
POLITECNICO DI TORINO

Master’s Degree in Data Science and Engineering

Master’s Degree Thesis

Transformer based stochastic approach
to pedestrian trajectory forecasting

Supervisors

Prof. Lia MORRA

Dott. Simone LUETTO

Candidate

Giacomo GARRONE

April 2022

A mio papà,
questa è di entrambi

i

Abstract

Pedestrian trajectory forecasting is an active field of research in which the goal is to
predict the path of an agent over a period of time, given some previously observed
past motion history. This predicted period of time can be long or short, leading
to long-term forecasting or short-term forecasting. In this thesis, we deal with
short-term trajectory forecasting which consists in a forecasting window of about
five seconds in the future. Having a model capable of these kinds of predictions
is useful in many applications such as for service robots, autonomous driving or
anomaly detection, where predicting a possible outcome is necessary to plan future
moves.

A great challenge in modelling human motion behaviour is the fact that it is not
deterministic by nature. An agent movement and trajectory is determined by many
forces but also by the own will of the agent, which is not predictable with absolute
certainty. In fact, multiple future trajectories may be plausible in certain situations
such as in front of a fork in the road, or to avoid a collision, and even if the intent
and destination of the agent are known, there are possibly infinite trajectories
which can be possible. This stochastic and multimodal behaviour is the main focus
of this thesis. With the advent of the Transformer model for Natural Language
Processing, more and more Transformer based models have been proposed for
sequence modelling problems. Motivated by their good performance with respect
to Recurrent Neural Networks also for this task, the experiments of this thesis
have been conducted using Transformer based architectures. In the first part of
the experiments, the used model from literature, Transformer TF, is introduced
and different preliminary experiments are carried out on the model to improve
its performances, such as lowering model size, changing the inputs and perform
a data augmentation technique which is proven to be beneficial. Then, starting
from the previous deterministic model, a proposal is made to take into account
the problem stochasticity. The proposed model, Transformer GAN, is a generative
model capable of multiple predictions thanks to a sampled random latent vector.
To efficiently generate multiple and multimodal predictions, a sampling refinement
technique is then introduced which drastically improves the performances of the
stochastic approach used. The results of the Transformer GAN after the sampling
refinement method reach state-of-the-art performances with respect to other deep
learning models for trajectory forecasting that do not use any social nor map
information.

i

Acknowledgements

First of all, I would like to thank my advisor, Prof.ssa Lia Morra, for her availability,
help and tutoring for this thesis.

A big thank you also to the people working at Addfor for the possibility to work
with them and for sharing their resources with me, making this work possible. In
particular, I would like to thank Simone and Rosalia that accompanied me through
all these months, giving great advice and support.

Then, I would like to thank all the friends that accompanied me in these years. I
feel very lucky to be surrounded by incredible people. Thank you to all the friends
of Lavori in Corso, your daily presence made the Poli feel like a second home. I
would also want to thank the CLU, where I received much more than I deserved.
Thank you to all the people for being a part of this wonderful journey.

How to forget then the Breakfast Club, Anna, Ele, Fra and Richi. Sharing
countless breakfasts and Quattro Soldi lunches with you cheered up even the worst
days at Poli.

Thank you to my childhood friends that have been constantly part of my journey
growing up, Abel, Massa, Enri, Aime, Silva. I could not have asked for better
friends and, even if we don’t see each other every day like it used to be, every time
it seems like never changed.

Thank you to Edo, a truly great friend. I cannot be grateful enough for your
help through all these years. Thank you for always caring about everyone and
never wanting anything in return.

Thank you to my family, this surely would not have been possible without
your help and care. Despite my terrible character you have always been present
supporting me at every step of the way. To my father Giulio, my mother Cecilia
and my brothers Gabriele and Giovanni, for their testimony and constant reminder

ii

of what is really important.

And lastly thank you to Francesca. I would not even know where to start in
order to thank you properly. Thank you for your kindness, patience and support
shown daily and in every situation. Your presence is the greatest gift of my life.

iii

Table of Contents

List of Tables vii

List of Figures viii

1 Introduction 1

2 Trajectory forecasting 3
2.1 Problem formulation . 3

2.1.1 Regression and classification 4
2.1.2 Deterministic and stochastic 5

2.2 Applications . 6
2.3 Objectives and challenges . 6
2.4 Pre-deep learning . 7

2.4.1 Kinematic models . 7
2.4.2 Social force model . 8
2.4.3 Energy minimization model 9

3 Introduction to deep learning 11
3.1 Introduction . 11

3.1.1 Neural networks . 12
3.1.2 Backpropagation . 14
3.1.3 Optimizers . 17

3.2 Recurrent neural networks . 20
3.2.1 LSTM . 22

3.3 Attention . 24
3.3.1 Global or local attention . 25
3.3.2 Hard attention . 26
3.3.3 Soft attention . 26
3.3.4 Self attention . 28

3.4 Transformers . 28
3.4.1 Transformer architecture . 29

v

3.4.2 Attention mechanism . 29
3.4.3 Encoder . 33
3.4.4 Decoder . 34
3.4.5 Input embedding . 34
3.4.6 Positional encoding . 35

3.5 Generative models . 37
3.5.1 GANs . 37
3.5.2 CGANs . 37
3.5.3 Variational Autoencoders . 38
3.5.4 Conditional Variational Autoencoders 41

4 Deep learning models for trajectory forecasting 43
4.1 RNN-based models . 44

4.1.1 Social LSTM . 44
4.1.2 Social GAN . 46
4.1.3 Trajectron++ . 47

4.2 Transformer based models . 48
4.2.1 Transformer TF . 48
4.2.2 AgentFormer . 49

5 Experiments 52
5.1 Introduction . 52
5.2 Datasets . 52

5.2.1 ETH and UCY . 53
5.3 Metrics . 54

5.3.1 Average Displacement Error (ADE) 54
5.3.2 Final Displacement Error (FDE) 55

5.4 Chosen model . 55
5.4.1 Input embeddings dimension 56
5.4.2 Loss . 60
5.4.3 Coordinates encoding . 61
5.4.4 Data augmentation . 64

5.5 Stochastic model . 66
5.5.1 Proposal: Transformer GAN 67
5.5.2 Sampling method . 71
5.5.3 Results . 77
5.5.4 Predictions comparison before and after sampling method . 78
5.5.5 Literature comparison . 80

6 Conclusions 82

Bibliography 84

vi

List of Tables

5.1 Results of the original Transformer TF following the single trajectory
deterministic protocol. Results are reported from original paper [7].
The models are trained on 4 datasets and tested on the remaining
one, following the Leave-One-Out approach. 57

5.2 Number of learnable parameters in Transformer TF while varying
the embedding dimension. By decreasing embedding size we speed
up the training and have a less complex model, while keeping the
performances similar for this task. 58

5.3 ADE/FDE metrics on ETH-UCY datasets while varying the embed-
ding dimension. 512 originally used in TF. 60

5.4 ADE/FDE results using a 2-norm loss and a 1-norm loss. 2-norm
originally used in TF. 61

5.5 Results of the models using the different coordinates encodings.
Relative encoding is the one originally used in TF. 64

5.6 Results of the experiments on data augmentation techniques. 66
5.7 Overall results of Transformer GAN prior and after the sampling

method. The improved deterministic Transformer TF results are
also shown for completeness. The number before S refers to the
number of samples predicted. The metrics used for the stochastic
models are the TopK-ADE and TopK-FDE with K equal to the
number of samples drawn. 77

5.8 Comparison between literature results of stochastic models using
a TopK-ADE and TopK-FDE with K=20 samples. The results
are taken from publications. Our model is the Transformer GAN
generator after the sampling method. The first three models are
the only comparable in terms of inputs as they consider only the
trajectory information. The others use also map or social information 81

vii

List of Figures

2.1 In white the coordinates at time steps t = 1, ...Tobs, in red and
cyan the predicted and ground truth coordinates respectively at
t = Tobs+1, ..., Tpred. Image from [10] 4

2.2 Classification and regression. On the left an example of discretiza-
tion of the input scene that leads to a grid based approach with
classification. On the right a non grid based approach that represents
the inputs and outputs as real values as a regression task. Image
from [9]. 5

2.3 Social force model with attractive and repulsive forces that govern
the motion. Image from [11] . 8

3.1 Perceptron (from [17]) . 12
3.2 Activation functions (from [18]) . 13
3.3 MLP structure (from [19]) . 14
3.4 Momentum representation (from [15]). Black arrows indicate the

step that gradient descent would take in that point, while the red
line indicates the path followed with momentum. 19

3.5 On the left a general RNN structure. On the right the equivalent
unfolded version where every time step is represented with the same
repeated structure. xt and ht are the input token and relative hidden
state at time step t respectively. In the figure, the passage from ht
to yt it’s not represented (from [22]). 22

3.6 RNN cell architecture (left) vs LSTM cell architecture (right). From
[22]. 23

3.7 Global and local attentions from [29]. Each blue box is an input
token hidden state, while the grey boxes are the target tokens states
after transformation from attention. We can observe that the context
vector ct is computed with different source tokens between global
and local attention (not the same connections to the context vector). 25

viii

3.8 Example of soft attention on a English to French translation task.
The brightness of the squares indicates the attention weight between
the two words during the generation phase. It is interesting to notice
that the model learned to align correctly the adjectives which are
used in different orders from English to French (from [28]). 27

3.9 Soft vs hard attention. Soft attention is a global attention differ-
entiable over the entire input domain, while hard attention focuses
only on a state of the input sequence and it is a local attention to
only one state, it typically requires reinforcement learning techniques
to be trained. 28

3.10 Transformer architecture as proposed in [6]. The grey block on the
left is the encoder block, while on the right is the decoder block. . . 30

3.11 Scaled dot-product attention operations (from [6]) 31
3.12 Multi-head attention as in [6] . 33
3.13 First 50 positional encodings using a dmodel-dimensional vector of

128. Each row represents a positional encoding vector. From [33]. . 36
3.14 Conditional GAN architecture as proposed in the original paper [35].

Both the discriminator and generator are additionally fed the y con-
ditioning (in green). During training, alongside the y conditioning,
the input to the discriminator can be either the generator output or
the sample from the training set (light grey lines). 38

3.15 VAE architecture from [37]. Encoder and decoder are trained to
maximize the ELBO. The encoder learns the mapping from x to z,
thus q(z|x), while the decoder learns the mapping from z to x, p(x|z). 41

3.16 Latent variable z distribution in the case of a VAE (left) or CVAE
(right). This example is from a model trained on MNIST dataset
with a 2D latent vector dimension. Each color corresponds to a
digit between 0 and 9. We can observe how in VAE latent space the
different digits occupy different portions of the space and similar
digits are close to each other. In the case of CVAE instead, we
do not have any distinction between the digits in the overall latent
space, but if we consider each digit distinctly, every distribution
q(z|x, c = c) follows a Normal distribution N (0,1). 42

4.1 Standard data-driven pipeline for pedestrian trajectory forecasting.
From [9]. 44

4.2 Social LSTM model from [3]. Separate LSTMs model each one of
the agents and are interconnected by the social pooling layer which
allows neighbor information to be encoded. In the bottom a detail
of the social pooling layer for one person. 45

4.3 Social GAN architecture from [4]. 46

ix

4.4 Trajectron++ architecture from [5]. In the gray box, the modelling
of agent history at the top, the modelling of interactions in the
middle and the inclusion of map information at the bottom. In
orange the encoding of future steps used in training for the CVAE. . 47

4.5 Transformer TF architecture, from [7]. 49
4.6 AgentFormer architecture, from [8]. 50

5.1 Frames of Zara scene (left) and Univ scene (right). Image coordinates
are extracted from video and transformed to world coordinates. . . 54

5.2 ADE metric in the top, the distance between true and predicted
position is averaged across timesteps. FDE metric in the bottom,
only the last timestep is used to compute the distance. 56

5.3 Training curves for the Zara2 dataset with diverse embedding di-
mensions. On the top the training loss, on the bottom the ADE
and FDE, left and right respectively, computed on the validation
set. Orange is 512 emb., green is 256 emb., light blue 128 emb. and
blue is 64 emb. 58

5.4 Learning rate scheduler for different embedding dimensions. The
warmup steps are 3000. 59

5.5 Representation of different coordinates encodings. On the top raw
coordinates, bottom left coordinates centered in the first timestep,
bottom right coordinates centered on the last observed timestep. . . 63

5.6 Training curve of a model tested on the Hotel dataset. On the left
the ADE and on the right the FDE. We can observe the performance
differences between raw coordinates (blue), coordinates centered in
the first point (light blue), coordinates centered in Tobs−1 (red) and
relative coordinates (magenta). 63

5.7 Example of original trajectory (left) and rotated trajectory (right) . 65
5.8 Transformer GAN architecture. 68
5.9 Learning curves for the GAN. ETH magenta, Hotel grey, UCY blue,

Zara1 green and Zara2 orange. 70
5.10 DLow architecture applied to human motion forecasting. The net-

work Q outputs the parameters of the transformations that are
applied to Ô to obtain the k latent codes zi. The multiple latent
codes are fed to the generator to produce multiple and diverse
outputs. From [42]. 73

5.11 Proposed sampling method architecture, DLow with fine-tuning of
the generator parameters. The Q network outputs the parameters
that are used to transform the sampled vector Ô in k latent vectors
that generate k predictions. 74

x

5.12 Learning curves for the sampling method. ETH brown, Hotel ma-
genta, UCY grey, Zara1 light blue and Zara2 green. 76

5.13 Comparison between TF GAN prior (top) and after (bottom) sam-
pling method on an example from Hotel dataset. On the left 20
predicted trajectories, on the right the best one. 78

5.14 Comparison between TF GAN prior (top) and after (bottom) sam-
pling method on an example from UCY dataset. On the left 20
predicted trajectories, on the right the best one. 79

5.15 Comparison between TF GAN prior (top) and after (bottom) sam-
pling method on an example from Zara1 dataset. On the left 20
predicted trajectories, on the right the best one. 80

xi

Chapter 1

Introduction

This thesis investigates the task of trajectory forecasting, more specifically pedes-
trian trajectory forecasting, by using deep learning models and methodologies. The
task of pedestrian trajectory forecasting consists in predicting the future motion
of a pedestrian, given some past observations. There are two possible types of
trajectory forecasting, long term or short term based on how much in the future
we want to forecast. In this thesis we specifically focus on the task of short term
trajectory forecasting by predicting the motions for about five seconds.
Various applications can benefit from this work such as service robots which operate
in environments shared with humans and that should be able to anticipate human
motion to plan their actions, self driving vehicles in which the prediction of future
motion is also critical for safety reasons, or surveillance cameras which can detect
anomalies in an agent motion if it moves drastically different from its predicted
behaviour.
Modelling human motion is not an easy task and presents many challenges. It
consists in two main dimensions to model, the temporal sequence dimension and
the social interactions dimension, with the latter that must be able to handle a
variable number of agents in a scene. Also, the proposed trajectories should be
physically and socially acceptable and lastly, human motion is not deterministic
which means that a solution is not unique for this type of task and multiple futures
are plausible.
This work focuses the most on the stochastic aspect of the problem, by proposing a
generative model capable of multiple predictions and a refinement step to improve
its performance on the stochastic pedestrian trajectory forecasting task. One of
the main difficulties for a stochastic model is the capability to learn a multimodal
distribution for the trajectories and the proposed architecture tries to model this
aspect.
Many models have been developed in the years for this task, from physics-based
models such as the constant velocity model [1] or the very influential Social Force

1

Introduction

model [2], up to deep learning models based on Recurrent Neural Networks such
as Social LSTM [3], followed by Social GAN [4] and Trajectron++ [5] to name
a few. Some of these models are capable of multiple predictions, some of them
instead focuses more on modelling social interactions or both. With the advent of
the Transformer architecture [6], new models were introduced such as Transformer
TF [7] or AgentFormer [8] which is currently the state-of-the-art model alongside
Trajectron++ for the stochastic approach.
From the introduction of the Transformer, different works have demonstrated its
performances in sequence modelling tasks, such as in natural language processing
problems. For this reason, in this work a Transformer based approach to the tra-
jectory forecasting task is investigated. The initial model used for the experiments
is Transformer TF for its trade-off between simplicity and performance. A first
part of the experiments is dedicated to investigating the model performances under
some hyperparameters change, while a second part is dedicated to modelling the
stochasticity of human motion. In this second part a novel model is proposed and
tested in different settings and finally a sampling technique is proposed to improve
its stochastic performances by effectively modelling the multimodality. All the
experiments have been performed in collaboration with Addfor Industriale S.r.l.

The thesis is structured as follows. In Chapter 2 the problem of trajectory
forecasting is described, with its application, challenges and models used before
the advent of deep learning. In Chapter 3, an introduction to deep learning is
presented, the main components and the description of important architectures
such as Recurrent Neural Networks and the Transformer. In Chapter 4 a literature
review is done and some of the most important and current state-of-the-art models
for the trajectory forecasting task are described. In Chapter 5 the experiments and
the results are discussed, the datasets and metrics used are introduced, experiments
are conducted on the chosen model from literature and then a model proposal
is done to tackle the stochastic and multimodal behaviour of the task. Finally,
a literature comparison is presented to compare the results obtained with the
proposed architecture. In Chapter 6 the conclusions are drawn.

2

Chapter 2

Trajectory forecasting

2.1 Problem formulation
Pedestrian trajectory forecasting consists in forecasting the movement of the people
which conforms to the social norms. To formally define pedestrian trajectory
forecasting, firstly we have to introduce the notion of Trajectory and Scene.

• Trajectory is defined as the time-profile of pedestrian motion states, which
are generally the position coordinates sampled every t seconds. Additional
information can be used too (e.g. body pose, gaze direction) to add value to
each agent motion states.

• A Scene is a collection of trajectories of multiple humans interacting in a
social setting. A scene could also comprise physical objects and non-navigable
areas that affect the pedestrian trajectories.

With these notions it is then possible to define pedestrian trajectory forecasting
as:

Given the past trajectories of all pedestrian in a scene, forecast the future
trajectories which conform to the social norms. [9]

Trajectory forecasting is primarily a sequence modelling task. The time t
is discretized and the positions of every pedestrian are observed at time steps
t = 1, ...Tobs. Finally, the future positions of each agent are then forecasted from
time steps t = Tobs+1 to t = Tpred.

The predicted trajectories can also be more than one in a multimodal setting,
as it is observable in Figure 2.1. To tackle the task, firstly it is needed for the
spatial coordinates of the agents to be extracted from videos or sensors using a
functioning system that allows for detection and tracking of the agents. After this
step, it is possible to use them as inputs to the model. In this thesis the focus is

3

Trajectory forecasting

Figure 2.1: In white the coordinates at time steps t = 1, ...Tobs, in red and cyan
the predicted and ground truth coordinates respectively at t = Tobs+1, ..., Tpred.
Image from [10]

on the trajectory prediction module and not on the entire pipeline, considering the
inputs from the detection and tracking system as already given.

