
POLITECNICO DI TORINO

Corso di Laurea in Ingegneria Informatica

Tesi di Laurea

Quantum paths finding algorithm

Relatore
prof. Bartolomeo Montrucchio

Davide Integlia

April 2022

Summary

The aim of this work is to design a hybrid quantum-classical algorithm to solve
an optimization problem in the traffic flow domain. The basic idea is to spread
vehicles on different paths in order to make the traffic as fluent as possible, while also
minimizing the exposure to air pollution along the path. The problem is represented
as Quadratic Unconstrained Binary Optimization (QUBO), that is a combinatorial
optimization problem, frequently used for computer science applications. Such
QUBO formulation can be mapped on a Quantum Annealer, a special machine
that performs Adiabatic quantum computation. The problem is thus formulated:
Given two distinct points in a city, a defined number of paths are selected among a
set generated by Open Street Maps APIs. These paths are selected using a classical
greedy algorithm, that results in a compromise between computational time and
quality of the solution. At this point a basic QUBO matrix is built starting from
the description in the foundational paper for this domain (Volkswagen and D-Wave,
2017). Generated matrixes are perturbed in two parts:

• The former part takes in consideration the coexistence time of two or more
cars on the same street segment. For each car it is also considered the depar-
ture time. To simplify the problem a constant velocity is considered for all
cars.

• The latter part performs a pollution evaluation as malus of the optimization.
One is applied to each path to take in consideration the cost of pollution
level all along the way and another for each path couples that consider the
pollution cost only for common street segments.

The formulated problem is solved on a D-wave quantum annealer and QPU param-
eters are properly tuned to ensure a good and appreciable solution.

2

Acknowledgements

I thank my family and everyone who supported me and made me the person I am
today.

3

Contents

1 Introduction 6

1.1 Global pollution . 6

1.2 Quantum computers . 8

1.2.1 Functioning of a quantum computer 9

1.2.2 Application fields and consequence 9

1.2.3 Quantum computers deployment situation 10

2 Background 12

2.1 Quantum annealing . 12

2.1.1 Energy . 12

2.1.2 Superposition . 13

2.1.3 Entanglement . 13

2.1.4 Quantum tunneling . 13

2.2 QUBO problem . 14

2.2.1 Volkswagen QUBO formulation 16

2.3 D-wave environment . 17

2.3.1 Chimera graph . 17

2.3.2 Pegasus graph . 20

3 Design of the solution 23

3.1 City graph . 23

3.1.1 Open Street Maps . 23

3.2 Paths selection . 24

3.2.1 K Shortest paths . 25

3.3 QUBO matrix . 28

3.3.1 Coexistence penalties evaluations 29

3.3.2 Pollutions penalties evaluation 33

4

3.4 Quantum solving . 37

3.4.1 Ising problem . 38

3.5 Algorithm structure . 39

3.5.1 Data structure . 39

3.5.2 QuantumSection composition 39

4 Results 41

4.1 Correctness check of the algorithm 41

4.2 Result comparison between qbsolve and QPUs 42

4.2.1 First run . 43

4.2.2 Coexistence run . 45

4.2.3 Turin run . 46

5 Conclusion 49

5.1 Final conclusion on the results . 49

5.2 Possible future improvements . 50

5.2.1 Coexistence block improvements 50

5.2.2 Pollution block improvements 51

Bibliography 52

5

Chapter 1

Introduction

1.1 Global pollution

From the first hints of interest on the part of man to the ambitions of the integral
ecology and related issues arising from environmental pollution is revealed that
nature cannot be considered simply as a mere frame of human life. In fact, the first
thing that comes to mind when pronouncing the term ”pollute” are the damages
that this phenomenon determines and, between these, those perceivable by the
human being.

Consequently, environmental pollution is intended as a total upheaval, often
irreversible for entire territories, but also of the entire planet. From the point of
view of the causes that can determine this phenomenon, we know the one resulting
from the introduction of harmful substances into the environment due to natural
events. The eruption of a volcano for example pollutes the environment and dam-
ages human health and in some cases releases into the environment such quantities
of substances that exceed the digestion capacity and absorption of the environment
itself. But even if significant, these circumstances constitute a negligible portion of
the concomitant causes that are determining the worsening of the problem. Most
of the polluting elements introduced in the environment derive from the carrying
out of activities, lawful, tolerated and / or illegal, man-made. Indeed, natural
phenomena and human behavior can also determine the modification of elements
already present in nature up to constituting a deterioration of environmental condi-
tions. Those implications are what we know as thermal, acoustic, electromagnetic,
atmospheric, water pollution, marine, etc.

Among the actors that have a significant responsibility in determining the in-
crease of pollutants level, there are the industries. Indeed as reported[18], during
the production cycle they release in the environment ”substances that today en-
danger life and health of over 95 million people and who are present in populated
areas in significantly higher quantities than in the past. The characteristics of
these substances have been extensively studied and documented, clearly proving
their toxicity”. The quoted Environmental organization identifies these substances
in the following: hexavalent chromium; lead; mercury; pesticides; radionuclides;
cadmium.

6

Introduction

It follows that industrial activities combined with those carried out during daily
activities cause gas emissions in the atmosphere. This has now become a problem
on a global scale, causing in little more than a century the current characterized
conditions of the greenhouse effect, smog and acid rain.

Also, the great settlements and human activities of our day have an enormous
impact on the environmental balance of the entire planet, creating the conditions
that could lead to a deep climate change. The dynamics that are the contributing
causes of the aforementioned types of pollution, can be countered, on the one hand,
by adopting different production models, based on reuse, recycling, limited use of
non-renewable resources and on the other, by significantly modifying the human
behaviors such as to determine at least the containment of environmental pollution
process.

Concerns represented by the scientific community related to climate change in-
duced by pollution, have led the United Nation to adopt rules to counteract the
phenomenon and prevent damages to the planet resulting from the increase of
temperatures. As part of the first COP (Conference of the parties)[19], at Ky-
oto Protocol[20] and at the subsequent conferences on the subject, it was identified
what is considered one of the major causes of air pollution: The movement of petrol
cars. Indeed, combustion emits different compounds from the exhaust, in partic-
ular the fine powders Pm10 and Pm 2.5, extremely harmful for the environment.
Consequently, the modification of the air brought by emissions of gas, fine dust
and fumes, is extremely harmful to human health. It follows that by reducing the
circulation of cars with thermal engines and / or optimizing the circulation of the
aforementioned vehicles, we can at least contain the phenomenon of environmental
pollution that derives from it. Faced with the need to respect the commitments
undertaken by the States participating in the various climate assemblies and the
constant need to move of the man, while trying in any case to reduce the intro-
duction of pollutants into the environment, industry efforts should be rewarded for
the production of electric cars. In this regard, it is useful to point out that the
birth of the first electric car took place in the same period of time as the petrol
cars. Although the battery electric car (BEV, also called ”electromobile”) at the
beginning of the 20th century, was one of the first types of car to be invented,
tested and marketed. The improvement of the batteries, thanks to the work of the
French Gaston Plante in 1865 and Camille Faure in 1881, allowed the flourishing
of electric vehicles[21]. In the late 1800s, before the preponderance of the powerful
but polluting internal combustion engine, electric cars held many records for speed
and distance traveled on one charge. In fact, electric cars in addition to having
the advantage of not introducing pollutants into the environment, have the further
positive aspect, not to be underestimated, represented by the silence of their en-
gine. However[21], the performance gap soon will be filled by petrol cars (the main
cause is attributable to the weight and volume of the batteries, which are difficult
to transport during journeys). The issue of autonomy reflects a problem that is still
current, despite the fact that there have been numerous improvements (although
now electric models allow you to travel more kilometers than old electric proto-
types); in addition, it is necessary to consider the long recharge times, the limited
autonomy of the batteries and the deterioration, even if with the advancement of
research new types of rechargeable batteries and new technologies have increased

7

Introduction

their autonomy and life, reducing the charging time at the same time. Further-
more, in most cases electric vehicles do not lead to a real zeroing of CO2 levels
due to the fact that most of the countries producing electricity obtain it thanks
to thermal power plants that burn fossil fuels. Despite these disadvantages, they
can offer numerous benefits especially from an environmental point of view thanks
to the absence of emissions of pollutants. The functioning of electric cars requires
that they use the chemical energy stored in the energy tank consisting of one or
more rechargeable batteries; the low consumption, the very high performances, the
silence and the pollution close to zero, make the electric car, according to the pre-
vailing thought, a product capable of saving the car market and in a way to respect
the international agreements of Paris climate conference held in 2015.

From 1900[1], CO2 emission continue to increase at each year, except for the
ones in which human history was signed, such: World war, financial crisis, COVID
pandemic and more. Following is reported a graph that show the incremental CO2
levels over years, taking as unit of measurement GtCO2, for instance gigaton of
carbon dioxide.

Figure 1.1. CO2 released in the environment over years

1.2 Quantum computers

Quantum computers[17] have been theorized in ’80 decades of the previous century
and they represent the key to overcome the actual computational power provided
by super computer. Quantum computers exploit the quantum mechanics law to
perform operation in a negligible time, compared to current methodology. Clas-
sical computers save information in RAM in the form of presence or absence of
electrical power, instead quantum computers use qubits namely quantum bits. Dif-
ferently from classical computers, the quantum ones do not use a linear logic based
on sequences of zero and one, in fact its velocity depends on the new methodology
used to analyze and process data. This new approach is not applicable to every

8

Introduction

single situation, however quantum computers have a lot of application fields, it is
able to evaluate in few seconds a solution that would require thousands of years.
Increasing interest about quantum computers raise thanks or due to the boundary
of Moore’s law ,since the power of a microprocessor is proportional to the num-
ber of microtransistors of which is composed, it states that this number double
every 18 months, but this law started to lose validity due to mechanics limits. For
this reason[17] scientists tried to find alternative ways to overcome the problem of
computational power, and the answer was found in quantum computers. Although
they are in an embryonic state, due to the absence of a standard and the scarcity of
people able to work on this field, but they are nowadays usable and a lot of projects
born around this new technology included this work. Qubits represent[17] a huge
turning thanks to their quantum property, since they can assume the equivalent
zero and one states simultaneously. This allows to manage the same amount of
information using less memory, this allows to work in parallel and find multiple
solutions from just one problem without following a linear logic sequence.

