.

3. Sense Amplifiers Array: probably the most crucial cell in an IMC memory

implementation, it is in charge of unlocking key features for inference acceler-

ation while keeping area overhead and performance loss as low as possible.

4. Population-Count Network: while the weight-activation product is ad-

dressed to bitlines and sense amplifiers array, results accumulation has to be

46

4 – Architecture concept and design

performed by a specific component described in RTL and implemented through

logic synthesis. With respect to the array’s word size, its design could severely

impact on the overall area occupation of the architecture as well as on its

resulting cycle time.

5. Control Logic: Responsible for control signals generation and instances syn-

chronization, has to be equipped with additional intelligence for a smart in-

ference acceleration.

The resulting block scheme representation of the architecture can be seen in Fig. 4.1.

In the following sections, each of the listed components will be defined, starting from

the implementation choices and down to the circuit layout generation through the

complete VLSI design flow’s steps.

4.1 Bitcell array

As aforementioned, the choice of the bitcell array structure has a huge impact on

one of the most important figures of merit when it comes to memory macros: area

occupation; an often employed quantity in design’s quality estimation is the Area-

Cost-Per-Bit (ACPB), consisting of the ratio between the area of the array and

the total number of stored bits. The key factor affecting ACPB is the bitcell’s

type together with its layout, in fact, the area occupation of a single cell (i.e. the

area required to store a single bit) is largely due to its transistor’s count under the

assumption of a tight layout: a 6T array will result in a higher area efficiency than

an 8T one, and so on. Given the additional circuitry required for IMC features

unlocking, a 6T implementation of the bitcell has been elected as the fundamental

storage element to limit the area increment arising from array customization to the

absolute minimum.

As aforementioned, the choice of the bitcell array structure has a huge impact on

one of the most important figures of merit when it comes to memory macros: area

occupation; an often employed quantity in design’s quality estimation is the Area-

Cost-Per-Bit (ACPB), consisting of the ratio between the area of the array and

47

4 – Architecture concept and design

Figure 4.1: Primitive Block Scheme of the Computing SRAM Architecture.

48

4 – Architecture concept and design

the total number of stored bits. The key factor affecting ACPB is the bitcell’s

type together with its layout; in fact, the area occupation of a single cell (i.e. the

area required to store a single bit) is largely due to its transistor’s count under the

assumption of a tight layout: a 6T array will result in a higher area efficiency than

an 8T one, and so on. Given the additional circuitry required for IMC features

unlocking, a 6T implementation of the bitcell has been elected as the fundamental

storage element to limit the area increment arising from array customization to the

absolute minimum.

According to the overview performed in Sec. 2.2, the choice of adopting a 6T bitcell

as a storage element limits the array’s organization to two configurations: interleaved

wordlines or a standard structure. As it was pointed out, wordlines interleaving leads

to a loss in both storage efficiency and IMC operations flexibility. Accordingly, the

structure of the array will stick to the one of a standard 6T SRAM, thus exhibiting

a bitline pair for each column and a WL signal for each row.

Fig. 4.2 shows the schematic of the 6T bitcell (Fig. 4.2a), together with transistor

sizes and the resulting layout (Fig. 4.2b), both taken as they are from an existing

schematic/GDS database for an OpenRAM release ported to SKY130 [35]. The

layout sticks to a conservative 6T bitcell design according to [36] while FETs are

sized to optimize the cell for the well-known trade-offs between SNM, read-stability

and writability. Due to the actual unpolished status of the PDK, designers are not

allowed to draw transistor’s geometries with a channel width smaller than the mini-

mum one, which yields an aspect ratio of 0.42um/0.15um; this translates into strong

limitations in area optimization of the array. Usually, due to the extreme regular-

ity in the design of memory arrays, sub-min-size FETs are allowed and supported

by lithographical enhancements such as OPC adjustments; however, Skywater is

currently developing an SRAM build-space cell library to provide area optimized

cells to improve array efficiency, which can be inserted in the compiler by simply

updating the GDS and SPICE files. Fig. 4.3 depicts the layout view of a 2x4 array

configuration in 6T cells.

Due to the choice of employing 6T bitcells as fundamental storage elements, the

exploitation of simultaneous wordlines activation has to face the aforementioned

49

4 – Architecture concept and design

(a) Schematic view of the implemented 6T bitcell in SKY130. Annotated values
are to be intended as channel widths in um, channel lengths always stick to the
technology minimum and their value is omitted for sake of readability [35].

(b) Layout view of the implemented 6T bitcell in SKY130 PDK [35].

Figure 4.2: 6T Bitcell SKY130 Implementation - Schematic and Layout.

issues regarding read-stability, which may ultimately reduce the reliability of the

system; to solve this issue this work will target a sequential pulsed WL assertion as

introduced in the previous chapter.

4.2 Sense amplifier array

4.2.1 Computing sense amplifier

Arguably the most important component in a bitline computing-based IMC archi-

tecture, the sense amplifier combines the result of bitline computations to yield

50

4 – Architecture concept and design

Figure 4.3: 6T Bitcell Array - Layout View of a 2x4 Configuration.

the required final results; these, being the final architecture designed for BNN and

AdderNets acceleration, mainly consist of XNOR operation between the two ac-

cessed bits on the same column and a 2’s complement addition.

After a double-word access, the BL will show a binary value equal to the AND be-

tween the two bits accessed sequentially in two cells belonging to the column, while

the BLB the NOR. It is now sufficient to combine these two values through a further

NOR operation to obtain the XOR value and complement it for the desired XNOR,

which accounts for the BNN weight-activation product. Starting from this enhanced

set of logic functions with respect to a standard sense amplifier, it is trivial to enrich

the schematic of the device to allow for the computation of a 2’s complement sum

by inserting a further XOR gate for the sum output and the required carry-ripple

logic.

51

4 – Architecture concept and design

Due to the presence of different values at the output of the SA, a multiplexer is

required for the amplifier to be supervised by a control unit; according to this need,

it has been decided to feed the MUX with two additional signals aside from XNOR

and SUM ones: the BL value, needed for standard read operations and yielding the

bitwise AND, and the complemented one (BLB), yielding the bitwise NOR. This lat-

ter choice is to be addressed to the AdderNets behaviour, in fact among the required

operations one can identify the 2’s complement subtraction and the absolute value

computation, both requiring a 1’s complement operation, hence a complemented

read.

The resulting logic-level schematic of the computing-sense-amplifier (CSA) can

be seen in Fig. 4.4a, where one can identify two instances of a sensing device, one

for each BL. This is required because the differential sensing operation has to be

replaced by two single-ended operations, thus requiring a duplication of the sensing

component.

4.2.2 Circuit-level design of the BLC logic

The integration of logic gates in the SA increases the complexity of the device, thus

rising the need for an accurate study on the circuit topology of each additional fea-

ture. Moreover, the computing amplifier has to undergo tight constraints concerning

area occupation and propagation delay in order not to slow down the whole system.

Given the logic-level view of the SA, one can classify the propagation paths in

the device as critical and fast. Due to the presence of carry-ripple logic, the timing of

the array is now dependent on the word size of the memory and two data-paths can

be highlighted in the single amplifier (Fig. 4.5): one related to the device’s individual

bitwise computations (i.e. AND, NOR, XNOR), the other resulting from the carry

ripple logic. While for amplifiers in the middle of the chain these two paths can be

considered independent (Fig. 4.5b), it is well known for Ripple-Carry Adders that

in the first and the last elements the two combine, thus sharing a certain amount

of gates (Fig. 4.5c and 4.5a) and requiring further analysis. In Fig. 4.5a one can see

how for the first amplifier the circuitry shared between the two paths consist of a

52

4 – Architecture concept and design

Figure 4.4: Computing Sense Amplifier schematic (a), post-technology mapping
area occupation distribution (b) and mode control signals table (c).

NOR gate and a single inverter, for the last one, instead, the shared path results

in an XOR gate and a 4x1 MUX. Analyzing the transistor’s count of the shared

circuitry in a pure static CMOS implementation one obtains the result in Tab. 4.1,

where a significant area gap results between the shared gates of the first and last

amplifier due to a complex circuit structure for XOR and MUX logic functions.

Therefore, to keep the area overhead as low as possible, the NOR and INV related

gates will be implemented in static CMOS topology, while XOR and MUX will be

transmission-gate (TG) based; more in detail, the XOR gate will use the optimized

circuit topology presented in [37] (Fig. 4.6a) while the 4x1 multiplexer will stick to

a standard TG implementation as in Fig. 4.6b.

53

4 – Architecture concept and design

(a) Last CSA of the array. (b) Midway CSA of the ar-
ray.

(c) First CSA of the array.

Figure 4.5: Computing Sense Amplifier’s critical (in red) and fast (in blue) paths.

Table 4.1: CSA - Static CMOS Logic Functions Area Occupation

Area Logic Function

units INV NOR XORa MUXb

min-FETsc 3 10 24 27

(µm2) 0.189 0.630 1.512 1.702
aInverters for input signal generation are excluded.
bInverters for control signal generation are excluded.
cSKY130 PDK - Wmin=0.42um, Lmin=0.15um.

4.2.3 Carry-ripple logic sizing

Formerly identified as the critical path in the CSA array propagation delay, the

carry-ripple chain, whose circuit-level implementation has now been revealed, needs

to be accurately sized in order not to degrade the system’s performance during sum

operations. According to this, propagation delay simulations have been performed

for different word sizes and different drive strengths of the concerned logic gates.

The first batch of simulations have been carried on imposing equal sizes for both the

54

4 – Architecture concept and design

(a) XOR gate schematic.

(b) 4-to-1 MUX gate schematic.

Figure 4.6: Computing Sense Amplifier - Transmission Gate Logic.

NOR2 gates, obtaining the results shown in Fig. 4.7a, where the trend for the 64-

bits word length has been derived by interpolation of the lower parallelism’s results

according to the model in Eq. 4.1, which assumes equal delay for each additional

amplifier in the chain; given the low values of approximation errors (Fig. 4.7b) this

technique has been preferred to circuit simulations in order to ease the design process

reducing the simulation time related to huge networks.

tpd (n) =
tpd (8)

8
· n with n = word-size (4.1)

According to results in Fig. 4.7a-4.7c the obtained curve is monotone, hence no local

minimum can be identified, meaning that as long as the drive strength of the gates

55

4 – Architecture concept and design

increases the propagation delay decreases, showing no self-loading behaviour and

sticking to the ideal RC delay model for the aforementioned device. In order to

increase the chances of discovering a local minimum, the assumption of equal-sized

gates in the same amplifier has been relaxed and a new parametric simulation has

been performed as shown in Fig. 4.7d. However, even in this scenario, a sweet spot

was not found as the obtained 3D plot highlights how the minimum propagation

times corresponds to an equal sizing of the two gates. Given these results, the

only remaining design constraint for logic sizing is the area overhead introduced

by increasing the drive-strengths of the devices. Fig. 4.7e depicts the relative delay

reduction and area increment as function of the driving capabilities of the gates;

given the obtained values, it has been decided to impose a drive strength for the

carry-ripple logic equal to 2 in order to keep the area increment below the 50%

while still obtaining a performance enhancement of 10% with respect to a unitary-

sized logic chain. Resulting propagation delays for different word sizes are shown in

Fig. 4.7f and final CSA logic area occupation and distribution with respect to logic

function can be seen in Fig. 4.4

4.2.4 A novel circuit topology for single-ended sense ampli-

fiers

In many previous works on IMC SRAMs, a standard implementation of the column

sensing circuitry is used by simply duplicating the instance of a differential amplifier

for each bitline pair. Since either a current latch SA (CLSA), voltage latch SA

(VLSA) or differential stage (DS) is used, the area of the final bitline computing SA

is large, mainly due to the transistors count of sensing components and their sizing

for optimal read delay. Few works introduce single-ended sensing based on a high-

skew buffer [29, 15]; being those designs optimized for speed though, they require

very large transistor’s aspect ratios and good control of the MOSFET threshold

voltage, constraints that clash with the aim of a low area and technology independent

compiler implementation.

To accommodate for the reduced area budget derived from logic insertion in the SA

device, in this section a novel single-ended sense amplifier circuit topology will be

56

4 – Architecture concept and design

(a)

(b)

Figure 4.7: Computing Sense Amplifier - Carry Ripple Logic Sizing Results.

57

4 – Architecture concept and design

(c)

(d)

Figure 4.7: Computing Sense Amplifier - Carry Ripple Logic sizing result.

58

4 – Architecture concept and design

(e)

(f)

Figure 4.7: Computing Sense Amplifier - Carry Ripple Logic sizing result.

59

4 – Architecture concept and design

Table 4.2: Sense Amplifiers Area Comparison

Area Sense Amplifier Type

units Proposal VLSA CLSA DS

(λ2) 98.57 141.43 167.14 180

(µm2)a 0.483 0.693 0.819 0.882
aSKY130 PDK - 0.15um channel length implementation.

proposed.

