
POLITECNICO DI TORINO
Master’s Degree in Mechatronic Engineering

Master’s Degree Thesis

Seamless Indoor-Outdoor Autonomous

Navigation for Unmanned Ground

Vehicles

Supervisors

Prof. Marcello CHIABERGE

Candidate

Andrea OSTUNI

April 2022

Abstract

Precision Agriculture (PA) concept has been gaining popularity in the last
few years, and it is seen as a possible solution to meet the needs of the growing
world population. New techniques and approaches are being developed; these
innovations are meant to increase productivity and maximize profit while being a
foundation of sustainable agriculture. Autonomous robots have a crucial role in
this application. In particular, this work is intended to investigate the problem
of Autonomous Navigation to provide a solution of seamless Indoor and Outdoor
Navigation. An example of employment should be the forage distribution in
large farm stables, where the recharge point is usually outside the building. The
Navigation problem and solution for the two environments differ. For the Outdoor
navigation, a combination of Global Navigation Satellite System (GNSS) and
Inertial Measurement Unit supplies enough data for estimating the position and
orientation. In Indoor scenarios, the vehicle needs a static map and a range sensor
(LiDaR) data to localize itself. Robot Operating System’s (ROS) tools, as services
and messages, have been used as a framework to develop and run the application
due to its modularity and simple interfaces. In order to obtain good performances,
the sensor data are processed by two different filters: a Particle Filter and an
Extended Kalman Filter. The first is the foundation of the Adaptive Monte Carlo
Localization (AMCL) utilized in indoor environments, while the second is for
outdoor application. Then, to navigate seamlessly, a switching algorithm selects
which pose estimate to use from the two filters. The feasibility and accuracy of
this approach have been tested through several simulations and then deployed on a
real rover. The results of these experiments are illustrated in the last chapters of
this work.

Table of Contents

List of Figures vi

1 Introduction 1
1.1 Navigation in different environments 2
1.2 Indoor navigation problem . 3

1.2.1 Localization in Indoor navigation 3
1.3 Outdoor navigation problem . 4

1.3.1 Localization in Outdoor navigation 4
1.3.2 Perception in Outdoor navigation 4

2 State of the art in Robot Navigation 7
2.1 Localization . 7

2.1.1 Taxonomy on localization problems 8
2.1.2 Sensor for localization . 9
2.1.3 Probabilistic techniques for state estimation 13
2.1.4 System representation . 14
2.1.5 Bayes Filter . 15
2.1.6 Gaussian Filters . 16
2.1.7 Particle Filter . 18
2.1.8 EKF Localization . 19
2.1.9 AMCL Localization . 20

2.2 Mapping . 22
2.2.1 SLAM . 22

ii

2.3 Global Planning . 24
2.3.1 Dijkstra’s algorithm . 24
2.3.2 A-star algorithm . 24

2.4 ROS2 . 26
2.4.1 Graph Concepts . 29
2.4.2 ROS 2 architecture overview 31

3 Seamless Navigation in Outdoor and Indoor environments 35
3.1 Sensor fusion using Robot Localization and AMCL 35

3.1.1 EKF and navsat node configuration 36
3.1.2 AMCL configuration . 38

3.2 Localization broadcaster . 40
3.3 Waypoint follower . 42

3.3.1 GPS Waypoint follower . 42
3.3.2 Navigate through poses . 43
3.3.3 Waypoint task executor plugins 47
3.3.4 The new Waypoint Follower interfaces 48

3.4 Nav2 configuration . 49
3.4.1 Global Planner . 49
3.4.2 Local Planner . 50
3.4.3 Global costmap . 51
3.4.4 Local costmap . 52

4 Simulation 55
4.1 Simulation Tools . 55

4.1.1 Gazebo simulator . 56
4.1.2 Rviz2 . 57

4.2 Husky model . 57
4.2.1 Husky setup . 58

4.3 Simulation setup . 59
4.3.1 Simulation environment . 59
4.3.2 Simulation Results . 60

iii

5 Conclusion 67
5.1 Main characteristics of the seamless navigation system 67
5.2 Next steps . 68

Bibliography 71

iv

List of Figures

1.1 Examples of UGV in precision agriculture [2] 2

3.1 ekf_filter_node_odom node the related topics, and the provided
transformation . 38

3.2 ekf_filter_node_map node the related topics, and the provided
transformation . 38

3.3 navsat_transform_node node the related topics, and the provided
transformation . 39

3.4 Transformations chain for outdoor localization 39
3.5 amcl_node node the related topics, and the provided transformation 40
3.6 Transformations chains for indoor localization 40
3.7 Full transformations chain for seamless localization 41
3.8 navigate_throgh_poses_w_replanning_and_recovery[36] 44
3.9 behavior tree navigation[36] . 45
3.10 behavior tree navigation[36] . 46
3.11 Global path . 50
3.12 Global costmap . 52
3.13 Obstacle representation in the local map 53

4.1 Husky UGV model . 58
4.2 small_town.world [42] . 59
4.3 Map of small_town.world [42] . 60
4.4 Time evolution of x and y position coordinates of the Husky UGV . 61
4.5 Comparison of the estimated path through the waypoints 62

vi

4.6 AMCL estimate localization error 63
4.7 EKF estimate localization error . 64
4.8 Estimate localization error comparison between AMCL and EKF . 65

vii

Chapter 1

Introduction

New technologies are exploited to improve profitability and reduce the impact of
agriculture on the environment; they are grouped in the so-called agriculture of
precision. This new system is based on the information and science-based decision
tools. Precision agriculture is based on observing, measuring, and responding to
crop inter and intra-field variability. The research on precision agriculture aims
to define a decision support system for managing the entire farm to optimize the
returns on inputs while conserving resources. These technologies do not replace
the farmer’s essential role in the decision process. At the foundation of precision
farming there is GPS and GNSS technologies; these allow the creation of maps of
all measurable variables like the characteristics of the terrain from an organic and
chemical point of view. "GNSS has provided easy ways to configure autonomous
vehicles or navigation systems to assist drivers in outdoor environments, especially
in agriculture" [1]. GPS receivers provide location and hour: precise data to create
a map, that machines also can communicate their status to owners or managers
who might be miles away [2], wirelessly transmitting data, about the robot state
without the need for human presence. Such information can monitor machine
conditions and diagnose any mechanical problems to make adjustments quickly.
An unmanned ground vehicle (UGV), must rely on other critical technologies that
need to be incorporated, "such as the safety systems responsible for detecting
obstacles in the robots’ path and safeguarding humans and animals in the robots’

1

Introduction

surroundings well as preventing collisions with obstacles or other robots"[1]using
LiDAR and other technologies.

Figure 1.1: Examples of UGV in precision agriculture [2]

1.1 Navigation in different environments

A central issue in PA is mobile robot navigation and their interaction with the
environment. An example is the transport of forage in large stables; on this occasion
the robot has to navigate, take actions, and make decisions while localizing itself in
a map or an outdoor environment. Mobile robot navigation is one of the main fields
of research in robotics, there are many solutions to handle this problem, and better
ones have been presented in the last years. In particular, "Autonomous mobile
robots are robots which can perform desired tasks in structured or unstructured
environments without continuous human guidance" as stated by Amitava Chatterjee
in [3] . Moreover, "An autonomous mobile robot may also learn or gain new
capabilities like adjusting strategies for accomplishing its task(s) or adapting to
changing surroundings" [3]. "Where am I? Where are other places relative to me?
How do I get to other places from here?" are the questions that define the navigation
of a mobile robot [4]. The solution to these questions are the functions that a
navigation application must provide and are articulated in:

• Localization

2

Introduction

• Path planning

• Path-following and obstacle avoidance

An essential task in developing autonomous robot navigation applications is iden-
tifying and modeling the environment. "It is through these environment models
that the robot can adapt its decisions to the current state of the world" [5] An
important distinction has to be made between indoor and outdoor navigation
because the problems and technologies applied to their solution differ; this makes
seamless navigation a more demanding challenge because it has to handle both the
difficulties.

1.2 Indoor navigation problem

Initially, studies focused only on representations of indoor environments, which are
highly structured; in fact, they contain primarily linear structures such as lines and
planes. For indoor navigation, two domains of representations of the surroundings
have been identified:

• Geometrical representation

• Topological Maps

Each of these models has its advantages; in this work, Occupancy Grid maps will
be utilized with cost maps for path planning and localization purposes.

1.2.1 Localization in Indoor navigation

"Localization is the process of establishing correspondence between the map coordi-
nate system and the robot’s local coordinate system," as written by Thurn [6]. Still,
the difficulty of this problem is in the pose estimation, "most robots do not possess
a noise-free sensor for measuring pose" [6], so it has to be inferred from sensor
data. In indoor circumstances, the robot has to extract its pose estimate from
a combination of sensor data. The existing methods include Inertial Navigation
Systems (INS), Wi-Fi indoor localization, Ultra Wide Band (UWB) positioning,

3

Introduction

and Light Detection and Ranging (LiDaR) localization as described by Ningbo Li
[7]. As described later in this work, a combination of Lidar and IMU coupled with
an occupancy grid map of the environment will be used to estimate the vehicle’s
configuration in these circumstances.

1.3 Outdoor navigation problem

"With continued progress on sensing, and on mechanical and controls aspects of
mobile robots systems, it became possible to develop mobile robot systems for
operations in unstructured, natural terrain" [5]. An example task for a mobile
robot in an outdoor domain is to go from point A to point B using only visual
landmarks or GPS waypoints. During the execution of this task, the robot has to
decide whether there is a drivable path and compute it.

1.3.1 Localization in Outdoor navigation

To accomplish the localization task "Outdoor vehicles can use precision GPS,
inertial measurement units, and wheel odometry to keep track of their position and
orientation, typically with an ex- tended Kalman filter" as said in [5]. This method
is now a standard and low-cost method that compensates for the disadvantages of
single sensors. As noted in another chapter of [5], GPS offers accurate positioning
information but does not solve the issue of pose estimation entirely since it does
not provide any direct information about vehicle orientation. Other sensors are
needed to determine the vehicle’s direction, such as compasses, gyrocompasses,
and IMU’s data. Furthermore, "GPS receivers are generally unable to provide
continuous independent estimates of position" [5] since these estimates arrive only
with a particular frequency, and especially for inexpensive receivers comes with
considerable delays.

1.3.2 Perception in Outdoor navigation

In the last years, the perception of outdoor environments has made significant
developments. For example, we can have 3-D point clouds reconstructions of

4

Introduction

the environments obtained by laser or depth camera images. Other challenges in
outdoor perception for navigation are rough terrains with no extensive ground
plane to characterize the driveability and obstacles or the pliable vegetation that
may appear as an obstacle in range images. "Negative obstacles (ditches and cliffs)
are difficult to detect with range information" [5] these types of obstructions may
also create slippage or breaks if not handled correctly.

5

Chapter 2

State of the art in Robot
Navigation

This chapter introduces the advances and the solution developed to handle the
navigation problem.

2.1 Localization

This section is a survey on the techniques and technologies adopted for localization.
"Mobile robot localization is the problem of determining the pose of a robot relative
to a given map of the environment. It is often called positione stimation" [6]. Nearly
all mobile robot tasks need the estimate of its self-location and perception of the
relative position of the objects with which it has to interact. According to the
circumstances, the localization task can be dealt with by two different approaches:

• Map-based localization

• Simultaneous localization and mapping (SLAM)

We talk of map-based or pure localization when the knowledge of the surrounding
is provided a priori from a map. In the other case, the whereabouts and surrounding
environment of the mobile robot is unknown, so it has to construct a map of the

7

State of the art in Robot Navigation

environment and localize itself in this model. During the development of this thesis,
for the outdoor circumstances, a geo-referenced map is assumed as given; instead,
for indoor localization, a map will be constructed (also using SLAM algorithms) and
then used for pure localization tasks. Either instruments and techniques for these
two approaches will be presented and analyzed, focusing on the pure localization
methods.

