
 

Politecnico di Torino  
 

Master’s degree in Mechatronic Engineering 
A.a. 2021/2022 

April 2022 
33333 

 
 
 
 
 
 
 
 

EVduino – an Arduino-like Open 
Source Vehicle Management Unit 

 
 
 
 
 
 
 
 

Supervisors: Candidates: 
Stefano Carabelli 
Massimo Violante 

Stefano Loreti 
Michele Galli 

 
  



1 
 

 
 

 

  



2 
 

Index 

 

Introduction         3 

 

Chapter 1:  

Multitask IDE        6 

 

Chapter 2:  

Simulink Support Package     9 

 

Future works         12  



3 
 

Introduction 

 

Nowadays the usage of embedded systems is widespread. They find 

applications in every aspect of our life: from consumer electronics to 

industrial equipment, medical devices to security systems, aerospace 

systems and entertainment devices to weapon control systems, and so on. 

The drastic rise in the number of such systems, happened in the last two 

decades, especially in the automotive field. Thanks to their versatility and 

flexibility, embedded systems are replacing mechanical systems in vehicles 

equipment, just think about collision sensors, anti-lock braking system 

(ABS), airbags, emission control, traction control, climate control, and so 

on. For this reason, they can be considered the heart of a vehicle’s 

electronic system and, consequently, of the automotive market. 

This great demand in the automotive field, come to meet the increasing 

demand for automation, the increasing focus on safety features, and the 

more and more restrictive pollution standards. Thanks to the safety 

systems, the number of accident and traffic fatalities dropped down in the 

developed countries in recent years. Systems like pedestrian recognition, 

adaptive speed control, merging assistance, lateral collision warning, and 

many others, help reducing driver’s effort, minimizing errors and 

inattention. Moreover, the growing vehicle sales and the increasing 

demand of connected car devices are contributing to the global spread of 

the automotive embedded system market. 

Embedded systems allow to develop more advanced control strategies 

with respect to the traditional mechanical systems, but the increasing 

number of functionalities required, led to a considerable growth of code 

complexity. This, together with the stricter safety standards required to 

avoid software failures, led to a paradigm change in the software 

development, from hand-coded to model-based development. 

Model-Based design provides a mathematical and visual approach to 

develop systems. It makes use of a model, that can be seen as an 

abstraction of the physical system, throughout all the verification and 



4 
 

validation phases of the development flow. The advantage of a model is 

that, used with simulation tools, allows rapid prototyping and software 

testing and validation, in such a way errors can be spotted and removed 

before hardware testing. The quality of the product improves without the 

need for expensive prototypes. Then, code is automatically generated 

starting from the model, saving time, and avoiding manual errors in the 

code. This approach is particularly exploited in the automotive field to 

master software complexity, which is one of the dominant cost items in 

automotive. 

The concept of reducing complexity is why this project is inspired to 

Arduino. Arduino is one, if not the most, famous embedded system: it is 

open-source and easy to program. Usually, inexperienced people who 

want to approach for the first time the world of embedded systems, start 

from Arduino. It does not require any particular skill because the functions 

to program its peripherals together with its Integrated Development 

Environment (IDE) are simple and intuitive. Moreover, Arduino’s source 

code is freely accessible for study, modifications, and eventually 

redistribution. An Arduino support package is also available on the well-

known platform Simulink, to allow a Model-based design. However, 

Arduino has limited power since it was born for home electronics 

purposes. 

This work of thesis aims at developing an Arduino-like toolchain to 

program an embedded system intended for Automotive applications. The 

embedded system concerned is a custom board by Ideas&Motion (I&M), 

called EVduino, equipped with an Infineon Tricore as a processor. 

EVduino is Arduino-like both from a hardware point of view, since it is 

compatible with the Arduino shields, and from a software point of view 

since it is open-source and user-friendly. 

However, EVduino overcomes Arduino, not only for the power of its 

multicore processor but also for the possibility to implement multitask 

applications with a Rate Monotonic Scheduling (RMS), thanks to the 

integration of Erika Enterprise v2 Real-Time Operating System (RTOS) on 

the IDE. 



5 
 

The first chapter of this thesis talks about the MultiTask IDE where a hand-

written application code can be developed, exploiting an Arduino-like set of 

functions to communicate with the peripherals easily and intuitively.  

The second chapter shows how to program the hardware through a Model-

Based approach, starting from building a model on Simulink generating 

the code and exporting it on the IDE where it is deployed on the hardware. 

To make this possible a Simulink Support Package for EVduino was 

created starting from the Arduino-like functions and provided to the user. 

Everything is documented, starting from installation of the needed 

software to a user manual for both traditional and Model-Based 

approaches, for supporting the user step-by-step along with the entire 

procedure. Also, a set of examples are provided to test the toolchain with 

already working applications. All the documentation, regarding EVduino, 

was produced by the authors and is accessible through hyperlinks. 

Concluding, EVduino replicates the main Arduino’s advantages, but at the 

same time, it is definitely better in terms of power, number, and type of 

peripherals. 

