
POLITECNICO DI TORINO

DEPARTMENT OF CONTROL AND
COMPUTER ENGINEERING

Master’s Degree Course in Computer Engineering

Master Thesis

Creation of a web platform for
event-flow visualization

Supervisor
prof. Maurizio Morisio

Candidate
Concetto Antonino Privitera

Company advisor
Criteo

Warren Seine

April 2022

Abstract

Context Big Data is becoming day by day one of the most crucial topics in the
business world. An example of this is companies that collect a large amount of
data of all kinds. However, having these large databases also means that their
management is important, especially when the success of the company relies on
them. Many tools allow for in-depth analysis such as the use of simple graphs or
more complex software like Tableau. However, time-dependent data, for instance
logs, are more complicated to analyse with the tools already available. Therefore,
creating a tool for this specific case was necessary to include an additional variable
in the analysis, time.

Objectives Data analysis is starting to be a main area. Indeed, it can be used
to increase the revenue of a small or large company. Moreover, it can be employed
for any machine learning model, as the latter needs to be trained by a reliable data
source. This process is not easy and the training may not be perfect due to data
noise or wrong configuration parameters used. For this reason, it is important to
analyse the data and understand its meaning. Although there are several tools for
this, it was necessary to create a specific application to manage time-based data.
The objective is to create a new web platform that can show a flow of events through
a timeline. In addition, it has to allow each visualization aspect to be modified for
deeper analysis.

The solution This application was developed using the latest available technolo-
gies. In particular, the front-end is based on the D3JS and React frameworks that
allow the interface to be automatically updated if the data undergoes a change.
Secondly, the Scala-based back-end allows the application to contact the DBMS in
a controlled environment. Since the amount of data is very large and a large amount
of computation is required to recreate a timeline, the DBMS used is Vertica, one
of the fastest DBMSs in the world in terms of query execution time. However, a
timeline could be very long and the browser might not be able to handle so much
information, especially since memory is limited and each request is limited by a
timeout. Therefore, a compromise between functionality and complexity had to be
found in order to allow sufficient customisation of the analysis and execution speed.

i

For this reason, each timeline is built on demand. In other words, everything visi-
ble is requested on Vertica and saved in memory, the rest is not displayed at all in
order to reduce the requirements of the application.

Conclusions The software has been developed with the aim of fulfilling every
functional and non-functional requirement. Not only is it possible to display data in
the form of timelines, but there are also features that help the user understand what
is being shown and what it means. Furthermore, a large part of this project was
developed with the idea of making it modular by trying to automate the required
steps. This will make each new function easy to implement.

ii

Acknowledgements

English After a long journey to obtain a degree in computer engineering, I want
to dedicate all this work to those who have been there for me from the beginning
and have believed in me. A warm thank you to my mentor professor Maurizio
Morisio for his availability and for always being a guide in my studies. I would like
to thank my family, especially my father and mother, who have allowed me to get
this far by trying to support me not only financially, but also morally, especially
in the most difficult times. I would also like to thank my brother Giovanni and
my sisters Concetta, Mimma and Maria who have given me the courage and
strength to accept and undertake new adventures. Last but not least, I cannot fail
to mention all my friends and those I have worked with, near and far, who have
spurred me on to improve day after day. Thank you all from the bottom of my heart!

Italiano Dopo un lungo viaggio per conseguire la laurea in ingegneria informatica,
voglio dedicare tutto questo lavoro a coloro che mi sono stati vicini fin dall’inizio ed
hanno creduto in me. Un caloroso ringraziamento va al mio relatore il professore
Maurizio Morisio per la sua disponibilità e per essere sempre stato una guida nel mio
percorso di studi. Vorrei ringraziare la mia famiglia, in particolare mio padre e mia
madre che mi hanno permesso di arrivare fin qui cercando di sostenermi non solo
economicamente, ma anche moralmente, soprattutto nei periodi più difficili. Inoltre,
ci tengo a ringraziare mio fratello Giovanni e le mie sorelle Concetta, Mimma e
Maria che mi hanno dato il coraggio e la forza di accettare ed intraprendere nuove
avventure. Infine, per ultimi ma non meno importanti, non posso non nominare
tutti i miei amici e coloro con cui ho lavorato, vicini e lontani, che mi hanno
spronato a migliorare giorno dopo giorno. Grazie a tutti di cuore!

iii

Contents

List of Tables vi

List of Figures vii

1 Introduction 1
1.1 Introduction Criteo . 2

1.1.1 Infrastructure . 2
1.1.2 Advertisement . 3

1.2 Relook framework . 4
1.3 Event-Flow Visualization . 6
1.4 Thesis structure . 7

2 Development context 9
2.1 Development workflow . 9
2.2 Agile methodologies . 11
2.3 MOAB . 13
2.4 Code-review . 13
2.5 Technologies . 14

2.5.1 DBMS . 14
2.5.2 Front-end . 16
2.5.3 Back-end . 20

3 Project goal and overview 23
3.1 How data is currently managed . 23
3.2 Problematic . 24
3.3 Solution . 26
3.4 Overview . 27

4 Application development 31
4.1 Development phases . 31
4.2 Requirements gathering . 32
4.3 Actors . 35

iv

4.4 Interfaces . 37
4.5 Use cases . 38
4.6 Data export . 46
4.7 Architecture . 50
4.8 Testing . 55

5 Results 61
5.1 Optimization . 61

5.1.1 Out-Of-Memory . 62
5.1.2 Request timeout . 64

5.2 Features . 66
5.2.1 On-Demand . 67
5.2.2 Configuration . 68
5.2.3 UI options . 70
5.2.4 Splitter, ignore and collapse events 72
5.2.5 Show only first and last events in two steps 75
5.2.6 Save and share the view . 76
5.2.7 Range selector and data distribution 77
5.2.8 Diff function . 78

6 Conclusions 81
6.1 What’s next . 81

Glossary 83

Bibliography 85

v

List of Tables

4.1 Functional requirements . 34
4.2 Nonfunctional requirements . 35
4.3 Actors of the application . 36
4.4 Interfaces . 37
4.5 Use case 1 - add timeline . 39
4.6 Use case 2 - delete timeline . 39
4.7 Use case 3 - reset dashboard . 40
4.8 Use case 4 - share view . 41
4.9 Use case 5 - configure timeline . 42
4.10 Use case 6 - compare timeline . 43
4.11 Use case 7 - show data distribution 44
4.12 Mapping use cases and functional requirements 45
4.13 List of parameters accepted by the back-end 54
4.14 List of parameters accepted by the back-end 55

vi

List of Figures

1.1 Advertisement engine[4] . 3
1.2 Relook dashboards example . 5
1.3 Google Path Analysis[15] . 6
2.1 Criteo development workflow[7] . 9
2.2 Example of Intellij IDEA interface 10
2.3 Scrum methodology . 12
2.4 Gerrit structure . 14
2.5 DBMS storage structures . 15
2.6 Libraries and languages used for the project 17
2.7 Virtual DOM update process . 18
2.8 D3JS visualization examples [11] 19
2.9 Relook architecture . 20
3.1 Criteo AI Engine[5] . 23
3.2 Example of banner pointer events collected by CSM 25
3.3 example two user interaction histories 26
3.4 final timeline of user interaction histories 26
3.5 final timeline interface . 27
3.6 Timeline prototype . 28
4.1 Gantt project chart . 31
4.2 Timeline web page . 33
4.3 Context diagram . 36
4.4 Use cases . 38
4.5 Starting data tables . 47
4.6 Final exported data table . 48
4.7 Timeline architecture . 50
4.8 Front-end architecture . 50
4.9 Back-end architecture . 52
4.10 PostMan interface . 56
4.11 DBeaver interface . 57
5.1 Out of memory error caused when there is no virtualized component 63
5.2 Performance without the virtualized component 63
5.3 Performance with the virtualized component 64

vii

5.4 Comparison between one query and multiple queries to generate a
timeline . 65

5.5 Loading steps example . 67
5.6 Timeline options . 68
5.7 Comparison between timeline with no changes and with small events

bigger . 70
5.8 Filter events in a specific step . 71
5.9 Tooltip and information shown . 72
5.10 Dataset split by host_platform . 73
5.11 Example of TOUCH events ignored 73
5.12 Comparison between ignore events and ignore with collapse events . 74
5.13 Show only first and last events in two steps 75
5.14 Sharing feature . 76
5.15 Example of data distribution . 77
5.16 A/B testing[3] . 78
5.17 Diff function . 79

viii

Chapter 1

Introduction

The analysis of data is playing a big role in many companies, especially in the last
years since their business could lies on it. Different tools are used for performing it
that range from simple charts, like line or pie charts, to more complex software like
Tableau. However, they usually lack of specific functions or they are too complex to
use for specific cases, so it was needed to create an application to analyze temporal
data which allows to run a event-flow visualization.

The project concerning this thesis was reasoned and developed at Criteo, a
company specialized in advertising with various headquarters spread around the
world. Specifically, it displays targeted ads on the web.

The goal was to design and develop a web platform to visualize event data
such as user interactions and server-side events. In particular, I had to create a
timeline able to display time-based data in a chronological order based on some
filters and user interface preferences. If we consider for instance a banner shown
by Criteo in a website, a user could interact it by clicking elements, scrolling, or
opening and closing menus. All of them are events triggered in a certain time that
make together a sort of user history. However, there are many more users who
interact with the banner. So, the timeline must be able to get the single histories
of events generated by each user and put them together to make a unique timeline
that shows the general trend of all users.

It was needed to find a good compromise between functionality and com-
plexity in order to have a big range of features and great performance at the
same time. Indeed, given the large amount of data, like billions of records of
any kind, it was not easy to display it, especially because the browser cannot
handle so much data. So, a way had to be found to load and visualize these
datasets without affecting the performance of the browser so much. This way,
the timeline can run on any device and be used without any particular problems.
Therefore, research on user interface issues was underway to find a solution for this.

1

Introduction

In this chapter it will be introduced the company, the platform Relook in which
this project depends on and finally the general structure of this thesis.

1.1 Introduction Criteo
To give context to the project and understand why it is useful for analyzing data,
it is important to describe Criteo’s internal organization and how they gather
information.

It is an advertising company with the goal to provide target ads on the web. It
was founded in Paris in 2005 by Jean-Baptiste Rudelle, Romain Niccoli and Franck
Le Ouay[6]. After that, further branches were opened in various other countries
such as Germany, Italy, Spain, USA and Japan [10], so that today there are about
3000 people employed[6]. Each of them focuses on one or more departments, which
will be explained in the next section.

1.1.1 Infrastructure
Criteo is equipped with a distributed hosting infrastructure (50000 servers in
bare-metal) with various features about code automation, design, deployment and
maintenance. So this infrastructure has many data centers, namely a physical
infrastructure to house servers and everything needed for the company’s services
in multiple areas of the world.

In addition, the company has huge traffic of requests, which is more than 10
thousand displays per second. As a result, Criteo collects a lot of data (several
Petabytes), which is stored in a large Hadoop Cluster, hence the hardware is
upgraded[9] every 6 months by experts. This means that the servers are more
powerful after every upgrade and therefore can handle the same load with less
power. This results in fewer servers being needed.

The software to develop depends a lot on it since one of its main aim is to
get data from these servers. The amount of data and the performance of the
servers could affect a lot the final result on user experience. Then, it was needed
to analyze the possible solutions in comparison to the infrastructure of the company.

Criteo has many hosting partners and the number of servers in each area is
based on the number of customers and other aspects, important for the analysis
tools when you want to filter data on basis of them.

2

1.1 – Introduction Criteo

1.1.2 Advertisement

Criteo is a company that derives its main revenue from advertising, so it aims to
show banners of all kinds on the web, both in the browser and mobile app. To
clearly explain how it works, it is important to introduce two main characters that
are closely related to Criteo’s business: Partners and Publishers.

Partners are Criteo customers who are willing to pay to see their ads on
the web. There are several tools they can use to describe how a banner and
which products should be displayed to a user. They can enable or disable the
recommendation system based on their preferences, and they can also add or
remove some campaigns for specific products. These are just a few examples of
the features they have. For instance, it is possible to decide if they want to limit a
certain campaign to some countries.

Once a banner is created and configured correctly, it must be displayed on the
web using these parameters. Of course, the banner is not visualized on just any
website, but on the websites of the publishers. These publishers are paid by Criteo
to reserve an advertising space on their web page for the display of a banner. The
figure 1.1 is a schematic of the whole process. As we can see, the system is actually
much more complex and not so immediately understandable.