2.1.1 Taxonomy on localization problems

The localization problems are not all the same, and we can have different classifi-
cation types with varying discrimination criteria. The most common criteria to
classify the localization problem are:

• The prior knowledge of the initial condition (and during execution)

• Type of the environment

• Type of approach

• Number of robots involved in the localization process

Prior knowledge classification

The first example of classification is according to the prior knowledge of the UGV
state or during its task execution. In particular, these problems are subdivided in:

• Position tracking: it is the task to localize the robot correctly when the
initial configuration is known, and it has to take account of the motion noise
and report as output the most likely pose. Since the noise is slight and it is
confined in a small area, it is also called local localization.

• Global localization: in this occasion, we have no prior knowledge of the
whereabouts of the robot, and no assumption of the probability distribution
of the configuration can be made; it is a more general problem than position
tracking, and this thesis will investigate ways to handle this problem in indoor
and outdoor scenarios.

8

State of the art in Robot Navigation

• Kidnapped robot problem: the last and more challenging problem is
correctly localizing and relocalizing after the vehicle has been teleported
to another location. It is the issue of recovering a correct estimate of the
configuration after that robot believes as the actual pose a faulty one.

Type of environment classification

In this subsection, localization will be classified by the surrounding characteristics.
In particular, the main categories are:

• A static environment is an environment where all the objects and features
of the environment are immutables, whether the robot’s configuration is the
only variable. It is an ideal model of the robot’s surroundings (not achievable
in reality), with interesting properties that can be exploited for estimation. In
this work, it is one of the basic assumptions.

• A dynamic environment is a model of the environment more affine to the
real world. The robot’s pose and the object’s configuration may change over
time; an example of those objects are people who move in the robot’s same
environment. This condition makes the localization problem more complex
and may require new structures and computations to solve.

Other Classifications

There are other ways to classify the localization problem. We can distinguish
whether the localization is active or passive; in the active localization, the application
directly controls the robot to implement strategies to estimate the configuration
better. Lastly, there is a distinction between localization strategies that use a single
platform versus algorithms that utilize multiple robots that can recognize each
other and use this information to estimate the fleet configuration better.

2.1.2 Sensor for localization

The robot can interact with the environment using its sensor and actuators. With
the help of sensors, a robot can acquire information about the environment. Since

9

State of the art in Robot Navigation

this process is noisy, a robot can only build its internal belief of its state and sur-
roundings without absolute knowledge of the state. As a first classification between
sensors is the differentiation between proprioceptive sensors and exteroceptive
sensors:

• Proprioceptive sensors "are used to measure the internal state of a robot"[8],
they may include sensors that measure the position of different joints of a
robot, the internal temperature, the effort on an end effector, and so on. This
sensor type helps the robot estimate and control its state. In the case of UGV,
they are used to estimate the position, steering angle, and robot orientation.

• Exteroceptive sensors can be used to gain information about the robot’s
surroundings; for example, they can determine the distance to objects or
the efforts exchanged between the robot and the environment. It is a more
challenging problem to define a model of the surroundings than a robot’s
internal state.

Another classification can be made over the interaction with the environment:

• Active sensors: as stated in [8] "an active sensor is one that emits energy
into the environment, and measures properties of the environment based on
the response." This type of sensor is generally more robust because it is less
dependent on the characteristics of the environment.

• Passive sensors: comprehend all sensors which are not active and are usually
used to monitor the physical properties of the robot.

Some of the most helpful sensors in navigation and localization are listed in the
following table:

Encoders

Encoders are usually classified into two main types incremental and absolute.

• Absolute encoders: are used to determine the absolute position of the shaft or
wheel within one revolution. It is usually used for UGV steering angle measure.

10

State of the art in Robot Navigation

They are made so that each disk fraction is mapped to a binary representation
of the encoder position. The most common type is the absolute optical encoder,
which "consists of an optical-glass disk on which concentric circles (tracks)
are disposed; each track has an alternating sequence of transparent sectors
and matte sectors" [9] and a light source and a light detector. An array of
light beams is emitted during work, and photodiodes register the pattern that
results after passing through the disk. Since each design is unique per wheel
rotation, they encode a single digital signal; they can be used to determine
the angle between the heading direction of the robot and the front wheels
(steering angle). The resolution of this type of encoder depends on the number
of tracks and the gear ratio present between axle and encoder.

• Incremental encoders are much simpler than absolute encoders and thus
cheaper. As reported in [9] "incremental encoder consists of an optical disk
on which two tracks are disposed, whose transparent and matte sectors (in
equal number on the two tracks) are mutually in quadrature"; the presence
of the second track is to determine the sign of rotation of the encoder. This
sensor outputs two square waves from detecting the light beams that pass
through the transparent part of the disk. From these signals, we can evaluate
the relative position of the joint by counting the peaks of the square wave,
while the velocity can be estimated in different ways:

– measuring the frequency of the pulse train.

– measuring the sampling time of the pulse train.

Between these last two techniques, the former is suitable for high-speed
measurements while the latter is suitable for low-speed measurements.

IMU Package

A UGV is often equipped with an inertial measurement unit (IMU) that includes
gyroscopes and accelerometers to estimate its translational and rotational motion.
It utilizes accelerometers that "are sensitive to all types of acceleration, which
implies that both translation motion and rotation (centripetal forces) are measured

11

State of the art in Robot Navigation

in combination" [10]. It is possible to reconstruct the motion signals and the relative
configuration to an initial reference frame through single and double integration.
"In addition to maintaining a 6-DOF pose of the vehicle, commercial IMUs also
typically maintain estimates of velocity and acceleration and can usually provide a
diverse set of lower-level measurements as well" as written in [10] and these pieces
of information are helpful in navigation. An IMU is composed of three orthogonal
gyroscopes and accelerometers in many applications, as shown in the following figure.
While the gyroscopes are used to keep an approximate estimate of the vehicle’s
orientation, the accelerometers are used to measure the instantaneous acceleration
of the robot. These data are then filtered to remove the gravitational acceleration
from the others and then integrated to obtain the velocity and integrated again to
get the position r. Since the integrator is an unstable system, IMUs are "extremely
sensitive to measurement errors in the underlying gyroscopes and accelerometers"
[10] these errors in measurements can lead to a quadratic mistake in the position
estimate. Sensor fusion techniques are adopted to correct these issues and achieve
better estimates; these will be better described in the next section.

Ranging

GPS

The global positioning system (GPS) "is a satellite-based radionavigation system
owned by the United States government and operated by the United States Space
Force"[11]. This is only one of the technologies used for providing geolocalization
information to the GPS receiver, in fact the Global navigation satellite systems
(GNSS) is composed by for constellation of artificial satellites:

• GPS : is the United States positioning system which cosists of 32 satellites.

• GLONASS: is the Russian positioning system which consists of 24 satellites

• BeiDou: is the Chinese positioning system which consists of 23 satellites

• Galileo: is the European positioning system which consists of 24 satellites

12

State of the art in Robot Navigation

"GPS is the single most commonly used mechanism for location estimation" [10].
GPS is based on received radio signals transmitted by an ensemble of satellites
orbiting the earth. The most common GPS localization system is based on the
NAVSTAR satellite system, this network is maintained and designed by the United
States. the term GPS should only be used when we are referring to the NAVSTAR
system although it is often used to refer to any GNSS system. The "GPS satellite
network is based on a base constellation of 24 orbiting satellites"[10] but there are
also six supplementary additional satellites. "The satellites should provide 99.9%
coverage at the worst-covered location in any 24 hour interval, and the signal should
be at least 83.92% available at the worst place on earth on the worst day over a
30 day measurement interval" [10]. GPS accuracy is influenced by several factors:
environmental conditions, obstacle interaction, satellite transmission accuracy, and
these are often uncontrollable. The GPS signal may not always be reliable. Two
types of errors are then classified: the “minor failures” that have a limited impact
with an error not exceeding 150 meters; and the “main failures” that lead to greater
errors or excessive loads of data processing in the receiver.

It’s established that satellites that are directly overhead provide better signal
than those near the horizon. Moreover since GPS position estimation is based on
the differential signal coming from various satellites, "it is best if the satellites used
in the GPS computation are widely spaced in the sky" [10].

GPS signals are transmitted in the microwave band, so they can pass through
plastic and glass but are absorbed by water and are reflected by different materials,
so GPS is not reliable if you are in forests, in cars or boats and ships. Nevertheless, at
any time, the minimum number of satellites operating is 24, 8 of which overlooking
the Earth’s surface so that even unsuitable weather conditions can be tolerated.

2.1.3 Probabilistic techniques for state estimation

For localizing an autonomous vehicle, it is necessary to solve the problem of
estimating the robot’s state. In fact, "State estimation addresses the problem of
estimating quantities from sensor data that are not directly observable, but that can
be inferred" as written in [12] and to do so, we can utilize different data coming from

13

State of the art in Robot Navigation

sensors of different nature. Robot state variables are not directly measurable by
sensors but only carry a part of the information that characterizes these quantities.
Moreover, sensors measurements are characterized by noise. "State estimation seeks
to recover state variables from the data" [12], and in this section, the most known
probabilistic techniques to compute an estimate of the state will be illustrated. At
first, we will explore the probabilistic algorithms and late their applications.

2.1.4 System representation

A mathematical model can sufficiently describe the robot and its interaction with
the environment. Each physical quantity is expressed through the evolution of a
variable of interest. These variables can be static (a landmark position) or dynamic
like the UGV pose and velocity. For autonomous robot localization, the state is
usually composed by:

• Robot pose: comprises both the position and the orientation of the UGV
in the environment. It is defined by six variables (x, y, z, roll, pitch, yaw) in
three-dimensional spaces. In two dimensions, it has planar coordinates for
position and yaw to describe the orientation.

• Robot velocity: they describe the speed for each of the pose variables.

• Location of features in the environment: if a static map is assumed, they
represent the location of the landmarks and obstacles.

We will identify with xt the state of the robot and will comprehend all the above
features. A robot uses control actions to interact with the environment and change
its state. To keep track of these changes and model them in the mathematical
framework, they are called control actions and may be represented by the velocity
commands sent to the motors or the information received by odometers. Control
action will be denoted as ut. To represent the measurements of the sensor zt

notation will be used. A probabilistic framework will be used for modeling our
system and capturing the uncertainness of control actions and the stochasticity of
the robot environments. The evolution of the system from the state xt−1 to xt is a

14

State of the art in Robot Navigation

probabilistic law with the following form: Also the measurement process will be
represented by conditional probability distributions: From these equations, we got
two resulting conditional probability distributions:

• State transition probability:

• Measurement probability:

The concept of belief is now introduced to define the robot’s knowledge about
its state. As illustrated in [12], belief is a conditional probability distribution that
"assigns a probability (or density value) to each possible hypothesis with regards to
the true state." The belief over the state will be denoted as bel(xt): which can be
split into two steps, prediction and correction:

• prediction

• correction

In order to calculate these beliefs, the Bayes filter is introduced in the next section.

