
Politecnico di Torino

Master course in Computer Engineering

Master Degree Thesis

Exploiting infrastructure
sensors for advanced vehicle

manoeuvring assistance

Supervisor
Prof. Enrico Magli

Cosupervisors
Ing. Daniele Brevi
Ing. Edoardo Bonetto

Candidate
Federico Princiotto

s276173

Accademic Year 2021–2022

Abstract

In the last decade, there has been a huge increase in studies regarding au-

tonomous vehicles and their use in real scenarios. Autonomous vehicles are now

becoming safe and reliable also in everyday traffic, thanks also to a great number

of sensors used to perceive the world around them. However, there are situations

in which those sensors may not be so effective, mainly if something is blocking

their view.

Smart infrastructure can help connected vehicles, providing information about

the road status even before the vehicle is able to sense it.

In this thesis, it has been developed an entire software pipeline that extracts

information from roadside sensors data and it uses this information to suggest to

connected vehicles the manoeuvres to perform at an intersection. The roadside

unit (RSU) is equipped with a camera and a LiDAR; data from these sensors are

processed to identify all road actors, estimate their positions and predict their

future trajectories.

The software architecture is composed of a set of modules that communicate

with each other through a broker; this architectural choice provides high flexibil-

ity to the system, allowing to update or add modules easily. The main modules

of the system are the ones that identify road actors from the video, merge this

information with the data from the LiDAR to compute the actors’ position and

volume, and use this position to compute their future trajectories.

To ensure the consistency of the data extracted from the camera and the LiDAR

when they are merged, this thesis also deals with the calibration and synchro-

nization of those sensors.

The computation will not be performed on the roadside unit itself, but instead

in a server located at the edge of the mobile network (Edge Server), that will

receive sensors data flows from one or more RSUs.

2

Acronyms

5GAA 5G Automotive Association.

AABB Axis-Aligned Bounding Box.

ADAS Advanced Driver-Assistance Systems.

AMQP Advanced Message Queuing Protocol.

C-ITS Cooperative ITS.

CAM Cooperative Awareness Messages.

CPS Collective Perception Service.

CTRA Constant Turn Rate and Acceleration.

GPU Graphics Processing Unit.

HMI Human Machine Interface.

HV Host Vehicle.

IMA Intersection Movement Assistance.

ITS Intelligent Transportation Systems.

JSON JavaScript Object Notation.

KPI Key Performance Indicator.

LiDAR Laser Imaging, Detection, And Ranging.

LSTM Long Short-Term Memory.

3

MCS Maneuver Coordination Message.

MEC Multi-access Edge Computing.

NTP Network Time Protocol.

OBB Oriented Bounding Box.

OpenVINO OPEN Visual Inference and Neural network Optimization.

OSM OpenStreetMap.

RNN Recurrent Neural Network.

RSU Roadside Unit.

RTCP Real Time Control Protocol.

RTP Real time Transport Protocol.

RTSP Real Time Streaming Protocol.

RV Remote Vehicle.

SAE Society of Automotive Engineers.

SDK Software Development Kit.

SUMO Simulation of Urban MObility.

TraCI Traffic Control Interface.

V2I Vehicle to Infrastructure.

V2P Vehicle to Pedestrian.

V2V Vehicle to Vehicle.

V2X Vehicle to Everything.

VRU Vulnerable Road User.

YOLO You Only Look Once.

4

Contents

1 Introduction 8

1.1 V2I and V2X . 9

1.2 Intersection Movement Assist . 11

1.3 Thesis objective and structure . 13

2 Project description 14

2.1 Use case description . 14

2.2 Hardware components . 16

2.2.1 RSU . 16

2.2.2 MEC Server . 17

3 Sensors configuration 18

3.1 Camera calibration . 19

3.1.1 Intrinsic parameters . 19

3.1.2 Distortion vector . 19

3.2 LiDAR-camera extrinsic calibration 21

3.3 Synchronization . 24

3.3.1 Approach . 25

3.3.2 The timestamps . 25

3.4 Additional LiDAR calibrations . 26

4 Software architecture 28

4.1 Sensors data . 29

4.1.1 Lidar data flow . 30

4.1.2 Camera data flow . 30

4.2 Visualization containers . 31

4.2.1 Pointcloud Visualization 32

5

4.2.2 Pointcloud and Video Visualization 32

4.2.3 Video Visualization . 32

4.2.4 Pointcould interactive Visualization 33

4.3 Data analysis containers . 33

4.3.1 Detection . 34

4.3.2 Tracking . 34

4.3.3 3D Bounding Boxes . 35

4.3.4 Freespaces . 35

4.4 IMA containers . 36

4.4.1 Heatmap generator . 36

4.4.2 Prediction . 37

4.4.3 Intersection movement assistant 38

5 Data analysis algorithms 39

5.1 Detection . 39

5.1.1 Yolo . 40

5.1.2 YoloV3 and YoloV4 . 40

5.1.3 OpenVINO . 40

5.1.4 YoloV5 . 41

5.1.5 Other solutions . 42

5.2 Freespace . 44

5.3 3D Bounding Boxes . 46

5.3.1 Noise and Statistical Outlier Removal 46

5.3.2 Results . 47

5.3.3 Future improvements . 49

6 Intersection Movement Assistant 50

6.1 Heatmap generator . 50

6.1.1 Heatmap interpretation . 51

6.1.2 Parameters . 51

6.1.3 Other solution . 51

6.2 Manoeuvre Prediction . 52

6.2.1 Kalman filters . 52

6.2.2 Constant Turn Rate and Acceleration model 53

6.2.3 Other solutions . 53

6

7

6.3 Application and tests . 55

6.3.1 Test on RSU . 55

6.3.2 Test on simulated data . 58

6.4 Manoeuvre suggestion . 61

6.4.1 Vehicle connection . 62

6.4.2 Results . 62

6.4.3 Future improvements . 63

7 Conclusion 64

7.1 Future improvements . 65

Chapter 1

Introduction

In the last years, a lot of work was done to increase the safety of the roads.

Vehicles are getting cleaner, safer and smarter, and autonomous vehicles are

becoming a tangible reality. Even though fully autonomous vehicles are still very

rare and often cannot travel with other vehicles, it is not uncommon to have some

degree of Advanced Driver-Assistance Systems (ADAS) in the everyday cars (for

example, cruise control).

The Society of Automotive Engineers (SAE) classifies autonomous vehicles in a

scale from 0 (not automated) to 5 (fully automated) [33]:

• LEVEL 0: the system can issue warnings to the driver;

• LEVEL 1: the system shares control with the driver in a few well de-

fined scenarios (for example lane keeping assistance or automatic emer-

gency brake);

• LEVEL 2: the system will drive itself, but the driver is required to always

be careful and correct the driving if the system fails;

• LEVEL 3: the system will drive itself, without the need from the driver to

monitor it; it is still possible for the system to explicitly ask for the driver’s

assistance for some manoeuvres;

• LEVEL 4: in some specific circumstances, the vehicle is about to drive

itself without never asking assistance to the driver;

• LEVEL 5: no driver assistance required, in any circumstance.

8

1.1. V2I AND V2X 9

Any smart vehicle is equipped with a variety of sensors (for example camera,

LiDAR or RADAR) that can obtain data from the surroundings and use it to

provide any level of assistance to the driver. However those sensors can only

sense in the near surroundings of the vehicle, and this might lead to a

lack of safety in a not common scenario, for example, when the scene is

characterized by a high level of occlusion.

One solution to this problem can be the Vehicle to Vehicle (V2V) communica-

tion: in a scenario characterized by an high number of smart vehicles moving on

the road, vehicles could connect to each other and send both what they sense and

their intention, in order to coordinate each other. However, this is not easily fea-

sible in the scenario of the everyday traffic, in which the smart vehicles are

a small niche compared to the quantity of traditional ones. In this transitional

scenario the vehicle’s sensors may not provide enough information to

the single vehicle to understand correctly what to do.

For this reasons, to help the integration of autonomous vehicle into the everyday

traffic, it is also needed the assistance of the infrastructure.

The objective of this work is to develop a system that can use information

extracted from the infrastructure at an intersection to help smart vehicles to

perform manoeuvres safely. In Section 1.1 there is an high level explanation of

how the infrastructure can assist smart vehicles; in Section 1.2 it is described

more in detail the Intersection Movement Assistance (IMA) task; Section 1.3

reports the structure of the thesis.

1.1 V2I and V2X

The Vehicle to Infrastructure (V2I) communication allows smart vehicles to ob-

tain information about the road status from the infrastructure itself ;

this means that any vehicle can receive an high level view of anything in that

section of the road, without the requirement of the visibility from the vehicle’s

sensors itself.

Furthermore, also a vehicle without smart sensors could, potentially,

connect to the infrastructure and act as a smart one in some specific

sections of the road.

The Vehicle to Everything (V2X) communication is a set containing any type of

10 CHAPTER 1. INTRODUCTION

communication available to the vehicles (i.e V2I, V2V and V2P).

Thanks to the V2X, vehicles had transformed from Autonomous systems into

Cooperative systems, commonly referred to as Cooperative ITS (C-ITS). The

C-ITS allows any road actor (vehicle or infrastructure) to exchange information

with all the others, thus increasing the safety of the whole road environment.

The 5G Automotive Association (5GAA) identified 7 groups of use cases for

the V2X technology [13]:

• Safety: this group includes any use case that improves the safety of the

vehicle and the driver, such as emergency braking and collision warning;

• Vehicle Operations Management: this group includes the feature that

can allow the vehicle manufacturer to monitor and improve the performance

of some portion of the vehicle, such as remote status monitoring or software

updates;

• Convenience: this group includes any feature that can provide some

non mandatory value to the driver, such as cooperative navigation or au-

tonomous parking;

• Autonomous driving: this group includes any feature that could help

an autonomous vehicle of level 4 or 5;

• Platooning: platooning means that a number of smart vehicle move one

after the other, with a small safety distance, like a train [19]; this could

increase safety, while reducing gas emission and traffic;

• Traffic Efficiency and Environmental friendliness: this group in-

cludes the services that provide values to the infrastructure or the city,

such as smart routing, green lights optimization and traffic jam informa-

tion;

• Society and Community: this group includes the features that provide

a service the society and the public, such as VRU protection and crash

report.

