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1. Algorithms and functions 

 

The design supports IEEE 754 for single precision. The three basic components in IEEE 

754 are sign(S), exponent(E) and mantissa(M). 

 

                  Table 1 IEEE 754 for single precision 

 

Precision Sign Exponent Mantissa Bias 

Single 1[31] 8[30:23] 23[22:0] 127 

 

= (−1)𝑠 × (1. 𝑀)𝐸 

                 Table 2 Special bit patterns in IEEE 754    

 M=0 M≠0 

E=0 0 Denormalized with real 

exponent=1 

E=255 ±∞ NaN 

 

The IEEE 754 2008 standard supports all floating point operations. It handles all special 

inputs including signaling NaN, quiet NaN,+Infinity,-Infinity, positive zero and 

negative zero. Our design supports IEEE 754 and offers two exceptions namely 

overflow(OF) and underflow(UF). Besides, our design supports four different rounding 

modes: RNE(Round to Nearest, ties to Even, 00), RTZ(Round towards Zero, encoding 

as 01), RDN(Round Down, encoding as 10), RUP(Round Up, encoding as 11). 

This document is organized as follows: Chapter 2 will summarize all inputs/outputs. 

Chapter 3 will introduce the architecture. Chapter 4 will address normalization. Chapter 

5 will show the rounding modes. Chapter 6 will present exceptions. Chapter 7 will 

provide some waveforms for simulations. Chapter 8 will give the synthesized results. 

2. Inputs and Outputs 

fmac is the name of our design, which can be used to perform floating point fused 

multiply-add: Operand_a_DI + Operand_b_DI * Operand_c_DI. The input RM_SI is a 

2-bit rounding mode.  

 

 

 

 

 



Table 3 Inputs and outputs of fmac 

Ports width direction Function 

Precision_ctl_SI 5 IN Reserved for transprecision 

Operand_a_DI 32bits IN Addend  

Operand_b_DI 32bits IN Multiplier 

Operand_c_DI 32bits IN Multiplicand 

RM_SI 2 bits IN Rounding mode.  

Result_DO 

 

32bits OUT result 

OF_SO 1 bit OUT Active high 

UF_SO 1 bit OUT Active high 

 

3. Architecture 

 

The employed architecture is shown in Fig.1, most of which are based on the 

recommended architecture (Eric M. Schwarz, “Binary floating-point unit design: the 

fused multiply-add dataflow” ). Fmac is consisted of fmac_preprocess, pp_generation, 

Wallace, CSA, aligner, adders, LZA and fpu_norm.  

 

In the fmac_preprocess module, three operands are unpacked into three IEEE-754 

encoded numbers into corresponding sign bits, biased binary exponents, and mantissas. 

To support denormal numbers, Operand detection is added to check each operand and 

give the corresponding symbols, InF_x_S, Zero_x_S, NaN_x_S and DeN_x_S. When 

DeN_x_S is logic 1, the corresponding exponent Exp_x_D  will be set to 1, which 

offers a simple implementation with some extra latency. Another solution for high speed 

is shown in (Eric M. Schwarz, “Binary floating-point unit design: the fused multiply-

add dataflow” ). These signals are also used for normalization. 

 

Radix-4 booth coding will be used to produce 13 partial products, which will be 

compressed by a Wallace consisted of 5 levels of CSAs. Booth encoding starts from 

Mant_b_DI[1:-1]. Thus the last partial product is always positive. Adding a hot one can 

be implemented in next partial products. Therefore, 13 partial products will be 

generated. pp_generation is used to instance booth encoders and booth selector. 

Wallace tree is used to compress 13 partial products into 2.  The produced 2 results 

will be further compressed with Mant_al_D using CSA. Due to using the sign extension 

in (Eric M. Schwarz, “Binary floating-point unit design: the fused multiply-add 

dataflow” ), all the carry outs of wallace and CSA should be taken into account. 
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Fig.1 The architecture for FMAC 

 

Aligner is used to implement the alignment. The alignment scheme in (Gongqiong Li, 

Zhaolin Li, “Design of a fully pipelined single-precision multiply-add-fused unit,”IEEE 

VLSID’07,2007 ) is employed. Most of detailed implementation can be based on 

(Gongqiong Li, Zhaolin Li, “Design of a fully pipelined single-precision multiply-add-

fused unit,”IEEE VLSID’07,2007 ) , except normalization, since (Gongqiong Li, 

Zhaolin Li, “Design of a fully pipelined single-precision multiply-add-fused unit,”IEEE 

VLSID’07,2007 ) does not support denormal numbers. 

The difference     

  d = Exp_a_D − Exp_b_D − Exp_c_D + Cbias                        (1) 



 

 The right shift amount for alignment is  

  mv = 27 − d                                                (2) 

. 

The exponent after alignment can be given for two cases: 

(1) If mv is negative, the result exponent is Exp_a_DI with the result mantissa of 

Mant_a_DI;  

(2) Others: the result exponent is Exp_b_D + Exp_c_D − Cbias + 27. 

