
 Datasheet of FP FMAC

 Lei Li (lile@iis.ee.ethz.ch)

 28/07/2017

1. Algorithms and functions

The design supports IEEE 754 for single precision. The three basic components in IEEE

754 are sign(S), exponent(E) and mantissa(M).

 Table 1 IEEE 754 for single precision

Precision Sign Exponent Mantissa Bias

Single 1[31] 8[30:23] 23[22:0] 127

= (−1)𝑠 × (1. 𝑀)𝐸

 Table 2 Special bit patterns in IEEE 754

 M=0 M≠0

E=0 0 Denormalized with real

exponent=1

E=255 ±∞ NaN

The IEEE 754 2008 standard supports all floating point operations. It handles all special

inputs including signaling NaN, quiet NaN,+Infinity,-Infinity, positive zero and

negative zero. Our design supports IEEE 754 and offers two exceptions namely

overflow(OF) and underflow(UF). Besides, our design supports four different rounding

modes: RNE(Round to Nearest, ties to Even, 00), RTZ(Round towards Zero, encoding

as 01), RDN(Round Down, encoding as 10), RUP(Round Up, encoding as 11).

This document is organized as follows: Chapter 2 will summarize all inputs/outputs.

Chapter 3 will introduce the architecture. Chapter 4 will address normalization. Chapter

5 will show the rounding modes. Chapter 6 will present exceptions. Chapter 7 will

provide some waveforms for simulations. Chapter 8 will give the synthesized results.

2. Inputs and Outputs

fmac is the name of our design, which can be used to perform floating point fused

multiply-add: Operand_a_DI + Operand_b_DI * Operand_c_DI. The input RM_SI is a

2-bit rounding mode.

Table 3 Inputs and outputs of fmac

Ports width direction Function

Precision_ctl_SI 5 IN Reserved for transprecision

Operand_a_DI 32bits IN Addend

Operand_b_DI 32bits IN Multiplier

Operand_c_DI 32bits IN Multiplicand

RM_SI 2 bits IN Rounding mode.

Result_DO

32bits OUT result

OF_SO 1 bit OUT Active high

UF_SO 1 bit OUT Active high

3. Architecture

The employed architecture is shown in Fig.1, most of which are based on the

recommended architecture (Eric M. Schwarz, “Binary floating-point unit design: the

fused multiply-add dataflow”). Fmac is consisted of fmac_preprocess, pp_generation,

Wallace, CSA, aligner, adders, LZA and fpu_norm.

In the fmac_preprocess module, three operands are unpacked into three IEEE-754

encoded numbers into corresponding sign bits, biased binary exponents, and mantissas.

To support denormal numbers, Operand detection is added to check each operand and

give the corresponding symbols, InF_x_S, Zero_x_S, NaN_x_S and DeN_x_S. When

DeN_x_S is logic 1, the corresponding exponent Exp_x_D will be set to 1, which

offers a simple implementation with some extra latency. Another solution for high speed

is shown in (Eric M. Schwarz, “Binary floating-point unit design: the fused multiply-

add dataflow”). These signals are also used for normalization.

Radix-4 booth coding will be used to produce 13 partial products, which will be

compressed by a Wallace consisted of 5 levels of CSAs. Booth encoding starts from

Mant_b_DI[1:-1]. Thus the last partial product is always positive. Adding a hot one can

be implemented in next partial products. Therefore, 13 partial products will be

generated. pp_generation is used to instance booth encoders and booth selector.

Wallace tree is used to compress 13 partial products into 2. The produced 2 results

will be further compressed with Mant_al_D using CSA. Due to using the sign extension

in (Eric M. Schwarz, “Binary floating-point unit design: the fused multiply-add

dataflow”), all the carry outs of wallace and CSA should be taken into account.

fmac_preprocess

Operand_a_DI Operand_b_DI Operand_c_DI

Exp_a_D

Mant_a_DSign_a_D

Exp_b_D

Mant_b_DSign_b_D

Exp_c_D

Mant_c_DSign_c_D *_S

Booth encoder

Booth selector

Wallace Tree

CSA

EACA

fpu_norm

Result_DO

LZA

Aligner

Exp_b_D Exp_c_D

Incrementer

Mant_al_D

Mant_ah_D

*_SO

 Adders

 pp_generation

Fig.1 The architecture for FMAC

Aligner is used to implement the alignment. The alignment scheme in (Gongqiong Li,

Zhaolin Li, “Design of a fully pipelined single-precision multiply-add-fused unit,”IEEE

VLSID’07,2007) is employed. Most of detailed implementation can be based on

(Gongqiong Li, Zhaolin Li, “Design of a fully pipelined single-precision multiply-add-

fused unit,”IEEE VLSID’07,2007) , except normalization, since (Gongqiong Li,

Zhaolin Li, “Design of a fully pipelined single-precision multiply-add-fused unit,”IEEE

VLSID’07,2007) does not support denormal numbers.

