
POLITECNICO DI TORINO

Department of Electronics and Telecommunications
Master degree in Electronic Engineering

Master Thesis

Molecular Field-Coupled Nanocomputing cell modelling
and characterisation

Supervisors Candidate
Prof. Mariagrazia Graziano Erik Lo Grasso
Prof. Gianluca Piccinini
Dott. Yuri Ardesi
Dott. Giuliana Beretta

April 2022

Sommario

Le leggi di Moore hanno fin’ora predetto con estrema precisione lo sviluppo dei circuiti
integrati in termini di transistor per chip, lunghezza di canale degli stessi e area. Sebbene
furono formulate empiricamente all’inizio degli anni ’70, negli anni nacque una vera e
propria corsa all’oro da parte dei manufacturers affinché lo sviluppo negli anni ricalcasse la
traiettoria immaginaria che queste leggi definirono, e per 50 anni ci riuscirono. Nell’ultima
decade si è assistiti ad un rallentamento generale della crescita prevista da Moore, simbolo
che si sta raggiungendo un limite nello spazio di miglioramento di un sistema realizzato
secondo gli standard moderni.
Il CMOS è una tecnica circuitale di realizzazione delle porte logiche che negli anni ’90
rivoluzionò l’elettronica grazie agli inobiettabili vantaggi rispetto alle tecniche usate in
precedenza.
Fissata la tecnica di realizzazione a livello circuitale, per ottenere migliorare un sistema è
possibile percorrere due linee di pensiero distinte:

• La prima a cui si fa riferimento come “More than Moore” è rivolta al livello ar-
chitetturale, riorganizzando ciò che si ha in maniera quanto più efficiente possibile e
integrando sempre più sistemi in maniera eterogenea per la creazione di cosiddetti
System-On-Chip (SoC).

• La seconda a cui si fa riferimento come “More Moore” riguarda il quanto di una
porta logica, il transistor, con l’idea di migliorarne l’implementazione rendendolo
più piccolo ed efficiente garantendo prestazioni, area e potenza richiesta per il fun-
zionamento ottimizzate.

Raggiunto però il limite precedentemente citato riguardo i miglioramenti ottenibili sul
CMOS, si passa a considerare tecnologie alternative che possano sostituirlo efficacemente.
A queste tecnologie alternative ci si riferisce in generale come “Beyond CMOS” e una delle
più promettenti prende il nome di Field-Coupled Nanocomputing (FCN).
Il FCN abbandona il concetto di transistor basando la propagazione dell’informazione sui
campi elettrostatici. Questo paradigma tecnologico consente un significativo risparmio
energetico in quanto non si basa sulla migrazione di portatori di carica come nel caso del
CMOS e dei transistors in generale.
Una delle possibili implementazioni del FCN interessa i Quantum-Dot Cellular Automata
(QCA). In funzione di come sono fisicamente implementati i QCA, si ottengono dimensioni
ultra scalate e frequenze operative ordini di grandezza più importanti rispetto all’attuale

stato dell’arte CMOS. Una delle implementazioni più promettenti è quella molecolare, tale
per cui ogni QCA viene composto da due molecole complesse contenteni tre Quantum-Dot
ciascuna.
Grazie a SCERPA, algoritmo in grado di simulare la propagazione dell’informazione
dovuta all’accoppiamento elettrostatico delle molecole, la creazione e validazione di lay-
outs in questa tecnologia risulta approcciabile, tuttavia può richiedere molto tempo trat-
tandosi di un algoritmo iterativo che risolve un sistema non lineare dipendente dalla/e
tensione/i di ingresso e dalle configurazioni di carica assunte da ogni molecola. Lo scopo
di questa tesi è stato sviluppare uno strumento che lavori in concomitanza con SCERPA
per la caratterizzazione ingresso-uscita delle celle, che permetta la validazione delle stesse
in maniera semplice e sia in grado di creare una libreria sfruttabile nella simulazione di
sistemi troppo estesi per SCERPA.
Caratterizzare una cella in maniera efficace prevedendo una percentuale ragionevole di
casistiche di utilizzo ha richiesto l’integrazione di add-on specifici che trattino ad esempio
un fan-out maggiore di 1, cosi come la gestione di terminazioni in cascata e ancora la
generazione di combinazioni di ingressi adattative e misurate nel contesto SCERPA, dove
il tempo di simulazione richiesto dipende fortemente dal numero di queste. Tutto ciò è
stato inquadrato in un contesto di spinta automatizzazione con il fine ultimo di aiutare
l’utilizzatore.
Dopo un’analisi introduttiva della tecnologia focalizzata sui suoi aspetti chiave utili per
comprendere lo strumento di caratterizzazione e riportata nel capitolo 1, si passerà, nel
capitolo 2, all’implementazione e alle possibilità che offre, discutendo infine i risultati
relativi la caratterizzazione di layouts fondamentali, nel capitolo 3, e l’applicazione degli
stessi per la valutazione di un circuito più complesso quale la XOR nei capitoli 4 e 5.

Abstract

Moore’s laws have predicted with extreme accuracy the IC development in terms of tran-
sistors per chip, channel length and area. Although these were formulated empirically
in the early ’70s, the manufacturers worked hard to stay on the laws’ traced tracks with
outstanding results.
In the last decade, the development curve has slowed down marking the reach of a possible
technology limit.
Nowadays, the CMOS is still the most used circuital technology: introduced in the early
’90s, it revolutionised modern electronics with amazing improvements but, now, the en-
hancement margins are going to saturate.
Actually, there are two main ideas on which designers rely to build more valuable systems:
the "More than Moore" approach deals with a high level of abstraction, looking at the
systems as heterogeneous (SoCs) and trying to reorganize them from the architectural
point of view. The other possibility is the "More Moore" one which is interested in the
low level of abstraction, working on the transistor implementation.
If there are no more margins to improve the technology following the discussed approaches,
a new and worthful solution that outperform the precedent one must be considered. There
are a lot of new emerging "Beyond CMOS" technologies, but one of the most promising is
the Field-Coupled Nanocomputing (FCN).
The FCN exploits blocks (QCA) coupled with electrostatic fields to ensure information
propagation. This approach avoids charge transport’s defined logic states, enabling the
technology for ultra low power, high operating frequency and strongly scaled devices
depending on the FCN ’s implementation technology. The molecular implementation is
considered one of the greatest solutions: each QCA is composed of two complex molecules
with three Quantum-Dots each able to aggregate the charge and work at room tempera-
ture.
Through SCERPA, the algorithm implemented in MATLAB that can simulate informa-
tion propagation in layouts due to electrostatic fields and externally applied voltages,
nowadays creation and evaluation of basic cells are approachable. However, SCERPA can
be particularly time demanding depending on the layout under test and the input combi-
nations chosen for the simulation, so that too complex layouts could be untreatable.
This thesis project aims to develop a Characterisation tool that can work with SCERPA
to extract the Vin − Vout behaviour of generic layouts. The tool would be a valid instru-
ment to both validate and characterise a cell permitting the eventual design fine-tuning
and the stamp of a library file exploitable in the simulation of complex devices.

The role of the mentioned Characterisation tool is everything but trivial: the necessity
to prevent the work condition of a circuit in a more complex layout pretend the use of
dedicated add-ons to treat with, for instance, the need for a bi-stable simulation got with
a kind of termination, a higher fan-out or the adaptative input combinations measured
in the SCERPA context, where the time overhead is hardly dependent from these. The
entire tool has been developed with a strong bias towards automation with a precise focus
on ease of use.
After a brief technology overview with attention to fundamental notions used in the tool
implementation, this thesis project would analyze the implementation in MATLAB of the
Characterisation tool showing the results on basic layouts at first and applying them on
a more complex circuit like an exclusive OR.

If you cannot understand my
argument, and declare
it’s Greek to me
you are quoting Shakespeare.
[B. Levin, Quoting Shakespeare]

Contents

Sommario II

Abstract IV

List of Acronyms XI

List of Figures XII

List of Tables XV

I Introduction 1

1 Technology overview 2
1.1 Moore’s law and Beyond CMOS . 2
1.2 Field-Coupled Nanocomputing (FCN) . 4

1.2.1 Molecular Implementation and clocked systems 8
1.2.2 Layout improvements exploiting bi-stability 13

1.3 Self-Consistent ElectRostatic Potential Algorithm (SCERPA) 14

II Characterisation Tool 17

2 Characterisation tool implementation 18
2.1 Objectives and definitions . 18

2.1.1 A step towards VLSI . 18
2.1.2 Vin and Vout definition . 19
2.1.3 Debug Mode and User Mode . 24
2.1.4 Basic Methodology . 28

2.2 Function logic, features and implementation 29
2.2.1 The launch script standard . 29
2.2.2 Layout Definition . 30
2.2.3 Absolute Paths definition . 32
2.2.4 Driver values and clock definition 33
2.2.5 Termination process . 44

2.2.6 Characterisation process . 52

3 Characterisation tool results 61
3.1 Mono-phase Six Molecule Wire . 62
3.2 Three-phase Twenty-four Molecule Wire 64
3.3 Three-phase Twenty-four Molecule Bus . 66
3.4 Three-phase L-connector@bus with upward output 68
3.5 Three-phase L-connector@bus with downward output 70
3.6 Four-phase inverter@bus . 72
3.7 Three-phase Majority Voter . 74
3.8 Three-phase Majority Voter@bus . 79
3.9 Four-phase T-connector@bus . 84

III Characterisation of a complex layout: XOR 88

4 XOR cell 89
4.1 Description, characterisation and truth table 89
4.2 Characterisation of single blocks . 92

4.2.1 Mono-phase Six Molecule Wire@bus 93
4.2.2 Four-phase L-connector@bus with upward output 99
4.2.3 Four-phase L-connector@bus with downward output 102

5 Verification 104
5.1 Methodology and tentative script . 104
5.2 Results . 107

6 Conclusion and future perspectives 109

Bibliography 113

List of Acronyms

CMOS Complementary MOS.

csv Comma Separeted Values.

DUT Device Under Test.

FCN Field-Coupled Nanocomputing.

IC Integrated Circuit.

INV Inverter.

MolFCN Molecular Field Coupled Nanocomputing.

MV Majority Voter.

QCA Quantum-Dot Cellula Automata.

QD Quantum-Dot.

SCERPA Self-Consistent ElectRostatic Potential Algorithm.

SOA Self Operating Area.

SoC System-on-Chip.

List of Figures

1.1 Transistor count versus years, 1970-2018 3
1.2 Four QDs QCA blocks: (a) Blank QCA block, (b) ’0’-logic state QCA, (c)

’1’-logic state QCA . 4
1.3 QCA wires: (a) Blank QCA wire, (b) ’0’-logic state induction in QCA wire,

(c) ’1’-logic state induction in QCA wire 5
1.4 Blank MV with explicited inputs and output 6
1.5 Blank INV-gate with explicited input and output 7
1.6 Molecule integration in QCAs . 8
1.7 Generic length wire with the information clash far from input 9
1.8 Vertical clock electric field on the bis-ferrocene molecule 9
1.9 QCA in RESET state . 10
1.10 Six QDs QCA blocks in APPLIED state: (a) ’0’-logic state QCA, (b) ’1’-

logic state QCA . 10
1.11 Example of information propagation from the first phase to the second one

in a eight molecule wire . 11
1.12 Visual scheme of a complete clock cycle with focus on QCAs states 11
1.13 Example of a three-phase layout’s clock scheme. For each repetition of the

three phases, an information propagates along the complete layout 12
1.14 Phase repetition in a three-phase wire cell 12
1.15 Mono-Phase Eight Molecules Wires: (a) Single-line wire, (b) Two-lines or

bus wire. 13
1.16 Discretization of clock states transition . 15

2.1 Mono-phase Six Molecule Wire with explicit Vin and Vout interested molecules 19
2.2 Three-phase L-connector with output along the y-axis: (a) Downward out-

put, (b) Upward output. 20
2.3 Mono-phase Six Molecule Wire@bus with explicit Vin and Vout interested

molecules . 21
2.4 Three-phase L-connector@bus with output along the y-axis: (a) Downward

output, (b) Upward output. 22
2.5 Debug Mode Vin−Vout characteristic: (a) three-phase twenty-four molecules

single-line wire, (b) three-phase twenty-four molecules wire@bus 25
2.6 Launch script flowchart . 29
2.7 Three-phase Majority Voter@bus layout . 35

2.8 Flowchart for the driver_comb_creator function 39
2.9 Debug Mode Vin − Vout characteristic of a three-phase wire of twenty-four

molecules with floating output . 44
2.10 Debug Mode Vin − Vout characteristic of a three-phase wire of twenty-four

molecules terminated . 45
2.11 Three-phase wire of twenty-four molecules terminated with an eight molecules

wire in fourth phase . 45
2.12 Flowchart for the add_termination() function 48
2.13 Flowchart for the multiout_pre_termination_proc() function 49
2.14 Flowchart for the characterization function
2.15 Flowchart for the golden_outMol_finder() sub-function 60

3.1 Mono-phase Six Molecule Wire layout . 62
3.2 Mono-phase Six Molecule Wire layout terminated 62
3.3 Mono-phase Six Molecule Wire Vin − Vout characteristic 63
3.4 Three-phase Twenty-four Molecule Wire layout 64
3.5 Three-phase Twenty-four Molecule Wire layout terminated 64
3.6 Three-phase Twenty-four Molecule Wire Vin − Vout characteristic 65
3.7 Three-phase Twenty-four Molecule Bus layout 66
3.8 Three-phase Twenty-four Molecule Bus layout terminated 66
3.9 Three-phase Twenty-four Molecule Bus Vin − Vout characteristic 67
3.10 Three-phase L-connector@bus with upward output layout 68
3.11 Three-phase L-connector@bus with upward output layout terminated 68
3.12 Three-phase L-connector@bus with upward output Vin − Vout characteristic 69
3.13 Three-phase L-connector@bus with downward output layout 70
3.14 Three-phase L-connector@bus with downward output layout terminated . . 70
3.15 Three-phase L-connector@bus with downward output Vin − Vout characteristic 71
3.16 Four-phase inverter@bus layout . 72
3.17 Four-phase inverter@bus layout terminated 72
3.18 Four-phase inverter@bus Vin − Vout characteristic 73
3.19 Three-phase Majority Voter layout . 74
3.20 Three-phase Majority Voter layout terminated 75
3.21 Three-phase Majority Voter Debug Mode Vin−Vout characteristic: (a) Input

Dr1 −→ sweep, Dr2 −→ −1 V , Dr3 −→ 1 V ; (b) Input Dr1 −→ sweep,
Dr2 −→ 1 V , Dr3 −→ −1 V . 76

3.22 Three-phase Majority Voter Debug Mode Vin−Vout characteristic: (a) Input
Dr1 −→ −1 V , Dr2 −→ sweep, Dr3 −→ 1 V ; (b) Input Dr1 −→ 1 V ,
Dr2 −→ sweep, Dr3 −→ −1 V . 77

3.23 Three-phase Majority Voter Debug Mode Vin−Vout characteristic: (a) Input
Dr1 −→ −1 V , Dr2 −→ 1 V , Dr3 −→ sweep; (b) Input Dr1 −→ 1 V ,
Dr2 −→ −1 V , Dr3 −→ sweep . 78

3.24 Three-phase Majority Voter@bus layout . 79
3.25 Three-phase Majority Voter@bus layout terminated 80

3.26 Three-phase Majority Voter@bus Debug Mode Vin − Vout characteristic: (a)
Input Dr1 −→ sweep, Dr2 −→ −1 V , Dr3 −→ 1 V ; (b) Input Dr1 −→
sweep, Dr2 −→ 1 V , Dr3 −→ −1 V . 81

3.27 Three-phase Majority Voter@bus Debug Mode Vin − Vout characteristic: (a)
Input Dr1 −→ −1 V , Dr2 −→ sweep, Dr3 −→ 1 V ; (b) Input Dr1 −→
1 V , Dr2 −→ sweep, Dr3 −→ −1 V . 82

3.28 Three-phase Majority Voter@bus Debug Mode Vin − Vout characteristic: (a)
Input Dr1 −→ −1 V , Dr2 −→ 1 V , Dr3 −→ sweep; (b) Input Dr1 −→
1 V , Dr2 −→ −1 V , Dr3 −→ sweep . 83

3.29 Four-phase T-connector@bus layout . 84
3.30 Four-phase T-connector@bus layout terminated 85
3.31 Four-phase T-connector@bus Debug Mode Vin − Vout characteristic: (a)

Output A, (b) Output B . 86

4.1 Four-phase XOR@bus layout . 90
4.2 Four-phase XOR@bus layout decomposition 92
4.3 Mono-phase Six Molecule Wire@bus layout with horizontal output 93
4.4 Mono-phase Six Molecule Wire@bus layout with horizontal output terminated 93
4.5 Mono-phase Six Molecule Wire@bus with horizontal output Debug Mode

Vin − Vout characteristic . 94
4.6 Mono-phase Six Molecule Wire@bus layout with upward output 95
4.7 Mono-phase Six Molecule Wire@bus layout with upward output terminated 95
4.8 Mono-phase Six Molecule Wire@bus with upward output Debug Mode Vin−

Vout characteristic . 96
4.9 Mono-phase Six Molecule Wire@bus layout with downward output 97
4.10 Mono-phase Six Molecule Wire@bus layout with downward output terminated 97
4.11 Mono-phase Six Molecule Wire@bus with downward output Debug Mode

