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Abstract

The new semiconductor technologies are characterised by an higher and higher
frequency. So, testing delay faults of a circuit is becoming increasingly important.
These types of faults affect the timing behaviour of the circuit and they can be
divided in Transition Delay Faults (TDFs) and Path Delay Faults (PDFs). In this
study the transition delay model is used because TDFs are much better supported
by both standards and EDA tools than PDFs. The selected method for testing
the delay faults is the functional test in the form of the Software-Based Self-Test
(SBST). The main problem of this approach is that implementing an efficient test
program could be not trivial for the engineer. So, this study aims to help the testing
engineer to develop in a better way a test program increasing the observability of
the injected faults, exploiting Modelsim and its functionalities because of the deep
internal access the tool has on the DUT.
A flow is created and validated on a simple circuit, and then applied to the pulpino
processor. The flow works on the pulpino environment compiling the self-test
code and comparing the results generated by the golden simulation with the ones
generated by each fault simulation corresponding to each signal of the fault list. If
the results of the two simulations are not equal it means that the injected fault
affects the behaviour of the processor, so the selected fault is observable.
The experiments show the difference between golden and faulty simulation in terms
of time simulation, clock cycle of each instructions, type of instruction, address or
content of the involved registers, etc. Therefore, the test engineer could exploit
these results to understand how to improve the test program. The obtained results
are compatible to the ones obtained using specific tools for testing, as Z01X and
Tetramax.
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Chapter 1

Introduction

The new advanced semiconductor technologies adopted in emerging applications
are characterised by an increasing frequency and computational capabilities. Such
technologies are extremely complex and sophisticated, leading to more frequent
physical defects and a reduced operative lifetime [1].
So, testing the integrated circuits became more difficult. Most of the tested defects
are modeled as delay faults because of the high frequency reached. These kinds
of faults usually affect the timing behaviour of the circuit and they are divided in
two categories: Path Delay Faults (PDFs) and Transition Delay Faults (TDFs).
In these studies the second one will be considered. In order to test these kinds of
faults two approaches could be used:

• Design-for-Testability (DFT) in which additional hardware modules are added
to the Device Under Test (DUT). Some examples can be Logic BIST or
scan chains. The problems of these solutions are that an overhead in terms
of performance or timing can be introduced and the overtesting could be
generated because some functionally untestable faults could be tested.

• Functional testing, in the form of Software-Based Self-Test (SBST). It is
based on the execution of a test program containing a set of Self-Test Libraries
(STLs) by the DUT. The results produced by the test program are then
compacted into a signature that is compared against the golden circuit’s one
to look for the presence of structural faults [1].
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Introduction

This method is cheaper and more suitable than DFT and it is usually performed
as in-field testing, when the device’s safety has to be guaranteed throughout
the operative lifetime.

In this research the selected method for testing delay faults is the functional test
in the form of the SBST. Its issue is that developing an effective test program
could be not trivial for the testing engineer. In fact, the implemented program
should be able to reach an high Fault Coverage (FC) forcing as much as possible
the propagation of faults to the Primary outputs (POs).
So, the idea to mitigate this problem is to provide to the test engineer an automatic
way to get more information on the behaviour of the DUT (pulpino processor as
case study) for each specific fault injection (FI) performed. This is done improving
the observability of the faults through a generic and systematic flow [1]. Obviously,
the main objective is to get more information on the not detected faults trying to
understand why these faults are not propagated to the POs.
Modelsim [2] tool is exploited to build the flow, thanks to its better internal
accessibility in terms of modules and signals inside the DUT compared to other
tools as Z01X [3] or Tetramax[4].
The development of the test flow just mentioned is the main purpose of this research
and it will be described in detail in the rest of the manuscript.
This manuscript is composed of 6 sections, including the introduction (chapter
1). The other sections are: Chapter 2 in which the main topics of this study in
particular on the TDFs are summarised, chapter 3 in which a deep explanation of
how the flow and its environment from the point of view of the user is provided,
chapter 4 in which all the basic steps to build the final flow are described, chapter
5 in which all the experiments are reported and analyzed in detail and chapter 6 in
which the conclusions of the work and the obtained results are analyzed and the
possible improvements that can be performed on the flow are made.
Anyway, it is important to distinguish the chapter 3 to the chapter 4 that could
seem similar at the first impact. The chapter 3 aims to describe the created flow
from the point of view of the user but not from a point of view of the designer.
So, it does not describe in detail how the environment has been built while in the
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chapter 4 a deep analysis of the environment and its step by step development are
described.
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Chapter 2

Basics and backgrounds

In the new semiconductor technologies the operating frequency gets higher and
higher and the process variations affects increasingly these new technologies (Process
variation happens when processes fail to follow a precise pattern) [5]. Hence, defects
affecting the timing characteristics are more common and detecting these defects
requires performing the test at speed . In fact, increasing the maximum delay of
a combinational block in a sequential circuit may cause sampling wrong values,
for example, in some memory elements [6]. This issue depends on the clock value
that is set by the designer to a value conform to the length of the critical path
(CP). The delay faults can affect the CP causing, thus, a wrong sampling on some
signals of the processor. The delay faults are divided in two main models: Path
Delay Faults (PDFs) and Transition Delay Faults (TDFs).
In these studies, as just said in the introduction, the behaviour of the pulpino
processor when transition delay faults (TDFs) are injected during the simulation,
using Modelsim [2], is analyzed. So, this chapter aims to describe TDFs and their
properties. Moreover, the transition delay fault model is chosen over the path delay
one because TDFs are much better supported by both standards and Electronic
Design Automation (EDA) [7] tools than PDFs [1].
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2.1 Transition delay faults

Transition delay fault model is a special case of delay faults and it is one of the
most widely used delay model in the common applications. Its concept is based
on modelling the defect as a delay of a gate to pass from the value 0 to the value
1, that is called slow-to-rise (STR) or viceversa, slow-to-fall (STF). The number
of faults in a circuit can be summarized by the formula 2(n + i) where m is the
number of gates and i is the number of inputs [6]. In order to detect a TDF pairs
of test vectors are needed, to generate a specific transition (e.g. 0010 - 0000 that
is clearly a STF), and then propagate them on the output signals to observe a
possible different behaviour on the circuit.
An example of transition delay fault behaviour on a simple circuit is shown in
Figure 2.1.

Figure 2.1: Example of transition model [1]

As can be seen, in this case, the used vector pair is 11 - 01. So, a STF is injected
on the input A and if it is faulty the output C or D can detect the transition. The
transition fault should be detected by the path that has D as output because it is
the CP.
In the FI flow explained in the next chapter the fault is injected in this way: each
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transition of the analyzed signal is delayed of a quantity equal to Tclk + 10%Tclk.
In this case, the clock period is 40 ns, so the adopted delay during the fault injection
(FI) flow is 44 ns.
An important thing to consider that will be a problem during the development
of the environment for the application of the flow is the fan-out. An example is
shown in Figure 2.2.

Figure 2.2: circuit with fan-out

It is important remembering that Faults on a fanout stem are not equivalent to
faults on the corresponding fan-out branches [8]. These are the basic theoretical
backgrounds related to this topic needed to understand this manuscript. Obviously,
other technical basics are necessary to exploit and can understand the flow and its
environment as, for example, Verilog, SistemVerilog and some scripting languages.
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Chapter 3

User Manual of the
environment

This chapter aims at better explaining how the pulpino environment works and
in deeply analyzing the files and folders inside it. This environment exploits the
implemented flow shown in Figure 3.1.

Figure 3.1: Fault injection flow
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3.1 Flow description

The purpose of this flow is to understand if a difference exists between the golden
simulation and the faulty simulation, for each fault injection (FI) performed,
helping the user or, specifically, a testing engineer in his work. An assembly code is
used to test the processor thanks to a given testbench. So, thanks to this sequence
of operations, a given fault can be observed or not.
The golden simulation is represented by the upper branch of Figure 3.1 and it
simply tests the processor without any injections thanks to the assembly code while
the faulty simulation is represented by the bottom branch. The latter is, basically,
a loop in which the FI execution is performed for each fault in the fault list. At
the end of the two branches, for each cycle, the output file of the golden simulation
and the one related to the faulty simulation are compared.
These two files are the output of the tracer processor.
Trace is a hardware debug feature that allows the run-time behavior of IP to be
monitored [9]. In simple words, it writes on the output file the original assembly
code from the signals of the processor in order to verify, comparing the source
assembly code and the output file of the tracer, the correctness of the processor’s
behaviour.
In this case, if the golden output and the faulty output are different it means that
the processor is affected by a fault.

3.2 Environment structure

The internal structure of the following environment is shown in Figure 3.2.
The most important files and folders are:

• asic: a folder in which there are three main files to this purpose. They are:

- synopsys/out/final_riscv_core.v: it is the Verilog netlist that de-
scribes the processor at gate level. It has been modified in order to
integrate the tracer above only set inside the RTL level processor (use-
fulness and integration of the tracer will be better explained in the next
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Figure 3.2: internal structure of the pulpino environment

chapter).

– techlib/NangateOpenCellLibrary.v, the version used in the flow, and
the original version techlib/NangateOpenCellLibrary_old.v: they are
both technology libraries including all the primary logic gates; the only
difference between them is that the first one fixes the fan-out problem
while the second one not (this last concept will be better explained in the
next chapter).

• clean_all.sh: a Bash script used to clean the environment from all the build
files of compilations and simulations.

• compile_pulpino.sh: a Bash script used to compile all the Verilog and
systemverilog files necessary in order to build the pulpino processor.

• compile_selftest.sh: a Bash script used to compile the assembly code to
load into the processor.

9
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• fault_analysis.sh: a Bash script that represents the flow conceptually
described by the Figure 3.1.

• files: a folder in which three Text files are included. The most important one
is all_signals.txt, because it contains all the faults to analyze, basically
the fault list. In particular the type of the transition fault (STF or STR)
and the name of the signal are specified in each row. The other two files are
support files used by a Python script.

• ips and RTL: two folders which are composed by all the SystemVerilog files
involved in the structural processor.