If Sign_a_D ⊕ (Sign_b_D ⊕ Sign_c_D),  there will be a substraction. The scheme in 

(Gongqiong Li, Zhaolin Li, “Design of a fully pipelined single-precision multiply-add-

fused unit,”IEEE VLSID’07,2007 ) is employed to address this issue. 

 

According to the shift amount, Mant_a_D is divided into two parts: Mant_ah_D and 

Mant_al_D . Mant_ah_D  is inputted into an incrementer. Mant_al_D  is taken as 

another inputs of the final CSA. The carry-out of EACA is used to choose the right 

result for Mant_ah_D . The corresponding theory is shown in (Eric M. Schwarz, 

“Binary floating-point unit design: the fused multiply-add dataflow,” ). 

Adders is used to implement the functions of EACA and deal with Mant_ah_D to 

produce a positive result, as well as offering the inputs of LZA. Two channels are needed 

to implement EACA to produce a positive result. The inputs of either channel can be 

taken as the inputs of LZA. 

 

LZA is used to finish the leading one detection. The method in (M. Schmookler, K. J. 

Nowka, “Leading Zero anticipation and detection—A comparison of method,” 

IEEE,2001) is used for high speed. One LZD is introduced to produce the index. Since 

LZA cannot predict an exact position and two channels are used for normalization for 

this part. 

 

4. Normalization  

(1)  d ≥ 27 , there is no overlap for  Operand_a_DI  and  Operand_b_DI ∗

Operand_c_DI. 

 Return Operand_a_DI  and set the value for rounding based on Operand_b_DI ∗

Operand_c_DI. 

(2)  d ≤ −48 , there is no overlap for  Operand_a_DI  and  Operand_b_DI +

Operand_c_DI. 

Return Operand_b_DI ∗ Operand_c_DI and set the value for rounding based 

on Operand_a_DI. 

(3) −48 < d < 27 ,There is overlap for  Operand_a_DI  and  Operand_b_DI ∗

Operand_c_DI. 

The exponent after normalization can be given as: 

Exp_norm_D = Exp_prenorm_D + 27 − LZ 

Where LZ is the leading zero detection for the 74-bit mantissa. 

               Mant_norm_D = Right shift(27 − LZ) Mant_prenorm_D    



If Exp_norm_D > 255, OF is signaled and return E=255,M=0; 

If Exp_norm_D = 255 and M≠0,  NaN is signaled and return qNaN; 

  If Exp_norm_D == 1  and Mant_norm_D[CMANT − 1] == 0 , the result is a 

denormal number, return  Exp_norm_D == 0 and Mant_norm_D; 

If  1 =< Exp_norm_D <= 254  and Mant_norm_D[CMANT − 1] == 1 , it is a 

normal result, return Exp_norm_D and Mant_norm_D; 

If  Exp_norm_D == 0 and M≠0, it is a denormal number, return >> (M) and the 

adjusted E; 

 (4)Special cases 

Table 4 Special cases for FMAC 

FMAC operation  return 

1 NaN +b*c qNaN 

2 a+NaN*c qNaN 

3 a+b*NaN qNaN 

4 Inf+ b*c Inf 

5 a+Inf*c Inf 

6 a+ b*Inf Inf 

7 DeN+DeN*c DeN 

8 DeN+DeN*DeN DeN 

*qNaN=0x7fc00000 

(5) The above analysis is based on the conventional method. For high speed purpose, 

LZA based on the inputs of EACA can be used. The method in (M. Schmookler, K. J. 

Nowka, “Leading Zero anticipation and detection—A comparison of method,” 

IEEE,2001) can be used. 

 

5. Rounding 

 

The design supports four different rounding modes: RNE(Round to Nearest, ties to 

Even, 00), RTZ(Round towards Zero, encoding as 01),RDN(Round Down, encoding as 

10),RUP(Round Up, encoding as 11). 

                            Table 5 Rounding modes 

Mode Code 

RNE 00 

RTZ 01 

RDN 10 

RUP 11 

 

6. Exceptions  

The design supports two exceptions namely overflow(OF), underflow(UF). 

  Exp_OF_SO is signaled if the exact result has an exponent that cannot be represented 



in the format. Returns infinity (positive or negative) as result. 

  Exp_UF_SO is signaled when the result is denormal and rounded. 

 

7. Waveforms 

  The waveforms are based on fmac. Fmac.sv has been tested on the pulpino using 

benchmark programs. 

 
 Fig.2  The waveform for the first 9 test cases (normal cases) 

 
Fig.3  The waveform for the last test cases ( including normal cases and special cases) 

 

8. Synthesized results 

UMC65nm process technology was used for synthesis. 

Operating Conditions: uk65lscllmvbbl_108c125_wc    

Library: uk65lscllmvbbl_108c125_wc 

Input_delay:0.5ns 

Output_delay:0.5ns  



 
Fig.4 The synthesized results 


