A
W N 1859 ,}:"
\‘\.‘ "“i‘

POLITECNICO DI TORINO

Master of Science in Electronic Engineering
Graduation Session of March/April 2022

Design, Verification and Integration
of a hardware accelerator for image
composition through alpha blending

Supervisor: Candidate:

Prof. Maurizio Martina Gabriele Perrone

Academic Year 2021/2022

Abstract

The goal of this work is to present the development phases of a hardware accelerator
for image processing. This accelerator has been created to implement the alpha blending
technique, thanks to which it is possible to superimpose two images using the transparency
channel called alpha.

The accelerator was thought to extend the functionalities of a DMA controller that
can exploit it to perform simple elaborations while moving data.

The work will focus on the logical design phase, where the accelerator will be analyzed
in terms of internal structure. The correct functioning of the accelerator has been tested
using a UVM environment to prove that the design specifications have been met. On a
second time, it has been tested using a system-level environment to perform actual tests
written in C language that involve authentic images.

Contents

1 Introduction

1.1 Accelerator Functionality

1.2 System Overview
2 Design

2.1 FIFO

2.2 Stream receiver

2.3 Stream transmitter

2.4 Pixel elaboration unit

2.5 Control unit e
3 Verification

3.1 UVM . L

3.2 Test architecture

3.3 Test cases
3.4 Results . .

4 System integration
4.1 Testbench Architecture

4.2 Test Cases
5 Conclusions

Bibliography

51
o1
52

57

58

List of Figures

1.1
1.2
1.3
1.4
1.5
1.6

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17
2.18

2.19

2.20
2.21
2.22
2.23
2.24
2.25

Foreground example image 3
Background example imageo oL 3
Alpha channel of the foreground image 3
Result example image L o 3
Example system where the hardware accelerator (Stream Engine) operates 4

Example connection between the DMA controller and the hardware accel-

erator (Stream Engine)o Lo 5
Stream Engine internal organization 6
FIFO block 7
Stream receiver block L oL 8
Stream receiver datapath L 10
Stream receiver, waveform for FSM design - part 1 10
Stream receiver, waveform for FSM design - part 2 11
Stream receiver, FSM state diagram 13
Stream receiver, FSM condition signal evaluation 14
Stream transmitter blocko o000 14
Stream transmitter datapath L. 15
Stream transmitter, waveform for FSM design - part 1 16
Stream transmitter, waveform for FSM design - part 2 17
Stream transmitter, FSM state diagram 18
Stream transmitter, FSM condition signal evaluation 19
Pixel elaboration unit block 00000 20
Color formats supported by the Stream Engine. 21
Color format conversion example 22
Pixel elaboration unit: datapath for calculating number of bytes to pull and

push -part 1 23
Pixel elaboration unit: datapath for calculating number of bytes to pull and

push - part 2 24
Pixel elaboration unit: datapath for performing the actual pixel elaboration 25
Single pixel unit, internal structure - part 1. 27
Single pixel unit, internal structure - part 2. 28
Pixel elaboration unit, FSM state diagram 29
Pixel elaboration unit, FSM condition signal evaluation - part 1 30
Pixel elaboration unit, FSM condition signal evaluation - part 2 31

i

2.26
2.27
2.28

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10

4.1
4.2
4.3
4.4
4.5

Control unit block 31

Control unit, FSM state diagram 32
Control unit, FSM condition signal evaluation 33
UVM phases e 36
UVM generic Agent 37
UVM Virtual Sequencer 38
UVM Predictor 39
UVM Scoreboard 40
UVM Coverage Collector 40
UVM Environment 41
UVM Integration layer 43
UVM complete Testbench 44
Code-coverage report for the developed blocks 49
System-level testbench architecture, 52
Foreground example image 55
Background example imageo 5}
Alpha channel of the foreground image 55
Result example image Lo 55

il

List of Tables

2.1 Subset signal list for the adopted version of the AXI4-Stream protocol . . . 9
3.1 Configuration parameters common to all tests. 45
3.2 Configuration parameters for the coverage tests 48

v

Chapter 1

Introduction

Hardware accelerator is a general term to indicate a category of hardware components
found in computing systems that perform specific tasks to ease the main elaboration unit
workload. A famous example of a hardware accelerator is the Digital Signal Processor
(DSP), taking care of the data elaboration coming from analog sensors.

This work aims to present a hardware accelerator for image processing. The innovation
of this accelerator is that it is not accessed directly by the system’s main CPU. However, it
will be connected to a DMA controller to extend its functionalities. So the main CPU can
just instruct the DMA controller to move data and it will also obtain the image processing
operation performed by the accelerator.

The document is organized as follows: in this chapter, it will be first described the
task performed by the accelerator, then it will be illustrated an example of a typical
system where it operates. In the second chapter, it will be discussed the logical design
of the accelerator. The third chapter will present the unit-level verification phase of the
accelerator using UVM. In the fourth chapter, the accelerator will be tested in an example
environment using high-level tests. The fifth chapter will conclude this document by
commenting on the achieved results.

1.1 Accelerator Functionality

1.1.1 Alpha blending

Alpha blending is the technique used in image processing for combining two or more
pictures using the alpha channel contained in each pixel of the images. The alpha channel
is additional information contained in the pixel that indicates its level of transparency.
Usually, it is given in a range from 0.0 to 1.0 where 0.0 indicates that a pixel is completely
transparent while 1.0 indicates a pixel completely opaque.

Porter and Duff [1] described a complete algebra for digital image composition using
the alpha channel. Let us now focus on the A over B operation they described, which
is the most common operation that can be performed with two images. This operation
permits to combine two images, A and B, so that A appears in the foreground and B
appears in the background and can be summarized as follows: let C'4 and C'z be two colors

1. Introduction 2

components, regarding the same color, of two pixels in image A and B and let a4 and apg
be the alpha components, it is possible to calculate the result relative color component
applying the equations:

ap = aa+ag(l —ay) (1.1)
~ Chax+Cpap(l —ay)
- -

Co

(1.2)

where ap and Cp represent the alpha and the color component of the pixel in the resulting
image.

In the specifications document of the accelerator, there was written not to consider
the alpha channel of image B and to fix the alpha channel of the resulting image to 1.0.
This can be achieved easily by substituting ag = 1 in Equation 1.1:

OtO:OéA+(1—OZA):OzA+1—OzA:1

Applying the obtained result to Equation 1.2 the final formula required by the accelerator
is:
CO:CAOéA—I-CB(l—OéA) (13)

The color components in the resulting image’s pixels will be a linear combination of the
color in images A and B weighted by the alpha channel of image A.

1.1.2 Task performed by the accelerator

The task performed by the accelerator was derived directly from its specification document.
According to it, the accelerator should receive two images from two different interfaces,
one for foreground and one for background and perform the composition A over B using
Equation 1.3. As previously reported, the alpha channel of the background (image B) was
not to be considered. The alpha channel for each pixel of the foreground (image A) should
be sent to the accelerator separately using a third interface. The accelerator should use a
fourth interface for sending out the produced result image. The specification documents
also stated that all the images, foreground, background and result, should have the same
number of pixels and aspect ratio.

Let us see a graphical example. In Figure 1.1 is reported the foreground image to
combine with the background image reported in Figure 1.2. The aspect ratio of the
foreground image has been modified to meet the one of the background image by adding
some white fills. Those represent the first two inputs of the accelerator. In Figure 1.3 is
reported the third input, the alpha channel for the foreground image. Here, it is represented
as a grayscale image where white is equal to an alpha of 1.0 while black is equal to an
alpha of 0.0. In Figure 1.4 is reported the output produced by the accelerator. Notice how
the car has been cut from the foreground image and is now on the top of the background
image, merging with it alongside the edges.

1. Introduction 3

Figure 1.1: Foreground example image Figure 1.2: Background example image

Figure 1.3: Alpha channel of the foreground
image

Figure 1.4: Result example image

1.2 System Overview

In modern computing systems, data moving among main memory and peripherals is mainly
done using Direct Memory Access (DMA). In this way, the CPU performs data movements
indirectly by programming a DMA controller with the proper addresses and data size to
move. In the meantime, the CPU can perform other operations. When the data movement
is finished, the DMA will inform the CPU in the way it was programmed, for example, by
an interrupt signal.

In the system presented here, the DMA controller not only can move data but, thanks
to some hardware accelerators attached to it, this DMA controller can also perform some
simple data elaboration. The hardware accelerator that was introduced previously will
work alongside the DMA controller exchanging data directly with it. In Figure 1.5 is
depicted an example system. Here it is possible to notice the position of the hardware
accelerator (Stream Engine').

Let us now focus on the hardware accelerator and its connections with the DMA
controller. As stated previously, it should have four interfaces for data exchange with

!The name Stream Engine comes from the naming convention used inside the project where both the
DMA controller and the hardware accelerator were developed, it will be clarified later in the text.

1. Introduction 4

Peripheral Peripheral
1 2

A A

A 4 Y

BUS Interconnect
A A A

A 4 A 4 Y

Main CPU DMA Stregm
Memory I »{Engine

Figure 1.5: Example system where the hardware accelerator (Stream Engine) operates

the DMA. The interfaces for receiving the two images and the alpha data will use the
AMBA®4 AXI4-Stream[2] protocol in the receiving mode. The interface for sending out
the produced data will use the same protocol in transmitting mode. Since all the data
come from the DMA controller, it will have the counterparts of those four interfaces. In
particular, the controller is divided into channels. Each of them has one AXI4-Stream
interface for transmitting and one for receiving. That means that the accelerator will
be connected to at least three different channels: the first will send one of the three
data streams and receive the result image data stream. The other two will just send the
remaining data streams.

Since the specification document stated that the color format of the foreground, back-
ground, and result images should be configurable and can differ from each other, three
groups of General Purpose Inputs (GPI) were added to the accelerator. Those inputs are
connected to the DMA controller General Purpose Outputs (GPO) and are set by it before
sending the actual input images.

It is now clear that the name Stream Engine was given to the accelerator because its
communication interfaces rely on the AXI4-Stream protocol. The name Stream Engine
will be used to refer to the hardware accelerator from now on.

In Figure 1.6 is possible to observe an example connection between the Stream Engine
and the DMA controller. In this case, channel 0 will send the foreground image and receive
the resulting image. Channel 1 will send the background image and channel 2 the alpha
data stream. In this case, the color formats are handled by the channels that handle the
respective image, channel 0 the foreground and the result, channel 1 the background. This
is not mandatory but highly recommended since it gives coherency between data and data
format to who will program the software for the system. In particular, when the DMA
controller is programmed to use the Stream Engine, the color format of one image and
the image itself will belong to the same channel.

1. Introduction 5

#—Ch_0_GPO Ch_0_AXI_Stream_tx
Ch_0_AXI_Stream_rx

A 4

AXI_Stream_fg color_format_fg

A

AXI_Stream_result color_format_result

Stream

DMA Engine

/—Ch_1_GPO Ch_1_AXI_Stream_tx
Ch_2_AXI_Stream_tx

A 4

A

AX|_Stream_bg color_format_b
AXI_Stream_alpha

A 4

Figure 1.6: Example connection between the DMA controller and the hardware accelerator
(Stream Engine)

Chapter 2

Design

In this chapter, it will be presented the logical design of the Stream Engine. First, it will
be introduced the adopted design strategy. Then the chapter will continue with the design
analysis of the blocks that compose the Engine.

color_format_result

color_format_bg

color_format_fg

AXI_Stream_f
_ _1g Stregm FIFO |—
Receiver
A
L
AXI_Stream_bg Stream . Pixel Elaboration Stream AXI_Stream_result
" FIFO " FIFO]
Receiver ! Unit Transmitter,
x] Ly
----- | : '
AXI_Stream_alpha
= —ap Stream FIFO [
Receiver

Control

..

Unit

Figure 2.1: Stream Engine internal organization

The idea beyond the design was to divide the Engine into small blocks. Each block was
developed to handle a specific task inside the Engine. Each block contains an FSM and
a specific datapath to handle that particular task. Recalling that the Engine has three
AXI4-Stream interfaces for receiving data, the stream receiver block was designed to
handle one interface, independently of the nature of the data. Each stream receiver is
connected to a FIFO that stores the incoming data. Connected to those FIFOs, there is
the heart of the Engine, the pixel elaboration unit. This block retrieves pixels and
alpha data from the three FIFOs to produce the result pixels. Those pixels are stored in
another FIFO. The content of this last FIFO is pulled from the last block in the data
flow, the stream transmitter. It handles the AXI4-Stream output interface sending data

2. Design 7

out. Finally, there is the control unit block which task is to make the other blocks work
correctly together.

Figure 2.1 clarifies the Engine internal organization by showing the blocks introduced
above.