2.1.5 Bayes Filter

The Bayes filter is the most general algorithm to update the internal belief of the
robot recursively. This algorithm computes the posterior belief distribution after
using the state transition probability to predict the subsequent state distribution
and correct it through measurement data.

Algorithm 1 The general algorithm for Bayes filtering[12].
1: procedure Algorithm Bayes_filter(bel(xt−1), ut, zt)
2: for all xt do
3: bel(xt) =

s
p(xt | ut, xt−1) bel(xt−1)dxt−1

4: bel(xt) = η p(zt | xt) b̄el(xt)
5: end for
6: return bel(xt)
7: end procedure

As we can note from the table, the inputs of this algorithm are:

15

State of the art in Robot Navigation

• The belief at the previous time step.

• The measurements from the sensor.

• The control data from encoders or the input command.

The output is instead the new posterior belief at time t. The algorithm only
describes which is the update rule for each possible state xt. The update is
separated into two steps. The first is the prediction step and consists of an integral
of the product of two distributions; in this way, it is applied to the belief of each
prior distribution the motion update caused by the input ut. The second step is
the measurement update and is the product and normalization of two distributions;
it incorporates the probability of taking a measurement zt to the prediction belief
bel.

"Bayes filters are implemented in several different ways" [12], in fact, different
techniques and algorithms are instances of the Bayes filter under various assump-
tions. According to the initial hypothesis on the state transition and measurement
probability distribution, particular algorithms are more accurate or efficient in
computation. In the following sections, the most used techniques of the Bayes filter
will be presented with their characteristics.

2.1.6 Gaussian Filters

This section describes the instance of Bayes filter called Gaussian filters. Gaussian
filters are implementations of the Bayes filter for continuous spaces and are the
more popular ones. At the foundation of the Gaussian filter, there is the assumption
that multivariate normal distributions represent all the beliefs and transformations.

Kalman Filter

According to statistics and control theory, Kalman filtering, also known as linear
quadratic estimation (LQE), is an algorithm that applies a series of measurements
observed over time to produce estimates of unknown variables that are typically
more accurate than estimates based on a single measurement alone, by estimating

16

State of the art in Robot Navigation

a joint probability distribution over the variables over each timeframe. This filter
is named after Rudolf E. Kálmán, who was one of the main developers of its
theory[13].

The Kalman filter can be used for guiding, navigating, and controlling various
kinds of vehicles, such as aircraft, spacecraft, and ships.

The algorithm is recursive and composed of two phases. When performing
prediction, the Kalman filter produces estimates of the current state variables
and their uncertainties. As soon as the next measurement (necessarily corrupted
with some error, including random noise) is observed, these estimates are updated
using a weighted average, with more weight being given to estimates with more
certainty. Furthermore, it can work in real time utilizing only the current input
measurements, the previously determined state, and its uncertainty matrix, with
no need for additional historical data.

The optimality of Kalman filtering is based on the assumption of a normal
(Gaussian) distribution of errors.

Algorithm 2 The Kalman filter algorithm for linear Gaussian state transitions
and measurements[12].

1: procedure Algorithm Kalman_filter(µt−1, Σt−1, ut, zt)
2: µ̄t = Atµt−1 + Btut

3: Σ̄t = AtΣt−1A
T
t + Rt

4: Kt = Σ̄tC
T
t (CtΣ̄tC

T
t + Qt)−1

5: µt = µ̄t + Kt(zt − Ctµ̄t)
6: Σt = (I − KtCt)Σ̄t

7: return µt, Σt

8: end procedure

Extended Kalman Filter

The extended Kalman filter (EKF) is a nonlinear variation of the Kalman filter
that linearizes around an estimate of the current mean and covariance in estimation
theory. In the theory of nonlinear state estimation, navigation systems, and GPS,
the EKF has been deemed the de facto standard in the case of well characterized
transition models.

17

State of the art in Robot Navigation

The state transition and observation models in the extended Kalman filter don’t
have to be linear functions of the state; alternatively, they might be differentiable
functions.

xk = f (xk−1, uk) + wk

zk = h(xk) + vk

The process and observation noises, wk and vk, are respectively considered to be
zero mean multivariate Gaussian noises with covariance Qk and Rk. The control
vector is uk.

Algorithm 3 The extended Kalman filter algorithm[14].
1: procedure Algorithm Extended_Kalman_filter(µt−1, Σt−1, ut, zt)
2: µ̄t = g(ut, µt−1)
3: Σ̄t = GtΣt−1G

T
t + Rt

4: Kt = Σ̄tH
T
t (HtΣ̄tH

T
t + Qt)−1

5: µt = µ̄t + Kt(zt − h(µ̄t)
6: Σt = (I − KtHt)Σ̄t

7: return µt, Σt

8: end procedure

2.1.7 Particle Filter

Particle filters, often known as sequential Monte Carlo techniques, are a collection
of Monte Carlo algorithms for solving filtering issues in signal processing and
Bayesian statistical inference. When partial observations are taken and random
disturbances are present in both the sensors and the dynamical system, the filtering
issue entails estimating the internal states in dynamical systems. Given some noisy
and incomplete observations, the goal is to compute the posterior distributions
of the states of some Markov process. Del Moral created the phrase "particle
filters" in 1996 in relation to mean-field interacting particle approaches that have
been utilized in fluid mechanics since the 1960s. Liu and Chen created the phrase

18

State of the art in Robot Navigation

"Sequential Monte Carlo" in 1998.
Particle filtering represents the posterior distribution of a stochastic process

given noisy and/or incomplete data using a set of particles (also known as samples).
The initial state and noise distributions can be nonlinear, and the state-space model
can be nonlinear. Particle filter approaches give a well-established mechanism for
obtaining samples from the desired distribution without making assumptions about
the state-space model or state distributions. When applied to very high-dimensional
systems, however, these strategies fail miserably.

Algorithm 4 The particle filter algorithm, a variant of the Bayes filter based on
importance sampling[15].

1: procedure Algorithm Particle_filter(χt−1, ut, zt)
2: χ̄

t = χ
t = ∅

3: for m = 1 to M do
4: sample x

[m]
t ∼ p(xt | ut, x

[m]
t−1)

5: w
[m]
t = p(zt | x

[m]
t)

6: χ̄
t = χ̄

t + ⟨x[m]
t , w

[m]
t ⟩

7: end for
8: for m = 1 to M do
9: draw i with probability ∝ w

[i]
t

10: add x
[i]
t to χ

t

11: end for
12: return χ

t

13: end procedure

2.1.8 EKF Localization

The extended kalman filter is implemented by the ekf localization node, which
allows a large number of parameters to be configured to determine the filter’s
accuracy as well as which sensors data are included in the estimate process. Each
parameter is bundled together in configuration files, which are represented by file
name.yaml in ROS, in order to appropriately set it. The configuration matrix
related to a certain source of information and the process covariance matrix are the
two most crucial parameters to select. The ekf localization node may get data from
sensors by subscribing to ROS topics, where each sensor broadcasts sensed data in

19

State of the art in Robot Navigation

a specified ROS message format. It can receive both odometry and IMU messages.
The odometry data is collected through the RTK-GPS receiver, which is claimed
to be fairly precise in this scenario. The GPS data is converted from GPS message
format to odometry message format using the navsat transform node, which takes
as inputs the information from the RTK-GPS receiver, the odometry information
produced by the ekf localization node, and the IMU data (for the robot’s heading),
and outputs odometry messages represented in the robot’s world frame.

2.1.9 AMCL Localization

Amcl is a probabilistic localization system for a robot moving in 2D. It employs
a particle filter to track a robot’s posture against a known map, as described by
Dieter Fox’s adaptive (or KLD-sampling) Monte Carlo localization technique[16].

Algorithm 5 MCL, or Monte Carlo Localization, a localization algorithm based
on particle filters.[17].

1: procedure Algorithm MCL(χt−1, ut, zt, m)
2: static wslow, wfast

3: χ̄
t = χ

t = ∅
4: for m = 1 to M do
5: x

[m]
t = sample_motion_model (ut, x

[m]
t−1)

6: w
[m]
t = measurement_model (zt, x

[m]
t , m)

7: χ̄
t = χ̄

t + ⟨x[m]
t , w

[m]
t ⟩

8: wavg = wavg + 1
M

w
[m]
t

9: end for
10: for m=1 to M do
11: draw i with probability ∝ w

[i]
i

12: add x
[i]
i to χ

t

13: end for
14: return χ

t

15: end procedure

20

State of the art in Robot Navigation

Algorithm 6 An adaptive variant of MCL that adds random samples. The number
of random samples is determined by comparing the short-term with the long-term
likelihood of sensor measurements.[17].

1: procedure Algorithm Augmented_MCL(χt−1, ut, zt, m)
2: static wslow, wfast

3: χ̄
t = χ

t = ∅
4: for m = 1 to M do
5: x

[m]
t = sample_motion_model (ut, x

[m]
t−1)

6: w
[m]
t = measurement_model (zt, x

[m]
t , m)

7: χ̄
t = χ̄

t + ⟨x[m]
t , w

[m]
t ⟩

8: wavg = wavg + 1
M

w
[m]
t

9: end for
10: wslow = wslow + αslow(wavg − wslow)
11: wfast = wfast + αfast(wavg − wfast)
12: for m=1 to M do
13: with probabilty max{0.0, 1.0 - wfast/wslow} do
14: add random pose to χ

t

15: else
16: draw i ∈ {1, ..., N} with probability ∝ w

[i]
t

17: add x
[i]
t to χ

t

18: end with
19: end for
20: return χ

t

21: end procedure

21

State of the art in Robot Navigation

2.2 Mapping

In the previous sections we had as hypothesis that an a priori map of the environment
was available. But in real case scenarios not all time we can posses a map, moreover
"most buildings do not comply with the blueprints generated by their architects" [18],
or some other times they are not compatible from a robot’s perspective because the
presence of new features may cause localization issues and misbehaviours. "Being
able to learn a map from scratch can greatly reduce the efforts involved in installing
a mobile robot"[18], it can be considered an additional feature that makes a robot
truly autonomous. This task is obviously not easy, here we can list a number of
challenging problems in robot mapping:

• Autonomously making a map is a "chicken-and-egg problem" [18], because
the robot has to simultaneously map the surrounding and localize itself
(SLAM problem), since odometry usually fails to keep a good estimate of the
configuration of the robot.

• The size of the environment, which has to be represented in an discrete
approximation, and a finite memory space.

• The noise in sensor perception that may result in map inconsistencies.

• The perceptual ambiguity, making it difficult to associate a location to a
particular feature in the environment.

In this section we will see how the problem is faced under different assumptions.

2.2.1 SLAM

Simultaneous localization and mapping (SLAM) is the computational issue of
creating or updating a map of an unknown environment while keeping track of
an agent’s position inside it at the same time. While this may appear to be a
chicken-and-egg issue at first glance, there are numerous techniques for solving it in
tractable time for particular situations. The particle filter, extended Kalman filter,
covariance intersection, and GraphSLAM are all popular approximation solution

22

State of the art in Robot Navigation

approaches. SLAM algorithms are utilized in robot navigation, robotic mapping,
and odometry for virtual reality and augmented reality, and are based on principles
in computational geometry and computer vision.