Vin − Vout characteristic . 98
4.12 Four-phase L-connector@bus layout with upward output 99
4.13 Four-phase L-connector@bus layout with upward output terminated 100
4.14 Four-phase L-connector@bus with upward output Debug Mode Vin − Vout

characteristic . 101
4.15 Four-phase L-connector@bus layout with downward output 102
4.16 Four-phase L-connector@bus layout with downward output terminated . . 102
4.17 Four-phase L-connector@bus with downward output Debug Mode Vin −Vout

characteristic . 103

5.1 Complex cell evaluation flowchart . 104
5.2 XOR cell output voltages evaluated using the libraries previously extracted 107
5.3 Evaluation time required to extract a set of output voltages given an input

dataset using libraries for the XOR cell . 107
5.4 SCERPA simulation time in User Mode to test four independent input

datasets . 108

List of Tables

1.1 Majority Voter truth table . 6
1.2 AND equivalent truth table as subtable of the MV 7
1.3 OR equivalent truth table as subtable of the MV 7

2.1 User Mode simulation example: csv library file 26
2.2 User Mode bus simulation example: csv library file 27
2.3 debugMode and LibEvaluation flags operation modes 31
2.4 Example of combinations generation for a three input cell 41
2.5 Combinations number in front of to cell inputs and the sweep number of step 42

3.1 Inputs combinations to trigger the majority voter output switch 75

4.1 Exclusive OR truth table . 89
4.2 Truth table input combinations generated by the driver_comb_creator()

function . 91
4.3 XOR cell User Mode simulation example: csv library file 91

5.1 XOR cell User Mode simulation for comparison with the evaluation script
extracted data: csv library file . 107

5.2 Time overhead comparison between the SCERPA’s driven simulation and
the library-based one . 108

Part I

Introduction

1

Chapter 1

Technology overview

1.1 Moore’s law and Beyond CMOS

The development of new technologies in modern electronics is related to a few main
factors like the capability to improve the integration density, the power consumption and
the performance.
One of the most known Moore’s laws deals with the number of transistors in the IC’s
versus time: Gordon Moore predicted transistors to double on chips every two years at
first [1], and every 1.5 years later, following the rule:

Ntr

IC
(t) = Ntr

IC
(t0) · 2

t−t0
1,5 (1.1)

Gordon Moore’s laws also refer to the IC’s area and the transistors’ channel length. Fol-
lowing its previsions, the IC’s dimension would increase by 50% every three years while
the channel length gets decreased by 50% over the same amount of time:

AIC(t) = AIC(t0) · 1,5
t−t0

3 (1.2)

LCH(t) = LCH(t0) · 2− t−t0
6 (1.3)

Although these rules got formulated in the early ’70s, they are still valid:

2

1.1. MOORE’S LAW AND BEYOND CMOS

Figure 1.1: Transistor count versus years, 1970-2018 [2]

Today, to obtain more valuable systems, two main trends can be considered:

• More than Moore (MtM): the exploitation of the current technology to imple-
ment SoC through heterogeneous integration, 3D integration and new architectures,
relying on bigger systems or better organized instead of looking at the low level;

• Beyond CMOS: leave the CMOS standard for new and distinguished technologies
with which realize the logic.

The combination of these two approaches defines tomorrow’s electronics in terms of ICs.
This thesis project is focused on the Beyond CMOS approach, concentrating in particu-
lar on Field-Coupled Nanocomputing (FCN) based on Quantum-Dot Cellular Automata
(QCA) and its most promising molecular implementation.

3

1.2. FIELD-COUPLED NANOCOMPUTING (FCN)

1.2 Field-Coupled Nanocomputing (FCN)
The idea on which FCN is based considers to leave the transistor concept, giving space to
other technologies that encode the binary information in charge-transport-free ways. The
standard logic gates realized with transistors, encode the binary information following a
current-based approach. For instance, it is a current from the output to the ground that
pulls down the output voltage as it is a current from the power supply toward the output
that carries the voltage output to the high level.
On the other hand, FCN uses electrostatic fields to transport the binary information
avoiding useless power loss. The results deal in an ultra-low-power implementation [3],
really high operating frequencies (up to THz) [4, 5, 6] with an incredible integration
density depending on the implementation technology. A possible implementation for the
FCN is due to QCAs among the several options.[4, 7, 8]
QCAs are blocks realized through Quantum-Dots (QDs) that promise to capture the
charges in a certain configuration based on the externally applied forces in general.

(a)

(b) (c)

Figure 1.2: Four QDs QCA blocks: (a) Blank QCA block, (b) ’0’-logic state QCA [9], (c)
’1’-logic state QCA [9]

The logic states referred into figures 1.2b and 1.2c are obtained through the natural ten-
dency of charges to configure in a minimum potential energy state.
The QDs at the edges of the squared container represent low potential zones where the
charges are more likely to stay. The repulsion driven behaviour of identical charges dis-
criminates the two diagonal as a possibility to identify a logic state, considering the two
QDs interested as the farthest couple each respect to the other.
The two discussed diagonals are identical in terms of probability to obtain one or the
other if no externally applied forces are considered. The main idea on which this tech-
nology relies, deals with putting these blocks side by side: the electrostatic field induced
by charges configuration can work as a charge influencer, deciding how the charges of the

4

1.2. FIELD-COUPLED NANOCOMPUTING (FCN)

next QCA will configure, so which diagonal they will intercept.

(a)

(b)

(c)

Figure 1.3: QCA wires: (a) Blank QCA wire, (b) ’0’-logic state induction in QCA wire,
(c) ’1’-logic state induction in QCA wire

Ideally, by making chains of QCAs side by side, the information can propagate from a
starting point to a different part of the layout in a domino-like way as shown in figure
1.3b and 1.3c.
The concept of making logic through this as other technologies, considers building different
basic logic gates like the AND, OR, NOT and the complexes NAND, NOR, XOR, XNOR.
Basically, the complex gates can be derived starting with the simplest ones but, at least,
is needed something more than a wire to implement whichever logic function in a system.
The FCN paradigm considers three main elements working as the fundaments for more
complex systems:

• Wires

• Majority Voters (MVs)

• Inverters (INVs)

Wires are straight-forward structure as discussed before and can have different forms like
L-connectors, or straight ones. The MVs are more interesting looking at theirs flexibility:

5

1.2. FIELD-COUPLED NANOCOMPUTING (FCN)

Figure 1.4: Blank MV with explicited inputs and output [9, 10]

The MV realized in FCN is not different from the one realized in CMOS technology. The
output will configure in the same state of the central QCA that works like a conveyer for
the inputs. The logic state of the central QCA is the one assumed by two of the inputs
at a time.

Table 1.1: MV complete truth table with logic states

IN1 IN2 IN3 OUT
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

The truth table shows a particular behaviour if one of the inputs is fixed to a logic state.
If the table is split into two subtables taking, for instance, IN1 as discriminant, an equiv-
alent AND-gate and OR-gate will be obtained respectively.

6

1.2. FIELD-COUPLED NANOCOMPUTING (FCN)

Table 1.2: AND equivalent truth table as subtable of the MV

IN1 IN2 IN3 OUT
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1

Table 1.3: OR equivalent truth table as subtable of the MV

IN1 IN2 IN3 OUT
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

Having an AND-gate and an OR-gate available through the use of MVs, it is possible to
build NAND-gates and NOR-gates through the use of INVs. The NAND-gates (as the
NOR ones) enable the logic synthesis of whichever boolean function would be realized
following the De Morgan’s Theorems.

Figure 1.5: Blank INV-gate with explicited input and output [9, 10]

The INV-gate together with the MV, can reproduce the behaviour of a standard CMOS
NAND-gate or NOR-gate.
Despite of standard CMOS INVs where it represents the simplest logic gate in terms of
transistors number, the MolFCN ones rely on a complex layout, comparable with the MV
one in terms of QCA number1.

1The layouts shown are good in principle. The real ones get more complicated in order to work
properly and they will be analyzed in details in the following chapters.

7

1.2. FIELD-COUPLED NANOCOMPUTING (FCN)

1.2.1 Molecular Implementation and clocked systems
The QDs in the QCAs can be implemented in several ways as mentioned before [4, 7, 8].
One of the most attractive is the molecular one, where every couple of QDs is implemented
employing a molecule like the bis-ferrocene2. The bis-ferrocene name hides a more complex
structure composed by two ferrocenes Fe(C5H5)2, a Carbazole group C12H9N and a Thiol
group.
Each of these molecules works as a redox centre [4] and it is seen by charges as a low
potential zone where they can aggregate.

• Ferrocene: each of them works as the responsible QD for the logic state encoding.
In the QCA representation shown in figure 1.2a, each planar circle refers to one of
the ferrocenes for each bis-ferrocene molecule;

• Carbazole group: it permits the link among the two ferrocenes and the Thiol group.
Also it works as a redox centre like the ferrocenes, representing the fundamental third
QD of the bis-ferrocene molecule;

• Thiol group: it permits the anchoring of the carbazole with guest surface usually
realized in gold. Also that molecule represents a redox centre for the bis-ferrocene.

(a) (b)

Figure 1.6: Molecule integration in QCAs: (a) Bis-ferrocene molecule3 [11], (b) Bis-
ferrocene molecules in a QCA

2A lot of different molecules exist for this scope like the Diallyl-butane or the decatriene. Some
are more appropriate than others and the bis-ferrocene is one of the greatest thanks to its quasi-ideal
symmetry.

8

1.2. FIELD-COUPLED NANOCOMPUTING (FCN)

In figures 1.6a and 1.6b can be appreciated a third QD not described so far but with a
fundamental role.
The electrostatic field induced by a QCA to the next one can move the charges giving a
bias for the QDs they will occupy. In a chain of QCAs, the information propagates from
the input to the output with a certain delay. This delay cannot be zero and, although
the Columbian interaction is really fast, the information will clash if it tries to propagate
along with a too big layout.

Figure 1.7: Generic length wire with the information clash far from input

The third QDs of QCAs can be exploited with a vertical clock system to avoid this critical-
ity, dividing the layout into clock phases and permitting the information to cover relatively
long distances.

Figure 1.8: Vertical clock electric field on the bis-ferrocene molecule

3The other fundamental advantage of this technology is the integration density. The dimension of
a molecule is comparable with to 1

10 · LCH of a modern state-of-art transistor [12]

9

1.2. FIELD-COUPLED NANOCOMPUTING (FCN)

The vertical clock can work as an enable signal for the molecules. It can attract the
charges toward the QD3 designating a NULL or RESET logic state for the molecule:

Figure 1.9: QCA in RESET state

On the contrary, it can push the charges towards QD1 and QD2 enabling almost the
totality of charges to aggregate on the designated QD. In this case, the QCA is in the
APPLIED state.

(a) (b)

Figure 1.10: Six QDs QCA blocks in APPLIED state: (a) ’0’-logic state QCA, (b) ’1’-logic
state QCA

The idea of dividing the layout into phases exploits a multiple-phase vertical clock so that
the release of QCAs follows the information propagation. It is fundamental the timing
with which this operation is performed: QCAs that have to switch due to the interaction
with the previous phase, need to stay in RESET state until the information is ready at
their input.
This timing rule ensures the information propagation and the switching in a stable logic
state of the discussed phase.

10

1.2. FIELD-COUPLED NANOCOMPUTING (FCN)

Figure 1.11: Example of information propagation from the first phase to the second one
in a eight molecule wire

The clock scheme versus time can be summarized in four steps repeated for the number
of information to propagate:

• Switch: from a RESET state, the vertical clock is applied and the charges are
pushed toward QD1 and QD2 ;

• Hold: the clock stays applied until the QCAs have assumed a stable logic state;

• Release: from the APPLIED state, the clock is released toward the RESET state
and the charges can move from QD1/QD2 to QD3 ;

• Reset: the clock maintains the RESET state until another information to propagate
arrives from the pipe;

Figure 1.12: Visual scheme of a complete clock cycle with focus on QCAs states

In a multiple-phase system the information propagate following the high states of the
vertical clock in a pipeline-like behaviour:

11

1.2. FIELD-COUPLED NANOCOMPUTING (FCN)

Figure 1.13: Example of a three-phase layout’s clock scheme. For each repetition of the
three phases, an information propagates along the complete layout

The phases do not need to cover the entire cell layout. If n-phases are enough to have a
correct information propagation, these can be repeated m-times creating the mentioned
pipeline-like system. Let’s assume that the scheme in figure 1.13 refers to a layout like:

Figure 1.14: Phase repetition in a three-phase wire cell: the first input value propagated is
a ’0’-logic followed by a ’1’-logic. The layout is a charge configuration snapshot at instant
T0 4.

The example in figure 1.14 shows how is possible to exploit the repetition of clock phases
to cover bigger layouts. For solution like these, the classical theory of pipelined systems
is valid: the layout latency5 can be defined T = 2, as the throughput6 (1

T = 1
2).

4Notice the colours used in figure 1.13 that are not correlated with the ones in figure 1.14. In the
first case they discriminates the steps in a clock cycle (switch, hold, release, reset) while in the second
one they are used to distinguish the clock phases.

5The latency of a system is defined as the time required for an input to become an output in terms
of clock cycles.

6The throughput of a system is defined as the number of value that is capable to compute for unit
of time (clock cycle).

12

1.2. FIELD-COUPLED NANOCOMPUTING (FCN)

1.2.2 Layout improvements exploiting bi-stability
The layouts already presented are good in principle. To obtain a significant charge sepa-
ration in molecules, it is necessary to limit the border effects noticeable in molecules that
have no more than one adjacent molecule [10, 13]. For instance, the output molecule in a
layout is usually weaker than a centre one: while the first one is interacting just with the
previous one and has no molecule in front, the second is placed among two stable state
QCAs providing good sustenance.
To achieve bi-stability is possible to implement the layouts using two adjacent lines instead
of one:

(a)

(b)

Figure 1.15: Mono-Phase Eight Molecules Wires: (a) Single-line wire, (b) Two-lines or
bus wire.

Conceptually the two wires work in the same way. Having doubled the QCAs in the
second solution, the molecules are seeing neighbours on three edges and that provides the
wanted charge separation and reliability.
It is also true that an adjacent QCA along the vertical axis produces an interaction and
a voltage level shift not observed in single-line layouts: this effect does not invalidate the
circuit behaviour and it will be discussed withing SCERPA simulations.

13

1.3. SELF-CONSISTENT ELECTROSTATIC POTENTIAL ALGORITHM (SCERPA)

1.3 Self-Consistent ElectRostatic Potential Algorithm
(SCERPA)

A layout realized in MolFCN can be seen as a certain number of points in the space on
whose the charge aggregates. These points correspond to the molecule’s QDs. Assuming
the charges per QD as accumulated in an infinitesimal point of the space, the problem
related to the charge interaction can be simplified by looking at the aggregated charge
per QD of the j-th molecule as:

Qj
n =

NØ
i=0

qj
n,i (1.4)

where n identifies the molecule QD, and i represents the point charge composing the
aggregate one.
Given the set {Qj

1, Qj
2, . . . , Qj

NAC
} for each j-th molecule and associating a position in the

space to each of them, the voltage in a generic point r of the space can be evaluated:

Vj(r) = 1
4πϵ0

NACØ
n=1

Qj
n

d(rj
n, r)

(1.5)

The voltage generated by any aggregated charge in the layout, together with the transchar-
acteristic of the complex molecule used in the construction, enables for an information
propagation model:

Vin,i = VD,i +
NACØ

j=1,j /=i

Vj,i(Vin,j , Eclk) (1.6)

where:

• Vin,i is the input voltage of the i-th molecule;

• VD,i is the voltage imposed by external drivers;

• Vj,i is the voltage generated by all the other molecule in the layout and depends on
their inputs voltages and the vertical clock known a priori and specified as input.

SCERPA implementation solves this self-consistent problem in an iterative way driven by
the search for a compliant charge configuration on each QD of the layout. Each iteration
of the algorithm is known as SCERPA step and depends on the previous one, following
the rule:

V k
in,i = Fi(V k−1

in,1 , . . . , V k−1
in,i−1, V k−1

in,i+1, . . . , V k−1
in,N) (1.7)

where Fi denotes the function 1.6.

14

1.3. SELF-CONSISTENT ELECTROSTATIC POTENTIAL ALGORITHM (SCERPA)

SCERPA implementation in MATLAB provides a lot of functionalities for the layout
simulation. It is a rich tool capable to evaluate both graphically and numerically the
behaviour of a MolFCN circuit but it can be decisive time demanding.
The simulation time overhead of a layout depends on the number of molecules and the
several options available for SCERPA.
In general, the simulation time increases with the SCERPA steps and at any of these
correspond a vertical clock value.
Thus, it straight-forward the direct dependence between the number of clock cycles to be
simulated and the computational time.
In figure 1.12, the clock states in a cycle have been described visually. The implementa-
tion of these in SCERPA is discretized in little steps to simulate a behaviour closer to the
reality where the switch from a state to the next one cannot be instantaneous.

Figure 1.16: Discretization of clock states transition1

The use of these intermediate values means the necessity for the algorithm to simulate
them with additive SCERPA steps in order to obtain a good simulation accuracy. Finer is
the sweep discretization, better will be the simulation but it will require clearly a higher
computational time. To mitigate the time overhead, some computational cost reduction
feature as the set of custom damping factor, the Interaction Radious (IR) set and the
Active Region (AR) mode could be considered [10].

1The discretization must be considered also for constant value states like the Hold and the Reset
because the number of steps for each clock state must be the same for SCERPA.