Figure 1.1: Advertisement engine[4]

3

Introduction

Criteo manages more than one partner. This means that if there are multiple
banners from different partners that are appropriate for the user, then the Criteo
engine has to decide which one to display. The solution is an Real-Time Bidding
(RTB). It is an automated system that makes Criteo bid on behalf of the partners
to show their banner on the website reserved slot. This process is done in a few
milliseconds and works based on a few parameters. Criteo tries to keep a network
latency of 100ms and places its servers where the other competitors are located
(e.g. Google, Facebook, ...) due to population density.

This process is quite complex since there are many requirements to satisfy like
showing the correct banner on basis of user preferences or fast response time.
For this reason, this ads system can benefit of a recommendation system based
on machine learning models. However, their configuration is not easy to set up
if there is no knowledge of data owned. So, many different analyses have to be
done to find anything that could be useful. There are tools that allow to show, for
instance, how the users are split in the dataset and if there is some so-called noise
that could break the model training.

In this case, Criteo collects a large amount of data, specifically events, that are
time-based which means they have a timestamp and assume a specific meaning on
basis of which and when these events happened. They range from internal events
such as server logs to external events such as user interactions events. In particular,
the latter is gathered by a service called CSM which means "Client-Side Metrics".
When a banner is delivered and shown to an user, this service collects a lot of
information from the user interaction done through the banner. This is possible by
injecting some JS code which is in charge to listen specific events such CLICK or
SCROLL that could happen on any position and on any element. For this reason,
not only record the type of event triggered, but also its timestamp, position and
other details useful for the analysis.

This service is useful for many aspects of the company. For instance, it helps to
adjust the price of a banner when it’s clicked or in the view-port, improve banner
design or perform a better analysis.

1.2 Relook framework
The project is powered by Relook. it’s a in-house data visualization framework
that is developed internally by the planning and reporting team, and that is used
to build dashboards and to provide self-service capabilities to management center,
publisher management center and retail media. It is composed by different tools
to make dashboards as web platform.

4

1.2 – Relook framework

Initially, Criteo was using an external framework called Looker. However,
Google acquired this tool and forced all its users to push their data on the Google
Cloud Platform. So, it was not acceptable for the company for different reasons
due to marketing competition and privacy, so they decided to make their own tool
called indeed Relook.

It is developed with the goal to allow any user to create custom dashboard very
easily. An example of dashboards in 1.2.

Figure 1.2: Relook dashboards example

Thanks to such tool, it is possible show different kind of data ready for relook
such as page views, product impressions, clicks, cost or sale transactions. It is also
possible to define how to visualize them, for example such as a bar chart or a table.

There are different features available that it may help the user to run a better
analysis. it is possible to share the dashboard through a link with another user.
In this way, sharing our own findings is easy and possible to do. Then, you can
also save a view and load whenever you want. And finally, there is a way to enable
a schedule. In other words, it is possible to ask the system to get a dashboard
visualization in a specif interval of time without opening the web platform and
then load it afterwards any time. The last but not the least, it also offers way to
filter data to make the visualization more dynamic on basis of our preferences. So,
they are features that are in common with all Relook dashboards.

However, the project developed and described on this thesis could not directly
use anything of it since its internal mechanism requires a different data treatment
in the back-end and a different logic behaviour in the front-end. So, it was needed
to implement this powerful tool by using Relook as base and trying to integrate the
application as much as possible in a way to use at the maximum some framework
features available. Indeed, given the large amount of data and the complex opera-
tions needed to run on it, the application required a different internal architecture

5

Introduction

to make it usable without issues of any type like memory errors or timeout.

1.3 Event-Flow Visualization

The work made for the project is described in the next chapters and it is focused on
the addition of many new tools, but in particular the creation of a new visualization
platform able to show a flow of events through a timeline.
It’s inspired by a Google Analytics tool called Path Analysis, which is able to show
user navigation through the different pages of a website over time. Here is an
example of the Google user interface available:

Figure 1.3: Google Path Analysis[15]

Thanks to such a tool, it is possible to find the main actions that a user performs
when visiting a website or to detect the presence of looping behavior. This temporal
sequence can also allow to identify the next actions caused by a previous action[14].

However, the application is different from this tool, since it has to work not on
the user navigation, but on other different events of any type. This means that it
could create many new ways to analyze data since it is not limit to a specific case
like user navigation. It is a more generic tool that can work on any temporal data,
in other words data with a timestamp. The only limit is the structure of the raw
data that has to respect few guidelines in order to be used with the application.
So, the usage of any type of data with the application requires few preliminary
steps that aggregates it in a new table structure and make it compatible with the
application.

6

1.4 – Thesis structure

1.4 Thesis structure
Here is quick overview of the next chapters that helps to follow the thesis
organization and so, the application development.

In the next chapter, Development context, is described the whole devel-
opment process applied for each change on the code. So the different tools
and protocols used and strictly followed to work on the project. There is also
a description of the software methodologies available with a focus on the one
utilized. Furthermore, there is a part which is useful to described the technologies
that compose the application with some information on them.

In the chapter 3, Project goal and overview, there is the information to
understand the goal of the project as well as its solution. It starts with a quick
introduction of the current methods used to perform analysis and then it evolves
with the new tool to develop. An overview is given as well in order to make the
understanding easier in the next chapters.

The chapter 4, Project development, contains every significant detail that
characterize the software development concerning different aspects of it. They are
requirements gathering, prototyping, low-level architecture and testing. For each
one of them, it is explained the approach used as well as a detail description which
give a lot information of it.

The chapter 5, Results, is focused on the description of the final result
achieved. It gives a large overview on the main features implemented and the
different ways to use the application.

Finally, the chapter 6 is reserved for the Conclusions and for the next possible
future changes to improve further the application as well.

7

8

Chapter 2

Development context

2.1 Development workflow
Before going into the development of the project, it is necessary to give an introduc-
tion to the internal development process, which is briefly described in the figure 2.1.

Figure 2.1: Criteo development workflow[7]

This process is quite long, but needed for each change made on the code. The
reason for it is to make sure that every piece of code follows the best practice
applied in the software development world. Indeed, it is not characterize only by
writing and sharing code phase, but also by other phases that help to achieve the
final result with less issues on the code.

If we want to analyze in detail the process, the first step, as mentioned before,
is the task to write the code. This phase is usually done through any integrated
development environment (IDE) that helps the developers to write codes or run
tasks. Different of them are available in the market in form of free or premium.
For instance, a light-weight IDE is Visual studio Code which supports different lan-
guages with support to a ton of plugins. In my case, I used the IDE called Intellij

9

Development context

IDEA, made by JetBrains[16], which offers powerful functions to the developer
to automatize different aspects during the development. For instance, it imports
automatically the modules needed while programming, so the developer does not
need to look their position manually.

Figure 2.2: Example of Intellij IDEA interface

It is compatible with different programming languages, in particular JavaScript
and Scala which are the ones used in the project for front-end and back-end
respectively. It also has a repository full of plugins useful for many tasks such as
make the code prettier based on a specific configuration and so on. By default, it
already has support for testing the code by showing useful information about it.
It is also compatible with Gradle and its tasks which is the base of the project.

Next, the code must be shared with other developers, especially with those who
are linked somehow with the project. The code is shared of course with git, one of
the most common distributed version control system used nowadays. However, it
is integrated with another tool called Gerrit, but it is more detailed in the next
sections. Specifically, since I am working in a project based on Relook, the teams
working on it are in charge to check any change made on it and make sure there is
no something that could break other parts.

10

2.2 – Agile methodologies

Once the code is pushed on the repository, besides the code review already
slightly mentioned before, some automatic testing operations are started by Jenkins.
This software totally enables the so called CI/CD which stands for Continuous
Integration/Continuous Delivery. In other words, Jenkins runs many tasks on the
code to perform some static syntax check, make sure the code has the correct
format and runs some tests as well to known whether the change broke anything.
Thanks to it, once the code is reviewed by another developer, then it is merge and
integrated with the main branch as well as automatically built and delivered to pre
or non-pre production environment. All these operations reduce at the minimum
the effort required to the developers to make an update available externally.

2.2 Agile methodologies
Before writing code, it is necessary to establish the approach to use when it arises
the opportunity to work on a new project. There are many different methodologies
to develop a complex software[26]. Some of them are:

• Waterfall

• Spiral model

• Agile

Each one is characterized by specific characteristics that distinguish it from the
others. The choice of one of them for the project was crucial per the final result to
achieve.

A first possible method is the waterfall model. It is less iterative and flexible
than the other approaches because breaks the project development into a linear
sequence of steps, but it is considered one the most classic model that serve as
basis for modern projects. Each step depends from the previous one, so it is
not possible to run the single steps in parallel. For this reason, it is used in the
manufacturing industries given that it is high expensive performing changes in the
middle of development[1].

Another one is the incremental model. It consists in develop and test the
product in an incremental way until it satisfies all its requirements, both functional
and non-functional. In order to do that, the product must be composed in small
components which can be built separately. If we want to put it in another way, it
is the waterfall model made incremental[1].

V model is very similar to the waterfall, but follow a different order on the steps.
Instead performing testing after each development phase, it runs all development

11

Development context

steps in order and then back through all testing stages to verify and validate the
project[1].

Given that the development required a certain level of flexibility as concerning
changes and the addition of new features, agile methodology is the current one
more suitable and actually used. This approach lends itself very well to teamwork,
as it consists of discovering requirements during development. In fact, there is
continuous collaboration, with the aim of being flexible when a change is required.
Thus, the planning is not strict and tries to keep the product evolvable over time.
In this way, there is a direct contact with the customer through faster deliveries
and early feedback[26].

There are several variants of agile. The ones used are for example Kanban and
Scrum. The latter is the approach used for this project, and it takes the form of
having a subset of tasks that need to be completed in a short period of time, the
Sprint. The software currently used for scheduling is called Jira[17]. Here is a
diagram of it (figure 2.3).

Figure 2.3: Scrum methodology

If we look closer, the Product Backlog is a set of tasks that need to get done.
Instead, the Sprint Backlog is a subset of them with the goal of getting them
done in about 14 days, the typical length of a Sprint in my case. Each day, a small
stand up meeting, about 15 minutes, then needs to be scheduled to assess the
progress of these tasks for all team members. After a Sprint, there is a delivery of
the product along with a Sprint Retrospective meeting to note what was good
and what was not.

12

2.3 – MOAB

2.3 MOAB
At Criteo, the development of any project between teams can be defined as "trunk
based + mono repository". Git is configured so that a project is defined on a
single branch called trunk (master). This in turn is composed of smaller branches
that are only merged after code review and a testing phase run through Jenkins.
Also, git uses the rebase strategy by default to maintain a clear history of all
commits.

However, some projects need the builds of others to run. For this reason, trunks
can be grouped as a single virtual trunk that is also the representation of a
workspace in a local project. This is where MOAB comes out, which stands for
"Mother Of All Builds." It is a build of a virtual trunk by compiling all repositories
that depend on each other. This is usually done hourly and creates a MOAB ID,
which is a tag on the virtual commit.

All this complex structure is managed locally by Gradle, which allows to partially
automate this process and its management. In fact, it sets up the project and all
its dependencies after a build command is executed. If there are any errors due to
missing local software during the build, then it reports this to the user.

2.4 Code-review
Code quality is very important, especially when working on large complex projects.
After all, maintaining high quality means that other people can understand the
code more easily. This not only helps to make quick changes and add new features,
but also allows to identify bugs before it is too late.

One way to maintain high quality is through the code review process applied
here as well. Although Git is used for every project to share code changes, it lacks
a code review feature. Therefore, this process is done at Criteo with the help
of Gerrit tool[13]. It is a useful tool that works as another layer for Git (figure 2.4).

In fact, every change made will not be directly merge with the main base code,
but it will be in a parallel repository that will not go to interfere with the original
one.

Thanks to it, you are able to push your code to it. Another authorized
developer must review and validate your code by assigning it a score. In the
meantime, it will go through a testing phase consisting of general tests on syntax,
type checking, build and best practice configuration made through Jenkins
as mentioned at the beginning of this chapter. Only when these two processes

13

Development context

Figure 2.4: Gerrit structure

are completed with the maximum score, the code is merged into the real repository.

For instance, the data export was one of the task with the longest code review
since it has a big impact with the others components of the company because it can
break them. Any change on the code, small or bigger, had to be described clearly
and reasoned. If there is a better or alternative way to achieve the result, then it
must be done. The same can be said for the direct development of the application.
The code review process is one of the most crucial aspects in a big company with
many employees working inside, and it must be followed to keep the best practice
in every project.