2.1 FIFO

When the design of the Stream Engine started, this component was already available
inside the project where both the DMA controller and the Engine were developed. It has
been reused as it was since its functionalities matched precisely the Engine’s needs. All the
other blocks were shaped almost independently from each other around this one because,
as illustrated in Figure 2.1 all the used FIFOs create memory barriers between the other
blocks. Since it was not designed as a part of the Engine work, its internal structure will
not be detailed. Only its main functionalities and the related interfaces will be described.

clk

_

push_data /32 /32 pop_data

push_size /2 /2 pop_size
FIFO

Bl N le— 7

push_req pop_req

free_bytes /6 /6 used_bytes

resetn

clear_req

Figure 2.2: FIFO block

From an external point of view, the FIFO can be represented as reported in Figure 2.2.
It has two main interfaces, one for pushing data into it and one for popping data. The
pushing interface is formed by all the signals which name starts with push_ plus the
free bytes signal. Its functioning is quite simple: at the rising edge of the clk signal
if push_req is asserted the number of bytes indicated by push_size are taken from the
lower byte lanes of push_data and stored in the FIFO. The free_bytes signal indicates
at any time how many bytes the FIFO can accept without taking into consideration an
incoming push request. The popping interface instead is formed by all the signals which
name starts with pop_ plus the used_bytes signal. Also, its functioning is quite simple:
at the rising edge of the clk signal, if pop_req is asserted, the number of bytes indicated
by pop_size are taken from the FIFO and put in the lower byte lanes of pop_data. The
used _bytes signal indicates at any time how many bytes can be popped from the FIFO
without taking into consideration an incoming pop request. The last remaining signal,
clear _req, can be used to clear the content of the FIFO synchronously.

The FIFO can be configured to match the design needs. In particular, the data width
in number of bits and the memory depth can be chosen freely. To easily represent the
Engine and producing all the figures contained in this chapter, those values were set to:
data width = 32, and fifo depth = 8. In the Engine, the data width of the FIFO always

2. Design 8

matches the AXI4-Stream data width that should match the DMA controller data width,
which can assume only the values 32, 64, 128 or 256 bits. The FIFO depth instead is a
configuration parameter of the Engine. It can assume all the powers of 2 values. Together
with the data width parameter, it set the number of bytes the FIFO can contain. An
analysis of a good choice of this last parameter will be given during the design description
of the other blocks.

2.2 Stream receiver

The stream receiver is the block that handles one input interface of the Stream Engine and
a FIFO to store the incoming data. There are three instances of this block in the Engine,
one for each input interface. From the outside, it looks like as reported in Figure 2.3.

clk

-

tvalid /6 fifo_free_bytes
—_—

tdata /32 /32 fifo_push_data
tstrb /4 / 5 fifo_push_size

tlast fifo_push_req
tready fifo_clear_req
Stream Receiver fsm_rstn
fsm_start
fsm_flush
fsm_wait

fsm_no_data

fsm_finish

resetn

Figure 2.3: Stream receiver block

Its design started with the analysis of the AXI4-Stream protocol and, in particular, the
version adopted by the DMA Controller. Using the terminology reported in the protocol
specification, within this implementation, each channel of the DMA can send only data
bytes and position bytes. Data bytes contain actual valid data, while position bytes are
used only to fill gaps between data bytes. Furthermore, position bytes can be sent by the
DMA controller only during the last transfer and to fill it up to the bus size. The subset
of signal used for the protocol is reported in Table 2.1.

The protocol functioning can be summarized as follows: when a rising edge of the clock
occurs, and both TVALID and TREADY are asserted, valid data must be present on
TDATA and the receiver must accept it on the same edge. This is called a transfer. The
“n” present in the signals TDATA and TSTRB indicates the number of byte lanes. The
transmitter can signal to the receiver which lanes contain position bytes by deasserting
during the transfer the corresponding TSTRB bit. A set of transfers is called a packet.
Concerning the Stream Engine, a packet from the DMA contains an entire image or the

2. Design 9

Table 2.1: Subset signal list for the adopted version of the AXI4-Stream protocol

Signal Source
ACLK Clock source
ARESETn Reset source
TVALID DMA
TREADY Engine

TDATA[(8n-1):0] DMA
TSTRB[(n-1):0] DMA
TLAST DMA

alpha data for an image. The transmitter also asserts TLAST during the last transfer to
signal the end of the packet. Other protocol details will be highlighted during the analysis
of the stream receiver block.

The design continued by splitting the block into a small datapath and an FSM to
control it. The datapath was necessary to handle some operations required to link the
AXI4-Stream interface with the FIFO. Both those parts will be analyzed separately in the
following subsections.

2.2.1 Datapath

The datapath of the stream receiver is quite simple. Its RTL representation' is reported
in Figure 2.4. In the upper part, first, the TSTRB signal is converted in a number of bytes,
then the result is converted again to match the fifo_push _size encoding where the actual
number of bytes is decreased by one. The TSTRB conversion is done to tell the FIFO how
many bites are going to be stored. In this case, it is sufficient to use a 1’ counter because
the valid data are always packed in the lower byte lanes. The two registers on new_bytes
and tdata have been inserted to perform easier back to back reception.

2.2.2 FSM

The design of the stream receiver FSM started by analyzing some possible situation that
can happen between the AXI4-Stream interface and the FIFO. To understand them better,
they were plotted using waveform representation. The most important analyzed situations
are reported in Figure 2.5 and in Figure 2.6.

In Figure 2.5 it is possible to see first the FSM in RESET state (cycle 1), then the reset
signal is deasserted and the FSM goes to IDLE state (cycle 2). The start signal is then
asserted, and the FSM goes to the READY state where it waits for new transfers from the
DMA by asserting the TREADY signal (cycle 3). In cycle 4, the first transfer is sent from
the DMA, and the FSM moves to the PUSH state and stores it in the FIFO (cycle 5). In
the same state, it can keep accepting new transfers. In cycle 6, the DMA is not sending a
new transfer for the moment, and the FSM moves to the WAIT_DATA state (cycle 7), where

In all the reported RTL representation, a signal in bold indicates an input while a signal underlined
indicates an output.

2. Design 10

buf_reg_en

EN

tstrb new_bytes new_bytes_stored
/4 1' Counter / Sl D Q / _bytes. A fifo_push_size
7 3/ 3/ A 2// fifo |

B

A 1
|

clk

buf_reg_en

EN

tdata / / fifo push data
D Q
32/ 32/

A

clk

Figure 2.4: Stream receiver datapath

e f L L F L F L F L F L fF L F 4 F L F L

VAUD 7777777\ / \ / \

TREADY W / \
W77/ SRS/ S/
TSTRB 22222227777 F XK F X007
TLAST 27777777 222722 %%

fifo_push_data
fifo_push_size
fito_push_req [
fifo_free_bytes 32 Y 28 24 Y 20

fifo_clear_req W

buf_reg_en W / \—
is_space_2_beat
is_space_1_beat
is_last_valid
is_space_last
fsm_state reset { ide X ready X push X wait_data X last_push Y finish
fsm_rstn /
fsm_start / \
fsm_finish /A
fsm_flush

Figure 2.5: Stream receiver, waveform for FSM design - part 1

it keeps the TREADY signal asserted waiting for the DMA to start sending transfers again.
In cycle 8, the last transfer of the packet is sent by the DMA, and the FSM moves to

2. Design 11

okt 4 L+ [+ [+ [+ L+ [+ [+ |

TVALD [\ [\
TREADY \ [\
TDATA X D0 X7 %,
TSTRB % A F X7
TLAST %) V4 % \%.
fifo_push_data i DO X D1
fifo_push_size %(3 X 3
fifo_push_req /—\ /—\—
fifo_free_bytes 2 X 6 X 2 X 6 X 2
fifo_clear_req
buf_reg_en \ /—\
is_space_2_beat
is_space_1_beat / \ / \
is_last_valid % ‘% Zi Y
is_space_last %)\ / \ / \
fsm_state wait_data X fifo_full X push X last_fifo_full X last_push X finish
fsm_rstn
fsm_start
fsm_finish [
fsm_flush

Figure 2.6: Stream receiver, waveform for FSM design - part 2

the LAST_PUSH state where the last transfer is stored. Finally, the FSM moves directly to
the FINISH state, where it signals to the control unit block that its packet is fully arrived
(cycle 9).

In Figure 2.6 are reported other typical situations. In cycle 1, the FSM is in the
WAIT_DATA state, and a new transfer is coming from the DMA. Since there is no space in
the FIFO to store it, the FSM moves to the FIFO_FULL state, waiting for some space in
the FIFO. In cycle 3, the FIFO now has enough space to store the transfer, so the FSM
moves to the PUSH state in cycle 4. In the same cycle, a new transfer, the last one of the
packet, is coming from the DMA, but there is not enough space to store it. The FSM
goes to the LAST FIFO _FULL state after having stored the previous transaction waiting for
space in the FIFO for the last transfer (cycle 5). In cycle 6, there is enough space to store
the last transfer, so the FSM moves to the LAST_PUSH state.

From those waveforms, it was derived an initial FSM state diagram. After the integra-

2. Design 12

tion of all the blocks, it was improved, arriving at a final version reported in Figure 2.72.
When the asynchronous reset is asserted, the FSM goes and remains in the RESET state.
In this state the FSM clears its corresponding FIFO by asserting fifo_clear req. After
the Stream Engine is released from asynchronous reset, the FSM moves to the IDLE state
asserting fsm no_data to inform the control unit block. The FSM is started by the signal
fsm_start coming from the control unit block. It then enters the READY state waiting for
the DMA to start sending data. In this state, the FSM keeps fsm no_data asserted to
inform the control unit block that the packet has not yet started. It also asserts tready
to inform the DMA’s channel that this stream receiver is ready to accept the packet, and
buf_reg_en because valid data arrive on the same cycle of tvalid signal assertion. Those
three states are highlighted in green in the figure and represent the initial phase of the
FSM.

During the reception of a complete packet from the channel, the stream receiver FSM
spends most of the time in the states PUSH, WAIT_DATA and FIFO_FULL. Those three states,
highlighted in blue in the figure, represent the main phase of the FSM. When the FSM
remains in the PUSH state, it is accepting a new transfer from the AXI4-Stream interface
and storing the old one in the FIFO. To do that, the FSM asserts tready, buf_reg_en
and fifo_push req. For the FSM to remain in this state, the FIFO must have enough
free bytes to store a number of bytes equal to twice the bus size. The reason is that the
FIFO does not consider an incoming push request in calculating the number of free bytes.
When the DMA has no new transfers to send but has not finished the packet, it pulls
down the tvalid signal, and the FSM goes to WAIT_DATA state. In this state the FSM
keeps tready and buf_reg_en asserted to be ready for data reception. When the DMA
starts again sending new transfers, the FSM leaves this state. In case the DMA is sending
a transfer, but there is no space in the FIFO, the FSM can go to the FIFO_FULL state.
In this state, the tready signal is pulled down. This prevents the DMA from completing
a new transfer. The FSM instead asserts the fsm wait signal to inform the control unit
that data reception cannot continue because the FIFO is full. The FSM stays in this state
until there is enough space in the FIFO to store the content of the bus.

When the FSM detects the last transfer, it moves to a set of states to handle the end
of the packet, LAST PUSH, LAST FIFO_FULL and FINISH. Those states are highlighted in
orange in the figure. LAST_PUSH is entered if, on the detection of the last transfer, there
is enough space in the FIFO to store it, LAST FIFO_FULL otherwise. When the FSM is in
LAST FIFO _FULL state, it asserts the fsm wait signal to tell the control unit that the packet
reception is blocked because there is not enough space in the FIFO. When there is enough
space, the FSM moves to LAST_PUSH and stores the last transfer by asserting fifo_push_req.
From LAST PUSH, the FSM moves to FINISH where it asserts the fsm finish signal to
inform the control unit that the reception of the packet is completed.

The FLUSH state, highlighted in red in the figure, is entered when the control unit block
asserts the fsm flush signal and the FSM is in the FIFO_FULL state. It means something
went wrong during the elaboration and the ongoing process needs to be aborted. In the
FLUSH state, the FSM keeps only tready asserted to accept all the transfers without storing

2The convention used for all the FSM state diagrams regarding the output signals is that when they
are present in a state, they are asserted (only in case of 1-bit signals) or accompanied with their value.

2. Design

resetn

RESET,

fifo_clear_req ———>

1

fsm_rstn

0

_0

LAST_FIFO_FULL

—> fsm_wait

is_space
last

fsm_flush

is_space 1

is_last

1_beat valid
1 lo
FINISH
LAST_PUSH

1—» fifo_push_req

FINISH

1

———> fsm_finish

fsm_rstn

lO

RESET

IDLE

1
—— > fsm_no_data ——— >

fsm_start

is_space
1_beat

10

0 fsm_flush

them. This is done because the AXI4-Stream protocol must be terminated correctly at
all interfaces. When the last transfer is detected, the FSM moves from the FLUSH state

11

FINISH

T 0
READY]
1 tready
tlast «— tvalid <«— buf_reg_en
fsm_no_data
lO 0
is_space ™1 bu}r?:;yen
1_beat fifo_push_req
0 WAIT_DATA
L fast e tvalid roady 9 alid
buf_reg_en
0 |0 1
is_space 1
1_beat AU
0 tlast
FIFO_FULL 10
FINISH ey
T 2 beat
0
- 0
is_last
valid FIFO_FULL
1
LAST_PUSH
L1 is_space 0 ,f) ST FIFO_FULL
2_beat = =
is_last 0 Jo\spy
valid
1
is_space 0 [\ AsT FIFO_FULL
1_beat
1
LAST_PUSH

Figure 2.7: Stream receiver, FSM state diagram

directly to the FINISH state.