2.1.1 Regression and classification
The trajectory forecasting task can be tackled using two different approaches: a
regression or a classification approach. This depends on how the inputs and the
outputs are codified. Based on this distinction it is possible to categorize the
models in two: grid based and non-grid based.
Grid based models are models which tackle the task using the classification approach.
In these models, the scene is represented as a grid where each cell is a possible
position in the scene. The input to the model is the whole grid at each timestep
and the output trajectory is a sequence of cell representing the future occupied
cells for the considered agent. It is a classification task because the input scene
is discretized and the model at each step chooses in which cell the agent is going
to move. This type of approach is mainly used for its simplicity of representing
the input scene, which is of fixed length. Furthermore, each cell can also contain
other information than only the agent which is occupying it, such as his velocity,
direction etc. The main drawback of this approach is the approximation error
obtained by discretizing the scene both in input and output. Obviously, the more

4

Trajectory forecasting

grid cells is subdivided the scene, the less the less the approximation error going to
be, but using more grid cells makes the model more complex.
The other approach is the regression one used by the non-grid based models. In
these models, the inputs are agent states, which usually are the agent coordinates
(x, y) with some optional additional information, and the outputs are the agent
coordinates codified in real values. That is the reason why it is a regression problem.
Most of the state-of-the-art models use this approach which usually gives better
results than the grid based approach.

A representation of the two approaches is visible in Figure 2.2.

Figure 2.2: Classification and regression. On the left an example of discretization
of the input scene that leads to a grid based approach with classification. On the
right a non grid based approach that represents the inputs and outputs as real
values as a regression task. Image from [9].

2.1.2 Deterministic and stochastic
Another categorization of the models for trajectory forecasting is the distinction
between deterministic and stochastic models.
Deterministic models are models that from one observed scene are capable of
a single prediction, which is the most likely among the multiple possible ones.
This approach does not follow the real human motion behaviour which is not
deterministic. In fact, multiple trajectories are possible for an agent, even to
reach the same destination, and most of the times there is not a correct or wrong
trajectory to choose.
Stochastic models follows this intuition and are capable of multiple predictions
from the same past observed trajectory. Usually these multiple futures predicted

5

Trajectory forecasting

try to cover minor changes in the trajectory (such as a little direction change) or a
multimodal future in which the agent can move in various different directions (such
as an agent in front of a fork in the road). Many different models were proposed in
literature trying to model the stochasticity in human motion and some of them are
described in the next chapters.
This thesis aims at focusing more on the stochastic approach to the trajectory
forecasting task.

2.2 Applications
Pedestrian trajectory forecasting is a key task in different scenarios. Knowing and
predicting the future movements of agents can be beneficial mainly in this domains
[11]:

• Service robots: mobile service robots operate in environments that are shared
with humans. Anticipating their motion can be crucial for a safe human-robot
interaction and an efficient motion planning.

• Self-driving vehicles: an important field of application is autonomous driving,
where the ability to accurately predict pedestrian and other road users future
motion is critical for many reasons. It is different from the service robot
domain since the velocities and masses are higher, and the potential harm
for a bad forecasting module is much larger. Furthermore, vehicles need to
operate in rapidly changing settings and have real time operating constraints.

• Surveillance: video surveillance of vehicles or human crowds can also be an
application, since knowing a likely trajectory of the agents can be used to
detect anomalies and unexpected behaviours.

2.3 Objectives and challenges
The task of trajectory forecasting poses multiple challenges that are addressed in
diverse solutions. The main challenges are:

• Sequence modelling: it is necessary learn how to model short-term and long-
term dependencies in the past trajectory.

• Variable number of agents: since we are dealing with a non-static scene and
environment, we need to be capable of handling a variable number of agents
entering and leaving the scene at different times.

6

Trajectory forecasting

• Physically acceptable outputs: a good pedestrian trajectory forecasting model
should provide physically acceptable outputs, for example avoiding collisions.
This is crucial in safety critical applications.

• Social interactions: the trajectory of an agent is affected by other agents in
its surroundings. Modelling how an observation of a trajectory affects another
trajectory is a difficult challenge and an active field of research.

• Stochasticity: the task is stochastic in the sense that given the history of a scene,
there are multiple plausible futures (e.g. a pedestrian at an intersection), so it
is not deterministic by nature. In that case, having no additional knowledge
on the goal of the agents makes the acceptable possible outputs multiple. This
aspect is very difficult to model since usually we have only one ground truth
trajectory per agent, and it is not straight forward to evaluate the goodness
and plausibility of an output.

All these challenges are extensively investigated in the literature using various
methods. This work aims at tackling some of these challenges while focusing the
most on the multimodality aspect, since it is one of the most difficult to model.
The objectives of this project are to study and research techniques used to achieve
this goal accurately, developing a novel model capable of multiple predictions that
exploits these findings and compare the results with already available models from
literature to find differences and improvements.

2.4 Pre-deep learning
In recent years, increasingly more deep learning based models are proposed to
solve the task of pedestrian trajectory forecasting, but prior to the advent of deep
learning, the majority of the works in this area were physics-based models. In these
models, motion is predicted by defining an explicit dynamical model f based on
Newton’s law of motion. This section illustrates some important and influential
physics-based works.

2.4.1 Kinematic models
Kinematic models are the simplest kind of models to use for trajectory forecasting.
They do not consider any force that govern the motion. Most popular examples
include the constant velocity model (CVM), constant acceleration model (CAM)
[1] and coordinated turn model (CTM). The constant velocity model assumes
piecewise constant velocity based on the last two observed frames of the agent.
Denoting pti the coordinates (xti, yti) of agent i at time step t, it computes the point

7

Trajectory forecasting

velocity as ∆i = pti − pt−1
i and predicts the future positions as

pti = pTobsi + (t− Tobs)∆i t ∈ Tobs+1, ..., Tpred

Despite its simplicity, the CVM performs relatively well and has competitive results.
However, it has a lot of drawbacks as it assumes that the pedestrian will continue
to walk with the same velocity and direction of the last two time steps. It is
also very sensitive to measurement noise having no type of any filtering, and
more importantly, it does not take into account neither the environment or other
pedestrians. It also cannot predict curving trajectories.
Similarly to CVM, the constant acceleration model uses the last three time steps
and propagates the same acceleration in the future time steps.
Lastly, the coordinated turn model assumes instead constant turn rate and speed.
All these models are good approximations but do not model explicitly interactions
and cannot predict complex behaviours as avoiding obstacles, people that are
simple social norms.

2.4.2 Social force model
The social force model [2] is one of the most popular examples in the physics-based
models. It was developed in 1995 for crowd analysis and the key idea is that
the behaviour of a pedestrian, but also other agents, is guided by attractive and
repulsive forces from other agents and obstacles (see Figure 2.3). It is still very
influential since several works use the idea to improve the predictions. In the model,

Figure 2.3: Social force model with attractive and repulsive forces that govern
the motion. Image from [11]

the pedestrian behaviour is governed by three forces:

• A term describing the acceleration towards the desired velocity of motion.

8

Trajectory forecasting

• Terms reflecting that a pedestrian keeps a certain distance to other pedestrians
and obstacles (sum of repulsive forces).

• A term which models attractive effects (sum of attractive forces).

The resulting temporal changes dwα

dt
of the preferred velocity wα(t) of agent α are

defined by
dwα

dt
:= Fα(t) + fluctuations

Where Fα(t) is the sum of all the aforementioned forces and fluctuations term
takes into account random variations of the behaviour.
This way of formulating the problem derived from the observation that crowd
pedestrian behaviour has striking analogies with gases and fluids. The difference is
that the forces are not explicitly excerted by the environment on the pedestrian
body, but are rather a quantity that describes the motivation to act. A pedestrian
sense and perceive the environment and acts as if it has a force on his/her motion.

2.4.3 Energy minimization model
Following the social force model, an important work is the one formulated by
Yamaguchi et al [12]. They propose an agent-based energy minimization behavioural
problem. Each pedestrian is viewed as a decision making agent that consider various
factors to decide where to go next. This factors, which are personal, social and
environmental, are used to build an energy function that is used by the model for
an accurate behaviour prediction. Interestingly, this model estimates also the social
relationship of the people (grouping) and the desired destination of the agents.
The energy function for each pedestrian expresses the desirability of possible
directions of motion for the pedestrian. It is defined as

Eθ(v; si, s−i) = λ0Edamping(v; si) + λ1Espeed(v; si)
+ λ2Edirection(v; si) + λ3Eattraction(v; si, sAi)
+ λ4Egroup(v; si, sAi) + Ecollision(v; si, s−i|σd, σw, β)

(2.1)

Where θ = {λ0, λ1, λ2, λ3, λ4, σd, σw, β} are the parameters to be learnt, Ai is the
social group of pedestrian i, si is the state variable of the agent, sAi is the set of
state variables of the pedestrians in i’s social group and s−i the set of all state
variables excluding i.
The six terms of the function are:

• Damping: penalizes sudden changes in the choice of velocity.

• Speed: it is assumed that pedestrians have a preferred speed, it penalizes a
speed that deviates from the preferred speed.

9

Trajectory forecasting

• Direction: it indicates the correct direction to the assumed goal.

• Attraction: it models the fact that people in the same group tend to stay close
to each other.

• Grouping: people in the same group tend to walk at similar speed and
directions, it penalizes velocities different from the average of the group.

• Collision: agents try to avoid collisions with obstacles or other agents.

Having defined the energy function, the transition of position p and velocity v
of pedestrian i from time t to t+ ∆t follows

pt+∆t
i = pti + vt+∆t

i ∆t

vt+∆t
i = argmin

v
Eθ(v; sti, st−i)

And the θ parameters are optimized by fitting the energy function to the trajectories
in the training set.
The approach was then improved by [13] by considering different parameters to
encode different pedestrian behaviours (aggressive, mild, etc).

While the previously presented models reach quite accurate results in some
scenarios, they all rely on precisely calibrated and hand crafted features, which
require strong domain knowledge. With the rise of deep learning in recent years,
these models were replaced and the approach shifted from physics-based models to
data-driven ones.

10

Chapter 3

Introduction to deep
learning

3.1 Introduction
Deep learning is a subset of the machine learning field which extracts patterns
from data using neural networks (NN). Despite its current popularity and use, the
field started developing in the 50’s with the perceptron [14], a mathematical model
of a neuron of the brain and the principal component of a type of modern neural
network. Unfortunately, in such early years, the technology was too advanced for
the times which led to the so called AI winter, the research lost interest in the
subject. The reasons of the resurgence of interest in the topic should be attributed
mainly to three reasons [15, 16]:

• Big Data: much larger datasets are available, they are easier to collect and to
store. This is a huge advantage since neural networks require vast amounts of
data in order to be trained.

• Hardware: previously available hardware was not sufficient to support training
of deep learning models which requires high specs. In recent years, with the
advancements in Graphics Processing Units (GPUs) and parallelization, it is
more affordable.

• Software: the development of ready-to-use packages and libraries made the
topic more attractive to research and experiment.

The term deep is used because neural networks are composed by a large sequence
of stacked layers with many parameters to be tuned.

11

Introduction to deep learning

3.1.1 Neural networks
There are many kinds of neural networks, but to introduce the idea it is better
to start from the simplest and first one: the multilayer perceptron (MLP),
also called deep feedforward network or feedforward neural network. To
understand the concept of MLPs, we first have to study their main building blocks,
which are the perceptrons [14].
A representation of the perceptron can be seen in Figure 3.1. We can define:

Figure 3.1: Perceptron (from [17])

• xi the inputs.

• wi the weights.

• b the bias term.

• f(·) as the non-linear activation function.

• y the output.

A mathematical representation of the output is given by:

y = f

A
b+

lØ
i=1

xiwi

B
(3.1)

That is, the output of a single perceptron is simply a non-linear function applied
to the sum of a bias term and the dot product between the vector of the inputs
and the vector of the weights. The bias term only shifts the activation function
and it is not influenced by the weights.

12

Introduction to deep learning

Why is it important to have a non-linear activation function? Because if we do not
introduce a non-linearity in the model, we can only learn linear boundaries and
cannot approximate complex functions, no matter how many perceptrons we stack
on top of each other. In fact, a combination of linear functions will always result
in another linear function. Activation functions are a really important concept in
perceptrons and neural networks in general, there has been much research in the
topic and now the most used one is called the ReLU (Rectified Linear Unit), given
by:

f(x) = max(0, x) (3.2)
ReLU and its variants (LeakyReLU, Parametric ReLU...) are the most effective
for neural networks because they are computationally lighter with respect to other
functions since their derivative is close to the one of a linear function, and they help
the models converge faster. The reason because we are dealing with derivatives is
explained in Section 3.1.2.
Some of the most popular activation functions can be seen in Figure 3.2.

Figure 3.2: Activation functions (from [18])

Now we are ready to introduce the multilayer perceptron (Figure 3.3. It consists
in many perceptrons used alltogether in various layers and stacked. There are three
types of layers:

• Input layer : it is the first layer and it consists in the input nodes.

• Hidden layers: there is not a specific number of layers used, a neural network
is deep because of the many stacked hidden layers. They process the input
data and each layer is composed by many perceptrons, the number of nodes
in each layer is called width.

• Output layer : it consists in one or more nodes depending on the task we are
facing.

13

Introduction to deep learning

Figure 3.3: MLP structure (from [19])

Each node is fully connected with the previous layer. This type of model is
also called feedforward because the inputs flow from the inputs to the outputs
without feedback connections, as instead is a recurrent neural network (Section 3.2).

As stated before, this networks are represented by composing many different
functions. Denoting y our output, we can write

y = f(x) = f 3(f 2(f 1(x))) (3.3)

where f 1 is the first layer, f 2 the second layer and so on. During the training
of the network, we want to find an f which is the closest to the actual f ∗. This
ability to closely approximate any function is what makes neural networks very
powerful in many different conditions. One of the downsides of this generalization
capabilities is that they easily have many parameters to learn. Any connection
between nodes (weight) is one parameter to tune, so, it’s easy to see that adding
more nodes can drastically increase the number of parameters of the model.

3.1.2 Backpropagation
To train a neural network we need to introduce a measure, a distance from the true
answer and the actual output of the model. This measure is typically called loss

L(f(xi; W), yi) (3.4)

If the output of the model is not as expected, the value of the loss is going to be
big indicating a poor performing model. When we have more than one sample in

14

Introduction to deep learning

the dataset, the total loss (called empirical loss) is averaged over all samples as

J(W) = 1
n

nØ
i=1
L(f(xi; W), yi) (3.5)

This is also called objective function or cost function. There are many loss functions
and the use of these depends on the task we are dealing with (e.g. classification or
regression), the main takeaway is that, in any case, it measures a distance from
the desired result.
We can observe that the objective function J(W) is a function of the set of weights
and biases W of the network. So, our aim is to minimize the value of this function
by finding the best possible set of parameters W∗

W∗ = argmin
W

1
n

nØ
i=1
L(f(xi; W), yi) = argmin

W
J(W) (3.6)

But how do we change the values of the weights to improve the loss? To do so, we
have to know how the variation of each weight impacts the loss. This can be done
using backpropagation.
Backpropagation is build upon the concept of the chain rule, which states that if
we have y = f(u) and u = g(x) both differentiable, the derivative of y is

∂u

∂x
= ∂y

∂u

∂u

∂x
(3.7)

That is, the derivative of a composite function can be split in sub-parts. Recalling
3.3, we can represent an MLP as a sequence of composite functions where we can
apply the chain rule.
To explain backpropagation, we need to recap the notation used:

• f(·) is the activation non-linear function (ReLU, sigmoid, Figure 3.2)

• zli is the value of neuron i in layer l before passing through f

• ali is the activation value of neuron i in layer l

• wljk is the weight between nodes j and k from layer l to l + 1

• blj is the bias of node j in layer l

• y is the output of the network

• J(W) is the cost function

15

Introduction to deep learning

Considering an MLP with only 3 layers (1 input layer, 1 hidden layer and 1
output layer) and with the output layer consisting only in one neuron, we can
simplify notation by denoting y = a3, the output of the model is the activation of
the third layer neuron. We can now write the partial derivative of the cost function
J(W) with respect to the weights between hidden and output layer as:

∂J(W)
∂w2

j1
= ∂J(W)

∂a3
∂a3

∂z3
∂z3

∂w2
j1

(3.8)

where we applied the chain rule going backward through the network. If we want
to go back on the parameters of the first layer we need to recursively apply the
chain rule and expand the previous equation as:

∂J(W)
∂w1

jk

= ∂J(W)
∂a3

∂a3

∂z3
∂z3

∂a2
k

∂a2
k

∂z2
k

∂z2
k

∂w1
jk

(3.9)

We can now see how the derivative of the activation function ∂alk
∂zl
k

plays a role in
the backpropagation algorithm.

We denote the first two terms of the previous equations as:

δ3 = ∂J(W)
∂a3

∂a3

∂z3 = ∂J(W)
∂a3 f Í(a3) (3.10)

as the error term which we send back from the output through the network. The
third term of 3.8 is instead

∂z3

∂w2
j1

= a2
j (3.11)

and we can rewrite 3.8 as:
∂J(W)
∂w2

j1
= δ3a2

j (3.12)

Now, going one layer back, we see that:

∂z3

∂a2
k

= w2
k1 (3.13)

and we rewrite 3.9:
∂J(W)
∂w1

jk

= δ3w2
k1f

Í(a2)a1
j (3.14)

Generalizing, we note that the error δl in the previous layer is the weighted sum
of the errors in the next layer δl+1, so we define:

δlj = f Í(al)
mØ
i=1

δl+1
i wlji (3.15)

16

Introduction to deep learning

So 3.14 becomes:
∂J(W)
∂w1

jk

= δ2
ka

1
j (3.16)

And in general, for each neuron in every layer:

∂J(W)
∂wljk

= δl+1
k alj (3.17)

∂J(W)
∂blj

= δlj (3.18)

It is called backpropagation in fact, because the error in the output backpropagates
through the network going backwards. In this way we can compute how each
weight influences the output and change the values of the parameters accordingly,
using optimizers which use this gradient information.