23

State of the art in Robot Navigation

2.3 Global Planning

2.3.1 Dijkstra’s algorithm

Dijkstra’s algorithm is a greedy strategy algorithm for finding the shortest paths
which connect all the nodes of a graph to a chosen source node. This algorithm
has been devised by Edsger W. Dijkstra in 1956 [19]. Moreover, it is employed
several fields applications under the assumption that the given problem can be
modeled with a graph representation. Hence, the most important utilizations deal
with network routing protocols, automated navigation systems and/or subroutine
in other algorithms.

Dijkstra’s approach makes use of three main data structures to store the list
of the minimum distances of all the nodes from the source, the list of links of the
shortest paths, and a priority queue useful for the algorithm’s backbone. Moreover,
the list of minimum distances and the list of links will be the output of the algorithm.

2.3.2 A-star algorithm

The A-star algorithm is an heuristic best-first search algorithm published by Peter
Hart, Nils Nilsson and Bertram Raphael of Stanford Research Institute in 1968.
Initially, it has been devised for a project which consists of a robot that plans its
own actions; but then, due to its efficiency and optimality, it became one of the
most used algorithms in several fields.

A-star is a heuristic iterative algorithm applied to weighted-graphs, hence it
does not explore all the solutions state space. Conversely, at each iteration, it
chooses the path which is more convenient to explore by minimizing a cost function
defined as follows:

f (n) = g(n) + h(n)
where f(n) is the cost function evaluated for node n, g(n) is the cost paid to

build the path from the source to n, and h(n) is an estimation of the cheapest cost

24

State of the art in Robot Navigation

Algorithm 7 Dijkstra Algorithm[19].
1: procedure Dijkstra(Q, s, w)
2: Initialization
3: for each v in Q do
4: dist[v] = ∞
5: prec[v] = null
6: end for
7: dist[s] = 0
8: Compute the best path
9: while Q /= empty do

10: u = vertex with the minimum dist[] in Q
11: remove u from Q
12: if dist[u] = ∞ then
13: break
14: end if
15: for each neighbour v of u do
16: temp = dist[u] + w(u, v)
17: if temp ≤ dist[v] then
18: dist[v] = temp
19: prec[v] = u
20: end if
21: end for
22: end while
23: return dist, prec
24: end procedure

25

State of the art in Robot Navigation

paid to reach the goal starting from n.
Accordingly to Dijkstra’s approach, A-star makes use of a priority queue to

choose which node has to be expanded. The only differences is in the criterion used
to sort the queue, indeed Dijkstra uses the distance from the source while A-star
the cost function f(n) defined before.

2.4 ROS2

ROS (Robot Operating System) is an open-source software development kit for
robotics applications [21]. Despite its name, it is not an operating system but
more like a Software Development Kit (SDK) since it provides a common standard
platform to develop a robotic application.

"Don’t reinvent the wheel. Create something new and do it faster and
better by building on ROS!" [22]

ROS was created more than ten years ago by Keenan Wyrobek and Eric Berger
while at Stanford, an attempt to remove the reinventing the wheel situation from
which robotics was suffering [23]. The ROS project has then been maintained by
Willow Garage and the Open Source Robotic Foundation (OSRF).

The foundation of ROS is its communication system, the "middleware" or
"plumbing" as defined in [24], which is a standardized messaging system already
provided in ROS. It controls the communication details between the nodes (the
distributed processes), which can also execute over different machines, using a
publish/subscribe approach. ROS also includes tools for developers such as systems
for launching, debugging the application, or testing and visualizing the results. In
advance, ROS provides a series of packages that already implement the drivers or
the algorithms for the most common task, such as GPS, control system, or even user
interfaces; this permits the developers to focus only on the application. "The goal
of the ROS project is to continually raise the bar on what is taken for granted, and
thus to lower the barrier to entry to building robot applications," is stated on ROS
website [24]. The ROS ecosystem has at its back a large community of students,
researchers, or corporations that constantly develop and support the project. In

26

State of the art in Robot Navigation

Algorithm 8 A-star Algorithm[20].
1: procedure A-star(start, goal)
2: closedset := the empty set
3: openset := set containing the initial node
4: g_score[start] := 0
5: came_from := the empty map
6: h_score[start] := heuristic_estimate_of_distance(start, goal)
7: f_score[start] := h_score[start]
8: while openset is not empty do
9: x := the node in openset having the lowest f_score[] value

10: if x = goal then
11: return reconstruct_path(came_from,goal)
12: end if
13: remove x from openset
14: add x to closedset
15: for each y in neighbor_nodes(x) do
16: if y in closedset then
17: continue
18: end if
19: tentative_g_score := g_score[x] + dist_between(x,y)
20: if y not in openset then
21: add y to openset
22: tentative_is_better := true
23: else
24: if tentative_g_score < g_score[y] then
25: tentative_is_better := true
26: else
27: tentative_is_better := false
28: end if
29: end if
30: if tentative_is_better = true then
31: came_from[y] := x
32: g_score[y] := tentative_g_score
33: h_score[y] := heuristic_estimate_of_distance(y, goal)
34: f_score[y] := g_score[y] + h_score[y]
35: end if
36: end for
37: end while
38: return failure
39: end procedure

27

State of the art in Robot Navigation

Algorithm 9 The reconstruct_path employed in A-star Algorithm[20].
1: procedure reconstruct_path(came_from, current_node)
2: if came_from[current_node] is set then
3: p = reconstruct_path(came_from,came_from[current_node])
4: return (p + current_node)
5: else
6: return the empty path
7: end if
8: end procedure

28

State of the art in Robot Navigation

the last years, ROS has been going through a significant transformation to ROS2.
The latter has been developed from scratch to incorporate new technologies such as
Data Distribution Service (DDS), meet real-time constraints, and run on different
Operating Systems (OS).

2.4.1 Graph Concepts

As the foundation of a ROS2 system, there is the ROS graph. "The ROS graph
refers to the network of nodes in a ROS system and the connections between them
by which they communicate," as stated in the official documentation [25]. The
graph is composed of the following building blocks:

• Nodes: entity in the ROS graph communicates to other nodes through topics.

• Messages: data that are exchanged using topics between nodes

• Topics: channels where a node can publish messages or subscribe in order to
get messages from it.

• Discovery is how nodes make their first connections and become aware of
each other.

Nodes

In the ROS graph, a node is an "independent computing process" [26] and utilizes
the ROS clients library to communicate with other nodes. In a single application
(single executable written in C++, Python, ...), one or more nodes can be defined,
and they also interact if located in different machines.

"Each node in ROS should be responsible for a single, module purpose (e.g. one
node for controlling wheel motors, one node for controlling a laser range-finder,
etc)" [25].

Thanks to Topics, communication, and interaction between nodes are possible;
a node can publish messages over a Topic while others can receive it if they are
subscribed to it. The other ways of communication provided are Services and

29

State of the art in Robot Navigation

Actions. Moreover, there are configurable Parameters associated that can be set
and associated with a node.

Messages and communication interfaces

The communication in ROS can be thanks to interfaces. There are three types
of interfaces: messages, services, and actions. The interfaces have a simple data
structure which is defined using "the interface definition language (IDL)" [27], ROS
will automatically generate from this description interfaces source code in different
programming languages such as C++ Python or DDS type. Now we will briefly
describe these interfaces:

• Messages are simple data with a structure defined in a .msg file; these data
are exchanged by nodes using topics. A Topic can be considered a channel for
nodes to exchange messages; it is a unilateral way of communication. Only
a node can send messages over a topic, but more nodes subscribed to it can
receive the data stream.

• Services are another method of communication for nodes. "Services are based
on a call-and-response model, versus topics’ publisher-subscriber model" [28].
The services offer a Request / Response type of interface. This interface type,
defined in a .srv file, is composed of two parts (two messages): one for the
request and the other for the response. A server node will offer the service
under a particular name and compute the answer whenever a client node asks
for this service.

• "Actions are one of the communication types in ROS 2 and are intended for
long-running tasks" [29]. They are defined in a .action file consisting of three
message declarations: goal, feedback, and result. This structure is composed
of topics and services. It is similar to services because it utilizes a client-server
model but, in addition, also publishes a data stream over a feedback topic. "An
"action client" node sends a goal to an "action server" node that acknowledges
the goal and returns a stream of feedback and a result" as written in [29].

30

State of the art in Robot Navigation

Discovery

In contrast with what happened in ROS1, "The Discovery of nodes happens
automatically through the underlying middleware of ROS 2" [25]. This process
can be analyzed into three phases of the node lifecycle. At its startup, a node
will announce itself in the network; after this, the other Nodes will respond to
this advertisement with the necessary information to establish the appropriate
communications through the correct interfaces. During their execution, nodes will
notify about their presence in the network at defined time intervals to allow the
connection to new components. Before the shutdown, a node will advertise its
detaching from the graph.

2.4.2 ROS 2 architecture overview

In order to meet various objectives such as real-time performances, being cross-
platform, and being able to be deployed on embedded systems, ROS2 has great
innovation from ROS1, first of all, the incorporation of Data Distribution Service
(DDS) technology.

DDS

The DDS is "an industry-standard real-time communication system and end-to-end
middleware" as declared in [26]. It enables "reliable publish/subscribe transport
similar to that of ROS1" [26]. Still, in contrast with ROS1, it can be applied in
real-time programming tasks and embedded systems thanks to its flexibility in
the configuration of the communication implementation. As stated in [26] "DDS
meets the requirements of distributed systems for safety, resilience, scalability,
fault-tolerance and security"; it is a great leap forward in reliability to meet
industrial standards. DDS is developed and provided by many vendors. "Several
implementations of this communication system have been used in mission-critical
environments (e.g., trains, aircrafts, ships, dams, and financial systems) and have
been verified by NASA and the United States Department of Defense" [26].

31

State of the art in Robot Navigation

ROS1 versus ROS2 architecture

ROS1 communication system is based on TCPROS/UDPROS protocols, a custom
implementation of the ROS middleware which utilizes the TCP and UDP sock-
ets. This implementation needs a master-node that interacts and manages the
interconnection between subscribers and publisher nodes of the same topic. The
master-node establishes a direct connection between the subscriber and publisher
at their startup. "Actual data (i.e., a message) is transported directly between
nodes" [26], in this way, the communication does not involve the ROS master any-
more. At the end of the transaction, we have peer-to-peer communication between
the nodes. On the contrary, ROS2 is built on top of a DDS/RTPS (Real-Time
Publish-Subscribe) communication system which is the middleware implementation.
"DDS is an end-to-end middleware that provides features which are relevant to ROS
systems" [30]. Thanks to DDS, in ROS2, we can have a decentralized discovery (we
do not need a ROS master); moreover, there is control over the Quality of Service
(QoS) policies that define the data transportation behavior. The elimination of the
ROS master makes ROS2 a "system more fault-tolerant and flexible" [31]. In ROS2,
you can choose your middleware implementation depending on various aspects and
needs, like the license or the computation performance of your device.

ROS2 to utilize DDS needs a package that can abstract the underlying DDS
API to a higher level ROS interface; this leads to a "ROS Middleware interface"
(rmw interface or just rmw).

ROS2 internal architecture

There is an abstraction between the ROS facilities and the DDS implementation,
as introduced before. This abstraction is composed of two interfaces:

• rmw: The ROS middleware interface; stands between the ROS2 stack and the
middleware distribution (DDS/RTPS). Its purpose is to catch the minimum
middleware functionalities that may be used in the definition of the client
libraries; they are written based on the DDS vendor-specific interfaces.