The RTL representation of the condition signals used by the FSM is reported in
Figure 2.8. The condition is_space_last is used to check if there is enough space in the
FIFO for the last transfer. Is_space_1_beat is used to check if there is enough space in
the FIFO for a number of bytes equal to the bus width, while is_space_2_beat is used
to check if there is enough space for a number of bytes equal to twice the bus width.
Is_last_valid is used to check if the last transfer contains at least one valid byte. The

reason is that the DMA can send the last transfer made of only position bytes.

L

2. Design 14
fifo_free_bytes /6 is_space last
7 _ Is_space last
/3 |g A>=B
new_bytes_stored
fifo_free_bytes /6 is space 1 beat
/ A>=B —
4 =]
fifo_free_bytes /6 A is_space 2 beat
/ A>=B —
B
8
new_bytes
=l /6 is_last_valid
A>B
B
0

Figure 2.8: Stream receiver, FSM condition signal evaluation

2.3 Stream transmitter

The stream transmitter is the block that retrieves the result data from the result FIFO
and sends them back to the DMA handling the Stream Engine output interface. From the

outside, it looks like as reported in

fifo_used_bytes

Figure 2.9.

clk

fifo_pop_data

fifo_pop_size

\Q\°.|

fifo_pop_req

8

Stream Transmitter

tready
tvalid

- 5
/32 tdata
/4 tstrb
tlast

- = 5

fsm_rstn

fsm_start

fsm_no_more_data

fsm_wait

fsm_finish

resetn

Figure 2.9: Stream transmitter block

The DMA adopts the exact version of the AXI4-Stream protocol both for transmitting
and receiving data, so the stream transmitter here uses the same protocol used by the
DMA to send data. Here, the source of the signals presented in Table 2.1 is inverted.

The same design approach used for the stream receiver is adopted here. The block
has been split into a small datapath and an FSM to control it. Again the datapath was

2. Design 15

necessary to perform some signal conversion required to link the FIFO to the AXI4-Stream
interface. Both those parts will be analyzed separately in the following subsections.

2.3.1 Datapath

The RTL representation of the stream transmitter datapath is reported in Figure 2.10. In
the upper part, first, the number of bytes to pop from the FIFO is selected by the FSM
between the maximum and the actual remaining in the FIFO. This number on one side is
converted to match the fifo_pop_size encoding®, on the other side it is used to generate
the TSTRB signal for the transfer. The two registers on pop_bytes_conv and fifo_pop_data
have been inserted to perform easier back to back data transmission.

buf_reg_en

EN

fifo_used_bytes[2:0] /3
7 0 3/ pop_bytes strb 4/ pop_bytes_conv 4
’ / coverter / b /

4 RSTN
T

op_bytes_sel
POP_DYIes buf_reg_rstn clk

—A 3 fifo_pop_size
A-B ﬁ;
B

buf_reg_en

EN

fifo_pop_data /32
yanm

RSTN
f

buf_reg_rstn clk

Figure 2.10: Stream transmitter datapath

2.3.2 FSM

The design of the stream transmitter FSM started by analyzing some possible situation
that can happen between the FIFO and the AXI4-Stream interface. To understand them
better, they were plotted using waveform representation. The most important analyzed
situations are reported in Figure 2.11 and in Figure 2.12.

In Figure 2.11 the FSM is first in RESET state (cycle 1), in this state TDATA and TSTRB
registers are reset to avoid data leakage on the bus. Then the reset signal is deasserted,

3Tt is the same encoding of the fifo_push_size.

2. Design 16

TVALID 77, /
TREADY 77 [\
TDATA 0x0 X DO X D1
TSTRB 0 X F
TLAST 2,
fito_pop_data 7777777777777 D0 X777 D1 D2
fifo_pop_size m 3
fifo_pop_req m /—\ /—\—
fifo_used_bytes m 0 X 4 o X 4 X 8 4
buf_reg_rstn W
buf_reg_en m /—\ /—\—
pop_bytes_sel W
is_data_2_ beat m /—\—
is_data_1_beat m /—\—_/
is_data_last m /—\—/
fsm_state 7/ reset ___ide X wait_data X pop X fifo_empty X valid
fsm_rstn /
fsm_start / \
fsm_no_more_data m
fsm_finish /)

Figure 2.11: Stream transmitter, waveform for FSM design - part 1

and the FSM goes to the IDLE state (cycle 2). The start signal is then asserted, and the
FSM goes to the WAIT_DATA in cycle 3. Since the FIFO does not have enough bytes to be
sent in this cycle, the FSM remains in this state for the next cycle. In cycle 4, the FIFO
now has enough data, and the FSM moves to the POP state where the FSM retrieves the
first data (cycle 5). The FSM moves then to the FIFO_EMPTY state because the FIFO does
not contain enough data for sending two transfers (cycle 6). In cycle 7, the FIFO has
enough data for one transfer again, so the FSM moves to the VALID state (cycle 8) where
it asserts the TVALID signal. The FSM remains in this state until the DMA can accept the
transfer like in cycle 9. In this cycle, it is also possible to observe that the FSM retrieves
new data from the FIFO only if the previous transfer completes. The FSM remains in the
VALID state also in cycle 10 because the FIFO had enough data for two transfers in the
previous cycle.

In Figure 2.12 are reported other typical situations. In cycle 1, the FSM is in the VALID
state, and the DMA is accepting a transfer. In the same cycle, the FIFO does not have
enough data for two transfers, so the FSM moves to the FIFO_EMPTY state (cycle 2). The
control unit of the Stream Engine has previously asserted the fsm no more_data signal to
inform the FSM that the FIFO is not going to receive any more data. Because of that and
because TDATA register contains valid data that the DMA has not accepted yet, the FSM
moves to the VALID_PRE_LAST state (cycle 3). This state is similar to the VALID state. The
difference is that in this state, the FSM prepares to retrieve the last data from the FIFO

2. Design 17

7% s S e HY s Y Y Y e Y o Y
TVALID \ / \
Ay [\ /e W e W
TDATA D1 X D2 X D3
TSTRB F X 8]

TLAST / \
fifo_pop_data D2 X D3 Y

fifo_pop_size 3 X 1 X 3
fifo_pop_req 4/—\ /—\
fifo_used_bytes 4 X 6 X 2 X 0
buf_reg_rstn

buf_reg_en 4/—\ /—\
pop_bytes_sel \ /
is_data_2_beat
is_data_1_beat \

is_data_last \

fsm_state valid Xfifo_empty X valid_pre_last X last_valid X finish

fsm_rstn

fsm_start

fsm_no_more_data /
fsm_finish /

Figure 2.12: Stream transmitter, waveform for FSM design - part 2

by changing the pop_bytes_sel signal. In cycle 4, the DMA accepts the transfer, and the
FSM prepares the last transfer. So the FSM moves to the LAST_VALID state and asserts
the TLAST signal waiting for the DMA to accept the last transfer (cycle 5). In cycle 6, the
DMA accepts the last transfer, and finally, the FSM moves to the FINISH state (cycle 7),
where it signals the end of the packet to the control unit by asserting the fsm finish
signal.

From those waveforms, it was derived an initial FSM state diagram. After the integra-
tion of all the blocks, it was improved, arriving at a final version reported in Figure 2.13.
When the asynchronous reset is asserted, the FSM goes and remains in the RESET state.
In this state, the FSM clears its buffer register by asserting buf _reg resetn. After the
Stream Engine is released from asynchronous reset, the FSM moves to the IDLE state. The
FSM is started by the signal fsm_start coming from the control unit block. It then enters
the WAIT DATA state, waiting for the presence of data in the FIFO. In this state, the FSM
keeps fsm_wait asserted to inform the control unit block that the packet transmission is
not yet started. Those three states are highlighted in green in the figure and represent the
initial phase of the FSM.

During the transmission of a complete packet to the DMA, the stream transmitter
FSM spends most of the time in the states VALID and FIFO_EMPTY, passing first from the

2. Design 18

resetn

RESET, IDLE
buf_reg_rstn ——> < fsm_rstn 1—> —><_ fsm_start
0 0| WAIT_DATA
fsm_wait
LAST_VALID WAIT_DATA
LAST_POP L TO
buf_reg_en : :
— 1 —is_data 1 fsm_no 0 is_data
i last more_data 1_beat
pop_bytes_sel =0 — <
1

LAST_VALID buf_reg_en
fifo_pop_req

FIFO_EMPTY |« is_data
FINISH 2_beat

1
tready 1—> fsm_finish —><_ fsm_rstn 0—>RESET

(I

LAST VALID
VALID_PRE_LAST %o 1
tvalid 1 is_data

—
pop_bytes_sel =0 last buf_reg_en
T VALID fifo_pop_req
1
0

1 FIFO_EMPTY
fsm_no 0 _~is_data) 0 ~is_data
ifeady) more_data “ 1_beat fepiivan 2_beat

1 1
|0

buf_reg_en VALID
fifo_pop_req
LAST_VALID

Figure 2.13: Stream transmitter, FSM state diagram

POP state. Those three states, highlighted in blue in the figure, represent the main phase
of the FSM. When enough data for a transfer is present in the FIFO, the FSM moves from
the WAIT_DATA state to the POP state where the FSM retrieves the first data by asserting
fifo_pop_req and buf_reg_en to store it in the buffer register. If the FIFO has enough
data for at least other two transfers, the FSM moves to the VALID state; otherwise, it
moves to the FIFO_EMPTY state. When the FSM is in the VALID state, a transfer is present
on the bus, so the tvalid signal is asserted. The FSM remains in this state if the DMA has
not yet accepted the current transfer or, after having accepted it, if the FIFO has enough
data for at least other two transfers. In this state there are two Mealy outputs: buf reg en
and fifo pop_req. Those two signals are asserted only in the cycles the DMA accepts
a transfer, signalled by the assertion of tready. This is done to retrieve a new transfer

2. Design 19

from the FIFO when the last one was accepted. In this way, the FSM can maximize the
throughput by always having a new transfer to send remaining in the same state. When
there is not enough data in the FIFO, the FSM moves to the FIFO_EMPTY state, where
it waits for enough data in the FIFO. In this state, the FSM keeps fsm_wait asserted to
inform the control unit block that the packet transmission is blocked because the FIFO is
empty.

When the control unit tells that the FIFO will not receive new data by asserting the
fsm no more data signal and the FSM is in the FIFO_EMPTY state, the FSM moves to
a set of states to handle the end of the packet, VALID PRE LAST, LAST VALID, LAST PQP
and FINISH. Those states are highlighted in orange in the figure. The VALID _PRE_LAST
state is entered if the FIFO still contains some data to send; the LAST_VALID state is
entered otherwise. The VALID _PRE_LAST state is quite similar to the VALID state. The only
difference is that the pop_bytes_sel signal is changed to 0 so that the number of bytes
is not the maximum but the actual remaining in the FIFO. When the DMA accepts the
second-to-last transfer, the FSM pops the last transfer from the FIFO using the Mealy
outputs, buf _reg_en and fifo_pop_req, and moves to the LAST VALID state. In this state,
the FSM asserts the tlast signal together with the tvalid one to inform the DMA that
this is the last transfer. When the DMA accepts this last transfer, the FSM moves to the
FINISH state where it asserts the fsm_finish signal to inform the control unit that the
transmission of the packet is completed. The LAST POP state is similar to the POP state
and has been created to handle a particular compatibility situation where a packet is
made of only one transfer, and that transfer cannot fill the bus size. In this case the FSM
goes from WAIT DATA to LAST POP. In this state the FSM retrieve the incomplete unique
transfer from the FIFO by asserting fifo_pop_req and buf _reg en with pop_bytes_sel
set to 0. Them FSM moves then to LAST VALID to close the AXI4-Stream protocol.

fifo_used_bytes /6 < data last
= A>B
0 D
fifo_used_bytes /6 s data 1 beat
o A>=B
4 D
fifo_used_bytes /6 s data 2 beat
/ A>=B —
8 D

Figure 2.14: Stream transmitter, FSM condition signal evaluation

The RTL representation of the condition signals used by the FSM is reported in
Figure 2.14. The condition is_data last is used to check if the FIFO still contains some
bytes for the last transfer. Is_data_1 beat is used to check if there is enough data in the
FIFO to retrieve a complete transfer, while is_data 2 beat is used to check if there is
enough data in the FIFO to retrieve two complete transfers.