The main constraint of the V2X in a real use case scenario is the high re-

liability and low latency of the connection between the various actors,

furthermore automotive use cases usually involve large amount of data that has

1.2. INTERSECTION MOVEMENT ASSIST 11

to be processed and sent to the vehicles quickly [22]; the main technology used

to solve all of those requirements is edge computing.

Edge computing refers to a series of techniques used to move the the storing and

computational power used in Could computing closer to the source of the data,

in order to reduce the latency [22]. This is usually done deploying a Multi-

access Edge Computing (MEC) server, which is a cloud server located ad

the edge of the local cellular network.

1.2 Intersection Movement Assist

The Intersection Movement Assist is a particular use case of the V2X concerning

both the autonomous driving and the safety groups [13].

In this use case, a connected vehicle (Host Vehicle or HV), near an inter-

section receives safety messages from the infrastructure: the simpler implemen-

tation is to send a warning messages to the driver if there is a risk of

collision performing a manoeuvre at the intersection (i.e., a vehicle from another

lane could cause a car crash); a more advanced implementation could be to sug-

gest to the driver which manoeuvres are safe to perform and which may

cause collisions with other vehicles (for example, in a specific moment it could

be safe to turn right, but not to turn left or go straight).

This use case can be divided in three simpler ones:

• if the Remote Vehicle (RV) is coming from the left, it will cause a conflict

if it tries to go straight or turn left, but not if it turns right;

• if the RV is coming from the right, it will cause a conflict with any ma-

noeuvre, if it doesn’t stop;

• if the RV is coming from the front, it will cause a conflict only if it tries to

turn left.

12 CHAPTER 1. INTRODUCTION

Figure 1.1: First use case [13]

Figure 1.2: Second use case [13]

Figure 1.3: Third use case [13]

To correctly perform the IMA task, it is needed to predict with high accu-

1.3. THESIS OBJECTIVE AND STRUCTURE 13

racy the future movements of the RV(s); for this project, this also implies

that is mandatory to extract with high accuracy all the information re-

quired to perform the prediction.

1.3 Thesis objective and structure

The objective of this thesis is to implement a pipeline of containers that

extracts from roadside sensors information about the vehicles in an

intersection and uses those information to predict the vehicles’ future path

and then send manoeuvre suggestion to the connected vehicles. The thesis

is structured as follows:

• in Chapter 2 it is explained in detail the project’s use case, first defining

the scenario and then the hardware available;

• in Chapter 3 it is explained how the two sensors (camera and LiDAR)

are calibrated and synchronized, in order to ensure the consistence of

their data;

• in Chapter 4 it is explained the high level view of pipeline, listing all

the containers and explaining what they to and how they interact;

• in Chapter 5 are explained more in detail the implementation of the

containers that use the sensors’ information to extract knowledge about

the vehicles at the intersection;

• in Chapter 6 are explained more in detail the implementation of the con-

tainers that predict the future path of the vehicles at the intersection;

in Section 6.3 there are the results of the prediction module tested both on

an RSU and a simulated scenario;

• Chapter 7 summarizes the work done in this thesis and suggests future

improvements that can be still performed.

Chapter 2

Project description

2.1 Use case description

The main goal of this thesis is to develop a Intersection Movement Assistance

(IMA) service using the technologies presented above. The main functions of

this service are:

• Forward a video stream of the intersection to an Human Machine

Interface (HMI) in a smart vehicle connected to the system;

• Provide live information about all detected road actors (i.e., pedes-

trians and vehicles) and about the detected freespaces (i.e., road sections

which are guaranteed to be free at that moment). This information will be

sent to all connected vehicles in a well-defined automotive message format,

compliant to the Collective Perception Service (CPS) standard.

• Predict future trajectory of the detected actors, to generate alerts if

there is a high chance of ”dangerous event”. This alert can be sent

to anHuman Machine Interface (HMI) to warn the driver or directly to an

autonomous vehicle.

• Suggest the driver (or the autonomous vehicle) if a specific manoeuvre is

feasible without any risks or not, at any moment.

In the Figure 2.2 are shown two example of how the IMA service will work:

in (a) the host vehicle can safely turn right, while turning left or going straight

could cause a collision with the other vehicle; in (b) can safely turn left and right,

14

2.1. USE CASE DESCRIPTION 15

but cannot go straight. This suggestions are based on the trajectory prediction

of the remote vehicle and are shown to the user through and HMI as colored

arrows.

Figure 2.1: Use case scheme

16 CHAPTER 2. PROJECT DESCRIPTION

(a) (b)

Figure 2.2: IMA examples

2.2 Hardware components

This project is divided into two main hardware components:

• Roadside Unit (RSU);

• MEC Server.

2.2.1 RSU

The RSU is composed of: a camera, a LiDAR, an embedded board, and connec-

tivity components (4G and 5G antennas).

• The camera is a Wisenet XNO-8080R.

It supports the definition of multiple RTSP streams, up to the quality of

5 megapixels. It also supports the RTCP protocol, which will be useful to

compute latencies.

Moreover, it is a varifocal camera, so it is possible to adjust the lens

focal length to adapt the view to different scenarios without only relying

on digital zoom.

• The LiDAR is a Livox Horizon.

The Livox Horizon sends 240.000 points per second, divided into

packets of 96 points sent every 0.4ms.

It has a horizontal field of view of 81.7 degrees and a vertical one of 25.1

2.2. HARDWARE COMPONENTS 17

and can see up to a distance of 260 meters.

Moreover, it can also measure the object reflectivity and it can give a

proximate measure of how reliable each scan is.

• The embedded board is the component managing the computations in

the RSU.

Since the heavy computation will be performed inside the MEC Server, it

is possible to use an arm-based embedded board, that will only be used

to read sensors’ data and forward them to the server for the main

computations.

What is a LiDAR?

A LiDAR is a sensor designed to compute distances. It works by flashing several

light beams in different directions and computing the round trip time for each

beam; knowing the direction followed by each beam and its round trip time, the

LiDAR can compute easily the XYZ coordinates of the point hit by the beam.

With a sufficient number of beams, it can also be used to create 3D models of

some objects.

2.2.2 MEC Server

The MEC server is an high-performance server located on the edge of the

mobile network. This components follows the edge computing paradigm [26]:

moving the server and their computation closer to the user to reduce the latency

and to save bandwidth.

The MEC Server is the component performing the main heavy computations and

providing services to the users.

Chapter 3

Sensors configuration

Before performing any analysis on the data, we need to ensure that all the data

coming from the two sensors are consistent. This means that it was needed to

perform both a calibration and a synchronization.

The first one is needed because the two sensors cannot be in the same location,

or with the same rotation, and even a small difference in the rotation of

the LiDAR and the camera can cause (at a high distance) huge errors.

The second one, instead, is important because LiDAR and camera data are

sent and travel at different speeds in the network; it cannot be assumed

that data received by the MEC server simultaneously, were also generated simul-

taneously.

This chapter is structured as follows:

• in Section 3.1 it is explained the calibration procedure involving only the

camera;

• in Section 3.2 it is explained how the LiDAR and camera mutual position

is derived with a calibration procedure;

• in Section 3.3 it is shown how the synchronization can be performed and

how to retrieve timestamps from both camera and LiDAR;

• in Section 3.4 are show some other calibration, designed to map the point-

cloud axis system in a more usefull one.

18

3.1. CAMERA CALIBRATION 19

3.1 Camera calibration

3.1.1 Intrinsic parameters

The intrinsic parameters of a camera are a matrix that can be used to map any

3D point (in the camera reference frame) to the pixel in which it will be

shown in the image frame. [2].

uv
1

 =

fx 0 x
0 fy y
0 0 1

XY
Z

Pixel = Intrinsic * Coordinates

Where:

u, v: pixel coordinated of a point

fx, fy: focal lengths of the camera

x, y: half of output image size

X, Y, Z: point coordinated in the camera reference frame

This matrix can be computed knowing the focal length of the camera

and the result image size. However, it is not common for camera datasheets

to include the focal length; if the focal length is not available, it can be computed

knowing the field of view:

fx = horizontal fov ∗ x/2
fx = vertical fov ∗ y/2

3.1.2 Distortion vector

The distortion vector is a set of 5 parameters that allows to correct

the radial and tangential distortion of the image caused by the lens [2].

The distortion vector, differently from the intrinsic matrix, is not available in the

datasheet of the camera, and instead must somehow be computed. The most

efficient way to compute it is with a chessboard calibration: different

images of a chessboard are taken (very close to the camera) and the program

tries to tune the 5 parameters iteratively to rectify the images. The code to

perform this calibration is easily available online [25].

20 CHAPTER 3. SENSORS CONFIGURATION

Results

(a) Camera frame before the distortion correction

(b) Camera frame after the distortion correction

Figure 3.1

In the Figure 3.1 it is possible to see the difference between the frame obtained

from the camera lens and the one obtained after the distortion correction: in

the first one, all the vertical lines (for example, the gray closet in the left) are

distorted.

3.2. LIDAR-CAMERA EXTRINSIC CALIBRATION 21

3.2 LiDAR-camera extrinsic calibration

The intrinsic matrix allows to map any 3D point in the camera reference frame

to the correct pixel. However, the points captured by the LiDAR are not in

the camera reference frame, but in the LiDAR’s one; to map a LiDAR point

to the correct pixel, another step is required: computing an extrinsic matrix

that can map the LiDAR reference frame in the camera’s one. This

extrinsic matrix is the physical transformation (rotation and translation) needed

to transpose a reference frame into another [1].