Fig. 4.8a shows the area-optimized SA schematic, which consists of only two

pMOS and two nMOS minimum sized transistors, apart from P1 which exhibits a

larger width. The gate of the latter is connected to the bitline while its drain is QN ,

shared with the drain of N1 and the input node of a low-skewed inverter (P2 and

N2). When the bitline is pre-charged to VDD, P1 is off, QN is ’0’, and the output of

the amplifier is ’1’, behaving as a buffer for the bitline value. As soon as the pre-

charge signal is de-asserted and the bitline starts discharging due to the activation

of a row in the array, P1 begins to turn on and slowly charges the capacitive node

QN , as shown in Fig. 4.9a. When QN reaches the inverter’s input threshold, the

output of the amplifier goes to ’0’, yielding the correct read result. During the

array’s precharge phase, the node QN is discharged to ’0’ through N1, turned on

by the signal PRECH. To enhance the amplifier’s performance, P1 has been made

a low-threshold voltage transistor, which speeds up its activation and ultimately

reduces the charging time of QN . Increasing its aspect ratio will result in a larger

charging current as well as a larger capacitance on QN , resulting in a trade-off for

the design of the circuit. Tab. 4.2 shows a schematic-level area comparison between

the proposed amplifier and minimum sized VLSA, CLSA and OpenRAM native DS

where a significant reduction can be observed.

Based on the proposed sensing scheme one may enhance the circuit topology

by inserting feedback bootstraps as in Fig. 4.8. In Fig. 4.8b a pFET is connected

to the QN node with its gate driven by the amplifier’s output, this boosts the

charge of the capacitive node once the output voltage starts decreasing thus speeding

60

4 – Architecture concept and design

(a) Proposed SA schematic with explicit representation of equivalent capacitance
on node QN .

(b) Amplifier’s schematic with output
boosting scheme.

(c) Amplifier’s schematic with BL boosting
scheme.

Figure 4.8: Proposed Single-Ended Sense-Amplifier’s schematics.

up the amplifier’s switching. Fig. 4.8c enriches the circuit with a bitline boosting

scheme as in [28, 29, 30]; the nFET driven by QN turns on as the latter node

voltage increases, thus boosting the discharge of the bitline, increasing the overdrive

voltage of P1 and ultimately speeding up the charge of QN . This second-mentioned

enhancement scheme, however, is not suitable for sensing arrays made up of 6T

bitcells; the BL boosting nFET, once turned on, results in a further discharge path

directly connected to the storage node, thus rising the same issues of an additional

simultaneously accessed bitcell for what concerns read-stability. It could, en passant,

represent a viable boosting scheme for all those arrays showing an isolated read port

and requiring a full discharge of the BL.

Fig. 4.10 displays the results of a comparative simulation of different SA topolo-

gies in a 128x128 sized 6T bitcell array. Due to the strong dependency of their

61

4 – Architecture concept and design

(a) Proposed amplifier waveforms during standard memory read cycle together
with control signals.

(b) Time borrowing waveforms during bitline computing cycle together with con-
trol signals.

Figure 4.9: Time-Borrowing Sense Amplifier Waveforms.

62

4 – Architecture concept and design

characterization from the generation of a well-calibrated sense-enable signal (SEN),

VLSA and CLSA have been excluded from the simulation; DS-SA instead, despite

requiring an enable signal too, does not rely on a latching scheme, and hence an

inaccurate control signal generation only translates into an over-estimation of the

device’s power consumption. As stands out in Fig. 4.10a, the most competitive fea-

ture of the proposed amplifier is its area occupation, comparable with a min-sized

buffer, way below the ones of standard SRAM’s SAs. Another peculiar trait of

this circuit topology is its read-delay (Fig. 4.10b), which competes with fast-access

devices, like DS-SA and feedbacked BL-boosting skewed buffer [29], by degrading

the performance merely by 0.9% and 6% respectively in its essential implementa-

tion. Nevertheless, when it comes to energy consumption, the proposal exhibits

outstanding outcomes with respect to all the simulated competitors (Fig. 4.10c). In

fact, thanks to the avoidance of a complementary pull-down/pull-up network simul-

taneously turned on by the BL signal (whose slew-rate is low for large arrays), the

cross-conduction component of the CMOS gate current is neutralized, thus maxi-

mizing the charging current for the QN capacitive node. This translates into a 52%

reduction in energy consumption with respect to the fastest of the simulated am-

plifiers; enhanced variants of the circuit, however, show a degraded energy saving

at the expense of a reduced read-time, mainly due to transient cross-conduction

currents during the pre-charge phase. Ultimately, the proposed amplifier exhibits

excellent results when all the aforementioned figures of merit are taken into account

at once (Fig. 4.10d), resulting in a solid pick in order to make up for the lowered

area budget of the computing SA array.

4.2.5 Time-borrowing sense amplifier

Due to the adoption of a pulsed wordline assertion, a study of the amplifier’s compat-

ibility with this access scheme is crucial in order to obtain a reliable sensing scheme.

As brilliantly identified and explained in [24] under the concept of dynamic read

disturbance, the final value of the BL voltage plays a key role in the read-stability of

the accessed cells, thus causing the need for a tighter design of the pulse generator

63

4 – Architecture concept and design

(a) SAs Area comparison.

(b) SAs Read-Delay comparison.

Figure 4.10: Sense Amplifiers area-delay-energy comparison.

64

4 – Architecture concept and design

(c) SAs Energy-per-Operation comparison.

(d) SAs Area-Delay-Energy product comparison.

65

4 – Architecture concept and design

(PG). Additionally, since the BLC requires accessing two words per cycle, such a

generator must produce two pulses, thus increasing the complexity of its design. All

these discussed constraints, together with the large sensibility to process variations,

result in uncertainties for the pulse width, leading either to performance degrada-

tion (in case of oversized, yet reliable pulse generator design) or increased failure

probability (in case of a generator optimized for performance, whose actual pulse

width may be too small for a correct switch of the SA). These topics will be covered

more in detail in a dedicated section.

Assuming an inaccurate generation of the pulse, the behaviour of the proposed

amplifier can be investigated in order to prove its compatibility. Even if not all

the SRAM architectures rely on pulsed wordline assertion, a fictional pulse width

can be defined as the time interval between the assertion of the wordline and the

generation of the SEN signal, hence in this elapsed period of time, a defined amount

of differential input voltage has to be developed at the input of the SA. Inaccurate

pulse duration results in lessened input voltage, which may cause wrong latching or

no switching, depending on the amplifier’s topology, ultimately resulting in a failure.

Unlike these implementations, called hereafter pulse-intolerant, with the proposed

amplifier inaccurate pulse generation only results in performance degradation in-

stead of a failure. This is because, in case a pulse duration shorter than the expected

one, the BL voltage will be higher than required, thus resulting in P1 driven by a

suboptimal gate-source (bitline) voltage: the pFET will still charge QN but at a

slower rate, increasing the switching time on behalf of increased reliability. The re-

sults of a parametric simulation of the switching time versus the BL voltage driving

P1 can be seen in Fig. 4.11 together with the related waveform of both OUT(Q) and

QN (Fig. 4.11a-4.11b), where one can relate the asymptote of the obtained curve

(Fig. 4.11d) with the pFET’s threshold voltage in the interested process corner; this

translates into the minimum voltage to be developed between the supply and the

BL in order to turn on the transistor.

Due to the importance of the final BL voltage developed during the pulse duration,

the amplifier has been further characterized with respect to this quantity with the

help of a fictional dynamic amplifier threshold, defined as the BL voltage at which

the device’s output value falls to 0.9VDD during a read operation in a 128x128 array.

66

4 – Architecture concept and design

Results of Monte Carlo simulations are reported in Fig. 4.12 together with a tem-

perature sweep in the commercial range and process corners characterization; these

will be used afterwards for the design of the pulse generator.

The aforementioned ”relaxed” switching due to inaccurate pulse width gener-

ation can be even exploited in order to enhance the resulting array’s access time.

Given a two-pulse BLC SRAM structure as in Fig. 4.1, one can break down the

overall access time from the control signals sampling in the following components:

T2P = tCLK,Q + tGEN + tPREC + tPW,1 + tNOV P + tREAD + tPCNT (4.2)

where:

1. tCLK,Q represents the sequential overhead due to input signal’s latching;

2. tGEN includes all the introduced delays for the generation of the pulse from

the read signal assertion;

3. tPRE is the width of the pre-charge signal’s pulse;

4. tPW,1 is the pulse width of the first decoder’s enable signal;

5. tNOVP is the non-overlap times between the two pulses;

6. tREAD is the propagation delay across the SA, which includes the BL discharge

time;

7. tPCNT stands for the propagation delay across the popcount network.

As can be easily noticed, the width of the second pulse does not appear in the

equation. This is because a pulse duration larger than the SA read time is assumed,

hence the only constraint on the latter pulse regards its maximum width and is

linked to dynamic read disturbance and power consumption reduction. The first

pulse instead is crucial for the performance of the system and any over-sizing could

severely slow down the memory. A straightforward design would see tPW1 sized as

the read time of the amplifier as reported in Fig. 4.10b, in essence: would wait for

67

4 – Architecture concept and design

(a) Node Q waveforms.

(b) Node QN waveforms.

Figure 4.11: Time-Borrowing Sense Amplifier’s Pulse Resilience Simulation Results.

68

4 – Architecture concept and design

(c) Superposed waveforms.

(d) Switching time versus final BL voltage.

Figure 4.11: Time-Borrowing Sense Amplifier’s Pulse Resilience Simulation Results.

69

4 – Architecture concept and design

(a)

(b)

Figure 4.12: Sense Amplifier Dynamic Threshold - Monte Carlo and Process Corners
Simulations

70

4 – Architecture concept and design

(c)

Figure 4.12: Sense Amplifier Dynamic Threshold - Monte Carlo and Process Corners
Simulations

the device to completely switch. However, since the introduced amplifier can be

driven by sub-optimal pulse widths at the expense of a longer switching time, one

can reduce the pulse duration to the one required to make the device switch before

the closing of the time window dedicated to access the bitcell array (T2P − tPCNT),

shifting the end of the commutation in the next pulse. This behaviour, due to

the resemblance with its digital counterpart in two-phase latch-based architectures,

will be called hereafter time-borrowing and its qualitative waveforms can be seen in

Fig. 4.9b.

4.2.6 Layout

As all the components of the CSA have been defined, a pre-layout area estimation

can be performed; results are shown in Tab. 4.3 where one can acknowledge the

lowered overhead introduced by the proposed sensing scheme.

Going on with the layout design of the device, the only constraint to take into

account is the width of the resulting set of geometries; in fact, the macro has to

71

4 – Architecture concept and design

be pitch-matched to the bitcells to allow a side-by-side placement for those array

configurations that do not require column multiplexing. The resulting layout view

can be found in Fig. 4.13 with details of the main features. The main aspect that

stands out from the design is the high aspect ratio of the amplifier (≈ 1:8), mainly

due to the width constraint; moreover, this led to an extremely dense routing ex-

ploiting metal layers up to the second last (M4). The main consequence of this is

that the sense amplifier array is now a no-route zone, meaning that the compiler

should not be allowed to consider the area as available for supply and/or control

signals routing. However, this does not translate into a real issue, since, due to fore-

seen design choices, both supply and control signals share the same y-coordinates in

the resulting drawing, hence their routing reduces to a simple rail tracing, avoiding

congestion. Fig. 4.14a depicts the layout view of a 16-bit SA array configuration

in absence of column multiplexing, where the pitch matched design can be seen.

Fig. 4.14b highlights the dedicated routing of the array while Tab. 4.3 summarizes

the post-layout area occupation of the final device.

Table 4.3: Computing Sense Amplifier Design - Area Summary

Sense Amplifier Features

Area Pre-Layout

units TOT SA NOR RCA XOR MUX

(λ2)b 1140 98.571 128.571 514.284 167.143 231.428

(µm2)a 5.586 0.483 0.630 2.520 0.819 1.134

% 8.6 11.3 45.1 14.7 20.3

Area Post-Layout

units TOT SA NOR RCA XOR MUX

(λ2)b 15528 5712 4183 2567 3065

(µm2)a 76.089 27.990 20.500 12.580 15.020

% +1262 36.7 26.9 16.5 19.7
aSKY130 PDK - 0.15um channel length implementation.
b LCH=2λ

72

4 – Architecture concept and design

(a)

(b) Detail of the proposed sensing scheme. The
layout is merged with the one of the NOR gate.

(c) Detail of the static CMOS RCA logic gates.

(d) Detail of the PT MUX gate.

Figure 4.13: Computing Sense Amplifier - Layout Views.

73

4 – Architecture concept and design

(a) Array of SA for a 16-bit word configuration with no column multiplexing.

(b) Detail of the dedicated rail routing of supply and control signals in the array.

Figure 4.14: Computing Sense Amplifier Array - Layout Views.

74

4 – Architecture concept and design

4.3 Address port

Due to the nature of the operations required to accelerate neural networks, an IMC

enhanced memory needs to be fed with at least two address words; according to

the target applications of this work, one related to neuron weights, one to its input

activations. Doubling the address words requires altering the address port’s circuitry

with respect to a standard memory implementation; moreover, the adopted pulsed

WL assertion requires the decoding circuitry to be supplied with an enabling scheme

to achieve the desired behaviour.