2. Design 20

2.4 Pixel elaboration unit

The pixel elaboration unit is the block that performs the actual pixel manipulations. Its
design started with the analysis of the Engine requested functionalities. According to the
design specification, it should apply the Equation 1.3 to all the incoming pixels taking
into account the color format of the inputs and the output pixels. From the outside it
appears like reported in Figure 2.15. The design approach was to divide the block in a fully
combinatorial datapath and an FSM to control it. It was chosen to make the datapath
combinatorial because the memory was already present in the FIFOs.

In the following subsections, first, an overview of the color formats used by the Engine
will be given. Then the design of the datapath and the FSM will be analyzed separately.

clk

-

fifo_fg_pop_data /32

/6 fifo_result_free_bytes

<

fifo_fg_used_bytes / /6 / /3o fifo_result_push_data
fifo_fg_pop_size /2 /2 fifo_result_push_size
fifo_fg_pop_req / / fifo_result_push_req ”

fifo_result_clear_req

fifo_bg_pop_data /32

fifo_bg_used_bytes / /6 fsm_rstn
fifo_bg_pop_size /2 fsm_start
fifo_bg_pop_req Pixel fsm_no_more_data
Elaboration fsm_flush
fifo_alpha_pop_data /32 Unit fsm_wait
fifo_alpha_used_bytes / /6 . fsm_finish
fifo_alpha_pop_size /2
fifo_alpha_pop_req /6 num_pixel_fg
/6 num_pixel_bg
color_format_fg /3 o /6 num_pixel_alpha R

color_format_bg / /3

color_format_result /3

resetn

Figure 2.15: Pixel elaboration unit block

2.4.1 Color formats

In the specification document of the Engine, it was stated that the images elaborated by
it could arrive with a color format falling into two main categories: 16-bit RGB565 and
32-bit RGBA. In the former, five bits are used to express the red component, six for the
green one and another five for the blue one. In the latter, eight bits are used to express
each color component. The letter A stands for the alpha channel where the range 0.0 to
1.0 is mapped to 0 to 255.

2. Design 21

The memory representation of these formats can vary depending on the system, for
example, in terms of endianness or the position of the alpha channel in a 32-bit format.
In order to make the Engine compatible with the majority of the systems, support to six
color formats has been implemented. Those formats can be seen in Figure 2.16. To easily
distinguish each of them, a meaningful naming convention was adopted. Each color format
is represented by a series of letters, three for 16-bit formats and four for 32-bit formats,
followed by an equal amount of digits. The letters indicate the position of the colors in
the data representation starting from the higher bits, while the digits indicate the number
of bits used for each component.

Rossss T T T A
BGRs65 LR [T T LI
woswasss [TTITTIL] [T 11111 LOMRRRLT TTTTITT]
oosesso LNINIE] T TTT 1 LITETTELT TTTTI1T]
secessss [TTTTTT] LITTERTL] [TTTTT] LD
wocresss [TTTTTT1 LN [TTTTTTLTTTIIT]

Figure 2.16: Color formats supported by the Stream Engine. The alpha channel is reported
in gray.

Going from one format to another is quite simple when the two formats taken into
account have the same bit width because it only requires reorganizing the bits in the pixel.
When the two color formats have a different bit width, to have the same color expressed
in both formats is crucial that for each color component, the most significant bits remain
the same. This means adding some zeroes in the least significant bits when passing from
16-bit format to 32-bit or removing the least significant bits in doing the opposite. To
understand it better, let us take the color “saddle brown” which has the following color
components:

Red = 139 = 0x8B; Blue = 69 = 0x45; Green = 19 = 0x13

The alpha component can have an arbitrary value since it is not involved in the conversion.
Let us assign it the value 255. Let us express this color first in RGBA888S, then, with a
conversion, in RGB565 and then convert it back to RGBAS8888. Those two conversions are
graphically explained in Figure 2.17 where it is possible to notice both the bits removal
and the addition of zeroes. It is clear that in going from a 32-bit format to a 16-bit one,
there is a lack of precision in the color representation, even if the human eye cannot see the
difference. Going in order from the top of the image, those three colors will be represented
in memory as 0x8B4513FF, 0x8A22 and 0x884410FF.

2. Design 22

saddle brown
full 32-bit
saddle brown
reduced 16-bit
saddle brown
reduced 32-bit

7 0

Figure 2.17: Color format conversion example

2.4.2 Datapath

The datapath of the pixel elaboration unit can be divided into two main parts. One is
responsible for calculating the number of bytes to retrieve from input FIFOs and store in
the result FIFO. The other one is responsible for pixel manipulation.

Let us now focus on the first one. A RTL representation is reported in Figure 2.18
and Figure 2.19. First, the widths in bytes of the input and output pixels are calculated
from the color formats (6-way multiplexers). From the three obtained widths, the unit
selects how many pixels it can elaborate simultaneously. The possible choices are two:
if all the color formats are 2-bytes wide (RGB565 or BGR565), the unit can elaborate
a number of pixels equal to the data width in bytes of the AXI4-Stream bus divided
by two. Otherwise, it can elaborate only half of the previously calculated value. In the
reported figures, the data width was set to 32 bits, so 4 bytes, the possible choices are 2
or 1 pixels at a time. From the obtained number of pixels per time, the maximum number
of bytes to pull from the input FIFOs or to push to the result FIFO is calculated, taking
into account the previously obtained widths of the pixels. For the FIFO containing the
alpha parameters, the maximum number of bytes equals the number of pixels elaborated
simultaneously. However, the actual number of pixels elaborated simultaneously can differ
from the maximum calculated value at the end of the elaboration when the last pixels
are sent to the Engine. Especially when the data width parameter assumes one of the
higher values, the remaining number of pixels can be lower than the maximum, because of
that the actual number of bytes to pull or push is selected between the maximum and the
actual present in the FIFOs by the pixel elaboration unit FSM. All the selected number
of bytes are then decreased by 1 to match the FIFO pop size and push size encoding.

The last task performed by this part of the datapath is to calculate the total number
of pixels contained in each of the input FIFOs, including the number of alpha parameters
since each one of them is used for a single pixel. Those calculated values are sent to the
control unit block. Their usage will be discussed in the section regarding that block.

Let us now change the focus to the second part of the pixel elaboration unit, the one
responsible for the pixel manipulation. Its RTL representation can be seen in Figure 2.20.
It is composed of multiplexers that disassemble the data retrieved from the FIFOs. They
separate the pixels according to the color formats and feed the single-pixel units. The

2. Design 23

2 2 4 4 4 4 2 2 4 4 4 4 2 2 4 4 4 4
color_format_fg w color_format_bg w color_format_result w
3 3 3
A) A X A)
3 color_format_fg_width_bytes 3 color_format_bg_width_bytes 3 |color_format_result_width_bytes
4 4 4
B B B
A=B A=B A=B
2 1
0 1
2 | pixel_per_time
color_format_fg_width_bytes color_format_bg_width_bytes color_format_result_width_bytes
3 3 3
AxB AxB AxB
5 5 5
pop_bytes_fg_max pop_bytes_bg_max push_bytes_result_max

Figure 2.18: Pixel elaboration unit: datapath for calculating number of bytes to pull and
push - part 1

actual elaboration is performed inside those units. Its functioning will be detailed later.
The number of instances of those units equals the maximum number of pixels that can
be elaborated simultaneously, even though not all of them are always used. If the actual
number of elaborated pixels is half of the maximum value because of the color formats,
only the first half of those units will be exploited. The other half will be fed with zeroes to
avoid any data leakage. The outputs of the single-pixel units are reassembled by another
multiplexer and sent to the result FIFO.

Single pixel unit

The single-pixel unit is the fundamental block to perform pixel manipulation. Its RTL
internal structure can be seen in Figure 2.21 and Figure 2.22. First, it retrieves all the
components from the two input pixels according to the respective color formats in a
multiplexed way. Then it applies Equation 1.3 to the three color components in parallel.
The Equation 1.3 has been tailored to be implemented using logic operators without

2. Design 24

fifo_fg_used_bytes[4:0]

op_bytes_f
// pop_bytes g A / fifo_fg_pop_size

pop_bytes_fg_max

5

vs)
>
@
N
~

pop_bytes_sel

fifo_bg_used_bytes[4:0]

op_bytes_b
// pop_bytes_bg A , fifo_bg_pop_size

5 1 7

pop_bytes_bg_max

7/

pop_bytes_sel

fifo_alpha_used_bytes[1:0]

pixel_per_time

pop_bytes_alpha
a A
A-B
g 7
1 2

7/

/fifo alpha_pop_size

2

pop_bytes_sel

2

fifo_alpha_used_bytes[1:0] /
7 / push_bytes_result_last
, AxB v N / bush_bytes_result))
- 7 B 5 7 A A-B fifo_result push_size
color_format_result_width_bytes ‘4 push_bytes_result_max|1 g - 7
F 2
push_bytes_sel
fifo_fg_used_bytes G/ A el
7 A/B num_pixel_fg
/g A

color_format_fg_width_bytes /3

fifo_bg_used_bytes

\\m

num_pixel bg

0
~

=]
color_format_fg_width_bytes 3

fifo_alpha_used_bytes 6/ num_pixel alpha

/

Figure 2.19: Pixel elaboration unit: datapath for calculating number of bytes to pull and
push - part 2

wasting resources. It was reported before that for a memory representation, a pixel’s alpha
channel is given in a range from 0 to 255. The first change was then to multiply and divide
Equation 1.3 by 255, applying the multiplication directly to alpha and then truncating
the obtained alpha value:

C4|25ba4] + Cp(255 — [255a

CO = AL AJ B(L AJ) L255OCAJ = 06114
255
Caaly + Cp(255 — o))
255

Then it is possible to notice that 255 ~ 256 and dividing by 256 in hardware can be easily
achieved by shifting the dividend by 8 bits to the right. So the final formula used in the
single-pixel unit is:

B Cacly + Cp(255 — o))
N 256

Co

2. Design

25

{16'h0000, fifo_fg_pop_data[15:0]

{16'h0000, fifo_fg_pop_data[15:0]

fifo_fg_pop_data

fifo_fg_pop_data

fifo_fg_pop_data

fifo_fg_pop_data

color_format_fg

{16'h0000, fifo_bg_pop_data[15:0]

{16'h0000, fifo_bg_pop_data[15:0]

fifo_bg_pop_data

fifo_bg_pop_data

fifo_bg_pop_data

fifo_bg_pop_data

1

3

—

32

color_format_bg

{16'h0000, fifo_fg_pop_data[31:16]

fifo_alpha_pop_data[7:0] /8

pixel_fg

pixel_bg
PIXEL

color_format_fg

7 alpha
3

UNIT 0

color_format_bg

color_format_fg

/3

color_format_result

7 color_format_bg
3

{16'h0000, fifo_fg_pop_data[31:16]

0

0
0
0

—

32

color_format_fg

{16'h0000, fifo_bg_pop_data[31:16]

{16'h0000, fifo_bg_pop_data[31:16]

0

00

0
0
0

01

color_format_bg

fifo_alpha_pop_data[15:8] 8

+

32

color_format_result

/ fifo_result_push_data_32_bit

pixel_result 7
ko 15:0
fifo_result_push_data_16_bit[15:0]

fifo_result_push_data_16_bit

fifo_result_push_data_16_bit

fifo_result_push_data_32_bit

fifo_result_push_data_32_bit

10 /fifo result push_data

fifo_result_push_data_32_bit

32

fifo_result_push_data_32_bit

’

3

color_format_result

color_format_fg

color_format_bg

pixel_fg
pixel_bg
aloha PIXEL
P UNIT 1
/ 3 color_format_fg
3

color_format_result

color_format_bg

color_format_result

/3
7/

pixel_result

/ .
ko 15:0
fifo_result_push_data_16_bit[31:16]

Figure 2.20: Pixel elaboration unit: datapath for performing the actual pixel elaboration

2. Design 26

In Figure 2.21 can be noted the logic operators implementing the final formula. The
subtraction 255 — a; has been replaced with a bit-wise NOT operator because this partic-
ular subtraction can be seen as the definition of the logic one’s complement for an 8-bit
unsigned number.

As requested in the design specification of the Engine, the internal processing is al-
ways made using 8 bits for each component. The computed color components are then
reassembled by the multiplexer set reported in Figure 2.22 accordingly with the result
color format. In case it is a 32-bit color format, the alpha component is set to OxFF = 255
as requested by the specifications.

24.3 FSM

The main goal of the pixel elaboration unit FSM is to pull and push the correct number
of bytes from all four FIFOs. Its state diagram can be seen in Figure 2.23. When the
asynchronous reset is asserted, the FSM goes and remains in the RESET state. In this state
the FSM clears the output FIFO by asserting fifo_result_clear _req. After the Stream
Engine is released from asynchronous reset, the FSM moves to the IDLE state. Those two
states are highlighted in green in the figure and represent the initial phase of the FSM.