• rcl: The ROS client library interface, an abstraction of the underlying rmw,

32

State of the art in Robot Navigation

is used to implement the client libraries ignoring the particular middleware
implementation. "The purpose of rcl is to provide a common implementation
for more complex ROS concepts,... while remaining agnostic to the underlying
middleware being used" [32]

Above these two interfaces stand the client libraries that the typical ROS developer
will use to develop the robot application. The client libraries to develop a robotic
application using ROS2 are:

• rclcpp

• rclpy

• rclc or other minor client libraries not directly supported

This layer of abstraction provides to the developer all the functionalities for
communication, creation, and integration of nodes in the ROS graph.

33

Chapter 3

Seamless Navigation in
Outdoor and Indoor
environments

This chapter will contain a detailed description of the proposed solution to the
seamless navigation problem. The first part will focus on the existing packages
in ROS2 to handle sensor fusion for outdoor navigation and the already available
application to perform waypoint following. Then the significant changes and the
part of the application developed from scratch will be highlighted from the rest.

3.1 Sensor fusion using Robot Localization and
AMCL

In this thesis work, since there are two types of navigation, one for outdoor locations
and one for indoor surroundings, two different localization filters have been chosen.

• EKF for outdoor localization

• AMCL for indoor localization

35

Seamless Navigation in Outdoor and Indoor environments

These choices have been made considering the main characteristics of the sensors
and the difficulties of the different environments. The system on which the model
is applied is the Husky UGV, a vehicle with a skid-steering drive system capable of
navigating different types of terrain. The UGV is equipped with: a LIDAR 2D, an
IMU, a GPS, and a depth camera for obstacle avoidance.

Since in an outdoor environment, it’s possible to utilize an RTK capable GPS
which gives accurate measurements about the UGV position, and an IMU to provide
precise orientation estimation. In this circumstance, considering the non-linearity of
the system and the complexity of the other filters not justified in this situation, an
EKF filter has resulted as the best choice. This choice is supported by the relatively
good accuracy in position estimation and the low complexity of the implementation.
Other filter choices such as the UKF or the particle filter would have been more
expensive in both code implementation and computational performance with a not
justifiable gain in terms of accuracy.

In indoor environments, the situation is quite different. The GPS receiver does
not perform well, but a map of the surroundings is available in a ROS-compatible
format. In order to localize itself in this map, the robot utilizes a particle filter
that takes the already fused odometry information (of the robot motion model
and the IMU) and the Lidar measurements matched with the map. The use of the
particle filter and, in particular, of the Adaptive Monte Carlo localization permits
a robust and efficient solution that allows global localization, also if the sensors are
noisy. This filter is already implemented in the AMCL package of Nav2.

3.1.1 EKF and navsat node configuration

As introduced in the last chapter ROS introduces a package to perform local-
ization, the robot_localization package. This package has been chosen as
the implementation of the two EKF filters through the ekf_localization_node

ekf_localization_node and for the coordinate transformation between the WGS
and the map reference performed by the navsat_transform_node.

The ekf_localization_node "uses an omnidirectional motion model to project
the state forward in time" [33]. The node does not utilize the skid steer motion

36

Seamless Navigation in Outdoor and Indoor environments

model (the one of the Husky) to update the localization from the odometry sources.
Although the differences in the motion model, the node performance doesn’t decay
too much because the various sensor measurements correct the state estimate
prediction. Two nodes have been utilized to perform the localization of the husky:

• ekf_filter_node_odom: is used to fuse the data of the wheel encoders pub-
lished on the /wheel/odometry topic and the IMU data provided on the /imu/-
data topic. The state estimation result is given as a nav_msgs/msg/Odometry

published on the /odom topic, which is the estimate of the current pose
from the cumulative motion update. The node also computes and publishes
the coordinate transformation between the odom coordinate frame and the
base_link coordinate frame attached to the robot.

• ekf_filter_node_map: is another ekf_localization_node used for pose
estimation; it uses the IMU sensor data to gain information about the vehicle
orientation and the GPS odometry data for the robot’s position. The GPS
odometry information comes from the navsat_transform_node. The node
provides a transformation between the map reference frame, the global fixed
frame, and the odom frame, but it will not be published directly by this node
for reasons explained later.

The other node utilized by the Robot Localization package is an instance of the
navsat_transform_node:

• navsat_transform: these node inputs are the GPS coordinates in lati-
tude and longitude, together with the odometry msgs published by the
/ekf_filter_node_map. In this way, the node can correctly transform the
GPS coordinates into a position in the robot’s map frame.

These three nodes together can directly be used to completely localize the
vehicle in outdoor surroundings, which consists of finding the map -> base-link
transformation.

But since our task is to localize in both outdoor and indoor environments, the
structure has been modified to include another filter and localization mechanism.

37

Seamless Navigation in Outdoor and Indoor environments

Figure 3.1: ekf_filter_node_odom node the related topics, and the provided
transformation

Figure 3.2: ekf_filter_node_map node the related topics, and the provided
transformation

3.1.2 AMCL configuration

As introduced in the last chapter, the AMCL node is part of the Nav2 distribu-
tion and is utilized to localize the robot in a known environment. This is the
approach chosen in the indoor environment, and when a map of the surrounding
is already available or can be obtained from a SLAM first lap. The AMCL node
in this configuration already provides motion models for a differential-drive or
omnidirectional robot. Among these two, the differential drive motion model has
been chosen because it is closely related to the skid steer drive of the husky UGV.
The measurement model utilized is instead the likelihood_field described in
more detail afterward. The advantage of this model is the smoothness and the

38

Seamless Navigation in Outdoor and Indoor environments

Figure 3.3: navsat_transform_node node the related topics, and the provided
transformation

Figure 3.4: Transformations chain for outdoor localization

possible precomputation of the probability resulting in a significant reduction of
online computation efforts. As the ekf_localization_node_map, its task is to
provide a global estimate of the pose in the map. This is done using a particle
filter to fuse the information coming from the Lidar and odometry (supplied by the
ekf_filter_node_odom). The map is retrieved using the map_server node. The
result is the configuration estimate of the husky model, available on the /amcl_pose

and the map->odom transformation, which will not be published.

39

Seamless Navigation in Outdoor and Indoor environments

Figure 3.5: amcl_node node the related topics, and the provided transformation

Figure 3.6: Transformations chains for indoor localization

3.2 Localization broadcaster

To obtain an actual seamless navigation application it is needed a proper localization
in both environments and a method to have a transition between the two. The
strategy to handle both localization filters and select which of the two estimates must
be utilized is implemented in a custom node: the localization_broadcaster.
This node takes as input the two filter estimates of the UGV configuration:

• /odometry/global is the topic on which the estimate of the UGV configuration
computed by the /ekf_localization_node is published. It is in the form of
a nav_msgs/msg/Odometry message and is the best possible estimate in the

40

Seamless Navigation in Outdoor and Indoor environments

outdoor environment.

• /amcl_pose is the topic on which the estimate of the vehicle pose computed
by the AMCL filter is published. The configuration and its covariance are
delivered with a geometry_msgs/msg/PoseWithCovarianceStamped message;
this estimate must be utilized in indoor surroundings.

The node also listens to the odom->base_link transformation and computes its
inverse. Thanks to these data, it is possible to obtain the map->odom transform
for either outdoor or indoor situations and publish the best choice in that particular
moment. The choice is made using a boolean parameter that depicts the initial
condition (true for indoor and false for outdoor), which can be changed during the
navigation activity through the /set_bool service.

Figure 3.7: Full transformations chain for seamless localization

AS stated in the REP-105, it is necessary to "build a TF tree that contains a
full map -> odom -> base_link -> [sensor frames] for your robot" [34]. Using
this schema is possible to obtain satisfactory performances in global localization, ob-
taining a complete transformation chain from the fixed map frame to the base_link

reference frame. All the transformations are published using the tf2 package. Since
each part of the robot has an associated reference frame in ROS, we will also define
a URDF file where all the relative transformations between robot components and
sensors are implemented. All this structure solves the problem of global localization,
which is fundamental to obtaining satisfactory results in the navigation process.

41

Seamless Navigation in Outdoor and Indoor environments

3.3 Waypoint follower

"Waypoint following is a basic feature of a navigation system. It tells our
system how to use navigation to get to multiple destinations" [34].

This package is already present in the Nav2 distribution, but it has been modified
to accommodate our custom needs. The aim of the nav2_waypoint_follower

package in its original configuration is to take a set of waypoints as inputs, navigate
to each of the positions set by these waypoints, and perform a task when they reach
the destination. In particular, this application implements an action server named
follow_waypoints which handles the list of waypoints and delegates the navigation
to the bt_navigator through the Navigate_to_pose action. The execution of the
task is instead a duty of the waypoint task executor described in detail later. As
described in its documentation, "it is a nice demo application for how to use Nav2
in a sample application" [35], but it can be more than that. It is an application that
permits not only to navigate autonomously but also to perform a precise task when
needed. This can be employed to make the transition between the two surrounding
easier, as we will see later.

The following sections describe the main adjust to this application:

• Handle GPS waypoints.

• Use the Navigate through poses action to perform navigation.

• Modify the waypoint task executor to handle different plugins.

• Modify the waypoint follower interfaces.

• Write a custom task to switch the localization mechanism.

These adjustments make the application suitable for our goal, having a UGV
capable of seamlessly navigating in indoor and outdoor surroundings.

3.3.1 GPS Waypoint follower

The first modification made to the waypoint follower is to accept GPS waypoints.
The waypoint follower takes only cartesian coordinates relative to the fixed map

42

Seamless Navigation in Outdoor and Indoor environments

frame in its original form. The GPS waypoints are defined in a .yaml file formatted
as follows:

#lat, long, alt, yaw(radians)

wp0: [47.84062029394745, 10.61997426956434,

740.0753334760666, -0.8405847300640226]

The first number represents the latitude, the second the longitude, then the al-
titude. At last, the robot’s orientation, which in 2-D is only defined by the
yaw angle here in radians representation. A list of these waypoints is sent
to the follow_GPS_waypoints server through a newly defined message called
nav2_msgs/OrientedNavsatFix.

When the server receives the goal, it converts the list of GPS waypoints to
poses in the map fixed frame using the geometry_msgs/PoseStamped message
format. This process is performed using the /fromLL service provided by the
/navsat_trasform_node included in the robot localization package. The node
loads and transforms all the GPS waypoints before starting the navigation task.
Using this approach, the application can handle routes outside the map borders
since we know the destination and we can handle obstacles dynamically.

3.3.2 Navigate through poses

The second modification to the original waypoint follower application is the use of
the NavigateThroughPose action to perform navigation. The NavigateThroughPose
action differentiates from NavigateToPose in the ability to specify a set of interme-
diate configurations that the Husky UGV must assume before reaching the final
destination.

The Navigate through poses action is used to navigate through a series of
configurations defined in a vector of PoseStamped message. Its execution uti-
lizes the bt_navigator package, which then loads the following behavior tree
navigate_throgh_poses_w_replanning_and_recovery (that can be seen in the
picture).
The tree defines the actions necessary for navigation and the recovery procedures

43

Seamless Navigation in Outdoor and Indoor environments

Figure 3.8: navigate_throgh_poses_w_replanning_and_recovery[36]
44

Seamless Navigation in Outdoor and Indoor environments

for handling unexpected events. The tree can be split into two parts the navigation
subtree and the recovery subtree.