2.5 Technologies
2.5.1 DBMS
The timeline has to get data somehow to visualize them. They can be obtained
through many internal DBMS at Criteo, each used for different purposes. The main
ones are:

• Hive

• Presto

• Vertica

Hive is used as the main DBMS to store any kind of data ranging from user
information to browser performance. However, this system is quite slow when
it comes to queries. This is something that is not desirable when using the
timeline, especially because some operations requires a certain complexity during
the execution.

14

2.5 – Technologies

The alternative is to use Vertica, which is one of the fastest systems for
executing queries. Thanks to this system, it is possible to get all the required
results before any other DBMS and, in the case of the timeline, allows performing
many more analyses in a time interval compared to the others. The reasons to
opt for this system are various. Indeed, it stores data differently. If we consider
the tradition RDBMS systems, they store data by row, but Vertica stores them by
column and split them in different nodes.

Figure 2.5: DBMS storage structures

In other words, this approach allows aggregating data much faster given that we
can immediately have access to the whole column. This also allows to drastically
reduce the number of I/O operations because the system does not need to read
the other columns.

Furthermore, Vertica is also able to compress data with a powerful algorithm,
especially when some values are repetitive by reducing the space up to 90% of
original data.

Its architecture is a distributed MPP, which means it aims to paralyze query
execution as much as possible through different nodes available in the cluster.
Thanks to it, Vertica is compatible with all the main distributed platform such
as Amazon Web Services and Azure. We can also configure some resource pools
and projections which are basically indexes to further improve the performance[25].

All these features are taken into account for the project development and actually

15

Development context

used for the data processing. In fact, the events to use for the application are
recorded every time, 24 hours a day and 7 days a week. This causes the necessity
to have enough space in the database storage to make sure it never runs out.
However, the space for Vertica is not so large since it is used for specific applications
like the one to develop. So, it was need to optimize data by removing the columns
not actually necessary or useful for the analysis, aggregating the events and all
the other suitable information, but also take advantage of Vertica algorithms to
compress repeated values such as row identifiers.

2.5.2 Front-end
Given the complexity of Criteo’s infrastructure, the project is powered by an in-
ternal framework called Relook. It contains many tools to build dashboards from
scratch as web platform and, thanks to it, the project is ready to communicate
with the back-end and be deployed as an instance on Marathon, the container
orchestration system currently in use.
It is made with the goal to provide tools to make our own dashboards of any kind.
The main ones already available for the usage are the following environments:

• RM: Demand side platform dashboards

• RM Internal: Internal dashboards

• RM SSP: Supply side platform dashboards

So, the idea is to use this framework as starting point for the application to
make a new dashboard that could be considered as a new version 2.0. In fact, it is
not just make a new environment where working on, but it consists in adding new
features that give the opportunity to create new powerful tools such as the timeline
viewer. These changes are added as a new layer on the framework that allows to
break its limits which are described later on. Relook contains both front-end and
back-end libraries. The front-end relies on the framework React used for building
web apps based on the language TypeScript, now extended to be used as web
components. These are custom HTML that can be used like any other HTML
tag[19].

TypeScript is used to make JavaScript typed, so there is a file called tsconfig.json
that contains various options, files to include and check. Thanks to it, it is possible
to reduce the probability of errors due to different types of data. To identify files
in TypeScript, some files have the extension .ts and not .js. Others are in .tsx
because they are in TypeScript with JSX. The latter is a syntax extension to
JavaScript and allows us to write HTML elements in JavaScript as React elements.

16

2.5 – Technologies

Figure 2.6: Libraries and languages used
for the project

Using TypeScript as base language
on the front-end side brings signif-
icant benefits[23]. Since its na-
ture of being typed, it allows the
static type checking. This is
an important feature, especially for
big and complex projects. It al-
lows to catch errors due to data
type already before running the ap-
plication. However, the developer
is not force to use it since it is
optional by not expressing the data
type or by assigning the type any
to every variable or function parame-
ter.

Another non-trivial benefit is the
browser compatibility. The compiler already allows to use the new features avail-
able in the language update ES6, also known as ECMAScript 2015, and beyond
and then will convert it in an older version, such as ES5. In this way, there are
no worries about the compatibility since it is the compiler itself that allows the
developer to use these functions to make them backwards compatible. So, older
browsers would be able to execute the same application even if it does not support
the new version of JS.

Furthermore, Intellij IDEA, the IDE currently used, has support for its static
type checking, so it possible to take advantage of its code assistant. A lot of active
hints are provided by IntelliSense as the development is on-going. For example,
the editor can suggest the methods available and their expected parameters, a
useful feature to speed up the development.

TypeScript is the base language for the library React running in the application
[20]. This library is maintained by Facebook and its community that make it
updated with features still until nowadays. It is heavily used inside the project in
a way to reduce the lines of code required and make usage of the reusable code. It
is composed by some aspects that characterize the library from the others available
in the market and make you opt for it.

React is made to help the developer to build user interface and increase the
feeling of the user experience. So, it allows to apply a top down approach which
helps in case of complex interfaces. In technical terms, it allows to subdivide the
user interface in simpler and reusable elements. They are encapsulated in so-called

17

Development context

components that are characterized by three main parts:

• a behaviour that defines its internal mechanism

• a graphical design that can be defined through simple JS code or by HTML
through JSX

• a state that represents the current DOM and internal representation

All these three elements together allow to make also very complex interfaces since
each component can be debugged in isolation. In this way, the testing phase can
benefit from these aspects by requiring less operations to do for testing a component.

What makes this library very helpful is its system of automatic update. This
makes React perfect for data visualization and in particular for the model-view-
controller (MVC) pattern. Thanks to it, the developer has to just worry about
keeping data updated. The rest is done automatically by React which is in charge
to update the visualization on basis of the behaviour defined in the respective
component.

Another feature that it is worth mentioning is the virtual DOM. React makes
use of it for its components. The idea behind it is that virtual DOM is the virtual
UI representation kept into memory and then synchronized with the real DOM of
the browser. What it is interesting is that any update on a component, and so on
the virtual DOM, does not trigger an update on the whole real DOM, but only
on the elements where the update happened. This is drastically different from the
standard approach without virtual DOM, since any change, small or big, causes
the update of the whole DOM.

Figure 2.7: Virtual DOM update process

The figure 2.7 shows the internal process applied. The actual DOM is the

18

2.5 – Technologies

one in direct contact with the user interactions and sends every event trig-
gered to the application. Then, the components affected by them are marked
as dirty in the virtual DOM tree. Consequently, a comparison algorithm is run
to compare the real DOM with the virtual one in order to make the changes needed.

The main visualization of the timeline and other elements is done with D3JS.
It is a framework for web development that is able to describe the graphical aspect
inside an SVG tag element, a container for displaying scalable vector graphics.
There are many features that allow you to create any kind of visualization, like
a timeline in this case. Nevertheless, it’s not that easy to master and requires a
lot of learning to use it correctly and efficiently. Thinking this kind of user inter-
face with just HTML/CSS would have been much harder especially to create a flow.

There are other frameworks that are capable of creating different types of
charts that can be used to create the timeline. In this case, it would be a Sankey
diagram. For instance, Relook uses Highcharts for most charts, but it was not
the right fit here. Indeed, these frameworks work at a very high level, so while it
might speed up the creation of an initial prototype, it would not then be easy to
add certain features that are not already available and suggested by the framework
itself, since there is no complete control over it. This is not the case with D3JS, as
it is at a lower level and allows much more customization. In fact, there are some
basic powerful features to get the rendering you want, but also some higher level
features like charts, maps or networks.

Figure 2.8: D3JS visualization examples [11]

19

Development context

However, D3JS working with React is a less common task than others. Both
are trying to get access to DOM, which can conflict if not used correctly. In
fact, React has its own way of managing DOM through the Virtual DOM. At
the same time, D3JS wants total control over DOM. Fortunately, React allows
this through a special clause called Ref [21]. Thanks to it, D3JS can access it
to visualize its elements, but you have to be very careful when implementing it,
because using it incorrectly could corrupt the operation during execution.

2.5.3 Back-end
As for the back-end, it is written in Scala and connects to the front-end locally as
a proxy. By configuring a few environment variables like username and password
to access to the DBMS, the project is ready to communicate with Vertica and run
queries on it. A summary of Relook architecture is shown in the figure 2.9.

Figure 2.9: Relook architecture

As it is possible to see, the architecture shows that Relook is composed by there
parts.

First, there is the database which Vertica and contains all the analytics data.
So, data is pushed here through a data export process from the other main
databases such as Hive.

Then, we have datasets which are the result obtained through parameterized
queries in SQL. This is done on the back-end side which is in charge to receive the
parameters from the dashboard to generate a query and, in turn, send it to Vertica
in order to get the respectively computed data which are the so-called datasets.
They are really the heart of the dashboard and the whole complexity of the queries

20

2.5 – Technologies

relies on the datasets. Furthermore, the back-end is the gate for any endpoint
for the external requests that come from the front-end or any other application.
So, here is the point where the endpoints have to be created. Also, there is an
implementation of security breach to make sure that any sensitive operation is not
executed if the user is not authorized.

Finally, there is the front-end where the dashboards are displayed, made
in React already described before. Here it is where the dashboard sends the
parameters, such as filters for the data we want to show, and then it receives
the datasets to consume and generate the data visualization. Each one of them,
theoretically, is used for one element shown in the dashboard such as a table or
a line chart. However, the same dataset can be used to show multiple different
elements if its data structure allows.

A dashboard made in Relook can contain some filters. They can be of any type
such as dates, type of currency, and so on. Then, they are sent to the back-end to
recompute data and a new dashboard is visualized.

21

22

Chapter 3

Project goal and overview

3.1 How data is currently managed
Thanks to the data it is possible to improve any machine learning model and the
results obtained every day. In this case, the data is used to improve the ad system
of the Criteo engine, with the aim of delivering the most appropriate ads to the
user viewing a website. This task is not easy to accomplish and, for this reason,
machine learning is applied here as well. Thanks to that, the recommendation
system can provide an ad with the relevant products based on the user preferences.
The figure 3.1 shows the commonly used approach.

Figure 3.1: Criteo AI Engine[5]

As seen in figure 3.1, the recommendation system has several strategies available
to deliver an ad. For example, they can provide products by popularity or the
most recently viewed products by the user. This action needs to be performed

23

Project goal and overview

in a few ms. Behind this, the machine learning model needs to understand the
user’s preferences by using data that exists in the database. To do this, the engine
needs to track the user through cookies that are stored in the browser. By using
them, the system can better understand what type of user is on the website.
However, the system is not perfect and can sometimes give false readings due to
the complexity of the process and the many variables involved. Furthermore, it
takes time to be trained and reach a state that is quite reliable. So the model
needs to be improved and properly configured every day, a task that is not easy to
accomplish.

The Analytics team works hard to analyze the existing data to improve the
ad system. For instance, they made great progress by providing a huge amount
of information, such as heat maps of clicks performed by users on ads[8]. This
was possible thanks to the different tools they use, such as Tableau which allows
to show data in many ways through a set of charts available in the application.
Thanks to this, they can optimize the overall ad design by providing other options
for ad configuration.

3.2 Problematic
Although the team working on Big Data uses powerful tools to perform analysis,
they would like to have a tool to analyze time-based data through a timeline,
something that is not ease to achieve with the current software, and so they need
a dedicated application just for that.

However, they do not want to show the user navigation, but they want to visu-
alize the following collected events:

• banner pointer events

• banner viewability

Concerning the banner viewability events, they are more technical and
server-side. So, in order to make the explanation more clear, I just focus on the
other type.
The first type of events called banner pointer events are events collected by the
service CSM, already mentioned in section 1.1.2. In particular, when a user goes
to a publisher website, CSM injects some JS code on the banner shown. These
scripts have the task to listen the user interactions on the banner and send the
collected events, in combination with their timestamps, to an application that will
log the raw data in the Criteo databases.

These events range from the simplest ones, such as TOUCH_START or CON-
TAINER_SCROLL, to the most complex ones, such as DISCARD_PRIVACY or

24

3.2 – Problematic

SURVEY_ANSWER_CLICK. An example is shown in the following image which
could not perfectly reflect the actual behaviour of a banner, but it is good way to
introduce the goal of the internship.