During a complete alpha blending, the pixel elaboration unit FSM spends most of
the time in the states WAIT and PROCESS. Those two states, highlighted in blue in the
figure, represent the main phase of the FSM. The FSM first goes to the WAIT state from
the IDLE state when it is started with the fsm start signal coming from the control
unit block. In this state, the FSM asserts fsm_wait to inform the control unit that the
elaboration is paused because the input FIFOs do not contain enough data. When a
number of pixels equal to the above described value “pixel per time”, is present in all the
input FIFOs and there is enough space in the result FIFO to store those pixels, the FSM
moves to the PROCESS state where the pixel elaboration is performed through the assertion
of fifo_fg pop_req, fifo_bg pop_req, fifo_alpha pop_req and fifo result_push req.
The number of bytes corresponding to the pixel per time is called “beat”. It follows that
two beats are double this amount. The FSM can stay in this state only if, at each iteration,
there are two beats of data and space. This is due to the fact that the amount of data
and space is calculated starting from the free bytes and used bytes signals of the FIFOs.
It is important to remember that those signals do not consider an incoming pull or push
request. It is recommended to set the FIFO depth Engine parameter to at least 2 to avoid
the FSM going back and forth from processing to waiting.

When the control unit tells that the input FIFOs will not receive new data by asserting
the fsm no_more_data signal and the FSM is in the WAIT state, the FSM moves to a set of
states to handle the end of the processing, LAST WAIT, LAST PROCESS and FINISH. Those
states are highlighted in orange in the figure. The LAST PROCESS state is entered if the
three input FIFOs still contains some pixels and the output FIFO has enough space to
store them. The LAST WAIT state is entered if the output FIFO does not have enough space
for the last pixels. The FINISH state is entered directly if there are no remaining pixels at
the end of the elaboration. The LAST WAIT state is similar to the WAIT state. When the
output FIFO has enough data, the FSM moves from this state to the LAST PROCESS state.

2. Design

27

{pixel_fg[15:11], 000}

{pixel_fg[4:0], 000}
_— ot
pixel_fg[31:24]

pixel_fg[15:8]
pixel_fg[23:16]
pixel_fg[7:0]

{pixel_bg[15:11], 000}
—_—00
{pixel_bg[4:0], 000}
_— ot
pixel_bg[31:24]

pixel_bg[15:8]

pixel_bg[23:16]

pixel_bg[7:0]

{pixel_fg[10:5], 00}
—_—00

{pixel_fg[10:5], 00}

pixel_fg[23:16]

pixel_fg[23:16]
pixel_fg[15:8]
pixel_fg[15:8]

{pixel_bg[10:5], 00}

{pixel_bg[10:5], 00}
—_—01

pixel_bg[23:16]

pixel_bg[23:16]

pixel_bg[15:8]
pixel_bg[15:8]

{pixel_fg[4:0], 000}
B ——— U
{pixel_fg[15:11], 000}
—_—0

pixel_fg[15:8]
pixel_fg[31:24]
pixel_fg[7:0]

pixel_fg[23:16]
e

{pixel_bg[4:0], 000}
—_—o0

{pixel_bg[15:11], 000}
_—m

pixel_bg[15:8]

pixel_bg[31:24]

10 pixel_fg_int_red A
1 AxB
8 + B
100 alpha 8
A3
color_format_fg
10 / pixel_bg_int_red A
" 7/ AxB
i
100 alpha 8
101
3
color_format_bg
10 / pixel_fg_int_green A
o1 8; AxB
100 alpha 8
3
color_format_fg
00
)10 / pixel_bg_int_green A
11 8; : AxB
100 alpha 8
3
color_format_bg
010 pixel_fg_int_blue A
S A AxB
100 alpha 8
3
color_format_fg
10 pixel_bg_int_blue
AxB

pixel_bg[7:0]
pixel_bg[23:16]

3

A
011 8
100 alpha 8; :
101

color_format_bg

result_red

pixel_result_int_red /

/
8

result_green

pixel_result_int_green /

8

result_blue

pixel_result_int_blue /

/
8

Figure 2.21: Single pixel unit, internal structure - part 1

. Design

28

0

0

00

pixel_result_int_red

01

pixel_result_int_blue

10 / pixel_result_32[31:24]

7/

FF

8

FF

3

color_format_result

0

0

00

pixel_result_int_green

01

pixel_result_int_green

10 / pixel_result_32[23:16]

7/

pixel_result_int_red

8

pixel_result_int_blue

3

color_format_result

0

0

pixel_result_int_blue

pixel_result_int_red

10 / pixel_result_32[15:8]

pixel_result_int_green

pixel_result_int_green

color_format_result

0

0

0
?\

FF

FF

10 / pixel_result_32[7:0]

pixel_result_int_blue

pixel_result_int_red

color_format_result

pixel_result_int_red[7:3]

pixel_result_int_blue[7:3]

0

/ pixel_result_16[15:11]

color_format_result

pixel_result_int_green[7:2]

/ pixel_result_16[10:5]

pixel_result_int_blue[7:3]

pixel_result_int_red[7:3]

o|lo|lo|o]l

7/

6

/ pixel_result_16[4:0]

color_format_result

0

0

pixel_result_32[31:16]

pixel_result_32[31:16]

pixel_result_32[31:16]

pixel_result_32[31:16]

/ pixel result[31:16]

color_format_result

pixel_result_16

pixel_result_16

pixel_result_32[15:0]

pixel_result_32

pixel_result_32[15:0]

[
[15:0]
[
[

pixel_result_32[15:0]

/ pixel result[15:0]

color_format_result

Figure 2.22: Single pixel unit, internal structure - part 2

The LAST_PROCESS state is similar to the PROCESS state, in addition to the signal asserted
in that state, in this state pop_bytes_sel and push bytes_sel are set to 0 to pop from
the input FIFOs and push to the output FIFO the correct amount of bytes. From the
LAST_PROCESS state the FSM moves directly to the FINISH state. In this state, the FSM
asserts the fsm_finish signal to inform the control unit that the elaboration is completed.

2. Design 29

resetn
RESET l IDLE

1
fifo_result_clear req ———>< fsm_rstn —~——> —><_ fsm_start

° 1

WAIT
! fsm_no 1—0 fsm_flush

‘
more_data
1 fsm_wait }4—
0 l
4

WAIT FINISH

l 0 is_data
0 ~is_space 1 (Ebest
— = <«—_is_data_last
last l1
1 0
is_space 0

1_beat

LAST_PROCESS FINISH 1

LAST_WAIT fifo_fg_pop_req
fifo_bg_pop_req
fifo_alpha_pop_req
fifo_result_push_req
0
is_space_0 1 is_data_and

i —> fsm_flush ~—> FINISH

1

space_2_beat
0

LAST_PROCESS WAIT

fifo_fg_pop_req FINISH
fifo_bg_pop_req

flfo_alpha_pop_req —> fsm_finish —><__ fsm_rstn 0—> RESET
fifo_result_push_req

pop_bytes_sel =0 1

push_bytes_sel =0 T

Figure 2.23: Pixel elaboration unit, FSM state diagram

The fsm_flush signal instead is used by the control unit when something goes wrong
during the elaboration, and the ongoing process needs to be aborted. The FSM is sensitive
to this signal when it is in the WAIT or LAST_WAIT states. In this case, it moves directly to
the FINISH state.

All the condition signals used by the FSM are reported in Figure 2.24 and Figure 2.25.
The condition is_data_1 beat is used to check if in the input FIFOs there is data for
performing one complete elaboration while the condition is_data last is used to check
if there is still some data in the FIFOs to perform a last, reduced in number of bytes,
elaboration. The condition is_data_and space_2 beat is used to check if there is enough
data in the input FIFOs and enough space in the output FIFO to perform two elaborations.

2. Design 30

fifo_fg_used_bytes 6

o >

/5 A>=B —

pop_bytes_fg_max /

fifo_bg_used_bytes 6
A A>=B is_data_1 beat
/5 >=
pop_bytes_bg_max / J

fifo_alpha_used_bytes /6

[s3]

/ B |
5 A>=B

o >

pixel_per_time

fifo_fg_used_bytes /6

A>B

w

0

fifo_bg_used_bytes
/6 A is_data last
A>B
0

fifo_alpha_used_bytes /6

w

/ A>B —

o >

0

Figure 2.24: Pixel elaboration unit, FSM condition signal evaluation - part 1

The condition is_space_1 beat is used to check if there is enough space in the output
FIFO to store a complete elaboration while is_space_last is used to check if there is
enough space in the output FIFO to store the last elaboration.

2.5 Control unit

The control unit is the block that coordinates the operations of all the other blocks
described. From the outside, it looks like as reported in Figure 2.26. It is composed of
only an FSM with its condition signals evaluation logic.

Its design started by deriving all the phases required to perform an image composition
from the specifications. When everything works correctly, the Engine should go through
the following phases:

Reset All the FIFOs are cleared from the past image composition residual data in this
phase.

Idle In this phase, the Engine input interfaces are ready to receive the three packets from

the DMA.

Acquisition In this phase, the Engine receives the data. It also processes the data and
sends them back to the DMA through the output interface.

Final processing Once the three packets are entirely received, the Engine continues to
process and send data until the three input FIFOs are empty.

2. Design

31

fifo_fg_used_bytes /6

//6

{pop_bytes_fg_max, 0} /

fifo_bg_used_bytes /6

[s5)

A>=B

//6

{pop_bytes_bg_max, 0} /

fifo_alpha_used_bytes /6

[s9)

A>=B

is_data and space 2 beat

//6

{pixel_per_time, 0}

fifo_result_free_bytes /6

[v3)

A>=B

//6

{push_bytes_result_max, 0}/

[s5)

fifo_result_free_bytes /6

/5 |, A

[s5)

push_bytes_result_ma)(

=B

is_space 1 beat

fifo_result_free_bytes /6

/5 |, A

push_bytes_result_last/

=B

Figure 2.25: Pixel elaboration unit, FSM condition signal evaluation - part 2

clk

]

is_space last

fsm_finish_stream_fg

fsm_wait_stream_fg

fsm_no_data_stream_fg

fsm_flush_stream_fg

fsm_finish_stream_bg

fsm_wait_stream_bg

fsm_no_data_stream_bg

fsm_flush_stream_bg

fsm_finish_stream_alpha

fsm_wait_stream_alpha

fsm_no_data_stream_alpha

fsm_flush_stream_alpha

Control
Unit

fsm_finish_pixel_elaboration_unit

fsm_wait_pixel_elaboration_unit

fsm_no_more_data_pixel_elaboration_unit

fsm_flush_pixel_elaboration_unit

/6 num_pixel_fg
/ /6 num_pixel_bg
/6 num_pixel_alpha

fsm_finish_stream_result

fsm_wait_stream_result

fsm_no_more_data_stream_result

fsm_rstn_all

fsm_start_all

resetn

Figure 2.26: Control unit block

2. Design 32

Final sending Once all the data is processed, the Engine sends data until the output
FIFO is empty.