Xc

Yc

Zc

 =

R11 R12 R13 T1

R21 R22 R23 T2

R31 R32 R33 T3

Xl

Yl

Zl

1

Camera coordinates = Extrinsic * LiDAR Coordinates

Where:

Xc, Yc, Zc: 3D coordinates in the camera reference frame

Xl, Yl, Zl: 3D coordinates in the LiDAR reference frame

R: rotation component of the transformation

T : translation component of the transformation

This can be combined with what is known about the intrinsic pa-

rameters, to map any 3D point in the corresponding pixel.

uv
1

 =

fx 0 x
0 fy y
0 0 1

R11 R12 R13 T1

R21 R22 R23 T2

R31 R32 R33 T3

X
Y
Z
1

Pixel = Intrinsic * Extrinsic * LiDAR Coordinates

To compute the extrinsic parameters, it is mandatory to know 3D coordinates

and image pixels of some points and the intrinsic matrix of the camera. To

store coordinates and pixels, and then calibrate the system, a semi-automatic

pipeline was developed.

22 CHAPTER 3. SENSORS CONFIGURATION

The pipeline is structured as follows:

• First, in a still scene, a program takes a long exposure LiDAR scan

and an image from the camera and stores those in 2 files. ”Long

exposure” in this case means ”around 5 seconds”, in order to have a very

dense cloud (1.200.000 points); this scan is saved in a pointcloud file (pcd

extension).

• Manually, the user opens the image in any image editor and selects around

15/20 key points, and stores their pixel coordinates in a file.

Then, the user opens the stored pointcloud in the pcl viewer provided by

the pcl-tools package, picks the same points (in the same order), and stores

their 3D coordinates in another file.

This manual operation requires around 20 minutes to complete.

• Lastly, the user passes the pixels, coordinates and intrinsic matrix

files to a program that tries to optimize the extrinsic matrix.

The program in the last section of the pipeline exploits the ceres solver library

[23] (an open source C++ library designed to solve least square problems) to

optimize the error of the pixel predictions of the key points, tuning the

extrinsic matrix slightly for each pixel-coordinate pair.

The extrinsic matrix is initialized as
(0 −1 0 0
0 0 −1 0
1 0 0 0

)
, which is the ”same position and

rotation” transformation.

This program is very sensitive to any error in the pixel-coordinate pairs, so

is always better to double-check when storing the points.

Also, more points on a straight line don’t provide a lot of information, is better

to have fewer points, but all around the scene.

3.2. LIDAR-CAMERA EXTRINSIC CALIBRATION 23

(a) Camera view (b) LiDAR view

Figure 3.2

Results

Figure 3.3: LiDAR and camera with no calibration

Figure 3.4: LiDAR and camera after adding a static positional offset

24 CHAPTER 3. SENSORS CONFIGURATION

Figure 3.5: LiDAR and camera after full calibration

In the Figures 3.3, 3.4 and 3.5 it is possible to see that, even if adding a static

offset improves the alignment of the two sensors, it does not solve the calibration

problem: looking at the 2 highlighted sections, it is clearly visible that the

positions of the gray table and the one if the vertical pipe are esti-

mated correctly in the Figure 3.5, while they are not in the Figure 3.4.

Furthermore, from a practical point of view, it is simpler to perform a 20-

minutes calibration procedure from a remote location than having to man-

ually measure with complete accuracy the relative positions of camera

and LiDAR on the RSU.

3.3 Synchronization

The synchronization between the two sensors is needed in order to ensure the

consistence of their data before merging them. Working with two totally different

types of sensors, there are a lot of factors that may change the time synchroniza-

tion of the messages, for example:

• message size of the different payloads, since heavier payload are slower to

transmit (and so, are older when they are received);

• different internet protocol used (eg. transport-level protocol);

• eventual camera internal frame buffer, that may introduce delays.

3.3. SYNCHRONIZATION 25

3.3.1 Approach

The previous list shows that assuming that the last received pointcloud and

frame were generated at the same time will not work: data generated at the

same time, but sent with different network protocols and different payload sizes,

will not arrive simultaneously to the receiver.

The solution is to keep a buffer of images and a buffer of pointclouds

(with their corresponding timestamps), and always be at the slower sensor’s pace;

this may cause some (small) delays, but guarantees to always have consistent

information.

3.3.2 The timestamps

LiDAR

When the LiDAR sends a scan (every 0.4ms, in a UDP packet) it also sends

some information, one of those is an Network Time Protocol (NTP) syn-

chronized Unix epoch timestamp. This means that when we generate a

pointcloud it’s trivial to associate it with a timestamp.

Camera

Retrieving a timestamp from an Real Time Streaming Protocol (RTSP)

stream is, instead, much harder.

TheReal time Transport Protocol (RTP) packets that compose the stream

contain a timestamp, but is a 32-bit timestamp initialized at a random

number: it is useful only when used to compare two frames, but not if you need

an absolute timestamp.

If the camera supports it, you could have also an Real Time Control Protocol

(RTCP) stream. RTCP is a control protocol over RTSP and, in the RTCP

Sender Report packet (RTCP SR), the source sends also an NTP

timestamp.

However, even if the RTCP stream is available, the code implementation

to read its data is not trivial. The OpenCV implementation of the Video-

Capture class reads only the RTSP stream and it is not possible in OpenCV

to read the RTCP packets. Even in the FFmpeg C library, there is no method

26 CHAPTER 3. SENSORS CONFIGURATION

to read the RTCP timestamp. But the RTCP timestamp is indeed read by the

FFmpeg library, and it is stored in a private data structure. To read, this struc-

ture, you need to compile the program including some private headers that are

not present in the built library, but only in the FFmpeg source code. After

the RTCP timestamp is read, the last step is to convert the NTP timestamp in

milliseconds since UNIX Epoch, since they are different:

• the NTP timestamp is composed by 64 bits; the first 32 bit count the

seconds from the January 1 1900, while the seconds counts the fractional

seconds (with a resolution of 232 picoseconds) [3]

This did not totally solve the problem: the RTCP SR packet is not associated

to each frame, but instead is sent every 5 seconds. This can be useful to esti-

mate the network stability and latency, but not to associate a precise timestamp

to each frame.

At the moment, there are two possible solutions:

• Assume that the network delay remains constant between the RTCP pack-

ets, and use this information to associate each frame to a timestamp;

• Store the image in another protocol (such as AMQP) in order to

manually add a timestamp to the message. However, RTSP is designed

to transfer images, and internally has some optimization to reduce the

payload’s size and message’s latency; this means that using AMQP comes

with the tradeoff of adding latency.

At the moment in this project is adopted the second solution, since is manda-

tory to have the timestamp of both camera and LiDAR in order to correctly

synchronize them. Further tests will be performed in order to find an optimal

solution.

3.4 Additional LiDAR calibrations

There are two other transformations performed on the LiDAR scan that have

not yet been mentioned.

3.4. ADDITIONAL LIDAR CALIBRATIONS 27

Floor z align

For some computation that will be seen in the next chapters, I need the point-

clouds to be aligned to the floor, with the floor points having z = 0.

If the LiDAR were installed horizontally in the RSU, this would be as simple as

adding an offset to the coordinates of the points. Otherwise, if the LiDAR is

tilted toward the floor (for example, to have a better view of the vehicles on the

road) the calibration is more complex.

The solution to this problem is to pick three floor level points on the

pointcloud (with the same pcl viewer tool used in the extrinsic calibration) and

use them to rotate the pointcloud in a way that maps the plane defined by

those 3 points into the z=0 plane.

North align

Because of the requirements of the project, we need the pointcloud to have

a specific set of axes: y positive to the north, x positive to the east, z

positive upward.

The LiDAR scan already has the positive z upward, so it is easy to rotate the

XY plane in order to fulfill this requirement: similarly to what is done in the

floor z align, a point directly to the north is picked and is used to rotate

the XY plane accordingly.

Chapter 4

Software architecture

Each software module in this project is deployed as a Docker container;

this approach provides a lot of benefits, such as avoiding dependency errors

and increasing the system flexibility, since any container can run in any

hardware component. Furthermore, this approach could allow creating replicas

of some containers in order to scale or increase the performances.

The whole system that starts from the RSU sensors and ends with the path

prediction consists in a pipeline of containers.

This chapter focuses on listing all containers and summarizing what each one does

and how communicates with the other container, while Chapter 5 and Chapter

6 will focus more on detail in the implementation of some containers.

In the Figure 4.1 it is shown an high level view of the software pipeline.

Some low level details are hidden, but is possible to see the high level flow of the

information:

• the detection and tracking components use the camera data flow to detect

all the road actors and associate them with an unique ID;

• the 3D bounding boxes component merges the information of the tracking

with the points received from the LiDAR, in order to estimate the vehicles’

positions;

• the vehicles’ positions are used to predict their future manoeuvres.

28

4.1. SENSORS DATA 29

Figure 4.1: High level view of the container pipeline

This chapter is divided as follows:

• in Section 4.1 it is explained the container pipeline that sends the sensors’

data to the MEC server;

• in Section 4.2 are shown the visualization containers used to provide visual

information to testers and users;

• in Section 4.3 it is explained the pipeline that analyze the sensors’ data to

create high level information;

• in Section 4.4 are there are the container that perform the IMA service.

4.1 Sensors data

Figure 4.2: Sensors containers schema

Sensors data need to be sent from the RSU to the MEC server, where

any program can use them.

30 CHAPTER 4. SOFTWARE ARCHITECTURE

The approach used is to have anAMQP broker inside the MEC Server, and

perform all the inter-program communication through the broker. This approach

simplifies the development, avoiding creating point-to-point communication.