Figure 3.9: behavior tree navigation[36]

In the navigation part, we can distinguish the following navigation actions:

• calculating a path through the poses and removing the ones that are already
completed

• following a path

• recovery behaviors which are related to the first two categories

The ComputePathThroughPoses action handles the planning and will use an
approach loaded as a plugin in the planner server (see nav2). In normal execution,
there will be a replanning every three seconds, and the RemovePassedGoals node will
remove the goals that the UGV has already passed on its path. An intermediate pose
will be removed from the course when the robot is inside an imaginary circle around
this pose of a parametrized radius. This is done to avoid the robot continuing
to try to replan through them in the future. After obtaining a feasible global

45

Seamless Navigation in Outdoor and Indoor environments

plan, the FollowPath node will begin the navigation using a suitable controller
for the path following task defined in the controller server by another plugin. If
either the planning or path following task has some problems, "contextually aware
recoveries" [36] will be attempted, such as clearing the global or local costmap The
"GoalUpdated node allows us to exit recovery conditions" [36], this happens when
we have set another goal for the system. This node ensures that the navigation
system will respond immediately when a new goal is present. If neither of the
contextual recoveries are capable of resolving the situation, the recovery subtree
will take action.

Figure 3.10: behavior tree navigation[36]

"This subtree is reserved for system-level failures to help resolve issues like the
robot being stuck or in a bad spot" [36] In this subtree, recovery operations such
as clearing both costmaps, spinning, and waiting will occur. After each of them,
navigation will be attempted again before shutdown procedures. As seen before,
the behavior tree structure allows great flexibility and modularity, which are two
fundamental principles to have an autonomous navigation system. The particular

46

Seamless Navigation in Outdoor and Indoor environments

choices of the plugins for planning and path following will be discussed later.

3.3.3 Waypoint task executor plugins

Another modification has been made to the waypoint follower application in order
to accommodate more than a single task plugin. In particular, it is possible to load
a list of plugins that define the robot’s behavior when it reaches the final goal. The
already available task the robot can handle at a waypoint is:

• WaitAtWaypoint: a demo plugin that tells the robot to wait for a specified
amount of time

• InputAtWaypoint: a demo plugin that puts the robot on pause when it reaches
the destination till an input is given on a specified topic.

• PhotoAtWaypoint: a demo plugin that takes photos when it reaches the
waypoint destination and saves it to a specified directory.

• SwitchLocalizationAtWaypoint: a custom plugin developed to perform a switch
between the outdoor or indoor localization mode.

switch localization at waypoint

The SwitchLocalizationAtWaypoint is a plugin that has the task of switching the
localization mode. In particular, when the robot reaches the desired goal, it calls the
/set_bool service of the localization_broadcaster service. This task is used
for particular waypoints positioned at the interfaces of a building or a structure.
The idea is to change the type of localization when we are facing a transition
between an indoor and an outdoor environment or vice versa. The /set_bool

service is used to trigger the internal parameter of the localization_broadcaster

application, which decides if the localization is performed using the EKF filter and
GPS data or the AMCL filter.

When the transition points are chosen correctly, the re-localization task succeeds
in a few update steps, and the robot navigates seamlessly from one environment to
another.

47

Seamless Navigation in Outdoor and Indoor environments

3.3.4 The new Waypoint Follower interfaces

The FollowWaypoints action has been further modified to manage :

• A goal and some intermediate poses that the robot should cross

• A task associated with the path

The new actions FollowWaypontPluginPath (and FollowWaypontPluginPath)
can handle both of the above requirements. The goal of this action is a vector of
"paths"; the idea is to specify the UGV route as a group of different sub-paths:
each of these has its final goal where must perform the task and optionally a set of
intermediate poses to specify the route better. Each subpath and task plugin is
specified in a WPathPlugin (or GPSWPathPlugin) message. A custom node loads
the subpaths from a .yaml file with the following structure:

1 paths: ["path1","path2"]

2 path1:

3 task: " switch_localization_at_waypoint "

4 waypoints: [wp0 , wp1 , wp2 , wp3]

5 #lat , long , alt , yaw(radians)

6 wp0: [47.84062029394745 , 10.61997426956434 ,

740.0753334760666 , -0.8405847300640226]

7 wp1: [47.84059982635257 , 10.62000124690127 ,

738.8925913609564 , -0.7768276186670429]

8 wp2: [47.84057298379028 , 10.62000168506552 ,

740.265083713457 , -1.577444088578223]

9 wp3: [47.8405469428392 , 10.6199984385851 ,

739.3662512088194 , -2.316651401838845]

10 path2:

11 task: " wait_at_waypoint "

12 waypoints: [wp0 , wp1 , wp2 , wp3 , wp4]

13 wp0: [47.84062029394745 , 10.61997426956434 ,

740.0753334760666 , -0.8405847300640226]

14 wp1: [47.84059982635257 , 10.62000124690127 ,

738.8925913609564 , -0.7768276186670429]

48

Seamless Navigation in Outdoor and Indoor environments

15 wp2: [47.84057298379028 , 10.62000168506552 ,

740.265083713457 , -1.577444088578223]

16 wp3: [47.8405469428392 , 10.6199984385851 ,

739.3662512088194 , -2.316651401838845]

17 wp4: [47.84054256418474 , 10.61995912998031 ,

739.4493419714272 , -3.001265257485784]

This example shows two subpaths where the waypoints are specified GPS coordi-
nates with the relative tasks.

3.4 Nav2 configuration

The navigation2 distribution, as seen before, is a group of packages that offers
a highly configurable stack for navigation, offering various plugins that imple-
ment different strategies for planning, path following, and recovery. As described
before, the Behaviour Tree navigator calls the execution of the various action
servers to complete different navigation-related actions. In particular with the
navigate_throgh_poses_w_replanning_and_recovery behavior tree has been
used as already discussed. The SmacPlannerHybrid has been chosen for computing
a collision-free path between the waypoints. On the controller server instead is
loaded the plugin of the DWBLocalPlanner that handles the path following task.
The global costmap and the local costmap share both an obstacle layer and an
inflation layer, the global costmap in addiction has a static layer.

3.4.1 Global Planner

The SmacPlannerHybrid is a Hybrid-A* reconfigurable implementation highly
configurable and suitable for both differential and Ackermann motion models.
The planner is implemented by the nav2_smac_planner that, as written in the
documentation, "contains an optimized templated A* search algorithm used to
create multiple A*-based planners for multiple types of robot platforms" [37]. The
plugin supports robots with different motion models and is also indicated for
differential, not circular-shaped robots or ones with Ackermann drive.

49

Seamless Navigation in Outdoor and Indoor environments

Figure 3.11: Global path

3.4.2 Local Planner

The DWBLocalPlanner is the successor of the DWA controller already implemented
in ROS1. It is more configurable than DWA and supports local planning for both
differential and omnidirectional motion models. It uses plugins to generate a set
of possible trajectories and score them. It is an extension of the DWA, which can
also be reconfigured during runtime. In the following table, there is a recap of the
already described DWA approach for local planning:

With this approach, the robot can dynamically avoid obstacles also not present
in the static map. The trajectories generated are then evaluated using a cost
function that sums the scores of different factors represented by these plugins:

• BaseObstacle - evaluates the trajectory using depending on the presence of
obstacles. It uses the local costmap and scores the course accordingly.

• GoalAlign - evaluates the trajectory depending on its alignment with the
following goal pose.

• GoalDist - evaluates the trajectory depending on its final distance to the
goal pose.

• PathAlign - evaluates the trajectory alignment with the path provided by
the planner.

50

Seamless Navigation in Outdoor and Indoor environments

1. Discretely sample in the robot’s control space (dx, dy, dθ)

2. For each sampled velocity, perform forward simulation from the robot’s
current state to predict what would happen if the sampled velocity
were applied for some (short) period of time.

3. Evaluate (score) each trajectory resulting from the forward simulation,
using a metric that incorporates characteristics such as: proximity to
obstacles, proximity to the goal, proximity to the global path, and
speed. Discard illegal trajectories (those that collide with obstacles).

4. Pick the highest-scoring trajectory and send the associated velocity
to the mobile base.

5. Rinse and repeat.

InfoBox 3.1: [38]

• PathDist - evaluates the trajectory depending on its final distance to the
global plan.

• RotateToGoal - Used to allow the UGV to rotate for aligning with the goal
orientation when it is close enough to the destination.

• Oscillation - It is used to avoid repetitive motions backward and forward.

As seen in the plugin description, the DWA planner also depends on the local
costmap, which collects obstacle information. For this reason, "tuning the parame-
ters for the local costmap is crucial for optimal behavior of DWA local planner," as
stated in [39]. The resulting trajectory will then be used for the robot motion.

3.4.3 Global costmap

The global costmap is configured to consider the static and dynamic obstacles. The
static obstacles are loaded using the static_layer, which loads the occupancy
information from the static map. In contrast, the dynamic ones are loaded using the
obstacle layer that uses the Lidar data as input. The inflation layer can assign a cost

51

Seamless Navigation in Outdoor and Indoor environments

Figure 3.12: Global costmap

to each cell of the map (between 0 and 255) according to the robot’s footprint and
the surrounding obstacles. The obstacles appear inflated by a range proportional
to the robot footprint. In addition, the inflation layer is used to create a smooth
gradient of costs around obstacles to improve the planner’s performances, keep
distances from obstructions, and avoid risks to remain stuck. The smooth gradient
is created using two additional parameters, the inflation radius and the cost scaling
factor.

3.4.4 Local costmap

This costmap is used only to consider the dynamic obstacles and help the local
planner compute the best trajectories. The local costmap uses the voxel layer
instead of the obstacle_layer; it is used to evaluate obstacles that can be perceived

52

Seamless Navigation in Outdoor and Indoor environments

not only by 2D laser scans but also using PointCloud or PointCloud2 messages
coming from a depth camera. It is also used the inflation layer as viewed in the
global costmap. The costs provided by the inflation layer are used to evaluate the
different trajectories in the DWA evaluation process.

Figure 3.13: Obstacle representation in the local map

53

Chapter 4

Simulation

Simulation is one of the essential aspects of software development; it is a necessary
step to verify and discover the potentiality and problems of a newly designed
algorithm or software component. In a simulation, we have a protected environment
to verify our application’s functionality and see how it interacts with the other
entities, analyzing the results rapidly. Using this strategy the developer can directly
test new features without the assistance of the final hardware platform, and also
without the risk of damaging the equipment or people. Simulation is useful also to
better understand the behaviour and find the critical aspects of the new function
and its integration with other software components. Moreover it is possible perform
regression testing, and train AI system using realistic scenarios. In this chapter will
be described the simulation tools and the environments used for the simulation. At
the end of the chapter the performance of the autonomous navigation application
will be evaluated by the simulation results.

4.1 Simulation Tools

The seamless navigation application,which has been described in the previous
chapter (3), has been tested using the Gazebo simulator. In the ROS2 distribution
is also provided the Rviz2 visualization tool that allows to visualize the data that
the model of the robot receives from the simulation.

55

Simulation

4.1.1 Gazebo simulator

Gazebo is an open-source 3D robotics simulator that can be integrated with ROS
through a set of packages and since the beginning has been designed "to simulate
robots in outdoor environments under various conditions" [40]. It is a realistic and
highly customizable simulation environment with the use of new plugins and new
structures. Through the GUI it is also possible to interact with the simulation,
build new environments using the available models, or new custom ones. It is also
possible to take screenshots, or create video presentation. Gazebo has been used in
various technology challenges and competitions, including the DARPA Robotics
challenge or the NASA space robotics challenge [41]. Its main technical features
are:

• Dynamics Simulation: it supports various high-performance physics engines
(ODE, Bullet, Simbody, DART) to reproduce the 3D dynamic motion of the
robots and their interaction with the surroundings.