From those phases it was derived the FSM state diagram reported in Figure 2.27 together
with the condition signals reported in Figure 2.28. Let us analyze it in detail. As long as the
asynchronous reset of the Engine is asserted, this FSM remains in the RESET state. In this
state, the FSM asserts the fsm_rstn_all signal that resets the FSMs of the other blocks.
It then goes to the IDLE state where the other FSMs see the fsm rstn_all deassertion
and go to their idle state. The FSM then goes to the START state where it starts all
the other FSMs by asserting the signal fsm_start_all. It remains in this state until all
the stream receivers start receiving their packet. This is checked by the condition signal
is_all data_started.

resetn

RESET, IDLE START

is_all_data 1

fsm_rstn_all ——— > ——> fsm_start_all —>
- = = = started

DATA_ACQUISITION

is_stalled flush <0 is_all_data L
arrived

1
FLUSH

DATA_ACQUISITION fsm_flush_: stream _fg
fsm_flush_stream_bg

0

fsm_flush_stream_alpha LAST—PROCESSl

fsm_flush_pixel_elaboration_unit

fsm_no_more_data__
pixel_elaboration_unit

LAST SEND 1 is_all_data 1 is_al!_data
= processed arrived
0 0

FLUSH FLUSH

LAST PROCESS «—2 Celect flush D>« O s all data

mismatch processed

1 1
LUSH
LUSH LAST_SEND
RESET is_all_data fsm_no_more_data_
sent result

° f

Figure 2.27: Control unit, FSM state diagram

After those initial states, the FSM goes and remains in the DATA_ACQUISITION state
for most of the processing time. In this state, the stream receivers keep receiving their

2. Design 33

fsm_finish_stream_alpha

fsm_finish_stream_fg
fsm_finish_stream_bg is_all data arrived

fsm_finish_stream_pixel_elaboration_unit is_all data processed
fsm_finish_stream_result is_all data sent
num_pixel_fg , fsm_no_data_stream_fg
6// A<B fsm_no_data_stream_bg \ is_all data_started
num_pixel_bg ¢ fsm_no_data_stream_alpha /
num_pixel_fg ,
Y A<
//
num_pixel_alpha ° fsm_finish_stream_fg
num_pixel_bg ,
7
¢ A<B
/—B
num_pixel_fg °
num_pixel_bg
Y A<
a detect mismatch
num_pixel_alpha ° fsm_finish_stream_bg
num_pixel_alpha
Y A<
//
num_pixel_fg °
num_pixel_alpha
7
¢ A<B
//
num_pixel_bg ° fsm_finish_stream_alpha
fsm_wait_stream_fg
fsm_wait_stream_bg \ detect mismatch
is_stalled
fsm_wait_stream_alpha / fsm_wait_pixel_elaboration_unit

fsm_wait_stream_result

Figure 2.28: Control unit, FSM condition signal evaluation

packet, the pixel elaboration unit performs the pixel blendings, and the stream transmit-
ter sends the result pixels back to the DMA. When all the stream receivers signal that
they have finished the reception by asserting their finish signal (fsm_finish stream fg,
fsm finish stream bg, fsm finish stream alpha), the FSM goes to the LAST PROCESS

2. Design 34

state where the pixel elaboration unit performs the last pixel blendings, and the stream
transmitter keeps sending back the result pixels. In this state, the FSM asserts the
fsm no more data pixel elaboration unit to tell it that those in the input FIFOs are
the last pixels to process. When the pixel elaboration unit drains the input FIFOS and
finishes all the blendings asserting its finish signal, the FSM goes to the LAST_SEND state
where the stream transmitter keeps sending back the last pixels. In this state, the FSM
asserts the fsm no_more data results to tell the stream transmitter that those in the
FIFO are the last result pixels to send. Once the stream transmitter finishes by closing
the protocol with the DMA and asserts its finish signal, the FSM goes back to the RESET
state, and a new image composition can start.

The FLUSH state was created to handle some faulty situations that can happen during
the elaboration. The first one is related to the DMA itself. On the receiving side of the
channel that accepts data from the Engine, there is a signal called f1lush connected to the
Engine and in particular to this control unit. The channel can assert this signal as a hint
to tell the Engine to send the last transfer of the packet as soon as possible because the
data it is sending will be discarded. When the FSM is in the DATA_ACQUISITION state or
the LAST_PROCESS state and detects the flush signal assertion, it goes to the FLUSH state
where it tells the stream receivers and the pixel elaboration unit to flush everything. Once
they have finished, the FSM goes to the LAST_SEND state to let the stream transmitter
close the protocol.

Another situation that involves the FLUSH state is the mismatch condition checked by
the detect_mismatch condition signal. Through the signals num pixel fg, num pixel_bg
and num_pixel _alpha the control unit is informed by the pixel elaboration unit about how
many pixels are present in the three input FIFOs. A mismatch condition happens when
one of the stream receivers has finished the reception of its packet and the pixels contained
in its corresponding FIFO are less than those contained in one or both the other two
input FIFOs. This mismatch happens because the channels have sent a different number
of pixels from each other. When this FSM reaches the LAST_PROCESS state and detects a
mismatch condition, it goes to the FLUSH state and continues from there as discussed for
the flush signal.

The last situations that involves the FLUSH state is the stall condition checked by the
is_stalled condition signal. It is similar to the mismatch. In fact, it also involves the
detect mismatch condition signal. However, it also needs the stream transmitter and the
pixel elaboration unit to wait for data and the stream receiver to wait for space. To recover
from this deadlock situation, the FSM can go from the DATA_ACQUISITION state directly
to the FLUSH state and recover without any problem. In all the situations involving the
FLUSH state, the correctness of the result cannot be guaranteed.

The only situation that can cause a denial of service in the Engine happens when at
least one channel of the DMA has started sending its packet to the Engine, and at least
one channel has not. In this case, the Engine will be blocked, waiting for all the input
interfaces to terminate the protocol with the last transfer.

Chapter 3

Verification

In this chapter, it will be presented the unit-level verification phase of the Stream Engine
using the Universal Verification Methodology (UVM). First, the UVM framework will
be introduced. Then the realized test architecture will be described in detail. After that,
the developed test cases will be presented, focusing on the aim of each test. Finally, the
achieved results will be discussed to understand if the Engine can be considered sufficiently
tested.

3.1 UVM

UVM is a standardized open-source methodology created for verifying integrated circuits
(ICs). The idea is to verify the targeted device under test (DUT) by logical simulations
where the DUT is fed with random constrained stimuli. The UVM framework eases the
creation of those stimuli because it comes with classes and functions specialized in that.
The outputs produced by the DUT are then compared against a reference model that
replicates the DUT’s functionalities.

Its source code is composed of classes written using SystemVerilog, which combines
a hardware description language with an object-oriented one. With extended versions
of some of them, those classes are connected to form a test architecture. Even though
each class was created to perform a specific task inside a test, no strict rules exist to
limit how those classes can be arranged. Because of that, users of this framework have
created common patterns to organize those classes reasonably to obtain a tidy and clean
architecture that can lead to code re-usability. Thanks to that, different tests to reproduce
different scenarios can be run on the same architecture.

A UVM test is a logical simulation performed on a UVM compatible simulator. The
simulation is divided into standard phases that are executed sequentially. Each of them
performs a specific task required in the simulation. Those phases are reported in Figure 3.1.
Let us quickly review them. In the build phase, all the test components are created. In
the connect phase, the created components are connected. In the end_of _elaboration
phase, it is possible to perform some refining to the test architecture before the actual
simulation starts. The start_of_simulation phase is used to print the topology of the
test architecture in addition to other relevant configuration information. The run phase

35

3. Verification 36

(build]

|

[connect] — Build phases

|

[end_of_elaboration]

|

[start_of_simulation]

l — Run phases

)
l

[extract]

|

[check]
l — Cleanup phases
[report]

|

| final]]

Figure 3.1: UVM phases

is the only one that consumes simulation time because, during it, the logical simulation is
performed. In the extract phase, the results produced by the checking components are
extracted. In the check phase, it is examined the DUT behavior and if the simulation
ended correctly. In the report phase, the test results are displayed. If there is any action
that remains to be done, it is performed in the final phase.

3.2 Test architecture

In this section, it will be described the test architecture built for testing the Stream Engine.
Since it is formed by many nested blocks, the description will proceed incrementally in a
bottom-up way.

3.2.1 Agents

In UVM, an Agent is a component responsible for driving one DUT interface and recording
back its activity to share it with other components in the test. An example Agent is reported
in Figure 3.2. It is composed of a Sequencer, a Driver and a Monitor. The Sequencer is the
component that runs the sequences which contain the information on how to create the
random constrained stimuli for the DUT. From those sequences, it extracts the transaction
items containing the actual generated stimuli. The Driver receives the transaction items
from the Sequencer and converts them into logical values that it can use to drive the DUT
through an interface that is the point of connection between the test architecture and the
DUT. The Monitor records the activity on the interface coming both from the Driver and

3. Verification 37

Agent

Driver l—{_1+—{ Sequencer

Interface

Monitor

()] Transaction item
<> Analysis port/export

Figure 3.2: UVM generic Agent

the DUT. It then converts the activity in transaction items passed to other components
through an analysis port, a UVM object that permits components to communicate.

Agents are usually protocol-specific because different protocols are based on different
port lists. Thus, the agents’ drivers and monitors need protocol-specific interfaces to
interact with the DUT. In this test architecture, five types of Agents have been used: one
for the clock interface, one for the reset interface, one for the AXI4-Stream interfaces, one
for the GPI interfaces and one for the flush interface since the flush signal is not included
in the AXI4-Stream protocol.

The AXI4-Stream Agents related to the foreground, background and alpha interfaces
work actively. For them, the used sequences contain complete AXI-4 Stream packets like
an entire image or the alpha data related to one. The Driver, in this case, is responsible
for sending those packets to the DUT through the interface.

The AXI4-Stream Agent related to the result interface instead works reactively. It
drives the related interface to accept the transfers coming from the DUT. From those
transfers, it generates the transaction items containing the resulting images produced by
the DUT. Those transaction items are then used to check the DUT behavior.

The Agent related to the clock interface uses a sequence containing the clock period
and phase used to generate the clock signal for the DUT. The Agent related to the reset
interface uses a sequence containing information on how to generate the DUT asynchronous
reset like the duration and the type of deassertion, clock synchronous or asynchronous.

For the other Agents, the ones related to the GPI interfaces and flush interface, the
used sequences contain only the signal value that the Drivers will send to the DUT as it
is.

3.2.2 Virtual Sequencer

A Virtual Sequencer is a container component that holds a reference of each Sequencer in
the test architecture. It is not a standard component, but it can be derived starting from
the uvm_sequencer class. In Figure 3.3 is reported the one created for this architecture.
The references will be linked to the actual Sequencers contained in the Agents. In this way,
the sequencers are easier to be accessed when sequences have to be started upon them

3. Verification 38

Virtual Sequencer

Alpha Background Foreground
Sequencer Sequencer Sequencer
Result Reset
Sequencer Sequencer
Fg GPI Clock
Sequencer Sequencer
Bg GPI Result GPI Flush
Sequencer Sequencer Sequencer

Figure 3.3: UVM Virtual Sequencer

because they are grouped in only one place.

3.2.3 Predictor

A Predictor is a component that contains the reference model against which the DUT is
tested. It is not a standard component, but it can be created starting from the generic
uvm_component class. In Figure 3.4 is reported the one created for this architecture. In
the center of it, there is the reference model that, starting from each group of transaction
items given to the DUT, produces a transaction item containing the predicted result. The
produced transaction items are passed to the other components through the analysis port.
The transaction items coming at the Predictor are stored in the analysis FIFOs. Those are
UVM components with an unbounded size that can hold the transaction items indefinitely.
In this way, the reference model can withdraw the transaction items when a complete set
is available.

3.2.4 Scoreboard

A Scoreboard is a component that checks the DUT functionalities by comparing the
transaction items coming from it against the ones coming from the Predictor. In Figure 3.5
is reported the one created for this architecture. Every time a result and a predicted result
transaction item are available in the analysis FIFOs, it compares them. Depending on the
obtained result, it increments a set of counters to compute a final report about how many
errors it detected. Before making the comparisons, it also checks if the DUT received a
flush command. In that case, it skips the comparison since the output coming from the
DUT is probably faulty because of the flush. In the UVM report phase, it prints out its
report containing how many comparisons were correct, how many were faulty and how
many it skipped.

3. Verification 39

Predictor

Foreground
Analysis —pp»— }———

FIFO
Background
Analysis —pp»— }——
FIFO
Alpha
Analysis —P»
FIFO v v
Result Predicted
Reference - N
Model
Fg GPI r 1
Analysis —P»
FIFO

Bg GPI
Analysis —p— }———
FIFO

Result GPI
Analysis —pp»r— }——
FIFO

(| Transaction item
<> Analysis port/export

Figure 3.4: UVM Predictor

3.2.5 Coverage Collector

A Coverage Collector is a UVM component that samples information about DUT’s func-
tional coverage. Since it is not a standard component, it is derived from the uvm_component
class. In Figure 3.6 is reported the one created for this test architecture. It is composed
of four analysis FIFOs and a coverage model. The coverage model holds the information
about the cover points that need to be recorded. For the Stream Engine, it was decided
to collect information about the color formats. For each performed blending that is not
affected by a flush, the occurred combination of the three color formats is stored. At the
end of the simulation, it is possible to see if all the color format combinations have been
tested sufficiently.

3. Verification 40

Scoreboard

Result
Analysis —P»
FIFO

Flush

Analysis —P»—_}—> Comparer
FIFO

<><>_

Result Predicted
Analysis —P»
FIFO

Transaction item

Analysis port/export

o

Figure 3.5: UVM Scoreboard

Coverage Collector

Fg GPI
Analysis —p— }———
FIFO

Bg GPI
Analysis —P»—_}+—>|
FIFO

Coverage
Model

Result GPI

Analysis —pp»—_}—>
FIFO

Flush
Analysis —p— }———
FIFO

Transaction item

o0 [RTRTRTr

Analysis port/export

Figure 3.6: UVM Coverage Collector

3.2.6 Environment

The Environment component is a container that includes some of the already presented
components. In Figure 3.7 is reported the one created for this test architecture. It was
decided only to put the Predictor, the Scoreboard and the Coverage Collector connected
in this Environment as illustrated. In this way, it will be easier to reuse this component in
other UVM test architectures built to verify systems that include the Stream Engine. For
the same reason, this Environment was given an analysis port to forward the transaction

3. Verification 41

Environment

Scoreboard

Result

Predictor Flush

Foreground 0 Result Predicted

Background

Result Predicted >—Q

Coverage Collector
 OResult GPI

(] Transaction item
<> Analysis port/export

Figure 3.7: UVM Environment

items coming from the Predictor to another eventual DUT’s Environment to build system-
level Environments. This Environment is also configurable regarding the presence of the
Scoreboard and the Coverage Collector. They can be independently disabled if not needed
for the current simulation.