• py_files: a folder in which four Python script files have to be deeper analyzed.
They are:

- modificaFile_original_library.py: Its task is to modify the script
run.tcl, in the path vsim/tcl_files/, in order to perform a correct
fault injection (FI) on original library (old one) for each transition delay
fault. It is invoked for each fault, as said before, in the master script
(fault_analysis.sh) with four parameters: name of the FI program to be
modified, name of the new FI program, type of transition fault, the name
of the signal to test.

- mod_library.py: it modifies the tech library in order to fix the fan-out
problem. In this environment it has been just invoked once, so the library
now is completed. In the case in which the tech library is changed, this
script has to be run calling the new library, in asic/techlib/ path,
NangateOpenCellLibrary_old.v and checking if the script is compatible
with the library. The idea of fixing the fan-out problem will be explained
in the next chapter.

- modificaFile_modified_library.py: it has the same function of modi-
ficaFile_original_library.py with the same parameters, but adapted and
applied to the modified library.

– comment.py: This script allows to comment or not the FI script on run.tcl.
The parameters are the name of the FI program to be modified, the name
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of the new FI program and y/n that specify if the FI has to be commented
or not. It is used at the start of fault_analysis.sh script to obtain the
golden response at the first simulation and all the faulty responses at the
subsequent simulations.

– post_processing.py: It is a script that aims to recap the results obtain
in the reports folder, analyzing if the faults are observed and their typology.
Moreover, It provides some useful statistics. Only one parameter is passed
to this script and it is the path related to the folder inside reports (e.g.
python py_files/post_processing.py ../reports/tracer_start_code/) that
has to be analyzed.

• run_selftest_sim_gui.sh: this script handles the simulation that is per-
formed by Modelsim [2] with graphical interface.

• run_selftest_sim_nogui.sh: this script handles the simulation that is per-
formed by Modelsim [2] without graphical interface.

• sw: two folders are really important here. They are:

- apps/riscv_tests/polito in which the main assembly files are located.
In particular tests/simple.S is very important because changing it we
can test in different ways the processor.

- build/apps/riscv_tests/polito in which all the simulation files are
generated. In particular trace_core_00_0_gold.log, that is generated
during the golden simulation (without FI), and trace_core_00_0.log, that
is generated every time a new FI is performed on one of the faults within
the fault list, are mainly important. They are both generated thanks to
the tracer put inside the netlist.

• tb: The testbench files are included in this folder. The master one is tb.sv

in which the processor is instantiated.

• vsim: It is composed of two folders that are:
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- tcl_files: it contains the simulation scripts written in tcl. The most
important ones are run.tcl and config/vsim.tcl. The former chooses
the waveforms, applies the FI and set some parameters while the latter is
called by run.tcl and it’s important because here the most appropriate
simulation parameters can be set by the user (e.g. the level of the
optimization).

- vcompile: it contains the compilation scripts.

Outside the environment there also are three more important elements to be
considered:

• reports that is a folder in which all the results of the fault simulations are
stored. They are the results got by the diff bash command between golden
output file and faulty output file of the simulation of the processor.

• create_speed_environment.sh that is a Bash script whose task is to replicate
the original environment for n◦ times (this number can be modified) in order
to speed up the fault simulation exploiting it.

• fault_analysis_speed.sh that is the master script and it simply runs the
environment created by create_speed_environment.sh.

3.3 How the environment works and how to use
it

In order to fully understand how to use this environment and how it works, it is
crucial to follow some essential points taken step by step. They are explained in
the next subsections.

3.3.1 Importing the environment into a new computer file
system and making it workable

When the environment is extracted from .zip, several steps have to be performed
in order to make it working.

12
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First of all, it is essential to ensure that the specific toolchain, the one related to
the testing processor in order to be able to perform the compilation, is installed
and its path is correctly exported. However, it could be really useful the command
"which COMPILER_NAME" to check if the file exists; If all is correctly set the
compilation of the SystemVerilog files should run without errors.
The next step is the compilation of the assembly test program. Before running
compile_selftest.sh it is important to modify the file sw/ref/link.riscv.ld

including the correct path, otherwise the error shown in Figure 3.3 will appear
during the compilation.

Figure 3.3: error during the selftest compilation

Additionally, before running the simulation, it is extremely important that no
optimization is performed in the design. In order to ensure that, modifying, adding
or removing some parameters inside the file vsim/tcl_files/config/vsim.tcl

could be necessary. At this point the simulation can be performed and it should
work well. These ones are the basic steps that should fix all the problems in order
to exploit the environment, but it is important to know that other errors may occur
caused by e.g. a different version of Modelsim or Python, etc...

3.3.2 Running the flow

Before running the flow, creating report (outside pulpino) and tracer_analysis

(inside report) folders are essential, considering that the path used in the master
script for storing the results is reports/tracer_analysis. Instead, once the all
flow is completed a new tracer_analysis folder has to be created while the one
just used has to be modified. This last step is obligatory between two different
executions of the flow.
The master script that runs the flow, in Figure 3.1, is fault_analysis.sh (Bash
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script) and its code is the one shown in Listing 3.1:

Listing 3.1: Master script describing the flow
1 . / c l e an_a l l . sh
2 . / compile_pulpino . sh
3 . / c o m p i l e _ s e l f t e s t . sh
4

5 #golden s imu la t i on
6

7 echo " Golden s imu la t i on a n a l y s i s "
8 python . / p y_ f i l e s /comment . py . / vsim/ t c l _ f i l e s /run . t c l . / vsim/

t c l _ f i l e s / trashed . t c l y
9 . / run_sel ftest_sim_nogui . sh

10 mv . / sw/ bu i ld /apps/ r i s c v _ t e s t s / p o l i t o / trace_core_00_0 . l og . / sw/ bu i ld /
apps/ r i s c v _ t e s t s / p o l i t o / trace_core_00_0_gold . l og

11 cp . / sw/ bu i ld /apps/ r i s c v _ t e s t s / p o l i t o / trace_core_00_0_gold . l og . . /
r e p o r t s / t r a c e r _ a n a l y s i s /

12 python . / p y_ f i l e s /comment . py . / vsim/ t c l _ f i l e s /run . t c l . / vsim/
t c l _ f i l e s / trashed . t c l n

13

14 #Fault s imu la t i on s
15 whi le IFS= read −r l i n e ; do
16 python . / p y _f i l e s / mod i f i caF i l e_mod i f i ed_l ib ra ry . py . / vsim/

t c l _ f i l e s /run . t c l . / vsim/ t c l _ f i l e s / trashed . t c l $ l i n e ;
17 rm . / vsim/ t c l _ f i l e s / t rashed . t c l ;
18 var=$ ( cat f i l e s / s i g n a l . txt )
19 i f t e s t −f " . . / r e p o r t s / t r a c e r _ a n a l y s i s / $var " ; then
20 echo " $var e x i s t "
21 e l s e
22 echo " $var a n a l y s i s "
23 . / run_sel ftest_sim_nogui . sh ;
24 d i f f . / sw/ bu i ld /apps/ r i s c v _ t e s t s / p o l i t o / trace_core_00_0_gold .

l og . / sw/ bu i ld /apps/ r i s c v _ t e s t s / p o l i t o / trace_core_00_0 . l og >> . . /
r e p o r t s / t r a c e r _ a n a l y s i s /${ var }

25 f i
26 done < ./ f i l e s / a l l _ s i g n a l s . txt

This code can be differentiated in three main parts:
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• The first part aims to clean all the files of the previous fault simulation (It is
done in order to speed-up the simulation, it will be better explained later in
this chapter) and to run again the compilation scripts. This work is performed
by clean_all.sh, compile_pulpino.sh and compile_selftest.sh.

• As we can see in Figure 3.1, it is really important to compare the golden
simulation with all the faulty simulations for this purpose. The second part
of the code aims to generate the golden output file to be compared with the
faulty output file for each signal inside the fault list (the output files are
generated by the tracer as just said).
In order to generate it, comment.py script is really significant because it
allows to comment(y option) or not(n option) the FI part of the simulation
script(run.tcl). In this case, the FI part is commented and a simulation
is run. Once the simulation ends and the output file is gotten, thanks to
tracer, the FI part can be written again in run.tcl . To be noted that the
file trace_core_00_0_gold.log is copied into the report folder, outside the
pulpino environment.

• The last part of the code has the purpose to perform all faulty simulations in
order to obtain the outputs to compare with golden simulation.
The fault list (all_signals.txt) is read line by line, where the line is com-
posed by the signal to analyze and the kind of transition fault. So, the subse-
quent python script (modificaFile_modified_library.py) is called in order
to modify the FI script, by replacing the old code with the new one related to
the current signal of the line. During the execution of the flow an expected
or an unexpected interruption could happen. In this situation, some faulty
simulations have already been performed while other not. In order to avoid to
reanalyze the same faults just simulated, a check is performed in the code by
storing, cycle by cycle, the current output file to be generated in a variable
var (STF_RISCV_CORE_ex_stage_i_alu_i_int_div_div_i_U457_B1.txt
is an example of output report). If the output file of this fault exists in the
report folder the simulation is skipped otherwise it is done and the comparison
between golden and faulty report is performed.
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After that the cycle ends and starts again. The loop goes on until the all fault
list is completely analyzed. The most important thing the user can exploit
in this script is the file representing the fault list (files/all_signals.txt).
Thanks to it, different set of faults can be analyzed simply modifying the fault
list file.
At the end of the flow execution, the post_processing.py can be run, with
its parameter (e.g. ../reports/tracer_start_code/), in order to summary all
the information of the reports in a single file called post_processing.csv

inside the folder reports/*folder to analyze*/.