4.1.1 Lidar data flow

Lidar Client

The Lidar Client container uses the LiDAR SDK to connect to the LiDAR and

receive all the scans, and then forward the point to the PointCloud

Publisher.

The main objective of this container is to separate the logic of the Point-

Cloud Publisher from the low-level SDK, which may change depending on

the LiDAR brand, model and firmware version.

PointClound Publisher

The PointCloud Publisher container receives the points from the Lidar

Client and accumulates them, before publishing to the AMQP broker.

Before sending the AMQP packet, it set a property named ”timestamp” into the

packet, allowing the programs that will use the pointcloud to synchronize.

From a configuration file, this container receives the list of topics in which

it has to publish the pointcloud; different topics define different pub-

lishing frequencies and different pointcloud sizes, so that any program can

subscribe to the most suitable topic.

This container also performs the calibrations explained in chapter 3.4, floor z

align and north align.

4.1.2 Camera data flow

Video Publisher

The camera publishes an RTSP stream, but, for the reasons discussed in chapter

3.3, we decided to wrap the images in an AMQP packet.

This container reads the image from the RTSP stream, corrects the

distortion, encodes the image, and publishes it into the AMQP broker

(adding the ”timestamp” property).

To have a reliable timestamp, this container should be placed into the RSU;

4.2. VISUALIZATION CONTAINERS 31

however, this could add a huge delay if the network cannot provide enough

bandwidth, so at the moment the configuration used for this project is the one

of the Figure 4.2. Further tests will be performed in when the final hardware

will be available to understand if the architecture in the Figure 4.3 is a viable

solution.

Figure 4.3: Alternative position of the Video Publisher container

4.2 Visualization containers

This section contains the containers that are used to provide video informations

to an external user.

Figure 4.4: Visualization containers schema

32 CHAPTER 4. SOFTWARE ARCHITECTURE

4.2.1 Pointcloud Visualization

This container reads the pointcloud from the AMQP broker, and creates an

RTSP stream of the live 3D pointcloud, colored by distance, as viewed

from a fixed position and orientation.

Internally, this point of view modification is performed by creating another ex-

trinsic matrix that emulates a different position of the camera. Color gradient

and point of view are configurable using the configuration file.

(a) (b)

Figure 4.5: Pointcloud result RTSP stream

4.2.2 Pointcloud and Video Visualization

This container receives from the AMQP broker both the images and the point-

clouds and provides their information merged in an easily understandable way: it

publishes and RTSP stream showing the camera video, adding to the

images the points of the pointcloud in the corresponding pixel (math

in Section 3.2), colored by distance.

The distance color gradient and other parameters are configurable through a

configuration file.

4.2.3 Video Visualization

The camera publishes an RTSP stream in the private network between the RSU

and the MEC Server.

4.3. DATA ANALYSIS CONTAINERS 33

This container hosts a simple RTSP server and launches an FFmpeg command

to redirect the RTSP stream sent from the camera into an open port

of the MEC Server.

4.2.4 Pointcould interactive Visualization

This container runs inside the user’s device and allows the user to directly connect

to the AMQP broker and create an OpenGL 3D view of the live pointcloud

in his pc.

The main advantage of this program is that allows a live interaction with the

pointcloud, using the mouse and the keyboard to change zoom and point

of view, impossible to do in an RTSP stream.

(a)

(b)

Figure 4.6: Pointcloud and Video result RTSP stream

4.3 Data analysis containers

This section contains the programs in charge of analyzing sensor data and provid-

ing high level knowledge about the position of the road actors at the intersection

to the IMA service. The Detection and Tracking module detect road actors from

34 CHAPTER 4. SOFTWARE ARCHITECTURE

the video information, while the 3D Bounding Box module merge this informa-

tion with the LiDAR points in order to find the actors’ position.

Figure 4.7: Data analysis containers schema

4.3.1 Detection

This container reads the video stream from the AMQP broker and publishes a

JSON with the detected objects and their positions in the image.

Since other containers in the pipeline may work with a version of the same

image with lower resolution, this containers provide also the possibility to scale

the coordinates of the detection to be consistent with the lower resolution image.

More details about the implementation are available at Section 5.1

4.3.2 Tracking

This program reads the video and the result of the detection and associates

each detected object to an ID, which needs to be constant between frames.

Furthermore, it is also capable to learn some features of the objects in order

to track them even during the frames in which there is no detection

available (i.e. if, the detection is slow and takes several frames to send a detec-

tion, the tracking tries to compensate for those frames).

It also tries to map the tracking box positions into geographic coordinates.

Its result is published as a JSON to the AMQP broker.

The implementation of this program comes from the thesis work ”Multiple Ob-

ject Tracking and trajectory prediction for safety enhancement of autonomous

driving” [16] previously developed at LINKS Foundation.

4.3. DATA ANALYSIS CONTAINERS 35

4.3.3 3D Bounding Boxes

This container uses the LiDAR pointcloud and the result from either the detec-

tion or the tracking to compute a 3D bounding box around any object.

This allows us to have, for each detected object, its 3D position and volume

occupation.

Its result is published as a JSON to the AMQP broker. More details about the

implementation are available at Section 5.3

Figure 4.8: Bounding box (red) compared to Detection (green)

4.3.4 Freespaces

A freespace is defined as a section of the space that is known to be not occupied

by any object.

This container uses the LiDAR data to compute what freespaces (0 or

more) are available at ground level. To do so, this is the only container

that truly requires the floor z align calibration Section 3.4).

Its result is published to the AMQP broker as a vector of polygons, since an

obstacle near the RSU can cause the freespace to be divided in two separated

areas; a polygon is defined by a list of points that mark the border of a freespace.

More details about the implementation are available at Section 5.2

36 CHAPTER 4. SOFTWARE ARCHITECTURE

(a) (b) (c)

Figure 4.9: Different freespaces with a moving object and a still one

4.4 IMA containers

This section contains the programs that use the objects’ information extracted

by the previous containers to provide high-level data that will be used for

the IMA services.

4.4.1 Heatmap generator

This container uses historical data of cars’ positions in the intersection to gener-

ate an RGB heatmap of the path made by a car to perform a specific

manoeuvre. Each possible manoeuvre (turn left, turn right, go straight) is

mapped in a specific channel of the heatmap, as 3 separated heatmaps.

This heatmap will then be used by the prediction container to associate a pre-

dicted position to a specific manoeuvre. More details about the implementation

are available at Section 6.1.

(a) (b)

Figure 4.10: An intersection and its heatmap, generated on simulated data

4.4. IMA CONTAINERS 37

(a) (b)

Figure 4.11: An intersection and its heatmap, generated on real data

4.4.2 Prediction

This container predicts the future positions of any detected vehicle, read-

ing the data receiver from the tracking and 3D bounding box and applying to

them a Kalman filter.

Then, the container uses the heatmap to estimate, for each vehicle, the proba-

bility that it will perform any of the 3 possible manoeuvres.

This knowledge will be used to send warnings to a connected vehicle if a detected

manoeuvre could cause any conflicts. More details about the implementation are

available at Section 6.2

(a) (b)

Figure 4.12: Prediction example

38 CHAPTER 4. SOFTWARE ARCHITECTURE

4.4.3 Intersection movement assistant

This container receives the position of a connected vehicle and reads from the

Prediction module the future manoeuvres of the other vehicles. Then, knowing

the relative position of the vehicles and the topology of the intersection, sends

to the vehicles a suggestion about which manoeuvres are safe to perform.

(a) (b)

Figure 4.13: Manoeuvre suggestion example

Chapter 5

Data analysis algorithms

This chapter contains the programs that use the sensors’ data to extract mean-

ingful knowledge to understand what is happening at the intersection.

This chapter is structured as follows:

• in Section 5.1 it is explained how the detection works, with a focus on the

performance optimization on a limited hardware;

• in Section 5.2 it is show the logic that extract a freespace polygon from the

raw pointcloud;

• in Section 5.3 it is explained how the 3D bounding boxes are computed

from the detections and the pointcloud.

5.1 Detection

Usually, it is not too difficult to implement an object detection task using a

neural network, thanks to the huge amount of works and researches performed

in the last years. However, this project arose a problem that usually is not a

concern in the detection task scope: the MEC Server in which the detec-

tion (and all the other containers) should run, does not provide a Graphics

Processing Unit (GPU), which is usually a mandatory requirement for any

machine learning application. For this reason, any machine learning algorithm

that will be used, needs to be able to run on a CPU.

Furthermore, since the system is designed to avoid car crashes and other dan-

gerous situations, this whole system needs to run as fast as possible, in

order to send alerts with enough notice to the drivers.

39

40 CHAPTER 5. DATA ANALYSIS ALGORITHMS

5.1.1 Yolo

Since speed and optimization are fundamental requirements, it was

choosen to use the You Only Look Once (YOLO) approach [6]. YOLO is

a family of neural networks designed to perform both detection and classification

in one step, with the tradeoff of reducing the detection accuracy if compared to

other solutions, such as two-stage object detectors [12].

5.1.2 YoloV3 and YoloV4

The first approach was to use YoloV3 [10], subsequently updated to YoloV4

[17]. The C and C++ implementations are based on Darknet, which

is a C framework to create and manage neural networks. Darknet also

allows for some hardware optimization, both for CPU and CUDA.

After some work, both networks were discarded due to their poor performances

on CPU: the detection could take up to 1.3 seconds per frame when op-

timized for the hardware (AlexeyAB’s implementation [24]), 3.5 seconds when

not (Pjreddie’s original implementation [32]).

5.1.3 OpenVINO

OPENVisual Inference and Neural network Optimization (OpenVINO)

[9] is a toolkit developed by Intel that allows the optimization of ma-

chine learning models by means of an inference engine that exploits the pos-

sibles hardware optimizations of Intel CPUs.