4.3.1 Address decoders

With respect to the targeted figure of merit to optimize, one can identify two con-

figurations that prioritize area overhead and performance respectively. The former

(Fig. 4.15a) exploit a single instance of the decoding circuitry multiplexed between

the outputs of the two arrays of D flip-flops (DFFs) for the address words latch-

ing. Albeit inexpensive from an area perspective, this method leads to a significant

performance loss since the decoder network has to be crossed twice, one for each

of the addresses, due to multiplexing. This, linked to the synchronization with an

enable signal, increases the size of the resulting non-overlap time between the pulses,

lowering the performance of the array as explained in Sec. 4.2.5. Conversely, an im-

plementation that promotes access time translates into a straight-forward doubling

of the decoding network; this, given the gating circuitry related to the enable signal

shown in Fig. 4.15b, limits the propagation delay overhead to two stages of gates

only: the AND required for the enabling and a NOR for the sharing of the word-

line drivers. Due to the increased access time linked to BLC circuitry, this latter

implementation has been preferred to alleviate the performance loss and has been

incorporated in the memory compiler.

75

4 – Architecture concept and design

(a) Area-optimized implementation. (b) Speed-optimized implementation.

Figure 4.15: Address Decoding Networks for Multiple Address Words

4.3.2 Pulse generator

As stated in previous sections, due to the adoption of a pulsed WL assertion to ease

the issues of read-stability in 6T arrays, a pulse generator device is required.

The chosen circuit topology for the generator’s implementation is the so-called

clock-chopper [36] whose logic level schematic is shown in Fig. 4.16a. It consists of an

AND gate driven by two versions of its enable signal: the first is directly connected

to one of the gate’s inputs, the second instead has to cross a delay-chain made of

an odd number of inverters in charge of generating a complemented and delayed

version of the input signal. At steady state the inputs of the AND gate differ, which

means that its output is a logic 0; once the enable signal is asserted, its fast input

turns to 1 while its slow input still shows the previous value (i.e. logic 1). This

asserts the output of the AND gate as long as the input signal’s propagation across

the delay chain is not complete; once the chain’s output value turns to its definitive

76

4 – Architecture concept and design

DELAY CHAIN

EN
PULSE

(a) Single pulse clock chopper.

DELAY CHAIN 1

EN
PULSE1

DELAY CHAIN 2

PULSE2

(b) Double pulse clock chopper.

Figure 4.16: Pulse Generator - Schematics.

value, the gate finds itself with two different values as inputs, thus de-asserts its

output ”closing” the pulse. The pulse duration is the difference in the propagation

delay of the two paths of the input signal, hence the propagation delay of the chain

of inverters, which can be controlled by tuning the channel length of the involved

transistors. Since both the accessed rows rely on pulsed WL assertion, the device

must generate a further pulse, this is achieved by inserting an additional delay chain

at its output to delay the pulse of the desired quantity. This allows for tight control

on the non-overlap times which, as previously stated, is crucial for the memory

access time. The final schematic can be seen in Fig. 4.16b.

Fig. 4.17 shows the results of a parametric simulation aimed at characterizing

the main design quantities of the device as functions of the FETs channel lengths

of the two inverter chains. As expected, Fig. 4.17a depicts the trend of the first

pulse width as insensitive with respect to the size of the second chain; reasonable

result as the two involved paths are isolated. Conversely, Fig. 4.17b highlights the

inter-dependency of the second pulse width from the first one. In particular, the

77

4 – Architecture concept and design

second pulse experiences a stretching in its duration as the delay introduced by the

second delay line increases. That means that according to this design methodology,

the second pulse width will always be larger than the first; this, however, doesn’t

translate into an issue either for the system’s performance or its reliability, as the

second pulse duration does not appear in the equation for the access time (Eq. 4.2)

and the time stretch magnitude is not significant for the read-stability degradation.

A further phenomenon that can be observed in Fig. 4.17b is that for small first pulse

durations and long channels in the second chain, the latter acts as a filter with

respect to the input pulse. This is to be addressed to the propagation delay across

the chain being larger than the pulse duration, hence the input getting annihilated

as it travels across the logic, according to the concept of inertial delay. Fig. 4.17c

shows the second pulse’s delay with respect to the first and sticks to the expected

trend, being it related to the sizing of the second delay chain only; blank regions

represent those scenarios in which measurements failed due to the absence of the

pulse and have to be intended as infinite delay time. Finally, Fig. 4.17d depicts the

resulting non-overlap times where one can notice how the concerned quantity is not

free to be chosen given pulse width, in fact, due to time-stretch phenomenon and

propagation delays inserted by the remaining gates of the device, the trend is far

from being linear.

Due to the aforementioned non-linearities in the obtained trends, the design of

the component becomes complex and may cause issues in its interfacing with the

customized decoders as well as provide synchronization issues regarding the non-

overlap times which may slow down the memory. To make matters worse, the

device is susceptible to process variations; this, combined with the sensitivity of the

SA’s threshold from process variations, could severely degrade the reliability of the

resulting system. To make up for these issues, a process-tolerant pulse generation

technique will be introduced and investigated in the following section.

78

4 – Architecture concept and design

(a)

(b)

Figure 4.17: Pulse Generator - 2 Pulses Clock Chopper Characterization.

79

4 – Architecture concept and design

(c)

(d)

Figure 4.17: Pulse Generator - 2 Pulses Clock Chopper Characterization.

80

4 – Architecture concept and design

4.3.3 Closed-loop pulse gating technique based on replica

bitline

To soothe their consequences and safely keep track of mismatches and degradation

induced by process variations, the exploitation of a feedback loop is required. The

concept is to involve in the loop all those quantities that introduce failure sources

in the concerned scheme, this way the system will regulate and synchronise itself

reducing the fault probabilities to the absolute minimum. A perfect example of

this technique is the Replica Bitline (RBL) concept introduced in [38] which sees

the control logic waiting for the switching of an extra inserted column in the array,

namely replica column, to generate the SA enable signal. This way process variations

in the array are taken into account and, by tuning the number of cells tapped to

the RBL, the power consumption of the amplifier’s array can be minimized by a

precise synchronisation of its enable signal. In the same fashion, one can exploit

an RBL (which comes for free in a memory compiler, being de-facto the standard

for SRAM memories performance’s enhancement) to decide when to ”close” (i.e.

de-assert) the WL pulse. This technique has been first introduced for BLC SRAM

arrays in [24] where the feedback loop is employed to limit the BL voltage swing

to the absolute minimum to reduce the dynamic read stability related failures. By

tapping a different number of replica bitcells (RBC) to the RBL one can tune the

ratio between the former and a normal BL discharge time; this allows to make the

RBL SA switching faster than normal SAs in the array, thus accounting for the

propagation delay of the path, that goes from the outputs of the amplifiers to the

ones of decoders, needed to close the pulse. However, this implementation is based

on a different RBL structure with respect to the one involved in OpenRAM; while

the former sees a replica column made of dummy cells (not tapped to the related WL

but to BL only, hence behaving as capacitances) with an extra RBC individually

driven at the column’s end, the latter instantiates RBC for all the cells of the column,

this way, for each combination of the decoder’s output, there will always be an RBC

turned on to discharge the RBL. Ultimately the compiler adds a further RBC at the

end of the replica column driven by a signal asserted each time a read operation is

performed, resulting in two RBC discharging the RBL, halving the switching time.

81

4 – Architecture concept and design

According to this implementation, this section proposes a closed-loop RBL based

pulse gating scheme that translates into non-invasive customization and reduces the

amount of code to be added to the compiler.

Starting from the proposal in [24] one can extend the concept to two-pulses BLC

SRAM arrays according to Fig. 4.18. The starting condition of the system is the

time instant after the end of the pre-charge phase, hence all the BLs and the RBL

are at logic 1, as the output of the RBL SA. Once the READ signal is asserted by

the control logic, given the output of the RBL SA, the first decoder is enabled, thus

triggering the wordline drivers and rising the selected WL to logic 1. Due to the

aforementioned replica column structure, the RBL will discharge, thus turning the

amplifier’s output to logic 0. According to the scheme in Fig. 4.18, the discharge

rate of the RBL will be the same as a standard BL due to the absence of additional

RBCs, which means that the RBL SA is elected to represent the propagation delay

of the whole SA array. Once the amplifier’s output has switched there’s no reason to

keep the WL asserted, consequently, the first decoder’s enable signal is de-asserted

through the AND gate and the pulse of the second decoder can start. The latter is

addressed to a simplified pulse generator, in charge of providing, this time, a single

pulse; moreover, since the pulse width does not appear in the memory access time

equation, the device can be over-sized to be reliable in all the process corners and

temperature range while still avoiding a full BL discharge, ultimately limiting the

system’s power consumption. Nonetheless, as expected, the described scheme does

not account for the propagation delays in the feedback loop; moreover, since the

discharge rate of the RBL sticks to the one for normal BL, non-replica columns will

experience a full BL discharge. This, as explained in Sec. 4.2 is unnecessary and is

to be avoided to fully exploit the time-borrowing features of the proposed amplifier.

Ultimately, the closed-loop pulse width shows itself over-sized, since a considerable

amount of time exists between the amplifier’s switching and the pulse closing instant

(Fig. 4.20a).

To fasten the RBL discharge time to account for the pulse size overhead, an

OpenRAM compiler-friendly answer is to insert additional RBCs at the end of the

replica column. The working principle is the same of [24], but instead of varying the

82

4 – Architecture concept and design

ADDR2
ADDR1

D
EC

O
D

ER
 1

D
EC

O
D

ER
 2

PG READ

READ

SA OUT

RBL

RBL SA

Figure 4.18: Closed Loop RBL Pulse Gating - Block Scheme.

83

4 – Architecture concept and design

capacitance on the RBL, this implementation varies the RBL discharge current by

turning on multiple RBCs at the same time. To preserve the regularity of the array,

a further replica bitcell insertion in a column ought to be followed by the completion

of a whole row; since the additional cell is an RBC, the remaining elements of the

row will be dummy cells, in order not to degrade the standard BLs discharge time

increasing the equivalent capacitance on the line. The introduced rows will be called

replica rows (RRW) and the related WLs replica wordlines (RWL).

Fig. 4.20 show the results of a simulation performed in a 128x128 array enhanced

with different combinations of replica rows. Fig. 4.20a-4.20d depict the waveforms

of the resulting closed-loop controlled pulse as well as the standard BL voltage com-

pared to the RBL one. This technique allows for pulse resizing and subsequent per-

formance enhancement by reducing the pulse duration up to 39% (Fig. 4.20e). Fur-

thermore, the resulting BL voltage increases with the number of additional RRWs,

increasing the reliability of the system and unlocking time-borrowing. The only

drawback of the described technique is the area overhead due to array extension,

which however sits below 3% for 3 additional rows. As stands out from the trend

of both the pulse width reduction and final BL voltage, these enhancements tend to

saturate as the number of RRWs increases, mainly due to the discharge time being

inversely proportional to the discharge current, hence yielding a 1
N

trend where N

is the number of additional rows. However, a sweet spot is represented by using

3 additional RRWs, a configuration that achieves significant pulse width reduction

while yielding a BL voltage that sits above half the supply voltage.

4.3.4 Pulse generator compiler

As stated in the previous section, the architecture of the pulse generator boils down

to the one needed for the generation of a single pulse, thus with reduced complexity.

Since the target of this work is the development of an enhanced version of OpenRAM

which supports IMC features, the design of the concerned device has to be parame-

terized to allow the generation of memory macros of different sizes and needs to be

made technology independent. This creates the need for a pulse generator compiler

84

4 – Architecture concept and design

D
 E

 C
 O

 D
 E

 R
 S

R
B

LR
 E

N

READ

GLOBAL
ROW

ENABLE

AR
R

AY R
O

W
S

ADD.
ROWS

ARRAY
COLUMNS

RBL
COL.

DUMMY
CELLS

MEM
CELLS

REPLICA
CELLS

Figure 4.19: Closed Loop RBL Pulse Gating - Replica Rows.

85

4 – Architecture concept and design

(a) (b)

(c) (d)

(e)

Figure 4.20: Closed Loop RBL Pulse Gating - Simulation Results.

86

4 – Architecture concept and design

whose development will be described in the forthcoming part of this section.

The script is completely based on Python and supplies a specification-to-GDS

flow according to the diagram in Fig. 4.21. Few sources have to be provided to the

algorithm to operate successfully: characterization of the chosen architecture (in this

case the single pulse clock chopper in Fig. 4.16a) for its sizing and characterization

of the bitcell array in order to pick the optimal pulse width according to its size. To

fulfil the first requirement the concerned component has been further characterized

to obtain a curve able to relate the design quantity (the transistor’s channel length

of the delay chain) to the output quantity (the pulse width); results of parametric

simulations can be seen in Fig. 4.22. Then, through curve fitting, an analytical

expression of the output characteristic is obtained to allow for further manipulations

by the compiler. Since the only aim of the component is to provide a pulse wide

enough to cause the amplifier to switch in any possible scenario, the simulations took

place in the FF process corner and refer to 90% to 90% pulse width, this causes the

device sized by the compiler to always generate a pulse width slightly larger than

the optimal, to achieve complete error resiliency. Fig. 4.22a show the results of the

first curve fitting where the whole set of data shares the same analytical expression

and coefficients:

tpd (L) = α + 3 · ln(2) ·
(
βL+ γL2 + ωL3

)
(4.3)

The equation refers to the Elmore delay RC model of a chain of three cascaded

inverters where only the dependency from channel length has been made explicit.