3.3.3 Interpretation of reports

Inside reports, different folders obtained by several flow executions are located.
Inside these files there are all the text files related at each fault in the fault list.
An example is STF_RISCV_CORE_ex_stage_i_alu_i_alu_ff_i_U38_A where
STF is the type of the transition fault while the rest of the file specifies the fault
analyzed. These files derive from the diff command between the golden output,
generated by the tracer during the golden simulation, and the faulty output,
generated by the tracer during the faulty simulations. Let’s analyze the structure of
the output tracer shown in Listing 3.2, taking a look at a little part of its content,
and then let’s analyze the output of the diff command shown in Listing 3.3:

Listing 3.2: trace_core_00_0_gold.txt generated during the golden simulation
1 Time Cycles PC I n s t r Mnemonic
2

3 19520000 471 000068 f4 00008713 addi
x14 , x1 , 0 x14=00000000 x1 :00000000

4 19560000 472 000068 f8 00008793 addi
x15 , x1 , 0 x15=00000000 x1 :00000000

5 19600000 473 000068 f c 00008813 addi
x16 , x1 , 0 x16=00000000 x1 :00000000

6 19640000 474 00006900 00008893 addi
x17 , x1 , 0 x17=00000000 x1 :00000000

7 19680000 475 00006904 00008913 addi
x18 , x1 , 0 x18=00000000 x1 :00000000
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8 20000000 483 00006924 00008 d13 addi
x26 , x1 , 0 x26=00000000 x1 :00000000

9 20040000 484 00006928 00008 d93 addi
x27 , x1 , 0 x27=00000000 x1 :00000000

10 20080000 485 0000692 c 00008 e13 addi
x28 , x1 , 0 x28=00000000 x1 :00000000

11 20120000 486 00006930 00008 e93 addi
x29 , x1 , 0 x29=00000000 x1 :00000000

12 20160000 487 00006934 00008 f13 addi
x30 , x1 , 0 x30=00000000 x1 :00000000

13 20200000 488 00006938 00008 f93 addi
x31 , x1 , 0 x31=00000000 x1 :00000000

14 20240000 489 0000693 c 00101117 auipc
x2 , 0x101000 x2=0010793c

15 20280000 490 00006940 6 c410113 addi
x2 , x2 , 1732 x2=00108000 x2 :0010793 c

As we can see, the different columns are: Time, Cycles, PC, Instr, Mnemonic. Then
the assembly instruction and the registers contents are specified.

Listing 3.3: example of a report file generated by diff
1 2237 c2237
2 < 294440000 7344 00001698 10098 fb3 p . f f 1

x31 , x19 x31=00000005 x19 : 1 a8fbb20
3 −−−
4 > 294440000 7344 00001698 10098 fb3 p . f f 1

x31 , x19 x31=00000004 x19 : 1 a8fbb20

The row indicated by < is the one related the output golden tracer while >
represents the faulty one. Obviously if these lines are written inside the report file
it means that there is some difference between faulty and golden simulations for
the targeted signal.
The last file to evaluate is post.processing.csv and an example of its content is
reported in Listing 3.4:

Listing 3.4: an extraction of post_processing report
1 FAULT,OBSERVED,TYPE
2 .
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3 .
4 .
5 STR_RISCV_CORE_ex_stage_i_alu_i_U1709_A1 , yes , data r e g i s t e r e r r o r
6 STF_RISCV_CORE_ex_stage_i_alu_i_U1835_A1 , yes , data r e g i s t e r e r r o r
7 STF_RISCV_CORE_ex_stage_i_alu_i_int_div_div_i_U333_ZN , yes , data

r e g i s t e r e r r o r
8 STR_RISCV_CORE_ex_stage_i_alu_i_int_div_div_i_U335_B1 , no , none
9 STR_RISCV_CORE_ex_stage_i_alu_i_int_div_div_i_U339_B , no , none

10 STF_RISCV_CORE_ex_stage_i_alu_i_int_div_div_i_U338_B1 , no , none
11 .
12 .
13 .
14 TOT N FAULTS,N FAULTS OBSERVED,% OBSERVED
15 696 ,93 ,13 .36

The first part of this file is related to report some information fault by fault while
the last part provides some statistics.

3.3.4 How to speed-up the execution time of the master
script

The problem of the master script is that it could take a long time if the fault list is
too big. For example, in our case the fault list has more or less 700 signals and the
execution flow takes almost 3 days. In order to fix this problem, two scripts have
to be used in sequence:

1. create_speed_env.sh in which, first of all, the fault list is split in ten smaller
files with the same number of faults between them with the only exception of
the last file that could have less faults. This number (n) has to be modified
by the user if the fault list changed. Considering t = total number of faults
in the fault list and n = total number of faults in the smaller fault list, the
calculation of n is

⌈n = t

10⌉

For example, in our case t = 696 so n = 70. The code of create_speed_env.sh

is shown in Listing 3.5:
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Listing 3.5: script for creating the speed environment
1 mkdir a l l _ s i g n a l s _ d i v i s i o n
2 s p l i t − l 70 . / pulp ino / f i l e s / a l l _ s i g n a l s . txt a l l _ s i g n a l s _ d i v i s i o n /

a l l _ s i g n a l s
3

4 f o r i in { 0 . . 9 }
5 do
6 [ −e . pulp ino$ { i } ] && rm −r f . pulp ino$ { i }
7 cp −r pulp ino . pulp ino$ { i }
8 done
9

10 mv a l l _ s i g n a l s _ d i v i s i o n / a l l _ s i g n a l s a a . pulp ino0 / f i l e s / a l l _ s i g n a l s
. txt

11 mv a l l _ s i g n a l s _ d i v i s i o n / a l l _ s i g n a l s a b . pulp ino1 / f i l e s / a l l _ s i g n a l s
. txt

12 mv a l l _ s i g n a l s _ d i v i s i o n / a l l _ s i g n a l s a c . pulp ino2 / f i l e s / a l l _ s i g n a l s
. txt

13 mv a l l _ s i g n a l s _ d i v i s i o n / a l l _ s i g n a l s a d . pulp ino3 / f i l e s / a l l _ s i g n a l s
. txt

14 mv a l l _ s i g n a l s _ d i v i s i o n / a l l _ s i g n a l s a e . pulp ino4 / f i l e s / a l l _ s i g n a l s
. txt

15 mv a l l _ s i g n a l s _ d i v i s i o n / a l l _ s i g n a l s a f . pulp ino5 / f i l e s / a l l _ s i g n a l s
. txt

16 mv a l l _ s i g n a l s _ d i v i s i o n / a l l _ s i g n a l s a g . pulp ino6 / f i l e s / a l l _ s i g n a l s
. txt

17 mv a l l _ s i g n a l s _ d i v i s i o n / a l l _ s i g n a l s a h . pulp ino7 / f i l e s / a l l _ s i g n a l s
. txt

18 mv a l l _ s i g n a l s _ d i v i s i o n / a l l _ s i g n a l s a i . pulp ino8 / f i l e s / a l l _ s i g n a l s
. txt

19 mv a l l _ s i g n a l s _ d i v i s i o n / a l l _ s i g n a l s a j . pulp ino9 / f i l e s / a l l _ s i g n a l s
. txt

20

21 rm −r a l l _ s i g n a l s _ d i v i s i o n

Thus, the number 70 in second row has to be modified with what is gotten by
the previous formula if a new fault list has been created.
The second part of the code aims to create 10 temporary environments that
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will exploit the 10 smaller fault lists just created.

2. fault_analysis_speed.sh. Its code is shown in Listing 3.6:

Listing 3.6: script for running the speed environment
1 f o r i in { 0 . . 9 }
2 do
3 cd . pulp ino$ { i }
4 . / f a u l t _ a n a l y s i s . sh &> std_out . txt &
5 s l e e p 7m
6 cd . .
7 done

In our example (t = 696) the obtained execution time is around 12 hours. If a
faster execution time is needed some further modifications have to be performed.
If we consider a new parameter c = number of copies of the environment, the new
resulting n is

⌈n = t

c
⌉

and the two script must be modified in the following way:

• In the second line of create_speed_env.sh n obtained by the calculation
should replace 70.

• In the fourth line of create_speed_env.sh 9 should be replaced with c.

• In create_speed_env.sh, the line mv all_signals_division/all_signalsaX
.pulpinoN/files/all_signals.txt has to be added until this line is repeated c
times, considering that X and N are replaced in the proper way. Another idea
could be implementing a loop.

• In the first line of fault_analysis_speed.sh 9 should be replaced with c.

3.3.5 The simulation script

Another part of the flow that can be managed by the user is run.tcl. Waveforms
can be added or removed, several parameters can be set, the FI injection script
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can be modified with the subsequent adjustment in the python scripts involved in
FI, etc...but one of the most important things for the proper functioning of the
flow is to take care of this part of the code of run.tcl shown in Listing 3.7:

Listing 3.7: make sure simulation stops in case of infinite loops
1 when − fast {$now = @1 ms} {
2 qu i t −f
3 }

The number "1 ms" is necessary in order to prevent the infinite execution in case of
loop simulation and it has to be greater than the effective execution time. So, if
the execution time is equal to 2 ms the number to insert in the code, instead of 1
ms, should be > 2 ms.

3.4 Conclusion

The purpose of this flow is that the user, usually a testing engineer, could have
more details on the faults and an help in writing the code. For example, it can be
noticed a difference in a specific bit for a line code between the golden and a faulty
simulation or more instruction in a specific part of the code respect that what we
expected and so on... However, this flow can be further improved generating more
statistics based on the reports.
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Chapter 4

Chronological steps to build
the environment

At the beginning of this thesis study a simple pulpino processor environment was
provided. This chapter aims at describing all the basic steps performed to get the
environment able to implement the flow illustrated in Figure 4.1. This process is
carefully described in chronological order in the following sections.

Figure 4.1: Fault injection flow
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4.1 Initial setting problems to solve

At the beginning of a deeply analysis of the environment, during first compilations
and simulations, some problems raised:

1. The toolchain of the compiler was not initially installed, so some errors stopped
the process. The solution was simply to download and install it exporting its
correct path.

2. In order to perform a correct compilation and simulation, other little modifi-
cations, related to some paths not correctly set, had to be done like writing
the correct path inside sw/ref/link.riscv.ld as just described in the user
manual chapter.

3. The initial folder was set to compile and simulate the RTL processor and
not the gate level one. The problem was that the test process should analyze
the gate level processor like in the tool used before Z01X [3], so by trying to
inject faults on the signals related to the netlist with all the logic functions
created after the synthesis. The solution was simply to modify the compiler
script in order to compile the correct Verilog files.

At this point, the environment was ready to be modified in order to provide an
helpful instrument to the testing engineer.