3.1.3 Optimizers
We have seen how to compute the gradients with respect to every parameter of the
network. Once we have the gradients (which tell us the direction of major increase
of the cost function) what do we do with such information?
We iteratively update the network parameters using an algorithm called optimizer,
because it updates the network parameters trying to optimize and minimize the
loss function. Almost the entirety of the optimizers are based on the gradient
descent algorithm (see 1) where

• W are the network parameters

• ∂J(W)
∂W is the gradient of the loss function with respect to the network parameters

• η is a hyperparameter called learning rate

Algorithm 1 Gradient descent algorithm
Initialize parameters randomly ∼ N (0, σ2)
while not converged do

Compute gradient ∂J(W)
∂W

Update parameters W←W− η ∂J(W)
∂W

end while
return W

The gradient descent algorithm exploits the gradient direction information and
updates the parameters in the opposite direction (the minus sign in the update

17

Introduction to deep learning

formula) which is the fastest decrease of the cost function.

The η hyperparameter is one of the most important in training. It represents
how much of a step we want to take in that direction. It is fundamental for a
proper training to set it right, since a not tuned learning rate can cause the loss
function to bounce between values and diverge by never reach a local minimum,
or to move too slowly to a solution remaining stuck to a false one or making the
training very long.

There are three variants of the algorithm that differ in how much data we use
to compute the gradient of the cost function [20]. By choosing the amount of data
which takes to update the parameters, we make a trade-off between the accuracy
of the parameter update and the time to make that update.

• Batch gradient descent: compute the gradient with respect to all training data.
Very slow and cannot be used in online training or with large datasets.

• Stochastic gradient descent (SGD): computes and performs an update for each
training sample. Fast but the updates have an high variance which causes
the cost function to fluctuate heavily. This high variance in updates enables
SGD to jump to potentially better local minima, but at the same time makes
the convergence much more difficult to the point that it is not guaranteed to
converge.

• Mini-batch gradient descent: it is in the middle of the previous two and
compute an update after n samples. Using this mini-batch decreases the
variance of the parameters update leading to a more stable convergence and a
faster training.

Since we are dealing with non-convex cost functions, finding the global minimum
is a very difficult problem. With the gradient descent algorithm we can find a local
minimum, but we do not know the goodness of the solution. This method is also
highly affected by the learning rate, which is static and fixed for the whole training.
To overcome these limitations, many other optimizers where invented that make use
of an adaptive learning rate or some terms that benefit the optimization procedure.

Momentum

Gradient descent has some difficulties when dealing with areas where the cost
function surface curves much more steeply in one direction than in another, where
instead there is the local minimum. In these cases, the gradient oscillates between
the slopes and approaches the local minimum very slowly, making the training too
slow. Momentum is a method that helps accelerate gradient descent in the right

18

Introduction to deep learning

direction while minimizing these oscillations. It can be seen graphically in Figure
3.4. It does this by adding a term γ that adds a fraction of the past update vector

Figure 3.4: Momentum representation (from [15]). Black arrows indicate the
step that gradient descent would take in that point, while the red line indicates
the path followed with momentum.

to the current update vector:

vt = γvt−1 + η
∂J(W)
∂W

(3.19)

W←W− vt (3.20)
The result is similar to pushing a ball down a hill. It accumulates momentum as
it gains velocity and the same happens to the network parameters. This makes
the update of the parameters that change directions smaller, while accumulating
for parameters that keep the same decrease direction, thus reducing the oscillation
effect.

Adam

Adam (Adaptive Moment Estimation) is a method that computes adaptive learning
rates for each one of the parameters. It uses an exponentially decaying average of
past squared gradients vt and an exponentially decaying average of past gradients
mt. The decaying averages are computed as:

mt = β1mt−1 + (1− β1)∂J(W)
∂W

(3.21)

vt = β2vt−1 + (1− β2)
A
∂J(W)
∂W

B2

(3.22)

where mt and vt are the first moment (the mean) and the second moment (the
variance) respectively of the gradients. We can see that mt is a similar term to

19

Introduction to deep learning

momentum.
Since mt and vt are initialized to zeros, they are biased toward that value and it is
needed to counteract this bias by computing the corrected moment estimates as:

m̂t = mt

1− β1
(3.23)

v̂t = vt
1− β2

(3.24)

and the update rule becomes:

W←W− η√
v̂t + Ô

m̂t (3.25)

There are many others optimizers (Adagrad, Adadelta, RMSprop...) which work
in similar ways, but currently Adam is one of the most used in practice given its
very good performance across many different types of training tasks.

There are also various additional strategies that can be used to further improve
performance of the training:

• Batch normalization [21]: during training, the parameters are updated all
together in a single step, but the update of the parameters in a following
layer is based on the parameters of the previous layer which are going to be
updated too. This makes the training as forever chasing a moving target.
Batch normalization was proposed to overcome this limitation and it does so
by standardizing the activations of each layer, so that the following layers will
receive roughly the same distribution of inputs. This technique improves the
training by speeding it up and stabilizing it.

• Early stopping: it is a technique that monitors the training and validation
set errors. If the validation error does not improve, or even get worse during
training for some extended period of time, the training is stopped and the
previous best possible model on the validation set is taken.

• Gradient noise: it consists in adding noise that follows a Gaussian distribution
to every gradient update. The Gaussian distribution is centered in zero and
the variance follows a specific schedule which helps the model to be more
robust to bad parameter initialization. It could be due to the fact that it is
easier to escape and find a new local minimum during training.

3.2 Recurrent neural networks
Recurrent Neural Networks (RNNs) are a type of neural networks introduced and
developed in order to handle different-length sequential data. That is because

20

Introduction to deep learning

standard neural networks have difficulties in dealing with variable length data while
RNNs overcome this issue. This is possible thanks to a recursive processing unit
combined with a hidden state derived from the past. The use of an hidden state
allows the information to flow through the sequence. In a vanilla RNN, the general
formulas to compute the hidden state ht and the output vector yt are:

ht = σh(Whxt + Uhht−1 + bh) (3.26)

yt = σy(Wyht + by) (3.27)

Where:

• xt is the input vector

• Wh, Uh are the weight matrices applied to the input and previous hidden state
respectively

• bh and by are the bias terms

• Wy is the weight matrix applied to the hidden state to compute the output

• σh and σy are the non linear activation functions

An illustration of a general RNN framework is displayed in Figure 3.5. From
the recurrent pointing structure on the left of the figure we can observe that:

• It does not depend on the length of the sequence (i.e. we are not bounded to
any specific length of the input/output).

• The hidden state represents the past sequence up to that point. To generate
the future hidden state, the previous one is fed to the recurrent block together
with the current input.

• All the parameters (weight matrices, biases and activation functions) are
shared between the RNN cells.

Backpropagation Through Time

Backpropagation Through Time [23, 24] is the algorithm used to train RNNs. It
is the same concept as backpropagation since we are still applying the chain rule
to compute gradients, the only different is that at each layer the parameters to
optimize are the same. The goal is to optimize the matrices Wh, Uh, Wy and the
biases in order to minimize the objective function L(y, ŷ). The chain rule is applied
starting from the last step to the first one, considering one step at a time. The

21

Introduction to deep learning

Figure 3.5: On the left a general RNN structure. On the right the equivalent
unfolded version where every time step is represented with the same repeated
structure. xt and ht are the input token and relative hidden state at time step
t respectively. In the figure, the passage from ht to yt it’s not represented (from
[22]).

drawback using this kind of parameters update is that we cannot take advantage of
any parallelization given the fact that we need to compute the gradients recursively,
and the chain can get very long when t is large.

Advantages and problems of RNNs

Standard RNNs have some difficulties when dealing with long sequences, the main
problem is that they cannot capture long term dependencies in the inputs when
the sequence is long. This problem was investigated in [25, 26] that showed that
this behaviour is caused by vanishing and exploding gradients. We have vanishing
gradients in deep neural networks when the value of the gradients gets smaller and
smaller as we propagate backward the gradients. In fact, if the gradients are very
small, the parameters of the network do not change, making the training slow and
inefficient.
On the other hand, RNNs can be considered very space efficient models since their
dimension do not depend on the dimension of the input or output.

3.2.1 LSTM
Long Short Term Memory (LSTM) networks [27] are a kind of RNNs that overcome
some limitations of the vanilla RNN. As the name suggests, they were designed
specifically to tackle the long term dependency problem [25], making it possible to
learn and remember information for long periods of time.
The key idea behind the LSTM is the cell state which is the top line in the right
Figure 3.6. This line runs through all the network, easily carrying information from
previous states. The LSTM has the abilty to add or remove information from the

22

Introduction to deep learning

Figure 3.6: RNN cell architecture (left) vs LSTM cell architecture (right). From
[22].

cell state through the gates. There are three gates in a LSTM cell:

• The forget gate Gf

• The update gate Gu

• The output gate Go

The forget gate decides how much information retain from the previous cell state
ct−1. The decision is done based on the previous hidden state ht−1 and current
input xt passed through a linear transformation and a sigmoid function which
outputs a number between 0 (forget) and 1 (remember). The operation of the
forget gate Gf is:

Gt = σ(Wf [ht−1, xt] + bf) (3.28)

The update gate decides what new information we want to store in the cell. The
first sigmoid layer decides which values of the cell state ct−1 we want to update,
and then a tanh layer produce the values which we are going to add to the previous
cell state. Thus, the overall update gate function is:

Gu = σ(Wi[ht−1, xt] + bi)¤ tanh(Wc[ht−1, xt] + bc]) (3.29)

Where ¤ represents the element-wise product. The next cell state vector ct is then
obtained with:

ct = Gt ¤ ct−1 +Gu (3.30)

23

Introduction to deep learning

Finally, we have to derive the next hidden state ht. The next hidden state is
obtained through the current new cell state ct and the concatenation of previous
hidden state ht−1 and input xt. We define the output gate Go as:

Go = σ(Wo[ht−1, xt] + bo) (3.31)

and consequently the new hidden state is:

ht = tanh ct ¤Go (3.32)

The sigmoid function of the output gate decides which elements of the new cell
state we are going to output.

3.3 Attention
The attention mechanism emerged first in the NLP and machine translation areas.
The reason for it is that these are problems dealing with time-varying data and
sequences (sequence to sequence models). Now, it has been extended to other
domains too, such as computer vision, but the main approach is always to deal
with sequences.
Traditionally, RNN based models that use an encoder-decoder structure are used
when dealing with sequences. That is because RNN are sequential models and we
want to transform an input (encoder) to an output (decoder). Both the encoder and
decoder usually consist in stacked RNN layers, such as LSTM’s. In basic machine
translation, for example, each word of the input is fed to the encoder sequentially,
together with the hidden vector from the previous iteration. This repeats until the
last word is processed, and we obtain the encoded sequence representation c, the
context vector. Usually, the encoding c has a fixed size and corresponds to the last
hidden state of the RNN encoder. This context vector is then fed to the decoder
which outputs autoregressively, one word at a time.
This approach however is not optimal for two reasons:

• Bottleneck problem: the context vector c has a fixed length so the information
of the input that it can carry is limited.

• Information loss: RNN’s have trouble dealing with long sequences. They have
difficulties remembering information from far behind steps, so, in a long input
sequence, the context vector c would carry much more information about the
last steps than long past ones.

Attention was proposed to solve these issues. The main idea is that the decoder
should have access to different parts of the input at different steps, not just to a
context vector that represents all the input sequence. In other words, it should be

24

Introduction to deep learning

able to focus on different aspects at different steps, it should learn an alignment
between target tokens and source tokens. The concept was introduced by Bahdanau
et al. [28] in 2015. However, in the next subsections we describe the taxonomy of
attention and the different types.

3.3.1 Global or local attention
The difference between global and local attention is how much of the input we
want to concentrate on. In global attention, the attention is computed over the
entire input sequence, the context vector is produced using all the hidden states of
the encoder. Even though this approach is preferable, for long sequences in input
it can become impractical and too expensive computationally speaking (for each
output token, compute attention over all the input sequence). For this reason,
local attention was proposed [29]. In local attention, the model learns an aligned
position pt for each target token at time t. The context vector ct is then derived
using a window of width 2D centered on pt over the input tokens. pt can be either
simply put as t or computed dynamically. So, in local attention we only compute an
alignment between the target token and a subset of the inputs, drastically reducing
computational requirements needing only 2D+ 1 weights per token. The two types
are represented in Figure 3.7.

Figure 3.7: Global and local attentions from [29]. Each blue box is an input token
hidden state, while the grey boxes are the target tokens states after transformation
from attention. We can observe that the context vector ct is computed with different
source tokens between global and local attention (not the same connections to the
context vector).

25

Introduction to deep learning

3.3.2 Hard attention
With hard attention we refer to a type of attention which is parametrized by
non differentiable functions. It usually means that this type of attention uses a
stochastic sample model and it is not trainable with standard gradient descent. At
each time t, an hidden source state is sampled from a distribution (the sampled
hidden state usually is a well aligned state). Using this sampling strategy, gradient
descent is not usable and reinforcement learning techniques are used to train the
models, making the training more difficult and not straightforward with respect to
the soft attention counterpart.
Hard attention can be viewed as a switch mechanism to determine whether to
attend a region or not, only focusing on a single token.

3.3.3 Soft attention
Soft attention is the one proposed first by [28] and differently from hard attention
it is differentiable, thus standard backpropagation algorithms can be applied. It is
a type of global attention and it consists in a weighted sum between all the encoder
hidden states to represent the context vector at time i:

ci =
TxØ
j=1

αijhj (3.33)

Where ci is the context vector, Tx is the source sequence length, αij is the weight
between target state at position i and source state at position j and hj is the
encoder state at position j. We can notice that the context vector is different for
every target word.
The weights α are computed as:

αij = exp(eij)qTx
k=1 exp(eik)

(3.34)

where
eij = score(si−1, hj) (3.35)

is called alignment model and measures how well the inputs at position j match the
output at position i. si is the decoder hidden state at position i. It is interesting to
notice that the weights are computed using a softmax function, which can give us
a probabilistic interpretation. In fact, the probability αij reflects the importance
of the hidden state hj with respect to the previous decoder hidden state si−1 in
producing the next state si. By letting the decoder have the possibility to attend
to all encoder states, we relieve the encoder from the problem of encoding all the

26

Introduction to deep learning

input sequence to a fixed-length vector.
There are various alignment models that can be exploited such as:

score(si, hj) =

cosine[si, hj] content-based
vTa tanh(Wa[si;hj]) additive
sTi Wahj general
sTi hj dot-product

(3.36)

where va and Wa are weight matrices to be learned and [;] represents concatenation.
The one proposed by [28] is the additive score, which consists in a small fully
connected neural network (backpropagation available) and it is still used.
This kind of attention is the most used, but we should know that with the improve-
ments it brings, it also has the downside that adds more computational complexity
to the model. Examples of word alignments of soft attention can be viewed in
Figure 3.8, while the practical difference between soft and hard attention in Figure
3.9.

Figure 3.8: Example of soft attention on a English to French translation task.
The brightness of the squares indicates the attention weight between the two words
during the generation phase. It is interesting to notice that the model learned to
align correctly the adjectives which are used in different orders from English to
French (from [28]).

27

Introduction to deep learning

Figure 3.9: Soft vs hard attention. Soft attention is a global attention differen-
tiable over the entire input domain, while hard attention focuses only on a state of
the input sequence and it is a local attention to only one state, it typically requires
reinforcement learning techniques to be trained.

3.3.4 Self attention
Self attention, also referred to in literature as intra-attention, is an attention
mechanism relating different positions of a single sequence. It has been used in
machine reading, abstractive summarization, image description generation and it is
a key component of the Transformer architecture as we are going to see later in this
work. In machine reading for example, self attention let us estimate a correlation
between words in a text, scoring the alignment similar to as previously mentioned.
The end goal of this type of attention is to create a meaningful representation of
the sequence before transforming it to another one.

3.4 Transformers
The Transformer is a novel architecture presented in 2017 by Vaswani et al. [6]
that deals with sequences. It was firstly applied to the machine translation task
(in the original paper English-to-German and English-to-French) and then it was
generalized to many other tasks, including computer vision. The novelty in the
architecture stands in the fact that it totally replaces recurrences and convolutions,
relying solely on the attention mechanism we have seen above to draw global
dependencies between input and output. The name is Transformer in fact, because
it transforms the inputs gradually using the attention mechanism, to obtain the
desired outputs. The total replacement of recurrences gives a significant speed-up
in training, since now the model can benefit from parallel training, achieving

28

Introduction to deep learning

state-of-the-art results in many tasks. Another benefit with respect to RNNs is
that it is able to model long-term dependencies between the inputs, replacing the
backpropagation-through-time with standard backpropagation as well as attention
mechanism, making it possible to overcome some issues linked to the vanishing
gradient problem.

3.4.1 Transformer architecture
As most of the sequence-to-sequence models, the Transformer model use an encoder-
decoder architecture. In these sections we are going to refer to the standard
Transformer model, the one of [6].
The Transformer architecture can be seen in Figure 3.10. First, the encoder
maps an input sequence of symbol representations (x1, ..., xn) to a sequence of
continuous representations z = (z1, ..., zn) called encoded representation. From this
encoded representation, the decoder generates the output sequence (y1, ..., ym) one
element at a time, in an autoregressive fashion. This means that at each step, the
decoder consumes the previously generated symbol as additional input for the next
generation.

Interestingly, as we can see from the figure, the generation of the words in the
decoder comes from different self-attention layers, that combine both the previously
generated output and the encoded representation of the input. That is because,
when decoding a sequence, we want to pay attention both to the source and to the
partial current state of the output.
To understand the Transformer, we need to present the different parts which is
composed of, that are:

• The attention mechanism

• The encoder structure

• The decoder structure

• The input embeddings

• The positional encoding

3.4.2 Attention mechanism
The attention mechanism is one of the most important components in the Trans-
former. As already described in the previous section, attention can be seen as a
way to align two sequences, making possible to focus more on certain aspects of
the input sequence instead of the whole. In fact, an attention function can be
described as mapping a query and a set of key-value pairs to an output, where the

29

Introduction to deep learning

Figure 3.10: Transformer architecture as proposed in [6]. The grey block on the
left is the encoder block, while on the right is the decoder block.

query, keys, values, and output are all vectors [6]. The output is a weighted sum of
the values, where the weights are computed using a compatibility function of the
query we are searching with the corresponding key.
The type of attention used in the Transformer is the scaled dot-product attention
(Figure 3.11).

The inputs of the attention are vectors of queries and keys of dimension dk,
and values of dimension dv. For conciseness and simpler notation, set of queries,

30

Introduction to deep learning

Figure 3.11: Scaled dot-product attention operations (from [6])

keys and values are stacked together and represented by matrices Q, K and V
respectively. The dot product of the queries with all the keys is computed, then
divided by

√
dk and then passed through a softmax function to obtain the weights

of the values. Using the matrix notation we can write:

Attention(Q,K,V) = softmax
A
QKT

√
dk

B
V (3.37)

The term
√
dk is used for numerical stability reasons, the authors suggested that if

the input sequence is large, the dot product could grow large in magnitude, pushing
the softmax function to values that have extremely small gradients. The square
root term was added to counteract this problem. The softmax function instead is
used to have a sum to one for each query.
In practice, we score the queries with the keys to get a compatibility value (weight)
which is used to weight the corresponding value vector.