15

Part II

Characterisation Tool

17

Chapter 2

Characterisation tool
implementation

2.1 Objectives and definitions

2.1.1 A step towards VLSI

SCERPA implementation permits quasi-physical analysis of small generic input layouts as
discussed before, due to the high time overhead. Looking at the possible implementation
of complex systems following the modern digital design flow, SCERPA could be not adapt.
Today, the synthesis of an RTL’s described system relies on libraries of gates completely
characterized from the electrical and the physical point of view.
The aim of this thesis project is the creation of an additive SCERPA’s module for the
Vin − Vout characterization of generic cell layouts and the creation of libraries useful to
simulate more complex architectures without paying the SCERPA overhead.
Knowing the behaviour of a certain basic cell, is useless to simulate it again every time
a new layout is implemented. From this point of view, the use of libraries, working as
fetchable tables, improves significantly the simulation efficiency1.
The discussed additive module (characterisation tool from now on) is created to help the
user in both the design and the library creation process of a cell layout with a development
particularly aimed at the automation of every needed procedure.
The introduction of this tool would move the actual technology a step forward in the
MolFCN ’s circuit development giving the opportunity to users to have a fast look at
complex implementation and work with them easily.

1A SCERPA simulation can take hours depending on how big is the cell layout and on the number
of input combinations to simulate. On the other hand, the use of library would reduce that time to
milliseconds

18

2.1. OBJECTIVES AND DEFINITIONS

2.1.2 Vin and Vout definition
The characterisation of a generic layout requires, at first, a definition of input voltage (Vin)
and output voltage (Vout) that remains consistent also where a similar layout is connected
in cascade to the one under test.

Figure 2.1: Mono-phase Six Molecule Wire with explicit Vin and Vout interested molecules2

The layout represented contains three kind of objects that must be defined:

• DrX labels: driver X-th. The externally applied voltages to a layout are modelled
through drivers with the same shape of a standard QCA. Looking at the driver mode:

– SingleMolDriverMode: the driver label is equivalent to a unique molecule or
half a QCA;

– DoubleMolDriverMode: the driver label is equivalent to two molecules as it
is a whole QCA.

• QCAs: layout body. The QCAs represent the layout and are distinguished with
colours considering possible the use of different clock phases in the design.

• OUT labels: layout outputs. To identify where a layout finishes, there is the
possibility to introduce a named label as in figure 2.1. The output labels must
be always inserted during the cell layout design because these identify the output
direction as well as the output themselves. SCERPA let’s correspond a dummy
molecule for each output label useful to calculate the output voltage in the proximity
of the last molecule where the initial molecule of another cell could stay.

In particular, the DoubleMolDriverMode paradigm is the one used in the development of
the characterisation tool for library files derivation. If a generic input is considered as

2Despite the QCAs representation seen in the Introduction part of this thesis work, here and so on
the layouts will be represented using the software MagCAD [14, 15]. MagCAD permits to design the
cell layouts graphically, providing a "*.qll" description file compatible with SCERPA.

19

2.1. OBJECTIVES AND DEFINITIONS

built by two molecules in general, each layout output must rely on the same number of
output molecules to ensure the definition compliance. A generic output can face three
different directions basically due to the planar-based technology which is MolFCN [16, 17].
For this reason, a standard identification of the output molecules must be introduced to
ensure consistency between the created library files and the cell layout design.

(a)

(b)

Figure 2.2: Three-phase L-connector with output along the y-axis: (a) Downward output,
(b) Upward output.

As a rule to identify the molecules: the A molecule (voltage) is always the rightest one

20

2.1. OBJECTIVES AND DEFINITIONS

while the B is always on his left.

As explained in section 1.2.2, there is the necessity to work on bus layouts for bi-stability.
The single-line layouts are good in principle to get into the problem but are not robust
enough to be used in real implementations.
The Vin and Vout definitions can be easily extended to bus cases:

Figure 2.3: Mono-phase Six Molecule Wire@bus with explicit Vin and Vout interested
molecules

The bus paradigm doubles the molecules as the driver and the output labels. While the
adjacent drivers can be the same if the layout represents a wire or different if the simu-
lation wants to consider them as independent, the output label must be equal in name,
because these represent the same and unique independent output3.

The output molecules for cells like the ones shown in figure 2.2a and 2.2b but bus based:

3The correct outputs naming is one of the rules on which the characterisation tool is based. The
definition and concepts discussed here have to be considered mandatory to have the tool working
properly.

21

2.1. OBJECTIVES AND DEFINITIONS

(a)

(b)

Figure 2.4: Three-phase L-connector@bus with output along the y-axis: (a) Downward
output, (b) Upward output.

22

2.1. OBJECTIVES AND DEFINITIONS

Also here, as a rule to identify the molecules: the A molecule (voltage) is always the
rightest one preceded by the B one. On the second line C is found preceded by D.
If the output molecules are adjacent like in figure 2.4a and 2.4b, the molecules D and C
precede B and A and this is always true no matter about the output direction along the
y-axis.

23

2.1. OBJECTIVES AND DEFINITIONS

2.1.3 Debug Mode and User Mode

Among the available features of the characterisation tool, the possibility to choose between
Debug Mode and User Mode is the most interesting. As discussed in section 2.1.1, this
tool would help the designer in the creation and validation of the layout. Once the layout
is frozen out, it can be characterized creating a library file.
The Debug Mode is focused on the part of creation and validation of the layout while the
User Mode creates the library file.
In the MATLAB implementation that will be deeply analyzed in the next sections, the
Debug Mode and the User Mode are developed as a parallel flow that exploits the same
data structure and scripts.
What changes for the user is the simulation output:

• Debug Mode: the best way to evaluate the behaviour of a layout is the graphical
one. The Debug Mode is designed to plot the Vin −Vout characteristic given the input
voltages that must be specified in the launch script4.
Using the Debug Mode, the definition of Vin and Vout is slightly different from what
has been seen in section 2.1.2.
To ensure good observability of the characteristics and avoid confusion, the plots
must be cleaned up from clutter:

– Single-Line layout: using figure 2.1 as a reference, each driver molecule cor-
responds to an output one. For each input-output couple can be introduced a
Vin-Vout characteristic, meaning that plotting the voltages derived from these
two couples, the output graph will contain two specular characteristics5. Keep-
ing two characteristics in the same plot cannot help the user in any way so only
one of these is maintained as shown in figure 2.5a.

– Bus layout: the couples of molecules interested in the characterisation are now
four (figure 2.3).
Also in this case, as for single-line layouts, a de-cluttering operation is needed
to improve the observability. Considering the doubled lines, it is interesting to
evaluate two couples of Vin − Vout voltages: one for the above edge and one for
the down edge6.

4The launch script is a MATLAB script that prepares and describes every input needed from
SCERPA to start the simulation of a cell layout.

5The charges in molecules of the same QCA move in diagonal following their natural behaviour
to find a minimum potential energy configuration. If the charges occupy the QDs in a specular way,
also the voltages produced by them must be opposite in sign but almost equal in absolute value. This
behaviour has been discussed in detail in section 1.2.

6The bus paradigm permits to obtain a strong bi-stability but introduces also a bias in the char-
acteristics given by the vertical coupling as discussed in section 1.2.2. Considering the two couples
Vin − Vout, the discussed bias can be noticed graphically as its dependence on the layout shape.

24

2.1. OBJECTIVES AND DEFINITIONS

(a)

(b)

Figure 2.5: Debug Mode Vin − Vout characteristic: (a) three-phase twenty-four molecules
single-line wire, (b) three-phase twenty-four molecules wire@bus

25

2.1. OBJECTIVES AND DEFINITIONS

The values of Vin to simulate must be chosen correctly in order to obtain the
cell behaviour ensuring a low overhead with SCERPA.
One-input devices like the ones characterised above are simulated with a straight-
forward sweep in input, setting a minimum value, a maximum value and a step
both for Debug Mode and User Mode.
On the other hand, multi-input devices need specified inputs in Debug Mode
while every combination of the inputs must be tested in User Mode: the features
relative to the input settings will be analyzed in detail with the implementation
of the tool.

• User Mode: the complete characterisation of a cell requires the test of almost every
possible input combination to create a library with a high coverage percentage. On
the contrary of Debug Mode, the definitions of Vin and Vout discussed in section
2.1.2 are valid, meaning that single-line layouts need for two couples of Vin and Vout

while four voltages couples are needed for bus layouts7. The results computed by
the characterisation tool are stored in a csv file in a tabular form, making it easy to
fetch for future use.
Considering the possibility to work on multi-phase layouts where the clock phases
may repeat as reported in figure 1.14, every csv comes with an information file
reporting the output phase as the layout latency. This file still considers a little
information but is designed with the idea of being more complete in future.
The discussed table of values is created dynamically with as column as input/output
molecules have to be considered and as rows as input combinations have been tested
on the cell.

Table 2.1: Head of a csv library file related to a mono-phase six molecules wire as the one
shown in figure 2.1

Dr1 Dr1c VoutB VoutA

-1 1 0.65521 -0.6587
-0.8254 0.8254 0.65506 -0.65884
-0.68129 0.68129 0.65504 -0.65885
-0.56234 0.56234 0.65504 -0.65885
-0.46416 0.46416 0.65516 -0.65873
-0.38312 0.38312 0.65539 -0.65852
-0.31623 0.31623 0.65556 -0.65837
-0.26102 0.26102 0.65569 -0.65825
-0.21544 0.21544 0.65535 -0.65826

...

7Assuming a one-input - one-output device as driving example

26

2.1. OBJECTIVES AND DEFINITIONS

The table shown above has been derived using a logarithmic sweep from −1 V to
1 V 8. Dr1 is the closest driver molecule to the first molecule of the layout while
Dr1c is complementary to it due to the DoubleMolDriverMode discussed in section
2.1.2.
The characterisation of the equivalent bus layout in User Mode provides four output
voltages instead of two:

Table 2.2: Head of a csv library file related to a mono-phase six molecules wire@bus as
the one shown in figure 2.3

Dr1 Dr1c VoutB VoutA VoutD VoutC

-1 1 0.35428 -0.76366 0.82863 -0.34483
-0.8254 0.8254 0.35392 -0.76368 0.82861 -0.34508
-0.68129 0.68129 0.35394 -0.76369 0.82858 -0.34508
-0.56234 0.56234 0.35411 -0.7637 0.8285 -0.34502
-0.46416 0.46416 0.35454 -0.76372 0.82836 -0.34483
-0.38312 0.38312 0.35471 -0.76374 0.82832 -0.34479
-0.31623 0.31623 0.35487 -0.76377 0.82836 -0.34476
-0.26102 0.26102 0.355 -0.7638 0.82839 -0.34473
-0.21544 0.21544 0.35511 -0.76382 0.82841 -0.34471
-0.17783 0.17783 0.3552 -0.76383 0.82844 -0.34469

...

The inputs in table 2.1 remain two because the bus is driven by two identical drivers.
In these cases is useless to store two others identical columns considering equal the
datasets applied as input.
If the bus layout is driven at the same physical input with two different drivers, they
will be treated correctly with the stamp of other inputs columns highlighting the
complete input combination for each row.

The user has to choose how the simulation must be performed through flags in the launch
script. Although the number of flags is minimal to reduce the user effort in the tool usage,
the choice for Debug Mode or User Mode must be set manually.

8The possibility to choose between a logarithmic sweep or a linear one will be described in the
next sections. The logarithmic sweep permits the input values accumulation where the transaction is
more likely to be, improving the characteristic accuracy without paying the feature in terms of time
overhead.

27

2.1. OBJECTIVES AND DEFINITIONS

2.1.4 Basic Methodology
The characterisation tool provides numerous features like the different running modes
presented in the previous section. Both these two can be exploited to introduce a standard
methodology for cell developing, layout validation and characterisation:

1. Prepare a preliminary layout for the DUT ;

2. Launch SCERPA within Characterisation tool@Debug Mode and evaluate the be-
haviour;

3. Layout fine-tuning;

4. Launch SCERPA within Characterisation tool@User Mode to create the library files;

5. Use the library with a netlist-like method.

The proposed scheme provides good results regarding the necessity for a layout to be
validated before starting with a long simulation for the characterisation.
While the Debug Mode uses just a sweep as Vin giving an outcome in a relatively short
time, the User Mode is designed to test every input combination resulting certainly in a
longer simulation.
The cell layouts proposed from now on have been designed and simulated using the dis-
cussed scheme.

28

2.2. FUNCTION LOGIC, FEATURES AND IMPLEMENTATION

2.2 Function logic, features and implementation
The characterisation tool that will be discussed, is implemented in MATLAB following a
modular approach. The description of every choice, feature and function will be introduced
following a driving example like the characterisation of a Three-Phase Majority Voter@bus.

2.2.1 The launch script standard
The launch script concept was introduced before as the one involved in the simulation
preparation for SCERPA and now, also for the characterisation tool.

START

Layout definition

Absolute paths
definition

Driver values
definition

Clock definition

Add the layout
 termination

SCERPA

Characterization

END

Figure 2.6: Launch script flowchart

For each cell layout to simulate, a launch script must
be designed also if there are only few differences
from one to the others. However, the skeleton is
common to every launch script and can be summa-
rized in principle:

• Layout Definition: the file qll and the pa-
rameters for SCERPA to treat with the layout
are indicated here;

• Absolute Paths Definition: to ensure
multi-platform compatibility, the automatic
definition of the absolute paths is considered
as a standard;

• Driver values Definition: the simulation
runs on certain input values that are defined
here;

• Clock Definition: the specified input val-
ues must be treated correctly with a strict
correspondence with the clock phases. The
clock phases and their synchronization are in-
troduced here;

• Layout Termination: because of bi-stability,
a custom termination can be automatically
connected at the output of the layout. This
optimization is considered here;

• SCERPA: when everything is ready for
SCERPA, it can start with the simulation;

• Characterisation: after that SCERPA have
concluded with the simulation, the character-
isation can start using the computed results
and the input parameters.

29

2.2. FUNCTION LOGIC, FEATURES AND IMPLEMENTATION

2.2.2 Layout Definition
The first important task of the launch script is the layout definition.

Listing 2.1: Layout Definition
1 %% Layout settings
2
3 % molecule
4 circuit . molecule = 'bisfe_4 ';
5
6 % layout
7 circuit . magcadImporter = 1;
8 file = 'majority_voter_large .qll ';
9 circuit . qllFile = sprintf ('%s/%s',pwd ,file);

10 circuit . doubleMolDriverMode = 1;
11 circuit . phases_repetition = 1; % The layout is given by the

repetition of n- phases per how many times?
12 circuit . debugMode = 1; % - characteristic visually plotted instead

of tabled
13 circuit . LibEvaluation = 0; % Evaluate the behaviour starting from

the library
14
15 % debugMode LibEvaluation
16 % 0 0 --> Characterize the layout creating

the .csv
17 % 0 1 --> Use the library instead of SCERPA

to eval Vout
18 % 1 0 --> Evaluate the layout correctness (

plot the characteristic)
19 % 1 1 --> Test every input combination with

libraries (InOut_eval .m)

The modular nature of SCERPA as the characterisation tool need for data structure
valid for sharing purposes. MATLAB provides the struct object type as a heterogeneous
structure on which the fundamental elements for the processing can be stored.
The launch scripts rely on many of these structures as circuit that contains the device
information.
With the listing 2.1 as a reference, in the layout definition section are defined:

• The molecule used to synthesize the layout −→ line 4;

• The name and the absolute path of the qll surrounded by the magcadImporter flag,
indicating whenever the layout is described through the qll file or directly into MAT-
LAB −→ lines 7 ÷ 9;

• The driver paradigm to be used. It must be the double one for characterisation
−→ line 10;

30

2.2. FUNCTION LOGIC, FEATURES AND IMPLEMENTATION

• The latency of the layout (phase_repetition) −→ line 11;

• The running mode (Debug Mode or User Mode) −→ line 12;

• The behaviour evaluation through the previously extracted layout library instead of
SCERPA (for debugging purposes only) −→ line 13.

The last three discussed items have been introduced to work with the characterisation
with respect to the original launch script for SCERPA.
In particular, the latency cannot be computed looking at the qll file because of the lack
of information.
The choice for the Debug or User Mode must be provided by the user following the scheme
discussed in section 2.1.4 while the LibEvaluation would not be used in characterisation.
How can be noticed from lines 15 ÷ 19, the debugMode flag and the LibEvaluation are
used to identify four different uses of SCERPA within the characterisation tool:

Table 2.3: debugMode and LibEvaluation flags operation modes

DebugMode LibEvaluation Behaviour
0 0 Layout characterisation in User Mode

0 1 Evaluate the output through the library in-
stead of SCERPA

1 0 Layout characterisation in Debug Mode

1 1 Library debug: test every input combination
fetch on the library

31

2.2. FUNCTION LOGIC, FEATURES AND IMPLEMENTATION

2.2.3 Absolute Paths definition
MATLAB is a multi-platform software and a script in this programming language would
run on every operating system (Microsoft Windows, UNIX).
The modular structure of SCERPA as the one of the characterisation tool are deployed
as a main directory and a lot of subdirectories including the ones for the algorithm, the
information plot, the simulations and, from now on, the library together with the charac-
terisation.
The launch script and SCERPA itself move inside the main directory to fetch every func-
tion needed and the absolute paths make it feasible. This paradigm gives the flexibility
looked up by the user to manage with files and the directories in is own system without
worring about path compliance.