1.2.1 Functioning of a quantum computer

The real obstacles[17] regarding the operation of quantum computers is the man-
agement of the qubits, even now it is possible to handle just few quantum bits. As
mentioned before quantum logic is based mainly on two principles: Superpositions
and Entanglement. Have been identified two methods to manage qubits:

• The first method plans to cooling the circuit, in order to create a super-
conductor in which electricity transits without resistance. We can call them
”quantum points” that are nano-structures inside of a larger semiconductor
with a larger energy interval.

• The second method is based on trapped iones, particles with charge, sur-
rounded by an electromagnetic field, which perturbs the particles such that
they can work as qubits.

Even if it is possible to already use quantum computers to solve some kind of
problems, remains the need to found and build an adequate hardware structure
and develop dedicated software to manage all the system.

1.2.2 Application fields and consequence

Using the computation power of quantum computers[17], we are going to perform
more and more complex simulations in the biology field and all of its sub-branches.
It will be possible to find a solution for a lot of disease in less time respect to actual
schedule and this can save thousand of lives. Another important field is the one
that concerned the cryptography, since it will be possible to break in and easiest
way the crypted codes, leading to a crash of all cyber-system such banks, privacy,
national defense, spying and more. It is obvious that ”from great powers comes
great responsibilities”, so there is the need, in the near future, to regulate who and
in which situation quantum computers can be used.

9

Introduction

1.2.3 Quantum computers deployment situation

The first company[17] who first invested in quantum computers was IBM, but
actually, the supremacy of quantum computers is held by a collaboration between
NASA an Google with a more than 5000 qubits computers[3], assembled in an
architecture called Pegasus, currently located at Quantum Artificial Intelligence
Lab in California. This computer is built along the line of its predecessor that
mount a Chimera processor and presents the following improvements, as shown by
hpcwire[3]:

• New Topology: Pegasus is the most connected of any commercial quantum
system in the world. Each qubit is connected to 15 other qubits (compared
to Chimera’s 6), giving it 2.5x more connectivity. It enables embedding of
larger problems with fewer physical qubits. The D-Wave Ocean software
development kit (SDK) includes tools for generating the Pegasus topology.
Interested users can try embedding their problems on Pegasus[3].

• “Lower Noise: next generation system will include the lowest noise commercially-
available quantum processing units (QPUs) ever produced by D-Wave. This
new QPU fabrication technology improves system performance and solution
precision to pave the way to greater speedups[3].

• “Increased Qubit Count: with more than 5000 qubits, the next generation
platform will more than double the qubit count of the existing D-Wave 2000Q.
Gives programmers access to a larger, denser, more powerful graph for build-
ing commercial quantum applications[3].

• “Expansion of Hybrid Software and Tools: Investments in ease-of-use, au-
tomation and provide a more powerful hybrid development environment build-
ing upon D-Wave Hybrid. Allows allowing developers to run across classical
and the next-generation quantum platforms in Python and other common
languages. Modular approach incorporates logic to simplify distribution, al-
lowing developers to interrupt processing and synchronize across systems to
draw maximum computing power out of each system[3].

10

Introduction

Figure 1.2. D-wave Pegasus quantum computer

11

Chapter 2

Background

2.1 Quantum annealing

Quantum annealing[10] is a quantum technology that allows the solution of some
kind of optimization problem using quantum computers. It is a practice that is
expanding like wildfire thanks to studies made in the field of quantum physics.
There are different approaches to perform quantum solving, but our focus is on
quantum annealers, they represent a less flexible architecture but it is more stable
and simple to build. Quantum annealing approach is based on four main physical
concepts:

• Energy

• Superposition

• Quantum tunneling

• Entanglement

Quantum physics[10] is based on the De Broglie’s hypothesis claiming that each
particle has an associated wave function that is inversely proportional to its mass,
this behavior is obvious thanks to the experiment of the double-slit. Nowadays,
scientists are trying to figure out at which dimensions quantum physics laws cease
to be valid, in this regard Markus Arndt and its team of Vienna’s university have
led an experiment on a molecule of 20000 atoms and they have verified that for
seven milliseconds an interference happens. This is enough to state that the law of
quantum mechanics are valid also for molecules of that dimension.

2.1.1 Energy

Since this paradigm is applied to optimization problems with a multitude of so-
lutions, comes the need to define in which way a solution is better then another
one. Here the energy concept is helpful, to each solution is associated an energy
value that is much lower the better the solution is. It is immediate to pick and sort
the solutions in function of ascending energy value, and consequently ascending
objective function value.

12

Background

2.1.2 Superposition

Superposition[11][13] is the first law of quantum mechanics, it states that given the
dual nature wave-particles it is possible to sum two particles states, as performed
for the wave in classic physics, and obtain a resultant valid state.

The wave function, in quantum physics, represent a state of the quantum sys-
tem, it is a complex function dependent on spatial and temporal coordinates. It
is the solution of Schrödinger’s equation in which the square module represent a
probability to find the particle in a specific location.

This principle[12] allows to interfere with the qubits using an electromagnetic
field, this is the manner in which malus are applied. To get a visual match it
is possible to draw an energy diagram that at first presents itself as a parable in
which the lower position represent a lower energy level. Once annealing is applied,
it splits the state forming a double-well potential, in which hollows are perturbed
by electromagnetic field.

Figure 2.1. Energy diagram changes over time as the quantum annealing process
runs and a bias is applied[12].

2.1.3 Entanglement

Quantum entanglement[10] is a concept relegated to quantum physics and not re-
ducible to the classical one. This phenomenon claims that a state of a system
doesn’t depend only on the energy state of single particles, but on the superposi-
tion of all the states. Therefore particles are in some ways linked to each other since
the behavior of the single, determines the behavior of the group. The incredible
thing of this phenomenon is that particles don’t need to be ”touching”, there is a
sort of distance correlation without any spatial limits.

Using quantum annealing, malus are assigned by increasing the energy level
parameter of qubits couples. This way, utilizing the concept of entanglement, each
qubits perturbs others states based on the energy level that it owns and it is possible
to create an energy map, that conceptually is equal to a gradient map. High levels of
energy represent a repulsive gradient, lower levels of energy represent an attractive
gradient.

2.1.4 Quantum tunneling

This is a feature[14] that allows qubits to switch to a state from another instanta-
neously, this means that particles must not spend other energy or time to overcome

13

Background

an obstacle. This is one of the main reason why QPUs are faster than traditional
CPUs. A recent experiment explains in which way this phenomenon takes place:
”If the particle confronts an energy barrier, this encounter modifies the spread of
the wave function, which starts to exponentially decay inside the barrier. Even so,
some of it leaks through, and its amplitude does not go to zero on the barrier’s far
side. Thus, there remains a finite probability, however small, of detecting the par-
ticle beyond the barrier. [...] Careful analysis revealed that it was, mathematically
speaking, the peak of the tunneling photons’ wave functions (the most likely place
to find the particles) that was traveling at superluminal speed. The leading edges of
the wave functions of both the unimpeded photon and the tunneling photon reach
their detectors at the same time, however—so there is no violation of Einstein’s
theories of relativity.”. As reported, the tunneling is not immediate and is instead
performed at the speed of light, but relative to electrical speed, the time spent to
perform it is negligible.

2.2 QUBO problem

Combinatorial optimization[15] represents a key feature for a lot of applications,
such as science, finance and more. Due to the nature of combinatorial optimiza-
tion it can be long to extrapolate the global optimum, in the majority of cases
it is take a good local optimum to avoid the high computational times. In those
years[15] a mathematical formulation was found that is able to cover a large pool of
combinatorial optimization problems, known as QUBO formulation. QUBO is an
acronym an stands for ”Quadratic Unconstrained Binary Optimization”, its formu-
lation is really simple and is able to efficiently solve complex existing combinatorial
optimization problems. Here comes the necessity to transform or reformulate a
problem in QUBO form, this can be achieved following some basic rules that will
be treated after this chapter. QUBO formulations are taken into consideration
thanks to their affinity to ising problem, that are the one used by QPUs to perform
quantum annealing and optimization. Note that as far as the QUBO formulation
is a powerful tool it does not provide a global optimum solution, but thanks to
modern metaheuristic methods it is possible reach an high quality solution in a
reasonable amount of time.

As pointed out[15] in Kochenberger and Glover (2006), the QUBO model en-
compasses the following important optimization problems:

• Quadratic Assignment Problems

• Capital Budgeting Problems

• Multiple Knapsack Problems

• Task Allocation Problems (distributed computer systems)

• Maximum Diversity Problems

• P-Median Problems

14

Background

• Asymmetric Assignment Problems

• Symmetric Assignment Problems

• Side Constrained Assignment Problems

• Quadratic Knapsack Problems

• Constraint Satisfaction Problems (CSPs)

• Discrete Tomography Problems

• Set Partitioning Problems

• Set Packing Problems

• Warehouse Location Problems

• Maximum Clique Problems

• Maximum Independent Set Problems

• Maximum Cut Problems

• Graph Coloring Problems

• Number Partitioning Problems

• Linear Ordering Problems

• Clique Partitioning Problems

• SAT problems

Now we’re going to explain the way in which a QUBO problem can be formulated
and in which constraints of different nature can be applied to it. QUBO model are
formulated as follow:

minimize/maximize(xt ∗Q ∗ x)

Where x is a vector of binary decision variables and Q is a square symmetric
or upper triangular matrix containing the objective function formulation and the
constraints.