This is the concept used in all the attention blocks of the Transformer, but what
are queries, keys and values? How do we compute them?
Queries, keys and values are projections of the previous layer embeddings. These
projections are just the multiplication of the inputs with matrices learned during
the training phase. The main difference between the various attention blocks is in
what is the input projected as keys, queries and values. For this reason there are
three types of attention blocks.

31

Introduction to deep learning

Encoder self-attention block

In the encoder self-attention block, all queries, keys and values come from the same
input, the source sequence. The goal of this type of attention is to transform the
input embeddings by allowing the model to look at other positions in the input
sequence for clues that can help lead to a better encoding for the token [30]. In this
case, the attentional weights are computed over the whole input sequence, since
each position can attend to all positions of the previous layer. For example, if we
are in an NLP task and we are encoding the sentence

The animal didn’t cross the street because it was too tired.

How does the machine know that the word it refers to the animal? It does so
thanks to the encoder self-attention. The encoding of the world it is transformed
in the various layers to encode also the information of what it refers to.
It creates a meaningful representation of the input by learning the relations and
syntax of the source sequence.

Decoder self-attention block

The decoder self-attention block is very similar to the encoder one. The only
differences are that the queries, keys and values are all obtained from the decoder
input sequence, instead of from the source sequence, and that each positions cannot
look to all the other positions in the attention layer. Each position in the decoder is
allowed to attend only up to and including the considered position. It is important
to preserve the autoregressive property and this is done by masking subsequent
ground truth words during training, forcing to zero their weights in the attention
pass.

Encoder-decoder attention block

In the encoder-decoder attention block, the second attention module in the decoder,
we have the queries which are computed from the previous decoder layer, while
the keys and values come from the output of the encoder. In this way, we can
score each query, so each position in the decoder, over every position of the input
sequence. This type of attention is the most similar to the traditionally used one
previous to Transformers in sequence-to-sequence models, the one proposed by
Bahdanau and explained in Section 3.3.

Multi-head attention

Multi-head attention was introduced to expand the model’s ability to focus on
different positions while keeping a very similar computational cost to the single head

32

Introduction to deep learning

counterpart. It consists in projecting h times the queries, keys and values, reducing
their dimension from dmodel to dk, dk and dv respectively, and then performing the
scaled dot-product attention pass h times with the h different projections. We then
concatenate the h dv dimensional output values and finally project the result again
to obtain the final attentional output. The process is represented in Figure 3.12.
Formally we can write:

Figure 3.12: Multi-head attention as in [6]

MultiHead(Q,K,V) = Concat(head1,...,headh)WO

headi = Attention(QWQ
i , KWK

i , VW V
i)

(3.38)

WhereWQ
i ∈ Rdmodel×dk ,WK

i ∈ Rdmodel×dk ,W V
i ∈ Rdmodel×dv andWO ∈ Rhdv×dmodel .

In the original paper by Vaswani, h is set to 8, dmodel = 512 so dv = dk = 64.
Using this approach, it gives the attention layer multiple representation subspaces,
meaning that by segmenting the input embedding across multiple heads, different
sections of the embedding can attend different per-head subspaces. It can almost
be seen as a form of ensembling.

3.4.3 Encoder
The encoder in the original Transformer is composed by a stack of N = 6 identical
layers, where each layer of the stack is composed by two sub-layers. To each
one of the two sub-layers, a residual connection is employed, followed by a layer

33

Introduction to deep learning

normalization. That is, the output of each sub-layer is:

LayerNorm(x+ Dropout(Sublayer(x))) (3.39)

where Sublayer(x) is the function of the sub-layer itself.
There are two kinds of sub-layers: a multi-head self-attention mechanism and a
simple fully connected feed forward network (FFN). The self-attention sub-layer is
explained in the above section, while the fully connected one consists only in two
linear transformations with a ReLU activation in between. Formally:

FFN(x) = max(0, xW1 + b1)W2 + b2 (3.40)

The N layers are identical in structure, but do not share weights.

3.4.4 Decoder
In the originally proposed Transformer, also the decoder is composed by a stack of
N = 6 identical layers. But, differently from the encoder, each one of the decoder
layers has three sub-layers. The inputs of the decoder, which are the decoded
tokens after i steps (recalling the auto-regressive property of the Transformer), pass
at first through a masked multi-head self-attention sub-layer, then through a multi-
head cross-attention sub-layer and finally through a fully connected feed-forward
sub-layer. Similarly to the encoder, for each sub-layer a residual connection is
employed followed by a layer normalization.
There are two attentional sub-layers because the first one is used to generate a
meaningful representation and to look for relations in the decoder inputs, while the
second, the cross attention sub-layer, is used to relate the encoder and the decoder,
allowing the decoder to focus on the parts of the input on which it wants to focus
more, thus conditioning the generation process.
The masking, together with the fact that the output tokens are offset by one
position, ensures that the generation for position i can depend only on the known
outputs at positions less than i.

3.4.5 Input embedding
In order for the model to process the input information, it must be in a numerical
form. In the case of the original Transformer, since we are dealing with words, we
need to transform words into numbers prior to inputting them to the model, but
the practice of embedding the input is present in other situations too. For example,
even if we have (x, y) coordinates or velocities in the case of trajectory forecasting,
and they are in numbers, we need to embed this information in a standard and
understandable way for the model.

34

Introduction to deep learning

So, if we are dealing with text, a technique called word embedding is used to map
words or phrases from a vocabulary to a corresponding vector of real numbers. This
representation is both more efficient and more expressive. It is different from a bag
of words approach, where every word is represented with a one-hot encoded vector
of the vocabulary dimension. This representation is very sparse and has a very
high dimensional space. Furthermore, a bag of word approach does not take into
account any information about the word, the semantic information, while instead
using a word embedding preserve these similarities, and semantically similar words
are close in the vector space.
There are different algorithms which are used to find word embeddings where
the most popular are word2vec [31] and GloVe [32]. In the case of the original
Transformer, the embedding vectors have dimension dmodel = 512.

3.4.6 Positional encoding
One last key component of the Transformer is the positional encoding. It is essential
for a model that deals with sequences to know the order of the inputs, this is
important for a language task (words have an order in the sentence), but also in
general to any kind of sequence task. RNNs by design take into account the order
of the sequence, processing it in a sequential manner, but Transformers do not have
this characteristic using only attention without any recurrence. Since Transformers
can benefit from parallel training and every input token flows simultaneously
through the model, they need to know the position of each one of them. In order to
know each token position, Vaswani et al. proposed the positional encoding, adding
this information to every input embedding.
We could think that assigning a number between [0,1], where 0 is the first token
and 1 the last one, could be a valid idea, but in this way the model would not be
able to figure out how many words are present in a specific range. Different length
sequences would have different deltas between tokens.
Another idea could be to assign increasing numbers from 1 onward to the tokens.
The problem here is that numbers could grow large and the model would not
generalize well without seeing samples of all lengths [33]. We need an encoding
such that:

• It should output a unique encoding for each time-step.

• Distance between any two time-steps should be consistent across sequences
with different lengths.

• It should generalize to longer sentences without any efforts

• It must be deterministic.

35

Introduction to deep learning

The authors proposed a solution which is not a single number but a dmodel dimen-
sional vector, where dmodel is the dimension of the input embedding. Formally:

PE(pos,2i) = sin
3

pos

100002i/dmodel

4
PE(pos,2i+1) = cos

3
pos

100002i/dmodel

4 (3.41)

where pos is the position and i is the dimension. Each dimension of the positional
encoding corresponds to a sinusoid. We can visualize the positional encoding in
Figure 3.13 and we can observe that the frequencies are decreasing along the vector
dimension.
An important property of the proposed positional encoding is that it allows the

Figure 3.13: First 50 positional encodings using a dmodel-dimensional vector of
128. Each row represents a positional encoding vector. From [33].

model to attend to relative positions. The authors hypothesized this, because for
any fixed offset k, PEpos+k can be represented as a linear function of PEpos.
The positional encoding is then summed with the input embeddings (this is done
only once before the first encoder or decoder layer) to inject the positional informa-
tion.

36

Introduction to deep learning

3.5 Generative models

3.5.1 GANs
Generative Adversarial Networks [34], abbreviated as GANs, are a class of generative
models. Generative models are a type of models which try to replicate and estimate
a probability distribution pmodel, from samples drawn from a distribution pdata of
the training set. In order to do so, GANs use a game between two players. The
first player is called the generator G and the second the discriminator D. The goal
of the generator is to generate samples that resemble the samples of the training
set and that are indistinguishable from it, while the goal of the discriminator is
to tell whether the samples which are fed to it are real or fake, fake meaning that
they were created by the generator. To succeed in the game, the generator must
fool the discriminator. Both the generator and the discriminator are differentiable
functions which usually are neural networks.
So, the generator tries to capture the data distribution and a discriminator estimates
the probability of that sample. To learn the generator distribution, the generator
builds a mapping function from a prior noise distribution pz(z) to G(z; θg), while
the discriminator only outputs a scalar D(x; θd) and we simultaneously train both.
The parameters of the models are updated by minimizing log(1−D(G(z))) for G,
and maximizing the probability of assigning the correct label for D. D and G play
a minimax game with value function V (G,D):

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))] (3.42)

An important thing to notice is that generative models are stochastic by nature,
meaning that they could learn to represent multi-modal distributions. This is very
useful in various tasks, such as image generation, next frame prediction, etc., but in
trajectory forecasting too. In fact, even if we have a single ground truth trajectory,
there are multiple possible ways to overcome an obstacle for example, or to avoid
collision with other pedestrians. Since it is intrinsically stochastic, the pedestrian
trajectory prediction task can be effectively addressed with generative models.
However, there is a problem when using vanilla GANs for trajectory forecasting,
the fact that in simple GANs the input to the generator is random noise, and that
there is no control in what is going to be the output. How can we decide what
should be the output? Conditional GANs come into play.

3.5.2 CGANs
Conditional GANs (CGANs) [35] were proposed in order to have more control
on the sample generation process. In this case, both the discriminator and the
generator are conditioned with some extra information y. y can take any form

37

Introduction to deep learning

and it is not bounded by being only the class label for example. The conditioning
is done by composing the prior noise pz(z) with y, and it can be done in several
different ways. An overview of the CGAN architecture is illustrated in Figure 3.14.

Figure 3.14: Conditional GAN architecture as proposed in the original paper [35].
Both the discriminator and generator are additionally fed the y conditioning (in
green). During training, alongside the y conditioning, the input to the discriminator
can be either the generator output or the sample from the training set (light grey
lines).

The objective function of the minimax game conditioned on y can be expressed
as:

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x|y)] + Ez∼pz(z)[log(1−D(G(z|y)))] (3.43)

3.5.3 Variational Autoencoders
Variational Autoencoders (VAEs) [36] are a class of generative models which derive
from autoencoders. Autoencoders are networks that try to compress the input to a
lower dimensional space (called latent space), which is then reconstructed to the
original input dimension. The lower dimensional vector is also called the encoding
vector or the latent vector and each dimension of it represents a feature of the
data. Differently from a simple autoencoder, a variational autoencoder provides
a probabilistic formulation of the latent space, where each attribute of the latent
vector is no longer described by a single value but by a probability distribution.

38

Introduction to deep learning

For example, if an autoencoder is trained on a large dataset of images of faces
with a small encoding dimension, each dimension of the encoding would learn
descriptive attributes of a face, such as skin color or smile, trying to compress the
initial image into a low dimensional representation. Each attribute of the encoding
vector would be a single value, but we would like to have a probabilistic repre-
sentation of the input, where each of the latent attributes follows a probabilistic
distribution and can have a value in a range of values. Once we have the encoded
representation where each of the attributes is described by a probability distribu-
tion, we sample from them and use the sampled values as inputs to the decoder.
By not having just a single-valued latent vector, but a more general statistical
distribution, we are enforcing the model to have a continuous and smooth latent
space representation, where nearby samples should have almost identical results [37].

Mathematically, we define z as our hidden variable and x as our observation.
We would like to compute the posterior p(z|x) because the goal is to infer good
values of latent variables given observed data. The posterior can be rewritten as:

p(z|x) = p(x|z)p(z)
p(x) = p(x, z)

p(x) (3.44)

but computing p(x) (called evidence) is intractable since

p(x) =
Ú
p(x|z)p(z)dz (3.45)

and would require exponential time to evaluate all possible configurations of the
latent variables. So we need to approximate the posterior distribution p(x|z). We
can do it by introducing a new distribution q(z|x), where we can choose a tractable
distribution (e.g. Gaussian) and play with its parameters in order to approximate
the true posterior p(z|x). To approximate the posterior we need a measure of
dissimilarity between the two distributions q(z|x) and p(z|x), and this measure is
the Kullback-Leibler divergence defined as:

KL(q||p) = −
Ø

q(x) log p(x)
q(x) (3.46)

We need to minimize this divergence between p(z|x) and q(z|x), so, in our case,
the KL divergence is rewritten as:

KL(q(z|x)||p(z|x)) = −
Ø
z

q(z|x) log p(z|x)
q(z|x) (3.47)

39

Introduction to deep learning

and, by substituting 3.44, we obtain:

KL(q(z|x)||p(z|x)) = −
Ø
z

q(z|x) log
 p(x,z)

p(x)

q(z|x)

= −

Ø
z

q(z|x) log
A
p(x, z)
q(z|x)

1
p(x)

B

= −
Ø
z

q(z|x)
C
log p(x, z)

q(z|x) − log p(x)
D

= −
Ø
z

q(z|x) log p(x, z)
q(z|x) +

Ø
z

q(z|x) log p(x)

= −
Ø
z

q(z|x) log p(x, z)
q(z|x) + log p(x)

Ø
z

q(z|x)

= −
Ø
z

q(z|x) log p(x, z)
q(z|x) + log p(x)

(3.48)

where, in the last passage, we brought out of the summation log p(x) since it does
not depend on z, and qz q(z|x) = 1. Finally, based on the previous derivations, we
can write:

log p(x) = KL(q(z|x)||p(z|x)) +
Ø
z

q(z|x) log p(x, z)
q(z|x)

= KL(q(z|x)||p(z|x)) + ELBO(λ)
(3.49)

where λ are the parameters of the chosen posterior distribution. From the above
equation we can observe that p(x) is constant, independently from q and how we
choose to parametrize the posterior distribution. From this observation we can
change the objective function, that instead of minimizing KL (always greater than
zero and intractable since it requires the computation of p(x)) becomes maximizing
the ELBO (Evidence Lower BOund) which is computationally feasible. This is
possible since p(x) is constant and minimizing KL is equivalent to maximize the
ELBO. It is called this way because it is a lower bound to the actual value of
log p(x) which is always going to be greater or equal. We can then rewrite ELBO
as:

ELBO =
Ø
z

q(z|x) log p(x|z)p(z)
q(z|x)

=
Ø
z

q(z|x)
C
log p(x|z) + log p(z)

q(z|x)

D
= Eq[log p(x|z)]−KL(q(z|x)||p(z))

(3.50)

To recap, in order to make q similar to p we need to minimize the KL divergence,
which is equivalent to maximize the ELBO which is in the form of Eq. 3.50. That

40

Introduction to deep learning

means encouraging q(z|x) to be similar to p(z) (the prior) while at the same time
maximizing the likelihood of the observation given z. So, the first term of 3.50 is
the reconstruction error, while the second, differently from the simple autoencoder,
forces the encoder output distribution to be similar to the prior p(z) which is
chosen (Gaussian).
In neural network terms, q(z|x) is the encoder network, while p(x|z) is the decoder
network as represented in Figure 3.15. The concept is as adding a regularizing
term to the autoencoder cost function so that the latent space has a certain chosen
distribution. The encoder outputs the parameters of the chosen distribution (µ
and Σ in case of a Gaussian chosen prior) and the latent vector z is sampled from
the distribution which has the outputted parameters. To finally use the model as a
generative model, we can drop the encoder part, sample directly from the prior
distribution and feed it to the decoder to generate an observation.

Figure 3.15: VAE architecture from [37]. Encoder and decoder are trained to
maximize the ELBO. The encoder learns the mapping from x to z, thus q(z|x),
while the decoder learns the mapping from z to x, p(x|z).

3.5.4 Conditional Variational Autoencoders
The problem with Variational Autoencoders is that we do not control the data
generation process, we cannot decide to generate some specific data. For this reason
Conditional Variational Autoencoders (CVAEs) were introduced [38]. With respect
to VAEs, which model latent variables and data directly, CVAEs model latent
variables and data conditioned to some random variables.
If we look at VAE objective function 3.50, we notice how the encoder models the
latent variable z directly from the data x, not discriminating between the type of
x. For example, if we are training the model on a labelled dataset, the model does
not take into consideration the label of the data. The same can be said for the
decoder since it outputs data only conditioned on latent variable z. To improve

41

Introduction to deep learning

the model and to be able to output specific types of data, we condition the encoder
and decoder to another variable c and modify the objective function 3.50 to:

ELBO = Eq[log p(x|z, c)]−KL(q(z|x, c)||p(z|c)) (3.51)

In practice this modified version consists in feeding both the encoder and decoder
with another variable c which could be anything, such as the label of the data.
Now the prior p(z) is conditioned to another variable c, so that for each possible
value of c we would have a prior p(z). The comparison between the VAE latent
space and CVAE latent space can be observed in Figure 3.16.

Figure 3.16: Latent variable z distribution in the case of a VAE (left) or CVAE
(right). This example is from a model trained on MNIST dataset with a 2D latent
vector dimension. Each color corresponds to a digit between 0 and 9. We can
observe how in VAE latent space the different digits occupy different portions of
the space and similar digits are close to each other. In the case of CVAE instead,
we do not have any distinction between the digits in the overall latent space, but if
we consider each digit distinctly, every distribution q(z|x, c = c) follows a Normal
distribution N (0,1).