OpenVINO performs different types of optimization on the model, such as:

• hardware optimization exploiting the CPU instruction set;

• fusing consecutive primitive operations in a single convolution, when pos-

sible;

• reducing the network size and complexity, preferring a 16bit precision float-

ing point representation instead of the default 32bits one;

• quantizing the model to perform low precision 8bit interference (reducing

significantly the accuracy).

5.1. DETECTION 41

Looking at Figure 5.2 it is possible to see that, when running the same network

(YoloV4) with the OpenVINO’s optimization, it was found out that the in-

ference time decreased down to almost 300ms per frame, keeping the

same result quality.

(a) AlexeyAB’s optimized YoloV4 (b) OpenVINO’s YoloV4

Figure 5.1: YoloV4 results

5.1.4 YoloV5

At first, YoloV5 [21] was discarded because of the need to write all the imple-

mentation from scratch, but, given the poor performance of the alternatives, at

last, it was decided to try it.

YoloV5 is a new implementation of the Yolo approach: it leaves Darknet

to instead use Pytorch; however, to optimize for performance, in this project

the detection code was written using Libtorch, a Pytorch C++ frontend.

The YoloV5 network family is composed of 5 different networks: nano, small,

medium, large and X.

In Table 5.1 and Figure 5.2 is is possible to see he performance of the networks,

running on CPU, on a 768 x 576px image.

nano small medium large X
inference time 25.6 ms 48.8 ms 100.5 ms 199.9 ms 333.9 ms
network size 3.77 MB 14 MB 40.7 MB 82.9 MB 166 MB

Table 5.1: YoloV5 performances

42 CHAPTER 5. DATA ANALYSIS ALGORITHMS

(a) V5 nano (b) V5 small (c) V5 medium

(d) V5 large (e) V5 X

Figure 5.2: YoloV5 results

The YoloV5 family of networks is capable to provide high perfor-

mances and reasonable accuracy even on CPU, so it was decided to

use those networks for the detection task in this project.

Note

This performance tests were performed on a Nvidia Jetson AVX Xavier, running

only the detection in the machine.

In real use cases, the detection will run along with all the other containers in the

system, so the performance will be poorer.

5.1.5 Other solutions

Detection inside the RSU

There is another solution to this performance issue.

It is possible to upgrade the RSU’s embedded board with a GPU; then, the

detection could be performed on the RSU itself and sent to the MEC Server

afterward.

5.1. DETECTION 43

Pointcloud-based detection

It is possible to perform the detection task directly on the data generated by the

LiDAR, without using the camera. In this case detection and volume estimation

are merged in a single task. There are different networks that allows that, such

as Voxelnet [7] and Complex-YOLO [11].

However, not only the result are poorer than the one performed on an image,

but the training often is LiDAR-dependant: different LiDAR models can

have different scanning patterns, and a network trained with a specific scanning

pattern often does not work with another. This is a problem for this project,

since Livox LiDARs often have non-traditional scanning patterns.

Figure 5.3: Livox Mid-40 scanning pattern [30]

Figure 5.4: Livox Horizon scanning pattern [29]

Figure 5.5: Standard LiDAR scanning pattern [30]

44 CHAPTER 5. DATA ANALYSIS ALGORITHMS

5.2 Freespace

The freespaces algorithm, given a pointcloud, needs to be able to compute one

(or more) polygon(s) representing the floor area known to be not occupied at

that moment. The area of the space not inside a freespace is either occupied

by an object or not known (i.e. out of the scope of the LiDAR or behind some

object that blocks the LiDAR view).

Since it is known that the freespace must be at floor level and the polygon must

be flat, the pointcloud needs to be rigidly transformed in order to have the floor

plane mapped in the z=0 plane (Section 3.4).

The algorithm to detect freespaces is a simple ray-tracing algorithm:

• select a height threshold and an angular resolution (both automat-

ically read from a configuration file);

• for each point in the pointcloud, if its z coordinate is higher than the

threshold, consider it as an obstacle and store its distance; store the

minimum obstacle distance for each degree;

• for each point in the pointcloud, if its z coordinate is lower than the thresh-

old, consider it as a floor point and store its distance; store the minimum

floor point distance for each degree;

• connect all the border points (minimum floor points and minimum

obstacle points) to have the freespace polygon;

• if, for either the obstacle or the floor points, some points in the path are

not defined, the algorithm splits the freespace in more separated

polygons.

In the Figure 5.6 in white are shown the floor points, in red the minimum

floor points, and in green the minimum obstacle points, in order to help the

understanding of the freespace algorithm.

5.2. FREESPACE 45

Figure 5.6: Freespace points

Figure 5.7: Separated freespaces

While in the Figure 4.8 is shown the normal behaviour of the freespace mod-

ule, in the Figure 5.7 is shown what happens if an obstacle is placed in front of

the RSU: in this case the algorithm generates more than one freespace.

46 CHAPTER 5. DATA ANALYSIS ALGORITHMS

5.3 3D Bounding Boxes

The bounding boxes algorithm takes as input a pointcloud generated from

the LiDAR and the detection of all the objects in the image (in JSON format)

and merges those information to compute, for each of those objects, the

3D position and volume; the result is published in JSON format.

For this algorithm to perform well, it is mandatory that there are no errors

in the previous containers in the pipeline. Since objects can be far, it is impor-

tant that the calibration between camera and LiDAR is accurate, because

even a slight error in the calibration could cause a wrong align of the LiDAR

pointcloud and camera image, causing the program to miss the real object posi-

tion. Moreover, since the objects may move very fast, also the synchronization

between the camera and the LiDAR must be precise, because using a

more recent pointcloud with an older image detection will cause the program to

look for an object in the wrong place.

The main algorithm works as follows:

• receive both a detection and a pointcloud;

• remove floor points from the pointcloud;

• for each object in the detection, select the points in the pointcloud that

will enter in that region of the image (math in Section 3.2);

• if the point quantity is above a threshold, random sample to reduce the

point quantity;

• apply a statistical outlier removal [34] to the points, in order to remove

noise or background points;

• use a simple Axis-Aligned Bounding Box (AABB) algorithm to generate

the bounding box.

5.3.1 Noise and Statistical Outlier Removal

Even with a perfect LiDAR-camera calibration and synchronization, there are a

lot of factors that can degrade the position and volume estimation. The

5.3. 3D BOUNDING BOXES 47

first cause of noise can be the LiDAR itself : some rare faulty points can be

caused by atmospheric dust or an error in the LiDAR behavior. Another, more

frequent, cause of errors is a partial occlusion of the object: if the object

is partially covered by another object, the detection module will still generate

a correct rectangle, but the bounding box will have no tool to understand the

inside the rectangle there are two different objects, and the interesting one is

composed only by a portion of the points in the rectangle. The last cause of

errors are the background points: if the detection box is bigger than the real

object, the program has no way to know that some of the points in the rectangle

are not part of the real object, but part of the background.

To solve all of those problems, it has been applied to the interesting portion

of the pointcloud a Statistical Outlier Removal: this algorithm removes

points from the pointcloud based on their density [34]. Given a neigh-

borhood size and a threshold, for each point in the pointcloud it is computed

the mean distance from its neighbors. Then, the neighbors distant more than

mean distance ∗ threshold are removed from the pointcloud.

The only drawback of this approach is that the Outlier Removal can be slow if

there are a lot of points; to solve this issue, a random sampling is performed on

the interesting section of the pointcloud before applying the Outlier Removal.

In the Figure 5.8, are highlighted in green the detection boxes, in red the 3D

bounding boxes, and in blue the points used to generate those 3D boxes. It is

possible to see that in the first picture (the one that does not use the Statistical

Outlier Removal) the program uses some points in the background to generate

the chair’s 3D box, while in the second one correctly understand that, even

though the green box is bigger, the object does not contain those

points.

5.3.2 Results

For this project, the main goal of the bounding box is not to estimate the vehicle

volumes occupation, but to track the position of the vehicles in the 3D

space in order to allow the IMA to predict their future trajectory.

48 CHAPTER 5. DATA ANALYSIS ALGORITHMS

(a) Bounding box without outlier removal (b) Bounding box with outlier removal

Figure 5.8: 3D bounding box examples

Frame Position’s top view

Figure 5.9: Position estimation

5.3. 3D BOUNDING BOXES 49

In the Figure 5.9, the first column of images shows the tracking of the actors

in the video, while the second column shows their estimated position on

a top view grid: the grid resolution is one meter, and the blue point at the top

represent the LiDAR position.

It is possible to see that the bounding boxes correctly represent the scene:

position of the actors is correct compared to what can be seen in the real scenario.

Furthermore, the program correctly estimates the movements between the

frames: person 9 moved a meter forward, while person 6 moved slightly backward

and person 5 remained in the same place.

5.3.3 Future improvements

The axis-aligned bounding box is easily computed by taking the minimum and

the maximum of each coordinate axis component.

The main advantage is that this algorithm is easy to implement and really fast

at runtime, but the result may be bigger than the object, if the object is

not parallel to any axis.

For future developments, is recommended to implement an algorithm with the

Oriented Bounding Box (OBB), in order to have more accurate results.

Figure 5.10: Difference between AABB and OBB [27]

Chapter 6

Intersection Movement Assistant

This chapter explains the process that uses the knowledge provided by the data

analysis containers to provide the IMA service to the user.

The chapter is structured as follows:

• in Section 6.1 it is explained how the path heatmap is generated, to map

each position with a manoeuvre;

• in Section 6.2 it is explained how the path prediction is performed;

• in Section 6.3 are shown the results of the prediction module in two different

scenarios;

• in Section 6.4 it is shown how the manoeuvre suggestion works in a simu-

lated scenario.