Starting from defined QUBO matrix[15], it can be perturbed to take in con-
sideration the constraints of the problem. In particular, each constraints can be
formulated as a quadratic penalties which values are added to QUBO cells to create
an augmented objective function. Each penalty value P must be positive and must
be chosen sufficiently large to assure the penalty term is indeed equivalent to the
classical constraint, but in practice an acceptable value for P is usually easy to
specify. To facilitate the choice of the P value is reported a useful table:

However, some problems require that P is a scalar penalty and for this kind of
problems there is not a value that is perfect. Scalar penalty must be large enough to
significantly asserts is presence, but not to much to not distort the pull of optimal

15

Background

Figure 2.2. Table of a few Known constraint/penalty pairs[15].

solution. It is necessary also consider the strength of the constraints, if it is soft
or hard, because the second one must be tuned with attention to not overcome
the objective function. In general, there is a ”Goldilocks region” from which it is
possible to pick a good and feasible penalty value. Once an estimation of the final
objective function value is performed, it is possible to define the penalties region
as [75, 150]% of the estimated value.

2.2.1 Volkswagen QUBO formulation

Work treated in those pages is an extension of ”Traffic flow optimization using a
quantum annealer”[16], so following is explained in which way they manage the
problem as QUBO one, only and specifically for traffic flow. Their goal is to min-
imize the traffic congestion evaluating three possible paths for each car, if initial
and final location are the same paths pool for each car can differ. The Q matrix
of the problem as size [n*m, n*m] where n is the number of cars and m is the
number of paths, in this case three for each car. It was assigned a binary variables
for each pairs car-path and create a consistency constraint such that the sum of
variables value belonging to a car was one and the sum of all variables are equal to
the number of cars.

(
j=m∑︂
j=1

qi,j − 1)2 = 0

Further, it was defined the cost function that takes in consideration the common
segment among paths:

cost(s) = (
∑︂
i

∑︂
j

∑︂
s∈Sj

qi,j)
2

Where Sj is the set of common street segment.

At this point, put all together is obtained the objective function:

Obj =
∑︂
s∈S

cost(s) + λ ∗
∑︂
i

(
j=m∑︂
j=1

qi,j − 1)2)

16

Background

Obtaining the so called LASSO problem. To retrieve the value of λ they find the
maximum number of times some car i is present in cost functions cost(s), and use
this value as λ.

Since the QUBO problem is formulated[16], it is necessary to fill the matrix Q,
which values are retrieved applying this values when two path share the same street
segment:

• We add a (+1) at diagonal index I(i, j) for every car i proposed with route j
containing segment s.

• We add a (+2) for every pair of cars i1 and i2 taking route j containing
segment s at the off-diagonal index given by indices I(i1, j) and I(i2, j).

And to constraint a car to choose only one routes:

• For every car i with possible route j, we add (-λ) to the diagonal of Q given
by index I(i, j).

• For every cross-term arising from the first defined constraints, we add (2λ) to
the corresponding off-diagonal term.

2.3 D-wave environment

Founded[8] in 1999, D-Wave is the leader in the development and delivery of quan-
tum computing systems, software, and services and is the world’s first commercial
supplier of quantum computers. D-Wave’s innovation and commitment to advanc-
ing the science of quantum computing has resulted in over 200 U.S. patents granted
and over 100 peer-reviewed papers published in leading scientific journals.

The D-Wave[9] quantum processing unit (QPU) is a lattice of interconnected
qubits. While some qubits connect to others via couplers, the D-Wave QPU is
not fully connected. Instead, the qubits of D-Wave 2000Q and earlier generations
of QPUs interconnect in a topology known as Chimera while Advantage QPUs
incorporate the Pegasus topology. Some small number of qubits and couplers in a
QPU may not meet the specifications to function as desired. These are therefore
removed from the programmable fabric that users can access. The subset of the
Pegasus or Chimera graph available to users is the working graph. The yield of the
working graph is the percentage of working qubits that are present.

2.3.1 Chimera graph

Quantum problems[9] in this work are solved using this type of QPU structure since
it is the only that supports the tuning of the parameter linked to the Boltmann
constant.

In the D-Wave 2000Q and earlier systems, qubits are “oriented” on the QPU
vertically or horizontally as shown in Figure 2.4.

For QPUs with the Chimera topology it is conceptually useful to categorize
couplers as follows:

17

Background

Figure 2.3. Qubits represented as horizontal and vertical loops. This graphic
shows three rows of 12 vertical qubits and three columns of 12 horizontal qubits
for a total of 72 qubits, 36 vertical and 36 horizontal[9].

Internal couplers

Internal couplers[9] connect pairs of orthogonal (with opposite orientation) qubits
as shown in Figure 2.5. The Chimera topology has a recurring structure of four
horizontal qubits coupled to four vertical qubits in a K4,4 bipartite graph, called a
unit cell.

Figure 2.4. Green circles at the intersections of qubits signify internal couplers;
for example, the upper leftmost vertical qubit, highlighted in green, internally
couples to four horizontal qubits, shown bolded. The translucent green squares
provide a helpful way to envision a recurring structure of this topology: a division
of couplings into unit cells of K4,4 bipartite graphs[9].

A unit cell is typically rendered as either a cross or a column as shown in Figure
2.6.

External couplers

External couplers[9] connect colinear pairs of qubits—pairs of parallel qubits in the
same row or column—as shown in Figure 2.7.

The K4,4 unit cells formed by internal couplers are connected by external cou-
plers as a lattice: this is the Chimera topology. Figure 2.8 shows two unit cells that

18

Background

Figure 2.5. Chimera unit cell. In each of these renderings there are two sets
of four qubits. Each qubit connects to all qubits in the other set but to none in
its own, forming a K4,4 graph; for example, the green qubit labeled 0 connects
to bolded qubits 4 to 7[9].

Figure 2.6. External couplers, shown as connected blue circles, couple vertical
qubits to adjacent vertical qubits and horizontal qubits to adjacent horizontal
qubits; for example, the green horizontal qubit in the center couples to the two
blue horizontal qubits in adjacent unit cells. (It is also coupled to the bolded
qubits in its own unit cell by internal couplers[9].)

form part of a larger Chimera graph.

Figure 2.7. A cropped view of two unit cells of a Chimera graph. Qubits
are arranged in 4 unit cells (translucent green squares) interconnected by
external couplers (blue lines)[9].

Chimera qubits are characterized as having:

• nominal length 4—each qubit is connected to 4 orthogonal qubits through
internal couplers.

• degree 6—each qubit is coupled to 6 different qubits

19

Background

The notation CN refers to a Chimera graph consisting of an NxN grid of unit
cells. The D-Wave 2000Q QPU supports a C16 Chimera graph: its more than 2000
qubits are logically mapped into a 16x16 matrix of unit cells of 8 qubits.

2.3.2 Pegasus graph

In the Pegasus topology[9], qubits are “oriented” vertically or horizontally, as in
Chimera, but similarly aligned qubits are also shifted, as illustrated in Figure 2.9.

Figure 2.8. A cropped view of the Pegasus topology with qubits represented as
horizontal and vertical loops. This graphic shows approximately three rows of 12
vertical qubits and three columns of 12 horizontal qubits for a total of 72 qubits,
36 vertical and 36 horizontal[9].

For QPUs with the Pegasus topology it is conceptually useful to categorize
couplers as internal, external, and odd. Figure 2.10 and Figure 2.11 show two
views of the coupling of qubits in this topology.

Figure 2.9. Coupled qubits (repre-
sented as horizontal and vertical loops):
the horizontal qubit in the center,
shown in red and numbered 1, with
its odd coupler and paired qubit also
in red, is internally coupled to vertical
qubits, in pairs 3 through 8, each pair
and its odd coupler shown in a different
color, and externally coupled to hori-
zontal qubits 2 and 9, each shown in a
different color[9].

Figure 2.10. Coupled qubits “road-
way” graphic (qubits represented as
dots and couplers as lines): the qubit
in the upper center, shown in red and
numbered 1, is oddly coupled to the
(red) qubit shown directly below it, in-
ternally coupled to vertical qubits, in
pairs 3 through 8, each pair and its
odd coupler shown in a different color,
and externally coupled to horizontal
qubits 2 and 9, each shown in a dif-
ferent color[9].

20

Background

Pegasus Couplers

Internal couplers Internal couplers[9] connect pairs of orthogonal (with opposite
orientation) qubits as shown in Figure 2.9. Each qubit is connected via internal
coupling to 12 other qubits.

Figure 2.11. Junctions of horizontal and vertical loops signify internal couplers;
for example, the green vertical qubit is coupled to 12 horizontal qubits, shown
bolded. The translucent green square represents a Chimera unit cell structure (a
K4,4 bipartite graph of internal couplings)[9].

External couplers External couplers[9] connect vertical qubits to adjacent ver-
tical qubits and horizontal qubits to adjacent horizontal qubits as shown in Figure
2.13.

Figure 2.12. External couplers connect similarly aligned adjacent qubits;
for example, the green vertical qubit is coupled to the two adjacent vertical
qubits, highlighted in blue[9].

Odd couplers Odd couplers[9] connect similarly aligned pairs of qubits as shown
in Figure 2.14.

Pegasus features[9] qubits of degree 15 and native K4 and K6,6 subgraphs. Pe-
gasus qubits are considered to have a nominal length of 12 (each qubit is connected
to 12 orthogonal qubits through internal couplers) and degree of 15 (each qubit is
coupled to 15 different qubits).

21

Background

Figure 2.13. Odd couplers connect
similarly aligned pairs of qubits; for
example, the green vertical qubit is
coupled to the red vertical qubit by
an odd coupler[9].