The latter, instead of a pure quadratic expression as provided by the model, has

been turned into a third-grade polynomial to increase the fitting accuracy.

As can be observed from Fig. 4.22b, the model perfectly matches the simulation

results only for large values of channel length, and fails for values around the mini-

mum size, translating in modeling errors up to 40%. To further improve the model’s

accuracy, the data set has been split into two regions to be fitted individually with

the same equation. The boundaries of the formers have been optimized to minimize

the maximum relative error of the overall fitting (Fig. 4.22c), results can be seen

in Fig. 4.22d. As one can observe, the composite fitting allowed for a delay model

whose maximum relative error sits below 0.8%, resulting in a reliable analytical

87

4 – Architecture concept and design

PW VS
ARRAY SIZE

PW VS
CHANNEL
LENGTH

Curve Fitting Curve Fitting

PW = f(ARRAY) PW = f(LCH)

LCH = f(ARRAY)

GDSII

SPICE

PULSE GEN
COMPILER

OpenRAM
Configuration

Options

Technology
Design Rules

Figure 4.21: Pulse Generator Compiler - Flow Structure

88

4 – Architecture concept and design

expression for the compiler algorithm.

The other characterisation needed by the compiler is the required pulse width

versus the number of rows of the bitcell array (i.e. the column size). Once again

different configurations of the memory have been simulated for row sizes up to 256.

Following the same workflow as for the clock chopper’s characterization, results have

been fitted according to the following analytical expression:

tSW,BL (R) = α + β
√
R + γR (4.4)

tuned to obtain always positive modeling errors, this translates into a further over-

sizing factor increasing the reliability of the device. Results are shown in Fig. 4.23

where the maximum relative error sits below the 3.5%.

Done with the required characterisations, the algorithm can be fed with the

elaborated analytical expressions to automatically size the pulse generator during

the memory array compilation. Once the channel lengths of the FETs have been

computed, the layout of the component can be drawn; for this to be carried on,

the compiler calls for MAGIC VLSI [39], an open-source layout editor tool, and

issues the required commands to draw shapes for the geometries. For a layout to

be drawn, the user has to be aware of the technology’s design rules; to make the

compiler technology-independent, the algorithm has been developed in order to be

able to automatically interact with the OpenRAM technology files. More in detail,

the tool scans the tech.py file of the desired technology to learn about design rules

and layer names. As a result, the layout of the component is always 100% DRC

errors free and achieves the lowest possible area occupation. Moreover, some features

have been inserted in the layout editor as the option to individually choose the pFET

and nFET sizes and select the multiplication factor of the inverters (drive strength).

Fig. 4.24 shows the layout views results of different runs of the script with different

channel lengths and transistor widths.

89

4 – Architecture concept and design

(a)

(b)

Figure 4.22: Clock Chopper Characterization - Single Pulse

90

4 – Architecture concept and design

(c)

(d)

Figure 4.22: Clock Chopper Characterization - Single Pulse

91

4 – Architecture concept and design

Figure 4.23: Closed Loop Bitline Discharge Times - Simulation Results and Fitting.

4.3.5 Layout

Introduced features have been fully implemented in OpenRAM, which now supports

double address words for every configuration of the array’s rows. Fig. 4.25 depicts

the final layout of the address port composed by the compiler for an array made

up of 16 rows; on the left and in the center the two decoders can be identified with

their related pre-decoding stages, the bus routes at the bottom ease the overall cell

interfacing with address DFFs by confining their routing to the leftmost border of

the instance, thus avoiding routing congestion. The outputs of each decoder have

been provided with an AND array for gating to allow pulsed assertion. Finally, in

the rightmost part of the layout, one can appreciate the array of wordline drivers,

where each row is composed of a NOR gate for decoders outputs blending followed

by a chain of an odd number of inverters, automatically sized by the compiler to

result in a delay optimized path for WLs driving. Beneath the lowermost wordline

driver, a replica row driver can be found, whose enable signal is directly connected

to the one of the decoder associated with the first issued pulse.

92

4 – Architecture concept and design

(a) LCH = 1um - WN = 0.42um, WP = 0.84um

(b) LCH = 0.25um - WN = 0.42um, WP = 0.84um

(c) LCH = 0.25um - WN = 0.84um, WP = 1.68um

Figure 4.24: Pulse Generator Compiler - Layout Results for Different Configurations.

93

4 – Architecture concept and design

Figure 4.25: Address Port - Layout View for a 16 Rows Array Configuration.

94

4 – Architecture concept and design

4.4 Population-count network

As explained in Sec. 1.2.2, the use of binary quantization in neural networks in-

ference allows for strong computational effort reduction, ultimately reducing the

weight-activation product to an XNOR operation and partial results accumulation

to a population count (popcount hereafter). The population count operation, from a

hardware perspective, is nothing more than a 1-count in a given word, thus the re-

sulting architecture translates in a bit-counting network. Far from being solved, the

problem of optimized bit-counting has been brought back into focus by cryptogra-

phy applications, thus bringing on a new wave of hardware solutions and dedicated

microprocessor’s instructions [40]. However, most of them are sequential circuits,

which might not be compatible with IMC memory customization due to the need

of stalling the system for a certain number of clock cycles; hence, to preserve the

one-cycle timing of the resulting array, it has been decided to supply the SRAM with

a fully combinational network. In [40], one promising approach to parallel popcount

is the Carry-Save-Adder (CSA) based reduction tree for multi-operand addition,

while [41] delivers a survey on existent architectures for parallel bit-counting and

ultimately proposes a new network which is expected to reduce both complexity and

propagation delay of the operation based on a hybrid RCA-CSA implementation.

In this section, a comparative study will be carried on between the two introduced

network topologies based on the involved figures of merit such as area occupation

and maximum operating frequency, ultimately deeming their implementation in a

memory compiler from an automated design point of view.

4.4.1 CSA-based binary tree reduction HDL generator

CSA trees are widely used in hardware multipliers for performing fast addition in a

multi operand scenario. The fundamental instances of the network are full-adders

(FA) and half-adders (HA), that behave as 3-to-2 and 2-to-2 compressors respec-

tively; by exploiting the compression ratio of the FA one can reduce the number

of input words to the network to two words within a certain number of compress-

ing stages, the last step is to sum the obtained words with a standard carry-ripple

95

4 – Architecture concept and design

adder to achieve the desired computation. With respect to the adopted reduction

algorithm, one can classify CSA trees in two: Wallace[42] and Dadda[43] types. The

main difference between the two is the instantiation criterion for the compressors:

the former allocate gates on each layer to reduce as soon and as much as possible the

number of operands, while the latter tries to reduce the complexity of the resulting

network by only allocating compressors to obtain the maximum number of allowed

inputs for the next stage. A comparative analysis of the two architectures can be

found in [44].

A possible approach to the problem of popcount is to see bit-counting as a

peculiar multi-operand operation, more in detail a multi-operand sum of 1-bit words.

According to this philosophy, CSA reduction trees can be employed to efficiently fulfil

this need. To achieve a fully modular implementation in the memory compiler, the

generation of the network ought to be both completely automated and parametrized

with respect to the array’s word size; hence the need for the development of a digital

design flow to be equipped in OpenRAM.

The core of this additional feature is a hardware-description language (HDL)

generator for the binary reduction network: the script performs a software version of

the chosen hardware compression algorithm while labeling nets to produce a VHDL

description of the resulting network. In the following, the description of the tool will

be provided referring to a word size different from the single bit required in popcount

applications, however, the algorithm behaves adaptively to the bit-width parameter,

allowing for the reduction of words in any format. The starting point of the process

is the placing of a dot representation of the input words in the data structure upon

which the whole algorithm is based: a 3D array called PP tensor (Partial Products)

where the number of rows is the number of inputs, the number of columns is the

word length of the final result while the number of ”sheets” of the array is the

number of levels of the tree. Each column represents a single weight in the binary

representation of the final result (col 0: 20, col 1: 21, etc). A representative sketch

of the 3D structure is shown in Fig. 4.26.

For each level, the matrix is analyzed taking into account two subsequent columns

96

4 – Architecture concept and design

b0b1b2...

bN-1

bN

PPM

...

PP1

PP0

LK
...

L0

Figure 4.26: 3D Array - CSA HDL Generator

at a time. These are stored in temporary vectors, namely tmp-column and tmp-

column-next, upon which the processing is made. For each element of these vectors

three fields are present:

1. value : 1 or 0, points out whether a single bit is present or not;

2. state : used or unused, denotes whether the bit has been used in that level or

not;

3. label : represents the name of signal.

The content of the state field is analyzed for the whole vector to compute the

number of operand bits present at that level for that particular bit weight and hence

compute the excess bits, defined as the difference between the number of effective bits

in the column and the maximum number of operands allowed for the next level. Once

this quantity is known, a recursive function is invoked to allocate the compressor

and reduce the number of bits. To decide whether to allocate a FA or an HA one

needs to know how many bits to subtract from the column’s number of elements (the

excess bits) and how many bits in that column are available; the state field is used

97

4 – Architecture concept and design

to distinguish between the available and the unavailable ones. Once the decision has

been made, the function only needs to cover the whole length of the vector searching

for three available operands in the case of the FA or two available operands in the

case of the HA. Once the desired triplet or duplet has been found, knowing the labels

of the bits to compress, a VHDL component instance of the chosen compressor is

generated and n-1 out of n inputs of the compressor get toggled to zero in the column

getting labeled as used. The remaining input preserves its presence (a 1 in the value

field) but gets labeled as used to take into account the sum bit of the compressor

while not being available for further instances in the same level. Since the carry-out

bit of both kinds of compressor has a higher weight with respect to the inputs and

the sum bit, a 1 labeled as used is appended in the tmp column next to take into

account the carry bit produced by the compression. When the number of operands

in the column reaches the desired value, the processing on that particular bit weight

is complete and as a result, the processed column gets stored in the matrix related

to the next level, the column labeled as next becomes the column under processing

and the algorithm starts again.

As aforementioned, the algorithm can compress the operands according to both

the reduction criteria: Wallace and Dadda. This is achieved through manipulation

of the max operands per lvl variable: by simply setting it to zero the script allocates

compressors as long as available bits are present, according to the Wallace philos-

ophy, by feeding the variable with a vector instead, each level will be related to a

maximum allowed operands as the Dadda reduction algorithm requires.

The tool reduces the number of input operands down to two words to perform

a final sum operation through a behavioural description of the adder for further

optimization through synthesis constraints; however, by simply increasing by 1 the

number of levels (K), the algorithm will recognize the underlying command and

perform a final run relaxing the constraint on the unavailability of bits of neighbour

weights, thus instantiating FAs and HAs to obtain a ripple carry adder.

The pseudo-code for the algorithm can be found in Alg. 1.

98

4 – Architecture concept and design

Algorithm 1: CSA Tree Reduction Algorithm

for (l = K ; l > 1 ; l −−) do
tmp column ← PP tensor(:,0,l);
for (b = 1 ; b < N ; b ++) do

tmp column next = PP tensor(:,0,l);
avail bits per lvl ← numel(tmp column);
excess bits ← numel(tmp column) − max operands per lvl;
while (excess bits > 0 and avail bits per lvl ≥ 2) do

num FA ← floor(excess bits/2);
if (num FA > 0 and avail bits per lvl ≥ 3) then

/* a FA can be allocated */;
for (r = 0 ; r < M ; r ++) do

if (tmp column(r) is 1 and is unused) then
index.append(r) /* append index of the chosen

elment to index vector content */ ;
if numel(index) == 3 then

tmp column(index(1)) ← 0 and used;
tmp column(index(2)) ← 0 and used;
tmp column(index(3)) ← 1 and used /* sum bit of

the FA remains active in the column */;
tmp column next(first available unoccupied position)
← 1 and used /* carry output bit of the FA

becomes active in the next column */;
excess bits − = 2;
printFA VHDL();
break from last for loop;

end

end

end

end
else if (avail bits per lvl ≥ 2) then /* an HA can be instantiated

*/

same operations and loop as for the FA but with 2 inputs;
end
update available bits();

end
PP tensor(:,b−1,l−1) ← tmp col;
tmp column ← tmp col next;

end

end

99

4 – Architecture concept and design

4.4.2 Dalalah bit-counting network

Another remarkable circuit for bit counting is the one proposed in [41]. In response

to the lack of optimized parallel networks, the authors propose a new popcount

architecture that blends the CSA and RCA philosophies. Analyzing the resulting

architecture for an input word of 8 bits (Fig. 4.27a) one can observe how the latter

gets split in two and each of its parts of 4-bits experiences a 2 stages compression

in a CSA fashion to obtain, altogether, 2 words of 3 bits (⌈log2 ((8/2) + 1)⌉). These
can be further summed in an RCA fashion through a chain of FAs.