Figure 3.2: Example of banner pointer events collected by CSM

In this example, the user is interacting with the banner, and for this reason
CSM collected some events over time. As it is possible to see, the banner changed
state according to which and when the events were triggered. Then, all these
events together compose a sequence, or in other words the interaction history of a
user and it can be shown through a timeline.

However, this is just a history for a user over many others. In fact, not any
other user would interact with a banner at the same way. They could trigger other
different events and/or in other moments, hence generate different timelines. So,
the goal is to create an application able to gather all these histories and show
them all in once through a single timeline. In this way, we can get a summary of all
sequences obtained. Thanks to it, it could be possible to visualize the general trend
of users while interacting with a banner, get information about the most repeated
events and much more.

25

Project goal and overview

3.3 Solution
In order to explain the internal mechanism of the timeline to create, let’s sup-
pose to have two users, user1 and user2, and they trigger some basic events while
interacting with a banner.

Figure 3.3: example two user interaction histories

As it is possible to notice, these two users have their histories composed by
events collected through CSM. Therefore, the final goal of the internship is to make
a timeline able to merge all these histories of interactions to get a summary of
what happened. This is achievable only by recreating these histories so that the
application has immediate access to all of them. Here is the expected result for the
given example:

Figure 3.4: final timeline of user interaction histories

Indeed, we can see at the beginning we have the CONTAINER_SCROLL event
for all users, then another one, and then they trigger different events, CLICK and
CLOSE_AD_CLICK.

26

3.4 – Overview

However, this is just an example to make clear the goal of the project. Furthermore,
it is not just to merge histories, but it is much more to improve the effectiveness of
analysis and give an incredible wide set of options.

3.4 Overview
Before talking about data setup and architecture, it is better to show a screenshot
of the application built in order to have a clearer idea of the low level structure and
how the internal logic works. In particular, this example exactly show the result of
figure 3.4:

Figure 3.5: final timeline interface

Before going into details, it is needed to explain some terminologies used in the
final version. Let’s consider banner pointer events to show as reference, namely
events triggered when a user interacts with the banners.

As it is possible to see in the figure 3.5, a timeline is composed by different
columns, one called splitter while the others steps.

The first one does not describe any event, but shows how the initial data source
is split a priori. In this example, there is no split and the whole data is gather
under the name ALL, but it can be split in other way, by host platform or by date
for instance.

All steps that go from 1 to N show the events that happened in the position X
of the user history. For example, all events in step 1 are the first events triggered
by the users, while events in step 2 are the second events triggered and so on. The
single event has a certain height which indicates the number of users with respect
to the total.

27

Project goal and overview

Finally, all these steps are connected by some links. Each one goes from
an event in step X-1 to another one in step X. These links show how many
users moved from an event to another one. It is important to highlight that
the links could overlap each other to connect two steps. This is due to the or-
der of events inside a step which are sorted in this case by height in decreasing order.

There are other visual elements in the web page such as controls to scroll a
timeline, zoom, search a specific step, go to the first or last steps and so on.
There are also buttons to reach more advanced features in order to change the
analysis outcomes. Indeed, each timeline has a button called options to change its
configuration. Here we can change the type of events we want to analyze, or add
some filters to the data. It also contains user interface options and more.

Another feature is the data distribution. Through this button, a modal is
opened by showing information about the data distribution of the current timeline.
Here there are two charts, one shows the original data distribution, while the other
shows the modified data after applying the timeline filters.

A button with the share icon is at the top of the navbar. Through that button
we can share the view or import another one. Then it is also possible to compare
two timelines through the Diff function, this one available at the top of the navbar
as well. However, They will be examined in a specific section.

Although all these features, the application required some prototypes before
achieving this state. Here is, one of the first prototype:

Figure 3.6: Timeline prototype

28

3.4 – Overview

If we compare it with the first prototype version, shown in the figure 3.6, it is
immediately visible that many features have been added such as some controls,
Diff function, data distribution and several options. Besides that, we also have a
visible UI improvement and some optimizations in the logic. The first version was
also a little bit cumbersome to use, while the new one automate basic operations
without the user intervention.

29

30

Chapter 4

Application development

4.1 Development phases
After several months of work, the timeline is able to analyze different types of
events that are actually used by the company, and in particular by the analytics
team. Indeed, the development took around 6 month to achieve the expected
application. Here is a Gantt chart of all main steps made to reach the final result
of the development:

Figure 4.1: Gantt project chart

The process of development was quite linear, except for some tasks that were
needed to be done in parallel. Indeed, the tasks needed to directly develop the
timeline are shown in green, instead, the tasks in orange to prepare data and use
them with the timeline.

If we would like to go step by step and detail the green tasks, first there was an
on-boarding phase, required to know more about the company and get a better
knowledge about the tools used there. After that, it starts the real process of
development which is composed by a phase of requirements and prototyping. Next
there is a coding phase by starting adding core features up to additional functions
to improve the user experience. Finally, there it is a final task which is focused

31

Application development

on testing and bug fix, important to deliver the final product stable and solid as
much as possible.

It was also needed, in a certain point, to work in parallel on the data prepa-
ration. In fact, because of technical reasons such as speed execution and data
structures, it was needed to work on the original data source to aggregate and
export them in Vertica with a different structure.

Given the complexity of data and the large amount of tests for any operation,
the process to export data took a while. Specifically, this is due to security,
memory and optimization. In fact, if on the one hand the development of the
timeline was made in a safe area of the project which cannot cause any particular
damage to the other components of the company, on the other hand the data
export could have a big impact on the storage and may totally fill it, or it could
conflict with other export jobs and make them crash.

Furthermore, deciding a wrong data structure to export can cause some delays
because the new table must be reset and update the data export code with
subsequently new tests and general checks.

4.2 Requirements gathering
The development started with different prototypes and some ideas. It was
important to understand how Criteo collects data and what its meaning is. Only
then it was possible to design the timeline and know how it should work. However,
it is not enough to start working on it as the people directly interested are the
Analytics team. Therefore, it was necessary to conduct a requirements gathering
phase with them by scheduling a meeting.

In general, a tool used to analyze data must be able to:

• show information

• share findings with others

• allow different configurations

• save the view

• highlight aspects of the analysis

• allow a comparison between two analyses to highlight their differences

32

4.2 – Requirements gathering

A prototype was needed to show the basic aspect and the features to build. In
this context, it may be useful to show a mock-up of the home page. From the
figure 4.2, there is a mock-up user interface made that is very similar to the final
product.

Figure 4.2: Timeline web page

The mock-up does not necessary need to be exactly the same of the final
product, but it helps a lot to develop the general structure of the application. The
developer, in this way, has an idea on where place the functions needed and how
the user interface should look like. In fact, the mock-up must be associated to a
set of requirements to describe the final product.

The best way to perform a deep analysis is to add different features with the
goal to achieve the final result we would like to. These features belong to the
functional requirements, or in other words a set of features that the application
has to support. These functions range from the basic ones to the most complex
ones and it can be a sort of dependency to each other on basis whether a function
can be present only if another function is implemented.

These functional requirements are listed in the table 4.1 through two columns,
the first one assigns an id to the feature which helps to define uniquely, while the

33

Application development

second one is a quick description of the feature itself.

ID Description
FR1 add/remove timelines from the view
FR2 any timeline can be configured to show a type of event
FR3 any timeline can be scrolled and zoomed manually
FR4 any step of any timeline can be filtered by event
FR5 any timeline can have a global event filter that works on every its step
FR6 any type of events obtained by the timeline can be filter by date
FR7 any timeline can have the auto-zooming enabled or disabled
FR8 any timeline can show the small events bigger, but the scale is lost
FR9 any timeline can ignore one or more events and replace them with IG-

NORED_EVENTS
FR10 any timeline can select the initial splitter of the dataset or not split at

all
FR11 the ignored events can be excluded from the workflow and not shown at

all
FR12 duplicated events can be removed from the original sequence before show-

ing a timeline
FR13 any timeline can show the first and the final events of all sequences
FR14 any timeline can be filtered by other types defined for the specific type

of events under analysis
FR15 any timeline can be configured to obtain sequence with a minimum and

maximum length after applying every option chosen
FR16 any timeline can be configured to obtain sequence with a minimum and

maximum length before applying the options ignore/exclude events and
collapse events

FR17 any timeline can include data without history in the splitter
FR18 show data distribution with only the filters
FR19 show data distribution with every options chosen
FR20 save current view in local storage at any change that requires an update

on the data on any timeline configuration
FR21 export view through a JSON
FR22 import view through a JSON
FR23 run a diff function to compare two timelines step by step connection

through the percentage variation

Table 4.1: Functional requirements

34

4.3 – Actors

Each function has a specific goal which covers a specific part of the analysis
concept. Not only these features must be implemented, but they also need to get
along with other non-functional requirements listed here:

ID Name Description
NFR1 Compatibility application must run on any device with an updated

browser, so at least Desktop PC and Laptop
NFR2 Performance each step must be run in a few seconds
NFR3 Usability application must be usable from any user in less than

15 minutes of explanation
NFR4 Fault tolerance everything has to work even in case of error and signal

the user through notification
NFR5 Extensibility it is possible to add new components without any par-

ticular problems
NFR6 Availability application is not accessible only when there is no in-

ternet connection, in all the other cases it must work
NFR7 Flexibility application must be developed in order to guarantee a

fast changing in case a functional requirement changes

Table 4.2: Nonfunctional requirements

The application should be accessible on any desktop PC or laptop, regardless
of the operating system. For this reason, the application must run as a web
application to reduce issues related to cost, compatibility, and maintenance.

Proposing software that can run on almost any device means that if one device
breaks, another can be used to run it. It needs to be fast to run analysis smoothly
while maintaining availability and fault tolerance. It also needs to be easy to
extend and allow quick changes on existing functionality.

4.3 Actors
Once defined and gathered the functional and non-functional requirements, it is
important to defines other aspect of the project before starting its development.
These aspects has to deal with the entities involved by the application, their
interfaces and the context of the whole system. In particular, the actors and their
description are listed as follow in order to have an idea of the main entity who
have to interact with the application. The table 4.3 defines the actors of the system.

35

Application development

Actors Description
Criteo employee He/She uses the application to perform some analysis on data

available
Vertica It is queried to get data when a user uses the application and

show the dashboard

Table 4.3: Actors of the application

Once the actors are defined, here is the context diagram which is an alternative
representation of interaction between actors and system.

Figure 4.3: Context diagram

An actor is not necessary a real person/user who can interact with the software,
but it can also be a system which has to be present in order to use the application.
So, if the application has to interact with something or someone else, then it is
considered an entity.

Indeed, the system has two main actors. The first one is the Criteo employee
and not any user. This is because the application is just available for internal use
at the moment. There the idea to make it available for the standard user, but it
is not the current goal of the project. The employee gets the full access to the
application to perform any kind of analyze available. Here he/she can use select
the events and choose every feature added into the application.

36

4.4 – Interfaces

Next, the other main actor is not a user, but a system. Specifically, it is Vertica,
the DBMS used to get the data source to analyze. It may be consider internal to
the system of the project, but, since the application is a tool for analysis of any
source, we can consider the DBMS external, provided that it respects the data tool
structure. Through this system, the application is in charge to query it as soon as
the user choose the timeline configuration.

4.4 Interfaces
Next, after defining the actors of the system, it is necessary to establish how these
actors can interact with the application.

These means are described by two different types:
• logical interface

• physical interface
As their name says, the logical interface describes how the entity can interact

logically with the application. So, any technology or interface is considered.
Instead, the physical interface describe how this interaction works physically, so
any hardware element that is involved.

The table 4.4 is describing the interfaces needed to make the application usable
by the entities described before.

Actors Logic interface Physical interface
Criteo Employee GUI and company VPN Keyboard, mouse, monitor
Vertica API Network

Table 4.4: Interfaces

The first entity, the Criteo employee, can use the application only through the
GUI, the graphical user interface of the web page, and the internal VPN of the
company. In fact, since the project is just for internal use, the website is available
only by through the VPN. Thanks to it, it is not needed any type of authentication
since the user is already authenticated by the VPN itself. Instead, the physical
interface is any hardware that allows to interact with the web page.

The second entity, Vertica, can be contacted by the rest API when the applica-
tion has to query it in order to get the data needed. This is possible by using the
network because the DBMS has its entry point which, in turn, manages its servers
and nodes to paralyze the query execution.