Figure 2.14. Pegasus unit cells in a P4
graph, with qubits represented as green
dots and couplers as gray lines[9].

As the notation Cn refers to a Chimera graph with size parameter N, Pn refers
to instances of Pegasus topologies; for example, P3 is a graph with 144 nodes.
A Pegasus unit cell contains twenty-four qubits, with each qubit coupled to one
similarly aligned qubit in the cell and two similarly aligned qubits in adjacent cells,
as shown in Figure 22. An Advantage QPU is a lattice of 16x16 such unit cells,
denoted as a P16 Pegasus graph.

More formally, the Pegasus unit cell consists of 48 halves of qubits that are
divided between adjacent such unit cells, as shown in Figure 2.15.

Figure 2.15. Pegasus unit cell shown as 48 halves of qubits from adjacent unit
cells, with qubits represented as truncated loops (double lines), internal couplers
as dots, and external and odd couplers as dots connected by short lines[9].

22

Chapter 3

Design of the solution

3.1 City graph

To evaluate the objective function and malus values a data structure that represents
the city in question is necessary. This pool of information is provided by the Open
Street Maps APIs, that return a graph in which nodes represent streets intersections
and the edges represent the streets themselves.

For each node is available the latitude and the longitude, which is useful to
extract pollution values using the BreezoMeter APIs, while for each edge is avail-
able the length of the street in question, useful to evaluate proportional weights
for problem decision variables. Further, it is possible to save additional custom
properties defined by the developer.

Open Street Maps has tools to print the city graph and this allows us to have
a visual effect of the city and, more importantly, to better understand the solution
found by the quantum optimization.

3.1.1 Open Street Maps

OpenStreetMap[5] is a collaborative project to create a free editable geographic
database of the world. The geodata underlying the maps is considered the primary
output of the project. The creation and growth of OSM has been motivated by
restrictions on use or availability of map data across much of the world, and the
advent of inexpensive portable satellite navigation devices.

Created by Steve Coast[5] in the UK in 2004, it was inspired by the success of
Wikipedia and the predominance of proprietary map data in the UK and elsewhere.
Since then, it has grown to over two million registered users. Users may collect
data using manual survey, GPS devices, aerial photography, and other free sources,
or use their own local knowledge of the area. This crowdsourced data is then
made available under the Open Database License. The site is supported by the
OpenStreetMap Foundation, a non-profit organisation registered in England and
Wales.

For our aim it is used the OSMnx python library that allows with its APIs to
download GeoSpatial data from Open Street Map and organize them in a graph

23

Design of the solution

structure. Are made available all the routine able to query and modify the graph,
to allow the developer to have the full control or almost of the graph data structure.

OSMnx

OSMnx[6] is a Python package that lets you download geospatial data from Open-
StreetMap and model, project, visualize, and analyze real-world street networks and
any other geospatial geometries. You can download and model walkable, drivable,
or bikeable urban networks with a single line of Python code then easily analyze and
visualize them. You can just as easily download and work with other infrastruc-
ture types, amenities/points of interest, building footprints, elevation data, street
bearings/orientations, and speed/travel time.

OSMnx[7] is built on top of GeoPandas, NetworkX, and matplotlib and interacts
with OpenStreetMap’s APIs to:

• Download and model street networks or other networked infrastructure any-
where in the world with a single line of code.

• Download drivable, walkable, bikeable, or all street networks.

• Impute missing speeds and calculate graph edge travel times.

• Simplify and correct the network’s topology to clean-up nodes and consolidate
intersections.

• Calculate and visualize street bearings and orientations.

• Visualize street networks as a static map or interactive Leaflet web map.

In the above list are only reported the features we are interested in.

3.2 Paths selection

Since the purpose of the algorithm is to select a path among a finite set, it is nec-
essary to generate it. To better determine the best route solution it is fundamental
that paths in the pool are quite different such that differences are not negligible, but
similar enough to not generate an obvious best route. To fulfill the requirement,
the number of paths required for the car is generated four times and subsequently
is picked the pool path of the car. Selection is performed using a greedy algorithm,
that represents a good compromise between quality of the solution and computa-
tion time. It was decided to use this algorithm after an analysis among different
proposals which are described below.

24

Design of the solution

3.2.1 K Shortest paths

Extraction of the larger pool is performed using the Open Street Maps API, in par-
ticular k shortest paths. For each pair of paths is evaluated the Jaccard similarity
index, that is nothing more than the ratio between the number of common street
segments and the union of segments sets. To better manage data they are orga-
nized in a symmetrical matrix the diagonal of which is obviously filled by 1 values
since any path is equal to itself. The generated matrix is used to extract the main
paths pool among which the quantum optimizer will select the best route. Results
obtained using different algorithm described below, all take in consideration the
real generated matrix showed in Table 3.2.2.1.

1.00 0.935 0.967 0.906 0.935 0.875 0.937 0.600 0.560 0.906 0.848 0.909
0.935 1.00 0.906 0.967 0.875 0.935 0.878 0.560 0.600 0.848 0.906 0.852
0.967 0.906 1.00 0.937 0.906 0.848 0.909 0.585 0.547 0.937 0.878 0.939
0.906 0.967 0.937 1.00 0.848 0.906 0.852 0.547 0.585 0.878 0.937 0.882
0.935 0.875 0.906 0.848 1.00 0.935 0.878 0.560 0.523 0.967 0.906 0.852
0.875 0.935 0.848 0.906 0.935 1.00 0.823 0.523 0.560 0.906 0.967 0.800
0.937 0.878 0.909 0.852 0.878 0.823 1.00 0.571 0.534 0.852 0.800 0.969
0.600 0.560 0.585 0.547 0.560 0.523 0.571 1.00 0.942 0.547 0.511 0.558
0.560 0.600 0.547 0.585 0.523 0.560 0.534 0.942 1.00 0.511 0.547 0.522
0.906 0.848 0.937 0.878 0.967 0.906 0.852 0.547 0.511 1.00 0.937 0.882
0.848 0.906 0.878 0.937 0.906 0.967 0.800 0.511 0.547 0.937 1.00 0.828
0.909 0.852 0.939 0.882 0.852 0.800 0.969 0.558 0.522 0.882 0.828 1.00

Table 3.1. Symmetric matrix that contains the Jaccard index similarity
for each pair of paths

Combinatorial algorithm

This algorithm type provides the best possible solution in the face of a lack of
computation time efficiency. Since the number M of paths for each car is known,
it is necessary to build a combinatorial algorithm that creates a set of M elements
among 4*M samples without repetitions. For each generated set the sum of mutual
similarity Jaccard index is calculated and saved. Once all possible solutions are
considered, the set that generates the smallest sum value is picked. Using data
present in Table 3.1 we have a computation time equal to 2 milliseconds and an
objective function equal to 1.88. Here is reported the code:

def rec_Combination(vector, numTot, numPaths, result,

pos):

global current_jaccard_value

global matrix

global best_result

for i in range(numTot - numPaths + 1):

result[pos] = vector[i]

if(numPaths > 1):

25

Design of the solution

rec_Combinazioni([vector[j] for j in range(i +

1, numTot)], numTot - i - 1, numPaths - 1,

result, pos + 1)

else:

#One of the set is built

if current_jaccard_value == -1:

#evaluate value

current_jaccard_value =

matrix[result[0]][result[1]] +

matrix[result[1]][result[2]] +

matrix[result[0]][result[2]]

#update best vector

best_result = result

elif (matrice[result[0]][result[1]] +

matrix[result[1]][result[2]] +

matrix[result[0]][result[2]]) <

current_jaccard_value:

#evaluate value

current_jaccard_value =

matrix[result[0]][result[1]] +

matrix[result[1]][result[2]] +

matrix[result[0]][result[2]]

#update best vector

best_result = result

Linear Convex Optimization

The problem is defined as an optimization problem and subsequently it is made
linear and convex. The problem is composed by 4*M binary variables where M is
the known number of routes of the car. This optimization problem is defined as
follows:

i=4∗M−1∑︂
i=1

j=4∗M∑︂
j=i+1

vari ∗ varj ∗matrix[i][j]

s.t.
i=M∑︂
i=1

vari = M

As it is formulated, it is neither linear nor convex, so a problem transformation is
performed. This creates an objective function that is a relaxation of the previously
defined one. In particular, variables are no longer binary but integer and they are
constrained in a bound [0, 1]. Obtaining:

i=4∗M−1∑︂
i=1

j=4∗M∑︂
j=i+1

(vari + varj) ∗matrix[i][j]

26

Design of the solution

s.t.
i=M∑︂
i=1

vari = M

variisinteger; i = 1, ..., 4 ∗M

vari <= 1; i = 1, ..., 4 ∗M

vari >= 0; i = 1, ..., 4 ∗M

A mixed-integer problem solver provides the M best paths thanks to additional
constraints. Using data present in Table 3.2.2.1 we have a computation time equal
to 159 milliseconds and an objective function equal to 2.02. The obtained results
are worse in terms of time and total Jaccard value, due to high number of decision
variables and relaxations of the objective function.

Here is reported the code:

#Build optimization function

opt_f = 0

for i in range(numTot):

for j in range(i + 1, numTot):

opt_f += (decision[i] + decision[j]) * matrix[i][j]

#build the problem

problem = cvxpy.Problem(cvxpy.Minimize(opt_f), constraint)

#start time

start_time = time.time()

#solve the problem

problem.solve(solver=cvxpy.GLPK_MI)

#stop time

end_time = time.time()

#print result

print(sorted(zip(decision.value, list(range(numTot))),

reverse=True)[:3])

#print time

print("Time: ", round(end_time - start_time, 4))

Similar paths merging

Another solution, but not valid at all, is to perform a merge of the most similar
paths. This process must be repeated 3*M times to obtain the M paths we are
looking for from a set of 4*M samples. Once that the similarity Jaccard matrix
is evaluated the highest value, excluding the diagonal, is picked. Row and column
represent the index of the two most similar paths and they can be aggregated. It

27

Design of the solution

is then needed to choose which path must be discarded, and since there are no
immediate good choices, it is chosen at random. The matrix must be updated
and the deleted path must be taken into account to correctly extract the paths
pool. Due to data rearrangement and picking the path at random, this option was
discarded apriori without evaluating the performance.