4.2 The tracer: comparison mechanism of the
flow

After all parameters, scripts, etc... of the environment were set in the correct way,
the problem to fix was finding a way to compare the faulty simulation with the
golden one. The general idea was comparing two output simulation files somehow
generated.
In reality, in the initial version of the environment, there was already a way to
generate an output file from the simulation: the tracer, a module able to map the
execution time to the instructions currently executed by the processor core [1]. So,
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it is a module that can reconstruct the original assembly code from the signals
of the processor and It can be used to generate the assembly code of the golden
simulation and to compare it with each assembly code generated by the faulty
simulations. In order to exploit it, two main problems should be fixed:

1. The tracer was included in the RISCV_core structural but not in the
RISCV_core gate. Its instantiation in the structural processor is shown in
Listing 4.1.

Listing 4.1: instantiation of the tracer in the structural processor
1 ‘ i f n d e f VERILATOR
2 ‘ i f d e f TRACE_EXECUTION
3 r i s c v _ t r a c e r r i s cv_t race r_ i
4 (
5 . c l k ( c lk_i ) ,

always−running c l o ck f o r t r a c i n g
6 . rst_n ( rst_ni ) ,
7

8 . f e tch_enable ( fetch_enable_i ) ,
9 . core_id ( core_id_i ) ,

10 . c l u s t e r_ id ( c lu s t e r_ id_i ) ,
11

12 . pc ( id_stage_i . pc_id_i ) ,
13 . i n s t r ( id_stage_i . i n s t r ) ,
14 . compressed ( id_stage_i . is_compressed_i ) ,
15 . id_val id ( id_stage_i . id_valid_o ) ,
16 . i s_decoding ( id_stage_i . is_decoding_o ) ,
17 . p ipe_f lush ( id_stage_i . c o n t r o l l e r _ i . p ipe_f lush_i ) ,
18 . mret ( id_stage_i . c o n t r o l l e r _ i . mret_insn_i ) ,
19 . u re t ( id_stage_i . c o n t r o l l e r _ i . uret_insn_i ) ,
20 . e c a l l ( id_stage_i . c o n t r o l l e r _ i . e ca l l_ insn_i ) ,
21 . ebreak ( id_stage_i . c o n t r o l l e r _ i . ebrk_insn_i ) ,
22 . rs1_value ( id_stage_i . operand_a_fw_id ) ,
23 . rs2_value ( id_stage_i . operand_b_fw_id ) ,
24 . rs3_value ( id_stage_i . alu_operand_c ) ,
25 . rs2_value_vec ( id_stage_i . alu_operand_b ) ,
26

27 . rs1_is_fp ( id_stage_i . r eg f i l e_fp_a ) ,
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28 . rs2_is_fp ( id_stage_i . r eg f i l e_fp_b ) ,
29 . rs3_is_fp ( id_stage_i . r eg f i l e_ fp_c ) ,
30 . rd_is_fp ( id_stage_i . r eg f i l e_fp_d ) ,
31

32 . ex_val id ( ex_val id ) ,
33 . ex_reg_addr ( regfi le_alu_waddr_fw ) ,
34 . ex_reg_we ( regfi le_alu_we_fw ) ,
35 . ex_reg_wdata ( regfi le_alu_wdata_fw ) ,
36

37 . ex_data_addr ( data_addr_o ) ,
38 . ex_data_req ( data_req_o ) ,
39 . ex_data_gnt ( data_gnt_i ) ,
40 . ex_data_we ( data_we_o ) ,
41 . ex_data_wdata ( data_wdata_o ) ,
42

43 . wb_bypass ( ex_stage_i . branch_in_ex_i ) ,
44

45 . wb_valid ( wb_valid ) ,
46 . wb_reg_addr ( regfile_waddr_fw_wb_o ) ,
47 . wb_reg_we ( regfile_we_wb ) ,
48 . wb_reg_wdata ( reg f i l e_wdata ) ,
49

50 . imm_u_type ( id_stage_i . imm_u_type ) ,
51 . imm_uj_type ( id_stage_i . imm_uj_type ) ,
52 . imm_i_type ( id_stage_i . imm_i_type ) ,
53 . imm_iz_type ( id_stage_i . imm_iz_type [ 1 1 : 0 ] ) ,
54 . imm_z_type ( id_stage_i . imm_z_type ) ,
55 . imm_s_type ( id_stage_i . imm_s_type ) ,
56 . imm_sb_type ( id_stage_i . imm_sb_type ) ,
57 . imm_s2_type ( id_stage_i . imm_s2_type ) ,
58 . imm_s3_type ( id_stage_i . imm_s3_type ) ,
59 . imm_vs_type ( id_stage_i . imm_vs_type ) ,
60 . imm_vu_type ( id_stage_i . imm_vu_type ) ,
61 . imm_shuffle_type ( id_stage_i . imm_shuffle_type ) ,
62 . imm_clip_type ( id_stage_i . instr_rdata_i [ 1 1 : 7 ] )
63 ) ;
64 ‘ e n d i f
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2. In order to instantiate the tracer in the gate level processor, some specific
signals of the netlist (corresponding on the ones of the structural processor
connected to the tracer) should be connected to the port map of the tracer,
but finding them in the netlist was really hard because Synopsys changed the
name of a lot of signal in the new Verilog description.

4.2.1 Tracer instantiation in structural processor

In Listing 4.1 all signals connected to port map at the structural level are shown.
Different kind of signal categories can be distinguished:

• Input/Output of RISCV_core:
clk_i, rst_ni, fetch_enable_i, core_id_i, cluster_id_i, data_addr_o,
data_req_o, data_gnt_i, data_we_o, data_wdata_o;

• Signals of RISCV_core:
ex_valid, regfile_alu_waddr_fw, regfile_alu_we_fw, regfile_alu_wdata_fw,
wb_valid, regfile_waddr_fw_wb_o, regfile_we_wb, regfile_wdata;

• Input/Output of ID_stage:
id_stage_i.pc_id_i, id_stage_i.is_compressed_i, id_stage_i.id_valid_o,
id_stage_i.is_decoding_o, id_stage_i.instr_rdata_i;

• Signals of ID_stage:
id_stage_i.instr, id_stage_i.operand_a_fw_id,
id_stage_i.operand_b_fw_id, id_stage_i.alu_operand_c,
id_stage_i.alu_operand_b, id_stage_i.regfile_fp_a,
id_stage_i.regfile_fp_b, id_stage_i.regfile_fp_c, id_stage_i.regfile_fp_d
and all instructions with "id_stage_i.imm";

• Input/Output of EX_stage:
ex_stage_i.branch_in_ex_i;

• Input/Output of controller:
id_stage_i.controller_i.pipe_flush_i, id_stage_i.controller_i.mret_insn_i,
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id_stage_i.controller_i.uret_insn_i, id_stage_i.controller_i.ecall_insn_i,
id_stage_i.controller_i.ebrk_insn_i;

4.2.2 Tracer instantiation in gate level processor

As just said, the most important issue in instantiating the tracer in the gate
level processor was that the synthesizer changed some signal’ names randomly
when it created the Verilog netlist and, sometimes, it was really hard to find the
corresponding signals to connect to the port map. In order to fix this problem, the
idea was to divide the signals of port map in different categories and for each of
them, to exploit a different method to find correct signals to connect to the port
map. After doing it, the tracer was connected to the gate level processor as shown
in Listing 4.2.

Listing 4.2: instantiation of the tracer in the gate level processor
1 r i s c v _ t r a c e r r i s cv_t race r_ i
2 (
3 . c l k ( c lk_i ) , // i /o !

always−running c l o ck f o r t r a c i n g
4 . rst_n ( rst_ni ) , // i /o !
5

6 . f e tch_enable ( fetch_enable_i ) , // i /o !
7 . core_id ( core_id_i ) , // i /o !
8 . c l u s t e r_ id ( c lu s t e r_ id_i ) , // i /o !
9

10 . pc ( pc_tracer ) ,
11 . i n s t r ( i n s t r ) ,
12 . compressed ( is_compressed_id ) ,
13 . id_val id ( id_val id ) ,
14 . i s_decoding ( is_decoding ) ,
15 . p ipe_f lush ( id_stage_i_pipe_flush_dec ) ,
16 . mret ( id_stage_i_mret_insn_dec ) ,
17 . u re t ( 1 ’ b0 ) ,
18 . e c a l l ( id_stage_i_ecal l_insn_dec ) ,
19 . ebreak ( id_stage_i_ebrk_insn ) ,
20 . rs1_value ( operand_a_fw_id ) ,
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21 . rs2_value ( operand_b_fw_id ) ,
22 . rs3_value ( alu_operand_c ) ,
23 . rs2_value_vec ( alu_operand_b ) ,
24

25 . rs1_is_fp ( 1 ’ b0 ) ,
26 . rs2_is_fp ( 1 ’ b0 ) ,
27 . rs3_is_fp ( 1 ’ b0 ) ,
28 . rd_is_fp ( 1 ’ b0 ) ,
29

30 . ex_val id ( id_stage_i_ex_valid_i ) ,
31 . ex_reg_addr ( {1 ’ b0 , regf i le_alu_waddr_ex } ) , //

regfi le_alu_waddr_ex è d i 5 b i t e l ’MSB è sempre 0 , r e g f i l e porta
b

32 . ex_reg_we ( regf i le_alu_we_ex ) ,
33 . ex_reg_wdata ( regfi le_alu_wdata_fw ) ,
34

35 . ex_data_addr ( data_addr_o ) , // i /o !
36 . ex_data_req ( data_req_o ) , // i /o !
37 . ex_data_gnt ( data_gnt_i ) , // i /o !
38 . ex_data_we ( data_we_o ) , // i /o !
39 . ex_data_wdata ( data_wdata_o ) , // i /o !
40

41 . wb_bypass ( branch_in_ex ) ,
42

43 . wb_valid ( id_stage_i_wb_ready_i ) ,
44 . wb_reg_addr ( {1 ’b0 , ex_stage_i_regf i le_waddr_lsu } ) , //

c e r c a r e su r e g i s t e r f i l e parta addr a
45 . wb_reg_we ( ex_stage_i_regf i le_we_lsu ) ,
46 . wb_reg_wdata ( ex_stage_i_lsu_rdata_i ) ,
47

48 . imm_u_type ( imm_u_type ) , // da
qui in po i conseguenza d i i n s t r

49 . imm_uj_type ( imm_uj_type ) ,
50 . imm_i_type ( imm_i_type ) ,
51 . imm_iz_type ( imm_iz_type [ 1 1 : 0 ] ) ,
52 . imm_z_type ( imm_z_type ) ,
53 . imm_s_type ( imm_s_type ) ,
54 . imm_sb_type ( imm_sb_type ) ,
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55 . imm_s2_type ( imm_s2_type ) ,
56 . imm_s3_type ( imm_s3_type ) ,
57 . imm_vs_type ( imm_vs_type ) ,
58 . imm_vu_type ( imm_vu_type ) ,
59 . imm_shuffle_type ( imm_shuffle_type ) ,
60 . imm_clip_type ( instr_rdata_id [ 1 1 : 7 ] )
61 ) ;

Now let’s analyze each category and their method to select the right signals
to connect to the port map (In this analysis it is explained how to derive the
corresponding signal of the processor at gate level from the one of the processor at
structural level):

• Input/Output of RISCV_core: It is the simplest case. In fact, considering
RISCV_core as a black box, they are simply inputs or outputs of the
processor. So, the synthesizer doesn’t affect the name of these signals.