As a way of both increasing performance and reducing complexity, the authors

meditated on the effective role of the logic gates at a lower level of abstraction,

investigating the elementary logic functions performed by HAs and FAs. Following

a design by contraction approach, the netlist has been further simplified by noticing

that not the whole circuitry behind the FAs of the second stage was effectively

exploited. Same logic results can be achieved by replacing the aforementioned FAs

with HAs equipped with a further OR gate for carry computations. The resulting

network is shown in Fig. 4.27b.

Although not standing out from an 8-bit implementation, the hybrid compression

scheme can be better appreciated in its larger word sizes versions. In fact, to obtain

a 16 popcounter, for instance, it is enough to instantiate twice an 8 bits network

and combine the outputs through an adder. This method can be extended for larger

words resulting in popcounting networks for 32, 64, and 128 bits. An example of a

16-bit long input word configuration is depicted in Fig. 4.28.

4.4.3 Bit-counting networks comparison

Thanks to the developed script for the CSA-based binary reduction trees and the

strong regularity of the Dalalah network design for larger word sizes, all the intro-

duced popcounting networks have been described through VHDL, verified and finally

synthesized and characterised through Synopsys Design Compiler for word lengths

of 8, 16, 32 and 64 bits using the SKY130 High-Density Standard Cells Library. As

100

4 – Architecture concept and design

H
A

H
A

H
A

H
A

H
A

H
A

FA
FA

H
A

FA
FA

I0
I1

I2
I3

I4
I5

I6
I7

O
0

O
1

O
2

O
3

20 21 22 23

(a
)
D
a
la
la
h
8
b
it
s
-
B
as
e.

H
A

H
A

H
A

H
A

H
A

H
A

H
A

FA
FA

I0
I1

I2
I3

I4
I5

I6
I7

O
0

O
1

O
2

O
3

H
A

H
A

(b
)
D
al
al
ah

8
b
it
s
-
M
o
d
ifi
ed

.

F
ig
u
re

4.
27
:
P
op

co
u
n
t
N
et
w
or
k
s
-
8
b
it
s
D
al
al
ah

.

101

4 – Architecture concept and design

POPCNT
8-bits

POPCNT
8-bits

+

INPUT[15:0]

INPUT[15:8] INPUT[7:0]

OUT1[3:0]OUT2[3:0]

OUT[4:0]

Figure 4.28: Popcount Networks - 16 bits Dalalah.

can be seen from Fig. 4.29a, area occupation for a given word length does not show

sensitive variations from one architecture to the others, thus neglecting its possible

election as the main figure of merit for the adoption of a given network. However,

up to a 32 configuration, Dalalah stands out as the lowest area implementation. It

is interesting to notice how the latter netlist shows a significant increment in cell

count with respect to its counterparts (Fig. 4.29b) while, however, yielding compara-

ble area occupation results. This may be due to the design simplification explained

previously which increase the number of overall gates but reduces their complexity.

Key results arise instead from a propagation delay characterization of the synthe-

sized networks. As can be observed in Fig. 4.29c, this time a significant difference

exists between the different architectures, proving the Dalalah bit-counting network

to be the one to allow for the maximum operating frequency in all the investigated

word length configurations.

However, from a design automation perspective, the latter network can only be

exploited for word lengths sticking to the expression 8 · 2i, with i in the range of

natural numbers. This limits its application in a memory compiler like OpenRAM

whose word size parameter is completely free to be chosen. However, to prioritize

performance at the expense of modularity, the network to be implemented in the

102

4 – Architecture concept and design

enhanced version of the compiler will be the Dalalah one.

Since, as introduced in Sec. 4.2, the resulting memory will be accountable for a

large set of operations, and being the popcount network directly connected to the

output port of the system, the latter has to be multiplexed between a standard

output, consisting of the SA array’s processed results, and the popcount result. To

both ease the design and optimize the component for speed, the required multiplexer

has been embedded in the hardware description of the bit-counting device. More-

over, with an eye on power consumption, the inputs to the architecture have been

provided with a gating scheme. To this extent, the switching activity of the internal

nodes of the network can be brought to zero by avoiding signal propagation from the

inputs. These enhancements conclude the digital design phase of the bit-counting

architecture and result in the final network’s structure depicted in Fig. 4.30.

4.4.4 Open-source synthesis and place & route

With the aim of an open-source available memory compiler, the design flow of the

bit-counting architecture ought to be achieved through non-commercial tools, unlike

its characterization. Thence, as part of the OpenROAD project, the OpenLane [45]

tool will be exploited to obtain an automated flow from specifications to physical

design.

OpenLane is an automated RTL to GDSII flow based on several open-source

components and several custom scripts for design exploration and optimization.

The flow performs full ASIC implementation steps from RTL down to GDSII eas-

ing the IC design, allowing to overcome the limitations imposed by the absence of

reliable non-commercial CADs. The starting point of the flow is a Verilog hardware

description of the design and a configuration text file to be filled with constraints

regarding the different steps of the stream. Synthesis constraints allow to target

a specific figure of merit for the design optimization; due to the significant prop-

agation delay overhead inserted by the popcount operation in the memory access

time, it has been decided to settle on a delay-driven synthesis methodology. Other

noteworthy synthesis constraints regard input pins capacitances, which have been

103

4 – Architecture concept and design

(a) Area characterization.

(b) Cell count characterization.

Figure 4.29: Popcount Networks - Synthesis and Characterization.

104

4 – Architecture concept and design

(c) Propagation delay characterization.

Figure 4.29: Popcount Networks - Synthesis and Characterization.

POPCNT
NETWORK

SA ARRAY OUTPUT

MEMORY OUTPUT

POPCNT_EN0 1

Figure 4.30: Popcount Networks - Final Architecture.

105

4 – Architecture concept and design

set to the input one of an X4 and X2 inverter for data pins and the enable signal

respectively. The formers match the load capacitance used in the SA characteri-

zation while the latter eases the design of the control unit drivers. Constraints on

the output pins capacitance instead have been tightened up since the output of the

component translates into the main output of the system, hence has to offer a good

driving capability; for this reason, also the output load capacitance has been set to

the input one of an X4 inverter. Tab. 4.4 resumes the post-synthesis results of the

given device for a 32-bit word size.

Moving to the physical phase of the design flow, relevant constraints regard the

die area and aspect ratio. These can be computed knowing the size of the bitcell

array: all the column circuitry in OpenRAM (sense amplifiers, write drivers and

pre-charge transistors) are carefully aligned to fit below the storage bank without

exceeding the boundaries of the given region. Hence, this allows to automatically size

the horizontal dimension of the die at runtime while compiling the memory. Unfor-

tunately, it is not equally straightforward for what concerns the vertical dimension.

Wrong sizing of the die may result in flow convergence failure while performing plac-

ing and/or routing, this lessens the design automation of the bit-counting device,

requiring a human-in-the-loop to tune the die size to successfully conclude the design

of the component. Although not specific for each possible configuration of compiled

memory, results of post place and route device characterization can be found in

Tab. 4.4 to provide hints on how this step may worsen the performance of a netlist

in a die with a characteristic aspect ratio. The design flow applies to a 128-bits

column bitcell array of 32-bits words, resulting in a 4:1 multiplexing factor and a

width of 332µm. To efficiently succeed at the device’s physical design, a vertical

dimension of 50µm was required, resulting in an aspect ratio of 6.64 and a total die

area of 16.6× 103µm2.

As stands out from the results, performing place and route on a die with a high

aspect ratio might hinder an efficient floorplanning optimization as it happens for

typical sizing (aspect ratios in the range of 1-2), resulting in routing congestion and

additional buffers insertion which raise both area occupation and propagation delay.

106

4 – Architecture concept and design

Table 4.4: Dalalah Bit-Counting Network - Hardware Implementation Results

Step Area (µm2)(%)a Cells tpd,MAX (ns) fMAX (MHz)

Post-Synthesis 3827 (27%) 241 3.57 280.11

Post-P&R 13594 (97%) 326 4.16 240.38
aDie area utilization percentage.

4.4.5 Layout

Finally, Fig. 4.31 depicts the layout view of the processed netlist. Due to the afore-

mentioned remarks on its placing inside the overall memory macro, data input pins

have been placed on the upper side of the die and their spacing matches the one of

SAs in the array, allowing for a straightforward routing of the two components. The

same thing applies to data output pins, with a spacing equal to the one of the data

DFF array below the popcount network. The enable signal is on the left side of the

die to ease the connection to the main control bus.

4.5 Control logic

The final building block to customize to unlock IMC features in the SRAM array

introduced in this work is the control logic. In charge of providing the correct signal

generation for optimal timing of the overall system, the control logic can be analyzed

by looking at the array’s required signals and the system’s inputs.

The compiler’s base input control signals consist of: a chip select (CS) for the

component wake up, a write enable (WE) to choose between a read or a write

operation and a clock (CLK) for the device’s synchronization. Due to the availability

of different operations to be performed by the computing SA array, 3 additional

signals have to be fed to the control logic: a 2-bit MODE word for the SA’s 4-to-1

mux select bits and a CINN signal for the 2’s complement operation. Their relation

with the SA array control signals is trivial and the resulting logic elements can be

107

4 – Architecture concept and design

(a
)
L
ef
t
h
al
f
of

th
e
v
ie
w
.

(b
)
R
ig
h
t
h
al
f
of

th
e
v
ie
w
.

F
ig
u
re

4.
31
:
P
op

co
u
n
t
N
et
w
or
k
-
L
ay
ou

t
V
ie
w
.

108

4 – Architecture concept and design

seen in Fig. 4.33. The same considerations apply for the popcount network’s enable

signal, to be asserted only when the XNOR mode of the array is selected. Given the

feedback loop behaviour explained in Sec. 4.3.3, the control logic implementation for

the decoders enable signals is straightforward and is shown in Fig. 4.33.

The set of operations that can be performed by the memory can now be classified

into two groups: standard read and write and IMC computations. Due to the

difference in the protocols between the two, a further control signal is required to

turn off some circuitry during standard cycles; by loading a logic 0 in the DFF

related to the PULSE signal, the second decoder is gated and only the first pulse

will be issued. A further operation performed by the PULSE signal is to de-activate

the pulsed assertion of the first decoder during a write operation; a short pulse as

the one required for BLC may not be wide enough to safely alter the content of the

bitcell, hence the system has to revert to a standard write operation protocol to

increase reliability.

4.5.1 Timing diagrams and pins configuration

Done with the control logic enhancement one obtains the pins truth table in Tab. 4.5

and the timing diagram in Fig. 4.32. Diagram for standard read and write operations

are omitted in this section and can be found in Sec. 3.1.

4.5.2 Layout

OpenRAM allows for easy customization of the control section by providing a reg-

ular structure based on different rows for each signal’s generation. Starting from a

buffered DFF, the input control signals and their complemented versions get con-

nected to a vertical bus spanning across the whole height of the section. Each track

of the bus is a ”primitive” signal used by one or more rows for the generation of a

definitive one. Thanks to the factory introduced in Sec. 3.1, a minimal set of logic

gates can be automatically generated in both spice instances and layout geometries,

109

4 – Architecture concept and design

Figure 4.32: Timing Diagram - Waveforms for Pulsed Bitline Computing.

Table 4.5: Bitline Computing SRAM - Command Table

PULSE WEn SEL[0] SEL[1] CINN Operation

0 1

0 0

-

Standard read

0 1 1’s complement

1 0 –

1 1 Read check

0 0 - - - Standard write

1
1

0 0
-

Bitwise AND

0 1 Bitwise NOR

1 0
0 Sum + Increment

1 Sum

1 1 1 - Bitwise XNOR

110

4 – Architecture concept and design

also the required logic drivers can be automatically sized to optimize the propaga-

tion delay across the system knowing the load capacitance of a given signal. With

help of a library of methods, the desired logic gates can be placed alongside one

another and connected both between themselves and the vertical bus. Since the

height of the rows is a design parameter and the one of the pulse generator cell is

moderate, the latter has been inserted in the row accountable for the generation of

the first decoder’s enable signal, in order to save area.

Fig. 4.34 shows the final layout of the control logic instance. In the lower-left

corner one can appreciate the array of buffered DFFs, at center, spanning across the

cell, the vertical bus, in the lower right corner the drivers for clock buffering and at

the right of the bus all the rows for signal generation.

111

4 – Architecture concept and design

PG

DEC1_EN

DEC2_EN

WR_EN

PCNT_EN

SEL0

SEL0N

SEL1N

PREC

RBL

PULSE

CLK

WE

SEL1

SEL0

SEL1

Figure 4.33: Control Logic - Logic Level Schematic View.

112

4 – Architecture concept and design

Figure 4.34: Control Logic - Layout View.

113

Chapter 5

Simulation and results

All the features presented in the previous chapter have been implemented in the

OpenRAM memory generator to produce a 128x128 bits array of 32-bit long words.

This resulted in a 4:1 column multiplexing and a 32-bits Dalalah popcounting net-

work as stated in Sec. 4.4. The final number of address pins is 16, 7 for each row

decoder, while the two LSBs of the word are shared between the two addresses.