6.1 Heatmap generator

The heatmap generator is a relatively simple program that receives as inputs

the positions of several cars performing different (labeled) manoeuvres

in an intersection and generates an RGB heatmap.

Each channel of the RGB image represents the path usually taken by

a car that wants to perform a specific manoeuvre (turn left, turn right,

go ahead). The algorithm works as follows:

• the heatmap starts as a black image;

50

6.1. HEATMAP GENERATOR 51

• for each frame, for each car, depending on the labeled manoeuvre, a circle of

color is added to the image. The color depends on the manoeuvre, and the

intensity is maximum in the detected position and fades with the distance.

To avoid errors in the generation of the heatmap, the algorithm ignores a

car if it moved less than 0.2 meters from the last frame.

6.1.1 Heatmap interpretation

For each pixel, the ratio between the channels describes the probability

of a car in that position to perform any of the three manoeuvres.

For example, if the value of a pixel is (50, 200, 0) a vehicle in that position has

20% probability of wanting to go left, 80% of going ahead and 0% of turning

right.

%left =
100∗r
r+g+b

%center =
100∗g
r+g+b

%right =
100∗b
r+g+b

6.1.2 Parameters

The only parameters for this container are the maximum intensity and the radius

of the circle to add to each frame.

These parameters may have different optimal values, depending on the framerate

of the positions, the road width and the precision needed.

6.1.3 Other solution

Another possible solution consists in the manual generation of ”main paths”: it

would be possible to create, for each intersection to monitor, the three paths

that it is reasonable for a vehicle to follow in order to perform each of the three

manoeuvres, and then generate the heatmap based on the distance of each point

from the three paths.

Even though this approach is reasonable, it was decided that the data-generated

approach was more interesting for this project.

52 CHAPTER 6. INTERSECTION MOVEMENT ASSISTANT

6.2 Manoeuvre Prediction

The goal of the Prediction component is to estimate the probability of any vehicle

to perform any manoeuvre at the intersection.

To do so, it first predicts the future position of the vehicle (some seconds ahead)

and then uses this prediction and the heatmap associated with that intersection

to compute the probabilities.

So, the algorithm is as follows:

• read the positions of each vehicle from the 3D bounding box module;

• for each car, use a Linear Kalman filter to clean possible measurement

errors;

• for each car, use an Unscented Kalman filter (with Constant Turn Rate and

Acceleration (CTRA) model) to predict the position 1 second ahead.

The choice of this model is based on Andrea Mancini’s master thesis [20],

done previously at LINKS Foundation. From the thesis, models and results

have been used, while code has been translated from MATLAB to C++

(to allow integration with other components);

• for each car, read the heatmap in the predicted position and compare

the intensities in each channel to estimate manouvres probabilities.

6.2.1 Kalman filters

A Kalman filter is a recursive filter that tries to estimate the real state of

a dynamic system subjected to noise [28]. The first version of the Kalman

filter works for linear systems, while the Unscented Kalman filter can also

work with highly non-linear models, if the user provides the mathematical

model’s state function.

Internally, a Kalman filter stores both a mathematical model and the

uncertainties of both the model and the mesurements; it uses those

uncertainties to estimate if a new value received is a realistic one or is noise and,

in that, case, tries to correct it with the value generated by the internal model.

Those uncertainties are not easy to tune:

6.2. MANOEUVRE PREDICTION 53

• the one associated with the measurements sometimes can be found in the

sensor’s datasheet or computed performing multiple measurements

on a known value;

• the one associated to the mathematical model is vaguer and measures how

much the user thinks that the model will estimate correctly the real

system behaviour.

6.2.2 Constant Turn Rate and Acceleration model

The model chosen to estimate the vehicles movement is the CTRA model. The

CTRA model is a motion model that internally stores six states: x position,

y position, yaw, velocity, acceleration and turn rate.

Using this model, the Unscented Kalman filter can use the positions of the

vehicle (measurement) to estimate velocity, heading, acceleration and

turn rate (internal states) [20].

Then, this state information will be used to predict the future of the vehicle

using the model’s state transition function (shown in the Figure 6.1), with

the assumption of constant acceleration and turn rate; this assumption limits

the effectiveness of the prediction to only a few seconds, since in a general case

it is not true that acceleration and turn rate are constant.

6.2.3 Other solutions

There are a lot of alternatives solutions, divided in mainly two different ap-

proaches:

• keep the Unscented Kalman filter, changing the vehicle mathematical model;

• remove the Unscented Kalman filter, and use another algorithm to predict

the future positions of the vehicle.

Change mathematical model

It has been shown [20] that the CTRA model has some drawbacks: it

cannot be used to predict the long-term future since its assumptions can only be

true in a short-term analysis, and it is only physics-based, so it does not have

54 CHAPTER 6. INTERSECTION MOVEMENT ASSISTANT

Figure 6.1: State function of the CTRA model [20]

any knowledge about road manouvres.

Despite its faults, however, in this project it proved to be a useful tool for a

short-term prediction.

Changing the mathematical model is a matter of defining the states in which the

filter is interested in and how they update (state function).

Long Short-Term Memory

An Long Short-Term Memory (LSTM) is a special type of Recurrent Neural

Network (RNN). An RNN is a neural network that, differently from a normal

one, stores a state internally, and its outputs depend both on the inputs and the

stored state. The main application of RNNs involves speech recognition, where

its ability to remember the past words and context is fundamental [5].

Recently, it was studied the use of LSTMs to predict vehicle motions [18];

this approach could create a manouvre-aware model instead of a physics-

based one, and so have a longer span of accuracy.

6.3. APPLICATION AND TESTS 55

However, this solution requires running a neural network for each detected object:

this could be very expensive from a computational point of view, and

should be tested if it will still make possible for the whole system to run at an

acceptable speed.

6.3 Application and tests

Due to physical installation constraints, the LiDAR and camera setup did

not get on the field in time for this thesis to be published, so the last part

of this project (the one concerning the prediction of vehicle movement) could not

be tested in conjunction with the first part of data processing.

To test the prediction module, two different approaches have been taken:

• test on an RSU already installed, using only a camera;

• test on simulated data.

6.3.1 Test on RSU

LINKS Foundation installed an RSU with an embedded board and a camera,

mounted right after a turn and before a ”T” intersection.

Even though the intersection is not clearly visible from the camera point of view,

the path of the vehicles allows us to understand if they are going to turn left or

not.

The RSU does not contain a LiDAR, but the tracking implementation

also provides a feature that tries to associate each detected object with

its geographic coordinates. Then, knowing the geographic coordinates of the

RSU, is possible to estimate the distance between the RSU and the vehicle. This

measure may not be as accurate as the one generated by a LiDAR, but

associated with a Kalman filter to remove noises, was good enough to allow the

prediction module to work.

56 CHAPTER 6. INTERSECTION MOVEMENT ASSISTANT

(a) (b)

Figure 6.2: RSU intersection map and heatmap

Figure 6.3: RSU point of view

The Figure 6.4 shows the predictions of some cars in the intersection: the

white points show the trajectory prediction in the next 1 second, while the per-

centages near the vehicle show the manoeuvre prediction computed using the

trajectory prediction and the heatmap. It is easy to see that, in a real use case,

vehicles can follow very different paths: a vehicle trying to turn will take a

wider turn and position itself in the left section of the road, in order to

perform a correct manoeuvre. This different approach allows the algorithm to

understand what the driver wants to do various seconds before the turn occurs.

6.3. APPLICATION AND TESTS 57

Figure 6.4: Prediction results

In the Figure 6.5, in (a) and (b) are shown the prediction errors over time of

the vehicles in the Figure 6.4. The first red section is characterized by an high

error, this is because the Unscented Kalman filter needs a few runs in order to

correctly align himself with the real value. Then, it is possible to see that the

error in the prediction error stabilizes below one meter; this is an accept-

able result, since our goal is not to predict with absolute accuracy the trajectory

of the vehicle, but to predict its intersection manoeuvre. In the Figure 6.5 in (c)

and (d) are shown the errors of the same vehicles when trying to predict their

positions two second in the future; as expected, it is possible to see that the error

is bigger, with peaks ad 1.5 and 2 meters.

More information about the accuracy of the prediction performed by the Un-

scented Kalman filter are available in the original thesis [20].

58 CHAPTER 6. INTERSECTION MOVEMENT ASSISTANT

(a) Id 50, 1 second prediction (b) Id 53, 1 second prediction

(c) Id 50, 2 seconds prediction (d) Id 53, 2 seconds prediction

Figure 6.5: Prediction errors

6.3.2 Test on simulated data

To perform tests in a more complex scenario, it was decided to use some

artificially generated data. Artificial data also allow to test the prediction with

more reliable positional information than the one generated by a camera.

SUMO and TRaCI

Simulation of Urban MObility (SUMO) is an open-source traffic simulator de-

signed to handle large networks [8]. It allows the user to generate its own

road network or to import an existing one from different file formats; for this

project, a map of Turin was exported from OpenStreetMap (OSM) and then

converted into a SUMO map using the netconvert tool [31].

SUMO also allows to define any number of actors, each with its own starting

6.3. APPLICATION AND TESTS 59

point, destination, maximum velocity, allowed path and more parameters. After

both a network and a list of actors are defined, SUMO will start a real-time

simulation of the behavior of those actors, taking care also of eventual

mutual interaction between actors, and of the interaction between actors and

infrastructures (for example, traffic lights).

Traffic Control Interface (TraCI) is an interface that allows SUMO to act

as a server, waiting for commands through a TCP connection from any client.

To automatize the simulations, TraCI is available as a library for multiple

programming languages; for this project, the python interface [35] was used in

order to generate simulated data of vehicles moving in a Turin intersection.

(a) (b)

Figure 6.6: Turin intersection map and heatmap

Data generation

Using a simple python program, it was possible to generate JSON messages

with the same structure as the ones generated by the real RSU, and

use them to test the prediction module.