Listing 2.2: Absolute Paths definition
1 layout_path = pwd;
2
3 cd('../../ ')
4 scerpa_path = pwd;
5
6 characterization_path = strcat (scerpa_path , '/ Characterization ');
7 driver_handling_path = strcat (characterization_path , '/

Driver_handling ');
8 termination_path = strcat (characterization_path , '/ Terminations ');
9 Library_path = strcat (scerpa_path , '/Lib ');

scerpa root

Algorithm

Characterisation

Driver_Handling

Terminations

Layout

Viewer

Lib

Models

Cell 1

Cell 2

Simulation 1

Simulation 2

The basic directory tree used for simulation is shown
on the right. The absolute paths are referring to a
structure organized in that way:

• Algorithm: SCERPA implementation scripts;

• Layout: SCERPA scripts for the layout im-
port and handling;

• Viewer: SCERPA scripts for the layout im-
port, handling and data structures;

• Characterisation: scripts of the character-
isation tool, driver handling and termination
handling;

• Lib: cells libraries extracted;

• Models: cells layouts and relative launch
scripts.

32

2.2. FUNCTION LOGIC, FEATURES AND IMPLEMENTATION

2.2.4 Driver values and clock definition
Having introduced the cell layout under test, the next step considers the input values
and the clock definition. SCERPA handles the input combinations through a cell-matrix
(Values_Dr) defined in the launch script. It must be compliant with the clock definition
because of the strict relationship between inputs propagation and clock phases, as dis-
cussed in section 1.2.1.
A clock cycle is defined by the states Switch, Hold, Release and Reset and each of them
is discretized in steps in order to implement them on MATLAB.
The step granularity can be defined through the clock_step parameter in the launch script:

Listing 2.3: Clock states structure definition
1 %% Input signals and clock settings
2
3 % definitions
4 circuit . clock_low = -2;
5 circuit . clock_high = +2;
6 circuit . clock_step = 5; %how many values for the 'p '?
7
8 %Step simulation implementation
9 circuit . pSwitch = linspace (circuit .clock_low , circuit .clock_high ,

circuit . clock_step); % if step = 1 -> [-2 -1 0 1 2]
10 circuit .pHold = linspace (circuit .clock_high , circuit .clock_high ,

circuit . clock_step); % if step = 1 -> [2 2 2 2 2]
11 circuit . pRelease = linspace (circuit .clock_high , circuit .clock_low

, circuit . clock_step); % if step = 1 -> [2 1 0 -1 -2]
12 circuit . pReset = linspace (circuit .clock_low , circuit .clock_low ,

circuit . clock_step); % if step = 1 -> [-2 -2 -2 -2 -2]
13
14 %Cycle to simulate
15 circuit . pCycle = [circuit . pSwitch circuit .pHold circuit . pRelease

circuit . pReset]; % if step = 1 -> [-2 -1 0 1 2 -> 2 2 2 2 2 ->
2 1 0 -1 -2 -> -2 -2 -2 -2 -2]

A finer grain improves the simulation accuracy increasing the time overhead because of
the correspondence between a value in the pCycle structure and a SCERPA step. For
each pCycle, an input dataset propagates correctly along a clock phase of the cell.
Once the structure of a clock cycle is defined, the combination of the inputs can be
introduced considering that each of them must be stable at the cell’s input for the entire
duration of a clock cycle (20 SCERPA steps in the code snippet).

33

2.2. FUNCTION LOGIC, FEATURES AND IMPLEMENTATION

Assuming to set to 2 V the input of a mono-phase six molecules wire like the one in figure
2.1, the Values_Dr∗ structure would be:

Listing 2.4: SingleMolDriverMode input values definition
1 Dr2V = num2cell (2 * ones (1, length (circuit . pCycle)));
2 circuit . Values_Dr = {
3 'Dr1 ' Dr2V {:} 'end '
4 };

If the DoubleMolDriverMode is active, also the values for the complementary driver must
be defined:

Listing 2.5: DoubleMolDriverMode input values definition
1 Dr2V = num2cell (2 * ones (1, length (circuit . pCycle)));
2 Dr2V_c = num2cell (-2 * ones (1, length (circuit . pCycle)));
3 circuit . Values_Dr = {
4 'Dr1 ' Dr2V {:} 'end '
5 'Dr1_c ' Dr2V_c {:} 'end '
6 };

So far, the structure of a complete clock cycle and the input values have been introduced.
At least, the strategy and the clock phases for the layout to evolve among the clock states
need to be defined. SCERPA uses a matrix (stack_phase) as the structure to share the
information about the layout clock phases:

• stack_phase rows: each row describes the behaviour of the relative clock phase:

– first row −→ first clock phase;
– second row −→ second clock phase;

...
– n-th row −→ n-th clock phase.

• stack_phase column: instant clock value for each phase in the layout9.

∗In Values_Dr are defined the drivers’ values per molecule. The names need to be compliant with
the labels used in the qll file that describes the cell layout, considering the underscore followed by the
character ’c’ as the method to define the complementary molecule values.

9A SCERPA step corresponds to each stack_phase column.

34

2.2. FUNCTION LOGIC, FEATURES AND IMPLEMENTATION

The stack_phase for the mono-phase six molecules wire considered as example would be:

Listing 2.6: stack_phase definition for the mono-phase six molecules wire with a single
input value

1 circuit . stack_phase (1 ,:) = [circuit . pCycle];

The examined example represents the simplest setup configuration and it is easy to make
it complex. Considering the driving example chosen for this presentation, the three-phase
majority voter@bus with a layout:

Figure 2.7: Three-phase Majority Voter@bus layout

The three independent inputs and clock phases require particular attention in the starting
setup configuration. While the clock states structure shown in listing 2.3 can remain the
same also in this case, both the Values_Dr and the stack_phase would be re-designed.

35

2.2. FUNCTION LOGIC, FEATURES AND IMPLEMENTATION

Assuming to set every cell input to 2 V , considering the DoubleMolDriverMode active:

Listing 2.7: DoubleMolDriverMode input values definition
1 Dr2V = num2cell (2 * ones (1, length (circuit . pCycle)));
2 Dr2V_c = num2cell (-2 * ones (1, length (circuit . pCycle)));
3 circuit . Values_Dr = {
4 'Dr1 ' Dr2V {:} 'end '
5 'Dr1_c ' Dr2V_c {:} 'end '
6 'Dr2 ' Dr2V {:} 'end '
7 'Dr2_c ' Dr2V_c {:} 'end '
8 'Dr3 ' Dr2V {:} 'end '
9 'Dr3_c ' Dr2V_c {:} 'end '

10 };

The stack_phase has to consider the three clock phases used in the layout design and also
the order of them to ensure the propagation:

Listing 2.8: stack_phase definition for the three-phase majority voter@bus with a single
input value

1 circuit . stack_phase (1 ,:) = [circuit . pCycle circuit . pReset
circuit . pReset];

2 circuit . stack_phase (2 ,:) = [circuit . pReset circuit . pCycle
circuit . pReset];

3 circuit . stack_phase (3 ,:) = [circuit . pReset circuit . pReset
circuit . pCycle];

With the shown stack_phase configuration, the input can move at first along the first
phase while phase two and phase three are in Reset state. After the first clock cycle, the
information propagates on the second phase (the MV core that decides for the output),
and only on the last clock cycle it will be available at the output while the other phases
are maintained in Reset state.
The use of SCERPA to simulate an input value at a time can be an understatement
requiring a discrete overhead in time for the setup manipulation. Whereas the aim of
this work, a great scenario would consider the set of many input values in a pipe and the
simulation of them in a one-shot run.
The stack_phase configuration gets moderately complex in this case: it has to consider
as many clock cycles as the input combination that would be simulated in the pipe, so a
pCycle repetition in line with them:

36

2.2. FUNCTION LOGIC, FEATURES AND IMPLEMENTATION

Listing 2.9: stack_phase definition for the three-phase majority voter@bus with several
input values

1 circuit . CompleteCycle = repmat (circuit .pCycle , 1,
driver_length);

2 circuit . stack_phase (1 ,:) = [circuit . CompleteCycle circuit .
pReset circuit . pReset];

3 circuit . stack_phase (2 ,:) = [circuit . pReset circuit .
CompleteCycle circuit . pReset];

4 circuit . stack_phase (3 ,:) = [circuit . pReset circuit . pReset
circuit . CompleteCycle];

The Values_Dr matrix can be designed as shown below, creating a custom structure for
each driver molecule and adding them in the matrix modifying the values for compliance
with the clock. Considering the necessity to create new custom structures every time a
new cell would be simulated and the difficulties in the synchronization between driver and
clock values10, especially when sweep intervals are considered as input, the creation of a
script that manages these criticalities was fundamental.
The mentioned script named as driver_comb_creator() moves the difficulties of setting
up the input combination to a completely automated function that creates the Values_Dr
matrix relying on the input parameters inserted by the user.
Among the numerous features, our spotlight focuses:

• The Debug Mode and User Mode handling;

• The SingleMolDriverMode and DoubleMolDriverMode handling;

• Customisable number of independent input;

• Customisable sweep steps;

• Customisable sweep type (linear or logarithmic);

• Computational cost reduction strategies related to customisable dummy molecules
and dummy inputs;

• Four possible input value can be manually forced in Debug Mode: ’1’-logic, ’0’-logic,
’sweep’, ’not_sweep’ ;

• Automatic generation of all the input combinations in User Mode;

• Automatic pipeline length calculation for clock definition11.

10For instance, if the driver values number does not match the length of the stack_phase rows
exactly, SCERPA will generate an error of inconsistency but only on the interested SCERPA step,
meaning that hours of simulation could be thrown away because of inattention.

11The discussed CompleteCycle structure is treated by the driver_comb_creator() script because of
data availability, getting into simplified launch scripts that see the functions as black boxes.

37

2.2. FUNCTION LOGIC, FEATURES AND IMPLEMENTATION

The function uses the structure circuit as input and the dedicated structure driver_parameters
on which are defined its customisable options. The results overwrite the already created
circuit structure considering that the new elements processed by the script need to stay
inside it.

Listing 2.10: Driver value definition through driver_comb_creator() function
1 %% Driver definition
2 % Number of value with which control the variation
3 driver_parameters . Nsteps = 9; % Number of steps on the input sweep
4 driver_parameters . Ninputs = 3; % Number of physical input of the

layout
5 driver_parameters . bothDriversActive = 1; %Use Dr_c as dummy for

each input(fixed to 0)
6 driver_parameters . Nactive_inputs = 3; % Number of input to consider

active (useful to debug long simulation)
7 driver_parameters . Nphases = 3; % original number of phases with

which the layout was designed
8 driver_parameters . sweepKind = 'lin '; %sweep creation following a

linspace ('lin ') or a logspace ('log ') -> Nstep adviced 50
9

10 % Definition of inputs to use in debug mode -> '1' -> driver
value fixed to '1'-logic;

11 % '0' -> driver
value fixed to '0'-logic;

12 % 'sweep ' -> the
driver sweep from -1 ('0'- logic) to 1 ('1'- logic);

13 % 'not_sweep ' -> the
driver sweep from 1 ('1'- logic) to -1 ('0'- logic);

14 %
15
16 % In debugMode are not considered dummy inputs and dummy molecule

in doubleMolDrivers because its
17 % not necessary to reduce the computational effort
18 driver_parameters .Dr1 = '1';
19 driver_parameters .Dr2 = 'not_sweep ';
20 driver_parameters .Dr3 = '0';
21
22 cd(driver_handling_path)
23 circuit = driver_comb_creator (driver_parameters , circuit);

38

2.2. FUNCTION LOGIC, FEATURES AND IMPLEMENTATION

driver_comb_creator function

The logic behind this function is simple and can be summarized in a few steps:

Start

driver parameters
check and helpful data

structure creation

Debug
Mode

Match cases and
generate all combination

needed.

Match cases following the input
value: '1', '0', 'sweep',

'not_sweep'

YESNO

Build the Values_Dr
cell matrix

Define the length of a
Complete Cycle
(clock pipelining)

END

Figure 2.8: Flowchart for the driver_comb_creator function

39

2.2. FUNCTION LOGIC, FEATURES AND IMPLEMENTATION

The first operation considered by the function is a conformity check on the input parame-
ters, followed by the creation of starting structures for the composition of the Values_Dr
matrix in Debug Mode.
As discussed before, the length of the input values depends on the clock states granularity
as on the clock phases involved in the layout design and on the latency of the layout.
This part is strictly correlated with the input parameters and it prepares the field for the
next processing.
The mentioned starting structures include:

• Sweeps: creation of a linear or logarithmic direct sweep (from −1 V to 1 V 12 and
the complementary not_sweep). The granularity of these vectors depends on the
number of steps chosen as input.

• Fixed values: creation of fixed value arrays with the same length of the sweeps. At
least is needed a ’1’-logic, a ’0’-logic and an inactive values array (0 V) to implement
dummy inputs and/or dummy molecules.

While in Debug Mode is needed a parsing with the defined value per independent input,
the User Mode works differently.
In this case, every input values combination must be simulated over the whole cell physical
inputs. The combinations are not computed randomly but rely on the input parameters,
like the starting structures, through the sweep type and the number of steps chosen.
Let’s assume to have a three inputs cell layout like the MV where each of them is com-
pletely active13, considering a number of steps equal to three on a linear sweep, the
generated direct sweep would be:

[−1 0 1]

12These voltages values have been derived empirically by looking at simulations, considering that
overcoming these, the output voltages saturate to a stable value and is useless to increase the simulation
effort for no more information.

13Meaning that no computational cost reduction features are active.

40

2.2. FUNCTION LOGIC, FEATURES AND IMPLEMENTATION

Considering the three inputs, the generation of every combination between the sweep
vectors like the one already shown, provides:

Table 2.4: Every combination generated for a three input cell with Nsteps = 3 and a
linear sweep

Dr1 Dr2 Dr3
-1 -1 -1
-1 -1 0
-1 -1 1
-1 0 -1
-1 0 0
-1 0 1
-1 1 -1
-1 1 0
-1 1 1
0 -1 -1
0 -1 0
0 -1 1
0 0 -1
0 0 0
0 0 1
0 1 -1
0 1 0
0 1 1
1 -1 -1
1 -1 0
1 -1 1
1 0 -1
1 0 0
1 0 1
1 1 -1
1 1 0
1 1 1

The number of combinations should be calculated before starting with the simulation,
considering how is easy to make it computationally unfeasible:

#Combination = Nsteps#independent_inputs (2.1)

The equation can be easily verified by looking at the example already shown where 33 = 27
combinations have been listed.

41

2.2. FUNCTION LOGIC, FEATURES AND IMPLEMENTATION

The exponential relationship makes the number of combinations explode fastly:

Table 2.5: Combinations number in front of to cell inputs and the sweep number of
step: in green15 the conditions on whose the simulation takes no more than 0.5 hours, in
yellow15 the conditions on whose the simulation takes up to 2.5 hours, in red14 the critical
conditions on whose the simulation becomes unfeasible

❛❛❛❛❛❛❛
Nsteps

#input 1 2 3 4

1 1 1 1 1
2 2 4 8 16
3 3 9 27 81
4 4 16 64 256
5 5 25 125 625
6 6 36 216 1296
7 7 49 343 2401
8 8 64 512 4096
9 9 81 729 6561
10 10 100 1000 10000

The table has been filled with colours in order to identify feasible simulations that can be
completed in a reasonable time14.

• Green: less than 0.5 hours required by SCERPA to complete the simulation15;

• Yellow: up to 2.5 hours required by SCERPA to complete the simulation15;

• Red: more than 2.5 hours required by SCERPA to complete the simulation15.

The time required by SCERPA for the simulation can be attenuated reducing the compu-
tational cost in such a way. A few features related to computational cost reduction have
been mentioned in the list 2.2.4.
The flag bothDriversActive disables the complementary driver molecule of each driver fix-
ing it to 0 V if the DoubleMolDriverMode is active. This condition permits maintaining
the double molecule driver paradigm emulating the SingleMolDriverMode: it can be use-
ful for debugging purposes and/or to reduce the complexity if both the molecule of each
driver are considered as independent.
The best option in terms of accuracy needs, in fact, to consider the inputs as independent

14The characterisation in User Mode creates the library file needed for other simulations. The run
of SCERPA on a certain cell layout considering several combinations must be taken into account just
one time. For this reason, also the red highlighted conditions could be considered in order to achieve
the requested characterisation accuracy.

15The simulation times considered were derived empirically on a Three-Phase Majority Voter@bus
on a consumer mobile CPU: Intel® Core-i5 5257U 2.7GHz in single core.

42

2.2. FUNCTION LOGIC, FEATURES AND IMPLEMENTATION

with a granularity pushed to the single molecule. This approach is unfeasible with the
actual SCERPA implementation: considering this level of granularity, each input of a bus
layout would count as four independent inputs.
For instance, the characterisation in User Mode of a three inputs cell like the Majority
Voter would require the combination of twelve sweeps to create the input dataset needed
for simulation:

312 = 531441 combinations with Nsteps = 3

The set of Nsteps = 3 is a strong understatement but also in this condition, the com-
binations are absolutely oversized. Setting the flag bothDriversActive to active in these
conditions is likely to move the granularity from the single molecule to the single driver
(a couple of molecules) achieving less accuracy but 36 = 729 combinations16.