Greedy algorithm

Last but not least, it is presented the greedy algorithm that is actually the chosen
method to pick the paths pool. This is a native methodology that associates at
each path a Jaccard similarity index. This is simply obtained by averaging the
similarity values of other paths. At this point the M lowest values are picked that,
obviously, represent the paths pool. Using data present in Table 3.2.2.1 we have a
computation time in the order of microseconds and an objective function equal to
2.02. It is possible to immediately see that computation time is one or two orders of
magnitude smaller than the one of other algorithms and the quality of the solution
is quite near to the optimum. In general the paths pools share 66% of the street
segments, therefore fully satisfying the initial requirements.

Here is reported the code:

def ExtractMostDifferent(paths, numberOfRoutes):

meanJaccard = [0]*len(paths);

#calculate mean jaccard values

for i in range(len(paths)):

for j in range(i, len(paths)):

if i =! j:

jaccardValue = JaccardIndex(paths[i],

paths[j])

meanJaccard[i] += jaccardValue

meanJaccard[j] += jaccardValue

indexes = [tuple[1] for tuple in

sorted(zip(meanJaccard,

list(range(len(paths)))))[:numberOfRoutes]]

resultList = []

for index in indexes:

resultList.append(TransformPath(paths[index]))

return resultList

3.3 QUBO matrix

Starting from the QUBO matrix built in section (inserisci la sezione dell’algoritmo
di volkswagen), we will perform a perturbation in order to consider in the evaluation

28

Design of the solution

of the optimum the coexistence of the car along a path and the pollution existing
on the path itself as well as the one produced by cars. These two parameters
are not unrelated since the greater the coexistence time is, the larger will be the
pollution produced by each car in a traffic jam. Obviously, hybrid and electric cars
will have a reduced or null impact in this scenario. The main reason why these two
parameters are taken in consideration is because we are trying to minimize the air
pollution during usage of single transport vehicles for the arguments treated during
the global pollution section.

3.3.1 Coexistence penalties evaluations

Time spent in the traffic jam is a source of air and noise pollution that, willing or
not, brings to a lower quality of life. The aim of this section is to evaluate in a
significant way the values associated with the environmental damage that can be
caused by this kind of scenario. Therefore, there is the need to split the traffic jam
to avoid traffic congestion. It’s obvious the immediate improvement relative to the
actual situation, analogous behavior can be encountered in internet network while
performing packet traffic engineering. The developed algorithm is able to evaluate
the number of delta times that two different cars spent on the same street segment,
assuming that velocity is constant for each vehicle and without interrupting the
motion. To better simulate the reality, different release times can be defined since
it is implausible that all trips start at the same time. Moving to algorithm logic
implementation, each path is represented as a sorted list of street segments, that
remembering the graph structure, are composed by two graph nodes. From Open
Street Maps it is possible to extract the length of each street segment and dividing
it in equal sub-intervals it is possible to simulate the passage time. At each delta
a check is performed on which street segment a car is present on, if the segment
results to be a common one a counter is incremented to keep track of the number
of common delta time occurrences considering two specific cars and paths. This
operation is repeated for each couple of cars and paths, to correctly evaluate every
coexistence delta and consequently perturb the QUBO matrix in its entirety. This
process is repeated of each pair of paths belonging to two different cars, then the
calculated value is scaled to be consistent with values already present and inserted
in the correct matrix cell. The proportional value is an empiric one and at the
moment is set to 10, this works well in a little city with a smaller number of cars
and paths. If the algorithm is run on a large-scale problem, it is necessary to
reduce it in order to not overshadow the basic QUBO values and cause a slightly
imbalanced result.

This is the core function that evaluates the common delta time for each paths
pair:

def EvaluateCohexistanceTime(QUBOdict, graph, routesPerCar,

numberOfCars, realiseTimes, routesDict):

#instantiate result

result = {}

#invoke cycle evaluate each paths pairs among different cars

29

Design of the solution

for looperCar1 in range(numberOfCars - 1):

for looperCar2 in range(looperCar1 + 1, numberOfCars):

#for each route of the first car, check the route of

other car

for routeNum1, routeCar1 in

enumerate(routesPerCar[looperCar1]):

for routeNum2, routeCar2 in

enumerate(routesPerCar[looperCar2]):

#initialize data

currentIndex = [0] * 2

currentSegment = [(0, 0)] * 2

segmentLength = [0] * 2

currentDistance = [0] * 2

currentTime = 0

cohexistanceTime = 0

allActive = False

loop = True

while loop:

if not allActive:

allActive = all(segment != (0, 0) for

segment in currentSegment)

else:

loop = all(segment != (0, 0) for

segment in currentSegment)

#get corrispective segment for each route

for car in range(2):

if car == 0:

routeCar = routeCar1

timeIndex = looperCar1

else:

routeCar = routeCar2

timeIndex = looperCar2

#check realise time

if(currentTime >=

realiseTimes[timeIndex]):

if(currentIndex[car] <

len(routeCar)):

currentSegment[car] =

routeCar[currentIndex[car]]

segmentLength[car] =

graph.get_edge_data(currentSegment[car][0],

currentSegment[car][1])[0][’length’]

else:

currentSegment[car] = (0, 0)

30

Design of the solution

segmentLength[car] = 0

#check if the car are in the same segment

if (all(segment != (0, 0) for segment in

currentSegment)) and currentSegment[0]

== currentSegment[1]:

cohexistanceTime += 1

#update time and if necessary the segment

currentTime += 1

for car in range(len(currentDistance)):

if(currentSegment[car] != (0, 0)):

currentDistance[car] += 1

if(currentDistance[car] >=

segmentLength[car]):

currentDistance[car] -=

segmentLength[car]

currentIndex[car] += 1

#save cohexistance time of the routes

result[((looperCar1, looperCar2), routeNum1,

routeNum2)] = cohexistanceTime

#evaluate dict data

CohexDict = EvaluateWeight(graph, routesPerCar, result)

Once common delta times are evaluated, another native routine, EvaluateWeight,
calculates the effective malus values that must still be scaled and puts all values in
a dictionary the keys of which are composed this way:

((carNumber0, carNumber1), i− thPathcarNumber0, i− thPathcarNumber1)

Where:

• carNumber0 is the index of the first considered car

• carNumber1 is the index of the other considered car

• i-thPathcarNumber0 is the i-th path of the first car

• i-thPathcarNumber1 is the i-th path of the other car

The final coexistence value is a proportional normalization of the paths pair.
At first the value is normalized relative to half the sum of the length of each street
segment of both paths and subsequently multiplied by the minimum value between
the number of segments of the two paths. This way it is maintained the Volkswagen
common segment proportionality in order to not distort the matrix values and
optimization function behavior. To better clarify the concept is reported the code:

31

Design of the solution

def EvaluateWeight(graph, routesPerCar, cohexistanceDict):

dictResult = {}

#for each key do something

for key in cohexistanceDict:

value = cohexistanceDict[key]

#get route of first car

route1 = routesPerCar[key[0][0]][key[1]]

#get route of second car

route2 = routesPerCar[key[0][1]][key[2]]

#evaluate the total length

totLength = 0

for segment in route1:

totLength += graph.get_edge_data(segment[0],

segment[1])[0][’length’]

for segment in route2:

totLength += graph.get_edge_data(segment[0],

segment[1])[0][’length’]

#evaluate percentage

percentage = 2*value/totLength

#get the number of segment of the shortest

totSegment = min(len(route1), len(route2))

#add value to new dict

dictResult[key] = 2 * totSegment * percentage

return dictResult

The routine get edge data() is an Open Street Maps APIs that extracts an
edge data structure given the extreme nodes. This object contains edge features
including the length of the segment.

As mentioned before dict values as inserted in the correct QUBO cell with the
empirical scale factor equal to 10:

#perturb QUBO dict

totalRoutes = sum([len(carRoutes) for carRoutes in routesPerCar])

reductionFactor = 10

for key in CohexDict:

car1 = key[0][0]

car2 = key[0][1]

32

Design of the solution

route1 = sum([len(routesPerCar[i]) for i in range(car1)]) +

key[1]

route2 = sum([len(routesPerCar[i]) for i in range(car2)]) +

key[2]

row = routesDict[route1]*totalRoutes + route1

column = routesDict[route2]*totalRoutes + route2

if (row, column) in QUBOdict:

QUBOdict[(row, column)] += reductionFactor *

CohexDict[key]

else:

QUBOdict[(row, column)] = reductionFactor * CohexDict[key]

There are three main improvements that can be performed:

• Consider an heterogeneous car’s velocity along each single street segment:
once it is known the speed limit of a specific segment, it can be better to take
a safer velocity, for example the 90% of the speed limit and tune the delta
times slot based on this information.

• Consider car stops during the trip: In a real situation, especially in a city,
there are traffic lights and crossroads that can slow down the march. Knowing
their position it can be evaluated a probabilistic percentage that a specific car
velocity slows down or completely stops the motion. These probabilistic val-
ues can be evaluated based on the number of roadways in the street segment,
the length and mean times that a traffic light stays green considering the
characteristic of the street. It is not necessary that is entirely accurate since
reality can’t be reproduced identically, however one or more non-deterministic
events can occur that can change the evaluated percentage.

• Coexistence delta doesn’t take in consideration the length of the street: Ac-
tual implementation considers only if two cars are located on the same street
segment at a given time, not taking in consideration the distance between
cars. In a certain way this is not relevant at all, because in a city the dis-
tance between crossroads is not enough to make a consideration of this type
significant.