3.2.7 Integration Layer

The Integration Layer is the top component in the test architecture hierarchy. It is not
a standard one, so it is created starting from the uvm_component class. In Figure 3.8 is
reported the one created for this test architecture. It contains the Environment, the Virtual
Sequencer and one Agent for each DUT interface. All those components are connected
as illustrated. The analysis port of the Environment has not been represented because
it is left unconnected for this architecture since there is no component to forward the
transaction items containing the predicted results.

3.2.8 Testbench

After the presentation of all the UVM components and the UVM test architecture, it is
now possible to look at the complete testbench for the unit-level verification of the Stream

3. Verification 42

Engine. A representation of it is reported in Figure 3.9. On the left side, there is the Stream
Engine with all interfaces highlighted. On the right side, there is the uvm_test_top that
is the actual test that will be performed. Apart from the Integration Layer, it contains all
the sequences that will be used for the test. A description of its content will be given in
the next section regarding the test cases. Each Stream Engine interface is connected to the
corresponding Agent contained in the Integration Layer. On each of the four AXI4-Stream
interfaces is connected a protocol checker (PC). It is not a UVM component, and because
of that, it is put outside the uvm_test_top. Its task is to supervise the AXI4-Stream
interface and check if all the communications are protocol compliant.

3. Verification

43

Integration Layer

Agent

{Tnterface }
Interface

Clock

Sequence1

{Cinterface }

Reset

{Cinterface }

{Cinterface } Interface Interface

{Cinterface }

AXI4-Stream
Foreground

AXl4-Stream
Backgound

AXI4-Stream

AXI4-Stream
Result

Alg;hal |Back§round| |Foreg:round

.................................. Resu|t Reset
Agent :l |_

Virtual Sequencer
Generic 3-bit i Fg GPI Clock |-+

Fg GPI

Bg9P|| [Result GP1| |F|gsh

{ 1 {nterface }
Interface Interface

{Cinterface }

Sequence1

Generic 3-bit

Result
Flush
Foreground
Background
Alpha

FG GPI

BG GPI

Result GPI

Generic 3-bit
Result GPI

Generic 1-bit

A

&

Transaction item

Analysis port/export

Figure 3.8: UVM Integration layer

3. Verification 44

AXI4
Stream
PC
AXl4
Stream
PC
AXI4
Stream
FC UVM_test top
AXI4
) Stream)
Stream Engine PC Integration Layer
1] Reset

Reset
AXI_Stream_fg H H
AXI_Stream_bg

AXI|_Stream_alpha

1) Foreground

{| Background
1] Alpha

1) Result

1] Flush

1] Fg GPI

1] Bg GPI
Result GPI

AXI_Stream_result
Flush

color_format_fg

color_format_bg

color_format_result

Figure 3.9: UVM complete Testbench

3.3 Test cases

This section will describe the UVM test cases developed for the Stream Engine Verification.
Their creation progressed incrementally, starting from simple scenarios to the most complex
ones.

3.3.1 Base test

The base test is not an actual test. Since SystemVerilog is an object-oriented language,
it was chosen to create a virtual base test class and derive the actual tests from it. It
contains the attributes and methods common to all the tests.

During the UVM build phases, this class is responsible for the test initialization. First,
it configures all the Agents and the UVM Environment. There is a set of configuration
parameters for the AXI4-Stream Agents and the UVM Environment that can be changed
by the actual tests. They are reported in Table 3.1. After that, it sets a reactive sequence

3. Verification 45

for the AXI4-Stream result Sequencer. In this way, the AXI4-Stream result Agent can act
as an active receiver. Finally, it performs the DUT reset by sending a reset sequence to
the reset Sequencer.

Table 3.1: Configuration parameters common to all tests.

Parameters Description

tvalid_fg delay min

tvalid_fg delay max
For each of the three active AXI4-Stream

Agents, there is a couple of parameters related
to the tvalid signals behavior, a minimum
and a maximum. For each transfer, the Drivers
in those Agents pick a random number between
the minimum and the maximum. It will
represent the number of cycles the Driver has
to wait before sending a new transfer.

tvalid_bg_delay min

tvalid_bg_delay_max

tvalid_alpha_delay_min

tvalid_alpha_delay max

A similar thing is done by the reactive result
Agent with the tready signal. In this case, the
random number represents the number of
cycles the Driver has to wait before asserting
the signal again after having accepted the
previous transfer.

tready_result_delay min

tready_result_delay max

has_scoreboard With this flag is possible to enable the presence
of the Scoreboard in the UVM Environment.

has _coverage With this flag is possible to enable the presence
of the Coverage Collector in the UVM Environ-
ment.

3. Verification 46

This class also contains two methods for performing all kinds of operations on the
DUT. One method is called generate_1 blend. It accepts the number of pixels for the
blending as an argument. First, it generates a random combination of three color formats,
one for the foreground, one for the background and one for the result. Then it sends the
color formats to the DUT through the GPI Sequencers. From the generated color formats
and the number of pixels argument, it calculates the number of bytes to set in each AXI4-
Stream sequence. Those sequences will then be started upon their respective Sequencers.
In this way, a correct blending can be sent to the DUT. The method can also accept two
more number of pixels arguments. There will be three numbers, one for the foreground
image, one for the background image and one for the alpha. In this way, it is possible to
send a mismatched blending to the DUT by setting three different values for the numbers.
The other method is called generate_1_flush. It interacts with the current blending by
sending two flush sequences, one for asserting the flush signal when the Stream Engine
starts sending out the result packet, the other for deasserting the flush signal after the
Engine has sent the last transfer of the packet.

3.3.2 Hello world

The hello world test was the first actual created test. It recalls the base test operations.
That means that the only generated sequence is the reset one. It was created to have a
quick first example to check if the test architecture and connections were correctly put
together. Its results are inspected directly by looking at the simulator waveforms. This
test is passed if the Stream Engine enters and exits the reset phase correctly with the
AXI4-Stream interfaces waiting for a new blending to start.

3.3.3 Single blend

The single blend is a test designed to perform one elaboration on the Stream Engine. It
comes with other two additional parameters with respect to the base test, num pixel and
flush transaction. The first sets the number of pixels of the blending. The second is a
flag to decide if a flush should be sent to the Stream Engine for that blending. The results
of this test are checked by reading the Scoreboard summary at the end of the simulation. It
should show one passed or skipped comparison according to the flush transaction flag.
This test aims to check that the Engine behaves correctly when performing a blending.

3.3.4 Multiple blends

The multiple blend is a test designed to perform a series of elaborations on the Stream
Engine. It comes with four additional parameters with respect to the base test, num blend,
min pixel, max_pixel and percentage flush. With num blend is possible to configure
how many elaborations the test has to perform on the Stream Engine. For each elaboration
the number of pixels for the blending is chosen randomly in the range defined by min pixel
and max_pixel. The last parameter, percentage flush, determines the percentage of
blendings that will be affected by a flush. The results of this test are checked by reading
the Scoreboard summary at the end of the simulation. It should show a total number of

3. Verification 47

comparisons equal to num blend roughly divided between passed and skipped according
to percentage flush. This test aims to check that the Engine behaves correctly when a
series of blendings is performed. In particular, it is important to check that the Engine
does not get stuck when flushed blendings are mixed with non-flushed blendings.

3.3.5 Single blend with mismatch

The single blend with mismatch is a test designed to perform one faulty elaboration on the
Stream Engine. It comes with with four additional parameters with respect to the base
test, num pixel _fg, num pixel_bg, num _pixel_alpha and flush transaction. With the
first three parameters is possible to configure the number of pixels for each AXI4-Stream
input individually. The last one is a flag to decide if a flush should be sent to the Stream
Engine together with the faulty blending. The results of this test are checked by reading
the Scoreboard summary at the end of the simulation. It should show one failed or skipped
comparison according to the flush transaction flag. This test aims to check that the
Engine can detect a faulty elaboration and recover from it even when mixed with a flushed
elaboration.

3.3.6 Multiple blends with mismatch

The multiple blends with mismatch is a test designed to perform a series of faulty elabo-
rations on the Stream Engine. It comes with four additional parameters with respect to
the base test, num blend, min pixel, max pixel and percentage flush. Those four pa-
rameters can be used the same way as in the multiple blends test. In this case, num_blend
indicates the number of faulty elaborations performed on the Stream Engine. The results
of this test are checked by reading the Scoreboard summary at the end of the simulation.
It should show a total number of comparisons equal to num blend roughly divided be-
tween failed and skipped according to percentage flush. This test aims to check that
the Engine behaves correctly when a series of faulty blendings is performed. In particular,
it is important to check that the Engine does not get stuck and recover correctly from all
the faulty and flushed blendings executed.

3.3.7 Multiple blends all types

The multiple blends with all types is a test designed to perform a series of elaborations on
the Stream Engine. Those elaborations can be correct, faulty or flushed. It comes with five
additional parameters with respect to the base test, num_blend, min pixel, max pixel,
percentage _flush and percentage mismatch. The first four parameters can be used the
same way as in the other multiple blends tests. The last one, percentage mismatch deter-
mines the percentage of blendings that will be created faulty. To keep track of the number
of the different generated blendings, the test contain three counters, expected num pass,
expected num failed and expected num skip. A the end of the simulation, those coun-
ters are checked against the Scoreboard report. The test is passed if the comparison
division reported by the Scoreboard matches the one reported by the counters. This test

3. Verification 48

aims to check that the Engine behaves correctly in all possible scenarios. In particular, it
is important to check that the Engine never gets stuck in one of the blendings.

3.4 Results

Running the tests described above led to some modifications of the Stream Engine. Each
time an improved version of the Engine was obtained, all the tests were performed again to
find other flaws. During those tests, many possible values for the parameters data_width
and fifo_depth were tried to test all the possible configurations of the Engine. In the
chapter regarding the design, it was already reported the last Stream Engine version. Once
it was obtained, a final series of tests were performed to confirm the correct functioning
of this version in all possible scenarios. So, the last presented test was taken, the multiple
blends with all types, and was performed seven times, each time with a different set of
simulation parameters. The values of the parameters at each iteration are reported in
Table 3.2. The first iteration was the default one. In the second, the AXI4-Stream Agent
related to the foreground was set to send its packet slower than the others. In the third,
the slower one was the background Agent. In the fourth one, it was the alpha Agent. In the
fifth one, the AXI4-Stream Agent related to the result was slower in receiving the packet.
Those last four iterations recreated scenarios where one channel, for any reason, cannot
send or receive data at the same pace as the others. The sixth and seventh iterations were
needed to reach some corner cases that required a low number of pixels and, in turn, no
flush or mismatch blendings.

Table 3.2: Configuration parameters for the coverage tests. The underlined values are the
ones that differ from the default represented by the first iteration.

Values at each test iteration

Parameters 1 2 3 4 5 6 7
num_blend 1000 1000 1000 1000 1000 1000 1000
min pixel 100 100 100 100 100 1 1
max_pixel 150 150 150 150 150 20 20
percentage flush 20% 20% 20% 20% 20% 0% 20%
percentage mismatch 20% 20% 20% 20% 20% 20% 0%
tvalid_fg delay min 0 0 0 0 0 0 0
tvalid_fg delay max 4 20 4 4 4 4 4
tvalid_bg_delay min 0 0 0 0 0 0 0
tvalid_bg_delay.max 4 4 20 4 4 4 4
tvalid_alpha_delay min 0 0 0 0 0 0 0
tvalid_alpha_delay max 4 4 4 40 4 4 4
tready_result_delay min | 0 0 0 0 0 0 0
tready_result_delay max 4 4 4 4 20 4 4

has_scoreboard True True True True True True True
has_coverage True True True True True True True

3. Verification 49

The Scoreboard report was checked to confirm the test’s success each time it was
performed. For each iteration, it was also recorded the functional coverage performed by
the Coverage Collector and the code coverage performed by the simulator. The coverage
data files obtained from each simulation were merged to perform a comprehensive coverage
analysis. The functional coverage showed that the simulations several times hit all the color
format combinations. For the code coverage analysis, it was created a bar chart reported
in Figure 3.10. It contains coverage information regarding different features about the four
blocks developed for the Stream Engine. The Branches feature measures the coverage of
the directions taken when a branch is encountered in the code. The Fxpression feature
measures the contribution of each part of a logical expression in determining the value of
1-bit signals such as condition signals for the FSMs. The FSM States feature measures
how many states were reached for each FSM. The FSM Transitions feature measures the
coverage of the transitions among the possible ones. The Statements feature measures how
many lines of code were reached during the simulations.