42

Chapter 4

Deep learning models for
trajectory forecasting

Prior to the advent of deep learning, the physics-based models illustrated in Section
2.4 were the most common approaches to tackle the pedestrian trajectory forecasting
task. In recent years however, data-driven approaches have become widely used
in this domain too. The data-driven approach consists in learning pedestrian
trajectories directly from data, and it is useful in tasks where formulating the
patterns in mathematical terms is very difficult. In our case, human motion is not
easily predictable and easily modelable, with all the complex and subtle details
of pedestrian motion. In fact, these new data-driven models outperformed the
physics-based counterparts, proving that extrapolating rules of pedestrian behaviour
directly from data can be a good approach.
In general, a global data-driven pipeline for trajectory forecasting is in the form
of Figure 4.1. It usually consists of a motion encoding module and an interaction
encoding module which output a social representation of the scene. The motion
module encodes the past motion of pedestrians, while the interaction module
captures the social interactions. These two modules are usually not mutually
exclusive, meaning that some models take into account both aspects, while others
just one of them. Then, once the social representation is available, it is fed to
the decoder to predict a single trajectory (deterministic) or more trajectories/a
trajectory distribution (stochastic) depending on the decoder architecture.
Various models have been proposed for the task, but some more than others have
had more influence in the field. In the next sections some of the most important
ones are presented, first by looking at RNNs based models, prior to Transformers,
and then some more recent models which use this new architecture.

43

Deep learning models for trajectory forecasting

Figure 4.1: Standard data-driven pipeline for pedestrian trajectory forecasting.
From [9].

4.1 RNN-based models

4.1.1 Social LSTM
The Social LSTM model [3], by Alahi et al., was one of the first deep learning
models proposed for pedestrian trajectory forecasting. It was a pioneering work
in the field, inspired by the success of RNNs in that years in sequence prediction
tasks. It is a model which takes into account interaction between pedestrian in a
novel way. The authors motivated the work by two reasons:

• Previous work used hand-crafted functions to model interactions.

• Previous work focused on avoiding immediate collisions without anticipating
interactions that could occur in a more distant future.

In the model, each agent is modelled using a separate LSTM which is used
to encode past history information, but how is it possible for the model to be
interaction-aware? To be aware of the surroundings of each agent? In fact, LSTMs
have the ability to learn sequences, but they do not capture dependencies between
multiple correlated sequences, as trajectories are. This problem is addressed by
adding a social pooling layer that allows agents close to each others to share their
hidden states. This mechanism makes it possible to automatically learn interactions
from the data itself. The overall model architecture is illustrated in Figure 4.2.
The social pooling layer also needs to preserve the spatial information and to be
able to cope with a variable number of agents, since the number of neighbors
is not fixed. In order to deal with these challenges, a fixed dimensional grid is
constructed around each pedestrian, and each cell of the grid is filled with the
hidden states at that time of neighbour pedestrians. If two or more pedestrians
are in the same grid cell, their hidden states are summed together. Having this
compact and fixed representation for each pedestrian in the scene, the social tensor

44

Deep learning models for trajectory forecasting

Figure 4.2: Social LSTM model from [3]. Separate LSTMs model each one of the
agents and are interconnected by the social pooling layer which allows neighbor
information to be encoded. In the bottom a detail of the social pooling layer for
one person.

is embedded through a MLP, concatenated with the hidden state of the pedestrian
considered and passed through the LSTM to generate the next prediction.
The next coordinates prediction is done by passing the hidden state through a
linear layer, which outputs the parameters of a bivariate Gaussian distribution
from which the actual coordinates can be sampled. In this sense, the Social LSTM
model is not deterministic.
Lastly, the authors experimented also with a version that only pools the coordinates
of neighbour pedestrians, not the hidden states, which in overall performs worse
than the hidden states counterpart, due to the fact that hidden states encode more
information about the history of the trajectory which can be used not only to avoid
immediate collisions but also more distant ones.
From this work, the interest grew in NN-based solutions for trajectory forecasting,
and the work has been extended to use also physical space context as in [39] or
[40].

45

Deep learning models for trajectory forecasting

4.1.2 Social GAN
Social GAN [4] followed the work of the Social LSTM model and extended it by
using a generative approach with GANs. The work was motivated by the fact that
existing methods at the time tended to learn an average behaviour and did not
make any effort in modelling multiple socially accepted trajectories. The main
contributions of the work are:

• The use of a Conditional GAN for trajectory forecasting.

• A new variety loss which encourages the model to learn multi-modal distribu-
tion.

• A new pooling mechanism based on Social LSTM [3].

The model architecture is illustrated in Figure 4.3. It consists in 3 principal

Figure 4.3: Social GAN architecture from [4].

components: the generator, the pooling module and the discriminator.
The generator is an encoder-decoder framework similar to [3] which, in order to
condition the generation of trajectories to previous steps, concatenates the noise
vector z to the output of the encoder layer and of the pooling module. Since the
stochasticity of the model is introduced by the generative approach, the output of
the decoder are simply the coordinates and not a bivariate Gaussian distribution.
The discriminator instead is just an LSTM encoder that classifies trajectories as
real or fake.
The pooling module deviates from prior work by discarding a grid-based approach
and using instead the relative positions of neighbours. This approach can model
all interactions between people and, instead of being used at each step, it is only
used after the encoding, as an input to the decoder.
The last novelty introduced by [4] is the so called variety loss. The need of this new
type of loss is because by using the standard L2 loss, the model tries to produce an
average of the predictions where there can be more socially acceptable predictions.

46

Deep learning models for trajectory forecasting

It is a loss which can be useful when dealing with multi-modal outputs but with
just one correct target. In this case, multiple predictions for the same past are
produced by sampling different z and only the best prediction is used to update
the network parameters:

Lvariety = min
k

...Yi − Ŷ k
i

...
2

(4.1)

where k is the number of predictions and it is arbitrary. The authors argue that
using this loss, the model is encouradged to try to cover the space of possible and
socially acceptable outputs that conform to the past trajectory used as conditioning.

4.1.3 Trajectron++
Trajectron++ [5] is a trajectory forecasting model that uses the CVAE framework.
Its trajectory forecasting module consists in a complex architecture which does
not only forecast human motion, but it can also predict the different motions of
several types of agents, such as vehicles, bicycles, etc. The scene is represented
as a spatio-temporal graph where each node represents an agent and each edge
a connection between agents, meaning influence between the two. With respect
to the above mentioned models, it can encode also the map information, allowing
the model to make predictions based also on the street configuration. The model
is illustrated in Figure 4.4. The agents and their history are modelled through

Figure 4.4: Trajectron++ architecture from [5]. In the gray box, the modelling
of agent history at the top, the modelling of interactions in the middle and the
inclusion of map information at the bottom. In orange the encoding of future steps
used in training for the CVAE.

LSTMs and their interactions too. The semantic type of the agents is also encoded

47

Deep learning models for trajectory forecasting

in the LSTMs. The novelty is in the incorporation of new heterogeneous data
which is done using a CNN.
In this case, the multimodality of the task is modelled through the CVAE latent
variable framework. Since it uses a generative approach it is stochastic by nature,
and this can be used to allow for different output modes. Multimodality is addressed
by introducing a discrete categorical latent variable z that is used to model p(y|x, z).
From the figure we can observe how the CVAE framework is used for the task. The
model during training is conditioned on the encoded future representation (which
is not available at test time), and the latent variable z is obtained from both past
and future encodings to learn the underlying conditioned distribution. At test time,
z is sampled from the chosen prior instead, and fed, together with the encoded
past history, to the decoder.

4.2 Transformer based models

4.2.1 Transformer TF
The Transformer TF (Trajectory Forecasting) [7] is one of the first proposed
models in literature that make use of the Transformer architecture to forecast
pedestrian trajectories. It is a fairly simple model since it does not require any
particular modifications from the standard Transformer proposed by [6]. The
overall architecture is in Figure 4.5. The main novelty introduced is the switch
from LSTMs to the Transformers.
In contrast with previous models, Transformer TF does not include neither social
information or map information, every pedestrian is modelled singularly using
only its trajectory as the source for forecasting. Despite its simple approach, the
model outperformed many of the other models which included also other inputs
in addition to trajectory history. This shows the capability of Transformers to
model sequential data versus the LSTM counterpart. A reason for this observed
improvement in the trajectory forecasting task, as the authors suggest, could be
that LSTMs accumulate in their hidden state both the encoded and decoded part,
having to decide what to keep or forget, while Transformers keep the two parts
separated choosing at each time on what to focus with the possibility of retrieving
it. As stated before, the architecture does not have any major changes with respect
to a standard Transformer, the input coordinates are fed to an embedding layer,
then to a positional encoding layer. The positional encoding layer is important
because, similarly to what it does in NLP models indicating the position of a token
in a sentence, it encodes the timestep information of the coordinates.
Other than Transformer TF, the authors introduced two more models, BERT TF
and Transformer TFq. Motivated by the excellent results in NLP, BERT TF follows
the concept of the well known Transformer model BERT [41], removing the decoder

48

Deep learning models for trajectory forecasting

from the main architecture, but this approach did not give good results. TFq
instead was developed to make comparisons against models which do not follow
the single trajectory deterministic approach. In TFq, people motion is quantized
in 1000 speed clusters bins, so that the position is encoded by a 1000 dimensional
one-hot encoded vector. With this formulation, the problem is not anymore in
a regression form, but in a classification form, since the goal is to classify the
correct bin at each step. The advantage is that in this way it is possible to sample
distributions of trajectories from the predicted outputs, thus to sample multiple
trajectories. Also this model resulted in competitive results against other stochastic
state-of-the-art models.

Figure 4.5: Transformer TF architecture, from [7].

4.2.2 AgentFormer
AgentFormer [8] is a Transformed based stochastic model currently state-of-the-art
for trajectory forecasting using the non deterministic protocol. Previous methods
usually modelled the time dimension (where each agent state - position or velocity -
influences the future agent states) and the social dimension (behaviour of an agent
influences the others) separately, for example considering only one of the two or
considering first one dimension and then the other dimension on the computed
previous features. AgentFormer models the two dimensions together by using a
novel attention structure, allowing each agent in the scene to directly attend to
information of the past of the other agents. The trajectories in input are flattened
across time and agents:

• The time information is preserved by a time encoder which timestamps the
agent states.

• The agent information is preserved through the use of the novel attention
mechanism called agent-aware attention. This type of attention changes with

49

Deep learning models for trajectory forecasting

respect to the original Transformer one, because it generates two different sets
of keys and queries, one set used for intra-agent attention (attention to itself)
and the other used for inter-agent attention (attention to the other agents).

The stochasticity is achieved through the use of a CVAE framework, where the
future trajectory is conditioned on the context (semantic maps and past trajectory).
The latent code z represents the latent intent of each agent and it is incorporated
at the beginning of the decoder allowing each agent latent code to influence the
other agents. In Figure 4.6 the overall AgentFormer architecture.

Figure 4.6: AgentFormer architecture, from [8].

• The past encoder encodes the past trajectory using an AgentFormer encoder.

• The prior module outputs the parameters of the prior distribution.

• The future encoder module outputs the parameter of the approximate posterior
on which the Kullback-Leibler divergence is computed.

• The future decoder autoregressively outputs the trajectories given the latent
codes and past trajectories.

• The trajectory sampler module adopts a diversity sampling technique [42] to
generate latent codes which generate diverse and plausible trajectories. This
module is trained once the CVAE is already trained, freezing its parameters.

During training, the latent code is generated by the approximate posterior qφ,
while in testing, without the trajectory sampler module, the latent code is obtained
through the prior module. The authors proposed to add the trajectory sampler in
order to generate useful and diverse latent codes, since many times similar latent
codes lead to similar trajectories. This module, trained on the freezed model, makes

50

Deep learning models for trajectory forecasting

it possible to generate a set of latent codes which cover also possible minor modes,
that random sampling would hardly generate.

51

Chapter 5

Experiments

5.1 Introduction
In this chapter, the experiments and methodology used are presented. Firstly, the
datasets and metrics used in the experiments proposed are introduced in Sections
5.2 and 5.3 respectively.
Then, in section 5.4 the main model from literature used in the experiments is
presented and several experiments are performed on it in order to understand its
behaviour and improve its performances changing the loss or adding techniques of
data augmentation.
Lastly, an extensive effort is put in Section 5.5, where a Transformer based GAN
is developed using the previous findings, in order to model the stochasticity and
multimodality of human behaviour. In this section the generative model applied to
the task, its training procedure and a novel sampling technique to generate diverse
and plausible multiple predictions which cover the output space are introduced.
Every section presents the corresponding results with the comparison with previous
or literature results.

5.2 Datasets
To efficiently train neural networks it is fundamental to have enough data, and it
must be of a good quality too, because the model will learn to reproduce and infer
based on the data it has seen during training.
Pedestrian trajectory forecasting datasets can use two different types of coordinates:

• Image coordinates: the coordinates are represented by the pixel position on
the image. This type of coordinates is specific to the input image and do
not represent real world distances (a closer or further camera would have two
different results).

52

Experiments

• World coordinates: the coordinates are represented by the relative distance
in meters to an arbitrary chosen point (origin) of the world. This type of
coordinates is invariant to the position of the camera, as long as the chosen
point of origin is the same. The only drawback is that this type of coordinates
is more difficult to obtain, first the image coordinates are extracted from a
source and then they are transformed thanks to a holographic matrix to the
world version. If the holographic matrix of the scene is not available, it is not
possible to convert image coordinates to the world version and viceversa.

In this work, the used datasets ETH and UCY detailed below, are in world
coordinates. They have been chosen for being the most used in literature in the
field of pedestrian trajectory forecasting.

5.2.1 ETH and UCY

ETH [43] and UCY [44] are two of the most used datasets for benchmarks in
pedestrian trajectory forecasting. They both are in world coordinates and, even if
not captured together or by the same team, they are used together for their similar
characteristics. Each of the two datasets is subdivided in smaller datasets.
ETH comprises two scenes, ETH and Hotel, where the coordinates are extracted
from videos taken from a fixed camera bird’s eye position. The two scenes together
count 750 pedestrian trajectories annotated at 2.5 Hz.
The same characteristics are shared with UCY (bird’s eye view, fixed camera and
2.5 frame rate), which consists in 3 sub-datasets: Univ, Zara1 and Zara2, counting
786 total trajectories.
Since the two datasets are almost always used together, we can consider them as
a single dataset named ETH-UCY from now on. This composed dataset has 5
scenes in total (ETH, Hotel, Univ, Zara1, Zara2) that are usually evaluated using
a leave-one-out strategy. This means that in training, 4 scenes of the 5 are used as
training sets while the left out one is used for testing. This procedure is repeated
once for each scene, meaning that to evaluate a single model on all 5 scenes, the
model must be re-trained 5 times.
The datasets and train/val/test splits used for training the models of this master
thesis are the ones available at the GitHub repository of the Transformer TF model
[7].
In Figure 5.1 two snapshots of the original videos of ETH-UCY can be observed,
the agents’ coordinates were then extracted from these videos.

53

Experiments

Figure 5.1: Frames of Zara scene (left) and Univ scene (right). Image coordinates
are extracted from video and transformed to world coordinates.

5.3 Metrics
To evaluate a model performance, it is important to have a measure of goodness of
the solution proposed. This measure gives a numerical value on the performance of
the model, allowing to compare them.
In the case of pedestrian trajectory forecasting, the two most used metrics in
literature are the average displacement error and the final displacement error
explained in the next subsections.

5.3.1 Average Displacement Error (ADE)
The Average Displacement Error (ADE) is one of the two most important metrics
used to assess model performance in pedestrian trajectory forecasting. As the
name suggests, it computes the overall distance error between ground truth points
and predicted points. The error is the Euclidean distance between the true and
predicted positions averaged over all pedestrians and number of predicted timesteps.
If we consider n the number of pedestrians, Tobs the observed timesteps, Tpred the
predicted timesteps and Ŷ i

t , Y i
t the predicted and true positions respectively of

agent i at timestep t, we can write the ADE as:

ADE = 1
n(Tpred − Tobs)

nØ
i=1

TpredØ
t=Tobs+1

||Ŷ i
t − Y i

t || (5.1)

The measure is the average distance of the predicted positions to the ground truth
ones, which gives an average distance in meters.

A variation of the ADE is the TopK-ADE which is typically used in models that
do not use a single trajectory deterministic protocol. Since these models output

54

Experiments

multiple trajectories, it would not have much sense to average the error on all the
predicted trajectories because these models often try to capture the multimodality
aspect of the trajectory forecasting problem. This aspect is very difficult to model
because the ground truth trajectory is only one, so we need not to penalize too
much models which make multiple different plausible predictions. In order to do
so, TopK-ADE is used, where the model makes K predictions and the ADE is
computed only on the best predicted trajectory out of the K. This type of metric
is sort of a lower bound because it is obvious that forecasting multiple trajectories
lowers the value of the ADE metric, while at the same time it does not control the
plausibility of the other trajectories.

5.3.2 Final Displacement Error (FDE)
The Final Displacement Error (FDE) is the other very important metric used in
trajectory prediction. It consists in computing the distance error for all pedestrians,
but only on the last timestep of the trajectory. In practice, it computes the distance
between the final position of the ground truth trajectory and the final position
of the predicted trajectory, and it is averaged between all pedestrians. Using the
same notation used for ADE, we can formally define FDE as:

FDE = 1
n

nØ
i=1
||Ŷ i

Tpred
− Y i

Tpred
|| (5.2)

This metric gives us an average distance in meters since we are dealing with world
coordinates datasets.

Also in this case, it exists the version for multiple trajectory models called
TopK-FDE and it is equivalent to TopK-ADE. Instead of averaging the FDE
across the K predicted trajectories, which would not make much sense since these
models usually want to learn multimodal distributions, the FDE is computed for
all predicted trajectories, and the best one out of the K is chosen. Also in this case
it is sort of a lower bound to the standard FDE, since predicting more trajectories
makes it more likely to predict at least one which is closer to ground truth.

An illustrated example of the two metrics is available in Figure 5.2.

5.4 Chosen model
The main model used in the experiments is the Transformer TF [7], already de-
scribed in the literature review in Chapter 4. This model was chosen because of its
trade-off between simplicity and performance. With respect to other more complex
models, this is a standard application of the Vanilla Transformer by Vaswani et al.
[6] to the trajectory forecasting task. For this reason multiple experiments could

55

Experiments

Figure 5.2: ADE metric in the top, the distance between true and predicted
position is averaged across timesteps. FDE metric in the bottom, only the last
timestep is used to compute the distance.

be done on it and a new stochastic approach can be used to train the model on
multiple trajectories. Furthermore, the model does not use any information about
the map nor the social part and its performance is not much worse than the current
state-of-the-art models which make use of this information. This can indicate that
both social and map information are useful but up to a certain extent, and similar
results can be obtained without them. The original results of the Transformer TF
are available in Table 5.1.
In the next subsections, some introductory experiments were done to the original
deterministic version of the model, starting from modifying the embedding dimen-
sion of the input coordinates, trying a new loss, changing the coordinates encoding
and trying some data augmentation techniques.