The other strategy to reduce the computational cost is related to the inputs considered
as a couple of molecules. For a multi-input cell, is possible to consider one or more inputs
as dummies. The driver_parameters structure specifies the number of physical inputs
for the cell (Ninputs) and the number of active inputs (Nactive_inputs). If these two
numbers are different, (Ninputs − Nactive_inputs) drivers will be considered dummies
(fixed to 0 V). As for the flag bothDriversActive, in this case, the combinations will reduce
drastically and with them the computational cost. In both cases, the strategies work on
the exponent of equation 2.1.
Clearly, considering an input as a dummy one, does not permit the complete cell charac-
terisation, but the strategy can help the debug with the idea of starting with the whole
characterisation later.

Following whichever of the examined strategies, so far the input structures are ready to
fill the Values_Dr matrix considering the flowchart in figure 2.8.
The next step considers the instantiation of this and the length definition of a Com-
pleteCycle as anticipated in footnote 11. The CompleteCycle length can vary due to the
characterisation running mode and the combination number to simulate: the definition
inside the script solves useless data passing through the structure, making the launch
script cleaner.
The Values_Dr matrix and the CompleteCycle array gets stored in the circuit structure
that is returned by the function in order to be ready for the next processing.

16Fixing the complementary driver molecules to 0 V will impact on the number of combinations as
the molecules are no more there.

43

2.2. FUNCTION LOGIC, FEATURES AND IMPLEMENTATION

2.2.5 Termination process

At this point of the launch script, the layout has been introduced as the driver and clock
values. SCERPA could start without any relevant problem, however, the result of the
simulation would be slightly different from what is expected.
The cell output is so far floating, giving rise to border effects as discussed in section
1.2.2. The characterisation should not be performed with the floating output because this
condition is far away from its real use and would affect the behaviour.

Figure 2.9: Debug Mode Vin − Vout characteristic of a three-phase wire of twenty-four
molecules with floating output

As shown in figure 2.9, the output voltage is weak while the characteristic behaviour is as
expected.
Considering that the cell is designed to be implemented in complex architectures with
several surrounding logic, the layout has to be simulated with something that models the
outputs load like a termination.
The use of a termination permits the achievement of bi-stability, raising the output voltages
greatly, emulating a configuration closer to the real one:

44

2.2. FUNCTION LOGIC, FEATURES AND IMPLEMENTATION

Figure 2.10: Debug Mode Vin − Vout characteristic of a three-phase wire of twenty-four
molecules terminated

Figure 2.10 has been obtained considering the layout terminated with a wire as long as
its last phase17:

Figure 2.11: Three-phase wire of twenty-four molecules terminated with an eight molecules
wire in fourth phase

17The termination can be customised in the launch script using parameters similar to the ones seen
for the function driver_comb_creator(). They will be analyzed with the other function features in the
next sections

45

2.2. FUNCTION LOGIC, FEATURES AND IMPLEMENTATION

The function that handles terminations is concerned in the run-time modification of the qll
file, providing the result in a new file created from scratch: layout_with_termination.qll18.
The new qll file is always saved in the same directory of the original one, avoiding troubles
given by the use of a fixed name.
As for the driver_comb_creator() function, let’s introduce a code snippet regarding the
implementation of the termination function in the launch script and the available features:

Listing 2.11: Layout termination implementation through dedicated function
1 %% Termination settings
2 circuit . termination = 1; %set to '1' if you want to add a

termination to the layout for bistability
3 circuit . use_custom_termination = 0; %set to '1' if you want to use

a custom layout file to choose the termination .
4 %If set up to '0', a number of

molecule equal to the
ones of the last phase
will be used for the

5 % termination . (TO DO)
6
7 circuit . use_custom_length = 0; %set to '1' if you want to use a

custom number of mols to realize each the termination .
8 %The number is red from

the file_termination
9

10 cd(termination_path)
11
12 if circuit . termination == 1
13 file_termination = '8 x2_mol_termination .qll ';
14 circuit . qllFile_termination = sprintf ('%s/%s',

termination_path , file_termination);
15 end
16
17 [circuit , multiout_parameters] = add_termination (circuit); %It

will handle internally the case circuit . termination == 0

18Avoiding the modification of the original file, a trace of the work remains in the directories with
the possibility to see through magCAD [14, 15] the termination result in any moment.

46

2.2. FUNCTION LOGIC, FEATURES AND IMPLEMENTATION

The termination function is designed to handle whichever layout in a fully automatic way.
In fact, the flags used to control the flow are just three although there are countless cases
to take into account:

• The possibility to disable the termination addition;

• Design rule check for layout correctness;

• Fan-out greater than one handling;

• Single-line and bus layout handling;

• Termination addition along whichever direction (also mixed) when the fan-out is
greater than one:

– Horizontal (angle = 0°);
– Vertical upward (angle = 90°);
– Vertical downward (angle = 270°);

• Automatic or customisable termination length (read from file);

• Script ready for future customisable termination shape implementation.

47

2.2. FUNCTION LOGIC, FEATURES AND IMPLEMENTATION

add_termination function
The function involved in the layout termination is add_termination() that actually works
together with a pre-processing sub-function for the fan-out handling.

Start

Layout pre-processing for
multi output

Files read and information
extraction

New qll filled line by line
adding the termination

QCAs

Driver values update

Clock values update

Termination procedure finished
and

there are no more than one
independent output

End

YES

NO

A

B

Figure 2.12: Flowchart for the
add_termination() function

The main function follows the logic scheme below:

• Pre-processing for fan-out handling: the
layouts can have more than one output and
each of them must be terminated in these
cases. This task is not trivial and is assigned
to a sub-function that will be explored later in
this section;

• Original qll read and design rule check:
the layout file format is an xml although it has
is own extension. At this point, the function
extracts the listed information about QCAs,
looking for the outputs, their position, direc-
tion and labels. Contemporary, a conformity
check is performed to be sure the layout is com-
pliant with termination rules;

• New qll stamp: having the outputs infor-
mation, the function is ready to re-design the
layout adding the entries regarding the termi-
nation. The entries are treated as strings and
printed inside a new qll merging them with the
original ones;

• Drivers values and clock values update:
the termination is placed at the output with a
clock phase chosen to ensure bi-stability. This
phase must be equal to the output_phase + 1
as shown in figure 2.11 with the pink piece of
wire overlapped to the OUT label. Adding
a new phase to the original layout, also the
clock and the driver values must be updated
to permit SCERPA to work correctly;

• Add the Layout Termination: if the layout
has a single output, the function has concluded
its work. On the contrary, the process re-
iterates with the pre-processing sub-function
that prepares the mid-layout to continue until
the full process is finished.

48

2.2. FUNCTION LOGIC, FEATURES AND IMPLEMENTATION

The add_termination function can treat an independent output at a time, single-line or
bus. For this reason, the iterative method provides the termination of each output starting
with the last modified qll to obtain a fully terminated layout. The mid-layouts are stored
in temporary files named as layout_in_process.qll but these should not be seen by the
user considering they are removed after the creation of the last qll file19.
The mid-layout handling is a task of the sub-function multiout_pre_termination_proc()
that works as a feeder for the add_termination function:

A

First loop?
Information extraction from

the starting layout and
layout design check

YES

Intermediate
loop?

Take the layout_in_process.qll file and
replace the output entries with the ones

of the next independent output

YES

end loop?
Add to the last processed layout

each non-there output entries
processed in the previous loop

NO

NO

Delete every output entries
but the first one through

regex

Generate the first
layout_in_process.qll ready

for termination
B

Overwrite the previous
layout_in_process.qll with the

new one ready for
termination

B

YES

Generate
layout_with_termination.qll,

ready for scerpa
B

Figure 2.13: Flowchart for the multiout_pre_termination_proc() function

19The last qll file will be the one used by SCERPA for the simulation and it is named lay-
out_with_termination.qll

49

2.2. FUNCTION LOGIC, FEATURES AND IMPLEMENTATION

As the flowchart shows, the sub-function multiout_pre_termination_proc() discriminates
the actual iteration loop in three types:

• First loop: when the launch script calls the add_termination() function, the first
pre-processing operation is performed and it corresponds to the first loop branch
inside multiout_pre_termination_proc().
Considering it is the first approach with the layout, the information must be ex-
tracted to understand how many iterations are needed to complete the termination
process, preparing patterns and structures to handle the qll file efficiently.
Once the sub-function knows how many independent outputs has to treat, it deletes
every entry referred to them but one20 from the qll file, creating the first mid-layout
file ready for post-processing.
The add_termination() function sees the layout as a single-output one due to the
pre-processing, being able to terminate it in a standard way. In the end, the process
starts with another iteration that will be recognized as an intermidiate loop;

• Intermidiate loop: when the process re-iterates, the pre-processing function takes
the last mid-layout created to continue with the substitution operation related to
the outputs. Once the last processed output has been terminated, the sub-function
can delete its label in the mid-layout file, inserting the next one in order, letting to
add_termination() function free for another ride; This operation iterates until every
output has is own termination and the mid-layout is ready to be filled again with all
the labels related to the output processed;

• End loop: the intermediate loops have already concluded with the pre-processing
and the terminations are on their position21.
However, the trick on the output label substitution has deleted every label so far that
add_termination() iterates. The end loop branch of multiout_pre_termination_proc()
will insert the mentioned missing output labels, composing the final layout file ready
for SCERPA: layout_with_termination.qll.

On each add_termination() iteration, the new phase to be adopted for termination is
calculated as output_phase + 1. If the fan-out is greater than one, the output phase
could be different depending on the output as the termination phase. If the termination
phase is greater than the maximum one concerned in the layout, the clock matrix must
be enlarged for compliance with SCERPA and with the clock values also the driver ones
need to be stretched out as discussed in section 2.2.4.

20The delete and the writing operation are performed efficiently exploiting file pointers and regular
expressions. One of the first operations performed by multiout_pre_termination_proc() is, in fact, the
creation of patterns for regular expressions that permit the run of dedicated commands for matching
and substitution. This operation is ensured by the regularity of qll files that maintain always the same
structure, considering they are formatted as xml files.

21The information about the multiple outputs fill the data structure multiout_parameters shown in
listing 2.11. This data structure is initialized inside the add_termination() function and is fundamental
for the characterisation tool that must know how to treat the SCERPA extracted data.

50

2.2. FUNCTION LOGIC, FEATURES AND IMPLEMENTATION

Let’s assume to work with a stack_phase structure equal to the one shown in the listed
2.9 where the layout is designed using three phases. The insertion of a termination in the
fourth phase would consider a new row in the stack_phase to propagate the information
also in the new layout appendix:

Listing 2.12: stack_phase definition for a generic three-phase layout terminated on phase
four. In red the modifications inserted to treat with the fourth phase

1 circuit.CompleteCycle = repmat(circuit.pCycle, 1, driver_length);
2 circuit.stack_phase(1,:) = [circuit.CompleteCycle circuit.pReset

circuit.pReset circuit.pReset];
3 circuit.stack_phase(2,:) = [circuit.pReset circuit.CompleteCycle

circuit.pReset circuit.pReset];
4 circuit.stack_phase(3,:) = [circuit.pReset circuit.pReset

circuit.CompleteCycle circuit.pReset];
5 circuit.stack_phase(4,:) = [circuit.pReset circuit.pReset circuit.pReset

circuit.CompleteCycle];

The red parts identify the modification required to pass from a three-phase layout to a
four-phase one: at first, a copy of the last stack_phase row is attached to the bottom of
the matrix with a reset state cycle added as a prefix, then the same reset state cycle is
copied at the end of the other rows ensuring the matrix dimensional compliance.
The stack_phase update is not enough because of the rows enlargement: the driver values
must be stretched out to ensure the consistency required by SCERPA and discussed in
section 2.2.4 to start with the simulation.
The stretch operation is performed by copying the last generated values in the Values_Dr
matrix for each row to preserve the last status assumed by the layout.
Both the discussed modification are handled automatically by the add_termination()
function that is capable to recognize the new phases used adapting the input structure
for the SCERPA simulation.
Once the termination process concludes, the new file layout_with_termination.qll is pointed
in the circuit data structure, replacing the original one instantiated in the first rows of
the launch script. SCERPA has now everything it needs to start with the simulation,
considering it is completely blind to the operation performed before his call.

51

2.2. FUNCTION LOGIC, FEATURES AND IMPLEMENTATION

2.2.6 Characterisation process
The data structures, the input parameters and the files needed by SCERPA for the simula-
tion are now ready and located. SCERPA has is own parameters to control the simulation
flow described briefly in the articles [9, 10, 18] and in detail in the dedicated documenta-
tion. From the launch script:

Listing 2.13: SCERPA launch
1 %% SCERPA launch
2 if circuit . LibEvaluation == 1
3 cd(characterization_path)
4 Vout = InOut_eval ([-0.52 0.52 -0.52 0.52 -0.12 0.12] , circuit ,

charactSettings);
5
6 else
7 cd(scerpa_path)
8 generation_status = SCERPA ('topoLaunch ', circuit , settings);
9 SCERPA ('plotSteps ', plotSettings);

10 end

The code snippet shows a two-way branch through an if-statement on the LibEvaluation
flag. The functionalities of this flag were discussed in section 2.2.2: it permits to test
the libraries previously extracted22 in User Mode, bypassing SCERPA. The InOut_eval()
function works as a table reader and extracts the interested rows from the library file,
looking at the input dataset. The layout simulation through SCERPA relies on the func-
tion:

SCERPA(command, option1, option2);

where the command ’topoLaunch’ makes SCERPA simulates the layout descripted in
circuit applying the algorithm as defined in settings. On the contrary, the command
’plotSteps’ makes SCERPA plots the information extracted by means of the previous sim-
ulation in a format specified by the plotSettings structure.
Once the layout simulation concludes, the information needed for characterisation are
ready to be processed. This process is handled in a function named characterization(),
used in a similar way to what has already been shown in the launch script.

22The function InOut_eval() has not to stay into the launch script if not for debugging purposes.
The use of this function can be exploited in the simulation of complex architectures through the union
of several libraries as will be shown later with the XOR application.

52

2.2. FUNCTION LOGIC, FEATURES AND IMPLEMENTATION

At first, the definition of some input parameters is needed to customise the function
behaviour with the available features:

Listing 2.14: Characterisation function parameters for the three-phase MV@bus
1 %% Characterization settings
2 charactSettings . enableCharacterization = 1;
3 charactSettings . LibPath = Library_path ;
4 charactSettings . LibDeviceName = " majority_voter_bus_3phase ";
5 charactSettings . out_path = settings . out_path ;
6 charactSettings . AllHoldValues = 0; %set to '1' if you want to

plot every Vout when the output is in the Hold state. '0'
means just the last one

The options are reduced to the essential considering the always true idea to have a high
automation grade:

• Possibility to disable the characterisation process;

• Customisable library name, dinamically updated for multi-output layouts;

• Debug Mode and User Mode handling;

• Voltages selection when the interested molecules are in the last step of the hold state
cycle or take all the hold state correspondent values.

The characterization function has to be launched after SCERPA:

Listing 2.15: SCERPA launch
1 if charactSettings . enableCharacterization == 1 && circuit .

LibEvaluation == 0
2 cd(characterization_path);
3
4 characterization (circuit , charactSettings ,

multiout_parameters);
5 end

The code snippet shows the data structures needed for the characterisation process. In
particular, the multiout_parameters structure built up during the termination process is
useful for the function to understand how many independent outputs were involved in the
design. Any cell can be characterised among each output, meaning that to each of them
a result (a plot in Debug Mode or a table in User Mode) have to be computed by the
function concerning every input23.

23If many inputs are involved in the layout design, at least a plot is printed out for each independent
output. The reason why the minimum amount of plots can be one is due to a control on the Vin

variance during the plot preparation: considering the possibility to choose a constant value as input,
the trivial inputs are so far skipped.

53

2.2. FUNCTION LOGIC, FEATURES AND IMPLEMENTATION

One of the options shown in listing 2.14 permits to set the library name (LibDeviceName):
in particular, in User Mode this name is automatically updated attaching at the end the
independent output label declared during the layout design stage. Working with multi-
outputs raise the necessity to produce more than one plot or library table at each run and
the strategy to avoid criticalities is the one discussed so far.
The other flags shown are used to set the library path on which save the produced data
tables, the simulation path where the SCERPA processed data can be fetched out24, and
the extraction conditions.

Every MolFCN layout needs the deeply analyzed vertical clock to ensure propagation
and the reasons why have been discussed in section 1.2.1. Considering the structure of a
single clock cycle, the voltage on each molecule is strictly dependent on the forced clock:
when the molecule is in RESET state, the voltage across the principal QDs is almost 0 V
while when the clock is in APPLIED state, the voltage across the principal QDs is well
defined and depends on the external applied electric field.
In this last condition also known as HOLD state, the information are available and can
be read out but exists time steps on whose that is not true.
The characterisation process must select automatically the right time steps to derive the
correct cell behaviour. These correspond to the instants on whose the interested output
molecules are in HOLD state.

The HOLD state as the other states of a clock cycle is discretized, as discussed in section
2.2.4. With this in mind, there are several time steps for each clock cycle on whose the
characterisation function has the green lights to read the values: through the AllHold-
Values flag, the function behaviour can be modified to consider just the last HOLD state
time step for each clock cycle or it can consider all the HOLD state time steps, increasing
the number of values in the plots as in the library tables.
Having clarified the strategy on which the data collection is based, the Vin and Vout struc-
tures can be filled considering the running mode: in section 2.1.2 the definitions of the
input and output voltages have been introduced with attention on the differences between
Debug Mode and User Mode. In both cases, the input voltages maintain the same defi-
nition while the outputs voltages are taken on twice the molecules for User Mode. With
the data structures completed, the plot of figures as the table creation is straight-forward
and will be discussed, together with the logic and other details, in the next section.