• Advanced 3D Graphics: it utilizes an open-source graphics rendering engine
(OGRE) for rendering the environments in a realistic way, with lighting effects,
shadows and textures.

• Sensors and Noise: it is possible to utilize a large set of simulated sensors, for
example LiDARs, depth cameras, GPS or contact or force sensors.

• Plugins: custom plugins can be developed to add new functionalities and
behaviours through the Gazebo API.

• Robot models: many robot models are included in the Gazebo distribution,
additional models can be inported or built using the SDF format.

It is possible to create your simulation word, with structures buildings, terrain
features, using both the GUI or the SDF language; the setup will be saved in a
.word file.

56

Simulation

4.1.2 Rviz2

Rviz2 is the second version of a 3D visualization tool, it is used to analyze and
visualize the internal state of the robot and its perception of the environment. In
Rviz2 through the GUI it is possible to choose which information and about the
robot or sensor measurement we want to visualize. It is possible for example to
visualize in real time the robot’s configuration or the images published by a camera.
A useful feature is the possibility to load a map; on the static map the costmaps
will highlight the obstacles and the other features of the environment. Through the
navigation plugins it is possible to directly control the robot in real-time, asking
it to navigate to a specific location or through a route. Rviz2 can be used either
when the robot is tested in a Gazebo simulation environment or when it is in real
surroundings. Using both Gazebo and Rviz2 is possible to fully have a perception
about the application work on the robot, promptly confronting the new features
and modifications, and analyzing as it works under various conditions. This is
particularly indicated for localization applications, obstacle avoidance and path
planning.

4.2 Husky model

In order to work in simulation is needed a realistic model of the Husky UGV.
This model is provided directly by the Clearpath Robotics, by a Unified Robot
Description Format (URDF) file,which "is a file format for specifying the geometry
and organization of robots in ROS" [25]. The Husky model comprehend a complete
3D description of all the body parts and surfaces also using 3D meshes. Every
body part is also correlated with their dynamical characteristics (stiffness, mass,
inertia,...) that will be than used by Gazebo to simulate the UGV motion more
accurately. It is also possible to add various sensor to the robot model and their
output will be also simulated by Gazebo.

57

Simulation

Figure 4.1: Husky UGV model

4.2.1 Husky setup

In order to obtain satisfactory performances during localization and in obstacle
avoidance the Husky URDF model has been equipped with the following sensors:

• a GPS receiver: which tracks the GPS location of the robot and its velocity.

• a 2D LiDAR: to scan the surroundings in search for obstacles or feature of
the environment.

• an IMU: to accurately track the orientation of the UGV and esimate its
acceleration.

• a depth camera (optional): to dynamically track obstacles of different heights.

The model of each sensor is optionally loaded at the start of the simulation and
Gazebo will simulate and forward the measurement to the ROS topics defined in
the URDF file of these sensors. Using the gazebo plugins it is also possible to
reproduce the noise for the measurements to have more realistic working conditions.

58

Simulation

4.3 Simulation setup

The simulation environment can be highly customized. It is possible to add
buildings and modify the terrain configuration, an also set the WGPS coordinates
of the origin of the environment in order to simulate a GPS receiver.

4.3.1 Simulation environment

The simulation environment used is called small_town.world, an open source
available word [42] that represent a small outdoor environment with defined borders.
The environment has a planar surface, mostly composed of asphalt and a playground
in the middle as we can note in the figures.

Figure 4.2: small_town.world [42]

The environment is mostly free of overhead impediments that may deteriorate

59

Simulation

Figure 4.3: Map of small_town.world [42]

the GPS signal, as a result we expect to obtain a pretty accurate estimate of the
Husky configuration by the Extended Kalman Filter. At the contrary since there
are a lot of open spaces the estimate provided AMCL node may not be as accurate
in these area because they are free of features and obstacle which may be used as
reference to incorporate LiDAR measurements. The simulation world is delivered
together with the relative map generated using slam_toolbox.

4.3.2 Simulation Results

In order to properly evaluate the results of the simulation from the Gazebo simula-
tion we have extracted the real path performed by the Husky UGV using a plugin
that publishes the real pose at each instant.
Looking at the images we can distinguish the real pose and the the estimates

60

Simulation

provided by the two filters.

Figure 4.4: Time evolution of x and y position coordinates of the Husky UGV

From the following plots we can note that the results are satisfactory since the
localization error remains limitated during the full route of the UGV.

We can notice that the EKF node have greater accuracy with respect to the
AMCL, because as evaluated before there are not enough features in the environment
to provide an accurate localization using LIDAR scans. Another issue is the
EKF estimation which constantly anticipates the true position during the whole
simulation. This may arise from a sub-optimal choice in the EKF parameters.

61

Simulation

Figure 4.5: Comparison of the estimated path through the waypoints

62

Simulation

Figure 4.6: AMCL estimate localization error

63

Simulation

Figure 4.7: EKF estimate localization error

64

Simulation

Figure 4.8: Estimate localization error comparison between AMCL and EKF

65

Chapter 5

Conclusion

In this chapter we will analyze the main characteristics of the proposed solu-
tion, focusing on the strengths of this approach and the possible weaknesses and
improvements that can be made to achieve better results.

5.1 Main characteristics of the seamless naviga-
tion system

The implementation of the navigation application described in this thesis is designed
in order to be:

• Adaptable: since this approach is has very general starting points it can be
applied for working under various conditions and environments, its only limi-
tation is to have a map in a ROS compatible format for indoor environments,
which can be overcome by using SLAM techniques.

• Modular: since it is implemented as a collection of ROS packages it is really
portable and new features can be added as new packages, moreover new task
and routines can added to the application as plugins.

• Safe: It is capable of dynamically detect and avoid obstacles through the
Dynamic Window Approach and to make a transition to recovery state if it
remain stuck or other problem arises.

67

Conclusion

The work done till now still has limitation that leave space for improvements:

• Only consider obstacles on a planar plane: this problem can be easily overcome
by adding the support to 3D sensors such as 3D LiDARs or depth cameras
and add their measures to the local costmap through a voxel layer.

• Improve and smooth the indoor-outdoor transition: since in this point we are
changing the estimation method the transition in not always smooth because
the 2 estimates are not always aligned, some reference or landmark can be
used in those point to reduce the difference between the two estimate before
transition.

• Tuning the localization filter parameters: as seen in the result part the EKF
is slightly in advance with respect to the true state of the robot, this can be
reduced by tuning the filter parameters.

• Implement new motion models for the AMCL: a sample motion model for a
skid-drive system can be added in order to increase the accuracy of the motion
model transition.

• Implement new sensor models in the AMCL: new sensor such as a depth
camera or GPS can be used to implement new measurement updates and have
a better correction of the prediction estimate.

The autonomous navigation application has provided satisfactory results in simula-
tion environments and it is currently ready to be deployed on the real hardware.

5.2 Next steps

The application will be deployed on the Husky UGV of Clearpath Robotics, to
see how it behaves on real environments. Some improvements will be made to
integrate a depth camera, as described in the previous section, in order to have a
working solution for avoiding dynamic obstacles positioned at different heights. All
considered, this solution can be seen as a starting point to reach a fully autonomous
navigation system.

68

Conclusion

70

Bibliography

[1] Pablo Gonzalez-De-Santos, Roemi Fernández, Delia Sepúlveda, Eduardo
Navas, and Manuel Armada. «Unmanned Ground Vehicles for Smart Farms».
In: Agronomy. Ed. by Amanullah. Rijeka: IntechOpen, 2020. Chap. 6. doi: 10.

5772/intechopen.90683. url: https://doi.org/10.5772/intechopen.

90683 (cit. on pp. 1, 2).

[2] D. Kent Shannon, David E. Clay, and Kenneth A. Sudduth. «An Introduction
to Precision Agriculture». In: Precision Agriculture Basics. John Wiley &
Sons, Ltd, 2018. Chap. 1, pp. 1–12. isbn: 9780891183679. doi: https://doi.

org/10.2134/precisionagbasics.2016.0084. eprint: https://acsess.

onlinelibrary.wiley.com/doi/pdf/10.2134/precisionagbasics.2016.

0084. url: https://acsess.onlinelibrary.wiley.com/doi/abs/10.

2134/precisionagbasics.2016.0084 (cit. on pp. 1, 2).

[3] Amitava Chatterjee, Anjan Rakshit, and N. Nirmal Singh. «Mobile Robot
Navigation». In: Vision Based Autonomous Robot Navigation: Algorithms
and Implementations. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013,
pp. 1–20. isbn: 978-3-642-33965-3. doi: 10.1007/978-3-642-33965-3_1.
url: https://doi.org/10.1007/978-3-642-33965-3_1 (cit. on p. 2).

[4] Tod S. Levitt and Daryl T. Lawton. «Qualitative navigation for mobile
robots». In: Artificial Intelligence 44.3 (1990), pp. 305–360. issn: 0004-3702.
doi: https://doi.org/10.1016/0004-3702(90)90027-W. url: https:

//www.sciencedirect.com/science/article/pii/000437029090027W

(cit. on p. 2).

71

https://doi.org/10.5772/intechopen.90683
https://doi.org/10.5772/intechopen.90683
https://doi.org/10.5772/intechopen.90683
https://doi.org/10.5772/intechopen.90683
https://doi.org/https://doi.org/10.2134/precisionagbasics.2016.0084
https://doi.org/https://doi.org/10.2134/precisionagbasics.2016.0084
https://acsess.onlinelibrary.wiley.com/doi/pdf/10.2134/precisionagbasics.2016.0084
https://acsess.onlinelibrary.wiley.com/doi/pdf/10.2134/precisionagbasics.2016.0084
https://acsess.onlinelibrary.wiley.com/doi/pdf/10.2134/precisionagbasics.2016.0084
https://acsess.onlinelibrary.wiley.com/doi/abs/10.2134/precisionagbasics.2016.0084
https://acsess.onlinelibrary.wiley.com/doi/abs/10.2134/precisionagbasics.2016.0084
https://doi.org/10.1007/978-3-642-33965-3_1
https://doi.org/10.1007/978-3-642-33965-3_1
https://doi.org/https://doi.org/10.1016/0004-3702(90)90027-W
https://www.sciencedirect.com/science/article/pii/000437029090027W
https://www.sciencedirect.com/science/article/pii/000437029090027W

BIBLIOGRAPHY

[5] Bruno Siciliano and Oussama Khatib. Springer Handbook of Robotics. Berlin,
Heidelberg: Springer-Verlag, 2007. isbn: 354023957X (cit. on pp. 3–5).

[6] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic Robotics
(Intelligent Robotics and Autonomous Agents). The MIT Press, 2005. isbn:
0262201623 (cit. on pp. 3, 7).

[7] Ningbo Li, Lianwu Guan, Yanbin Gao, Shitong Du, Menghao Wu, Xingx-
ing Guang, and Xiaodan Cong. «Indoor and Outdoor Low-Cost Seamless
Integrated Navigation System Based on the Integration of INS/GNSS/LIDAR
System». In: Remote Sensing 12.19 (2020). issn: 2072-4292. doi: 10.3390/

rs12193271. url: https://www.mdpi.com/2072-4292/12/19/3271 (cit. on
p. 4).