However, after a few tests, it was clear that the generated data was unrealisti-

cally clear. To reproduce working conditions similar to the ones of the

real RSU, some white noise was added to all measurements: a random

value between -0.5 and 0.5 meters was added both to the x and y coordinates of

every single measurement, creating an uncertainty of maximum 0.71 meters on

the vehicle positions.

The heatmap, instead, was generated from data without noise, to test an ap-

proach more similar to the one proposed in Section 6.1.3.

60 CHAPTER 6. INTERSECTION MOVEMENT ASSISTANT

Results

Figure 6.7: Prediction results

In the Figure 6.7 it is possible to see that, even with the added noise, theKalman

filter correctly predicts the path of the three simulates vehicles:

• The vehicle with ID 0 moves in the right lane of the road, this increases

from its probability to turn right way before it reaches the intersection;

then, it starts turning, and this manoeuvre is correctly detected.

• The vehicle with ID 1 does not turn; this is detected in the center of the

intersection because the prediction estimates that the vehicle will go ahead

too far away to allow a turning manoeuvre.

• The vehicle with ID 2, instead, turns left; this is detected because, in

the center of the intersection, it starts to slow down a turn.

Both for this vehicle and the previous one, it’s difficult to predict if they are

6.4. MANOEUVRE SUGGESTION 61

going to go straight or turn right before a certain point of the intersection

is reached.

(a) ID: 2, 1 second prediction (b) ID: 2, 1 second prediction, added noise

Figure 6.8: Prediction errors

In the Figure 6.8 it is shown the prediction error of the vehicle with ID 2 from

the Figure 6.7. The first image shows the error without the added noise, using

only the SUMO simulation, while the second also include the random noise. It is

possible to see that the first red section the error has a peak, due to the warm up

of the Kalman filter. Then, there are other two peaks in both the images: the

second peak is caused by the deceleration of the vehicle, while the third

by the beginning of the turning manoeuvre; since the CTRA model as-

sumes constant acceleration and turning rates, both those sudden changes cause

a peak in the prediction error.

It is worth noticing that this simulation does not consider some parame-

ters that could be important in a real scenario; for instance, in this test the 3

vehicle moved freely, since there was no traffic on the road: it is possible that

in a congested road vehicles will move slower and follow different paths in order

to avoid hitting other vehicles.

6.4 Manoeuvre suggestion

The goal of this component is to generate and provide manoeuvre suggestion

for a vehicle, based on the the vehicle’s position and the prediction of the other

62 CHAPTER 6. INTERSECTION MOVEMENT ASSISTANT

vehicles.

The module works knowing the topology of the intersection and the relative po-

sition of the vehicles, and using those information to find which manoeuvres can

cause a dangerous situation, in a similar way to what is shown in the Figure 1.1,

1.2 and 1.3.

6.4.1 Vehicle connection

For the same reasons of the other module (the Prediction one), it was not possible

to test this program in a real scenario, but only on a simulated one.

In a real scenario, this module will need to communicate to a connected vehicle,

in order to send the manoeuvre suggestion. This communication has not been

implemented yet, but there are different solutions to implement it:

• the vehicle communicates its position sending a Cooperative Awareness

Messages (CAM) [15] to the MEC server; the MEC server sends the ma-

noeuvre suggestion using a non standard message;

• the vehicle communicates its position sending a CAM to the MEC server;

the MEC server sends the manoeuvre suggestion using a Maneuver Coor-

dination Message (MCS) [14];

• expose the service as a web server, the vehicles sends its position in a GET

request and receives the manoeuvres suggestion as a response.

6.4.2 Results

In the Figure 6.9 it is shown how the manoeuvre suggestion module works in a

simulated scenario:

• in (a) the connected vehicle can only turn left, since turning right or going

straight could cause a crash with the vehicle with ID 1;

• in (b) the connected vehicle can turn both left and right, but cannot go

straight since it could cause a crash with the vehicle with ID 2; the program

does not consider the velocities of the vehicle, so it considers going straight

not safe even if in this case it could be.

6.4. MANOEUVRE SUGGESTION 63

(a) (b)

Figure 6.9: Manoeuvre suggestion results

6.4.3 Future improvements

The module has to be enhanced in order to receive the position from a connected

vehicle and respond with a manoeuvre suggestion.

Furthermore, the current implementation follows a basic approach and does not

consider the velocity of the vehicles when detecting dangerous manoeuvres; this

could be added in future updates.

Chapter 7

Conclusion

Summarizing, in this thesis it has been developed a complete system that can

provide the vehicle path prediction and use it to generate manoeuvre

suggestions. The hardware infrastructure is composed of an RSU (mounting

a LiDAR, a camera and an embedded board) and a MEC server, that performs

the computation.

To ensure the coherence of the different sensors, it was developed a procedure

that allows the extrinsic calibration of camera and LiDAR in any scenario;

this procedure requires the selection of some keypoints both on an image and on

a pointcloud, and computes the rigid transformation that makes the keypoints

of both sensors coincide.

The software system starts with some containers that interface to the hard-

ware using some low-level SDK and then publishes the retrieved data to an

AMQP broker in a more simple format.

Then, using the camera stream, it is performed an object detection to identify

all the road actors. A lot of effort was devoted in the optimization of this task,

since it will run on a CPU instead that a GPU.

Another task performed by the system is the 3D bounding box estimation

around any detected object; this is performed by merging the information

received by the LiDAR to the detection performed on the video. This merge is

possible only thanks to the accuracy of the calibration procedure.

Lastly, the real time positions of the road actors are used to predict their

future path using an Unscented Kalman filter, and a data-driven approach al-

lows to map the prediction to one of the three possible manoeuvres

64

7.1. FUTURE IMPROVEMENTS 65

available at the intersection (left turn, right turn, go straight).

Once that is possible to predict the future path of any vehicle at the intersection,

it is possible to send alerts or manoeuvre suggestions to the vehicles that

are able to connect to the system, in order to avoid conflict between the vehicles

trajectories and increase the road safety.

The high modularity of the project allows the different components to be

replaced with future updates or reused in other projects, provided that the com-

munication interface remains constant. Furthermore, this software architecture

is suitable for different hardware configurations, since there is no restriction on

the physical allocations of the running containers.

7.1 Future improvements

This project shows the feasibility of the manoeuvring assistance in an

intersection based on the information of a camera and a LiDAR, but

there are a lot of improvements that can still be performed.

Since the LiDAR and camera setup was not mounted in the intersection be-

fore the publication of this thesis, it was not possible to test the whole

pipeline at once: the data analysis containers were tested on real data while

the IMA module was tested on generated data. So, the first improvement is to

test the whole system together, once the complete RSU is available, developing

also the connection with the vehicle.

Furthermore, it has not yet been a performance test on the final hard-

ware, to measure some KPIs such as processing time and communication laten-

cies.

Once those tests are performed, any of the single modules can be updated

to have better performance or accuracy, for example:

• it could be studied if an LSTM-based approach for the prediction could pro-

vide better long term results without degrading too much the performance

66 CHAPTER 7. CONCLUSION

(as explained in Section 6.2.3);

• it could be developed a more precise approach on the creation of the bound-

ing boxes, that now overestimate a little the spacial occupation (as ex-

plained in Section 5.3.3);

• update the Detection and the Tracking module if new solutions with better

performances are found.

References

[1] Zhengyou Zhang. “A Flexible New Technique for Camera Calibration”.

IEEE Transactions on Pattern Analysis and Machine Intelligence 22 (Dec.

2000). MSR-TR-98-71, Updated March 25, 1999, pp. 1330–1334. url: https:

//www.microsoft.com/en-us/research/publication/a-flexible-

new-technique-for-camera-calibration/.

[2] Richard Hartley and Andrew Zisserman. Multiple View Geometry in Com-

puter Vision. 2003.

[3] David L. Mills. “The NTP Era and Era Numbering” (2012).

[4] José Santa et al. “Experimental evaluation of CAM and DENM messaging

services in vehicular communications”. Transportation Research Part C:

Emerging Technologies 46 (Sept. 2014), pp. 98–120. doi: 10.1016/j.trc.

2014.05.006.

[5] Xiangang Li and XihongWu. Constructing Long Short-Term Memory based

Deep Recurrent Neural Networks for Large Vocabulary Speech Recognition.

2015. arXiv: 1410.4281 [cs.CL].

[6] Joseph Redmon et al. You Only Look Once: Unified, Real-Time Object

Detection. 2016. arXiv: 1506.02640 [cs.CV].

[7] Yin Zhou and Oncel Tuzel. VoxelNet: End-to-End Learning for Point Cloud

Based 3D Object Detection. 2017. arXiv: 1711.06396 [cs.CV].

[8] Pablo Alvarez Lopez et al. “Microscopic Traffic Simulation using SUMO”.

In: The 21st IEEE International Conference on Intelligent Transportation

Systems. IEEE, Nov. 2018, pp. 2575–2582. url: https://elib.dlr.de/

127994/.

[9] OpenVINO toolkit. 2018. url: https://docs.openvino.ai/latest/

index.html.

67

https://www.microsoft.com/en-us/research/publication/a-flexible-new-technique-for-camera-calibration/
https://www.microsoft.com/en-us/research/publication/a-flexible-new-technique-for-camera-calibration/
https://www.microsoft.com/en-us/research/publication/a-flexible-new-technique-for-camera-calibration/
https://doi.org/10.1016/j.trc.2014.05.006
https://doi.org/10.1016/j.trc.2014.05.006
https://arxiv.org/abs/1410.4281
https://arxiv.org/abs/1506.02640
https://arxiv.org/abs/1711.06396
https://elib.dlr.de/127994/
https://elib.dlr.de/127994/
https://docs.openvino.ai/latest/index.html
https://docs.openvino.ai/latest/index.html

68 REFERENCES

[10] Joseph Redmon and Ali Farhadi. YOLOv3: An Incremental Improvement.