24SCERPA simulation produces a table where are stored the voltages of every molecule involved in
the layout for each time step. This table is accompanied by a MATLAB workspace with the data
structures processed and created during the simulation.

54

2.2. FUNCTION LOGIC, FEATURES AND IMPLEMENTATION

Characterization function

START

Load SCERPA's computed voltages and
SCERPA's simulation parameters

Load the output informations from the script
to add the terminations

Generate an output_stack for each
independent output to characterize each

output in front of every input

Insert the n-th output stack in the SCERPA's
simulation parameters hiddening undesired

outputs

Compute the labels to use in the SCERPA's
computed voltages text file to locate the output

molecules columns

Use the SCERPA's simulation parameters to
compute the time steps with which extract the
voltages only when the output phase is in the

hold state

Extract the input and output voltages for that
loop

Debug
Mode

Save the computed data
in a Lib file (.csv) Plot the Vin/Vout characteristic

YESNO

A

B

Other independent
outputs to

characterize?

YES

END

NO

Figure 2.14: Flowchart for the characterization function

2.2. FUNCTION LOGIC, FEATURES AND IMPLEMENTATION

The function characterization() represents the core of the characterisation tool. It has to
process the information extracted by SCERPA to obtain reliable Vin − Vout graphics as
tables that can be exploited in the simulation of complex architectures.
The flowchart shown in figure 2.14 is related to the characterization() function that works
with a basic idea similar to the one seen with the add_termination() function.
Instead of trying to process data in a one-shot run, the function works on them one inde-
pendent output at a time and iterates the procedure among every output until it is fully
characterised25. For this reason, firstly is needed an initialization part of the simulation
data and a preparation of the layout information for the characterisation process, then
the data collection can start.
The flowchart entries can be summarized:

• Initialization and structures preparation: SCERPA permits the setting of a
directory for each launch script where the simulation output is saved. On each of
these directory at least a simulation_output.mat and an additional_information.txt
files can be found. The first contains every data structure created and filled for and
by SCERPA during the simulation with information about the layout, the input
values simulated, the clock, the charge distribution and so on. The second is a table
of output voltages organized per molecule and time step.
The function characterization() loads both the files in order to extract the layout
information needed and the voltages during the iterations;

• Dummy output_stack: as discussed initially, the function characterization() pro-
cesses one independent output at a time like the add_termination() function. At
this point, the function is not aware of the layout and in particular about its out-
puts. Considering that SCERPA needs for the entire layout to pay the simulation
overhead just one time, the information listed in simulation_output.mat refer to the
full layout. The mentioned MATLAB workspace contains several stacks where the
information about molecules are stored:

– stack_driver : contains each molecule identified as a driver molecule with
labels, positions, phases and other information about their status;

– stack_mol: contains each molecule composing the layout body with labels,
positions, phases and other information about their status;

– stack_output: contains the dummy output molecules that correspond to the
output label inserted during the layout design with labels, positions, phases and
other information about their status;

The function characterization() refers to the stack_output to know where the output
to characterise is positioned. If the layout concerns multiple outputs, the function
would find them all. The idea is to modify dynamically the stack_output on each

25The meaning of "Fully characterised" would denote that a plot or a table for each independent
output has been printed out.

56

2.2. FUNCTION LOGIC, FEATURES AND IMPLEMENTATION

iteration with a dummy copy that contains just one independent output at a time,
permitting the extraction of every plot or table as the layout is designed with a single
output. This approach needs the definition of a complete stack_output saved on the
function start and useful to fetch the next output to process, then the characteri-
sation can go on with a number of iterations equal to the number of independent
outputs.

• Output pattern extraction: once the characterisation starts, the first operation
required is the labels extraction to identify the output molecules inside
additional_information.txt. This file is, in fact, organized with a label for each
column in the form:

Drivers =⇒ driver_(ID)(a|b);

Body Molecules =⇒ V out_(ID)(a|b);

Dummy Outputs =⇒ out_(LABEL);

where the (ID) is a four-digit number. The molecules of the same QCA are identified
by the use of the same (ID) followed by the character a or b. On the other hand,
the (LABEL) field for the dummy outputs molecules correspond to the one chosen
during the layout design.
To identify the correct columns to consider in the data fetch, the patterns pre-
computation is needed starting from the stacks discussed before and the molecules’
positions. Considering the several layout configurations to predict, the operation is
not trivial and it is assigned to a dedicated sub-function named as golden_outMol_finder()
discussed later;

• Index computation: having identified the columns to fetch inside the voltages
table, the indexes to use in the time steps selection must be computed. At least is
needed the starting index and the step in order to extract every value. Both depend
on several parameters like the clock states length, the clock phases involved in the
design and the latency. The formula used inside the function to compute the starting
index is the following:

index = 1 +
+ clock_step · (output_phase − 1) +
+ clock_step + 1 +
+ (latency − 1) · clk_cycle_length;

(2.2)

• Starting offset for alignment with the stack_phase;

57

2.2. FUNCTION LOGIC, FEATURES AND IMPLEMENTATION

• If the layout is designed with more than a clock phase, the stack_phase com-
position is similar to what has been shown in listing 2.9. The output has to be
on the last phase, so its available after (output_phase − 1) clock states, where
each clock state has a discretized duration of clock_step time steps. The multi-
plier refers to the length of a clock state and not to the length of a clock cycle
because the information propagation starts with (output_phase − 1) RESET
states until the data is available at the output;

• With the previous terms, the clock cycles corresponding to the output phase
has been selected. However, the interest is on the HOLD state or rather the
second clock state for each clock cycle. The offset (clock_step + 1) skips the
first SWITCH state and moves the pointer to the first value of the HOLD state;

• The last equation term refers to the possibility to have a bigger layout where
the clock phases could repeat as shown in figure 1.14. A layout realized with
this approach would have a latency equal to the number of phases repetitions
from the input to the output, meaning that the first fetchable output will be
available after the latency. The latency in terms of time steps is managed as
a offset of (latency − 1) clock cycles where each clock cycle has a discretized
duration of (4 · clock_step) time steps.

The starting index calculated points to the first voltage assumed by the output when
it is valid and in HOLD state. The data fetch is provided employing an iterative
strategy that read the correct voltages with a fixed step of (4 ·clock_step). Once the
pipe is filled, the next values would be available after every clock cycle, re-marking
the natural pipeline behaviour discussed in section 1.2.1.

• Data fetch: After the starting index computation, data can be fetched out reading
each HOLD state values or just the last one considering the AllHoldValues flag.
The two cases are managed differently due to the distinct necessities on the index
handling. The starting index is designed to point at the first HOLD state value with
the idea to let to the fetch structures the task to manage it:

– Last Hold Value: in this case, the starting index is moved at first to the last
hold value adding the offset (clock_step − 1). Then, after every fetch it gets
repositioned adding the offset (4 · clock_step) until the end;

– All Hold Values: in this case, the starting index is not modified before the
data fetch, it gets increased (clock_step − 1) times on each iteration and then
updated with the offset [(4 · clock_step) − clock_step] where the decrement
works as a reset for the inner counter in order to restart the process on the next
iteration.

The output voltages are extracted following the indexes with the discussed strategy.
They are saved with respect to rows in a dedicated matrix value with an order that
depends on the library file creation, avoiding the necessities for any post-processing
of the matrix. On the contrary, the input voltages are extracted more efficiently
from the SCERPA workspace considering the definition discussed in section 2.1.2.

58

2.2. FUNCTION LOGIC, FEATURES AND IMPLEMENTATION

• Store operation: Once the data are ready in dedicated structures, the function
decides to plot them or list them in a csv file.

– Debug Mode: every Vout of the layout is plotted in front of the Vin, after
a de-cluttering operation. As discussed in section 2.1.2, the only molecules
considered are the rightest ones whichever is the output direction;

– User Mode: the Vin and Vout matrix are merged to compose an ordered table,
printed as a csv file with the name chosen in the launch script. The csv is not
the only file printed. Considering the necessity to provide further information
with the characterised cell, a text file with the same name and the same csv
formatting is included on the characterisation output.
This file so far contains the latency and the output phase for the layout but is
designed to include whichever information could be necessary for the future.

Once the computation has concluded, the function can iterate on the characterisation
of the next independent output or it can exit.

During the steps description for the function characterization(), a fundamental sub-
function for the output pattern extraction has been mentioned: golden_outMol_finder().
This sub-function aims to fetch the labels correspondent to each output molecule in order
to fetch the correct voltages later into the additional_information.txt file.
The idea on which is based the sub-function is the use of the output labels inserted during
the layout design to extract the position of the outputs.
One of the design rule checks done in this sub-function controls the conformity of the
output labels. These must be inserted properly to have a working characterisation tool.
In particular, are fundamental the direction of each independent output and the names
that must be used for both the labels with bus layouts.
From the output label’s angle, the sub-function recognizes the output direction and the
output molecules’ position. On the contrary, from the name the characterisation tool
discriminates independent outputs from the dependent ones.
Once the output label is available, the sub-function looks for the output molecules con-
sidering the position coordinates26 and the direction.
The output can be directed in three directions:

• Horizontal (angle = 0°): the adjacent output molecules must be searched varying
the x-coordinate;

• Vertical upward (angle = 90°): the adjacent output molecules must be searched
varying the y-coordinate and in particular, increasing it;

• Vertical downward (angle = 270°): the adjacent output molecules must be searched
varying the y-coordinate and in particular, decreasing it;

26In the design stage with MagCAD, a position in terms of coordinates is associated to each placed
molecule. The coordinates are indicated as a dataset [x-coord, y-coord, layer] and are imported by
SCERPA from the qll file in the workspace.

59

2.2. FUNCTION LOGIC, FEATURES AND IMPLEMENTATION

Once the outer output molecule is found, the other ones are searched with the same
strategy, taking the already found molecule position as a reference and testing the others
in the stack. If the layout follows the bus paradigm, the sub-function handles the output
labels as a couple without modifying the strategy.
The logical behaviour of this sub-function is shown in the next flowchart:

A

Outputs reordering in the stack
for compliance with legend

Extract the (next) out
label position

Save the pattern of the closest
molecule before the out one,

considering the angle of the out
label

NO

Debug
Mode

Save also the pattern of the
molecule before the last one

saved

NO

YES

YES

B

Is a bus and
another out

label
must be

processed?

Figure 2.15: Flowchart for the golden_outMol_finder() sub-function

60

Chapter 3

Characterisation tool results

The results chapter will show the characterisation of some cells used for the tool debug
as for the application on a complex architecture discussed later. Each section discusses
a cell where the layout, the termination strategy and the characterisation tool output
are analyzed starting from the most simple solution to the complex ones. SCERPA’s
parameters are maintained the same for every simulation and are the following:

Listing 3.1: SCERPA parameters
1 %% SCERPA settings
2 settings . out_path = '../ MVBus_QLL_LAYOUT ';
3 settings . dumpDriver = 1;
4 settings . dumpOutput = 1;
5 settings . dumpClock = 0;
6 settings . dumpVout = 1;
7 settings . driverSaturation = 0;
8
9 settings . plot_voltage = 0;

10 settings . plot_chargeFig = 0;
11 settings . plot_molnum = 1;
12 settings . solver = 'E';
13
14 settings . immediateUpdate = 0;
15 settings . pauseStep = 0;
16 settings . damping = 0.6;
17 settings . activeRegionThreshold = 0.005;
18 settings . verbosity = 0;
19 settings . conv_threshold_HP = 0.005;
20 settings . enableRefining = 0;
21 settings . enableActiveRegion = 1;
22 settings . plotIntermediateSteps = 0;
23 settings . plotActiveRegionWindow = 0;

61

3.1. MONO-PHASE SIX MOLECULE WIRE

3.1 Mono-phase Six Molecule Wire
The first and simplest solution is a single-line wire, composed of six molecules in a single
phase:

Figure 3.1: Mono-phase Six Molecule Wire layout

The layout has been simulated with an automatic termination: considering the mono-
phase design, the termination is given by a copy of the wire itself:

Figure 3.2: Mono-phase Six Molecule Wire layout terminated

62

3.1. MONO-PHASE SIX MOLECULE WIRE

The Debug Mode characterisation is provided with a 51 points logarithmic input sweep
from −1 V to 1 V :

Figure 3.3: Mono-phase Six Molecule Wire Vin − Vout characteristic

The characteristic behaviour is strictly dependent on the layout choices, the clock phases
involved and the number of molecules. For instance, the use of just a phase for the
realization lets the output interact with the input and vice versa, creating a strange
slowdown for Vin close to 0 V .
Other versions of this connection wire will be shown later with the XOR parts: the bi-
stability given by the bus paradigm is the key to obtain a reliable behaviour.

63

3.2. THREE-PHASE TWENTY-FOUR MOLECULE WIRE

3.2 Three-phase Twenty-four Molecule Wire

A more complex wire is the one reported here, realized with a single-line structure of
twenty-four molecules on three phases. The use of three phases solves the slowdown seen
with the mono-phase wire:

Figure 3.4: Three-phase Twenty-four Molecule Wire layout

The layout has been simulated following the automatic termination process: considering
the eight molecules involved in the third phase of the layout, the termination is given by
a single-line wire made up of eight molecules:

Figure 3.5: Three-phase Twenty-four Molecule Wire layout terminated

The Debug Mode characterisation is provided with a 51 points logarithmic input sweep
from −1 V to 1 V :

64

3.2. THREE-PHASE TWENTY-FOUR MOLECULE WIRE

Figure 3.6: Three-phase Twenty-four Molecule Wire Vin − Vout characteristic

65

3.3. THREE-PHASE TWENTY-FOUR MOLECULE BUS

3.3 Three-phase Twenty-four Molecule Bus

The same twenty-four molecules on three phases wire already shown but based on the bus
paradigm has the following layout:

Figure 3.7: Three-phase Twenty-four Molecule Bus layout

The layout has been simulated following the automatic termination process. In this case
the third phase of the layout involves a bus wire of 8x2 molecules: the termination is
given by the same bus wire made up of 8x2 molecules:

Figure 3.8: Three-phase Twenty-four Molecule Bus layout terminated

The Debug Mode characterisation is provided with a 51 points logarithmic input sweep
from −1 V to 1 V :

66

3.3. THREE-PHASE TWENTY-FOUR MOLECULE BUS

Figure 3.9: Three-phase Twenty-four Molecule Bus Vin − Vout characteristic

The orange curve corresponds to the lower output while the blue one to the upper output.
The output bias is given by the vertical electrostatic interaction between molecules as
discussed in 1.2.2.

67

3.4. THREE-PHASE L-CONNECTOR@BUS WITH UPWARD OUTPUT

3.4 Three-phase L-connector@bus with upward out-
put

A three-phase L-connector realized within the bus paradigm and with an upward output
could has the following layout:

Figure 3.10: Three-phase L-connector@bus with upward output layout

The layout has been simulated with an automatic termination:

Figure 3.11: Three-phase L-connector@bus with upward output layout terminated

68

3.4. THREE-PHASE L-CONNECTOR@BUS WITH UPWARD OUTPUT

On the contrary to what has been shown with the other layouts, the output labels here are
directed upward. The output labels direction is fundamental for the termination process
because the script functionalities rely on this parameter to recognize the termination di-
rection. Figure 1 shows the compliance between the termination and the output direction.

The Debug Mode characterisation is provided with a 51 points logarithmic input sweep
from −1 V to 1 V :

Figure 3.12: Three-phase L-connector@bus with upward output Vin − Vout characteristic

The characteristic shows a particular negative biased behaviour that reveals a poor layout,
probably given by the usage of not enough clock phases. An improved layout for the same
cell will be shown with the XOR implementation, using four phases instead of three.

69

3.5. THREE-PHASE L-CONNECTOR@BUS WITH DOWNWARD OUTPUT

3.5 Three-phase L-connector@bus with downward out-
put

The same three-phase L-connector already shown but with a downward output:

Figure 3.13: Three-phase L-connector@bus with downward output layout

The layout has been simulated with an automatic termination:

Figure 3.14: Three-phase L-connector@bus with downward output layout terminated

70

3.5. THREE-PHASE L-CONNECTOR@BUS WITH DOWNWARD OUTPUT

Here the output labels are directed downward. The automatic termination process finds
the output angle, handling the termination direction correctly also in this case.
The Debug Mode characterisation is provided with a 51 points linear input sweep from
−1 V to 1 V :

Figure 3.15: Three-phase L-connector@bus with downward output Vin −Vout characteristic

Also in this case, the characteristic shows a particular positive biased behaviour that
reveals the same poor layout as discussed before.

71

3.6. FOUR-PHASE INVERTER@BUS

3.6 Four-phase inverter@bus
The first cell performing a logic operation among the wires shown before, is the four-phase
inverter@bus:

Figure 3.16: Four-phase inverter@bus layout

The layout has been simulated with an automatic termination:

Figure 3.17: Four-phase inverter@bus layout terminated

72

3.6. FOUR-PHASE INVERTER@BUS

The automatic termination procedure here considers the number of molecules involved in
the fourth phase (pink). The fourth phase here is particular because of the flaps embrac-
ing the third phase. However, for the termination function, the fourth phase is unique
and composed of sixteen molecules.