3.3.2 Pollutions penalties evaluation

The evaluation of the values belonging to this section is the real core argument
of this work. It is necessary to calculate and scale as well as possible the malus
brought by street and cars pollution. Sensors scattered around the city are able
to measure the PM10 and PM25 pollution level with sufficient accuracy and every
significant time slot. These levels, obviously, depend on the number of cars that
pass through the street, air circulation, conformation of the road, the weather and
time slot. It is clear that a path possesses intrinsically a pollution cost that must
be taken in consideration. Therefore, QUBO matrix will be perturbed in two ways:

33

Design of the solution

• On the diagonal: A value is summed on the main matrix diagonal to take in
consideration the intrinsic cost of full path.

On cross cells: A value that takes in consideration the pollution cost of the two cars
on the same street for each common segment. To evaluate the full path pollution
cost it is applied this formula:

s=n∑︂
s=1

(PMvalue(s0) + PMvalue(s1)) ∗ length(s)/2

Where:

• s is the s street segment of the path

• si the first node of the segment

• PMvalue is the routine that extracts the PM10 and PM25 values at current
time in precise coordinates of the earth. It is used BreezoMeter APIs to
retrieve these values.

• length is the routine that evaluates the length of the segment, It can be
retrieved by a property of the Open Street Maps graph edges.

To the resulting value is applied a scale factor equal to 0.001 and added to the
diagonal of the matrix for the corresponding path. For what concerns the pairs
between paths belonging to different cars, the formula is applied only for common
segments and not for all the length of roads. Since this value in multiple runs seems
to be smaller, it is applied a factor of 0.01.

To complete the enhancement of the objective function, just one factor is miss-
ing, that is the one provided by car topology. At the moment only two types of car
are defined:

• Petrol Car: Pollution cost is a non zero value, since petrol cars produce
pollutants even if the car is not going. This is because the engine continues
to operate and needs to consume petrol, it is a reduced form of pollution, but
not negligible.

• Electrical Car: pollution cost for those car is zero.

These factors are taken in consideration only when the car is not in motion, but
is turned on. Considering the simplification we performed in the previous section,
cars don’t stop during the trip, objective function has not additional intake. It is
possible to define new car types defining the related cost function. In this way, it is
possible to fine tune the model and have, as far as possible, the best path selection.

34

Design of the solution

BreezoMeter

BreezoMeter[4] is a company where scientists, engineers and professionals try to
improve the health and quality of life for billions of people worldwide, by providing
the world’s most accurate and actionable environmental data and insights. They
provide[4] data about air quality, pollen level, wildfire tracker and weather all in
the form of APIs. Naturally the one we are interested on is the air quality APIs
that is able to provide not only data relatively to PM10 and PM25, but also for:

BreezoMeter pollutants table[4]

Pollutants levels[4] are updated hourly that result to be a good time slot, since
levels don’t change in a couple of minutes. It is also possible to retrieve some
additional and useful informations about pollutants level health risk and a bunch
of prevention measure. In conclusion, BreezoMeter represent a good solution to
retrieve accurate and update information in all over the world just inserting the
latitude and longitude of desired point.

BreezoMeter cache

To avoid multiple and useless BreezorMeter APIs calls, it was natively implemented
a cache using the structure of a json file. It is composed by a list of Json object
which has the following structure:

35

Design of the solution

NodeNumber: {

"PM10": double,

"PM25": double,

"SampleTime": "hh:mm:ss"

},

Where:

• NodeNumber: it is a long int that uniquely identify a node of the graph.

• PM10 and PM25: Pollutants values level at that node position.

• SampleTime: indicate the time when the BreezoMeter’s API call was per-
formed.

When it is necessary to know pollutants level of a given node, it is first checked
if the necessary data is already present in the cache and also that it is not older
than an hour. If not, an API call is performed, and the cache is updated. This way
if the algorithm is run more than once in one hour, if the requested node is already
present, we have a performance increase.

The algorithm is really simple and it is reported below:

#get cache file of a specific city

cacheFileName = city + ’cacheData.json’

cache = {}

try:

file = open(cacheFileName)

cache = json.load(file)

file.close()

except FileNotFoundError:

pass

#flag variable to update cache file

cacheUpdate = False

#instantiate brezometer

pollution = apiPollution()

#instantiate data

diag = 0

reductionFactor = 0.001

routePollutions = []

#cycle over node

for car, routes in enumerate(routesPerCar):

for routeIndex, route in enumerate(routes):

#generate a set from the node list

node_list = []

node_list.append(route[0][0])

36

Design of the solution

node_list.extend([nodes[1] for nodes in route])

pathTotalPollution_PM25 = 0

pathTotalPollution_PM10 = 0

for node in node_list:

#check if data is in the cache

if node not in cache or

(datetime.strptime(cache[node][’SampleTime’],

’%H:%M:%S’) - datetime.now()).total_seconds() >

3600:

#retrieve data and add it to cache

nodeData = {}

#retrieve node

Gnode = G.nodes[node]

pollution.queryPM(Gnode[’y’], Gnode[’x’])

nodeData[’PM10’] = pollution.pm10_now

nodeData[’PM25’] = pollution.pm25_now

nodeData[’SampleTime’] =

datetime.now().strftime("%H:%M:%S")

cache[node] = nodeData

cacheUpdate = True

apiPollution is a class that contains all BreezoMeter APIs call logic, it collects
all necessary data to perform a request and manage the result.

3.4 Quantum solving

Now we approach the most interesting section of the work: Resolution of the prob-
lem using D-Wave QPU. Initially is needed to build the quantum solver, that is a
really simple operation thank to intuitive APIs provided by Leaf service.

solver =

EmbeddingComposite(DWaveSampler(solver={’topology__type’:

’chimera’}))

It was chosen a chimera architecture for QPU since it has parameters that
Pegasus one doesn’t have. In particular, it was of particular help the parameter
linked to the Boltzmann constant, since after the problem is solver, it change the
way in which solution is picked. As in statistical mechanics, β represents inverse
temperature: 1/(kB*T), where T is the thermodynamic temperature in kelvin and
kB is Boltzmann’s constant. In the D-Wave software, postprocessing refines the
returned solutions to target a Boltzmann distribution characterized by β, which
is represented by a floating point number without units. From documentation for
lower β values, sampling is less constrained to the lowest energy states. So it was

37

Design of the solution

tuned performing several run since a good compromise is found between the number
of cars and the number of picked paths.

Additional parameters are take in consideration, such:

• Annealing time: Sets the duration, in microseconds with a resolution of 0.01
µs for Advantage and 0.02 µs for D-Wave 2000Q systems, of quantum anneal-
ing time, per read. This value populates the qpu anneal time per sample field
returned in the timing structure. Supported values are positive floating-point
numbers.

• Number of reads: Indicates the number of states (output solutions) to read
from the solver. Must be a positive integer.

Once that solver is built and parameters are sets, it is necessary to invoke the
routines that perform the solving. The method in object is sample ising() that
accept a problem in Ising form and perform the optimization. Result is a dict that
has length equal to the number of decision variables and value 1 or -1 respectively
if the current variable is active or not. Since parameters tuning is performed in an
empirical way, there is not the certainty that result is consistent. Therefore, a check
on the result is performed: if the active variables are not equals to the number of
cars or was picked more than one path for a single car, the solution is discarded
and the subsequent, that has an higher energy level is picked and tested.

3.4.1 Ising problem

The Ising model[2] is a particular example of a thermodynamic system, it is partic-
ularly interesting because it’s one of the few models that are exactly solvable and
provide thermodynamic quantities that we are able to interpret. The ising model
is defined as a ”mathematical model that doesn’t correspond to an actual physical
system. It’s a huge lattice of sites, where each site can be in one of two states. We
label each site with an index i, and we call the two states -1 and +1”, from this
definition it is clear the similarity with the QUBO matrix problem formulation. For
instance it is considered a model for ”magnets” to which it is possible to associate
an energy value, useful to set the objective function and the penalties as discussed
in previous sections. This models has two types of interaction:

• External field is an external magnetic field that is able to modify the energy
values associated with each state. This principle is the one that is used to
perturb the QUBO matrix in the quantum computer.

• Interaction between qubits that react to each other (Entanglement) to bring
the system in a specific pool of states. It is necessary to highlight pool because
the solution evaluation happens in parallel, so multiple are returned. Note
that each solution has a different value of total energy.

The Hamiltonian of the Ising Model can be written as:

H = −
∑︂
<i,j>

Jσiσj −
∑︂
j

hσj

38

Design of the solution

The two sum represent the two values that it is necessary to provide to D-wave
APIs to correctly build the constant matrix system in the quantum computer.

3.5 Algorithm structure

The written algorithm presents a unique entry point, since once the input data
is received, the quantum implementation logic is treated as a black box, from
which are returned the selected solution paths, one for each car. The input data
is represented by QuantumInput classes, that are passed as argument to the static
function ”QUBOimplementation()”, that is the only routine visible from outside.

3.5.1 Data structure

The input data, ”QuantumInput”, is built as a class, which contains five fields:

• NumberOfCars: It is an int value that represents the number of cars of which
algorithm must perform the optimization.

• NumberOfRoutes: It is a list on int values, that contains NumberOfCars
items and represents the size of the paths pool for each car.

• RealiseTimes: It is a list of int values, that contains NumberOfCars item and
represent at which delta time a car start its trip.

• CarTypes: It is a list of enum values, that contains NumberOfCars items and
represents the types of the cars.

• SourceTargetList: it is a list of tuple values, that contains NumberOfCars
items. Each tuple contains two objects that respectively represent the starting
and the ending points.

3.5.2 QuantumSection composition

Algorithm of the new quantum section is divide in four macro blocks:

• QuantumSection: it is the main block, it is in charge of calling the others
routines, to invoke the quantum solver and to print the results.