2018. arXiv: 1804.02767 [cs.CV].

[11] Martin Simon et al. Complex-YOLO: Real-time 3D Object Detection on

Point Clouds. 2018. arXiv: 1803.06199 [cs.CV].

[12] Petru Soviany and Radu Tudor Ionescu. “Optimizing the Trade-off between

Single-Stage and Two-Stage Object Detectors using Image Difficulty Pre-

diction”. CoRR abs/1803.08707 (2018). arXiv: 1803.08707. url: http:

//arxiv.org/abs/1803.08707.

[13] 5GAA. C-V2x Use Cases Methodology, Example and Service Level Require-

ments. 2019.

[14] Alejandro Correa et al. “Infrastructure Support for Cooperative Maneuvers

in Connected and Automated Driving”. In: 2019 IEEE Intelligent Vehicles

Symposium (IV). 2019, pp. 20–25. doi: 10.1109/IVS.2019.8814044.

[15] ETSI EN 302 637-2 V1.4.1. Tech. rep. 2019. url: https://www.etsi.

org/deliver/etsi_en/302600_302699/30263702/01.04.01_60/en_

30263702v010401p.pdf.

[16] Francesca Pacella. “Multiple Object Tracking and trajectory prediction

for safety enhancement of autonomous driving”. PhD thesis. Politecnico di

Torino, 2019.

[17] Alexey Bochkovskiy, Chien-YaoWang, and Hong-Yuan Mark Liao. YOLOv4:

Optimal Speed and Accuracy of Object Detection. 2020. arXiv: 2004.10934

[cs.CV].

[18] André Ip, Luis Irio, and Rodolfo Oliveira. “Vehicle Trajectory Predic-

tion based on LSTM Recurrent Neural Networks”. In: 2021 IEEE 93rd

Vehicular Technology Conference (VTC2021-Spring). 2021, pp. 1–5. doi:

10.1109/VTC2021-Spring51267.2021.9449038.

[19] Seolyoung Lee, Cheol Oh, and Gunwoo Lee. “Impact of Automated Truck

Platooning on the Performance of Freeway Mixed Traffic Flow”. Journal

of Advanced Transportation 2021 (2021).

[20] Andrea Mancini. “Vehicle path prediction for safety enhancement of au-

tonomous driving”. PhD thesis. Politecnico di Torino, 2021.

https://arxiv.org/abs/1804.02767
https://arxiv.org/abs/1803.06199
https://arxiv.org/abs/1803.08707
http://arxiv.org/abs/1803.08707
http://arxiv.org/abs/1803.08707
https://doi.org/10.1109/IVS.2019.8814044
https://www.etsi.org/deliver/etsi_en/302600_302699/30263702/01.04.01_60/en_30263702v010401p.pdf
https://www.etsi.org/deliver/etsi_en/302600_302699/30263702/01.04.01_60/en_30263702v010401p.pdf
https://www.etsi.org/deliver/etsi_en/302600_302699/30263702/01.04.01_60/en_30263702v010401p.pdf
https://arxiv.org/abs/2004.10934
https://arxiv.org/abs/2004.10934
https://doi.org/10.1109/VTC2021-Spring51267.2021.9449038

REFERENCES 69

[21] Xingkui Zhu et al. TPH-YOLOv5: Improved YOLOv5 Based on Trans-

former Prediction Head for Object Detection on Drone-captured Scenarios.

2021. arXiv: 2108.11539 [cs.CV].

[22] 5GAA. MEC for Automotive in Multi-Operator Scenarios. Tech. rep. url:

https://5gaa.org/wp-content/uploads/2021/03/5GAA_A-200150_

MEC4AUTO _ Task2 _ TR _ MEC - for - Automotive - in - Multi - Operator -

Scenarios.pdf.

[23] Sameer Agarwal, Keir Mierle, et al. Ceres Solver. http://ceres-solver.

org.

[24] AlexeyAB. Darknet. https://github.com/AlexeyAB/darknet.

[25] “Calibrate fisheye lens using OpenCV” (). url: https://medium.com/

@kennethjiang/calibrate-fisheye-lens-using-opencv-333b05afa0b0.

[26] “Edge computing” (). url: https://en.wikipedia.org/wiki/Edge_

computing.

[27] “How Collision Detection works” (). url: https://devdept.zendesk.

com/hc/en-us/articles/360011559320-How-Collision-Detection-

works-v2020-.

[28] “Kalman filter” (). url: https://en.wikipedia.org/wiki/Kalman_

filter.

[29] “Livox Horizon datasheet” (). url: https : / / www . livoxtech . com /

horizon/downloads.

[30] “Livox Mid-40 datasheet” (). url: https://www.livoxtech.com/mid-

40-and-mid-100/downloads.

[31] “Netconvert documentation” (). url: https : / / sumo . dlr . de / docs /

netconvert.html.

[32] Pjreddie. Darknet. https://github.com/pjreddie/darknet.

[33] SAE. Taxonomy and Definitions for Terms Related to Driving Automation

Systems for On-Road Motor Vehicles.

[34] “Statistical outlier removal” (). url: https://pcl.readthedocs.io/

projects/tutorials/en/latest/statistical_outlier.html.

[35] “TraCI python documentation” (). url: https://sumo.dlr.de/docs/

TraCI/Interfacing_TraCI_from_Python.html.

https://arxiv.org/abs/2108.11539
https://5gaa.org/wp-content/uploads/2021/03/5GAA_A-200150_MEC4AUTO_Task2_TR_MEC-for-Automotive-in-Multi-Operator-Scenarios.pdf
https://5gaa.org/wp-content/uploads/2021/03/5GAA_A-200150_MEC4AUTO_Task2_TR_MEC-for-Automotive-in-Multi-Operator-Scenarios.pdf
https://5gaa.org/wp-content/uploads/2021/03/5GAA_A-200150_MEC4AUTO_Task2_TR_MEC-for-Automotive-in-Multi-Operator-Scenarios.pdf
http://ceres-solver.org
http://ceres-solver.org
https://github.com/AlexeyAB/darknet
https://medium.com/@kennethjiang/calibrate-fisheye-lens-using-opencv-333b05afa0b0
https://medium.com/@kennethjiang/calibrate-fisheye-lens-using-opencv-333b05afa0b0
https://en.wikipedia.org/wiki/Edge_computing
https://en.wikipedia.org/wiki/Edge_computing
https://devdept.zendesk.com/hc/en-us/articles/360011559320-How-Collision-Detection-works-v2020-
https://devdept.zendesk.com/hc/en-us/articles/360011559320-How-Collision-Detection-works-v2020-
https://devdept.zendesk.com/hc/en-us/articles/360011559320-How-Collision-Detection-works-v2020-
https://en.wikipedia.org/wiki/Kalman_filter
https://en.wikipedia.org/wiki/Kalman_filter
https://www.livoxtech.com/horizon/downloads
https://www.livoxtech.com/horizon/downloads
https://www.livoxtech.com/mid-40-and-mid-100/downloads
https://www.livoxtech.com/mid-40-and-mid-100/downloads
https://sumo.dlr.de/docs/netconvert.html
https://sumo.dlr.de/docs/netconvert.html
https://github.com/pjreddie/darknet
https://pcl.readthedocs.io/projects/tutorials/en/latest/statistical_outlier.html
https://pcl.readthedocs.io/projects/tutorials/en/latest/statistical_outlier.html
https://sumo.dlr.de/docs/TraCI/Interfacing_TraCI_from_Python.html
https://sumo.dlr.de/docs/TraCI/Interfacing_TraCI_from_Python.html

Ringraziamenti

A conclusione di questo elaborato, desidero menzionare tutte le persone, senza

le quali questo lavoro di tesi non esisterebbe nemmeno.

Ringrazio i colleghi della Fondazione LINKS in cui ho svolto questo interessante

lavoro di tesi. In particolare, ringrazio Daniele Brevi e Edoardo Bonetto per i

preziosi consigli e suggerimenti.

Ringrazio i miei genitori, perché senza di loro non avrei mai potuto intraprendere

questo percorso di studi.

Ringrazio Silvia, la mia ragazza, per essermi stata vicino tutto questo tempo.

Infine ringrazio tutti gli amici, troppi per elencarli qui, che mi hanno accompa-

gnato in questo percorso.

70

	Introduction
	V2I and V2X
	Intersection Movement Assist
	Thesis objective and structure

	Project description
	Use case description
	Hardware components
	RSU
	MEC Server

	Sensors configuration
	Camera calibration
	Intrinsic parameters
	Distortion vector

	LiDAR-camera extrinsic calibration
	Synchronization
	Approach
	The timestamps

	Additional LiDAR calibrations

	Software architecture
	Sensors data
	Lidar data flow
	Camera data flow

	Visualization containers
	Pointcloud Visualization
	Pointcloud and Video Visualization
	Video Visualization
	Pointcould interactive Visualization

	Data analysis containers
	Detection
	Tracking
	3D Bounding Boxes
	Freespaces

	IMA containers
	Heatmap generator
	Prediction
	Intersection movement assistant

	Data analysis algorithms
	Detection
	Yolo
	YoloV3 and YoloV4
	OpenVINO
	YoloV5
	Other solutions

	Freespace
	3D Bounding Boxes
	Noise and Statistical Outlier Removal
	Results
	Future improvements

	Intersection Movement Assistant
	Heatmap generator
	Heatmap interpretation
	Parameters
	Other solution

	Manoeuvre Prediction
	Kalman filters
	ctra model
	Other solutions

	Application and tests
	Test on RSU
	Test on simulated data

	Manoeuvre suggestion
	Vehicle connection
	Results
	Future improvements

	Conclusion
	Future improvements