• Signals of RISCV_core: for these signals it could be necessary to investigate
a little bit more. For example, there are different cases and the most important
ones are:

- ex_valid. If it is searched inside the structural_processor it can be seen
that it is connected to a port of ID_stage called ex_valid_i. So, if the
name of this port in the gate_processor is searched, the corresponding
signal can be found (id_stage_i_ex_valid_i). This algorithm is repeated
for others signals like regfile_alu_we_fw, etc...

- regfile_waddr_fw_wb_o. Same algorithm of before is used in ID_stage
but a deep research is necessary in order to find how this signal is connected
to a waddr_a_i. Sometimes synthesizer removes bits from some signals
like in this case so, it is necessary find the missing bit that could be or a
new signal or a ’0’.

- regfile_alu_wdata_fw in which the most important problem of instan-
tiating tracer inside the gate level is faced. The original signal name
connected to the port map of structural_RISC is translated in some nets
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by the synthesizer as shown in Listing 4.3. In these cases finding correct
signals to port is not easy. This action is performed by the processor a
few times, but there could be other situations in which the translation
nets is more frequent.

Listing 4.3: several nets associated to a signal
1 a s s i gn regfi le_alu_wdata_fw = { n2640 , n2941 , ! n3452 , ! n3445 , !

n3438 , n3287 , n3272 , n3265 , n2859 , ! n3403 , ! n3396 , ! n3389 , ! n3382 , !
n3373 , n3218 , n3213 , n3206 , n3199 , n2548 , n2546 , n3178 , n2540 , n2465 ,
n2535 , n2463 , n2530 , n2462 , n2525 , n2523 , n2521 , n2519 , n2517 } ;

2

• Input/Output of ID_stage: the only problem is on pc_id_i that is translated
in a composition between pc_id (31 bits) and id_stage_i_hwloop_target[0]
while the other signals are easily found.

• Signals of ID_stage: instr is a mix between instr_rdata_id and some nets.
All imm signals depend on instr signal. All fp signals are set to 0 because
floating point unit is not active.
There are some cases in which finding the corresponding signal in gate level
is not easy. One of these signals is operand_a_fw_id. In this case, the
implemented solution is deriving it in the same way it is got in the struc-
tural_RISCV as shown in Listing 4.4.

Listing 4.4: operand_a_fw_id calculation
1 always @∗
2 begin : operand_a_fw_mux
3 case ( id_stage_i_operand_a_fw_mux_sel )
4 SEL_FW_EX: operand_a_fw_id = regfi le_alu_wdata_fw ;
5 SEL_FW_WB: operand_a_fw_id = ex_stage_i_lsu_rdata_i ;
6 SEL_REGFILE: operand_a_fw_id =

id_stage_i_regf i le_data_ra_id ;
7 d e f a u l t : operand_a_fw_id =

id_stage_i_regf i le_data_ra_id ;
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8 endcase
9 end

10

This code can be considered as a black box able to generate the interested
signal providing him, as inputs, signals that can be found in a simpler way.
This concept is explained in Figure 4.2. This figure explains all the connecting

Figure 4.2: general scheme of how the tracer is connected to the RISCV_gate

process between RISCV_gate and the tracer. In fact, as we can see, some
signals are connected directly from the processor to the tracer why others,
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instead, have an intermediate block.

• Input/Output of EX_stage: the only case is ex_stage_i.branch_in_ex_i
and the corresponding signal in the netlist is branch_in_ex.

• Input/Output of controller: The name of structural processor signals and
gate processor signals are similar.

The main problem of this approach is that when something changes in the processor,
some signals or nets can changes their name or the instantiating of some components
can be redefined. In order to solve it an idea could be consider the processor as a
black box and rewrite all the signals to be connected with the tracer as input or
output.
After all signals of the port map were connected to the port map, a validation was
needed to prove the correctness of this approach. That was done comparing the
output of the tracer connected to the structural processor and the one of the tracer
connected to the gate processor. It will explained in the next chapter.

4.3 Validation of the FI flow

After creating the comparison instrument (the tracer) the flow of Figure 4.1 was
implemented. The validation of the flow was performed on a simple combinational
circuit to assure its proper functioning. This operation was realised with the help
of a slightly modified scheme as shown in Figure 4.3.

As said before, the DUT chosen for this purpose was a simple combinational
circuit shown in Figure 4.4 and the validation flow was applied on this simple
circuit. Some differences can be seen comparing it with the one of Figure 4.1.

• DUT and TB are obviously different and the input patterns are provided by
an ATPG and not by a code, as for the pulpino flow.

• In this scheme, another comparison is included between the fault coverage
provided by the ATPG and the one provided by the analysis of the diff files.
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Figure 4.3: validation fault injection flow

Figure 4.4: combinational circuit for validation flow

• The compared output files, in Figure 4.3 are different respect than the ones
compared in Figure 4.1. In fact, here, they are a simple transcription of the
output behaviour of the circuit while, in the other scheme, they are the output
files provided by the tracer.

The most important difference to analyze is the use of ATPG. In fact, thanks to
the comparison between its fault coverage and the one provided by the output
files the correctness of the flow was established (If they are equal it is validated
while if they are different it is not). Let’s analyze in detail the environment of the
validation flow and how it works.
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4.3.1 Analysis of the validation environment

The internal structure of the validation environment is shown in Figure 4.5.

Figure 4.5: internal structure of the validation environment

The most important folders and files for the validation are the ones described in the
list below (some ones are not considered because they are useless for this purpose).

• v_files is a folder in which all the Verilog files are included as:

- pdt2002 that is the logic gate library.

- injection_module.v that is the Verilog description of the circuit in
Figure 4.4 used to describe in detail its behaviour (written in a file)
thanks to tb_injection_module_rand.v.

- atpg_injection_module.v that is a module describing the same circuit
using the tech library.
It is simulated using two testbenches: atpg_tb_injection_module.v,
that exploits patterns generated without constraints by the ATPG, and
atpg_tb_injection_module_constr_a.v, that exploits patterns gener-
ated with a constraint.

- tmax.tcl that is an important script whose task is to generate the patterns
using ATPG on Tetramax.

34



Chronological steps to build the environment

• all the report* folders are used for the report files.

• files folder where the fault list is included.

• py_files contains the script aims at modifying the simulation script for a
correct FI.

• tmax contains the fault list and the patterns generated by Tetramax.

• vsim contains all the simulation files. Inserire simulation script description.

• fault_analysis.sh is the master script for running the flow.

Let’s explore how the validation flow was used. After writing all the Verilog files
to design the circuit in Figure 4.4, generating the patterns and the fault coverage
with the ATPG was the next step. These patterns were used to write the testbench
that, exploiting the flow, generated some outputs and a fault coverage (FC). The
results of the comparison between these two FC were satisfying so the flow was
validated (they were equal). Experiments and results of the validation process will
be better explained in the next chapter.

4.3.2 FI script explaination

In all the flow there is one script that is implemented to inject a fault for each signal
in the fault list. Specifically, It is a part of the tcl script vsim/tcl_files/run.tcl

shown in Listing 4.5.

Listing 4.5: FI script
1 s e t forbiddenTime 0
2 s e t de lay 44000
3

4 when − fast {/ top_i/ core_region_i /CORE/RISCV_CORE/ex_stage_i_alu_i/
int_div_div_i /U406/A1 ’ event and / top_i/ core_region_i /CORE/
RISCV_CORE/ex_stage_i_alu_i/ int_div_div_i /U406/A1 = 1 ’ h1} {

5 u ivar forbiddenTime
6 u ivar de lay
7 i f {$now != $forbiddenTime } {
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8 f o r c e − f r eeze / tb/ top_i/ core_region_i /CORE/RISCV_CORE/
ex_stage_i_alu_i/ int_div_div_i /U406/A1 1 ’ h0 −cancel $de lay

9 s e t forbiddenTime [ expr {$now + $delay } ]
10 }
11 }

The general concept of a transition fault is that when there is an event on a specific
signal it should be delayed of an amount of time. In fact, in the code there is an
example in which when U406/A1 has a rising edge it is delayed of 44 ns (because
delay is set to 44000 and the resolution is in ps). In order to make this script work
it is important to consider a "forbidden time". It is equal to the actual time plus
the delay for injecting the transition fault because at that point the signal has a
new transition and if the forbidden time was not set the script wrongly would try to
stop the switch on this signal. This script will be changed after some modifications
made on the tech library to solve the fan-out problem that will be explained in the
next section.

4.4 Fan-out problem and how to solve it

At this time everything was ready for a correct execution of the flow and the
beginning of the experiments on the processor. In reality, another problem caused
by the fan-out should be fixed. In order to understand this issue, an example of
fan-out, shown in Figure 4.6, is analyzed.
As can be seen the signal N3 is split in two branches that feed two different NAND
gates and this ramification is called fan-out. The important thing to know is that
Faults on a fanout stem are not equivalent to faults on the corresponding fanout
branches. Using Modelsim [2], during a simulation of the circuit Figure 4.6, it was
seen that if a fault is injected in one of the two branches, all the faults belonging
to the fan-out are affected. Obviously, this behaviour contradicts the previous
definition.
In order to solve the problem the idea was to modify the tech library in order to
avoid this wrong behaviour.
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Figure 4.6: circuit with fan-out

4.4.1 Modification of the tech library

All the logic functions are included inside the tech library asic/techlib/Nanga-
teOpenCellLibrary.v and an example of an AND gate is shown in Listing 4.6.