• QUBObuilder: Generate the paths pool for each cars and build the starting
QUBO matrix provided from previous Volkswagen study.

• RoutesCoexistence: Place in which algorithm that evaluate the perturbation
for cars coexistence time takes place.

• Pollutions: In addition to generate the values related to pollutants levels,
manage the city cache presented in section ”BreezoMeter cache”.

39

Design of the solution

I would like to bring attention on the first part of QUBObuilder block, since it
is where is built the main structure use during problem evaluation. To facilitate the
evaluation is create a list of lists, in particular the first order list own NumberOfCars
lists and each list contains NumberOfRoutes path. In this way is immediate to
understand which path belongs to which cars and in addition it is possible to fast
pairs paths belonging to different car pools.

40

Chapter 4

Results

4.1 Correctness check of the algorithm

Before starting to discuss results, it is necessary to check the consistency and cor-
rectness of the algorithm. To reach this goal is take in consideration a small town,
Cavallermaggiore, with more or less 5000 street intersections and three cars. To
perform this check it was chosen two common points that represent the initial and
final position of the cars, from which is generated a common paths poll containing
three paths. The expected result is that the three cars take each a different path.
In the first runs I noticed that sometimes we retrieve an invalid solution since a car
had two selected routes and the other not one. So, I have acted on the λ value that
determine the influence of hard constraints, discovering that the ”correct” value is
composed of two terms: λ itself and a scale factor that depends on the number of
cars and the number of total routes.

Hardconstraints = λ ∗ f(n,
∑︂
m

numberOfRoutes)

f(n,
∑︂
m

numberOfRoutes) =
∑︂
m

numberOfRoutes/n

In this way we obtain an acceptable solution in which each car have selected a
path from its pool. Thank to penalties definitions, each car take a different route
among the common path pool. Here, are reported visually one of the solution that
I obtain, in which figure 4.1 show the entire town, instead the figure 4.2 show a
particular, specifically the common start location.

From the figure 4.2, it is possible to see the street differentiation, since the
overlapping of the routes produces a more intense red color. Following the different
branches it is possible to notice the intensity decreasing of the red color, in particular
at first intersection two cars tuns left and the other turn right, subsequently, the
other cars take different paths two intersection later.

Now that we have an evidence of the correctness of the written algorithm,
we can begin to discuss the results, in which are reported some samples of the
algorithm functionality, in addition to make a comparison between classic qbSolve
and quantum annealing.

41

Results

Figure 4.1. Full town solution

Figure 4.2. Particular of the staring point of the three cars

4.2 Result comparison between qbsolve and QPUs

I’m going to show the results obtained by my algorithm, considering two different
kind of solver, the first is the classic qbsolve and the second is the D-wave quantum
solver. Other than visual result report will be also provided the index of the path
chosen by a car and the relative energy of that specific solution. It will be analyzed
the difference at each passage, represented by:

• Basic formulation

• Basic formulation + cars coexistence

• Basic formulation + cars coexistence + environmental pollution

42

Results

In order to explore all the scenario that this algorithm is able to solve, different
city, number of cars, number of routes, release time and boundary conditions are
take in considerations. For the subsequent run, for which concern the quantum
computers, are used those values as QPUs parameters:

• Annealing time: 2

• Number of reads: 10

• beta: 100 (Boltzmann parameter)

The first two examples consider the city of Cavallermaggiore and the last one the
city of Turin, and will be analyzed the solution change when additional penalties are
considered. Considering a small number of cars, few number of routes as path pool
or quite different values of release time, it may happen that coexistence penalties
does not bring any contribution to the solution, subsequently the base formulation
and the one that consider the coexistence time are going to be equal, in terms of
chosen paths and, obviously in energy value.

4.2.1 First run

As other runs initial and final points are choose at random among the intersections
of the city. Following are shown the input data of the algorithm:

• Number of cars: 3

• Number of routes: 3, 3, 3

• Release time: 0, 0, 0

Basic formulation:

Figure 4.3. Qbsolve solver Figure 4.4. D-wave Chimera solver

Considering the figure 4.3 which represent the qb solve solution, the three cars
take respectively the paths: 2, 1, 1; and have an energy of -544. Instead the figure

43

Results

4.4 represent the D-wave QPUs solution in which the three cars pick respectively
the paths: 2, 3, 3; and have an energy of -3028. Since the solver are different
it is not possible to compare the energy levels, the reported values have a initial
condition purpose. Adding new penalties we are going to see the differences.

Since the coexistence time has a zero value for each paths pairs, we immediately
jump to analyze the impact that has the pollutions on the solutions.

Pullution formulation:

Figure 4.5. Qbsolve solver Figure 4.6. D-wave Chimera solver

Considering the figure 4.5 which represent the qb solve solution, the three cars
take respectively the paths: 2, 1, 2; and have an energy of -374.27.
Instead the figure 4.4 represent the D-wave QPUs solution in which the three cars
pick respectively the paths: 1, (1-3), 2; and have an energy of -2714.
Considering the solution provided by qb solve it is interesting that the last car
change its path from the first to second, this means that pollution concentration is
a lot more impactful, respect to the length of the path and geographical location.
Since a longest path can be less polluted even considering the scale factor associated
with the street segment length.
For which concern the quantum solver, the presence of the penalties linked to
the pollution, heavily impact the previous found solution. As it shown all cars
change the previously chosen path, except for the second one that unfortunately
have picked two path as solution, this result can be explained in different ways, or
better it can be the result of small uncertainties that put all together are no more
negligible, such:

• Wrong or not well defined of the penalties parameters

• QPUs parameter are not good at all, they need to tuned better

• High read error from the point of view of the quantum hardware

As expected, the energy of the solutions in the second case are significantly
larger than the first case, since there are present penalties that contribute to create
an augmented objective function and consequently an highest energy value.

44

Results

4.2.2 Coexistence run

Taking in consideration the same city, Cavallermaggiore, we are trying to force
the presence of coexistence of the car using more number of routes for each cars,
following are reported the input data of the algorithm:

• Number of cars: 3

• Number of routes: 5, 10, 7

• Release time: 0, 10, 5

Due to issues discussed earlier about quantum solving multiple solution, only
qb solve is used to evaluate results, since quantum solving generate more than one
solution for each car, even two different path has more or less the same energy
considering both coexistence and pollution.

Basic formulation:

Figure 4.7. Qbsolve solver basic formulation

Considering the figure 4.7 the three cars take respectively the paths: 5, 5, 1;
and have an energy of -25398. Respect to the previous run the considered path is

45

Results

more, this has a consequence on the values of the QUBO matrix that statistically
can be largest than the previous run and this bring the solution to have an energy
than differ of some magnitudes order.

Coexistence and Pollution formulation:

Figure 4.8. Qbsolve solver coex-
istence

Figure 4.9. Qbsolve solver coexis-
tence plus pollutions

Figure 4.8 is the solution retrieved adding the coexistence penalties, producing
the following result: 5, 5, 2; and have an energy of -25327. Looking at the right
part of the image is obvious that car two and three share a lot of segment, many
of which present the two cars in the same time slots. Those penalties are obviously
take in consideration by the solver and bring the third car to change its solution
path in order to not congest the same street segment of the second car.

Figure 4.8 is the solution retrieved adding the pollutions penalties (also con-
sidering the previously coexistence penalties), producing the following result: 3, 5,
1; and have an energy of -25214. I think that this result is the most important of
the research since highlights the importance of the penalties related to pollutions;
focusing on second and third car, solution is brought back to the first one, since
penalties connected to coexistence penalties are negligible (in this case) respect to
the pollution one, the alternative 2 for the third car over extend the length of path
to reach the destinations and this have a strong impact on the scale factor of the
pollution levels. In this scenario it is better to congest a street segment respect to
pollute more.

As the previous case adding penalties increase the values of the total energy, so
we can consider the result consistence since the behavior is the one expected.

4.2.3 Turin run

It is also analyzed a biggest city, Turin, to emphasize the power of this algorithm,
obviously are take in consideration a largest number of cars and different number
of routes that constitute the paths pool of each car, those are the input data of the
algorithm:

• Number of cars: 5

46

Results

• Number of routes: 4, 3, 5, 2, 4

• Release time: 20, 5, 34, 27, 12

Basic formulation:

Figure 4.10. Qbsolve solver basic formulation

Considering the figure 4.10 the five cars take respectively the paths: 0, 3, 2, 2,
4; and have an energy of -28384. Respect to the previous run the considered cars
and number of paths are more, this has a consequence on the values of the QUBO
matrix that statistically can be largest than the previous run and this bring the
solution to have an energy than differ of some magnitudes order.

Pollution formulation:

Figure 4.11. Qbsolve solver Pollution formulation

47

Results

Figure 4.11 is the solution retrieved adding the pollution penalties (No car
coexistence in this run), producing the following result: 0, 3, 2, 4, 4; and have an
energy of -27067. As shown in the image, only the fourth car has some overlapping
path and thanks to defined QUBO matrix it change its path to avoid polluting and
traffic congestion.

48

Chapter 5

Conclusion

5.1 Final conclusion on the results

During the result analysis, were compared the results divided between solvers and
incremental penalties, so we can make some considerations.

• Thanks to the increasing curve generated by energy values and the consider-
ation on common street segment and length on figure, we can conclude that
results are consistent.

• Energy comparison must be performed for the same solver, since energy levels
are interpreted and evaluated in different ways even if the meaning is the same.
We can have a confirmation taking a look on the section 4.2.1, energy levels
differ of some magnitudes order and the picked paths are different.

• Quantum solver and classical solver for problem of this entity have compa-
rable computation time in order to compute a solution, but it is important
to highlights that for larger problem is crucial to use a quantum solver to
drastically cut the searching time.