Coverage Report
125

100

75

Percentage

50

25

Stream Receiver Pixel elaboration Unit Stream Transmitter Control Unit

I Branches M Expressions FSM States [FSM Transitions Statements

meta-chart.com

Figure 3.10: Code-coverage report for the developed blocks

Among the four blocks analyzed, the less covered seems to be the Stream Receiver,
with some of its features reaching just 75 %. Those coverage holes were analyzed in detail,
and they are mainly caused by a few FSM transitions that are difficult to reach. They
cannot be removed from the FSM because they are needed for compatibility with the
DMA specification. To reach those FSM transitions, it is necessary to create specific
unconventional sequences for the active AXI4-Stream agents.

3. Verification 50

After all those tests, it was possible to declare the Stream Engine enough tested and
ready to be integrated next to the DMA controller.

Chapter 4

System integration

This chapter will present the integration test of the designed Stream Engine for alpha
blending using an environment that emulates a system-level scenario for the DMA Con-
troller. In the first section, it will be described the environment architecture and how it
works. The developed test cases will be presented alongside the obtained results in the
second section.

4.1 Testbench Architecture

The project where the DMA controller was developed also contains an environment that
lets users try out the DMA features using high-level tests written in C language. Since
this environment was not developed as part of the Stream Engine work, not all parts will
be described. Only the ones needed for testing the Engine will be analyzed.

In Figure 4.1 is reported the architecture of this environment with a focus on the
parts needed to test the Engine integration. In the center of it, there are the DMA
and the Stream Engine. They are connected in the same way as in the first chapter,
where it was illustrated an example connection. The DMA is also connected to two more
components, a memory and a Command Generator. The first emulates the main memory of
a computing architecture. In a typical system, the DMA moves data to or from it according
to the received instructions. The second is the component responsible for generating the
commands for the DMA. It emulates the elaboration unit that sends the commands to the
DMA. All those components are instantiated by a testbench that, in addition, generates
the clock and the reset signals.

The simulation is carried out using a logical simulator, the same used for the UVM
verification. However, a few steps are required to translate the developed test into DMA
commands before launching it. First, the test is written in C language using a specific
library created for the DMA. The obtained C file should contain an ordered sequence of
commands to be executed from the DMA. This file is then compiled and executed. The
execution output is a text file containing the DMA registers’ values that should be written
to perform the commands. Peripherals like the DMA need their internal registers to be
configured to make them work. The text file is then passed to the Command Generator
that will open and use it during the logical simulation to perform the writes on the DMA

51

4. System integration 52

Stimuli file Test file

C compiler <}:1 .c 7

DMA Commands Generator

DMA

Stream Engine

Ch_0_AXI_Stream_tx AXI_Stream_fg
Ch_0_AXI_Stream_rx AXI_Stream_result
Ch_0_flush flush

Ch_0_GPO color_format_fg
\—> color_format_result

Ch_1_AXI_Stream_tx AXI_Stream_bg
Ch_1_GPO olor_format_bg
Ch_2_AXI_Stream_tx AXI_Stream_alpha
Memory

Figure 4.1: System-level testbench architecture

registers.

4.2 Test Cases

Using the presented environment, two tests were created to check the Stream Engine’s
correct functioning when it receives data from the DMA. Those tests aim to replicate real
scenarios where the DMA is used not only to move data but also for performing alpha
blendings using the streaming feature. Although the environment contains an automatic
result checking, this does not cover the alpha blending operations. For each of the two

4. System integration 53

tests, a different method was adopted for confirming their success.

4.2.1 Stability test

The first developed test was named Stability test because it aims to check that the DMA
can execute correctly a series of commands involving the Stream Engine. It also verifies
that the DMA, the Engine and all the other components in the testbench are correctly
connected.

The C file containing this test is organized in the following way: on the top part, it
has three configuration parameters, one for choosing how many alpha blendings have to
be performed, two for selecting the range of pixels for each blending.

After the configuration part, there is the part of the commands. First, the test randomly
selects the number of pixels for the current blending using the given range. It also randomly
selects three different color formats among the six available, one for the foreground, one
for the background and one for the result.

After that, the test sets channel 0 of the DMA to perform the first command. It
programs the source registers of this channel with the starting address and the length in
bytes of the foreground image. The destination registers are programmed with the same
information regarding the resulting image. In this way, the channel can pick the first image
and store the result. The test also enables the streaming interface of the channel, and the
GPO register is filled with the color formats corresponding to the two images. After the
configuration, channel 0 is started.

The test moves to set channel 1 of the DMA to perform the second command. The
test programs the source registers of this channel with the starting address and the length
in bytes of the background image. The destination register regarding the length is set to
0. In this way, the channel will only pick the background image without storing anything
back. The test also enables the streaming interface of the channel, and the GPO register
is filled with the color format corresponding to the image. After the configuration, channel
1 is started.

Then the test set channel 2 of the DMA to perform the third command. The test
programs the source registers of this channel with the starting address and the length in
bytes of the alpha parameters. The destination register regarding the length is set to 0. In
this way, the channel will only pick the alpha values without storing anything back. The
test also enables the streaming interface of the channel. After the configuration, channel
2 is started.

When all the channels are correctly configured and enabled, the test starts to poll, for
each channel, a status register that indicates if the channel has finished the given command.
In this way, it can sense the completion of the three commands. After the three channels
have finished, the test repeats the described operations according to the configuration
parameter regarding the number of blendings to perform. Once all the blendings are
performed, the test can end the simulation.

After the simulation is finished, it is possible to analyze the results by looking at the
waveforms produced during the test execution. In order to mark the test successful, it is
essential that all the blendings were executed correctly. This can be checked by looking

4. System integration 54

at the Stream Engine interfaces. All the four AXI4-Stream Interfaces should show the
transfer of the same number of packets. It should equal the number of blendings set up in
the test configuration. In addition, the DMA should have kept the flush signal of channel
0 deasserted for the entire simulation. This test does not perform any image content check
for the blendings because the memory attached to the DMA is filled with zeroes at the
beginning of the simulation.

This test can also be used to recreate two scenarios where the three commands needed
to perform a blending are set up incorrectly due to a coding mistake. The first can be
created by enabling a specific flag in the configuration phase of the test. With this flag,
the test set the length in bytes of the resulting image to a lower value concerning the
true one in the destination registers of channel 0. It is important to remember that the
Engine will produce the correct amount of data that is superior to the one expected by the
channel. According to the DMA specifications, when a channel receives from the streaming
interface a number of data bytes greater than the one programmed in the registers, it
raises the flush signal towards the Stream Engine. In this way, it is possible to obtain a
flush case for the Engine and see how it responds in this situation. The second scenario
can be created by enabling another specific flag. With this other flag, the test will set
incompatible values for the length in bytes in the source registers of the three channels.
In this way, it is possible to create a mismatched scenario where the Engine will see three
images with a different number of pixels coming from the DMA. The Engine can detect
the error and recover from this situation without stalling the AXI4-Stream interfaces.

All the described test scenarios were performed a few times on the Engine, always
obtaining a successful outcome.

4.2.2 Actual blending test

The second developed test was named Actual blending test because it aims to perform an
actual alpha blending using authentic images and alpha parameters. The images adopted
for this test are the same used in the first chapter to describe the Engine capabilities. They
are reported again here for better readability.

The execution of this test is divided into three main phases. The first phase consists
in filling the memory contained in the testbench with the input images. It was created a
Python script that reads the input images and creates a memory representation text file
containing them. Some excerpts of this file are reported below:

00000000 ff ff ff ff ff ff ff ff
00000008 ff ff ff ff ff ff ff ff
00000010 ff ff ff ff ff ff ff ff

009f£££0 00 00 00 00 00 00 00 00
009fff£f8 00 00 00 00 00 00 00 00
00200000 ff 4f 5f 79 ff 50 60 7a
00a00008 ff 50 60 7a ff 4f 5f 79
00a00010 ff 52 62 7c ff 51 61 7b
00a00018 ff 52 60 7b ff 53 61 7c

4. System integration 55

013f£f£f£f0 00 00 00 00 00 00 00 00
013f£f£f£f8 00 00 00 00 00 00 00 00
01400000 01 01 01 01 01 01 01 01
01400008 01 01 01 01 01 01 01 01
01400010 01 01 01 01 01 01 01 01

The memory is little-endian ordered, and byte addressed. In each line of the file are reported
eight bytes. The first excerpt shows the position of the foreground image (Figure 4.2)
located starting from address 0x00000000. The second excerpt shows the position of the
background image (Figure 4.3) located starting from address 0x00a00000. The third one
shows the position of the alpha parameters (Figure 4.4) located starting from address
0x01400000. The three images are placed in memory row by row starting from the top-
left corner. The color format used in the memory representation for the foreground and
background images is the ARGB8888. The alpha parameters instead are put down as one
byte per pixel. The non-used locations of the memory were filled with zeroes.

Figure 4.2: Foreground example image Figure 4.3: Background example image

Figure 4.4: Alpha channel of the foreground
image

Figure 4.5: Result example image

4. System integration 56

The second phase of this test is the logical simulation. The C file for this test is quite
similar to the previous test. This time only one blending is executed. The color formats
and the number of pixels of the three images are fixed and set up in the configuration
part. The three images are 1920 pixels large and 1318 pixels high. For simplicity, the color
format used for the output image is the same used for the foreground and background
ones, ARGBS8888.

Similarly, as described for the previous test, the three channels are configured with the
correct addresses and lengths. The logical simulation follows the C file compilation and
execution. A the end of the simulation, the content of the memory is dumped in a text
file. It should contain the three input images plus the output resulting image. An excerpt
of this produced file is reported below:

016f£f£f£f0 00 00 00 00 00 00 00 00
016££f££8 00 00 00 00 00 00 00 00
01700000 ff 4f 5f 79 ff 50 60 7a
01700008 ff 50 60 7a ff 4f 5f 79
01700010 ff 52 62 7c ff 51 61 7b

The excerpt shows that the resulting image is located at address 0x01700000.

The last phase of this test consists of analyzing the dumped memory file to retrieve
from it the resulting image. Another python script was written to perform this operation.
It extracts the pixels from the text file and stores the obtained image. The result of this
final step is the picture reported in Figure 4.5. This last test shows that the Engine can
do correctly alpha blending operations.

Chapter 5

Conclusions

This chapter concludes the work by comparing the initial targets against what was achieved
and an analysis of the obtained results.

The initial goal of this work was to develop a hardware accelerator to attach to a DMA
for enhancing its features with the image composition through alpha blending capability.
As shown in the second chapter, the one regarding the design of the Stream Engine, the goal
was met. The verification results shown in chapter three demonstrated that this Engine
could perform the given image elaborations correctly according to the specifications. Those
results also showed that the Engine could easily recover from error situations. Since the
verification of the Stream Engine reached adequate levels of coverage, there were no issues
in making the Engine work together with the DMA, as presented in chapter four. This
confirmed that a complete unit-level verification phase could reduce the effort needed when
those units are connected to work together.

Even if it is pretty evident that the developed hardware accelerator can ease the main
elaboration unit workload, one future development of this work could be a fair comparison
of two systems, one with the Stream Engine and one without it. In order to be fair, the
two systems should rely on the same architecture with the same components, and the
same task, an image composition, should be given to them among other general-purpose
tasks. The presence of the other tasks in the system is essential because the objective of
this hardware accelerator is not only to make the alpha blending of two images faster but
also to remove that particular kind of task from the main elaboration unit list to speed
up the whole system.

o7

Bibliography

[1] T.Porter and T. Duff, “Compositing digital images,” eng, Computer Graphics (ACM),
vol. 18, no. 3, pp. 2563-259, 1ssSN: 0097-8930.

2] Arm, Amba®/ axif-stream protocol, Arm, 2010.

38

Acknowledgements

Before concluding this thesis, I would like to thank all the people that directly or indirectly
contributed to it.

Thanks to professor Maurizio Martina. Thanks for his help and advice during those last
months.

Thanks to everyone I met during my internship in Arm Hungary. Thanks for the warm
welcome when I joined you in September and for being always friendly and supportive,
especially in times of need.

Thanks to Deborah, who has followed me on this journey since my first interview. You
were there and shared my anxiety when I was waiting for answers. You were there when I
moved to Budapest. You are here with me today and share the joy of this moment. I love
you.

Thanks to my family. Thanks for having always encouraged me to pursue my passions
and my dreams.

Thanks to all the great people I met in Collegio in the last five years and a half. You have
been and always be my second family. Thanks for all the moments we shared together. I
will miss you all.

	Introduction
	Accelerator Functionality
	System Overview

	Design
	FIFO
	Stream receiver
	Stream transmitter
	Pixel elaboration unit
	Control unit

	Verification
	UVM
	Test architecture
	Test cases
	Results

	System integration
	Testbench Architecture
	Test Cases

	Conclusions
	Bibliography