37

Application development

4.5 Use cases
A further diagram that may help to capture the requirements of the project and
make clear its behavior is the use-case diagram model. It consists in represent-
ing the possible interactions between actors and system during the execution.
However, these use cases do not describe the internal mechanism, but describe
the conditions, before and after the interaction with a quick description of it. In
particular,they are shown and described as follow:

Figure 4.4: Use cases

Now here it is a quick description for each use case.

38

4.5 – Use cases

Name Add timeline
ID UC1

pre-conditions user got access through VPN to the application and
N timelines are shown (with N >= 0)

post-conditions N+1 timelines are shown
nominal scenario

1. user click button to add a timeline

2. a new timeline is added

3. the timeline get data from Vertica

4. now the user can interact with it

non-nominal scenario

1. User click button to add a timeline, but Vertica
is overloaded and/or no connection

2. a new timeline is added

3. the timeline cannot get data from Vertica and
notify the user

Table 4.5: Use case 1 - add timeline

Name Delete timeline
ID UC2

pre-conditions user got access through VPN to the application and
N timelines are shown (with N>=1)

post-conditions N-1 timelines are shown
nominal scenario

1. user click button to delete a specific timeline

2. that timeline is deleted

non-nominal scenario

Table 4.6: Use case 2 - delete timeline

39

Application development

Name Reset dashboard
ID UC3

pre-conditions user got access through VPN to the application and
N timelines are shown (with N>=0)

post-conditions 0 timelines are shown
nominal scenario

1. user click button to reset the dashboard

2. every timeline is deleted

non-nominal scenario

Table 4.7: Use case 3 - reset dashboard

40

4.5 – Use cases

Name Share view
ID UC4

pre-conditions user got access through VPN to the application and
N timelines are shown (with N>=0)

post-conditions a JSON is exported and imported in another page
nominal scenario

1. user click button to share the view

2. a JSON of the view is exported

3. the JSON is imported in another or the same
page

4. the new dashboard is loaded

non-nominal scenario

1. user click button to share the view

2. a JSON of the view is exported

3. the JSON is imported in another page but with
another version of the application which does not
support the JSON structure passed

4. An error happens and the user is notified

Table 4.8: Use case 4 - share view

41

Application development

Name Configure timeline
ID UC5

pre-conditions user got access through VPN to the application and
N timelines are shown (with N>=1)

post-conditions the timeline chosen gets a new configuration
nominal scenario

1. user click button to configure a specific timeline

2. user update configuration

3. the new timeline is loaded and contacts Ver-
tica if the options that requires an updated were
changed

non-nominal scenario

1. user click button to configure a specific timeline

2. user update configuration

3. the new timeline is loaded and contacts Ver-
tica if the options that requires an updated were
changed, but Vertica is overloaded and/or no
connection

4. the timeline cannot get data from Vertica and
notify the user

Table 4.9: Use case 5 - configure timeline

42

4.5 – Use cases

Name Compare timeline
ID UC6

pre-conditions user got access through VPN to the application and
N timelines are shown (with N>=1)

post-conditions the timelines are compared step by step through the
percentage variation

nominal scenario

1. user click button to compare two timelines

2. user select two timelines

3. a comparison step by step is obtained by reading
timelines data or by contacting Vertica if data
was not loaded yet

non-nominal scenario

1. user click button to compare two timelines

2. user select two timelines

3. a comparison step by step is obtained by reading
timelines data or by contacting Vertica if data
was not loaded yet, but Vertica is overloaded
and/or no connection

4. the comparison cannot get data and notify the
user

Table 4.10: Use case 6 - compare timeline

43

Application development

Name Show data distribution
ID UC7

pre-conditions user got access through VPN to the application and
N timelines are shown (with N>=1)

post-conditions the data distribution of a timeline is shown
nominal scenario

1. user click button to compute data distribution of
a timeline

2. a modal is shown with two charts, one shows
the original data distribution while the other one
shows the modified data distribution by applica-
tion every timeline option

non-nominal scenario

1. user click button to compute data distribution of
a timeline

2. a modal is shown with two charts, one shows
the original data distribution while the other one
shows the modified data distribution by applica-
tion every timeline option, but Vertica is over-
loaded and/or no connection

3. the comparison cannot get data and notify the
user

Table 4.11: Use case 7 - show data distribution

44

4.5 – Use cases

Next, a mapping between functional requirements and use cases is shown in
order to understand how they are connected to each other.

UC1 UC2 UC3 UC4 UC5 UC6 UC7
FR1 X X X
FR2 X
FR3 X
FR4 X
FR5 X
FR6 X
FR7 X
FR8 X
FR9 X
FR10 X
FR11 X
FR12 X
FR13 X
FR14 X
FR15 X
FR16 X
FR17 X
FR18 X
FR19 X
FR20 X
FR21 X
FR22 X
FR23 X

Table 4.12: Mapping use cases and functional requirements

45

Application development

4.6 Data export
The application would have never worked without the data needed. These data are
gathered by some loggers such as the service CSM, already described in previous
chapters, and then stored on the main database system which is Hive. However,
this system is incredibly slow, especially when the number of rows to query is very
high. So, it was needed to export data through some jobs on a new system called
Vertica. It is a powerful database management system with a lot of features and
one of the fastest in the world.

Although all these benefits, moving data directly to Vertica is not exactly a
good idea. In fact, the original data is raw which means there is a good deal of
information it is not desired. Beside that, it is preferable to aggregate and modify
them in order to get already computed data and avoiding in this way to repeat
the same process each time a timeline is displayed.

It was also needed to consider if it is better to give a certain level of freedom
to those who want to perform analysis. In fact, a high degree of aggregated data
can cause a drastic reduction on the set of options to configure a timeline, but at
the same time faster execution. So, it was needed to find a good trade-off between
functionality and performance.

Since it was required to work on two specific event sources which are ban-
ner_pointer_events and banner_viewability, then it was needed to export data
from their original tables stored in Hive and shown in figure 4.5.
The first table, enginejoins.bid_display_click_visit, contains the keys arbitrage_id
and impression_id that identify the user and its banner impression. This table is
used as reference for the keys since it is the one that contains them all.
The table glup_parquet.banner_view contains the banner_viewability events stored
in the column event_type. There is another column called tracking_method which
is a further column used for filtering the type of tracking you want to consider in
the dataset. For this reason this column is exported as well. It also contains the
needed timestamp to compute the event sequences.
Finally, glup_parquet.banner_pointer_event is the table which contains the events
banner_pointer_events, more specifically in the column pointer_event. As for the
previous table, here is the timestamp needed.

All these tables are characterized not only by the keys, but also by day, hour
and host_platform. The first two columns define the day and the hour of the
database partition that recorded the corresponding event. While the latter defines
the location where this event was recorded such as Europe or USA.

46

4.6 – Data export

Figure 4.5: Starting data tables

After different designs and tests with the aggregated data, the final table used
by the project has been made. This new table has to contain the events required
and their filters needed to restrict the range of data to consider. The figure 4.6
shows the final result achieved to get the new data structure compatible with the
application built.

Here is a quick explanation for these columns:

• The columns in bold identify uniquely a specific user interacting with a banner

• day and hour define when these events happened

• the column index specifies in which step the event happened in the user history

• host_platform indicates the location of user such as Europe or United States

• banner_viewability__event_type and banner_pointer__pointer_event are
two different type of events. The first ones are banner viewability, while
the second ones are banner pointer events already mentioned before.

47

Application development

Figure 4.6: Final exported data table

Thanks to this structure, it is possible to generate a timeline showing one
of the types of events available. Each step is represented by the index which is
the order of actions. The application built is using by definition the columns
day and host_platform as main filters for all events, and so for both ban-
ner_viewability__event_type and banner_pointer__pointer_event. The filter
that can only work for a specific type of event is declared with name that follows
this structure TypeEvent_NameFilter. In this case banner_viewability events are
characterize by a further filter called banner_viewability_tracking_method.

The data export consists in some jobs running to work on the raw data from
Hive to Vertica. In order to create and run these jobs, it was needed to work on a
project made by the BigDataFlow team for this scope on the following files:

bigdataflow
sql

...
creator

...
csm_timelines_by_impression_id.sql
csm_timelines_by_impression_id.sql.schema
csm_timelines_by_impression_id.conf

The .sql file contains all the queries needed to describe the aggregation process.
It starts by getting the raw data and ends by aggregating them, subsequently
producing the final table. There is also information such as the retention of data
which describe the interval of time of data we want. For instance, the last month.

The .schema file is used to export data on Vertica by describing the final schema
of the table and a projection which is used to speed up the query execution.
Without it, the table would be exported only on the other systems, excluding
Vertica. It is useful not only for that, but also for optimization thanks to the

48

4.6 – Data export

projection. It is a crucial aspect that goes to affect the final performance.

The .conf file contains much information of configuration and not only. There
is also a section for testing the queries used for aggregation. Thanks to it, we can
make sure we get exactly what we want. If there are some queries not working
correctly in some particular cases, the computed result will be different from the
expected one and the job will be never run because of a failed test.

However, there are other tests running which are format and syntax test. All of
them are run when the code is pushed on Gerrit. Further, in order to avoid some
errors during the jobs’ execution, it is possible to run a dry run which is a way to
run temporary all jobs and make sure they are working. Once everything is done,
we can show the jobs on the BigDataFlow page.

The process to export data on Vertica was not just a change on the code, but
many changes in a way to achieve the final result expected. The need to aggregate
more data and change a bit the final structure sometimes has caused, not only
some delays, but also some issues. The system that exports data through a job
has some strict rules to follow when you want to update the destination table
structure. For instance, it is not possible to add a new column and rename another
one already existing there at the same time. This rare case happened to me since
I needed to add columns and rename others.

So, there are two solutions for this problem: split the update in two in a way
that one adds new columns and the other renames, or totally delete the job and
the table created to start from scratch. The second option is the easiest one, but
it takes much more time since we need to recreate the job and the table to fill with
new data again.

Instead, the first option just needs you to make two different updates. However,
when you add new columns, they are filled only for the new data added, while
the old data already exported will have NULL as value. In my case, NULL was
a wrong value and I needed to recompute the whole dataset. This was possible
through the backfill operation available on the BigDataFlow platform which
allows to re-run the export job on the whole data again instead of executing only
on the new added data.

Here it is possible to show all jobs, pause them and run some useful operations,
such as backfill used to restart the jobs again and recompute all data.

49

Application development

4.7 Architecture
Front-end

The application has the general architecture described by the figure 4.7, while the
figure 4.8 is the zoom on the front-end side.

Figure 4.7: Timeline architecture

Figure 4.8: Front-end architecture

50

4.7 – Architecture

Thanks to an architecture like this one which corresponds to a MVC architec-
ture, it is possible to show data through the timeline by keeping them updated as
needed. Furthermore, it is perfect to manage optimizations in an easier way.
This architecture is just a simplified version of the real architecture, but it is
enough to describe the main features available. Let’s go step by step to explain
the full working behaviour.

Everything starts with the Dashboard component which is responsible to show
the main page with a list of timelines. Here, the user is able to add or remove
timelines, reset a page or run special functions such the Diff function, used to
make a comparison between timelines, or share a view. The dashboard also
contacts the back-end to know which datasets, events, host platforms and other
filters are available in the data source.

Each timeline gets the information needed by the Dashboard. This information
is the datasets we can query, the events we can filters, the host platforms available
and others. The timeline can be configured through a modal which contains
different options to filter data and approaches to show them. It is also in charge
to call the API component which in turn contacts the back-end to get data to
show a single timeline. Indeed, given the large amount of data and considering the
execution speed is one of the main requirements, the timeline is made to work in
on-demand. In other words, it does not ask the back-end to run only one query
to generate the whole timeline which can take also several minutes, but it runs a
query for each step. It means smaller and faster queries are executed, calculated in
few seconds, only when needed and, in this way, the memory required is reduced.
However, this complicated more the fetch requests logic, but it was needed to
avoid the out-of-memory error and the timeout fetch in the browser which is
typically 3 minutes.

Next, there is the timeline engine which the core to generate the actual
timeline SVG representation. Here is the controller and the feature to show the
current data distribution of total number of users with total number of steps
done.

As said before, the timeline is composed by steps and links made by a frame-
work called D3JS. Both are instantiated through the Virtualized component. It
is an important component of optimization. Thanks to it, each step and link is
instantiate only when it is visible and in the view-port. In this way, the application
requires memory for only what is visible and runs the queries only for them.