This limits the flexibility of choosing a two words combination while performing

bitline computations but is due to the presence of a column multiplexing. Given

the data word size, an array of 32 DFFs is present for input bits while performing

write operations. Also, the number of control flops increased due to the presence of

additional signals for SAs multiplexers and bitline computing mode enabling.

This section will present a characterisation of the described memory array in terms

of area occupation, operating frequency and energy consumption, comparing results

regarding the two different operating modes: bitline computing and standard read.

All simulations have been performed in SPICE on a schematic level netlist of the

system; to speed up the simulation process, only the bitcell array has been described

in terms of parasitics and modelled through RC lumped elements obtained from the

electrical and geometrical properties of the PDK layers.

5.1 Area occupation

The layout view of the architecture can be seen in Fig. 5.1, while Fig. 5.2 breaks

down the location of the various components in the macro. The first thing standing

out from the layout view is the high aspect ratio of the bitcell array (≈ 1.95). The

114

5 – Simulation and results

ultimate goal of adopting a column multiplexing scheme is to achieve an array shape

where the row side length is roughly the same as column one while the size of the

array increases. This avoids the presence of excessively long BLs or WLs which may

ultimately slow down the system’s performance. A key factor defining the shape of

the array is the one of the single bitcell; by recalling the layout view of the 6T cell in

Fig. 4.2b one obtains an aspect ratio of approximately 2.26. Although the memory

compiler tries to achieve the best multiplexing scheme to yield an array shape as

square as possible, it has to face a limited number of multiplexing factors. This,

combined with an aspect ratio of the bitcell larger than one, results in an array’s

shape far from the desired one.

Tab. 5.1 beaks down the area occupation of the whole macro as well as the single

components, ultimately delivering the partitioning percentages. To evaluate the

effects of BLC features insertion on the size of the instance, a standard 6T SRAM

has been generated via OpenRAM, yielding an area occupation of 327 844 µm2, which

the insertion of BLC features increases by 16.63%.

Table 5.1: BLC SRAM - Area occupation and partitioning

Cell Area (um2) %

Bitcell array 227 340 59.55

Popcount network 16 599 4.35

Col. circ. + SAs 17 283 4.53

Decoder 1 33 066 8.66

Decoder 2 33 066 8.66

Control logic 10 723 2.81

BLC-SRAM 381 752

115

5 – Simulation and results

Figure 5.1: Layout view of the 32-bits 128x128 BLC SRAM array.

116

5 – Simulation and results

Figure 5.2: Layout view of the 32-bits 128x128 BLC SRAM array with components
highlight.

117

5 – Simulation and results

5.2 Simulation results

The SPICE waveforms of the simulated architecture can be seen in Fig. 5.3b and

Fig. 5.3a for BLC mode and standard read mode respectively. Green waveforms

represent the output of the SA array from the LSB (top) to the MSB (bottom). The

content of the words to access was tuned to test the BLC scheme in all the possible

combinations of 2-bits (00, 01, 10, 11) within a single operation. For standard read

operation instead, the array was initialized at random values. Simulations were

performed in the nominal corner (TT, typical-nFET and typical-pFET) with a 1.8V

supply voltage and a clock frequency of 50MHz.

One thing standing out from both simulations is that even for BLs experiencing

no discharge, the output of the SA switched to logic 0 after a certain time. Inves-

tigating deeper, one can observe how the QN node of the amplifier charges even

when the BL is at logic 1 (Fig. 5.5). This is due to the voltage drop caused by the

n-channel pass transistor of the column mux circuit. When propagating a logic 1

(i.e VDD) the output of the multiplexer will exhibit a degraded value, resulting from

the transistor’s threshold voltage. This doesn’t usually translate into an issue in

differential sensing schemes, but given the novel amplifier’s topology introduced in

this work, a study is required. Being the output of the multiplexer the input of the

amplifier, the input pFET of the latter will experience a gate-source voltage equal to

VDD−VTH,n when the BL is at logic 1. Since the threshold voltage of the pFET has

been lowered to increase its sensibility to BL swings, the voltage drop of the nFET

is now sufficient to drive the former transistor into the near-subthreshold region.

The resulting sub-threshold current proved itself enough to charge the capacitive

node QN up to the inverter’s trip voltage before the end of the cycle, ultimately

causing the switching of the amplifier (Fig. 5.5). To reduce the amount of sourced

current, the nFETs of the column multiplexer have been made low threshold tran-

sistors, soothing the degradation of the propagated value. Simulation waveforms of

this new configuration can be seen in Fig. 5.6 for a standard read operation when

accessing a word storing the value ”1”. As stands out from this last simulation, the

lowered threshold voltage of the nFET is enough to keep the pFET off, avoiding the

charge of QN . This solution, however, relies on the difference between the threshold

118

5 – Simulation and results

(a) (b)

Figure 5.3: Output waveforms for read and BLC operating modes: pass-transistor
mux.Green waveforms represent the output of the SA array from the LSB (top) to
the MSB (bottom).

119

5 – Simulation and results

voltage of the two FETs, strongly subjected to process variations. The condition to

be satisfied is VTH,n < VTH,p, which could be violated in the SF process corner (slow

nFET, fast pFET). To increase the reliability of the system, it was decided to allow

a ”strong” propagation of logic 1 across the column multiplexer, hence shifting the

circuit implementation from a pass-transistor to a transmission-gate one. The size

of the mux’s pFETs was chosen to match that of the nFETs; thanks to the slow

discharge rate of the BL this allowed to avoid unnecessary area overhead. Results

of this latter simulation are in Fig. 5.7. Finally, this last configuration avoided the

unwanted charge of the amplifier’s capacitive node, thus completely switching off

the input pFET in all the process corners. New simulation waveforms of read, BLC

and sum mode can be seen in Fig. 5.4

Concerning BLC mode, obtained waveforms stick to ones assumed during the

design phase. Fig. 5.9 shows resulting waveforms for all the 2-bit combinations of a

computing column: (1,1), (1,0), (0,1) and (0,0) from bottom to top. As desired, the

closed-loop replica bitline scheme successfully de-asserts the enable signal of the first

decoder while triggering the pulse generator. Moreover, the BL does not experience

full discharge after the first pulse as desired, although reaching a lower voltage

value with respect to the one predicted in Sec. 4.3.3 due to control logic propagation

delays. The developed BL voltage is now sufficient to turn on the pFET of the

second accessed cell if the latter stores logic 1. The current sourced by the latter

leads to a transient when the line’s voltage is raised to VDD − VTH,n,WL. This turns

the access transistor of the bitcell off and isolates it from the BL. However, thanks to

the closed loop gating, the transient duration is small compared to the cell’s access

time, thus avoiding data corruption.

Regarding a standard read operation instead, the enable signal of the first de-

coder is stretched to boost the array performance, hence reducing the read-access

time. The second decoder, instead, is gated to prevent double word access. For

testing the sum mode the words to access have been tuned to allow for a complete

carry propagation from the CINN signal to the COUTN one of the SA array. This

latter propagation can be seen in Fig. 5.9.

120

5 – Simulation and results

(a) (b) (c)

Figure 5.4: Output waveforms for read, BLC and sum operating modes:
transmission-gate mux. Green waveforms represent the output of the SA array
from the LSB (top) to the MSB (bottom).

121

5 – Simulation and results

5.3 Operating frequency and energy consumption

The designed architecture has been characterised in all the available operating modes

both in propagation delay and energy consumption. Simulations have been per-

formed using SPICE simulators on the schematic-level view of the memory where

only the bitcell array has been annotated with parasitic devices. Results for nominal

supply voltage and temperature can be found in Tab. 5.2 for TT, FF and SS process

corners. Tab. 5.3 presents results for supply voltage (±10% of nominal value) and

temperature (commercial applications range: 0°C - 70°C) variations in the typical

corner. Finally Tab. 5.4 delivers the BLC SRAM characterization in the TTTT,

SSSS and FFFF performance corners.

As stands out from the characterization, a significant difference exists between

the system’s performance in different operating modes. As expected from a common

SRAM architecture, while performing standard read operations the clock period is

constrained by the time needed to access the bitcell array. For bitwise BLC opera-

tions instead, the latter has to be accessed twice. The degradation of the operating

frequency by a factor of 1.35 instead of roughly 2 points out the benefit from a

double decoder implementation, avoiding crossing the whole decoding circuitry for

a second time. The same applies from an energy consumption perspective, resulting

in an increment by a factor of 1.62.

Popcount and 2’s complement sum instructions instead exhibit a large overhead in

propagation delay due to bit-counting network and RCA logic respectively. The ul-

timate result is a propagation time across these circuits way larger than the bitcell’s

access time, stalling the whole system. Differences between the operating modes

stand out also from an energy consumption comparison. Due to the significant in-

crease in the network’s nodes switching activity when propagating results across

both bit-counting and ripple-carry networks, the dynamic power consumption ex-

periences a significant increment, resulting in a 2x energy consumption with respect

to a standard read operation in the nominal corner.

122

5 – Simulation and results

Figure 5.5: Sense amplifier failure in nominal-threshold pass-transistor mux.

Figure 5.6: Sense amplifier behaviour in low-threshold pass-transistor mux.

Figure 5.7: Sense amplifier behaviour in transmission-gate mux.

123

5 – Simulation and results

Figure 5.8: BLC SRAM waveforms for BLC mode.

Figure 5.9: BLC SRAM waveforms for standard read mode.

124

5 – Simulation and results

Table 5.2: BLC SRAM Characterization - VDD = 1.8V , T=300K

Process Corner - TT

Mode fMAX (MHz) tACC
a (ns) E/op (pJ)b PLEAK (mW)

Std. Read 237 2.11 29.31

1.47
Bitwise Ops. 176 2.83 47.46

Pop-Count 85 5.83 59.82

Sum 65 7.69 58.63

Process Corner - SS

Mode fMAX (MHz) tACC
a (ns) E/op (pJ)b PLEAK (mW)

Std. Read 176 2.83 16.45

0.61
Bitwise Ops. 108 4.64 25.55

Pop-Count 65 7.64 37.90

Sum 48 10.45 25.58

Process Corner - FF

Mode fMAX (MHz) tACC
a (ns) E/op (pJ)b PLEAK (mW)

Std. Read 313 1.594 29.64

1.54
Bitwise Ops. 213 2.344 43.59

Pop-Count 94 5.332 55.95

Sum 91 5.491 44.29
aFrom CLK falling edge to DOUT stable.
bTCLK = 20ns.

125

5 – Simulation and results

Table 5.3: BLC SRAM Characterization - Process Corner TT, Environmental Vari-
ations

VDD+10%, T=300K

Mode fMAX (MHz) tACC
a (ns) E/op (pJ)b PLEAK (mW)

Std. Read 274 1.82 49.68

1.79
Bitwise Ops. 178 2.81 76.90

Pop-Count 86 5.81 91.73

Sum 80 6.23 70.13

VDD-10%, T=300K

Mode fMAX (MHz) tACC
a (ns) E/op (pJ)b PLEAK (mW)

Std. Read 210 2.38 19.71

0.79
Bitwise Ops. 131 3.83 32.02

Pop-Count 73 6.83 41.90

Sum 57 8.71 35.59

VDD=1.8V, T=273K

Mode fMAX (MHz) tACC
a (ns) E/op (pJ)b PLEAK (mW)

Std. Read 246 2.03 31.72

1.19
Bitwise Ops. 155 3.23 43.04

Pop-Count 80 6.23 57.86

Sum 69 7.29 43.75

VDD=1.8V, T=343K

Mode fMAX (MHz) tACC
a (ns) E/op (pJ)b PLEAK (mW)

Std. Read 247 2.03 23.15

0.76
Bitwise Ops. 154 3.24 34.97

Pop-Count 80 6.25 44.86

Sum 68 7.32 34.87
aFrom CLK falling edge to DOUT stable.
bTCLK = 20ns.

126

5 – Simulation and results

Table 5.4: BLC SRAM Characterization - TTTT, SSSS and FFFF Corners

Process Corner TT, VDD=1.8V, T=300K

Mode fMAX (MHz) tACC
a (ns) E/op (pJ)b PLEAK (mW)

Std. Read 237 2.11 29.31

1.47
Bitwise Ops. 176 2.83 47.46

Pop-Count 85 5.83 59.82

Sum 65 7.69 58.63

Process Corner SS, VDD-10%, T=343K

Mode fMAX (MHz) tACC
a (ns) E/op (pJ)b PLEAK (mW)

Std. Read 149 3.36 21.85

0.91
Bitwise Ops. 89 5.65 27.71

Pop-Count 58 8.64 36.36

Sum 39 12.71 26.52

Process Corner FF, VDD+10%, T=273K

Mode fMAX (MHz) tACC
a (ns) E/op (pJ)b PLEAK (mW)

Std. Read 339 1.47 56.54

1.94
Bitwise Ops. 255 1.96 51.18

Pop-Count 101 4.97 67.24

Sum 106 4.74 51.38
aFrom CLK falling edge to DOUT stable.
bTCLK = 20ns.