Listing 4.6: verilog desctiption af AND function inside the technology library
1 module AND2_X1 (A1 , A2 , ZN) ;
2 input A1 ;
3 input A2 ;
4 output ZN;
5 and (ZN, A1 , A2) ;
6 s p e c i f y
7 (A1 => ZN) = ( 0 . 1 , 0 . 1 ) ;
8 (A2 => ZN) = ( 0 . 1 , 0 . 1 ) ;
9 endspec i f y

10 endmodule

The problem was that the injection fault was performed throw an external signal
to the logic gate and not throw its inputs. So, the idea to solve this problem could
be finding a way to drive directly the inputs and outputs of each logic function
when needed.
The implemented solution aimed at modifying each logic gate as shown in Figure
4.7 (in this case an AND gate was considered). As can be seen the inputs or outputs
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Figure 4.7: design modification on tech library (AND gate)

of the AND gate can be driven by some decoders and their selection signals. The
Verilog code for this solution is the one shown in listing 4.7.

Listing 4.7: verilog desctiption af AND function inside the technology modified
library

1 module AND2_X1 (A1 , A2 , ZN) ;
2 input A1 ;
3 input A2 ;
4 output ZN;
5

6 wire A1_sa0 = 1 ’ b0 ;
7 wire A1_sa1 = 1 ’ b0 ;
8 wire A2_sa0 = 1 ’ b0 ;
9 wire A2_sa1 = 1 ’ b0 ;

10 wire ZN_sa0 = 1 ’ b0 ;
11 wire ZN_sa1 = 1 ’ b0 ;
12 wire ZN_int ;
13

14 a s s i gn ZN = ZN_sa0 ? 1 ’ b0 : ZN_sa1 ? 1 ’ b1 : ZN_int ;
15
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16 and (ZN_int ,
17 A1_sa0 ? 1 ’ b0 : A1_sa1 ? 1 ’ b1 : A1 ,
18 A2_sa0 ? 1 ’ b0 : A2_sa1 ? 1 ’ b1 : A2) ;
19

20 s p e c i f y
21 (A1 => ZN) = ( 0 . 1 , 0 . 1 ) ;
22 (A2 => ZN) = ( 0 . 1 , 0 . 1 ) ;
23 endspec i f y
24

25 endmodule

In order to can modify each logic gate inside the tech library a python script called
mod_library.py was implemented.

4.4.2 Analysis of the validation environment of the fan-out
solution

Once the library was correctly modified, a check should be performed on its
correctness. So an environment was created and its task was to test the new library
on a circuit in Figure 4.6. The environment is very simple as shown in Figure 4.8.

Figure 4.8: validate_fanout environment

Only three folders where created.

• report in which all the reports stored.

• v_files in which tb and Verilog description of the circuit are included.

• vsim in which the compilation and simul;ation scripts are included

The experimental results will be explained in the next chapter.
As the new library worked well the FI script should be adapted to the new logic
gates.
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4.5 Validation of the new FI script

The same validation environment of Figure 4.3 was used, but some files were
modified and other ones were added.

• The FI script vsim/tcl_files/run.tcl was modified in the way shown in
Listing 4.8 to adapt it to the new tech library.

Listing 4.8: new FI script
1 s e t forbiddenTime 0
2 s e t de lay 44000
3

4 when − fast {/ top_i/ core_region_i /CORE/RISCV_CORE/
ex_stage_i_alu_i/U701/A1 ’ event and / top_i/ core_region_i /CORE/
RISCV_CORE/ex_stage_i_alu_i/U701/A1 = 1 ’ h0} {

5 u ivar forbiddenTime
6 u ivar de lay
7 i f {$now != $forbiddenTime } {
8 f o r c e − f r eeze / tb/ top_i/ core_region_i /CORE/

RISCV_CORE/ex_stage_i_alu_i/U701/A1_sa1 1 ’ h1
9 f o r c e − f r eeze / tb/ top_i/ core_region_i /CORE/

RISCV_CORE/ex_stage_i_alu_i/U701/A1_sa1 1 ’ h0 $delay
10 s e t forbiddenTime [ expr {$now + $delay } ]
11 }
12 }
13

The difference with the previous one is that, here, the force commands are
applied on the selection signals of the decoders (see Figure 4.7) and not directly
on the signals of the fault list.

• In py_files a new simulation script was created for adapting the new library.

• New reports were created that confirmed the validity of the model. They will
be analyzed in the next chapter.
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4.6 Application of the flow on the processor

After the validation of the flow was confirmed on a simple circuit, the processor
was ready to exploit it. So, Some experiments were performed to understand
the behaviour of the processor using different code. One problem was the flow
simulation time that for 700 faults in the fault list took almost three days. To
fix it two scripts were created: One for creating 10 or more copy of the pulpino
environment and one for running in the same time all the copies of the environment
(more details for using this option are explained in the user manual chapter). In
this way the simulation time was reduced significantly. Anyway, this option could
be not necessary because this flow should be usually exploited for a small number
of faults related, for example, to a specific module.
Instead, the last work done was to create a python script able to resume all the
results in a csv files. After that the environment was ready to be used or still
improved.
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Chapter 5

Experimental results

In this chapter, all the experimental results got in the different chronological steps
for building the environment are deeply analyzed.

5.1 Validation of the tracer on the gate-level pro-
cessor model

This validation process proves that the tracer works well in the gate-level processor.
It is performed exploiting the output generated by the tracer during the simulation
that is the one shown in Listing 5.1.

Listing 5.1: part of the output generated during the simulation thanks to the
tracer

1 Time Cycles PC I n s t r Mnemonic
2 18880000 455 00000080 03 d0606f j a l

x0 , 26684
3 18960000 457 000068 bc 30501073 csrrw

x0 , x0 , 0x305
4 19000000 458 000068 c0 00000093 addi

x1 , x0 , 0 x1=00000000
5 19040000 459 000068 c4 00008113 addi

x2 , x1 , 0 x2=00000000 x1 :00000000
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6 19080000 460 000068 c8 00008193 addi
x3 , x1 , 0 x3=00000000 x1 :00000000

7 19120000 461 000068 cc 00008213 addi
x4 , x1 , 0 x4=00000000 x1 :00000000

8 . . .
9 . . .

10 . . .

This output is a representation of the assembly code got thanks to the signals of the
processor connected to the tracer. In particular, the simulation time, the number
of the cycle, the address in the program counter, the opcode of the instruction
and its name, the registers involved in the operation and immediate numbers are
reported.
If the output corresponds to the original test code written by the engineer it
means that the processor works well. Obviously, the processor works well so the
question should be: is the tracer properly connected with the different signals of
the gate level processor? In order to answer it, the generated output of the gate
level processor simulation is compared with the one generated by the structural
processor and if they are equal, the tracer behaviour inside the gate level processor
is validated. The comparison is performed thanks to the tool Meld and the result
is satisfying unless for a portion of the program that is different between the two
log files as shown in Figure 5.1.
This difference is not an error due to a wrong mapping of the tracer in the Verilog
netlist, but it is caused by a part of the SystemVerilog code shown in Listing 5.2.
How it can be seen, the Ifdef condition determines that if synthesis is performed,
the first address of PCCR_q is always read otherwise the complete address is
considered. This causes the differences in reading values of csr registers between
780 and 79F(32 count registers). Moreover, there is a bug at the starting point of
78c (12th count register) where the value read by register is unknown because the
instruction tries to access in a part of memory that does not exist, considering that
PCCR_q is composed of 11 cells of 32 bits.

Listing 5.2: different behaviors of gate and structural processors
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Figure 5.1: difference between the two outputs from the different versions of the
processors

1 // look f o r 780 to 79F, Performance Counter Counter R e g i s t e r s
2 i f ( csr_addr_i [ 1 1 : 5 ] == 7 ’ b0111100 ) begin
3 i s_pccr = 1 ’ b1 ;
4

5 pccr_index = csr_addr_i [ 4 : 0 ] ;
6 ‘ i f d e f ASIC_SYNTHESIS
7 perf_rdata = PCCR_q[ 0 ] ;
8 ‘ e l s e
9 perf_rdata = PCCR_q[ csr_addr_i [ 4 : 0 ] ] ;

10 ‘ e n d i f
11 end

5.2 Validation of the FI flow

In order to validate the flow, the scheme in Figure 5.2 is used. The reports generated
are divided into different categories:

1. report_fi_check;

2. report_100 and report_constr_a_85_71;
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3. report_100_mod_libr, report_85_mod_libr,
check_libr and check_libr_85.

Figure 5.2: validation fault injection flow

As just said, in order to prove the flow, a simple circuit (shown in Figure 5.3) is
designed, composed of two OR gates and one XOR gate.

Figure 5.3: combinational circuit for validation flow

5.2.1 Report_fi_check

This folder is composed of reports given by an initial test of the flow in which
random patterns are used instead of the ones generated by the ATPG. So, It is
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not the proof of a well working flow, because a fault coverage to compare is not
reported, but it can help us to understand the behaviour of the circuit and if the
FI injection flow script, apparently, works correctly.
In this case, two Verilog files of v_files are used for compilation and then simula-
tion: injection_module.v that aims to describe the simple circuit in Figure 5.3
without using the tech library and a testbench rand_tb_injection_module.v in
which random patterns are provided for the simulation. Thanks to this simulation,
a detailed file of the golden simulation and all the diff files (the ones got by the
difference between the golden output and every faulty outputs derived from each
fault of the fault list) are created. The former is shown in Listing 5.3.