The library D3JS is powerful enough to build any SVG element, but it is not
easy to master. In fact, there are some concepts to keep in mind when this tool

51

Application development

must be used. In my case, the links to connect the different steps were one of
the most complex base elements to generate. Indeed, initially, its generation was
not so great and a little bugged since there were issue such as links in the wrong
position with strange shapes, not generated or never deleted when there was a new
timeline and so on. Furthermore, not only there were issues with visual elements,
but also with the internal logic. At the beginning, there was the idea to generate
a whole timeline with just one HTTP request. However, this was not possible for
two reasons: running only one query takes much more time higher than timeout
of the browser since it needs to read the whole data source, and generating every
SVG element even if most of them were not visible would cause out of memory
errors. So, the best solution was the on-demand to stream only the data actually
needed.

Back-end

Now, let’s focus on the back-end side architecture. In order to allow a large amount
of customization in the queries, it was needed a system to generate new dynamic
queries on basis some parameters passed by the timeline. The architecture that
follows this requirement is shown in the next figure. The first component, called

Figure 4.9: Back-end architecture

listener, is in charge to listen every HTTP request coming outside as for example
a dashboard being used by a user.
This listener has to pass the request and all the parameters contained in the Query
string to the corresponding request handler.

52

4.7 – Architecture

These requests, used to generate the timeline and all its different visualizations,
are:

• get splitter

• get step N

• get total steps

• get events

• get filters

• get data distribution

As their name says, they are used to generate every aspect that ranges from the
steps shown on the timeline to the events and filters that it is possible to analyze.
There is also a handler to show the data distribution of the current timeline
visualized.

However, these handlers have to send complex and dynamic queries to Vertica
with the objective to get the result from the data source. This is done through
the SQL dynamic Query System which is in charge to generate different SQL
codes used by the handlers on basis the parameters passed and the type of request.
This component contacts different functions with different goals. Some of them
are used to generate the WHERE condition to filter the whole original dataset,
others have to work with nested queries given that some final results are obtained
through a higher complexity. In fact, in some situations, it is needed to change
the starting table to filter data and generate some new columns useful for the
representation of the timeline.

The component to generate dynamic queries in the back-end side needed to be
tested it carefully through every possible combination of parameters to be sure
that there are not queries generated in the wrong way. However, broken queries
sometimes happened and, especially after adding new options that generates more
complex ones of them. So, this situation forced in a certain point to change
approach and make this component more modular in order to simplify the testing
and its understanding.

The back-end, based on the language Scala, is developed to allow the com-
munication among front-end and Vertica, the current DBMS used. In particular,
it has the task to generate the query SQL code on basis of the parameters
passed by the front-end and return the data computed by Vertica, so it is
not a simple passage of data. On basis of the endpoint type, it may or not
require some parameters to generate the appropriate query. The following table

53

Application development

contains the set of properties available, then there is a description for each endpoint.

Name Type Description
dataset string the type of events to analyze
firstDay date the initial date to filter the dataset
lastDay date the last date to filter the dataset

iterationId number index of the step to obtain
split string the type of splitter to get

includeIndexNullInIteration0 boolean show or not sequences with 0 length in
the splitter

preFilter_{PROPERTY}[] string[] it is a filter of a specific property of a
kind of events

collapseEvents boolean enable or disable the collapse of dupli-
cated events

ignoreEvents[] string[] list of events to ignore
hideIgnoreEvents boolean hide or not the events to ignore
limitIteration0 number minimum sequences length to consider
limitIteration1 number maximum sequences length to consider

iterationLimitOrder string apply sequences length limit "before"
or "after" ignoring, hiding and collaps-
ing the events

showLastEventsInIteration2 boolean show or not final events in step 2
preFilter string name of filter property to obtain its

unique possible values
startingFromOriginalData boolean obtain or not data distribution with-

out ignoring, hiding and collapsing the
events

Table 4.13: List of parameters accepted by the back-end

All these parameters are sent by the front-end on basis of the configuration
options, set by the user. Furthermore, the endpoints are made to combine this
parameters to generate different queries combinations. As it is possible to infer,
the number of combination is very high, so it was needed a deep testing on the
back-end side to make sure that there are not broken combinations that make the
DBMS crash, or worse generate a wrong data result.

In order to completely meet the requirements, the following endpoints are
available and reachable from the outside (all of them have /dashboards/ad-
timeline/api/datasets/csm_timelines_ as prefix) through the GET method.
These endpoints are described by the file Dashboard.scala which is in charge to

54

4.8 – Testing

create these endpoints and listen for any request on them.

Endpoint Parameters Default

max

includeIndexNullInIteration0 false
dataset pointer events
firstDay*
lastDay*

preFilter_{PROPERTY}[]
collapseEvents false
ignoreEvents[] []

hideIgnoreEvents false
iterationLimitOrder before

limitIteration0 0
limitIteration1 0

link_first includes max endpoint params
split ALL

link_next
includes maxendpoint params

iterationId*
showLastEventsInIteration2 false

events dataset pointer events
prefilter preFilter first filter

interation_data_distribution

if startingFromOriginalData false
includes maxendpoint params

if startingFromOriginalData true
dataset pointer events

preFilter_{PROPERTY}[]
firstDay*
lastDay*

Table 4.14: List of parameters accepted by the back-end

4.8 Testing
Testing an application is one of the most important phases during the development.
If there is bug, minor or critical, this can be caught only through a testing phase.
There are two ways to test a software which are listed as follow:

• Manual testing

• Automatic testing

55

Application development

The first solution, manual testing, is the typical approach that the developer
applies while he/she is coding its application. As the name says, it consists in just
executing and "playing" with the software after every change made on the code.
For "playing" is meant to say to interact with every element of the application in
different ways by trying to find edge cases that can help to catch bugs. From this,
we can infer that it is not feasible if the application is complex and too big in order
to be tested in every its part. This is why there are usually teams engaged just to
test the application and let the developers to focus more on coding and debugging
to correct bugs found on the testing phase. It is good to mention also other tools,
beside Intellij IDEA, that help to test a product. A first tool is Postman which
allows to test the endpoints exposed on the back-end. Through this application it
is possible, not only to specify the endpoint to contact, but also a ton of options
of any type such URL parameters in case of GET requests, the body to send if
POST requests and also authentication configuration.

Figure 4.10: PostMan interface

This tool comes handy for the dynamic SQL system running in the back-end
since its complexity in debugging. In fact, many variables are involved when a

56

4.8 – Testing

query is generated and the number of combinations that it is possible to make is
quite large. So, thanks to this software, it is possible to make multiple requests
and save their parameters to use later on. Then, it is just needed to compare the
results obtained and try to analyze them to be sure that the queries generated are
correctly working.

However, testing the back-end with the only usage of Postman is not so
comfortable because if there is something wrong that breaks the execution, then
we are force to stop the application, change the code and run it again. So, A
second tool is DBeaver CE which is good to write SQL queries and send them
directly to the DBMS.

Figure 4.11: DBeaver interface

Of course, it requires a configuration to authenticate the user and allow the
usage. This tool was needed to test the complex queries generated by the back-end.
In fact, on basis of filters set by the user in the application built, the back-end can
generate very complex SQL queries which contains a large amount of parameters
and complex keywords that make the testing a big issue. Thanks to this tool it is
possible to copy the queries generated by the back-end and test them in a easier
and direct way without making any changes on the application. For instance,
the queries shown on the screenshot 4.11 are quite long and are some example of
possible queries generated.

57

Application development

Manual testing is important as much as automatic testing. In fact, automatic
testing is a way to re-test the application over time while adding or removing
features. For example, let’s suppose to create different components, and we test
them while we develop them. However, it can happen to add a new feature that
can be broken. The operation to fix can take some time, but in the end it is
patched. However, this fix can break another feature that it was tested manually
before, and it is very likely we will not catch this issue anymore. The automatic
testing is very useful in this case because we can re-run all tests automatically for
each change made on the code. As consequence, we can consider manual testing
error-prone and highly time-consuming. Instead, automatic testing allows us to
save time and tells us exactly what went wrong. Furthermore, it can serve as
documentation for anyone wants to use the project.

Regarding the back-end, the technology used is called ScalaTest. It is one
of the most common tools used to test Scala code and not only. In fact, it is
also compatible with other languages such Java and ScalaJS, included other tools
for testing like Mockito to create stub functions [22]. I used the tool with the
FlatSpec which is a testing style format. There are many of them on basis the
needs, but this one has test structure more readable expressed like "X should Y "
[12]. These tests have to be asserted in order to define whether a test passed
or failed. Matchers is an element used in ScalaTest for doing exactly this by
providing a way to check numbers, strings, objects and so on [18].

Regarding front-end side, it is used jest, a JavaScript testing framework, with
a particular tool called testing-library to test frameworks like React in this
project. This solution allows to simulate a usage of the application as a user would
do it by interacting with the DOM nodes.
In order to do that, there are different ways to query these elements. One way is
to get a base component, such as a button, through a regex which is a regular
expression to obtain elements that satisfy it. Another way is to assign an identifier
to the element in the code through the keyword data-testid. Once the wanted
element is obtained, it is possible to get their parameter values such as their text,
or trigger some events through the module fireEvent which can be for example a
click on the button. The last but not the least, another tool used is Storybook
which consists on adding some stories for e2e testing and UI isolation development.
Each story is actually the representation and the description of one or more UI
components which allows to interact with them in isolation and perform some
testing described by the developer.

Both tools, front and back-end, were mainly used to test the most common and
important components in the project, especially the core which stands as base for

58

4.8 – Testing

other elements. The idea was to cover an area as large as possible. These tests
do not cover basic functions/objects that do not need further investigation. Also,
the functions directly provided D3JS and React were skipped as well since they are
already tested by their owners. Indeed, the effort was mainly conveyed on what
actually a test was needed in order to achieve a certain level of confidence.

59

60

Chapter 5

Results

5.1 Optimization
Despite the complexity of the timeline itself, the attention was much more localized
in the optimization aspect. Given the large amount of data and the big limits
that a browser imposes, the optimization was crucial for the result to achieve. It
is not only about improving the user experience, but also avoid crashes and other
weird issues that could impact the usage of the tool. Furthermore, the solutions
implemented were made to address indeed the nonfunctional requirements involved.

In this section are analyzed the biggest execution problems met during the
development. So, it is described the source of issue, which implemented solution
fixes it and finally few comparison examples. In particular, the aspects that are
analyzed shortly are those that have to deal with performance and the request
timeout. It is also described the drawbacks of these solutions that could affect
other aspects of the project, such as the costs.

The first part is more focused on a specific aspect of the first issue, Out-Of-
Memory. Here it is depicted the tool used to keep under control the performance
in real-time and the solution proposed to make sure to limit the cause of this issue.
In fact, many nonfunctional requirements were involved on this issue.

Instead, in the second part, it is outlined the approach used to fix the problem
of the request timeout. Specifically, the timeout limit imposed by a browser when a
HTTP request is send to a server. Since a timeline requires a lot of computation, it
was need to optimize the requests and keep everyone of them below the limit in order
to be sure the execution never stops because of it. However, it can still happen,
although the solution implemented, for instance when there is a bad connection or
when the DBMS Vertica is overloaded. That is why it is implemented a backup
solution to restore the execution.

61

Results

5.1.1 Out-Of-Memory
As it is possible to infer from the frameworks used such as D3JS, the application
is quite complex to execute, especially because of its interface. In fact, the
performance are not affected only by the number of elements shown a represented
into the DOM of the browser, but also by their type that characterize them.

In particular, the most complex elements shown in the page are the SVG tags
used to generate the timeline. The most frequent vector elements are:

• rect

• path

• line

The rect tag is used to build the event blocks, the path tag to build connections
between the events and finally the line is used to mainly represents the number of
users who do not have events in the next step.

All of them have in common that they are vector tags. In other words, their
representation is not based on a table of pixels like an image which is in this case
a raster element, but they are based on set of rules to compute and draw the
desired element.

The raster element have the problem to have a worse quality when they are
shown bigger than their resolution. The benefit of these vectors elements is that
they get the maximum visualization quality possible since they are generated
when they are displayed. However, its representation is expensive in terms of
computation cost. In fact, they are typically computed and drawn every time
there is a change on the size of the element or when they are moved and rotated.
Instead, the raster elements do not need any computation since its representation
is always the same.

As it is possible to infer, D3JS makes a great use of SVG tags, so the
timeline is very complex from this point of view. Any element added reduces
the performance of the browser and so the final user experience. In fact, it was
needed to consider every possible case of timeline generation to make sure the
application never gets at the point to reach the limit of the memory available
on the machine, and so the Out-Of-Memory error. So, the solution was the vir-
tualized component made, already described before, that address this kind of issues.