The difference

 d = Exp_a_D − Exp_b_D − Exp_c_D + Cbias (1)

 The right shift amount for alignment is

 mv = 27 − d (2)

.

The exponent after alignment can be given for two cases:

(1) If mv is negative, the result exponent is Exp_a_DI with the result mantissa of

Mant_a_DI;

(2) Others: the result exponent is Exp_b_D + Exp_c_D − Cbias + 27.

If Sign_a_D ⊕ (Sign_b_D ⊕ Sign_c_D), there will be a substraction. The scheme in

(Gongqiong Li, Zhaolin Li, “Design of a fully pipelined single-precision multiply-add-

fused unit,”IEEE VLSID’07,2007) is employed to address this issue.

According to the shift amount, Mant_a_D is divided into two parts: Mant_ah_D and

Mant_al_D . Mant_ah_D is inputted into an incrementer. Mant_al_D is taken as

another inputs of the final CSA. The carry-out of EACA is used to choose the right

result for Mant_ah_D . The corresponding theory is shown in (Eric M. Schwarz,

“Binary floating-point unit design: the fused multiply-add dataflow,”).

Adders is used to implement the functions of EACA and deal with Mant_ah_D to

produce a positive result, as well as offering the inputs of LZA. Two channels are needed

to implement EACA to produce a positive result. The inputs of either channel can be

taken as the inputs of LZA.

LZA is used to finish the leading one detection. The method in (M. Schmookler, K. J.

Nowka, “Leading Zero anticipation and detection—A comparison of method,”

IEEE,2001) is used for high speed. One LZD is introduced to produce the index. Since

LZA cannot predict an exact position and two channels are used for normalization for

this part.

4. Normalization

(1) d ≥ 27 , there is no overlap for Operand_a_DI and Operand_b_DI ∗

Operand_c_DI.

 Return Operand_a_DI and set the value for rounding based on Operand_b_DI ∗

Operand_c_DI.

(2) d ≤ −48 , there is no overlap for Operand_a_DI and Operand_b_DI +

Operand_c_DI.

Return Operand_b_DI ∗ Operand_c_DI and set the value for rounding based

on Operand_a_DI.

(3) −48 < d < 27 ,There is overlap for Operand_a_DI and Operand_b_DI ∗

Operand_c_DI.

The exponent after normalization can be given as:

Exp_norm_D = Exp_prenorm_D + 27 − LZ

Where LZ is the leading zero detection for the 74-bit mantissa.

 Mant_norm_D = Right shift(27 − LZ) Mant_prenorm_D

If Exp_norm_D > 255, OF is signaled and return E=255,M=0;

If Exp_norm_D = 255 and M≠0, NaN is signaled and return qNaN;

 If Exp_norm_D == 1 and Mant_norm_D[CMANT − 1] == 0 , the result is a

denormal number, return Exp_norm_D == 0 and Mant_norm_D;

If 1 =< Exp_norm_D <= 254 and Mant_norm_D[CMANT − 1] == 1 , it is a

normal result, return Exp_norm_D and Mant_norm_D;

If Exp_norm_D == 0 and M≠0, it is a denormal number, return >> (M) and the

adjusted E;

 (4)Special cases

Table 4 Special cases for FMAC

FMAC operation return

1 NaN +b*c qNaN

2 a+NaN*c qNaN

3 a+b*NaN qNaN

4 Inf+ b*c Inf

5 a+Inf*c Inf

6 a+ b*Inf Inf

7 DeN+DeN*c DeN

8 DeN+DeN*DeN DeN

*qNaN=0x7fc00000

(5) The above analysis is based on the conventional method. For high speed purpose,

LZA based on the inputs of EACA can be used. The method in (M. Schmookler, K. J.

Nowka, “Leading Zero anticipation and detection—A comparison of method,”

IEEE,2001) can be used.

5. Rounding

The design supports four different rounding modes: RNE(Round to Nearest, ties to

Even, 00), RTZ(Round towards Zero, encoding as 01),RDN(Round Down, encoding as

10),RUP(Round Up, encoding as 11).

 Table 5 Rounding modes

Mode Code

RNE 00

RTZ 01

RDN 10

RUP 11

6. Exceptions

The design supports two exceptions namely overflow(OF), underflow(UF).

 Exp_OF_SO is signaled if the exact result has an exponent that cannot be represented

in the format. Returns infinity (positive or negative) as result.

 Exp_UF_SO is signaled when the result is denormal and rounded.

7. Waveforms

 The waveforms are based on fmac. Fmac.sv has been tested on the pulpino using

benchmark programs.

 Fig.2 The waveform for the first 9 test cases (normal cases)

Fig.3 The waveform for the last test cases (including normal cases and special cases)

8. Synthesized results

UMC65nm process technology was used for synthesis.

Operating Conditions: uk65lscllmvbbl_108c125_wc

Library: uk65lscllmvbbl_108c125_wc

Input_delay:0.5ns

Output_delay:0.5ns

Fig.4 The synthesized results