5.4.1 Input embeddings dimension
The standard transformer uses an embedding layer to transforms the input to a
given size and then performs many layers of the encoder/decoder to the embedded

56

Experiments

Dataset ADE FDE
ETH 1.03 2.10
Hotel 0.36 0.71
UCY 0.53 1.32
Zara1 0.44 1.00
Zara2 0.34 0.76
avg 0.54 1.17

Table 5.1: Results of the original Transformer TF following the single trajectory
deterministic protocol. Results are reported from original paper [7]. The models are
trained on 4 datasets and tested on the remaining one, following the Leave-One-Out
approach.

input where positional encoding has been applied.
In Transformer TF, the mechanism is the same and the input coordinates (2
dimensional points which features are the x-axis relative position and the y-axis
relative position to the previous timestep) are transformed to a d dimensional
vector. The authors of Transformer TF propose to use 512 dimensional embeddings,
in other words, to learn a projection of the 2D coordinate to a 512 dimensional
space. This approach could be not optimal and it could be possible to use much
lower dimensions to project the data to. In fact, the embedding dimension is one
of the most important hyperparameters which affects the number of learnable
parameters of a transformer model, since the embeddings are used in the multihead
attention and having a much lower embedding dimension reduces the number of
operations needed for the computation of the attention. The number of learnable
parameters in Transformer TF with all the different embedding dimensions is
available in Table 5.2. It is possible to notice how halving the embedding size
reduces the parameters by more than half. So, decreasing this dimension brings
multiple advantages, it makes the model smaller with less learnable parameters,
and consequently it increases the speed of training, and it also makes the model
less prone to overfitting. In fact, we can see an overfitting trend reported in Figure
5.3, where we can see the training loss improving for all embedding dimensions
while the performance on the validation set decreases during training for higher
dimensional embeddings.

Implementation details

The training of the models was done in 120 epochs, batch size of 64 and using
the same hyperparameters settings of the original Transformer TF (6 encoder and
decoder blocks, Transformer hidden linear layers of 2048 dimension and multihead

57

Experiments

Figure 5.3: Training curves for the Zara2 dataset with diverse embedding dimen-
sions. On the top the training loss, on the bottom the ADE and FDE, left and
right respectively, computed on the validation set. Orange is 512 emb., green is
256 emb., light blue 128 emb. and blue is 64 emb.

Embedding dimension Learnable parameters
512 (Original) 44.145.667

256 17.366.531
128 7.515.907
64 3.475.331

Table 5.2: Number of learnable parameters in Transformer TF while varying the
embedding dimension. By decreasing embedding size we speed up the training and
have a less complex model, while keeping the performances similar for this task.

attention with 8 heads). It is important to notice that the embedding dimension has
a significant impact also on the optimizer used for training the transformer. The
comparison between model performances has been done with the original optimizer
of the transformer architecture which is the Noam Optimizer. Noam Optimizer
is a wrapper which uses the Adam Optimizer with a learning rate scheduler that
depends on some parameters, such as embedding dimension and warmup steps.

58

Experiments

The formula for the learning rate is:

lrate = d−0.5
model ×min(step_num−0.5, step_num× warmup_steps−1.5) (5.3)

As we can see, the embedding dimension dmodel influences very much the curve.
An example of the learning rate scheduling for the models when the embedding
dimension change is illustrated in Figure 5.4. For the number of warmup steps,
each model was trained in order to reach the maximum at the 10th epoch.

Figure 5.4: Learning rate scheduler for different embedding dimensions. The
warmup steps are 3000.

Results

The effects of changing the embedding dimension can be observed in the results
Table 5.3. Since the embedding dimension reduction did not have a much negative
impact on the average results, the embedding dimension chosen was 64. This
embedding dimension is also used for all other experiments in the thesis, having a
good trade-off between performance and model complexity. These considerations
are assumed to hold also in the case of the stochastic model proposed in the second
part of the experiments. They are assumed to hold because the functioning of
the model is of the same form (it considers each trajectory singularly and makes
one single prediction at each forward pass) and because of time constraints, not
allowing each model to be trained by optimizing for every hyperparameter. For
these reasons, the best results are chosen at each experiment and assumed to
propagate to future ones.

59

Experiments

Dataset 512 emb. (Original TF) 256 emb. 128 emb. 64 emb.
ETH 1.03/2.10 1.01/2.09 1.02/2.05 1.06/2.16
Hotel 0.36/0.71 0.46/0.99 0.43/0.93 0.44/0.93
UCY 0.53/1.32 0.56/1.22 0.56/1.23 0.57/1.22
Zara1 0.44/1.00 0.42/0.93 0.43/0.98 0.41/0.92
Zara2 0.34/0.76 0.32/0.70 0.33/0.76 0.33/0.72
avg 0.54/1.17 0.55/1.19 0.55/1.19 0.56/1.19

Table 5.3: ADE/FDE metrics on ETH-UCY datasets while varying the embedding
dimension. 512 originally used in TF.

5.4.2 Loss
As for every deep learning model, the training procedure needs a loss which measures
the error between model predictions and ground truth, and makes it possible to
compute the gradients to update the model parameters.
The loss used in the original Transformer TF implementation is the Pairwise
Distance, which computes the pairwise distance between two vectors v and u using
the p-norm. The vectors u and v are 2 dimensional containing the (x, y) coordinates
of the agent: one containing the ground truth coordinates, the other containing
the predicted ones. We define the difference vector of the two as:

d = v − u = (vx, vy)− (ux, uy) (5.4)

where each of the two components is the element-wise difference of the two former
vectors u and v. Now we can formally define the p-norm of the vector d as:

||d||p =
A 2Ø
i=1
|di|p

B1/p

(5.5)

and the loss for a single trajectory is the average of the p-norm evaluated at every
predicted timestep:

L =
qTpred
j=Tobs(||d||p)j
Tpred − Tobs

(5.6)

that is, for each predicted trajectory, the loss is technically the Average Dis-
placement Error if the value of p is 2. With that value the p-norm becomes the
Euclidean distance which is how the Average Displacement Error is computed.
In this preliminary experiment phase, two types of p-norm were confronted, the
2-norm and the 1-norm. The reason for experimenting with the latter is that for
small discrepancies the 1-norm has higher values which could in theory benefit the
model pushing the predictions closer to ground truth.

60

Experiments

Implementation details

The hyperparameters are set the same as for previous section, 120 epochs for
the training and a 64 dimensional embedding dimension. The optimizer is Noam
Optimizer with the learning rate scheduler explained before, as suggested by
literature best practices to train a Transformer model.

Results

In Table 5.4 the comparison of the results using the two losses. In the experiments,
the best performing loss was the one using the 2-norm. This can be explained by
the fact that the 2-norm loss actually is the Average Displacement Error, which
is a metric used for testing the trained models. So, the model learns the best
possible parameters values to minimize the loss that is also used as a metric for
testing, making train and test time more similar and consistent. The performance
difference is not very high but the 2-norm consistently outperforms the 1-norm
counterpart. For this reason, for further experiments, the 2-norm was always used.

Dataset 1-norm 2-norm (Original)
ETH 1.04/2.12 1.06/2.16
Hotel 0.51/1.08 0.44/0.93
UCY 0.57/1.22 0.57/1.22
Zara1 0.44/0.98 0.41/0.92
Zara2 0.33/0.73 0.33/0.72
avg 0.58/1.23 0.56/1.19

Table 5.4: ADE/FDE results using a 2-norm loss and a 1-norm loss. 2-norm
originally used in TF.

5.4.3 Coordinates encoding
The Transformer TF receives only the coordinates of the agents as input, but there
are various ways to encode this data, as suggested also by [45]. In fact, as is shown
in this section, the encoding type can significantly impact the model performance
and its capability to generalize.
Given the problem and the type of data, four possible encoding methods were
investigated:

• Raw coordinates: where the coordinates are not manipulated in any way, and
fed to the model as originally in the dataset. This is the simplest approach
which theoretically would perform the worst since each dataset of the five

61

Experiments

represents a different scene and has a different position for the origin of the
plane. Given the testing criteria, where a model is trained on four datasets and
tested on the remaining one, a model trained with these coordinates should
not be able to generalize to the unseen dataset.

• Relative coordinates: in this case the coordinates are represented by the relative
displacement in the x and y axis with respect to the previous timestep. This
encoding is the one originally used in Transformer TF and, intuitively, it is
preferable with respect to raw coordinates since in this way the model cannot
associate specific parts of the environment with specific motion behaviours.
To reconstruct the original trajectory, the raw coordinates of the first timestep
are needed and the x and y displacements are cumulatively added to the initial
point.

• Coordinates centered in the last observed point: using this kind of encoding
the origin of the plane is centered on the last observed timestep Tobs−1.

• Coordinates centered in the first observed point: this type of encoding is
similar to the previous one, but with the difference that the translation of the
coordinate plane is not on the last observed timestep, but on the first one,
making the first point in the trajectory sequence with coordinates [0,0].

An example of different coordinates encodings is available in Figure 5.5.

Implementation details

Same hyperparameters of previous sections, embedding dimension of 64, 2-norm
loss and training of 120 epochs.

Results

Overall, the relative coordinates are the best performing ones on all datasets as
can be seen in Table 5.5 where the results are shown. Interestingly, they were not
only the best performing, but also the fastest converging (Figure 5.6). The other
methods other than the raw coordinates could have reached similar results, but
in much more training time as shown in the Figure 5.6. This behaviour could be
due to the fact that with relative coordinates the only focus is in predicting the
displacement with respect to just the previous timestep, while in the other methods,
as the timesteps increase, the magnitude of the prediction increases and the output
possibilities are more. Raw coordinates poorly performed because they are a type of
coordinate representation which is not scene invariant and this causes the model to
learn scene patterns that, by training the models with a Leave-One-Out approach,
is going to negatively affect performance.

62

Experiments

Figure 5.5: Representation of different coordinates encodings. On the top raw
coordinates, bottom left coordinates centered in the first timestep, bottom right
coordinates centered on the last observed timestep.

Figure 5.6: Training curve of a model tested on the Hotel dataset. On the left
the ADE and on the right the FDE. We can observe the performance differences
between raw coordinates (blue), coordinates centered in the first point (light blue),
coordinates centered in Tobs−1 (red) and relative coordinates (magenta).

63

Experiments

Dataset Raw Relative (Original) t = 0 t = Tobs−1
ETH 1.52/2.68 1.06/2.16 1.24/2.50 1.04/2.05
Hotel 4.36/5.20 0.44/0.93 0.68/1.39 0.48/1.16
UCY 2.23/4.21 0.57/1.22 1.22/2.60 0.68/1.55
Zara1 0.49/0.96 0.41/0.92 0.80/1.95 0.55/1.50
Zara2 0.54/1.08 0.32/0.72 0.68/1.51 0.41/1.05
avg 1.83/2.83 0.56/1.19 0.92/1.99 0.63/1.46

Table 5.5: Results of the models using the different coordinates encodings. Relative
encoding is the one originally used in TF.

5.4.4 Data augmentation
Another set of experiments done was the one regarding data augmentation. Data
augmentation is a technique widely used in deep learning that consists in producing
more samples of the training data. It is used because in order to learn the patterns
in the data, models usually need very high numbers of samples and making new
ones from the already available ones is a useful technique. If intelligently used, data
augmentation can benefit the model performance even by large margins. Moreover,
it also reduces the risk of overfitting since it becomes more difficult for the model
to learn the exact training data patterns.
In the original implementation of Transformer TF no data augmentation was used.
The ETH-UCY datasets of the experiments are not enormous datasets, so, following
also prior work which uses mostly random rotations of the scene [5, 8, 46] it was
decided to apply different data augmentations to see the effects on the results. Each
one of the data augmentations proposed is applied on the single trajectory and not
on the whole scene selected. So, for example, if a scene comprises three agents and
consequently three trajectories, each one of the trajectories is singularly selected
and transformed using one or more of the four data augmentation techniques
investigated:

• Rotation: the rotation data augmentation rotates randomly each trajectory in
the training set, every time it is selected. In this way, the patterns learned
are not specific to any kind of scene or environment and the model is forced
to learn the human motion behaviour instead of the structure of the scene.
In our leave one out testing approach, this should intuitively help the model
generalize to unseen environments.

• Mirroring: mirroring refers to flipping the trajectory with respect to the x or
y axes. Every time a trajectory is selected from the training set, a x, y, both
axes or no mirroring is applied with a 1/4 probability.

• Noise on the whole trajectory: adding noise to the trajectory could help the

64

Experiments

model to be more robust to noisy inputs with little errors as it can be from
sensors inputs. In this setting the noise sampled from a Normal distribution
N (0,0.1) is added on the whole trajectory, both on the observed timesteps
and the ground truth points to predict.

• Noise only in the observed trajectory: another possible setting for the noise
data augmentation is to add noise only on the observed timesteps and leave
the ground truth points unchanged.

An example of the random rotation data augmentation can be seen in Figure 5.7.

Results

The results of the experiments are available in Table 5.6. We can observe how the
rotation augmentation is the most helpful in terms of performance, while adding
also mirroring does not improve the results obtained with random rotations, keeping
the performance the same. Lastly, we see that adding noise to the trajectories is
actually detrimental on average. Adding noise to the whole trajectory worsens the
results in all the datasets while adding it only to the observed timesteps worsens
the results on almost all datasets with the exception of Hotel. It is possible to
conclude that the more timesteps noise is added to, the more performance drops
and this data augmentation is not useful to learn motion behaviour with more
robustness.
Validated by these results, the only data augmentation used in further experiments
is the random rotation data augmentation.

Figure 5.7: Example of original trajectory (left) and rotated trajectory (right)

65

Experiments

Dataset Original TF Rot Rot + Mir Rot + Mir + Noise Rot + Mir + Noise_src
ETH 1.03/2.10 1.00/2.02 1.03/2.12 1.00/2.05 0.99/2.02
Hotel 0.36/0.71 0.33/0.65 0.35/0.70 0.40/0.87 0.32/0.63
UCY 0.53/1.32 0.55/1.19 0.54/1.15 0.67/1.35 0.63/1.28
Zara1 0.44/1.00 0.44/0.99 0.43/0.96 0.74/1.63 0.48/1.02
Zara2 0.34/0.76 0.34/0.75 0.34/0.76 0.49/1.01 0.38/0.80
avg 0.54/1.17 0.53/1.12 0.54/1.14 0.66/1.38 0.56/1.15

Table 5.6: Results of the experiments on data augmentation techniques.

5.5 Stochastic model

In this part of the thesis the multimodal and stochastic aspects of human motion
have been attempted to be modelled. As previously stated, pedestrian motion is by
nature not deterministic and it is not straightforward to model this aspect since the
ground truth future given for each trajectory is only one among multiple (possibly
infinite) plausible trajectories. For example, if a pedestrian is at a crossroads, the
possible trajectories are multiple and neither of them is actually wrong, it depends
on where the agent needs to be going to. The same happens if a pedestrian faces
another pedestrian that is coming from the opposite direction, obviously the two
agents need to take into account the possible collision between them and correct
their trajectories to avoid it, but this could happen in multiple ways which in most
cases are not wrong in terms of social etiquette. The problem in modelling these
scenarios is that deep learning models need a ground truth trajectory to try to
understand the underlying human motion distribution, and this given trajectory is
the one which actually occurred in the training examples, leaving outside all the
other possible motions which didn’t occur.
Obviously, if the agent intent was fixed and given, various cases in which multiple
futures are plausible would become much easier to model (for example the crossroads
example), but this is not the case since the arrival point is not given in any of the
datasets.
Another challenge faced when dealing with this task, which is the consequence
of previous problems, is that there is no explicit way to tell whether a predicted
trajectory is right or wrong. There are some motions that are surely wrong (e.g.
walking inside a wall, collide with other agents, etc.), but for many other occasions
there is no right way to tell if a prediction is good or bad.

These are the main challenges that comes when approaching this task. Many
approaches in literature tried to model multimodality by using generative models
[4, 8, 5]. Usually, a multimodal model performance is evaluated by using the
TopK-ADE and TopK-FDE which are explained in the metrics Section 5.3, they

66

Experiments

consist in predicting multiple trajectories and select the best one in terms of regular
ADE/FDE.

In the next sections a new model, Transformer GAN, developed in this thesis is
proposed, a modified sampling method to improve multimodal model performance
is applied to the model and, lastly, a comparison with results obtained by models
present in literature is shown.

5.5.1 Proposal: Transformer GAN
The model proposed is a Generative Adversarial Network with the core generator
made by almost the same architecture as Transformer TF. A generative model
approach was decided to be used because of the inherent stochasticity present in
these kind of models, which can be helpful in modelling the multimodality of the
trajectory forecasting task. Moreover, the GAN approach used is inspired by Social
GAN [4] where the stochasticity is modelled by using a latent vector z sampled
from a Normal distribution, every time a trajectory is predicted. This means that
for the same pedestrian, multiple trajectories can be predicted by sampling multiple
latent codes. Motivated by the good results of that model at that time and by
the fact that no other model used a GAN framework, others used mostly CVAEs
generative models and especially mostly not with Transformers yet, it was decided
to see how this kind of model could be developed without LSTMs and how it
would have performed. The Transformer TF architecture was chosen for its great
sequence modelling performance, as seen in previous Section for the deterministic
task. The only drawback was that the Transformer TF is not capable of multiple
predictions and, in order to overcome its deterministic nature, a latent vector was
introduced and the model was incorporated inside a GAN framework.
The architecture of the proposed model is available in Figure 5.8.

Generator

In a generative adversarial network, the generator is the part of the network devoted
to generating the samples. In this application, the generator is very similar to the
Transformer TF model, with the addition of a latent vector embedding to the inputs
of the decoder. The inputs of the decoder are firstly passed through the input
embedding which projects the coordinates to fixed length dmodel dimensional vectors,
then these embeddings are concatenated to a latent vector z of dimension dz and
passed through a linear layer to project the concatenated vectors to dmodel dimension.
In this way the stochasticity is introduced in the model. Positional encoding is
then applied and the result of previous steps is then passed to the Transformer TF
decoder which produces in output the predicted trajectory conditioned both on
past motion and latent code.

67

Experiments

Figure 5.8: Transformer GAN architecture.

Discriminator

The discriminator is the part of the network working in contrast to the generator
and its job is to differentiate between samples that are real or generated by the
generator. In this case the discriminator is composed by a separate Transformer
TF encoder without the need for a decoder. It takes in input the whole trajectory
and classifies it as real or fake: real if it is the ground truth trajectory of the
training set, fake if it is the trajectory predicted by the generator. In order to
output this information, the encoder outputs the encoded trajectory which is then
passed through an MLP with only one output neuron that indicates if a sample is
real or fake.