The tools used to keep under control this aspect are the developer tools
proposed by the browser Chrome and made by the Google company[2]. Thanks to

62

5.1 – Optimization

Figure 5.1: Out of memory error caused when there is no virtualized component

Figure 5.2: Performance without the virtualized component

such a tool, it is possible to keep track of many parameters such as CPU usage and
JS heap size. If we take a look at the figure 5.2, it shows the execution performance
with the virtualized component disabled in a particular edge case which is a very
long timeline to generate.

As it is possible to notice, any action on this page brings the CPU to its full
usage at around 100% and the JS heap size is increasing to load everything shown
by the page up to reach a point to run out the memory. It must be considered that
the project is running in pre-production/debug mode, so it is expected already to

63

Results

not have nice performance. However, the final result should still bring the same
error, since it is inevitable.

In the figure 5.3, it is shown the performance with the virtualized component
enabled. As it is clearly shown, the CPU and the memory can benefit of this
solution. In fact, the CPU keeps a low usage while it is used almost constant, and
the same can be said for the memory which is kept very low.

Figure 5.3: Performance with the virtualized component

This virtualized component was built with the aim to address this issue. Thanks
to its mechanism, the browser loads only visible vector elements, while the others
are not loaded at all and it is kept only little information needed to generate them.

5.1.2 Request timeout
Another issue that it is worth to talk about is one of the limit imposed by a
browser, the so-called request timeout. Any browser has set a maximum duration
for any HTTP call that comes from the application. This limit can be low or

64

5.1 – Optimization

high and it was an issue for the execution that was needed to be addressed. For
instance, the duration set for the browser Chrome is 3 minutes which is not so
high when big data and computation are in play.

Usually the vendors of browsers set this limit for different reasons. A typical one
is due to performance. The idea is to force developers to achieve and keep quite
well the performance. Unfortunately, this limit cannot be set by the application
running itself, but it must be set by the user usually by navigating the advanced
settings of the browser to increase the limit of a request. Something that is not
feasible for the standard user.

This limit had a big impact on the application execution since it was made to
analyze a large amount of data, so it was expected to get long times before to
obtain the final result computed. However, this forced to change approach on the
query management. Instead to generate a timeline with just one query, this one is
generated through multiple smaller queries. A comparison of these two approaches
is shown in the figure 5.4.

Figure 5.4: Comparison between one query and multiple queries to generate a
timeline

These metrics are got many times through different timeline configurations.
The variability of the values obtained is quite high, but it is something due to the
overload on Vertica and its caching system. So, it was needed to run these tests
more than one to get a certain level of confidence.

65

Results

Initially there was the idea to use just one query to ease the API request
management, In fact, through one query, it is possible to analyze the full timeline
with just one initial wait, long but just one. However it was too much the waiting
for the browser, so long that the request was aborted by the browser itself because
it was overcoming the limit imposed. Beside this, any error connection that user
has, it would cause automatically an abort of the request as well. So, in order to
test it, it was need to increase the browser limit or to use the tool DBeaver to
directly compute the query result with Vertica.

The other approach was to run multiple queries, but much lighter because they
target just smaller parts to compute on the single timeline. This approach was
possible thanks to the already implemented virtualized component. This element
shows only the steps visible in the view-port and other few more as buffering pro-
cess to make the usage smoother. This allowed to enable a sort of on-demand
mechanism. Technically speaking, when a step of the timeline is loaded, then the
API system is contact to run a query related to that step. In this way, Vertica
needs just to read data filtered by step as well, which decreases a lot the quantity
of rows to compute.

5.2 Features
After a deep analysis on the requirements and architecture, every feature of the
application is represented in this section. Not only there is an introduction on
them, but there are also some examples and reasons behind their mechanisms.

In the figure 3.5, it is shown the dashboard with an example of timeline
generated. Through the title on the top of its box shows, not only the type of
events under analysis, but also in which interval of dates data are obtained. There
is also represented the total number of steps which is a number to indicate how
many steps there are to finish all sequences. For example, this number could be
quite big, especially if we want to perform a complete analysis. This was actually
caused initially by the banner animations that were recorded as user events, but
now no longer present thanks to a patch. However, this was an opportunity to
address this kind of situations in the application through some features described
afterwards.

It is also important to remind how it is possible to interact with it. There are
some basic UI buttons to zoom in or zoom out a timeline, to go to the next/last
or previous/first step. It i also possible to scroll it by dragging through a pointer.
Every step can be filtered to hide some events that we do not care about, and we
do not want to show.

66

5.2 – Features

5.2.1 On-Demand
A first feature that it is important to discuss is the on-demand mechanism
implemented. It is the base for the optimizations described before, so it allows to
to resolve the out-of-memory error and the request timeout.

This mechanism works for each timeline added in the page and it follows the
following steps:
1. a timeline is added in the page

2. each step in the view-port is correctly loaded by calling its respective API call

3. while the API call is loading, the step shows a blinking yellow bar at the top

4. when its API call returns a response

(a) if the step is visible, the step shows a fixed green bar at the top and its
visualization is correctly loaded

(b) if the step is not visible, then it is visualized with a green bar only when
it is visible again

5. if there is any error, then the bar is set to red and the user can refresh the
API call again or refresh the whole page since the page state is store locally

Figure 5.5: Loading steps example

Everything describe in the process is possible thanks to the virtualized component
which is in charge to run this task. Furthermore, the user is kept informed through
this bar color drawn at the top of each step as shown on the figure 5.5.

67

Results

5.2.2 Configuration
A timeline can be added or removed, but it can be also configured through a
modal as shown here:

Figure 5.6: Timeline options

68

5.2 – Features

A quick description is given on the following list:

• options on the left that require a refresh of the timeline:

1. date filter
2. event type selector
3. select a splitter
4. other filters (such as host_platform)
5. ignore events and hide them
6. collapse repeated events over time
7. show only first and last events in two steps
8. restrict range of data

• options on the right that do not require any refresh:

1. auto vertical axis scaling
2. show small events bigger
3. graphical filters

Here there are many options to perform a more detailed analysis and give the
user a way to custom the visualization and the data obtained.

These options can be combined in different ways on basis of the user needs.
This wide range of possibilities was practicable thanks to the final data structure
imposed on Vertica. If we want to go more in details, the options on the right do
not require any refresh because they do not affect the data source to obtain, while
the options of the left require an update by running again the API requests to get
a new timeline since they affect instead the data source.

In order to configure the timeline, it is needed to reach this modal which
contains the whole set of configuration. It is just needed to click the options
button, shown at the top-right of the modal, to open the modal. Once it is open,
it is possible to make changes, enable or disable options, and it also possible to
cancel the last changes made by clicking the button cancel. After selecting the
options desired, it is just needed to click save in order to go back to the timeline
and, on basis of the options selected, there will be a refresh or not.

In the next sections, option by option is analyzed as well as the possible
situations where they can be greatly effective. Let’s go step by step to describe
them and understand when they could be useful.

69

Results

5.2.3 UI options

The options on the right shown on the modal in figure 5.6 are less important than
the others since they affect only the interface, so they are used just to improve the
data visualization. For this reason, they do not need a refresh on the API requests.
In brief, they are capable to perform an automatic zoom in while scrolling, make
the small events bigger and show/hide some events.

The figure 5.7 shows a comparison with these options. In the image a, the
timeline does not have any interface option enabled. Instead, the image b has the
option show small events bigger enabled.

(a) Timeline with no UI option enabled

(b) Timeline with small events bigger

Figure 5.7: Comparison between timeline with no changes and with small events
bigger

70

5.2 – Features

As it is visible, without this option active, the events not frequent are not
so visible because of the need to keep correct the scale shown on the left of the
timeline. The alternative is to zoom in through the two button on the top-left of
the box, but it is not comfortable in some cases. So, through this option checked,
the small events have a minimum size, but we lose the scale reference, that is
why the scale is hidden on the left. This option could be useful when there is not
interest on keeping the scale since the events are sort by size on each step.

Beside that option, it is also possible to filter the events in a specific step
as shown in figure 5.8. This can help a lot when we want to focus more the
attention a specific events and leave out the others. In case there is not interest

Figure 5.8: Filter events in a specific step

at all on the visualization of specific events on every step, then it is possible to
filter them through a global filter in the configuration modal of the timeline. We
can also combine global filter and step filters on basis of our needs. Some, lines
gets the color green in order to say that they are connected with some hidden events.

Next, each timeline already shows much information on what it is visualized.
Although this, we can get much more information by moving the mouse over some
elements. They are:

• top of a step

• top between two steps

• a event block

• a line which connects two events

71

Results

Figure 5.9: Tooltip and information shown

In the example 5.9, it is shown a tooltip appearing when the mouse is moved over
the top between two steps. This tooltip gives more information such as how many
users moved from an event to another, its percentage, which connections are hidden
and the number of events not connected in the next step.

5.2.4 Splitter, ignore and collapse events
The options shown on the left of the configuration modal directly work with the
back-end to filter data and generate new different timelines. This is why a refresh
is needed when at least one of these options is changed. A part of them (options
1, 2, 4 in section 5.2.2) are mainly used to filter data by date or other parameters,
and to decide the type of event to analyze.

Through the option 1, we can get the whole sequences that have their timestamp
in the range defined. Instead, with the option 2, we can select the sequences we
want to analyze, and so banner pointer events and banner viewability. Finally, the
option 4 allows to restrict the sequences to consider by filtering them by other
parameters available such us host_platform.

Then, there is another option (number 3 in section 5.2.2) used to split the
dataset at the beginning. For example, the we call split a priori the dataset by
a specific parameter available into the interface. The figure 5.10 is splitting the
dataset by host_platform, or in other words, by location such as Europe, Asia and
Unite States.

72

5.2 – Features

Figure 5.10: Dataset split by host_platform

Next, all the other options are used to reduce the total number of steps and
make the timeline more readable. An example is the function ignore events.
As the name says, this option allows to choose some events and ignore them by
excluding them or replacing their name with IGNORE_EVENTS. In some
situations, it is very useful since it can happen that there are different events in
sequence, but not really useful. For instance, if there is a sequence of events like
TOUCH - SCROLL - SCROLL - OPEN and we want to ignore TOUCH and
SCROLL, then the new sequence would be IGNORE_EVENTS - OPEN.

Figure 5.11: Example of TOUCH events ignored

73

Results

This can drastically reduce the length of the timeline, especially if we enable the
option to exclude the label IGNORE_EVENTS from the workflow in combination
with the option collapse repeated events over time which has the goal to
collapse multiple equal events in sequence as one single event. Here is a comparison
of the usage of these two options:

(a) Ignore events and excluded from the workflow

(b) Ignore, exclude from the workflow and collapse events

Figure 5.12: Comparison between ignore events and ignore with collapse events

As it is possible to notice on the title of the timelines, the total number of steps
decreased to less than one hundred (originally there were thousands steps without
any configuration).

74

5.2 – Features

5.2.5 Show only first and last events in two steps

In case, we do not care what the users did in the middle of steps, then it may be
useful the option show only first and last events in two steps. Thanks to
it, the timeline will be reduced to just 2 steps in which the step 1 shows the first
events triggered by the users and the step 2 the last events.

Figure 5.13: Show only first and last events in two steps

In this example (figure 5.13), it is possible to notice that the links could be
overlapped. As mentioned before, the order of events in each step could make
different links overlap each other to reach the destination. For instance, the link
which connects ALL to CLOSE_AD_CLICK is overlapped by the link ALL to
PRIVACY_EXPAND. In any case, we just needed to move the mouse over a link
to make it change the color and highlight it.

This kind of configuration can help when we want to focus more the attention
only on the first and final events triggered in the sequences. However, the quantity
of information lost is a lot, and could affect in some case the outcomes of a data
analysis.

Although all these drawbacks, this option can be used with the Diff function,
used to compare two different timelines. Since this function depends on the timeline
configuration, we can directly compare the initial and the final events if we enable
the corresponding option. The Diff function is detailed in the next sections with
more information about it.

75

Results

5.2.6 Save and share the view
However, share our findings with others is important as much as a good analysis.
So, there is a feature to export or import a JSON configuration of the current view.
Initially, there was the idea to share it through a dynamic URL, but it could have
a limit length[24] and that was a problem since a configuration can get very long.