127

Chapter 6

Conclusions and future

perspectives

Von-Neumann architectures fueled the age of modern computing for decades. How-

ever, the advent of data-intensive applications already started to raise new challenges

in circuit and system design. In-Memory Computing is considered a worthy alterna-

tive to conventional computing platforms to overcome the memory-wall and boost

the system’s performances. Efficient and reliable IMC implementations are cur-

rently a popular branch of research but most of them require ad-hoc design tunings

together with pronounced designers’ expertise. Another factor hindering the IMC

deployment in commercial applications is the low reliability of certain implementa-

tions sensitive to process variations or dealing with read-disturbs.

To contribute to the research going on and to unlock a fast design space ex-

ploration for innovative systems relying on IMC, this work delivered the complete

design of a BLC 6T-SRAM on a 130nm technology node together with a memory-

generator implementation. The widespread problem of read-stability in concurrent

word accessing was suppressed by adopting a sequential pulsed WL assertion, result-

ing in the absence of cells content corruption in all the simulated process corners.

A reliable pulse generation was achieved by employing an RBL-based closed-loop

control of the pulse width. This scheme proved itself a valuable choice as it avoided

the superposition of the two pulses in every process corner, thus unlocking a safe

pulsed WL assertion even when dealing with process variations.

Some novel techniques were proposed throughout this work with the aim of boost-

ing the performance of the array. A novel sensing scheme has been introduced which

128

6 – Conclusions and future perspectives

reduces the footprint of the amplifier by 45% as well as the energy consumption by

52%. This allowed easing the constraints on the computing part of the component,

required for low computational effort neural networks acceleration. Furthermore,

the circuit topology of the amplifier allowed the introduction of a novel technique

for boosting the performances of pulsed BLC architectures called time-borrowing.

To unlock this new feature, the first pulse width has to be tuned to under-drive the

sense amplifier. Due to the RBL-determined pulse generation, this work proposed

the insertion of replica rows to tune the RBL discharge rate based on the number

of simultaneously active replica bitcells per access. This allowed for a pulse width

reduction of the 39% while introducing minimal area overhead. However, due to

control logic propagation delays, this scheme didn’t allow for proper exploitation

of the time-borrowing technique. This is to relate to the saturating 1/N trend of

the RBL discharge rate when adopting the proposed replica rows technique, where

N is the number of additional replica bitcells. To unlock a finer-grain tuning, the

proposed control mechanism could be merged with existing ones, like reducing the

number of dummy cells tapped to the RBL, thus allowing for linear control of the

discharge time.

This work also provided the complete design of a popcount network based on an

existing optimized architecture. This unlocked the single-cycle acceleration of BNNs

inference at the expense of degraded system performance. Investigating deeper the

delay distribution across the array, one can understand how the propagation times

of the bit-counting network are the key factor slowing down the memory. To soothe

this issue, alternative population-count architectures can be adopted with the aim

of reducing the logic depth of the network. Another option is to relax the constraint

on a single-cycle SRAM architecture. Breaking down the popcount instructions

into simpler operations one obtains an XNOR and a bit-count phase. Due to the

bitwise nature of the first one, the results will be ready at the same instant at the

output of the SAs. Breaking the combinational path by inserting a memory elements

array here would address the remaining popcount operation to the next cycle, while

allowing the exploitation of the array for other computations. This way the system

will behave as a two-cycles architecture only when a POPCNT instruction is issued.

129

6 – Conclusions and future perspectives

Another configuration slowing down the system performance is the one related

to a 2’s complement addition. According to simulations, this translated into the

operation requiring a longer clock period, more than three times larger than the one

involved in a standard read instruction. This degradation is to be addressed to the

structure adopted for achieving the desired sum operation. In fact, the constraint

of equal-sized gates for the carry-ripple logic severely limits the optimization of

the given path. Unfortunately, moving towards a two-cycles implementation is not

allowed due to the nature of the implemented adder. Optimizing the sum instruction

requires a change in the way of conceiving the computation itself, moving towards

different algorithms of circuit implementations.

From a design automation perspective instead, different optimizations can be

introduced in the memory-generator. As previously stated, one thing retaining the

potentiality of the time-borrowing technique is the propagation delay inserted in

the closed-loop control by the control logic. This can be addressed to the lack of

proper sizing of the logic gates when automatically generated by OpenRAM. In

fact, only the output drivers of these logic functions are optimized with the logical-

effort method; internal gates instead exhibit unitary sizes. A further optimization

concerning the memory-generator is the routing of the data port, a region of the

instance that includes SAs, write drivers, precharge array, column mux and popcount

network. The native OpenRAM floorplanning sees all these components tiled at

the bottom of the bitcell array (excluding the popcount network), thus adopting a

channel routing of the bitlines spanning across the tile. Further routes are needed

to connect the popcounter to the output port and the write drivers to the input

DFFs. Due to the SA array and popcounter exhibiting routing layers up to M4

(last available metal layer for routing before pads), an efficient routing needed a

dedicated tuning, thus inserting a ”human-in-the-loop”. A way to solve this issue

would be to exploit the top of the bitcell array for input circuitry and precharge

array while addressing the SA array and popcount network to its bottom. The only

drawback of this customization would be the doubling of the column multiplexer for

both sides of the bitcell array, thus potentially increasing the area of the memory.

In an age where big-data and artificial intelligence seem to burden the pace of

130

6 – Conclusions and future perspectives

Moore’s law, the struggle for innovative computing architectures is giving birth to

brilliant solutions to continue advancing technology for mankind. Being In-Memory

Computing considered becoming one of the strongholds of the modern computing

era, this work hopes at contributing to its construction with a tiny brick, providing

a further understanding of a new way of conceiving hardware computing.

131

Appendix A

Custom modules for OpenRAM in

SKY130

A.1 Schematics

Figure A.1: 6T SRAM bitcell, only FET widths in micrometers are reported, LCH =
0.15µm [35].

Figure A.2: Sense amplifier, ratios near FETs are to be intended as absolute channel
widths over channel lengths in micrometers.

132

A – Custom modules for OpenRAM in SKY130

Figure A.3: Write driver, WN = 0.42µm, WP = 0.84µm, LCH = 0.15µm.

Figure A.4: Write driver, WN = 0.42µm, WP = 1.35µm, LCH = 0.15µm.

133

A – Custom modules for OpenRAM in SKY130

A.2 Layouts

Figure A.5: 6T SRAM Bitcell [35].

Figure A.6: Sense amplifier.

Figure A.7: Write driver.

134

A – Custom modules for OpenRAM in SKY130

Figure A.8: D-flip-flop.

135

Bibliography

[1] J. von Neumann, “First draft of a report on the edvac,” IEEE Annals of the

History of Computing, vol. 15, no. 4, pp. 27–75, 1993.

[2] M. Shima, “The birth, evolution and future of the microprocessor,” in The Fifth

International Conference on Computer and Information Technology (CIT’05),

pp. 2–2, 2005.

[3] P. J. Denning and S. C. Schwartz, “Properties of the working-set model,” Com-

mun. ACM, vol. 15, p. 191–198, mar 1972.

[4] K. Kaplan and R. Winder, “Cache-based computer systems,” Computer, vol. 6,

no. 3, pp. 30–36, 1973.

[5] N. Verma, H. Jia, H. Valavi, Y. Tang, M. Ozatay, L.-Y. Chen, B. Zhang, and

P. Deaville, “In-memory computing: Advances and prospects,” IEEE Solid-

State Circuits Magazine, vol. 11, no. 3, pp. 43–55, 2019.

[6] J. Backus, “Can programming be liberated from the von neumann style? a func-

tional style and its algebra of programs,” Commun. ACM, vol. 21, p. 613–641,

aug 1978.

[7] E. Akgun and M. Demir, “Modeling course achievements of elementary educa-

tion teacher candidates with artificial neural networks,” International Journal

of Assessment Tools in Education, vol. 5, 01 2018.

[8] H. Qin, R. Gong, X. Liu, X. Bai, J. Song, and N. Sebe, “Binary neural networks:

A survey,” Pattern Recognition, vol. 105, p. 107281, Sep 2020.

[9] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio, “Binarized

neural networks,” in NIPS, 2016.

[10] S. Hashemi, N. Anthony, H. Tann, R. I. Bahar, and S. Reda, “Understand-

ing the impact of precision quantization on the accuracy and energy of neural

networks,” in Design, Automation & Test in Europe Conference & Exhibition

(DATE), 2017, (Lausanne, Switzerland), pp. 1474–1479, IEEE, Mar. 2017.

[11] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “XNOR-Net: ImageNet

Classification Using Binary Convolutional Neural Networks,” arXiv:1603.05279

[cs], Aug. 2016. arXiv: 1603.05279.

136

Bibliography

[12] H. Chen, Y. Wang, C. Xu, B. Shi, C. Xu, Q. Tian, and C. Xu, “AdderNet: Do

We Really Need Multiplications in Deep Learning?,” arXiv:1912.13200 [cs],

July 2021. arXiv: 1912.13200.

[13] A. Sebastian, T. Tuma, N. Papandreou, M. Le Gallo, L. Kull, T. Parnell, and

E. Eleftheriou, “Temporal correlation detection using computational phase-

change memory,” Nature Communications, vol. 8, p. 1115, Dec. 2017.

[14] S. Lee, S.-h. Kang, J. Lee, H. Kim, E. Lee, S. Seo, H. Yoon, S. Lee, K. Lim,

H. Shin, J. Kim, O. Seongil, A. Iyer, D. Wang, K. Sohn, and N. S. Kim, “Hard-

ware architecture and software stack for pim based on commercial dram tech-

nology : Industrial product,” in 2021 ACM/IEEE 48th Annual International

Symposium on Computer Architecture (ISCA), pp. 43–56, 2021.

[15] A. Agrawal, A. Jaiswal, C. Lee, and K. Roy, “X-SRAM: Enabling In-Memory

Boolean Computations in CMOS Static Random Access Memories,” IEEE

Transactions on Circuits and Systems I: Regular Papers, vol. 65, pp. 4219–

4232, Dec. 2018.

[16] A. Jaiswal, A. Agrawal, M. F. Ali, S. Sharmin, and K. Roy, “i-sram: Interleaved

wordlines for vector boolean operations using srams,” IEEE Transactions on

Circuits and Systems I: Regular Papers, vol. 67, no. 12, pp. 4651–4659, 2020.

[17] A. Agrawal, A. Kosta, S. Kodge, D. E. Kim, and K. Roy, “CASH-RAM: En-

abling In-Memory Computations for Edge Inference Using Charge Accumula-

tion and Sharing in Standard 8T-SRAM Arrays,” IEEE Journal on Emerging

and Selected Topics in Circuits and Systems, vol. 10, pp. 295–305, Sept. 2020.

[18] R. Khaddam-Aljameh, P.-A. Francese, L. Benini, and E. Eleftheriou, “An

SRAM-Based Multibit In-Memory Matrix-Vector Multiplier With a Precision

That Scales Linearly in Area, Time, and Power,” IEEE Transactions on Very

Large Scale Integration (VLSI) Systems, vol. 29, pp. 372–385, Feb. 2021.

[19] X. Si, Y.-N. Tu, W.-H. Huang, J.-W. Su, P.-J. Lu, J.-H. Wang, T.-W. Liu,

S.-Y. Wu, R. Liu, Y.-C. Chou, Z. Zhang, S.-H. Sie, W.-C. Wei, Y.-C. Lo, T.-H.

Wen, T.-H. Hsu, Y.-K. Chen, W. Shih, C.-C. Lo, R.-S. Liu, C.-C. Hsieh, K.-T.

Tang, N.-C. Lien, W.-C. Shih, Y. He, Q. Li, and M.-F. Chang, “15.5 A 28nm

64Kb 6T SRAM Computing-in-Memory Macro with 8b MAC Operation for AI

Edge Chips,” in 2020 IEEE International Solid- State Circuits Conference -

(ISSCC), (San Francisco, CA, USA), pp. 246–248, IEEE, Feb. 2020.

137

Bibliography

[20] J. Zhang, Z. Wang, and N. Verma, “In-Memory Computation of a Machine-

Learning Classifier in a Standard 6T SRAM Array,” IEEE Journal of Solid-

State Circuits, vol. 52, pp. 915–924, Apr. 2017.

[21] X. Si, J.-J. Chen, Y.-N. Tu, W.-H. Huang, J.-H. Wang, Y.-C. Chiu, W.-C. Wei,

S.-Y. Wu, X. Sun, R. Liu, S. Yu, R.-S. Liu, C.-C. Hsieh, K.-T. Tang, Q. Li,

and M.-F. Chang, “24.5 A Twin-8T SRAM Computation-In-Memory Macro for

Multiple-Bit CNN-Based Machine Learning,” in 2019 IEEE International Solid-

State Circuits Conference - (ISSCC), (San Francisco, CA, USA), pp. 396–398,

IEEE, Feb. 2019.

[22] J. Kim, J. Koo, T. Kim, Y. Kim, H. Kim, S. Yoo, and J.-J. Kim, “Area-Efficient

and Variation-Tolerant In-Memory BNN Computing using 6T SRAM Array,”

in 2019 Symposium on VLSI Circuits, (Kyoto, Japan), pp. C118–C119, IEEE,

June 2019.