The Debug Mode characterisation is provided with a 51 points logarithmic input sweep
from −1 V to 1 V :

Figure 3.18: Four-phase inverter@bus Vin − Vout characteristic

The layout is different from the one shown in figure 1.5 because of the necessity to work at
least in simulation. The mentioned flaps as the bus paradigm are in this case mandatory
to ensure a good robustness to the layout.

73

3.7. THREE-PHASE MAJORITY VOTER

3.7 Three-phase Majority Voter
The core cell of the MolFCN technology is the majority voter that permits replicating the
basic logic functions like the logic-AND and the logic-OR. A tentative single-line layout
for this cell is the following:

Figure 3.19: Three-phase Majority Voter layout

The vertical inputs of the layout (Dr1 and Dr3) have the same direction as the horizontal
one. This is not a design mistake: it is needed to guarantee the correct behaviour of
the cell considering that the QCAs accessed along the vertical axis show a different face
of them to the drivers compared to the horizontal one. The layout scheme shows this
detail in the QCA representation: each QCA has drawn the two molecules as they will be
considered by SCERPA. While Dr2 sees the QDs of just a molecule, Dr1 and Dr3 see the
same QD of the two molecules that compose the interested QCA. Following this drawing
rule, the cell is simulated as it is driven by other cells instead of the fake drivers.
As a general rule, the drivers should be placed always with the direction used above with-
out distinctions, to be sure of the correspondence between the simulation output and the
expected cell behaviour.

74

3.7. THREE-PHASE MAJORITY VOTER

The layout has been simulated with an automatic termination:

Figure 3.20: Three-phase Majority Voter layout terminated

The characterisation for cells with multiple inputs is more intricate than the other because
of the necessity to test every non-trivial combination. The MV output switches when two
inputs are different and the third one sweeps. Simulating this kind of input dataset, it is
possible to trigger the output switch letting it be observable.

Table 3.1: Inputs combinations to trigger the majority voter output switch

Dr1 Dr2 Dr3
sweep −1 V 1 V

sweep 1 V −1 V

−1 V 1 V sweep
1 V −1 V sweep

−1 V sweep 1 V

1 V sweep 1 V

The use of ±1 V permits the levels saturation and a good resolution with few sweep
points.
The input dataset could be coupled considering the sweep applied at the same input
because of the expected reasonably similar behaviour:

75

3.7. THREE-PHASE MAJORITY VOTER

(a)

(b)

Figure 3.21: Three-phase Majority Voter Debug Mode Vin − Vout characteristic: (a) Input
Dr1 −→ sweep, Dr2 −→ −1 V , Dr3 −→ 1 V ; (b) Input Dr1 −→ sweep, Dr2 −→ 1 V ,
Dr3 −→ −1 V

76

3.7. THREE-PHASE MAJORITY VOTER

(a)

(b)

Figure 3.22: Three-phase Majority Voter Debug Mode Vin − Vout characteristic: (a) Input
Dr1 −→ −1 V , Dr2 −→ sweep, Dr3 −→ 1 V ; (b) Input Dr1 −→ 1 V , Dr2 −→ sweep,
Dr3 −→ −1 V

77

3.7. THREE-PHASE MAJORITY VOTER

(a)

(b)

Figure 3.23: Three-phase Majority Voter Debug Mode Vin − Vout characteristic: (a) Input
Dr1 −→ −1 V , Dr2 −→ 1 V , Dr3 −→ sweep; (b) Input Dr1 −→ 1 V , Dr2 −→ −1 V ,
Dr3 −→ sweep

78

3.8. THREE-PHASE MAJORITY VOTER@BUS

The graphs shown are obtained using a 41 steps linear sweep. Although it is expected
a similar behaviour for some of the input datasets, the single-line layout reveals some
criticalities given by its low robustness. This is the reason why the bus paradigm is
mandatory in cells design. In fact, the same layout realized within the bus paradigm
shows a much better behaviour in general, as can be seen in the next section.

3.8 Three-phase Majority Voter@bus
The three-phase majority voter shown before, realized within the bus paradigm has the
following layout:

Figure 3.24: Three-phase Majority Voter@bus layout

In this case as for the single-line majority voter shown before, the drivers follows the same
direction as rule of design, ensuring the expected cell behaviour.

79

3.8. THREE-PHASE MAJORITY VOTER@BUS

The layout has been simulated with an automatic termination where the 6x2 molecules
involved on the third phase are replicated on the output:

Figure 3.25: Three-phase Majority Voter@bus layout terminated

As shown in table 3.1, the non-trivial combinations to test are the ones where the output
can switch revealing its behaviour.
The characteristics discussed so far have been simulated with the method examined in
the previous sections: clearly, they are not showing measures taken on the real device but
extracted from SCERPA. Usually, from a real characteristic also the gain can be defined
looking at the transaction from a ’0’-logic to ’1’-logic and vice versa, but this is not the
case.
In fact, the transaction slope is given by the MATLAB plot points interpolation and it is
strictly dependent on the steps chosen to discretize the sweep interval.
The characteristics shown below would highlight this difference: the graphs are absolutely
identical from the logical point of view, but the last ones are extracted with a logarithmic
input sweep while the others exploit a linear sweep. The gain in the logarithmic ones seems
to be a lot higher revealing the effect of the accumulated points that are consistently closer
each to the others with respect to the equivalent linear case.

80

3.8. THREE-PHASE MAJORITY VOTER@BUS

(a)

(b)

Figure 3.26: Three-phase Majority Voter@bus Debug Mode Vin − Vout characteristic: (a)
Input Dr1 −→ sweep, Dr2 −→ −1 V , Dr3 −→ 1 V ; (b) Input Dr1 −→ sweep, Dr2 −→
1 V , Dr3 −→ −1 V

81

3.8. THREE-PHASE MAJORITY VOTER@BUS

(a)

(b)

Figure 3.27: Three-phase Majority Voter@bus Debug Mode Vin − Vout characteristic: (a)
Input Dr1 −→ −1 V , Dr2 −→ sweep, Dr3 −→ 1 V ; (b) Input Dr1 −→ 1 V , Dr2 −→
sweep, Dr3 −→ −1 V

82

3.8. THREE-PHASE MAJORITY VOTER@BUS

(a)

(b)

Figure 3.28: Three-phase Majority Voter@bus Debug Mode Vin − Vout characteristic: (a)
Input Dr1 −→ −1 V , Dr2 −→ 1 V , Dr3 −→ sweep; (b) Input Dr1 −→ 1 V , Dr2 −→
−1 V , Dr3 −→ sweep

83

3.9. FOUR-PHASE T-CONNECTOR@BUS

3.9 Four-phase T-connector@bus
The four-phase T-connector@bus is a valid cell to show the characterisation tool capabili-
ties in the fan-out handling. The cell works as a simple wire propagating the information
from the input to the outputs. A tentative layout for this cell is represented below:

Figure 3.29: Four-phase T-connector@bus layout

The layout has been simulated with an automatic termination that considers both the
output automatically as discussed in section 2.2.5. As a remark, the design rule on the
outputs would have the same label name for each independent output while the dependent
ones need to be equal. In this case, the upper output is named as OUT_A while the other
OUT_B: the characterisation tool can differentiate between the outputs and apply the
procedure correctly.

84

3.9. FOUR-PHASE T-CONNECTOR@BUS

The layout after the termination procedure is shown below:

Figure 3.30: Four-phase T-connector@bus layout terminated

Despite the automatic termination, the number of molecules involved for each independent
output is the correct one. Each independent output sees the molecules of its own last
phase, ignoring the other ones in the layout1.
The Debug Mode characterisation is provided with a 51 points linear input sweep from
−1 V to 1 V , returning two plots, one for each output:

1This procedure is handled correctly on symmetrical layouts at this moment.

85

3.9. FOUR-PHASE T-CONNECTOR@BUS

(a)

(b)

Figure 3.31: Four-phase T-connector@bus Debug Mode Vin − Vout characteristic: (a) Out-
put A, (b) Output B

86

Part III

Characterisation of a complex
layout: XOR

88

Chapter 4

XOR cell

4.1 Description, characterisation and truth table

The exclusive OR is not a basic logic function but can be obtained by means of the
logic-AND, logic-OR and logic-INV combination:

A ⊕ B = AB + AB

where the truth table:

Table 4.1: Exclusive OR truth table

A B OUT
0 0 0
0 1 1
1 0 1
1 1 0

The XOR cell is a valid representative to evaluate the characterisation tool behaviour
considering it is composed of several basic cells as Wires, L-connectors, Majority Voters
and Inverters.
The layout that will be presented to encode the logic-XOR exploits four phases with a
latency equal to three, meaning that these four phases are repeated three times from the
inputs to the output. The previous sections highlighted the importance of a bus layout
instead of a single-line one. For this reason, the XOR cell will be directly considered as
bus-designed.

89

4.1. DESCRIPTION, CHARACTERISATION AND TRUTH TABLE

Figure 4.1: Four-phase XOR@bus layout

The XOR layout is composed of three MVs, two INVs, two L-connector and some six
molecules wires with the output in every direction. The MVs have some of the inputs
fixed to a certain voltage considering the necessity to let these behave like logic-AND or
a logic-OR.
Before starting with the results, let’s introduce the approach used to verify the character-
isation tool goodness:

• 1) The first important step to consider is the layout verification through SCERPA.
The XOR cell can be treated as a basic block and characterised to verify its be-
haviour. This step is fundamental to create a reference to compare the results
obtained by the characterisation through the single blocks libraries. For this rea-
son, the User Mode of the characterisation tool can be exploited to test on the
layout just the truth table input values: setting up the number of steps for the
driver_comb_creator() function equal to two, the input combinations created are:

90

4.1. DESCRIPTION, CHARACTERISATION AND TRUTH TABLE

Table 4.2: Input combinations generated by the driver_comb_creator() function when
the sweep number of steps is set up equal to two

A B
−1 V −1 V
−1 V 1 V
1 V −1 V
1 V 1 V

Considering ±1 V as the saturation value, these input combinations correspond to
the ones to test to extract the cell truth table;

• 2) Once the cell layout is verified, a decomposition in single blocks can be introduced
in order to characterise each of them in User Mode, creating the library files needed
for the following step;

• 3) The libraries created can be used to compute the output voltages of every single
block of the complex architecture, moving from the inputs to the output. If the
libraries extracted during the characterisation process are correct, for each input
dataset must be found an almost perfect correspondence, meaning that the com-
plex layout characterisation has been extracted correctly avoiding the direct use of
SCERPA.

The first entry of the approach listed above refers to the extraction of the reference
behaviour for the complex architecture under test. Using the characterisation tool within
the User Mode, the library table extracted shows the expected behaviour:

Table 4.3: XOR cell User Mode simulation: csv library file

Dr1 Dr1c Dr2 Dr2c VoutB VoutA VoutD VoutC

-1 1 -1 1 -0.7630 0.3548 -0.3446 0.8290
-1 1 1 -1 0.3539 -0.7637 0.8286 -0.3451
1 -1 -1 1 0.3539 -0.7637 0.8286 -0.3451
1 -1 1 -1 -0.7630 0.3548 -0.3446 0.8290

The outer molecules are the A and the C ones where can be observed a negative voltage1

in the inner lines, correspondent to a ’1’-logic following the standard agreement discussed
in 1.2 [9, 10, 18].

1The input value to consider as a reference are the direct column: Dr1 and Dr2.

91

4.2. CHARACTERISATION OF SINGLE BLOCKS

4.2 Characterisation of single blocks
The XOR cell layout can be decomposed into basic blocks easy to characterise:

Figure 4.2: Four-phase XOR@bus layout decomposition

Some of the blocks presented have been analyzed in chapter 3, while the others need to
be introduced yet:
• The purple blocks are four-phase Inverters@bus already analyzed in section 3.6;

• The blue blocks are three-phase Majority Voters@bus analyzed in section 3.8;

• In orange are represented two four-phase L-connectors@bus: the upper one with an
upward output while the other with a downward output. These L-connectors are
different from the ones shown in section 3.4 and 3.5 because of the clock phases
involved. The characterisation of these will be discussed in the following section.

• The red blocks are mono-phase six molecule busses with the output directed hori-
zontally or vertically. The characterisation of these will be discussed as the ones of
the L-connectors in the following section.

92

4.2. CHARACTERISATION OF SINGLE BLOCKS

4.2.1 Mono-phase Six Molecule Wire@bus
In section 3.1 is reported the characterisation of a Single-Line Mono-Phase Six Molecule
Wire. Considering the bus paradigm involved in the XOR cell design, the Mono-Phase
Six Molecule Wires@bus identified as the red blocks in figure 4.2 must be treated as
completely new cells. In this perspective, the characterisation for each of them must be
provided based on their output direction2:

Horizontal output

The first analyzed Mono-Phase Six Molecule Wire@bus has the output along the horizontal
direction and is the direct bus expansion of the cell shown in section 3.1:

Figure 4.3: Mono-phase Six Molecule Wire@bus layout with horizontal output

The automatic termination procedure attaches a copy of the wire in phase two at the
output, considering the mono-phase design:

Figure 4.4: Mono-phase Six Molecule Wire@bus layout with horizontal output terminated

2In these sections are shown the Debug Mode results. However, the User Mode ones are needed for
the XOR cell evaluation through libraries.

93

4.2. CHARACTERISATION OF SINGLE BLOCKS

The Debug Mode characterisation is provided with a 51 points logarithmic input sweep
from −1 V to 1 V :

Figure 4.5: Mono-phase Six Molecule Wire@bus with horizontal output Debug Mode Vin −
Vout characteristic

The Vin − Vout characteristic has a better behaviour compared to the one in figure 3.3,
where the single-line one reveals a strange slowdown for input voltages close to 0 V .
The bi-stability provided by the bus paradigm is fundamental to ensure cell robustness.
The mentioned comparison remarks this concept: the bus driven design must be considered
mandatory for the MolFCN architectures.

94

4.2. CHARACTERISATION OF SINGLE BLOCKS

Upward output

Moving the output upward, with a layout identical to the one already shown and using a
custom length termination3 (8x2 molecules):

Figure 4.6: Mono-phase Six Molecule Wire@bus layout with upward output

Figure 4.7: Mono-phase Six Molecule Wire@bus layout with upward output terminated

3The use of a custom length termination does not have a precise reason in this case. It highlights
a bi-stability saturation effect: once the output has reached up a certain bi-stability, the addition of
other molecules in the termination does not affect the behaviour. For this reason, the Vin − Vout

characteristic for this cell does not show different output voltage levels compared with 4.11, where an
automatic length termination is used.

95

4.2. CHARACTERISATION OF SINGLE BLOCKS

The Debug Mode characterisation is provided with a 31 points logarithmic input sweep
from −1 V to 1 V :

Figure 4.8: Mono-phase Six Molecule Wire@bus with upward output Debug Mode Vin−Vout

characteristic

The characterisation in Debug Mode shown above highlights a condition where the loga-
rithmic sweep can be worse than a linear one. If the voltage transition is not close to the
accumulation point (Vin = 0 V), the resolution in the characterisation gets inadequate
because of the not constant distance between the evaluation points.
A linear sweep does not suffer this criticality but the simulation overhead to reach an
accuracy close to the one obtained with the logarithmic sweep in the accumulation point
is unapproachable.

96

4.2. CHARACTERISATION OF SINGLE BLOCKS

Downward output

The last mono-phase Six Molecule Wire@bus configuration involves a downward output
and an automatic length termination:

Figure 4.9: Mono-phase Six Molecule Wire@bus layout with downward output

In this case the termination does not consider a custom length as for the case with the
upward output. The automatic termination is enough to ensure the bi-stability needed.

Figure 4.10: Mono-phase Six Molecule Wire@bus layout with downward output terminated

97

4.2. CHARACTERISATION OF SINGLE BLOCKS

The Debug Mode characterisation is provided with a 51 points logarithmic input sweep
from −1 V to 1 V :

Figure 4.11: Mono-phase Six Molecule Wire@bus with downward output Debug Mode
Vin − Vout characteristic

In this case, the voltage transition is slightly shifted with respect to the accumulation
point (Vin = 0 V) but the use of a 51 points sweep provides an acceptable resolution in
the characteristic.

98

4.2. CHARACTERISATION OF SINGLE BLOCKS

4.2.2 Four-phase L-connector@bus with upward output
After the Mono-phase Six Molecule Wire@bus analysis, the last blocks to characterise are
the L-connectors highlighted in orange in figure 4.2.
In sections 3.4 and 3.5, a layout for the L-connectors has been presented where the three
clock phases returned poor performances: the Debug Mode Vin − Vout characteristics in
figures 3.12 and 3.15 show a behaviour particularly biased towards positive input voltages
and negative ones respectively.
The poor performances achieved could be related to bad design choices: the number of
clock phases involved in the layout may was not sufficient or the layout shape itself was
not accurate enough.
For this reason, a different layout design for this cell has been used in the XOR develop-
ment and it is analyzed here:

Figure 4.12: Four-phase L-connector@bus layout with upward output

Here a fourth phase has been added to the cell design, providing a layout probably complex
but with almost the same number of molecules.
Considering the fourth phase length in the layout, the automatic termination procedure
could be not enough to ensure the bi-stability needed. The custom length termination
feature permits overcoming the problem without particular criticalities. The use of a
custom length termination enables for a simulation closer to reality, considering the cell
usage environment: in the XOR cell layout shown in figure 4.1, the L-connectors have
several amounts of logic on their output.