Figure 5.14: Sharing feature

This modal can be opened through the share icon shown at the top of the
navbar. Here, we can import a configuration or click the export button to generate
the JSON of the current view. Then it is possible to select the text or click
directly the button "copy to clipboard" to copy the JSON into the clipboard of the
operating system.

This feature was possible thanks to the local storage function. In fact, the
application is made to store the the view into the local storage automatically at
every change of any timeline.

The local storage has a certain importance when an analysis takes much time.
For instance, if we must generate multiple timelines in different interval of times or
with different filters, then it could take a lot. So, we can stop there and then reach
the page in another moment to get the same old view. This is possible by using
the local storage of the browser which is permanent if the user does not reset it.

76

5.2 – Features

5.2.7 Range selector and data distribution
As it is explained before, the timeline has to merge different sequences together in
order to show a summary of all of them. This means, that we can get a variable
timeline length on basis of the length of each sequence. However, it may not be
clear how actually users are distributed in the dataset, so the number of sequences
with respect to their length is visible through the charts of the data distribution.
An example is shown in figure 5.15.

Figure 5.15: Example of data distribution

77

Results

On the x-axis there is the total number of steps, instead on the y-axis the total
number of users who did that number of steps. If we consider, for instance, the
point x=5 and y=100, then it means that 100 users finished triggering new events
after 5 steps.

As it is possible to see, there are two charts showed through this modal, one is
called original while the other one is called modified. they are two and not just
one because it is possible to consider only users who did a specific number of total
steps defined in an interval of the option restrict range of data. This is can
be done before or after the filtering operations on basis of our needs. For exam-
ple, we may be interested users who did in total a number of steps between 1 and 5.

So, the original chart shows the data distribution of the original dataset after
applying just the base filters which are interval of dates and type of event, while
the one with the name modified shows the new data distribution after applying all
the timeline options. The original chart is useful to remember how the data were
distributed initially and work on basis on them.

5.2.8 Diff function

Figure 5.16: A/B testing[3]

Another useful function is the diff
function which allows comparing two
timelines configured in the current
page. It is very powerful and use-
ful especially in the analytics con-
text. Indeed, it is possible to use the
timeline for comparing an A/B test-
ing.

This kind of test allows to test a
change on a specific platform or ser-
vice. For instance, let’s suppose a
change on a banner design is made.
Before releasing this change all over
the world, it is possible to release
it partially, or better release it to a
50% of population. In this, way we
can gather information about the new
change and old change in the same in-
terval of time. Next, we just need
to compare the results through some
tools.

78

5.2 – Features

Here is an example of comparison through the application made:

Figure 5.17: Diff function

This comparison is done step by step and computing the percentage variation
expressed by the formula:

(xf − xi

xi

∗ 100)%

Through this formula, it is possible to know if there was an increase or decrease in
a specific transition of events between two steps. There is also a way to filter this
differences and show only those that satisfy the parameters. Another good thing is
that this function depends on the configuration of the timelines. So, it means we
can compare, for example, only the final events by setting on the option to show
the final events in step 2.

79

80

Chapter 6

Conclusions

The timeline has been developed with the goal to give the maximum flexibility on
the type of analysis to any user. A lot of different features allow managing almost
every aspect of data shown giving a way to include or exclude part of it. Not
less important, much information is visualized on user interface to give many more
details and perform a better analysis. In conclusion, I would like to propose some
improvements and new additions for the application.

6.1 What’s next
The current state of the application contains the most important features to be
usable. However, it can further improve with new functions and use cases that
may extend its limit.

For example, it could be useful having a new filter that allows to filter by
banner. In fact, the application is available to show timelines of any type, but
everyone includes all the banners. It means, that in case we would like to try to
analyze a specific banner, this is not possible. However, it should not be a problem
because it is usually needed to perform a general analysis on all the banners since
they have the same configuration in common.

Actually, this change was in program, but it was not possible because there
was a on-going internal change on the banner management. Add this feature
before this change would cause another change to adapt the old one with the new
data structure. Anyway, the software was developed with the goal to be modular.
So, adding a new filter requires very few changes. In particular, it is needed to
add a new column which describe the banner id on the data export process, and
code a bit the back-end/front-end to know the presence of a new filter. No other
modification is needed, the rest is done automatically which means there is no

81

Conclusions

need to add new endpoints, select boxes or new API functions.

Another element that could be relevant is to make this new powerful tool to
the standard user. Currently, the customers of the company have to access to all
base tools of relook to make their dashboards, but they do not have access to this
application since it is available only for internal use. Indeed, there are different
reason on it. First, this software is quite advanced to use to gather information,
so only expert of the sector could use all its functions. Secondly, it is released in
pre-production, in other words it is an area that only internal employees can access.
So, the next step is to move it in production and make it available to all external
customers.

82

Glossary

bare-metal A bare-metal server is a computer server that hosts one tenant, or
consumer, only. The term is used for distinguishing between servers that can
host multiple tenants and which utilize virtualisation and cloud hosting. Such
servers are used by a single consumer and are not shared between consumers.
2

DBMS A Database Management System (DBMS) is software designed to store,
retrieve, define, and manage data in a database. 14, 15

DOM The Document Object Model is a cross-platform and language-independent
interface that treats an XML or HTML document as a tree structure wherein
each node is an object representing a part of the document. The DOM repre-
sents a document with a logical tree. 20, 58

git Git is software for tracking changes in any set of files, usually used for coordinat-
ing work among programmers collaboratively developing source code during
software development. Its goals include speed, data integrity, and support for
distributed, non-linear workflows. 10, 13

Gradle Gradle is a build automation tool for multi-language software development.
It controls the development process in the tasks of compilation and packaging
to testing, deployment, and publishing. Supported languages include Java,
C/C++, JavaScript. 10, 13

Jenkins The leading open source automation server, Jenkins provides hundreds of
plugins to support building, deploying and automating any project. 11, 13

MPP An MPP Database (short for massively parallel processing) is a storage
structure designed to handle multiple operations simultaneously by several
processing units. In this type of data warehouse architecture, each process-
ing unit works independently with its own operating system and dedicated
memory. 15

83

Glossary

MVC The Model-View-Controller (MVC) is an architectural pattern that sepa-
rates an application into three main logical components: the model, the view,
and the controller. Each of these components are built to handle specific
development aspects of an application. 51

Query string A query string is a part of a uniform resource locator (URL) that
assigns values to specified parameters. A query string commonly includes
fields added to a base URL by a Web browser or other client application, for
example as part of an HTML form. 52

RDBMS An RDBMS is a type of database management system (DBMS) that
stores data in a row-based table structure which connects related data ele-
ments. An RDBMS includes functions that maintain the security, accuracy,
integrity and consistency of the data. This is different than the file storage
used in a DBMS. 15

React React is an open-source, front end, JavaScript library for building user
interfaces or UI components. It is maintained by Facebook and a community
of individual developers and companies. React can be used as a base in the
development of single-page or mobile applications. 16, 20

84

Bibliography

[1] Dr. Alex Ferworn A.K.M Zahidul Islam. «A Comparison between Agile and
Traditional Software Development Methodologies». In: Global Journal of
Computer Science and Technology (2020). issn: 0975-4172. doi: 10.34257
/GJCSTCVOL20IS2PG7. url: https://computerresearch.org/index.php/c
omputer/article/view/1987.

[2] Chrome - developer tools. url: https://developer.chrome.com/docs/dev
tools/.

[3] Criteo - A/B testing.
[4] Criteo - ads system.
[5] Criteo - AI Engine.
[6] Criteo - company. url: https://www.criteo.com/fr/company/.
[7] Criteo - Development Workflow.
[8] Criteo - heatmaps on clicks.
[9] Criteo - new infrastructure. url: https://criteo.com/news/press-relea

ses/2020/10/criteo-launches-latest-green-energy-based-data-cent
er-in-japan/.

[10] Criteo - offices. url: https://www.criteo.com/contact-us/find-us/.
[11] D3JS visualization examples. url: https://observablehq.com/@d3/galle

ry.
[12] FlatSpec. url: https://www.scalatest.org/user_guide/selecting_a_st

yle.
[13] Gerrit - code review. url: https://www.gerritcodereview.com/.
[14] Google - Path Analysis. url: https://support.google.com/analytics/an

swer/9317498?hl=en.
[15] Google - Path Analysis Example. url: https://www.practicalecommerce

.com/wp-content/uploads/2019/05/ClickPaths_1.jpg.
[16] JetBrains - Intellij IDEA. url: https://www.jetbrains.com/idea/.

85

https://doi.org/10.34257/GJCSTCVOL20IS2PG7
https://doi.org/10.34257/GJCSTCVOL20IS2PG7
https://computerresearch.org/index.php/computer/article/view/1987
https://computerresearch.org/index.php/computer/article/view/1987
https://developer.chrome.com/docs/devtools/
https://developer.chrome.com/docs/devtools/
https://www.criteo.com/fr/company/
https://criteo.com/news/press-releases/2020/10/criteo-launches-latest-green-energy-based-data-center-in-japan/
https://criteo.com/news/press-releases/2020/10/criteo-launches-latest-green-energy-based-data-center-in-japan/
https://criteo.com/news/press-releases/2020/10/criteo-launches-latest-green-energy-based-data-center-in-japan/
https://www.criteo.com/contact-us/find-us/
https://observablehq.com/@d3/gallery
https://observablehq.com/@d3/gallery
https://www.scalatest.org/user_guide/selecting_a_style
https://www.scalatest.org/user_guide/selecting_a_style
https://www.gerritcodereview.com/
https://support.google.com/analytics/answer/9317498?hl=en
https://support.google.com/analytics/answer/9317498?hl=en
https://www.practicalecommerce.com/wp-content/uploads/2019/05/ClickPaths_1.jpg
https://www.practicalecommerce.com/wp-content/uploads/2019/05/ClickPaths_1.jpg
https://www.jetbrains.com/idea/

BIBLIOGRAPHY

[17] Jira - software. url: https://www.atlassian.com/software/jira.
[18] Matchers. url: https://www.scalatest.org/user_guide/using_matcher

s.
[19] Mozilla - webcomponents. url: https://developer.mozilla.org/en-US/d

ocs/Web/Web_Components.
[20] React. url: https://reactjs.org/.
[21] React - Ref. url: https://reactjs.org/docs/refs-and-the-dom.html.
[22] ScalaTest. url: https://www.scalatest.org/.
[23] TypeScript benefits. url: https://medium.com/swlh/the-major-benefits

-of-using-typescript-aa8553f5e2ed.
[24] URL length limit on the browser. url: https://www.geeksforgeeks.org/m

aximum-length-of-a-url-in-different-browsers/.
[25] Vertica - storage approach. url: https://www.vertica.com/secrets-behi

nd-verticas-performance/.
[26] David Young. «Software Development Methodologies». In: White paper (Aug.

2013).

86

https://www.atlassian.com/software/jira
https://www.scalatest.org/user_guide/using_matchers
https://www.scalatest.org/user_guide/using_matchers
https://developer.mozilla.org/en-US/docs/Web/Web_Components
https://developer.mozilla.org/en-US/docs/Web/Web_Components
https://reactjs.org/
https://reactjs.org/docs/refs-and-the-dom.html
https://www.scalatest.org/
https://medium.com/swlh/the-major-benefits-of-using-typescript-aa8553f5e2ed
https://medium.com/swlh/the-major-benefits-of-using-typescript-aa8553f5e2ed
https://www.geeksforgeeks.org/maximum-length-of-a-url-in-different-browsers/
https://www.geeksforgeeks.org/maximum-length-of-a-url-in-different-browsers/
https://www.vertica.com/secrets-behind-verticas-performance/
https://www.vertica.com/secrets-behind-verticas-performance/

	List of Tables
	List of Figures
	Introduction
	Introduction Criteo
	Infrastructure
	Advertisement

	Relook framework
	Event-Flow Visualization
	Thesis structure

	Development context
	Development workflow
	Agile methodologies
	MOAB
	Code-review
	Technologies
	DBMS
	Front-end
	Back-end

	Project goal and overview
	How data is currently managed
	Problematic
	Solution
	Overview

	Application development
	Development phases
	Requirements gathering
	Actors
	Interfaces
	Use cases
	Data export
	Architecture
	Testing

	Results
	Optimization
	Out-Of-Memory
	Request timeout

	Features
	On-Demand
	Configuration
	UI options
	Splitter, ignore and collapse events
	Show only first and last events in two steps
	Save and share the view
	Range selector and data distribution
	Diff function

	Conclusions
	What's next

	Glossary
	Bibliography