[23] Y. Wang, J. Chen, Y. Pu, and Y. Ha, “Energy-Efficient Arbitrary Precision

Multi-Bit Multiplication with Bi-Serial In/Near Memory Computing,” in 2020

IEEE International Symposium on Circuits and Systems (ISCAS), (Seville,

Spain), pp. 1–5, IEEE, Oct. 2020.

[24] J. Chen, W. Zhao, Y. Wang, and Y. Ha, “Analysis and Optimization Strategies

Toward Reliable and High-Speed 6T Compute SRAM,” IEEE Transactions on

Circuits and Systems I: Regular Papers, vol. 68, pp. 1520–1531, Apr. 2021.

[25] Y. Zhang, L. Xu, K. Yang, Q. Dong, S. Jeloka, D. Blaauw, and D. Sylvester,

“Recryptor: A reconfigurable in-memory cryptographic Cortex-M0 processor

for IoT,” in 2017 Symposium on VLSI Circuits, (Kyoto, Japan), pp. C264–

C265, IEEE, June 2017.

[26] Q. Dong, S. Jeloka, M. Saligane, Y. Kim, M. Kawaminami, A. Harada,

S. Miyoshi, M. Yasuda, D. Blaauw, and D. Sylvester, “A 4 + 2T SRAM for

Searching and In-Memory Computing With 0.3-V $V {\mathrm {DDmin}}$,”
IEEE Journal of Solid-State Circuits, vol. 53, pp. 1006–1015, Apr. 2018.

[27] M. Kutila, A. Paasio, and T. Lehtonen, “Comparison of 130 nm technology

6T and 8T SRAM cell designs for Near-Threshold operation,” in 2014 IEEE

57th International Midwest Symposium on Circuits and Systems (MWSCAS),

(College Station, TX, USA), pp. 925–928, IEEE, Aug. 2014.

[28] J. Jeong and J. Park, “Fast 6T SRAM Bit-Line Computing with Consecutive

138

Bibliography

Short Pulse Word-Lines and Skewed Inverter,” in 2020 International SoC De-

sign Conference (ISOCC), (Yeosu, Korea (South)), pp. 292–293, IEEE, Oct.

2020.

[29] S. Cheon and J. Park, “A Bit-Line Boosting Technique for Fast Bit-Line Com-

putation without Read Disturbance,” in 2020 International SoC Design Con-

ference (ISOCC), (Yeosu, Korea (South)), pp. 294–295, IEEE, Oct. 2020.

[30] K. Lee, J. Jeong, S. Cheon, W. Choi, and J. Park, “Bit Parallel 6T

SRAM In-memory Computing with Reconfigurable Bit-Precision,” in 2020 57th

ACM/IEEE Design Automation Conference (DAC), (San Francisco, CA, USA),

pp. 1–6, IEEE, July 2020.

[31] T. Ajayi, D. Blaauw, T. Chan, C. Cheng, V. Chhabria, D. Choo, M. Coltella,

S. Dobre, R. Dreslinski, M. Fogaça, et al., “Openroad: Toward a self-driving,

open-source digital layout implementation tool chain,” Proc. GOMACTECH,

pp. 1105–1110, 2019.

[32] T. Ajayi, V. A. Chhabria, M. Fogaça, S. Hashemi, A. Hosny, A. B. Kahng,

M. Kim, J. Lee, U. Mallappa, M. Neseem, et al., “Toward an open-source

digital flow: First learnings from the openroad project,” in Proceedings of the

56th Annual Design Automation Conference 2019, pp. 1–4, 2019.

[33] Google and Skywater, “Skywater sky130 pdk documentation.” https://

skywater-pdk.readthedocs.io/en/main/index.html.

[34] M. R. Guthaus, J. E. Stine, S. Ataei, B. Chen, B. Wu, and M. Sarwar, “Open-

RAM: an open-source memory compiler,” in Proceedings of the 35th Interna-

tional Conference on Computer-Aided Design, (Austin Texas), pp. 1–6, ACM,

Nov. 2016.

[35] S. Taware, “Design of 1024x32 sram (32kbits) using openram and sky130 pdks.”

https://github.com/ShonTaware/SRAM_SKY130.git, 2021.

[36] N. Weste and D. Harris, CMOS VLSI Design: A Circuits and Systems Per-

spective. Addison Wesley, 2011.

[37] S. A. Mondal, S. Talapatra, and H. Rahaman, “Analysis, modeling and opti-

mization of transmission gate delay,” in 2011 3rd Asia Symposium on Quality

Electronic Design (ASQED), pp. 246–253, 2011.

[38] B. Amrutur and M. Horowitz, “A replica technique for wordline and sense

control in low-power SRAM’s,” IEEE Journal of Solid-State Circuits, vol. 33,

139

https://skywater-pdk.readthedocs.io/en/main/index.html
https://skywater-pdk.readthedocs.io/en/main/index.html
https://github.com/ShonTaware/SRAM_SKY130.git

Bibliography

pp. 1208–1219, Aug. 1998.

[39] J. Ousterhout, G. Hamachi, R. Mayo, W. Scott, and G. Taylor, “Magic: A vlsi

layout system,” in 21st Design Automation Conference Proceedings, pp. 152–

159, 1984.

[40] A. Suciu, P. Cobarzan, and K. Marton, “The never ending problem of count-

ing bits efficiently,” in 2011 RoEduNet International Conference 10th Edition:

Networking in Education and Research, pp. 1–4, 2011.

[41] A. Dalalah, S. Baba, and A. Tubaishat, “New hardware architecture for

bit-counting,” in Proceedings of the 5th WSEAS International Conference

on Applied Computer Science, ACOS’06, (Stevens Point, Wisconsin, USA),

p. 118–128, World Scientific and Engineering Academy and Society (WSEAS),

2006.

[42] C. S. Wallace, “A suggestion for a fast multiplier,” IEEE Transactions on Elec-

tronic Computers, vol. EC-13, no. 1, pp. 14–17, 1964.

[43] L. Dadda, “Some schemes for parallel multipliers,” Alta Frequenza, vol. 34,

pp. 349–356, 1965.

[44] W. J. Townsend, J. Swartzlander, Earl E., and J. A. Abraham, “A comparison

of Dadda and Wallace multiplier delays,” in Advanced Signal Processing Algo-

rithms, Architectures, and Implementations XIII (F. T. Luk, ed.), vol. 5205 of

Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series,

pp. 552–560, Dec. 2003.

[45] M. Shalan and T. Edwards, “Building openlane: A 130nm openroad-based

tapeout- proven flow : Invited paper,” in 2020 IEEE/ACM International Con-

ference On Computer Aided Design (ICCAD), pp. 1–6, 2020.

140

Acknowledgments

Questo elaborato è la sublimazione di quello che, sono convinto, è stato e forse

rimarrà il periodo più intenso della mia vita. Cos̀ı pregno di emozioni che non ba-

sterebbero altrettante pagine di questa tesi per descriverlo come meriterebbe, ma

un tentativo va fatto.

Prima di concedermi a plateali sentimentalismi desidero mantenere, ancora per qual-

che riga, le sembianze di un rigore accademico per ringraziare il Prof. Mario Roberto

Casu. Per l’attenzione dimostratami, la dedizione e la passione per l’elettronica e

l’insegnamento; tutte provate non solo durante il percorso di tesi ma anche nelle

interessanti lezioni. La ringrazio per avermi dato l’opportunità di dare il meglio di

me, fine ultimo e sacro della nobile arte dell’insegnante.

Riprendendo le poche (e imbarazzate, ndr) parole pronunciate al Fante ormai più di

due anni fa: “. . . se il valore di un uomo si misura dalle persone di cui si circonda,

non potrei essere più felice di trovarmi qui in mezzo a tutti voi.” -autocit. Ancora

fermamente convinto di ciò, dedico l’imminente fiume di parole a tutti coloro che,

in un modo o nell’altro, sono parte integrante della mia vita.

Ai miei genitori, per gli innumerevoli sacrifici aspettando questo giorno, nella spe-

ranza di ripagare ogni lacrima versata con la promessa di dedicare la vita a rendervi

orgogliosi dell’uomo che sto diventando.

A mia madre, per tutto ciò che sono e sarò. Per non aver mai mollato, per avermi

insegnato l’importanza delle emozioni e del prendersi cura del prossimo.

A mio padre, per avermi instillato l’amore per la scienza fin da bambino. Alle sue

ripetizioni di fisica nella stanza d’albero la notte prima del test d’ingresso, senza le

quali non so se avrei mai attraversato il colonnato del Politecnico.

A mia sorella Sara, alla dolcezza di un abbraccio nel momento del bisogno e di un

consiglio quando la rotta sembra essere persa. Per la certezza di un porto dalle

acque tranquille nella burrasca della vita.

I

E se la vita è una traversata non posso non menzionare quel branco di pirati di

Titanium: Alessandro D.M., Alex C., Andrea M., Andrea P., Angelo R., Antonio

D.B., Gianmarco F., Giorgio L., Lorenzo C., Marco A., Matteo D.G., Matteo S.,

Mauro F., Roberto S. e mio cugino Francesco. Vi ringrazio per ogni singola volta

in cui una risata sul nostro gruppo ha risollevato giornate fin troppo uggiose. Per

i simposi alcolici fino alle quattro di notte da Materia, per le albe ed i tramonti in

riva al mare, per le infinite confidenze, i consigli e quelle due parole giuste dette al

momento giusto.

Non posso non ripetermi nel menzionare ancora una volta mio cugino Francesco.

Alle passioni comuni ed alla fratellanza che ci ha sempre legati.

Qualsiasi persona di mia conoscenza arrivata fin qui a leggere questo smielato tor-

rente di parole sa quanto io possa (molto ndr.) spesso essere scostante, irritante ed

insopportabile. Se al mondo ci sono persone la cui visione di noi stessi è offuscata

dall’amore incondizionato nei nostri confronti o da amicizie secolari, ce ne sono altre

che invece ci vedono benissimo e decidono di utilizzare l’altro braccio della bilancia

riempiendolo con ciò che di buono abbiamo da offrire.

Il primo tra queste persone che voglio e devo ringraziare è Michele, costante della

mia quotidianità da quasi cinque anni. Grazie per aver reso casa quattro mura di

una città grigia a mille chilometri da Brindisi.

Questo percorso accademico rimarrà costellato di gioie immense, di successi e di

sconfitte, di spensieratezza e sacrifici. Un tale sosteneva che la felicità è vera so-

lo quand’è condivisa, io mi permetto di espandere il concetto a tutte le emozioni

provate tra le mura del Politecnico e per le strade di Torino insieme a coloro che

chiamare colleghi sarebbe riduttivo. Grazie a Davide E. e Luigi G., per le notti

insonni passate davanti ad un PC, ad interpretare ondine verdi e a saltare da una

mattonella all’altra. Grazie a Davide D.S., Thomas G. e Luca F., per le mille risate,

per le scorribande in laboratorio, per le carbonare saltate per aria e la pizza kebab

prima degli esami. Grazie anche ad Alessia D., per le sedute di psicanalisi con uno

spritz in mano e ad Emanuele D.L., compagno di cinismo.

Termino questo dovuto piagnisteo dedicando la fine di questo percorso a tutti i

II

familiari, gli amici, i conoscenti che, pur non figurando in queste pagine, sono stati

presenti in questi anni. Con un sorriso, davanti ad un calice di vino o semplicemente

con una pacca sulla spalla. Grazie per ogni singolo gesto.

All’importanza delle relazioni umane nel mondo post-pandemia.

III

	Summary
	The unbearable communication cost of modern-day computing
	The von-Neumann bottleneck
	Artificial intelligence in edge devices
	Neural networks inference
	Reducing computational effort in neural networks

	A new computing paradigm

	Classification of In-Memory Computing architectures
	Analog & Mixed-Signal Processing
	Analog computing fundamentals for in-memory inference
	Architecture overview
	Boosting the classification accuracy
	On-silicon characterization
	Discussion

	Digital processing
	Bitline computing
	Isolated read-ports
	Interleaved bitlines
	Sequential pulsed wordlines
	Discussion

	Democratizing hardware design
	OpenRAM: an open-source memory compiler
	Module structure
	Technology files
	Architecture overview

	SKY130: Skywater 130nm process design kit

	Architecture concept and design
	Bitcell array
	Sense amplifier array
	Computing sense amplifier
	Circuit-level design of the BLC logic
	Carry-ripple logic sizing
	A novel circuit topology for single-ended sense amplifiers
	Time-borrowing sense amplifier
	Layout

	Address port
	Address decoders
	Pulse generator
	Closed-loop pulse gating technique based on replica bitline
	Pulse generator compiler
	Layout

	Population-count network
	CSA-based binary tree reduction HDL generator
	Dalalah bit-counting network
	Bit-counting networks comparison
	Open-source synthesis and place & route
	Layout

	Control logic
	Timing diagrams and pins configuration
	Layout

	Simulation and results
	Area occupation
	Simulation results
	Operating frequency and energy consumption

	Conclusions and future perspectives
	Custom modules for OpenRAM in SKY130
	Schematics
	Layouts

	Bibliography
	Acknowledgments