99

4.2. CHARACTERISATION OF SINGLE BLOCKS

The termination length chosen is a 8x2 molecules as in other solutions presented before.
It provides the bi-stability needed to obtain valid output voltage levels:

Figure 4.13: Four-phase L-connector@bus layout with upward output terminated

The Debug Mode characterisation is provided with a 51 points logarithmic input sweep
from −1 V to 1 V and the results are much better than the ones shown in figure 3.4 for
the old L-connectors design:

100

4.2. CHARACTERISATION OF SINGLE BLOCKS

Figure 4.14: Four-phase L-connector@bus with upward output Debug Mode Vin − Vout

characteristic

101

4.2. CHARACTERISATION OF SINGLE BLOCKS

4.2.3 Four-phase L-connector@bus with downward output
The same L-connector shown before but with a downward output:

Figure 4.15: Four-phase L-connector@bus layout with downward output

Also here, a custom length termination has been chosen for the layout simulation:

Figure 4.16: Four-phase L-connector@bus layout with downward output terminated

102

4.2. CHARACTERISATION OF SINGLE BLOCKS

The Debug Mode characterisation is provided with a 31 points logarithmic input sweep
from −1 V to 1 V :

Figure 4.17: Four-phase L-connector@bus with downward output Debug Mode Vin − Vout

characteristic

103

Chapter 5

Verification

5.1 Methodology and tentative script

START

Define the complex cell input
dataset

Prepare (next) cell
information

Apply the input values extracted
from the previous cell and fetch

the output

NO

END

Complex cell output
reached up?

Figure 5.1: Complex cell evaluation
flowchart

Having characterised each interested cell in User
Mode deriving the libraries containing the informa-
tion about their behaviour, these can be now ap-
plied to extract the XOR cell output voltage start-
ing from the input dataset definition and bypassing
SCERPA.
So far, a tool capable to decompose a generic com-
plex cell, creating the architecture to fetch the li-
braries automatically, does not exist for this tech-
nology1, for this reason, a script capable to manage
the XOR cell layout has been designed with the idea
of simulating the netlist-like future method.
The script follows a simple logic flow where, start-
ing from the XOR inputs, it moves on, cell by cell,
extracting the output voltages and using them as
inputs for the following cells until the complex cell
output is reached up.
The cells’ output voltage extraction through li-
braries follows different strategies depending on the
number of inputs of that cell. For this reason, a ded-
icated function InOut_eval() has been developed for
the output voltage extraction in order to simplify
the script for the XOR layout evaluation.
To introduce the description of the InOut_eval()
function, the script involved in the XOR cell layout
evaluation can be used as a driving example.

1The design of such a tool could be an interesting project for the future development.

104

5.1. METHODOLOGY AND TENTATIVE SCRIPT

The script flowchart is shown in figure 5.1. A code snippet from the function could clarify
the logic flow well:

Listing 5.1: Majority Voter output voltage evaluation
1 %% Upper path MV
2 charactSettings . LibDeviceName = " majority_voter_bus_3phase_OUT ";
3 circuit . Values_Dr = {
4 'Dr1 '
5 'Dr1_c '
6 'Dr2 '
7 'Dr2_c '
8 'Dr3 '
9 'Dr3_c '

10 };
11
12 % Dataset -> [Dr1 Dr1_c Dr2 Dr2_c Dr3 Dr3_c]
13 dataset = [UPPER_Vout_Lconn .OUT_A -UPPER_Vout_Lconn .OUT_A

UPPER_Vout_inv .OUT_A -UPPER_Vout_inv .OUT_A DrC0 DrC0_c];
14 UPPER_Vout_MV = InOut_eval (dataset , circuit , charactSettings);

To evaluate the output of a cell, the InOut_eval() function needs to know the library
name, the drivers’ organization found inside the library and the input dataset to use for
the fetch. Some of the inputs are given by previous cells while others are set up externally
considering them fixed.
The XOR cell evaluation script is a cascade of this kind of code snippet, repeated for
each cell involved in the XOR layout design. Once the complex cell output is reached,
the evaluation script returns a data structure with the overall output voltages evaluated
through the entire process. The discussed output voltages can be compared with the ones
extracted by SCERPA and listed in table 4.3 to estimate the algorithm’s goodness.

Few words need to be spent on the InOut_eval() function. It has been shown and briefly
discussed in the listing 2.13 where the function could be used to bypass the SCERPA
evaluation. The function needs a few parameters to work properly as shown in listing
5.1: the library name, the running mode set up, the drivers’ organization and the input
dataset for the evaluation.
The function has itself a Debug Mode while its used inside a launch script and this is the
reason why the running mode must be always set up2. The function fetching operation
exploits two different methods based on the cell number of inputs3:

• #input < 3: If the number of inputs is low, the output evaluation is performed

2The flags reported in table 2.3 handle also the InOut_eval() function. The table can be used as a
reference for the function setup also outside any launch script.

3The InOut_eval() function design can handle cells with up to six inputs.

105

5.1. METHODOLOGY AND TENTATIVE SCRIPT

interpolating the entire library table and extracting the output values with a reason-
ably great resolution, whichever is the input dataset. However, this method cannot
be applied with many inputs because of the interpolation process complexity and
the memory required to map N-dimensional data structures, especially when the
libraries contain a lot of entries.

• #input ≥ 3: If the interpolation method cannot be applied, the input dataset is
rounded to the nearest one in the library, in order to extract the output voltages
with a simple research algorithm. This approach could appear inappropriate but
this is not the case:

– The error provided by the rounding method strictly depends on the number of
steps used in the characterisation process. The characterisation in User Mode
must be done with a good number of points regardless of everything, ensuring
a reasonable negligible error;

– The cell characteristic is provided to be used in a digital environment where the
output levels are stable and saturated to a certain value. The approximation,
for this reason, produces an error that does not exist most of the time.

The algorithm goodness will be shown in the next section with the trial on the XOR cell.
However, the function is born as a tentative that may work as a start point for a future
expansion where it has to be implemented in a complex environment. The development
of this evaluation function departs from the aim of this thesis project that would focus on
the cell characterisation criticalities and on the creation of what the evaluation function
would read as a library.

106

5.2. RESULTS

5.2 Results
Once the evaluation script is ready, it can be run providing instantly as result the output
voltages of the XOR cell that can be compared with the ones extracted from SCERPA
shown in table 4.3:

MATLAB Variable: OUTPUT Page 1
Mar 6, 2022 4:53:43 PM

1
2
3
4

Dr1 Dr2 OUT_B OUT_A OUT_D OUT_C

-1 -1 -0.7630 0.3548 -0.3446 0.8290
-1 1 0.3539 -0.7637 0.8286 -0.3451
1 -1 0.3539 -0.7637 0.8286 -0.3451
1 1 -0.7630 0.3548 -0.3446 0.8290

Figure 5.2: XOR cell output voltages evaluated using the libraries previously extracted

The direct comparison between the SCERPA computed data and the ones reported above
using the evaluation script gives back a perfect matching that confirms the evaluation
algorithm and the characterisation tool goodness. The SCERPA computed data are tabled
also here to make the comparison easier:

Table 5.1: XOR cell User Mode simulation for comparison with the evaluation script
extracted data: csv library file

Dr1 Dr1c Dr2 Dr2c VoutB VoutA VoutD VoutC

-1 1 -1 1 -0.7630 0.3548 -0.3446 0.8290
-1 1 1 -1 0.3539 -0.7637 0.8286 -0.3451
1 -1 -1 1 0.3539 -0.7637 0.8286 -0.3451
1 -1 1 -1 -0.7630 0.3548 -0.3446 0.8290

In terms of simulation time, the evaluation of a single input dataset through the script
costs ∼ 200 ms on a consumer mobile CPU: Intel® Core-i5 5257U 2.7GHz:

Figure 5.3: Evaluation time required to extract a set of output voltages given an input
dataset using libraries for the XOR cell

107

5.2. RESULTS

Considering the four input datasets needed to extract every output voltage for the com-
parison, a total elapsed time rounded to 800 ms can be taken as reference.
Using the same MATLAB instrument to measure the simulation time for the same XOR
cell using SCERPA:

Figure 5.4: SCERPA simulation time in User Mode to test four independent input datasets

The difference in terms of time overhead is huge as expected considering that the library-
based method rely on a pre-computation strategy. A summary table with the difference
is reported below:

Table 5.2: Time overhead comparison between the SCERPA’s driven simulation and the
library-based one

SCERPA’s based simulation Library-based simulation Difference
∼ 17.32min ∼ 755 ms ∼ 1375x

From a different point of view, the pre-computation strategy does not eliminate the simu-
lation complexity. It just moves it out of the complex architecture simulation, anticipating
it with the idea of re-use the computed data where is possible. It is also true that ev-
ery new complex architecture could need for the characterisation of new cells until the
database gets well-stocked with an appropriate set of cells libraries. This mid-step can
slow the onset of visible benefits but, after a first libraries collection, the development of
new and astonishing architectures can start enjoying the advantages of a library-based
strategy.

108

Chapter 6

Conclusion and future
perspectives

The chracterisation tool presented would be a piece of a complex software architecture for
the simulation of systems not feasible so far. Clearly, it cannot be enough to approach the
VLSI paradigm as today is done with the CMOS for instance, but it represents a good
starting point together with SCERPA.
Actually, the chracterisation tool is capable to extract the Vin − Vout behaviour of a cell
with an approach fully automatic and reliable results. However, a generic tool for the cell
layout re-organization in netlist is not available up to now, while the InOut_eval() func-
tion is already generic but could be improved for a possible massive usage with MolFCN
architectures composed by a lot of cells.
A tentative future perspective could be related to the development of a tool capable to
perform the automatic decomposition of a generic system layout in basic cells.
Once these got recognized, it could fetch the correct libraries, evaluating the system be-
haviour as it was shown for the XOR cell in the previous sections.
On the other hand, considering the characterisation tool implementation, for sure better
procedures can substitute the non-optimal ones in the code, improving the actual perfor-
mances. It is also true that this is not a stand-alone tool and, working with SCERPA, the
performances bottleneck is not its fault. For this reason, the priority should be focused
on the cell characterisation features as the Self Operating Area (SOA).
The MolFCN technology relies on the electrostatic interaction for the information prop-
agation, where it is the relative position between QCAs that induces the propagation
path. Two close independent cells would interact through the generated electrostatic field
introducing cross-talk noise in the signal and invalidating the information in the worse
cases. The SOA evaluation would be an area parameter to compute for each characterised
cell with which be compliant in the system design phase to avoid the problem discussed
above.
The characterisation tool has been developed with the idea of being expanded, permitting
an easy integration of sub-tools and other functions.

109

Conclusion and future perspectives

For instance, it provides a text file for each characterised cell, ready to be filled with
any information as discussed in section 2.2.6.
Another useful feature for the characterisation tool could be the implementation of a dy-
namic mesh for the input value generation in simulation. For instance, the use of the
logarithmic sweep reduces the computational complexity with respect to the linear one,
assuming to fix the accuracy, because of the accumulation of points in region of Vin = 0 V .
Ideally, the 0 V is the input voltage where the level transition is more likely to be. How-
ever, this is not always true as shown with the results in chapter 3. A dynamic mesh could
adapt the accumulation point based on the cell layout and the clock phases to obtain a
more valuable characterisation without paying the overhead of a finer mesh.

As it has been shown, the improvement possibilities are constrained just by our imag-
ination and the ones listed above are just a starting idea of what could be done. For what
I am concerned, the tool designed represents a valid instrument to explore the astonishing
design space of the MolFCN technology. It can help saving time for any designer and
researcher involved with it. Moreover, the time overhead has been presented as the main
limitation in the SCERPA usage, and this tool provides promising evidence in that field.

110

Bibliography

[1] G. E. Moore. “Cramming more components onto integrated circuits”. Electronics,
vol. 38, no. 8, April 1965.

[2] M. Roser and H. Ritchie. “Technological progress”, 2020. URL https://
ourworldindata.org/technological-progress.

[3] S. Srivastava, S. Sarkar, , and S. Bhanja. “Estimation of upper bound of power
dissipation in QCA circuits”. IEEE Transactions on Nanotechnology, 8(1):116–127,
January 2009.

[4] C. S. Lent, B. Isaksen, , and M. Lieberman. “Molecular quantum-dot cellular au-
tomata”. J. Amer. Chem. Soc., vol. 125(no. 4):pp. 1056–1063, 2003.

[5] A. Pulimeno, M. Graziano, D. Demarchi, and G. Piccinini. “Towards a molecular
QCA wire: Simulation of write-in and read-out systems”. Solid-State Electron., vol.
77:pp. 101–107, November 2012.

[6] Y. Wang and M. Lieberman. “Thermodynamic behavior of molecular-scale quantum-
dot cellular automata (QCA) wires and logic devices”. IEEE Trans. Nanotechnol.,
vol. 3(no. 3):pp. 368–376, September 2004.

[7] A. Orlov, A. Imre, G. Csaba, L. Ji, W. Porod, and G. H. Bernstein. “Magnetic
quantum-dot cellular automata: Recent developments and prospects”. J. Nanoelec-
tron. Optoelectron., vol. 3(no. 1):pp. 55–68, March 2008.

[8] A. O. Orlov. “Realization of a functional cell for quantum-dot cellular automata”.
Science, vol. 277(no. 5328):pp. 928–930, August 1997.

[9] Y. Ardesi, G. Turvani, G. Piccinini, and M. Graziano. “SCERPA Simulation of
Clocked Molecular Field-Coupling Nanocomputing”. IEEE Transactions on very large
scale integration (VLSI) systems, vol. 29(no. 3):pp. 558–567, March 2021.

[10] Y. Ardesi, R. Wang, G. Turvani, G. Piccinini, and M. Graziano. “Scerpa: a self-
consistent algorithm for the evaluation of the information propagation in molecu-
lar field-coupled nanocomputing”. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 39(no. 10):pp. 2749–2760, October 2020.

112

https: //ourworldindata.org/technological-progress
https: //ourworldindata.org/technological-progress

BIBLIOGRAPHY

[11] A. Pulimeno, M. Graziano, A. Sanginario, V. Causa, D. Demarchi, and G. Piccinini.
“Bis-Ferrocene Molecular QCA wire: Ab Initio Simulations of Fabrication Driven
Fault Tolerance”. IEEE Transactions and nanotechnology, vol. 12(no. 4):pp. 498–507,
July 2013.

[12] IEEE. “International Technology Roadmap for Devices and Systems: More Moore”,
2020.

[13] Y. Ardesi, L. Gnoli, M. Graziano, and G. Piccinini. “Bistable propagation of monos-
table molecules in molecular field-coupled nanocomputing”. Proc. 15th Conf. Ph.D.
Res. Microelectron. Electron. (PRIME), page 225–228, July 2019.

[14] F. Riente, U. Garlando, G. Turvani, M. Vacca, M. R. Roch, and M. Graziano.
“MagCAD: A Tool for the Design of 3D Magnetic Circuits. IEEE Journal on
Exploratory Solid-State Computational Devices and Circuits, 3:65–73, 2017. doi:
10.1109/JXCDC.2017.2756981.

[15] U. Garlando, F. Riente, and M. Graziano. “FUNCODE: Effective Device-to-System
Analysis of Field Coupled Nanocomputing Circuit Designs. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, pages 1–1, 2020.

[16] L. Verstraete, P. Szabelski, A. M. Bragança, B. E. Hirsch, and S. De Feyter. “Adaptive
self-assembly in 2D nanoconfined spaces: dealing with geometric frustration”. Chem.
Mater., 31(n°17):6779–6786, 2019.

[17] J. N. Randall et al. “Atomic precision lithography on si”. J. Vac. Sci. Technol. B,
Microelectron., 27(6):2764–2768, 2009.

[18] R. Wang, M. Chilla, A. Palucci, M. Graziano, and G. Piccinini. “An effective algo-
rithm for clocked field- coupled nanocomputing paradigm”. 2016 IEEE Nanotechnol-
ogy Materials and Devices Conference (NMDC), page 1–2, 2016.

113

	Sommario
	Abstract
	List of Acronyms
	List of Figures
	List of Tables
	I Introduction
	Technology overview
	Moore's law and Beyond CMOS
	Field-Coupled Nanocomputing (FCN)
	Molecular Implementation and clocked systems
	Layout improvements exploiting bi-stability

	Self-Consistent ElectRostatic Potential Algorithm (SCERPA)

	II Characterisation Tool
	Characterisation tool implementation
	Objectives and definitions
	A step towards VLSI
	Vin and Vout definition
	Debug Mode and User Mode
	Basic Methodology

	Function logic, features and implementation
	The launch script standard
	Layout Definition
	Absolute Paths definition
	Driver values and clock definition
	Termination process
	Characterisation process

	Characterisation tool results
	Mono-phase Six Molecule Wire
	Three-phase Twenty-four Molecule Wire
	Three-phase Twenty-four Molecule Bus
	Three-phase L-connector@bus with upward output
	Three-phase L-connector@bus with downward output
	Four-phase inverter@bus
	Three-phase Majority Voter
	Three-phase Majority Voter@bus
	Four-phase T-connector@bus

	III Characterisation of a complex layout: XOR
	XOR cell
	Description, characterisation and truth table
	Characterisation of single blocks
	Mono-phase Six Molecule Wire@bus
	Four-phase L-connector@bus with upward output
	Four-phase L-connector@bus with downward output

	Verification
	Methodology and tentative script
	Results

	Conclusion and future perspectives

	Bibliography