Training

The training of a GAN is different than training a standard model, because in this
case the models to train jointly are two, the generator and the discriminator. They
compete with each other with the generator trying to fool the discriminator and
the discriminator trying to understand the tricks of the generator.
The training procedure iteratively consists in two steps, the generator step and the
discriminator step. During these two steps only a model at a time is trained while

68

Experiments

the other is frozen. In practice the two steps are described as follows:

• Discriminator step: where only the discriminator is trained. A batch of data is
used in this step and the generator produces a prediction for the batch. Then,
both the predicted and true trajectories are fed to the discriminator which
outputs the probability scores of being a real sample (1 if the sample is real, 0
if it is fake). Once these scores are obtained, the real samples loss and the
predicted samples loss are computed and backpropagated on the discriminator,
trying to make it more accurate in distinguishing between real or generated
trajectories. The loss used in this step (Figure 5.9a) is the binary cross entropy
loss, defined as:

BCE = − 1
N

Ø
yi log(ŷi) + (1− yi) log(1− ŷi) (5.7)

where yi and ŷi are the real score and predicted score of the ith sample.

• Generator step: in this step only the parameters of the generator are updated.
A new batch of data is used for this step where the generator makes its
trajectory predictions. These predictions are then fed to the discriminator, but
this time we tell the loss that these trajectories are instead real trajectories
and that it should classify them in that way. This passage is very important
because it is the way that the generator learns to output trajectories which
confuse the discriminator. If, for example, the discriminator easily discerns
that the trajectories are fake, it means that the generator is not doing a
good job and it should change its output to make it more difficult for the
discriminator.
In this step, two losses are used: a binary cross entropy loss on the output
of the discriminator (Figure 5.9b), and the pairwise distance loss (Figure
5.9c) already used in the model Transformer TF to also force the generator
to produce samples that not only fool the discriminator, but that also cover
ground truth.

The learning curves for each model are observable in Figure 5.9.

69

Experiments

(a) Discriminator loss

(b) Generator BCE loss (c) Generator L2 loss

(d) Test ADE (e) Test FDE

Figure 5.9: Learning curves for the GAN. ETH magenta, Hotel grey, UCY blue,
Zara1 green and Zara2 orange.

Implementation details

The findings from previous sections were used in training the models. The em-
bedding dimension used is 64, the coordinates encoding used is the relative one
and the only data augmentation used is rotation. The models were trained for
40 epochs and generator and discriminator, being two Transformer models, used

70

Experiments

two separate optimizers which are two Noam Optimizers with the learning rate
peak at the 10th epoch. The number of discriminator steps and generator steps at
each iteration was one for both, noisy labels were used for the discriminator such
that real labels of 1.0 were replaced with a random number between 0.7 and 1.2
and fake labels of 0.0 were replaced with a random number between 0.0 and 0.3
following literature best practices as suggested in [47].

5.5.2 Sampling method
In this section the sampling method used is described and then the results obtained
are shown. As previously stated, training the Transformer GAN leads to the
model learning a unimodal trajectory distribution and consequently almost no
differentiation in the predicted trajectories when sampling various latent vectors
z. For this reason, once introduced the latent vector model Transformer GAN,
we now need to differentiate the multiple trajectories predicted. A way to do so
is by sampling the k latent vectors z in such a way that the outputs generated
from these samples are different and cover various modes. The method applied is
conceptually very similar to a method present in literature called DLow by the
authors [42], but it presents a major difference in the training procedure. First,
the original method is introduced.

DLow

Diversifying Latent Flows (DLow) [42] is a novel sampling method for pre-trained
generative models. Its objective is to generate diverse samples once the model has
already been trained. Usually, these models, as Transformer GAN, draw a set of
independent Gaussian latent codes which are then decoded in the predictions. But
there are some drawbacks with this strategy, for example the independent sampling
cannot force the generated samples to be diverse and the generated predictions
usually are very similar and correspond to the major mode.
To overcome these issues, DLow consists in a sampling method that samples just
once from a single random variable and then maps the sampled latent code to a
set of k correlated different codes. The parameters which map the original sample
to the final k are learned after the generative model is trained in such a way to
maximize the diversity among the k predictions while keeping the generated latent
codes likely under a prior.
In standard generative models, the process of generating a sample follows:

z ∼ p(z) (5.8)
x = Gθ(z, c) (5.9)

where z is the latent code sampled from its prior distribution p(z), usually a
Gaussian, and G is the generator model parametrized by θ that produces the

71

Experiments

sample x based on the latent code z and the conditioning c, which could be the
past observed trajectory for example.

Differently, DLow introduces a new random variable Ô and generates the k latent
codes dependently on Ô as:

Ô ∼ p(Ô) (5.10)
zi = Tψi(Ô) 1 ≤ i ≤ k (5.11)
xi = Gθ(zi, c) 1 ≤ i ≤ k (5.12)

where p(Ô) is a Gaussian prior and Tψi are the latent mapping functions with
parameters ψi that map Ô to the k latent codes zi.
The k latent codes are correlated as they are uniquely determined by Ô. The
objective of DLow instead is defined as:

LDLow = Ldiversity + βLKL (5.13)

where LKL is the KL divergence between the k generated latent codes distributions
and the Gaussian prior p(z) and Ldiversity is a diversity promoting loss between the
generated samples x, which formulation is task dependant.
The latent mappings Tψi transforms the latent distribution p(Ô) to the marginal
latent distribution rψi(zi, c), so to be that the case, Tψi should be also conditioned
on c. Since the latent codes zi should also follow a Gaussian distribution, the
authors designed Tψi to be an invertible affine transformation of Ô:

Tψi(Ô) = Ai(c)Ô+ bi(c) (5.14)

where the mapping parameters are ψi = {Ai(c), bi(c)} with Ai(c) a nz × nz matrix
and bi(c) a nz dimensional vector. The parameters are estimated through a network
Q. Since the transformation transforms the prior distribution p(Ô) to another
Gaussian distribution (by rotating and translating the plane), the KL divergence
can be computed analytically which is a great benefit of this method.
An overview of the architecture is available in Figure 5.10.

Proposed method

The proposed sampling method is heavily inspired by DLow and applies the same
process, but the difference is that in our training of the model, the generator
parameters are not kept fixed. We assume to have an already trained instance
of the Transformer GAN generator (one instance for every different dataset) and
apply the method to it. The reason behind not keeping the weights fixed is that in
this way, after the model has already been trained and it has learned the most likely
trajectory distribution in a unimodal way, we try to leverage this prior information

72

Experiments

Figure 5.10: DLow architecture applied to human motion forecasting. The
network Q outputs the parameters of the transformations that are applied to Ô to
obtain the k latent codes zi. The multiple latent codes are fed to the generator to
produce multiple and diverse outputs. From [42].

and also to change the parameters in order for the model to take more into account
the latent vector and its influence on the prediction. Allowing the parameters to
update makes it possible for more diverse predictions and predictions that are still
plausible since the model has already been trained and is only being fine-tuned.
In this phase, we only need the generator from Transformer GAN and the discrimi-
nator is discarded. We add the Q network of DLow after the encoder which takes
in input the encoded past trajectory and outputs the parameters of the transfor-
mations to be applied to the new latent vector Ô. In this way, the transformations
are aware of the past trajectory history and are conditioned on it as the decoder
is conditioned on it too. One of the main drawbacks of this sampling is that the
numbers of samples to be generated is fixed and chosen at the start of the training.
That is because the transformations of the vector Ô are k and k needs to be fixed
and known for training. Two models, one that generates k = 20 samples and the
other k = 5 samples, will need two different trainings because the models will tune
their predictions based on how many samples they generate.

The proposed method does not estimate the probabilities for each predicted
trajectory. That is because the metrics used in literature, the TopK-ADE and
TopK-FDE, do not consider any trajectory probability information and, for this
reason, also the majority of the models present in literature do not estimate the
probability of each of the K trajectories. Obviously, a model capable of such
predictions would be preferable, but the literature benchmarking protocol and the
fact that no ground truth probability is available for the trajectories makes this
aspect also very difficult to be evaluated properly.

The overall architecture and flow of the sampling method is in Figure 5.11.

73

Experiments

Figure 5.11: Proposed sampling method architecture, DLow with fine-tuning of
the generator parameters. The Q network outputs the parameters that are used to
transform the sampled vector Ô in k latent vectors that generate k predictions.

To train the overall model, the generator and the new sampling section, a
new loss is used which combines the DLow loss with the already used trajectory
forecasting loss:

L = Ltrajectory + Ldiversity + LKL (5.15)

This loss is useful because it forces the generated samples to cover the ground truth
trajectory, to differentiate the predictions and for the generated latent codes to
follow a prior distribution. In particular, the three terms are defined as follows:

• Ltrajectory is the pairwise distance loss of the standard model. The only
difference is that in this case we have k predictions for each sample and we
compute the distance loss only on the most close example to ground truth.
Formally, the Ltrajectory loss is defined as the minimum over k loss:

Ltrajectory = min
k
||Y − Ŷk||2 (5.16)

It is used to encourage sample diversity while covering also the ground truth
trajectory. In fact, the model is incentivized to cover more possible outputs to
cover the ground truth in all cases.

74

Experiments

• The second part of the loss is used to explicitly account for diversity in the
predictions:

Ldiversity = exp
− 1

k2

kØ
i=1

kØ
j=1
||Ŷj − Ŷi||2

 (5.17)

which essentially measures the distance between every pair of trajectories
for the same input sample and averages it across the k predictions. The
exponential is used to have a lower bound of zero for the loss. It measures the
average distance between the k predictions.

• The last loss used is the KL divergence that measures the difference between
the transformations applied on the original latent vector Ô and the original
prior p(z) used in the Transformer GAN training. Since for p(z) it was used a
standard Normal N (0, I), this divergence loss imposes that the k generated
latent vectors approximately follow the same distribution and forces the model
to generate latent vectors similar to the ones already seen in the first training
of Transformer GAN. It acts as a regularization term and, if the distribution p
we want to approximate is N (0, I), as in our case, we can analytically compute
it as:

LKL(q||p) = −1
2[−µTq µq − tr{Σq}+ k + log |Σq|] (5.18)

which tells us the divergence between the generated distribution q and the
desired one. By minimizing this loss term we force q to follow our desired
Normal distribution. It is important to notice that the parameters of q are
outputted by the Q network in Figure 5.11.

Implementation details

All the models were trained for 30 epochs taking as input the previously trained
Transformer GAN model instance. Adam optimizer was used with an initial learning
rate of 0.0001 multiplied by 0.8 every 4 epochs. The learning rate was optimized in
[0.001, 0.0005, 0.0001]. No other hyperparameter was optimized following a grid
search because of time constraints. Batch size is set to 60. The Q network consists
in an MLP which takes in input the encoded past trajectory and feed it to two
consecutive layers of dimensions 512 and 256 respectively. The output of the Q
MLP is then fed to two distinct linear layers with output dimension of k × zdim
that output the parameters of A and b used to transform the latent vector Ô. The
dimensions of the linear layers used in the Q network was set following the prior
work of AgentFormer [8] which used DLow.
To reduce latency and speed up the training, the generator phase is divided in two
parts, the first in which the past history is encoded (notice that the past history
is the same for all k predictions) and the second in which this encoded sequence

75

Experiments

is used to generate all the predictions. This approach is significantly faster than
encoding k times the same input sequence as can be naively implemented.
The learning curves of the models are available in Figure 5.12.

(a) Ltrajectory

(b) Ldiversity (c) LKL

(d) Test ADE (e) Test FDE

Figure 5.12: Learning curves for the sampling method. ETH brown, Hotel
magenta, UCY grey, Zara1 light blue and Zara2 green.

76

Experiments

5.5.3 Results
The results of the stochastic models proposed are available in Table 5.7. There are
both results prior and after the sampling method.

For Transformer GAN prior to the sampling method, it is evident that by
increasing the number of drawn samples the results improve, but not by a large
margin. In fact, the final results show that by drawing twenty samples we reach
almost identical results of the original Transformer TF which is deterministic. This
means that the samples that are drawn are all very similar to each other and do
not bring much differentiation and improvements. The reason for this behaviour is
one of the challenges of modelling multimodality which is that the model learns to
cover the ground truth and most likely trajectory while the latent vector z is not
taken very much in consideration while predicting. In fact, the pairwise distance
loss used induces the generator output to follow the ground truth, learning the
patterns that guides human motion but in a unimodal way. For this reason, the
sampling method was proposed, which helps the model use its previous learned
information while trying to differentiate the multiple predictions.

The effectiveness of the sampling method for the stochastic approach is evident.
Both the 5 samples and the 20 samples versions outperform their prior to sampling
counterparts. The 1 sample version is not reported because the model needs more
than 1 sample for trajectory in order to be trained (because of the diversity loss).
We can see how the results improve drastically from 5 to 20 samples, that is because
the more the predicted trajectories, the more the possibility space is covered by
those, indicating that the model differentiation between predictions is very good
and effective.

Dataset Transformer TF Transformer GAN Sampling method
Deterministic 1S 5S 20S 5S 20S

ETH 1.00/2.02 1.03/1.98 1.02/1.96 1.01/1.94 0.94/1.87 0.61/0.94
Hotel 0.33/0.65 0.35/0.74 0.34/0.72 0.34/0.71 0.29/0.54 0.18/0.26
UCY 0.55/1.19 0.57/1.21 0.55/1.15 0.53/1.11 0.59/1.24 0.31/0.56
Zara1 0.44/0.99 0.63/1.50 0.62/1.46 0.61/1.43 0.52/1.11 0.25/0.45
Zara2 0.34/0.75 0.39/0.83 0.36/0.72 0.33/0.66 0.42/0.78 0.19/0.35
avg 0.53/1.12 0.59/1.25 0.58/1.20 0.56/1.17 0.55/1.11 0.31/0.51

Table 5.7: Overall results of Transformer GAN prior and after the sampling
method. The improved deterministic Transformer TF results are also shown for
completeness. The number before S refers to the number of samples predicted.
The metrics used for the stochastic models are the TopK-ADE and TopK-FDE
with K equal to the number of samples drawn.

77

Experiments

5.5.4 Predictions comparison before and after sampling
method

In this section some examples are presented to show the capabilities and improve-
ments of the model Transformer GAN before and after the sampling method was
introduced. The examples shown here are difficult and critical examples in which
some particular behaviour can be seen.
As we can observe from all Figures (5.13,5.14,5.15) in the top row, the Transformer
GAN predictions are all unimodal and fail to capture the multimodality of the
task. The k predictions are slightly different but they all follow the same direction.
Differently, the predictions after the sampling refinement are very diverse and
cover multiple possible modes in all the examples, and they cover multiple modes
leveraging the past information and not just predicting random diverse trajectories.

In Figure 5.13 we see an example taken from Hotel dataset where the original
Transformer GAN predicts a wrong trajectory while the model after the sampling
method predicts very different trajectories that cover multiple modes (going straight,
gently curve to the right or hard right curve). In this way the correct output mode
is in the proposed ones.

Figure 5.13: Comparison between TF GAN prior (top) and after (bottom)
sampling method on an example from Hotel dataset. On the left 20 predicted
trajectories, on the right the best one.

78

Experiments

In Figure 5.14 another difficult example is presented from the UCY dataset. In
this case the difficulty is that the observed trajectory is not much informative of the
possible intent and future of the agent. In fact, the observed positions show an agent
which is almost still. In this situation the possible outcomes are very uncertain
and predicting the correct trajectory just from past history is almost a gamble.
Original Transformer GAN does not capture the possible multiple outcomes and
predicts intuitively the most likely which is to continue walking at the same speed,
while the model after the refinement understands the uncertainty in the scene and
tries to cover most of the possible outputs predicting some trajectories in all direc-
tions and some others that cover the possibility of the agent continuing to stand still.

Figure 5.14: Comparison between TF GAN prior (top) and after (bottom)
sampling method on an example from UCY dataset. On the left 20 predicted
trajectories, on the right the best one.

Another particular aspect that can be seen from Figure 5.15 which is from the
Zara1 dataset is the way the model after the sampling method is not only capable
of covering multiple directions, but also different speeds of the agent. From the
figure we can see that our final model predicts two set of trajectories if we consider
the speed, one with lower velocities and the other with higher velocities. Even if
the u-turn of the agent is not correctly predicted, the best prediction is much closer

79

Experiments

to ground truth than the original Transformer GAN.

Figure 5.15: Comparison between TF GAN prior (top) and after (bottom)
sampling method on an example from Zara1 dataset. On the left 20 predicted
trajectories, on the right the best one.

5.5.5 Literature comparison
In Table 5.8 various results from literature are shown and compared to the Trans-
former GAN after the sampling method. We can observe how the model proposed
performs slightly better than TFq which is a version of Transformer TF quan-
tized, in which the problem is defined as a classification task and the outputs
are classes probabilities that can be sampled to get multiple results. The other
model, SGAN-ind is the version of Social GAN that do not use social information.
The proposed model after the sampling method outperforms SGAN-ind by a large
margin indicating the goodness of a Transformer based model with respect to a
LSTM model for this task. The other models results are reported as a reference
and are not directly comparable to our proposed one since their inputs contain
more information than just trajectory information, for example social or map
information.

80

Experiments

Model ETH Hotel UCY Zara1 Zara2 avg
Ours 0.61/0.94 0.18/0.26 0.31/0.56 0.25/0.45 0.19/0.35 0.31/0.51

TFq [7] 0.61/1.12 0.18/0.30 0.35/0.65 0.22/0.38 0.17/0.32 0.31/0.55
SGAN-ind. [4] 0.81/1.52 0.72/1.61 0.60/1.26 0.34/0.69 0.42/0.84 0.58/1.18

SGAN [4] 0.87/1.62 0.67/1.37 0.76/1.52 0.35/0.68 0.42/0.84 0.61/1.21
AgentFormer [8] 0.45/0.75 0.14/0.22 0.25/0.45 0.18/0.30 0.14/0.24 0.23/0.39
Trajectron++ [5] 0.39/0.83 0.12/0.21 0.20/0.44 0.15/0.33 0.11/0.25 0.19/0.41
Social-BiGAT [48] 0.69/1.29 0.49/1.01 0.55/1.32 0.30/0.62 0.36/0.75 0.48/1.00

STAR [46] 0.36/0.65 0.17/0.36 0.31/0.62 0.26/0.55 0.22/0.46 0.26/0.53
SoPhie [49] 0.70/1.43 0.76/1.67 0.54/1.24 0.30/0.63 0.38/0.78 0.54/1.15
PECNet [10] 0.54/0.87 0.18/0.24 0.35/0.60 0.22/0.39 0.17/0.30 0.29/0.48

Table 5.8: Comparison between literature results of stochastic models using
a TopK-ADE and TopK-FDE with K=20 samples. The results are taken from
publications. Our model is the Transformer GAN generator after the sampling
method. The first three models are the only comparable in terms of inputs as
they consider only the trajectory information. The others use also map or social
information

81

Chapter 6

Conclusions

In this thesis the pedestrian trajectory forecasting task is investigated by using
deep learning methodologies. The task presents multiple challenges but for this
work particular emphasis is placed in modelling the stochastic aspect of human
motion. Furthermore, the problem is tackled using Transformer based architectures
motivated by their good performances on sequence modelling tasks as trajectory
forecasting is.