Listing 5.3: golden output for initial FI check
1 0 ps : a=0 b=0 e=0 f=0 −> s i g 1=0 s i g 2=1 −> y=1
2 90000 ps : a=1 b=0 e=0 f=0 −> s i g 1=1 s i g 2=1 −> y=0
3 180000 ps : a=0 b=0 e=0 f=1 −> s i g 1=0 s i g 2=0 −> y=0
4 270000 ps : a=0 b=1 e=0 f=1 −> s i g 1=1 s i g 2=0 −> y=1
5 400000 ps : a=0 b=0 e=1 f=1 −> s i g 1=0 s i g 2=1 −> y=1
6 440000 ps : a=0 b=1 e=1 f=1 −> s i g 1=1 s i g 2=1 −> y=0
7 500000 ps : a=0 b=0 e=1 f=1 −> s i g 1=0 s i g 2=1 −> y=1
8 560000 ps : a=1 b=0 e=1 f=1 −> s i g 1=1 s i g 2=1 −> y=0
9 610000 ps : a=0 b=0 e=1 f=1 −> s i g 1=0 s i g 2=1 −> y=1

10 640000 ps : a=0 b=1 e=1 f=1 −> s i g 1=1 s i g 2=1 −> y=0
11 710000 ps : a=0 b=0 e=1 f=1 −> s i g 1=0 s i g 2=1 −> y=1

This is the correct behaviour of the circuit with the random patterns. Simulation
time and the behaviour of inputs, signals and outputs are reported here. Instead,
an example of diff files is reported in Listing 5.4.

Listing 5.4: STF on input "a" diff file for initial FI check
1 3a4 , 5
2 > 180001 ps : a=1 b=0 e=0 f=1 −> s i g 1=1 s i g 2=0 −> y=1
3 > 224001 ps : a=0 b=0 e=0 f=1 −> s i g 1=0 s i g 2=0 −> y=0
4 10c12 ,14
5 < 640000 ps : a=0 b=1 e=1 f=1 −> s i g 1=1 s i g 2=1 −> y=0
6 −−−
7 > 610001 ps : a=1 b=0 e=1 f=1 −> s i g 1=1 s i g 2=1 −> y=0
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8 > 640000 ps : a=1 b=1 e=1 f=1 −> s i g 1=1 s i g 2=1 −> y=0
9 > 654001 ps : a=0 b=1 e=1 f=1 −> s i g 1=1 s i g 2=1 −> y=0

Remembering that the rows with < are the golden ones while > represents the
faulty ones, in this file, a STF (slow to fall) transition fault is injected on input "a"
of the simple circuit shown in Figure 5.3. The fact that the file in Listing 5.4 is
not empty means that the injection causes a different behaviour of the simulation
respect than the golden simulation. For example, in the last file, the first two rows
in the faulty simulation are generated because the STF on input "a" delays the
transition, so "a" remains stable for 44 ns and then the transition is performed.
Moreover, as we can see, the input is correctly propagated on the output because
in the first row "y" is equal to 1 and after 44 ns is set to 0.
Therefore, the FI script and the flow apparently seems to work properly but we
have not obtained the definitive proof yet. In order to do that, as suggested by
the validation flow in Figure 5.2, the ATPG should be used to generate the test
vectors and a fault coverage (FC) to compare with the FC of the flow.

5.2.2 Report_100 and report_constr_a_85_71

The reports inside these folders validate the flow. The patterns generated thanks to
Tetramax are the crucial point here. In fact, in the tmax folder we can found two
stil files: test_vectors.stil, in which all the possible test vectors are generated
and the FC is 100 % and test_vectors_constr_a.stil, in which a constraint on
a (not all the possible patterns are generated) is set to 0 and the FC is 85.71 %.
The considered file for compilation and simulation inside v_files are the follow-
ing ones: the injection module atpg_injection_module.v and the testbenches
atpg_tb_injection_module.v and atpg_tb_injection_module_constr_a.
A FC of 100 % should be achieved with the patterns inside the first testbench while
a FC of 85.71 % with the patterns inside the second testbench. Moreover, the tech
library is considered now because the module of the simple circuit exploits it.
Both the folders have the same way to validate the flow, so let’s analyze only the
first one. In report_100 the patterns are used in atpg_tb_injection_module.v

in the way shown in Listing 5.5.
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Listing 5.5: testbench with patterns of 100 % FC
1 // pattern0
2 #50000 a_i = 0 ; b_i = 0 ; e_i =0; f_i =1;
3 #50000 a_i = 1 ; b_i = 0 ; e_i =0; f_i =1;
4 // pattern1
5 #50000 a_i = 0 ; b_i = 0 ; e_i =1; f_i =0;
6 #50000 a_i = 1 ; b_i = 1 ; e_i =1; f_i =0;
7 // pattern2
8 #50000 a_i = 0 ; b_i = 0 ; e_i =0; f_i =1;
9 #50000 a_i = 0 ; b_i = 1 ; e_i =0; f_i =1;

10 // pattern3
11 #50000 a_i = 1 ; b_i = 1 ; e_i =1; f_i =0;
12 #50000 a_i = 0 ; b_i = 0 ; e_i =0; f_i =1;
13 // pattern4
14 #50000 a_i = 1 ; b_i = 0 ; e_i =0; f_i =1;
15 #50000 a_i = 0 ; b_i = 0 ; e_i =0; f_i =0;
16 // pattern5
17 #50000 a_i = 0 ; b_i = 1 ; e_i =0; f_i =1;
18 #50000 a_i = 1 ; b_i = 1 ; e_i =1; f_i =1;

Each 100 ns the output of the circuit is written on the golden simulation file shown
in Listing 5.6.

Listing 5.6: golden output for validating the flow
1 101 ns : y=1
2 201 ns : y=0
3 301 ns : y=1
4 401 ns : y=0
5 501 ns : y=1
6 601 ns : y=0

In this case, differently to the one considered in Listing 5.3, only the time simulation
and the outputs are reported on the output file. Comparing the golden output
with a faulty output, obtained from the STR on input "a" as before, the result is
the one in Listing 5.7.

Listing 5.7: STF on input "a" diff file for initial validating the flow
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1 4 ,5 c4 , 5
2 < 401 ns : y=0
3 < 501 ns : y=1
4 −−−
5 > 401 ns : y=1
6 > 501 ns : y=0

As we can see, when the STF is delayed the diff output marks a difference, so the
FI script works well. In order to validate it the FC should be 100 % and ,in fact,
the percentage is achieved because all the files generated are not empty, therefore
the output is propagated for each fault injected and the FC obtained by the flow is
100 %.
The same process is applied with the patterns generated by the testbench with the
constraints and the FC, in this case 85.71 %, is matched again.

5.2.3 Report_100_mod_libr, report_85_mod_libr,
check_libr and check_libr_85

In order to solve the fan-out problem (explained in the chapter 4), the tech library
and the FI script have been changed. So, a new test is performed with these two
new elements.
In report_100_mod_libr and report_85_mod_libr, the format of the reports is
similar to the one in Listing 5.7. To achieve these results, the same flow of before
is done. Moreover, the test show the same results of the one run before, therefore
it means that the modified flow works in the correct way.
In order to prove that these results are in line with what we expect a comparison
is performed using the two scripts check_mod_orig and check_mod_orig_85 and
the outputs are stored in check_libr and check_libr_85. Their size is 0, so,
considering that the comparison is performed thanks the diff command, all the
results are in compliance between them.
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5.3 Validation of fan-out solution

We recall that the fan-out problem in Modelsim [2] is that, using the original
library, if we have a branch and we inject a fault on one of the stems all the
branches are affected by the fault. The modified library solves this problem and
some experiments are conducted to validate it on the circuit shown in Figure 5.4.

Figure 5.4: circuit with fan-out

All the files for validation are inside the folder validate_fanout/reports. There
are four more reports inside this folder that correspond to four different simualtions.

• golden_sim_orig_librin which a golden simulation (without FI) with origi-
nal technology library is performed.

• faulty_sim_orig_libr in which a faulty simulation (with FI) with original
technology library is performed. A stuck-at-0 is applied on the first NAND on
A2 (see Figure 5.5) in order to understand what happens on the branch.

• golden_sim_mod_libr in which a golden simulation (without FI) with modi-
fied technology library is performed.

• faulty_sim_mod_libr in which a faulty simulation (with FI) with modified
technology library is performed. A stuck-at-0 is applied on the first NAND on
A2 (see Figure 5.5) in order to understand what happens on the branch.
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Figure 5.5: internal structure of the NAND

Each simulation generates three reports.

• the report of the behaviour of the circuit in Figure 5.4..

• the reports of the behaviour of the two NAND gates.

So, in total, there are 12 files to be compared to validate the fan-out solution.
Analyzing the behaviour of the circuit and the two internal NAND gates during
a golden simulation (shown in Listing 5.8) and comparing it with the simulation
during the FI with a SA0 on NAND1/A2 (shown in Listing 5.9), It can be seen
how the FI does not work correctly.
In fact, for example, in the second row of the entire circuit of the golden simulation
N1, N3 and N6 are equal to 1. So, the outputs of the NAND gates N10 and N11
are equal to 0. The problem is that if we inject the fault (SA0 on NAND1/A2)
also NAND2/A1 is affected and both the outputs are equal to 1, therefore all the
branch driven by the input N3 is affected. Instead, N10 should be equal to 1 while
N11 should be equal to 0.