• Thanks to QUBO formulation the number of decision variables is quite small
respect to other kind of formulation and for this reason solving can be per-
formed also with classical solver.

• It is necessary to find a function that consider a bunch of the parameters
of the problem to correctly tune the quantum parameters, in order to find
a consistent solution regardless of the problem size. With my knowledge i
found values for quantum parameters that are suitable for problem composed
by no more than 3 cars and no more of 9 total routes.

• Solving process is quite fast, but the problem formulation require a significant
amount of time (compared with computation time to find a solution), it is
necessary to consider a lot of variables to correctly build the penalties related
to the cars coexistence and environment pollution.

49

Conclusion

To conclude, I think that quantum solving is the way to go, but at the moment
due to hardware limitation, poor knowledge on the quantum field and limited dis-
tribution of those powerful devices, it is an unripe technology that needs more and
more improvements to be fully exploited. Having regards to the fact that perform-
ing a tuning for a specific king of problem, and setting aside the scalability, remains
a powerful to speed up the decision-making process on a specify field.
However, this algorithm represent an initial solid solution to drastically reduce,
first of all, the pollutants released in the environment produced by daily traffic jam
all over the world and not less important to increase the traffic flow in the city
performing a sort of traffic engineering as networker are trying to do with internet
packages. It can be surely improved from the point of view of penalties building
performance and number of covered scenario, but it is a solid milestone that can re-
alistically improve the life quality of each person and why not, of all living creature
and our planet Earth.

5.2 Possible future improvements

As we already mentioned in the previous sections there are many possible improve-
ments that can be performed on the two new blocks of the algorithm, respectively
coexistence and pollution evaluation.

5.2.1 Coexistence block improvements

At the moment to simplify the coexistence evaluation, velocity of the cars is con-
sidered constant at all: constant between cars and for each type of street segment,
independently from street condition, viability and number of railways. To better
simulate the reality it is necessary to take the speed limit of the segment in which
the car is moving on and apply a safety mean margin on the maximum velocity,
for example 90%. Further it is also possible to consider a % penalties based on the
number of cars in the segment and the number of railways. In this way, we are try-
ing to better simulate the real velocity on the segment and consequently evaluate
with more precision the number of delta times that two or more cars coexist on the
same street segment.

Another possible improvement is to simulate semaphore or the intersections in
which the motion of a car stop. This parameter can be expressed in the form of %
based on data collected about the mean car stopping and congestion in presence of
blocking factor in function of size of intersection, green light duration if it is present
and number of railways to simulate the street flows.

In general can be considered also all the factors that contribute to stop of
slowdown the traffic jam. Fall into this category:

• Reaction time of the driver

• Possible presence of cars accident

• Street congestion at peak times

50

Conclusion

• Weather

• ...

5.2.2 Pollution block improvements

At the moments for QUBO penalties are only considered PM10 and PM25, it can be
possible to considered also other pollutants always produced by engine combustion.
Note that if more factor comes to perturb the QUBO matrix, it is necessary to tune
again the associated scale factor in order to not saturate the objective function.

Once car stop or slow down penalties are introduced, it is possible to catego-
rize cars to consider also the pollution produced when the car does not proceed.
Quantity and types of produced pollutants does not differ only for machine cate-
gory (Petrol car, Gasoline car, Electric car) but also on the type of filter system
mounted on the car.

51

Bibliography

[1] ”Near-real-time monitoring of global CO2 emissions reveals the effects of the
COVID-19 pandemic”, written by Liu, Zhu and Ciais, Philippe and Deng, Zhu
and Lei, Ruixue and Davis, Steven J and Feng, Sha and Zheng, Bo and Cui,
Duo and Dou, Xinyu and Zhu, Biqing and others. Published in journal ”Nature
communications”, in the year 2020, publisher Nature Publishing Group.

[2] ”The Ising Model”, written by Standford University.
https://stanford.edu/~jeffjar/statmech/intro4.html

[3] ”D-Wave Previews Next-Gen Platform; Debuts Pegasus Topology; Targets
5000 Qubits”, written by John Russell.
https://www.hpcwire.com/2019/02/27/d-wave-previews-next-gen-platform-debuts-pegasus-topology-targets-5000-qubits/

[4] ”BreezoMeter documentation”.
https://docs.breezometer.com/api-documentation/air-quality-api/

v2/#request-parameters

[5] ”Open Street Map”, general information about this tool.
https://en.wikipedia.org/wiki/OpenStreetMap

[6] ”OSMnx documentation”.
https://osmnx.readthedocs.io/en/stable/

[7] ”GitHub OSMnx open source repository”.
https://github.com/gboeing/osmnx

[8] ”About Us, D-wave system”.
https://www.dwavesys.com/company/about-d-wave/

[9] ”D-wave documentation”.
https://docs.dwavesys.com/docs/latest/c_gs_4.html

[10] ”Quantum Annealing in 2022: Practical Quantum Computing”, written by
Cem Dilmegani.
https://research.aimultiple.com/quantum-annealing/

[11] ”Un record per la sovrapposizione quantistica”, an article from ”Le Scienze”,
talking about quantum superposition.
https://www.lescienze.it/news/2019/10/02/news/molecola_record_

sovrapposizione_quantistica-4568356/

[12] ”Introductive section of D-wave documentation”, talking about quantum an-
nealing.
https://docs.dwavesys.com/docs/latest/c_gs_2.html

[13] ”Quantum superposition”.
https://it.wikipedia.org/wiki/Principio_di_sovrapposizione_

(meccanica_quantistica)

[14] ”Quantum Tunneling Is Not Instantaneous, Physicists Show”, written by Anil
Ananthaswamy, on July 22, 2020.

52

https://stanford.edu/~jeffjar/statmech/intro4.html
https://www.hpcwire.com/2019/02/27/d-wave-previews-next-gen-platform-debuts-pegasus-topology-targets-5000-qubits/
https://docs.breezometer.com/api-documentation/air-quality-api/v2/#request-parameters
https://docs.breezometer.com/api-documentation/air-quality-api/v2/#request-parameters
https://en.wikipedia.org/wiki/OpenStreetMap
https://osmnx.readthedocs.io/en/stable/
https://github.com/gboeing/osmnx
https://www.dwavesys.com/company/about-d-wave/
https://docs.dwavesys.com/docs/latest/c_gs_4.html
https://research.aimultiple.com/quantum-annealing/
https://www.lescienze.it/news/2019/10/02/news/molecola_record_sovrapposizione_quantistica-4568356/
https://www.lescienze.it/news/2019/10/02/news/molecola_record_sovrapposizione_quantistica-4568356/
https://docs.dwavesys.com/docs/latest/c_gs_2.html
https://it.wikipedia.org/wiki/Principio_di_sovrapposizione_(meccanica_quantistica)
https://it.wikipedia.org/wiki/Principio_di_sovrapposizione_(meccanica_quantistica)

Bibliography

https://www.scientificamerican.com/article/

quantum-tunneling-is-not-instantaneous-physicists-show/

[15] ”Quantum Bridge Analytics I: a tutorial on formulating and using QUBO
models”, written by Glover, Fred and Kochenberger, Gary and Du, Yu, on
2019, by Springer publisher.

[16] ”Traffic flow optimization using a quantum annealer”, written by Neukart, Flo-
rian and Compostella, Gabriele and Seidel, Christian and Von Dollen, David
and Yarkoni, Sheir and Parney, Bob, on 2017 by Frontiers publisher.

[17] ”COMPUTER QUANTISTICO, Il portale sul Quantum Com-
puting”, provide a general overview about quantum computers.
http://computerquantistico.com/

[18] ”Le sei sostanze inquinanti più pericolose su scala mondiale del
2015” https://greencross.ch/it/news-info-it/rapporti-ambientali/

sei-sostanze-inquinanti-piu-pericolose-2015/

[19] ”Conferenza di Rio de Janeiro 1992” https://www.ecoage.it/

conferenza-rio-de-janeiro-1992.htm

[20] ”Kyoto protocol” https://www.britannica.com/event/Kyoto-Protocol

[21] ”The history of electrical car” https://www.energy.gov/articles/

history-electric-car

53

https://www.scientificamerican.com/article/quantum-tunneling-is-not-instantaneous-physicists-show/
https://www.scientificamerican.com/article/quantum-tunneling-is-not-instantaneous-physicists-show/
http://computerquantistico.com/
https://greencross.ch/it/news-info-it/rapporti-ambientali/sei-sostanze-inquinanti-piu-pericolose-2015/
https://greencross.ch/it/news-info-it/rapporti-ambientali/sei-sostanze-inquinanti-piu-pericolose-2015/
https://www.ecoage.it/conferenza-rio-de-janeiro-1992.htm
https://www.ecoage.it/conferenza-rio-de-janeiro-1992.htm
https://www.britannica.com/event/Kyoto-Protocol
https://www.energy.gov/articles/history-electric-car
https://www.energy.gov/articles/history-electric-car

	Introduction
	Global pollution
	Quantum computers
	Functioning of a quantum computer
	Application fields and consequence
	Quantum computers deployment situation

	Background
	Quantum annealing
	Energy
	Superposition
	Entanglement
	Quantum tunneling

	QUBO problem
	Volkswagen QUBO formulation

	D-wave environment
	Chimera graph
	Pegasus graph

	Design of the solution
	City graph
	Open Street Maps

	Paths selection
	K Shortest paths

	QUBO matrix
	Coexistence penalties evaluations
	Pollutions penalties evaluation

	Quantum solving
	Ising problem

	Algorithm structure
	Data structure
	QuantumSection composition

	Results
	Correctness check of the algorithm
	Result comparison between qbsolve and QPUs
	First run
	Coexistence run
	Turin run

	Conclusion
	Final conclusion on the results
	Possible future improvements
	Coexistence block improvements
	Pollution block improvements

	Bibliography