  



6 
 

Chapter 1 
 

MultiTask IDE 

The MultiTask IDE is the software where the application source code for 

EVduino can be developed. EVduino mounts a powerful 32-bit TricoreTM 

AURIXTM TC277 system architecture, belonging to Infineon’s new family of 

microcontrollers. The Integrated Development Environment (IDE) chosen 

to program this microcontroller is HighTec IDE, as it is one of the software 

suggested from Infineon’s website (Compilers - Infineon Technologies).  

Since EVduino is intended for Automotive applications, this software is 

particularly appropriate for the possibility to integrate a Real-Time 

Operating System (RTOS). The most suitable RTOS for EVduino is Erika 

Enterprise v2 because it is open-source and OSEK-compliant, an important 

requirement in the Automotive field. 

A Project Starting Folder to be imported on HighTec IDE, already containing 

all the configuration files for the RTOS, was provided to the user as the 

starting point of each application. 

All the software to be installed, together with a wizard for the installation, 

can be consulted in the EVduino MultiTask IDE - Getting Started guide.  

A library of Arduino-like functions was also created in order to 

communicate with the peripherals of the hardware in an easy and intuitive 

fashion. It was added to the Project Starting Folder so that the user can freely 

use and consult it in his applications. 

The procedure to program EVduino through the MultiTask IDE starts from 

importing the Project Starting Folder on HighTec IDE, writing the 

application code, building it, and finally deploying the generated 

executable on the hardware platform.  

The full procedure, as well as the structure of the Project Starting Folder and 

the library of Arduino-like functions, are documented in the EVduino 

MultiTask IDE - User Manual. It explains how to create multithreaded 

https://www.infineon.com/cms/en/product/microcontroller/32-bit-tricore-microcontroller/32-bit-tricore-aurix-tc2xx/aurix-family-tc27xt/
https://www.infineon.com/cms/en/product/microcontroller/32-bit-tricore-microcontroller/32-bit-tricore-aurix-tc2xx/aurix-family-tc27xt/
https://www.infineon.com/cms/en/tools/aurix-tools/Compilers/Hightec/
https://www.infineon.com/cms/en/tools/aurix-tools/Compilers/
https://en.wikipedia.org/wiki/Real-time_operating_system
https://en.wikipedia.org/wiki/Real-time_operating_system
http://erika.tuxfamily.org/drupal/content/welcome-erika-enterprise-v2x-website
http://erika.tuxfamily.org/drupal/content/welcome-erika-enterprise-v2x-website
https://www.dropbox.com/s/m9uwfl628opgh4b/220319%20EVduino%20MultiTask%20IDE%20-%20Getting%20Started.pdf?dl=0
https://www.dropbox.com/s/7iivqaz4dt7ln10/220319%20EVduino%20MultiTask%20IDE%20-%20User%20Manual.pdf?dl=0
https://www.dropbox.com/s/7iivqaz4dt7ln10/220319%20EVduino%20MultiTask%20IDE%20-%20User%20Manual.pdf?dl=0


7 
 

applications from scratch, with tasks at different frequencies scheduled 

according to a full preemptive (Preemption (computing) - Wikipedia) Rate 

Monotonic Scheduling strategy. The tasks can be programmed in a file 

similar to Arduino’s IDE, which contains an initialization task 

(corresponding to the Arduino setup function) and a set of tasks with 

different execution times (each of which corresponds to an Arduino loop 

function). In Figure 1 are shown some of the available tasks for EVduino in 

comparison with the Arduino’s ones.   

 

 

Figure 1 – Some of the available tasks on HighTec IDE (above) 

 and the setup and loop function on Arduino IDE (below) 

 

A multitask application on Arduino would mean using as many boards as 

the number of tasks to be implemented. EVduino is able to manage more 

than one task, with the possibility to choose the priority of execution in the 

https://en.wikipedia.org/wiki/Preemption_(computing)
https://en.wikipedia.org/wiki/Rate-monotonic_scheduling
https://en.wikipedia.org/wiki/Rate-monotonic_scheduling


8 
 

case they are activated concurrently. This is a very powerful tool, 

extremely important in automotive field. 

In this first version of the software, the Arduino-like functions allow to 

program the following peripherals of EVduino: 

• Digital I/O 

• ADC 

• PWM output 

Two working applications in the form of tutorials were provided to show 

the user step-by-step the full procedure, included the coding part where 

the library of Arduino-like functions is exploited. 

The first tutorial shows how to make two LEDs blink with different 

frequencies, using two tasks: 

EVduino MultiTask IDE – Blink LEDs Tutorial 

In the second tutorials two digital filters, running at different frequencies, 

are implemented: 

EVduino MultiTask IDE – Digital Filters Tutorial 

The aim is to cut an analog signal and provide the filtered signals as PWM 

outputs. Then, two physical RC low-pass filters cut the PWM outputs and 

reconstruct the analog filtered signals. This is a typical procedure when 

D/A converters are not available on the hardware. 