Listing 5.8: reports of golden simulation with original library
1 \\ e n t i r e c i r c u i t
2 0 ns : N1=0 N3=0 N6=0 −> N10=1 N11=1
3 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
4 | 50 ns : N1=1 N3=1 N6=1 −> N10=0 N11=0|
5 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
6 100 ns : N1=0 N3=1 N6=0 −> N10=1 N11=1
7 150 ns : N1=1 N3=1 N6=0 −> N10=0 N11=1
8

9 \\NAND1
10 0 ns : A1=0 A2=0 −> ZN=1
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11 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−
12 | 50 ns : A1=1 A2=1 −> ZN=0|
13 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−
14 100 ns : A1=0 A2=1 −> ZN=1
15 150 ns : A1=1 A2=1 −> ZN=0
16

17 \\NAND2
18 0 ns : A1=0 A2=0 −> ZN=1
19 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−
20 | 50 ns : A1=1 A2=1 −> ZN=0|
21 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−
22 100 ns : A1=1 A2=0 −> ZN=1

Listing 5.9: reports of faulty simulation with original library
1 \\ e n t i r e c i r c u i t
2 0 ns : N1=0 N3=0 N6=0 −> N10=1 N11=1
3 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
4 | 50 ns : N1=1 N3=0 N6=1 −> N10=1 N11=1|
5 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
6 100 ns : N1=0 N3=0 N6=0 −> N10=1 N11=1
7 150 ns : N1=1 N3=0 N6=0 −> N10=1 N11=1
8

9 \\NAND1
10 0 ns : A1=0 A2=0 −> ZN=1
11 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−
12 | 50 ns : A1=1 A2=0 −> ZN=1|
13 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−
14 100 ns : A1=0 A2=0 −> ZN=1
15 150 ns : A1=1 A2=0 −> ZN=1
16

17 \\NAND2
18 0 ns : A1=0 A2=0 −> ZN=1
19 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−
20 | 50 ns : A1=0 A2=1 −> ZN=1|
21 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−
22 100 ns : A1=0 A2=0 −> ZN=1

Once, the library is modified the new golden simulation, shown in Listing 5.10, is
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compared with the one in Listing 5.8 and they are equal. This result proves that
the new library does not affect the normal behaviour of the circuit. After that, the
fault is injected and comparing the text file in Listing 5.10 with the one in Listing
5.11 it can be seen that all the branch is not affected on both the stems as before.
In fact, in the faulty simulation, N10 is equal to 1 and N11 is equal to 0.

Listing 5.10: reports of golden simulation with modified library
1 \\ e n t i r e c i r c u i t
2 0 ns : N1=0 N3=0 N6=0 −> N10=1 N11=1
3 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
4 | 50 ns : N1=1 N3=1 N6=1 −> N10=0 N11=0|
5 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
6 100 ns : N1=0 N3=1 N6=0 −> N10=1 N11=1
7 150 ns : N1=1 N3=1 N6=0 −> N10=0 N11=1
8

9 \\NAND1
10 0 ns : A1=0 A2=0 −> ZN=1
11 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−
12 | 50 ns : A1=1 A2=1 −> ZN=0|
13 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−
14 100 ns : A1=0 A2=1 −> ZN=1
15 150 ns : A1=1 A2=1 −> ZN=0
16

17 \\NAND2
18 0 ns : A1=0 A2=0 −> ZN=1
19 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−
20 | 50 ns : A1=1 A2=1 −> ZN=0|
21 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−
22 100 ns : A1=1 A2=0 −> ZN=1

Listing 5.11: reports of faulty simulation with modified library
1 \\ e n t i r e c i r c u i t
2 0 ns : N1=0 N3=0 N6=0 −> N10=1 N11=1
3 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
4 | 50 ns : N1=1 N3=1 N6=1 −> N10=1 N11=0|
5 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
6 100 ns : N1=0 N3=1 N6=0 −> N10=1 N11=1
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7 150 ns : N1=1 N3=1 N6=0 −> N10=1 N11=1
8

9 \\NAND1
10 0 ns : A1=0 A2=0 −> ZN=1
11 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−
12 | 50 ns : A1=1 A2=1 −> ZN=1|
13 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−
14 100 ns : A1=0 A2=1 −> ZN=1
15 150 ns : A1=1 A2=1 −> ZN=1
16

17 \\NAND2
18 0 ns : A1=0 A2=0 −> ZN=1
19 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−
20 | 50 ns : A1=1 A2=1 −> ZN=0|
21 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−
22 100 ns : A1=1 A2=0 −> ZN=1

In conclusion, after these tests are performed, the fan-out solution is validated.

5.4 Experiments on the flow

In this section three experiments on the pulpino processor, exploiting the de-
signed flow, are analyzed. These experiments are inside the external environment
pulpino_flow inside the folder reports and they are divided in three categories
in several folders.

• tracer_start_code

• tracer_division_code

• tracer_division_code_speed

All the folders have in common a report file for each fault in the fault list and a
summary file that resume if the faults are observed, the type of error (in the case
analyzed here the only error is "data register error" that is an error on one of the
bits of some register), the percentage of the observed faults and the total number
of faults. An example of summary file is shown in Listing 5.12.
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Listing 5.12: an extraction of post_processing report
1 FAULT,OBSERVED,TYPE
2 .
3 .
4 .
5 STR_RISCV_CORE_ex_stage_i_alu_i_U1709_A1 , yes , data r e g i s t e r e r r o r
6 STF_RISCV_CORE_ex_stage_i_alu_i_U1835_A1 , yes , data r e g i s t e r e r r o r
7 STR_RISCV_CORE_ex_stage_i_alu_i_int_div_div_i_U335_B1 , no , none
8 STR_RISCV_CORE_ex_stage_i_alu_i_int_div_div_i_U339_B , no , none
9 STF_RISCV_CORE_ex_stage_i_alu_i_int_div_div_i_U338_B1 , no , none

10 .
11 .
12 .
13 TOT N FAULTS,N FAULTS OBSERVED,% OBSERVED
14 696 ,93 ,13 .36

The summary file simply provides a recap of the all files generated by the flow
during its execution. These files are generated by a comparison (diff command in
bash) between the output of the tracer of the golden simulation and each one of the
faulty simulations. An example is provided in Listing 5.13 where "<" represents
the golden file while ">" represents the faulty file. Here, for example, a difference
on the register x31 can be noticed in the bit 0.

Listing 5.13: example of a report file generated by diff
1 2237 c2237
2 < 294440000 7344 00001698 10098 fb3 p . f f 1

x31 , x19 x31=00000005 x19 : 1 a8fbb20
3 −−−
4 > 294440000 7344 00001698 10098 fb3 p . f f 1

x31 , x19 x31=00000004 x19 : 1 a8fbb20

Let’s analyze the three folders above one by one.

5.4.1 Tracer_start_code

This is the analysis done with the original assembly code provided at the beginning
of this study. Moreover, a fault list and an analysis of them by Z01X is provided.
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The benefit is that the resulting reports generated by the flow are conform to the
ones generated by Z01X. In fact, all the signals of the division exploiting the FI
are not observed as in the initial report because the bits of the register are masked
at some point during the loop of the division implementation. Instead, the other
faults are usually observed. In the summary report these are the recap results: "tot
faults 696, observed faults 93, percentage observed faults 13.36 %"

5.4.2 Tracer_division_code

The same analysis of before is performed with a more part of assembly code,
provided by a previous study, that should be able to make observable the FI on
some faults belonging to the division module. This is possible because of this code,
shown in Listing 5.14, that prevents the interested bit to be masked by the loop
of the division. It means that, for example, if 10 loops must be performed by the
division and the fault is injected on a bit at the second iteration, the result of this
bit should be the same at the end of the division process.

Listing 5.14: code for observing the fault of the division module
1 l i x5 , 0 xaaaaaaaa
2 l i x6 , 1
3 div x7 , x5 , x6
4 sw x7 , 0 ( sp )

At the end of the execution the result can be summarized in "tot faults 696, observed
faults 311, percentage observed faults 44.68 %". It can be seen that the percentage
of observed faults is increased because a lot of division module faults are observable
thanks to the code of Listing 5.14.

5.4.3 Tracer_division_code_speed

Running the flow the problem can be the execution time that can increase a lot
with a bigger size of the fault list. In order to improve the performance a speed
environment exists and it is validated running the flow. The results are the same
of the previous report that exploit the same assembly code, so this environment
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can be used. The execution time is really decreased in fact in the previous FI it
was almost 3 days while exploiting this environment is 12 hours.
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Chapter 6

Conclusions and
perspectives

The objective of this study was to find a way to guide the testing engineer to
develop an effective test program. Above all, the main problem was trying to
understand why some faults injected are not detected(ND), so not propagated on
the POs. Therefore, the idea to fix this issue was to increase their observability,
generating, in an automatic way, some output files that can provide to the testing
engineer some useful additional information for guiding the test engineer to improve
the test program.
As the experimental results prove, the objective has been achieved because a lot of
information thanks to the implemented FI flow can be exploited. In fact, for each
fault injected the output generated by the tracer establishes if the considered fault
is observable or not. Moreover, the generated file could contain some lines that can
be exploited to analyze why the pulpino processor does not work well during a
specific fault injection.
In Listing 6.1 an example of output file generated by the flow is reported.

Listing 6.1: example of a report file generated by the flow
1 2237 c2237
2 < 294440000 7344 00001698 10098 fb3 p . f f 1

x31 , x19 x31=00000005 x19 : 1 a8fbb20
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3 −−−
4 > 294440000 7344 00001698 10098 fb3 p . f f 1

x31 , x19 x31=00000004 x19 : 1 a8fbb20

Remembering that time, number of Cycles, Program Counter (PC), instruction and
mnemonic are considered in order in this file, the user can make some observations
considering differences between golden (<) and faulty simulations (>), as:

• if the simulation time is wrong respect to one of the original code;

• if the clock cycle is out of phase;

• if the instruction in the PC is wrong;

• if the instruction is not the one that should be;

• if the registers are wrong;

• if the content of the registers is changed in some way.

These are only some examples of the potentiality of the output of the developed
flow. In fact, other differences can be found and exploited in some other way.
In order to improve this work, an idea could be to generate, thanks to a script,
some statistics based on the lines in Listing 6.1 from which the user could be helped
to better understand the effects of a given fault injected. A first approach of this
idea was to establish the observability and the kind of error caused by the FI, but
in all the experiments performed only one type of error raised: bit register error.
So, it should be important using a different fault list able to generate different type
of errors.
Another idea to get better the environment exploited by the flow could be writing
a script capable of giving some suggestions to the testing engineer in writing the
code in a better way. For example, this script could advice to insert some lines
in a specific part of the code. Obviously, this idea could be more difficult to be
implemented because the output files of the flow should be deeply analyzed and the
suggestions should be generated based on, for example, a sequence of bit register
errors, a frequency of bit register errors, etc...
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In conclusion, we can state that the developed flow executed on the pulpino
environment, as case study, can be really useful to understand how to improve the
test code but it is only a starting point because more potential improvements can
be made, above all. An example of potential improvement could be in terms of
post-processing analysis of the outputs generated by the flow execution.
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