[8] Henrik I. Christensen and Gregory D. Hager. «Sensing and Estimation».
In: Springer Handbook of Robotics. Ed. by Bruno Siciliano and Oussama
Khatib. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 87–107.
isbn: 978-3-540-30301-5. doi: 10 . 1007 / 978 - 3 - 540 - 30301 - 5 _ 5. url:
https://doi.org/10.1007/978-3-540-30301-5_5 (cit. on p. 10).

[9] «Actuators and Sensors». In: Robotics: Modelling, Planning and Control.
London: Springer London, 2009, pp. 191–231. isbn: 978-1-84628-642-1. doi:
10.1007/978-1-84628-642-1_5. url: https://doi.org/10.1007/978-1-

84628-642-1_5 (cit. on p. 11).

[10] Gregory Dudek and Michael Jenkin. «Inertial Sensors, GPS, and Odometry».
In: Springer Handbook of Robotics. Ed. by Bruno Siciliano and Oussama
Khatib. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 477–490.
isbn: 978-3-540-30301-5. doi: 10.1007/978- 3- 540- 30301- 5_21. url:
https://doi.org/10.1007/978-3-540-30301-5_21 (cit. on pp. 12, 13).

[11] Wikipedia contributors. Global Positioning System — Wikipedia, The Free
Encyclopedia. [Online; accessed 28-March-2022]. 2022. url: https://en.

wikipedia . org / w / index . php ? title = Global _ Positioning _ System &

oldid=1079313567 (cit. on p. 12).

72

https://doi.org/10.3390/rs12193271
https://doi.org/10.3390/rs12193271
https://www.mdpi.com/2072-4292/12/19/3271
https://doi.org/10.1007/978-3-540-30301-5_5
https://doi.org/10.1007/978-3-540-30301-5_5
https://doi.org/10.1007/978-1-84628-642-1_5
https://doi.org/10.1007/978-1-84628-642-1_5
https://doi.org/10.1007/978-1-84628-642-1_5
https://doi.org/10.1007/978-3-540-30301-5_21
https://doi.org/10.1007/978-3-540-30301-5_21
https://en.wikipedia.org/w/index.php?title=Global_Positioning_System&oldid=1079313567
https://en.wikipedia.org/w/index.php?title=Global_Positioning_System&oldid=1079313567
https://en.wikipedia.org/w/index.php?title=Global_Positioning_System&oldid=1079313567

BIBLIOGRAPHY

[12] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic Robotics
(Intelligent Robotics and Autonomous Agents). The MIT Press, 2005. Chap. 2.
isbn: 0262201623 (cit. on pp. 13–17).

[13] Stepanov, O. A. (15 May 2011). "Kalman filtering: Past and present. An
outlook from Russia. (On the occasion of the 80th birthday of Rudolf Emil
Kalman)". Gyroscopy and Navigation. 2 (2): 105. doi:10.1134/S2075108711020076.
S2CID 53120402. (cit. on p. 17).

[14] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic Robotics
(Intelligent Robotics and Autonomous Agents). The MIT Press, 2005. Chap. 3.
isbn: 0262201623 (cit. on p. 18).

[15] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic Robotics
(Intelligent Robotics and Autonomous Agents). The MIT Press, 2005. Chap. 4.
isbn: 0262201623 (cit. on p. 19).

[16] ROS.org, http://wiki.ros.org/amcl (cit. on p. 20).

[17] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic Robotics
(Intelligent Robotics and Autonomous Agents). The MIT Press, 2005. Chap. 8.
isbn: 0262201623 (cit. on pp. 20, 21).

[18] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic Robotics
(Intelligent Robotics and Autonomous Agents). The MIT Press, 2005. Chap. 9.
isbn: 0262201623 (cit. on p. 22).

[19] Edsger W Dijkstra. «A note on two problems in connexion with graphs». In:
Numerische mathematik 1.1 (1959), pp. 269–271 (cit. on pp. 24, 25).

[20] Wikipedia. Algoritmo A* — Wikipedia, L’enciclopedia libera. [Online; in data
27-marzo-2022]. 2022. url: http://it.wikipedia.org/w/index.php?

title=Algoritmo_A*&oldid=126018331 (cit. on pp. 27, 28).

[21] Yuya Maruyama, Shinpei Kato, and Takuya Azumi. «Exploring the perfor-
mance of ROS2». In: Proceedings of the 13th ACM SIGBED International
Conference on Embedded Software (EMSOFT). 2016, pp. 1–10 (cit. on p. 26).

[22] Why Ros? url: https://www.ros.org/blog/why-ros/ (cit. on p. 26).

73

http://it.wikipedia.org/w/index.php?title=Algoritmo_A*&oldid=126018331
http://it.wikipedia.org/w/index.php?title=Algoritmo_A*&oldid=126018331
https://www.ros.org/blog/why-ros/

BIBLIOGRAPHY

[23] A history of ROS (robot operating system). July 2020. url: https://www.

theconstructsim.com/history-ros/ (cit. on p. 26).

[24] The ros ecosystem. url: https://www.ros.org/blog/ecosystem/ (cit. on
p. 26).

[25] Ros Concepts. url: https://docs.ros.org/en/galactic/Concepts.html

(cit. on pp. 29, 31, 57).

[26] Yuya Maruyama, Shinpei Kato, and Takuya Azumi. «Exploring the perfor-
mance of ROS2». In: 2016 International Conference on Embedded Software
(EMSOFT). 2016, pp. 1–10. doi: 10.1145/2968478.2968502 (cit. on pp. 29,
31, 32).

[27] About Ros 2 interfaces. url: https://docs.ros.org/en/foxy/Concepts/

About-ROS-Interfaces.html (cit. on p. 30).

[28] Understanding Ros 2 services. url: https://docs.ros.org/en/foxy/

Tutorials/Services/Understanding-ROS2-Services.html (cit. on p. 30).

[29] Understanding Ros 2 actions. url: https://docs.ros.org/en/foxy/

Tutorials/Understanding-ROS2-Actions.html (cit. on p. 30).

[30] About different Ros 2 DDS/RTPS vendors. url: https://docs.ros.org/

en/foxy/Concepts/About-Different-Middleware-Vendors.html (cit. on
p. 32).

[31] url: https://design.ros2.org/articles/ros_on_dds.html (cit. on
p. 32).

[32] About internal ROS 2 interfaces. url: https://docs.ros.org/en/foxy/

Concepts/About-Internal-Interfaces.html (cit. on p. 33).

[33] Robot_localization wiki. url: http://docs.ros.org/en/noetic/api/

robot_localization/html/index.html (cit. on p. 36).

[34] Nav2. url: https://navigation.ros.org/index.html (cit. on pp. 41, 42).

[35] Ros-Planning. nav2_waypoint_follower. url: https://github.com/ros-

planning/navigation2/tree/main/nav2_waypoint_follower (cit. on
p. 42).

74

https://www.theconstructsim.com/history-ros/
https://www.theconstructsim.com/history-ros/
https://www.ros.org/blog/ecosystem/
https://docs.ros.org/en/galactic/Concepts.html
https://doi.org/10.1145/2968478.2968502
https://docs.ros.org/en/foxy/Concepts/About-ROS-Interfaces.html
https://docs.ros.org/en/foxy/Concepts/About-ROS-Interfaces.html
https://docs.ros.org/en/foxy/Tutorials/Services/Understanding-ROS2-Services.html
https://docs.ros.org/en/foxy/Tutorials/Services/Understanding-ROS2-Services.html
https://docs.ros.org/en/foxy/Tutorials/Understanding-ROS2-Actions.html
https://docs.ros.org/en/foxy/Tutorials/Understanding-ROS2-Actions.html
https://docs.ros.org/en/foxy/Concepts/About-Different-Middleware-Vendors.html
https://docs.ros.org/en/foxy/Concepts/About-Different-Middleware-Vendors.html
https://design.ros2.org/articles/ros_on_dds.html
https://docs.ros.org/en/foxy/Concepts/About-Internal-Interfaces.html
https://docs.ros.org/en/foxy/Concepts/About-Internal-Interfaces.html
http://docs.ros.org/en/noetic/api/robot_localization/html/index.html
http://docs.ros.org/en/noetic/api/robot_localization/html/index.html
https://navigation.ros.org/index.html
https://github.com/ros-planning/navigation2/tree/main/nav2_waypoint_follower
https://github.com/ros-planning/navigation2/tree/main/nav2_waypoint_follower

BIBLIOGRAPHY

[36] Navigate through poses. url: https://navigation.ros.org/behavior_

trees/trees/nav_through_poses_recovery.html (cit. on pp. 44–46).

[37] Steve Macenski. Smac Planner. url: https://github.com/ros-planning/

navigation2/tree/main/nav2_smac_planner (cit. on p. 49).

[38] DWA local planner. url: http://wiki.ros.org/dwa_local_planner (cit.
on p. 51).

[39] Kaiyu Zheng. Ros Navigation Tuning Guide. 2019. url: https://arxiv.

org/abs/1706.09068v2 (cit. on p. 51).

[40] Osrf. Why gazebo? url: http://gazebosim.org/ (cit. on p. 56).

[41] Wikipedia contributors. Gazebo simulator — Wikipedia, The Free Encyclope-
dia. [Online; accessed 27-March-2022]. 2021. url: https://en.wikipedia.

org/w/index.php?title=Gazebo_simulator&oldid=1039967070 (cit. on
p. 56).

[42] Author automaticaddison. Smalltown gazebo world. 2021. url: https://

automaticaddison.com/ (cit. on pp. 59, 60).

75

https://navigation.ros.org/behavior_trees/trees/nav_through_poses_recovery.html
https://navigation.ros.org/behavior_trees/trees/nav_through_poses_recovery.html
https://github.com/ros-planning/navigation2/tree/main/nav2_smac_planner
https://github.com/ros-planning/navigation2/tree/main/nav2_smac_planner
http://wiki.ros.org/dwa_local_planner
https://arxiv.org/abs/1706.09068v2
https://arxiv.org/abs/1706.09068v2
http://gazebosim.org/
https://en.wikipedia.org/w/index.php?title=Gazebo_simulator&oldid=1039967070
https://en.wikipedia.org/w/index.php?title=Gazebo_simulator&oldid=1039967070
https://automaticaddison.com/
https://automaticaddison.com/

	List of Figures
	Introduction
	Navigation in different environments
	Indoor navigation problem
	Localization in Indoor navigation

	Outdoor navigation problem
	Localization in Outdoor navigation
	Perception in Outdoor navigation

	State of the art in Robot Navigation
	Localization
	Taxonomy on localization problems
	Sensor for localization
	Probabilistic techniques for state estimation
	System representation
	Bayes Filter
	Gaussian Filters
	Particle Filter
	EKF Localization
	AMCL Localization

	Mapping
	SLAM

	Global Planning
	Dijkstra's algorithm
	A-star algorithm

	ROS2
	Graph Concepts
	ROS 2 architecture overview

	Seamless Navigation in Outdoor and Indoor environments
	Sensor fusion using Robot Localization and AMCL
	EKF and navsat node configuration
	AMCL configuration

	Localization broadcaster
	Waypoint follower
	GPS Waypoint follower
	Navigate through poses
	Waypoint task executor plugins
	The new Waypoint Follower interfaces

	Nav2 configuration
	Global Planner
	Local Planner
	Global costmap
	Local costmap

	Simulation
	Simulation Tools
	Gazebo simulator
	Rviz2

	Husky model
	Husky setup

	Simulation setup
	Simulation environment
	Simulation Results

	Conclusion
	Main characteristics of the seamless navigation system
	Next steps

	Bibliography