  

https://www.dropbox.com/s/r0sb2p9wdmobmes/220319%20EVduino%20MultiTask%20IDE%20-%20Blink%20LEDs%20Tutorial.pdf?dl=0
https://www.dropbox.com/s/a746rm0yd8tfpbp/220319%20EVduino%20Multitask%20IDE%20-%20Digital%20Filters%20Tutorial.pdf?dl=0


9 
 

Chapter 2 
 

Simulink Support Package 

From the Multitask IDE we moved to the MATLAB/Simulink environment 

in order to allow a model-based design approach to develop an 

application. 

The idea was born from another powerful tool to program Arduino, the 

Simulink Support Package for Arduino, which provides a set of blocks 

standing for Arduino’s physical I/O. This is very useful because it allows 

everyone, even with low programming skills, to easily program Arduino 

with a graphical representation of their applications. Moreover, and not 

less important, the usage of the model-based design approach is 

mandatory in almost every automotive standard.  

For this purpose, a set of Simulink blocks was created, starting from the 

Arduino-like functions, and collected in a Simulink library called EVduino 

library. This was possible thanks to the MATLAB Legacy Code Tool which 

allows to create and customize a set of blocks starting from the definition of 

the functions contained inside a header and a source file written in C code, 

as explained in this document by MathWorks. 

As well as the first part of the project, the created blocks are intended for 

the following I/O of EVduino: 

 

• Digital I/O: 

 

 

Figure 2 – Digital I/O blocks in ‘EVduino Library’ 

https://www.mathworks.com/matlabcentral/fileexchange/40312-simulink-support-package-for-arduino-hardware
https://www.mathworks.com/help/simulink/sfg/integrating-existing-c-functions-into-simulink-models-with-the-legacy-code-tool.html


10 
 

• ADC 

 

 

Figure 3 – ADC blocks in ‘EVduino Library’ 

 

 

• PWM output 

 

 

Figure 4 – PWM blocks in ‘EVduino Library’ 

 

A guide on how to download and integrate this Simulink library is 

provided inside EVduino Simulink Support Package – Getting Started.  

Then, the general rules to design a Simulink application for EVduino and 

deploy it are explained step-by-step in EVduino Simulink Support Package 

– User Manual. 

Reading this manual, one can observe that once the model of the 

application is ready, the user cannot deploy it directly from Simulink, but 

he has to generate the code using Embedded Coder, integrate it on the 

Project Starting Folder and exploit the procedure seen in Chapter 1 in order 

to flash the application into the processor.  This is the worst drawback with 

respect to Arduino’s Support Package, which provides tools to directly 

Build & Deploy the model on the board, by allowing to exploit some other 

https://www.dropbox.com/s/k62gob712piiqxe/220319%20EVduino%20Simulink%20Support%20Package%20-%20Getting%20Started.pdf?dl=0
https://www.dropbox.com/s/m5u8bix3kju3zcj/220319%20EVduino%20Simulink%20Support%20Package%20-%20User%20Manual.pdf?dl=0
https://www.dropbox.com/s/m5u8bix3kju3zcj/220319%20EVduino%20Simulink%20Support%20Package%20-%20User%20Manual.pdf?dl=0


11 
 

very useful tool like External Mode (for real-time tuning of the relevant 

parameters). This is for sure one feature to work on for the next releases of 

this product. 

But on the other hand, with minimal manual intervention on the generated 

code, it can be uploaded on the hardware with the same procedure seen for 

Multitask IDE. This means that all the features described in Chapter 1 are 

still valid. 

The applications explained in the MultiTask IDE chapter are developed in 

the form of tutorials even for this second approach. They are available at 

the following link: 

• EVduino Simulink Support Package – Blink LEDs Tutorial 

• EVduino Simulink Support Package – Digital Filters Tutorial 

 

It can be noticed that for simpler applications, like the blinking LEDs, is 

more convenient working directly on the IDE. While for more complex 

applications where the code to be developed can be challenging, as in the 

case of digital filters, a model-based approach is preferrable. However, 

both products work for every application and the user just have to choose 

the one that suits his needs and capabilities the most. 

  

https://www.dropbox.com/s/clpy4svwijvy2cl/220319%20EVduino%20Simulink%20Support%20Package%20-%20Blink%20LEDs%20Tutorial.pdf?dl=0
https://www.dropbox.com/s/319ubdfalf1dx62/220319%20EVduino%20Simulink%20Support%20Package%20-%20Digital%20Filters%20Tutorial.pdf?dl=0


12 
 

Future Works 

 

Both products are valid and works properly, but they can still be improved. 

One way could be expanding the library of the Arduino-like functions and 

consequently the EVduino library of Simulink blocks. For example, adding 

the functions for sending and receiving data using CAN communication, 

which is fundamental in the automotive field. 

Another powerful tool that can be object of future studies is how to build and 

deploy the generated code directly from Simulink, without passing through 

HighTec IDE. This is a necessary step to achieve the final target, which is the 

real-time monitor and tuning of the parameters, which are the characteristics 

of the External Mode. 

https://www.mathworks.com/help/supportpkg/armcortexa/ug/set-up-and-use-hosttarget-communication-channel.html