The initial model used in the experiments is Transformer TF [7], a Transformer
based deterministic model in its original setting which does not use any social or
map information. Despite its architecture simplicity, the model outperforms some
other more complex solutions for the task. Experiments were carried out on the
model where the input dimension was lowered making the model smaller with no
significant impact on performance, then multiple losses and coordinates encodings
were tried to observe the effect on training and lastly some data augmentation
techniques were proposed which improved the original model performances while
also having a smaller model thanks to a lower input dimensionality.
The second part of the experiments investigates the problem stochasticity. A new
model proposal is made, Transformer GAN, based on Transformer TF but with
the capability of making multiple predictions from a single observed past. The
proposed generative model is a Generative Adversarial Network and can make
multiple predictions thanks to a sampled latent vector. Then, a sampling method
is introduced to diversify the predictions which drastically improves the stochastic
performances of Transformer GAN.

The contributions of this thesis are a modified version of the original model
Transformer TF with improved performances, thanks to a data augmentation
technique, and smaller size, thanks to a lower dimensional input embedding. Then,
a new model is proposed, Transformer GAN, to model the stochasticity of hu-
man behaviour thanks to a sampled latent code and a sampling technique is
employed which drastically improves the model stochastic performances that reach

82

Conclusions

state-of-the-art results if considering models with same inputs as ours, meaning
only trajectory history data. All the models and experiments were tested on the
ETH-UCY datasets, a common benchmark used in literature to assess pedestrian
trajectory forecasting models performances.

Future works could concentrate on adding more input information to make the
predictions. This information could be social or map and scene data, to observe
how adding such inputs can be beneficial to the model and in which occasions. In
addition to this, also other metrics could be used to evaluate model performances
such as metrics which quantify the collisions that occur in the predicted trajectories.
These metrics could be useful to assess the real-world feasibility of the generated
trajectories and would give an additional way to compare models, since distance
metrics are close to saturation with current ones.

83

Bibliography

[1] Christoph Schöller, Vincent Aravantinos, Florian Lay, and Alois Knoll. What
the Constant Velocity Model Can Teach Us About Pedestrian Motion Predic-
tion. 2020. arXiv: 1903.07933 [cs.CV] (cit. on pp. 1, 7).

[2] Dirk Helbing and Péter Molnár. «Social force model for pedestrian dynamics».
In: Physical Review E 51.5 (May 1995), pp. 4282–4286. issn: 1095-3787.
doi: 10.1103/physreve.51.4282. url: http://dx.doi.org/10.1103/
PhysRevE.51.4282 (cit. on pp. 2, 8).

[3] Alexandre Alahi, Kratarth Goel, Vignesh Ramanathan, Alexandre Robicquet,
Li Fei-Fei, and Silvio Savarese. «Social LSTM: Human Trajectory Prediction
in Crowded Spaces». In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). June 2016 (cit. on pp. 2, 44–46).

[4] Agrim Gupta, Justin Johnson, Li Fei-Fei, Silvio Savarese, and Alexandre Alahi.
Social GAN: Socially Acceptable Trajectories with Generative Adversarial
Networks. 2018. arXiv: 1803.10892 [cs.CV] (cit. on pp. 2, 46, 66, 67, 81).

[5] Tim Salzmann, Boris Ivanovic, Punarjay Chakravarty, and Marco Pavone.
Trajectron++: Dynamically-Feasible Trajectory Forecasting With Heteroge-
neous Data. 2021. arXiv: 2001.03093 [cs.RO] (cit. on pp. 2, 47, 64, 66,
81).

[6] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention Is All You
Need. 2017. arXiv: 1706.03762 [cs.CL] (cit. on pp. 2, 28–31, 33, 48, 55).

[7] Francesco Giuliari, Irtiza Hasan, Marco Cristani, and Fabio Galasso. Trans-
former Networks for Trajectory Forecasting. 2020. arXiv: 2003.08111 [cs.CV]
(cit. on pp. 2, 48, 49, 53, 55, 57, 81, 82).

[8] Ye Yuan, Xinshuo Weng, Yanglan Ou, and Kris Kitani. AgentFormer: Agent-
Aware Transformers for Socio-Temporal Multi-Agent Forecasting. 2021. arXiv:
2103.14023 [cs.AI] (cit. on pp. 2, 49, 50, 64, 66, 75, 81).

84

https://arxiv.org/abs/1903.07933
https://doi.org/10.1103/physreve.51.4282
http://dx.doi.org/10.1103/PhysRevE.51.4282
http://dx.doi.org/10.1103/PhysRevE.51.4282
https://arxiv.org/abs/1803.10892
https://arxiv.org/abs/2001.03093
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/2003.08111
https://arxiv.org/abs/2103.14023

BIBLIOGRAPHY

[9] Parth Kothari, Sven Kreiss, and Alexandre Alahi. «Human Trajectory Fore-
casting in Crowds: A Deep Learning Perspective». In: IEEE Transactions
on Intelligent Transportation Systems (2021), pp. 1–15. doi: 10.1109/TITS.
2021.3069362 (cit. on pp. 3, 5, 44).

[10] Karttikeya Mangalam, Harshayu Girase, Shreyas Agarwal, Kuan-Hui Lee,
Ehsan Adeli, Jitendra Malik, and Adrien Gaidon. «It Is Not the Journey
but the Destination: Endpoint Conditioned Trajectory Prediction». In: arXiv
preprint arXiv:2004.02025 (2020) (cit. on pp. 4, 81).

[11] Andrey Rudenko, Luigi Palmieri, Michael Herman, Kris M Kitani, Dariu M
Gavrila, and Kai O Arras. «Human motion trajectory prediction: a survey».
In: The International Journal of Robotics Research 39.8 (2020), pp. 895–935.
doi: 10.1177/0278364920917446 (cit. on pp. 6, 8).

[12] Kota Yamaguchi, Alexander C. Berg, Luis E. Ortiz, and Tamara L. Berg.
«Who are you with and where are you going?» In: CVPR 2011. 2011, pp. 1345–
1352. doi: 10.1109/CVPR.2011.5995468 (cit. on p. 9).

[13] Alexandre Robicquet, Amir Sadeghian, Alexandre Alahi, and Silvio Savarese.
«Learning Social Etiquette: Human Trajectory Understanding In Crowded
Scenes». In: Computer Vision – ECCV 2016. Ed. by Bastian Leibe, Jiri Matas,
Nicu Sebe, and Max Welling. Cham: Springer International Publishing, 2016,
pp. 549–565. isbn: 978-3-319-46484-8 (cit. on p. 10).

[14] Frank Rosenblatt. «The perceptron: a probabilistic model for information
storage and organization in the brain.» In: Psychological review 65 6 (1958),
pp. 386–408 (cit. on pp. 11, 12).

[15] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. http:
//www.deeplearningbook.org. MIT Press, 2016 (cit. on pp. 11, 19).

[16] Alexander Amini. MIT 6.S191 (2020): Introduction to Deep Learning. 2020.
url: https://www.youtube.com/watch?v=njKP3FqW3Sk (cit. on p. 11).

[17] Antonio Rafael Sabino Parmezan. url: https://www.researchgate.net/
figure/Structure-of-Perceptron_fig2_330742498 (cit. on p. 12).

[18] Shruti Jadon. «Introduction to different activation functions for deep learning».
In: Medium, Augmenting Humanity 16 (2018) (cit. on p. 13).

[19] IBM Cloud Education. Neural Networks. 2020. url: https://www.ibm.com/
cloud/learn/neural-networks (cit. on p. 14).

[20] Sebastian Ruder. An overview of gradient descent optimization algorithms.
2017. arXiv: 1609.04747 [cs.LG] (cit. on p. 18).

[21] Sergey Ioffe and Christian Szegedy. Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift. 2015. arXiv: 1502.
03167 [cs.LG] (cit. on p. 20).

85

https://doi.org/10.1109/TITS.2021.3069362
https://doi.org/10.1109/TITS.2021.3069362
https://doi.org/10.1177/0278364920917446
https://doi.org/10.1109/CVPR.2011.5995468
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://www.youtube.com/watch?v=njKP3FqW3Sk
https://www.researchgate.net/figure/Structure-of-Perceptron_fig2_330742498
https://www.researchgate.net/figure/Structure-of-Perceptron_fig2_330742498
https://www.ibm.com/cloud/learn/neural-networks
https://www.ibm.com/cloud/learn/neural-networks
https://arxiv.org/abs/1609.04747
https://arxiv.org/abs/1502.03167
https://arxiv.org/abs/1502.03167

BIBLIOGRAPHY

[22] Christopher Olah. Understanding LSTM Networks. 2017. url: https://
colah.github.io/posts/2015-08-Understanding-LSTMs/ (cit. on pp. 22,
23).

[23] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. «Learning
representations by back-propagating errors». In: Nature 323 (1986), pp. 533–
536 (cit. on p. 21).

[24] P.J. Werbos. «Backpropagation through time: what it does and how to do
it». In: Proceedings of the IEEE 78.10 (1990), pp. 1550–1560. doi: 10.1109/
5.58337 (cit. on p. 21).

[25] Y. Bengio, P. Simard, and P. Frasconi. «Learning long-term dependencies
with gradient descent is difficult». In: IEEE Transactions on Neural Networks
5.2 (1994), pp. 157–166. doi: 10.1109/72.279181 (cit. on p. 22).

[26] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. «On the Difficulty of
Training Recurrent Neural Networks». In: Proceedings of the 30th International
Conference on International Conference on Machine Learning - Volume 28.
ICML’13. Atlanta, GA, USA: JMLR.org, 2013, III–1310–III–1318 (cit. on
p. 22).

[27] Sepp Hochreiter and Jürgen Schmidhuber. «Long Short-term Memory». In:
Neural computation 9 (Dec. 1997), pp. 1735–80. doi: 10.1162/neco.1997.9.
8.1735 (cit. on p. 22).

[28] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural Machine
Translation by Jointly Learning to Align and Translate. 2016. arXiv: 1409.
0473 [cs.CL] (cit. on pp. 25–27).

[29] Minh-Thang Luong, Hieu Pham, and Christopher D. Manning. Effective
Approaches to Attention-based Neural Machine Translation. 2015. arXiv:
1508.04025 [cs.CL] (cit. on p. 25).

[30] Jay Alammar. The illustrated transformer. 2018. url: http://jalammar.
github.io/illustrated-transformer/ (cit. on p. 32).

[31] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient Esti-
mation of Word Representations in Vector Space. 2013. arXiv: 1301.3781
[cs.CL] (cit. on p. 35).

[32] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. «GloVe:
Global Vectors for Word Representation». In: Empirical Methods in Natural
Language Processing (EMNLP). 2014, pp. 1532–1543. url: http://www.
aclweb.org/anthology/D14-1162 (cit. on p. 35).

[33] Amirhossein Kazemnejad. Transformer Architecture: The Positional Encoding.
2019. url: https://kazemnejad.com/blog/transformer_architecture_
positional_encoding/ (cit. on pp. 35, 36).

86

https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://doi.org/10.1109/5.58337
https://doi.org/10.1109/5.58337
https://doi.org/10.1109/72.279181
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1508.04025
http://jalammar.github.io/illustrated-transformer/
http://jalammar.github.io/illustrated-transformer/
https://arxiv.org/abs/1301.3781
https://arxiv.org/abs/1301.3781
http://www.aclweb.org/anthology/D14-1162
http://www.aclweb.org/anthology/D14-1162
https://kazemnejad.com/blog/transformer_architecture_positional_encoding/
https://kazemnejad.com/blog/transformer_architecture_positional_encoding/

BIBLIOGRAPHY

[34] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative Adver-
sarial Networks. 2014. arXiv: 1406.2661 [stat.ML] (cit. on p. 37).

[35] Mehdi Mirza and Simon Osindero. Conditional Generative Adversarial Nets.
2014. arXiv: 1411.1784 [cs.LG] (cit. on pp. 37, 38).

[36] Diederik P Kingma and Max Welling. Auto-Encoding Variational Bayes. 2014.
arXiv: 1312.6114 [stat.ML] (cit. on p. 38).

[37] Jeremy Jordan. Variational autoencoders. 2018. url: https://www.jeremyj
ordan.me/variational-autoencoders/ (cit. on pp. 39, 41).

[38] Kihyuk Sohn, Honglak Lee, and Xinchen Yan. «Learning Structured Output
Representation using Deep Conditional Generative Models». In: Advances
in Neural Information Processing Systems. Ed. by C. Cortes, N. Lawrence,
D. Lee, M. Sugiyama, and R. Garnett. Vol. 28. Curran Associates, Inc., 2015.
url: https://proceedings.neurips.cc/paper/2015/file/8d55a249e6b
aa5c06772297520da2051-Paper.pdf (cit. on p. 41).

[39] Matteo Lisotto, Pasquale Coscia, and Lamberto Ballan. Social and Scene-
Aware Trajectory Prediction in Crowded Spaces. 2019. arXiv: 1909.08840
[cs.CV] (cit. on p. 45).

[40] Daksh Varshneya and G. Srinivasaraghavan. Human Trajectory Prediction us-
ing Spatially aware Deep Attention Models. 2017. arXiv: 1705.09436 [cs.LG]
(cit. on p. 45).

[41] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding.
2019. arXiv: 1810.04805 [cs.CL] (cit. on p. 48).

[42] Ye Yuan and Kris Kitani. DLow: Diversifying Latent Flows for Diverse Human
Motion Prediction. 2020. arXiv: 2003.08386 [cs.CV] (cit. on pp. 50, 71, 73).

[43] Stefano Pellegrini, Andreas Ess, and Luc Van Gool. «You’ll Never Walk
Alone: Modeling Social Behavior for Multi-target Tracking». In: Sept. 2009,
pp. 261–268. doi: 10.1109/ICCV.2009.5459260 (cit. on p. 53).

[44] Alon Lerner, Yiorgos Chrysanthou, and Dani Lischinski. «Crowds by Exam-
ple». In: Comput. Graph. Forum 26 (Sept. 2007), pp. 655–664. doi: 10.1111/
j.1467-8659.2007.01089.x (cit. on p. 53).

[45] Pu Zhang, Wanli Ouyang, Pengfei Zhang, Jianru Xue, and Nanning Zheng.
«SR-LSTM: State Refinement for LSTM towards Pedestrian Trajectory Pre-
diction». In: IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). 2019 (cit. on p. 61).

87

https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1411.1784
https://arxiv.org/abs/1312.6114
https://www.jeremyjordan.me/variational-autoencoders/
https://www.jeremyjordan.me/variational-autoencoders/
https://proceedings.neurips.cc/paper/2015/file/8d55a249e6baa5c06772297520da2051-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/8d55a249e6baa5c06772297520da2051-Paper.pdf
https://arxiv.org/abs/1909.08840
https://arxiv.org/abs/1909.08840
https://arxiv.org/abs/1705.09436
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/2003.08386
https://doi.org/10.1109/ICCV.2009.5459260
https://doi.org/10.1111/j.1467-8659.2007.01089.x
https://doi.org/10.1111/j.1467-8659.2007.01089.x

BIBLIOGRAPHY

[46] Cunjun Yu, Xiao Ma, Jiawei Ren, Haiyu Zhao, and Shuai Yi. Spatio-Temporal
Graph Transformer Networks for Pedestrian Trajectory Prediction. 2020.
arXiv: 2005.08514 [cs.CV] (cit. on pp. 64, 81).

[47] Soumith Chintala, Emily Denton, Martin Arjovsky, and Michael Mathieu.
How to train a GAN. 2016. url: https://github.com/soumith/ganhacks#
authors (cit. on p. 71).

[48] Vineet Kosaraju, Amir Sadeghian, Roberto Martín-Martín, Ian Reid, S. Hamid
Rezatofighi, and Silvio Savarese. Social-BiGAT: Multimodal Trajectory Fore-
casting using Bicycle-GAN and Graph Attention Networks. 2019. arXiv: 1907.
03395 [cs.CV] (cit. on p. 81).

[49] Amir Sadeghian, Vineet Kosaraju, Ali Sadeghian, Noriaki Hirose, S. Hamid
Rezatofighi, and Silvio Savarese. SoPhie: An Attentive GAN for Predicting
Paths Compliant to Social and Physical Constraints. 2018. arXiv: 1806.01482
[cs.CV] (cit. on p. 81).

88

https://arxiv.org/abs/2005.08514
https://github.com/soumith/ganhacks#authors
https://github.com/soumith/ganhacks#authors
https://arxiv.org/abs/1907.03395
https://arxiv.org/abs/1907.03395
https://arxiv.org/abs/1806.01482
https://arxiv.org/abs/1806.01482

	List of Tables
	List of Figures
	Introduction
	Trajectory forecasting
	Problem formulation
	Regression and classification
	Deterministic and stochastic

	Applications
	Objectives and challenges
	Pre-deep learning
	Kinematic models
	Social force model
	Energy minimization model

	Introduction to deep learning
	Introduction
	Neural networks
	Backpropagation
	Optimizers

	Recurrent neural networks
	LSTM

	Attention
	Global or local attention
	Hard attention
	Soft attention
	Self attention

	Transformers
	Transformer architecture
	Attention mechanism
	Encoder
	Decoder
	Input embedding
	Positional encoding

	Generative models
	GANs
	CGANs
	Variational Autoencoders
	Conditional Variational Autoencoders

	Deep learning models for trajectory forecasting
	RNN-based models
	Social LSTM
	Social GAN
	Trajectron++

	Transformer based models
	Transformer TF
	AgentFormer

	Experiments
	Introduction
	Datasets
	ETH and UCY

	Metrics
	Average Displacement Error (ADE)
	Final Displacement Error (FDE)

	Chosen model
	Input embeddings dimension
	Loss
	Coordinates encoding
	Data augmentation

	Stochastic model
	Proposal: Transformer GAN
	Sampling method
	Results
	Predictions comparison before and after sampling method
	Literature comparison

	Conclusions
	Bibliography

