
POLITECNICO DI TORINO

Master degree in Data Science and Engineering

Master Thesis

Learning Constraints in Robot
Trajectories

Supervisor
Prof.ssa Barbara Caputo
Co-supervisors:
Prof. Luc De Raedt
Dott. Paolo Morettini

Candidate
Giulia Tortoioli

April 2022

Learning Constraints in Robot Trajectories
Master thesis. Politecnico di Torino, Turin.

© Giulia Tortoioli. All rights reserved.
April 2022.

Acknowledgement
I would like to thank my family, my greatest luck, that supported me and
believed in me throughout my life.

I would also like to be grateful to the professors and to Paolo whose guid-
ance was really helpful.

Special thanks go to my friends, Italian and international, who made me
cherish my university experience.

iii

Abstract

Constraint learning is a research area covering different methodologies for an
inductive construction of constraint theories from data. In many contexts,
a system can benefit from constraint learning to optimize the process in
terms of time and performance. In this thesis, trajectories data of a trained
reinforcement learning agent are used as examples to define constraints char-
acterizing the environment. The methodology involves three main steps. In
the first phase an agent is trained in a two-dimensional space containing
unsafe areas. Then, the agent is tested and its trajectories are stored and
used as data for learning a formula that classifies the region of the train-
ing examples as positive, thereby identifying safe and unsafe areas. In the
last step a new agent is trained by using the formula to assign a penalty to
movements towards an unsafe area. The addition of prior knowledge about
the environment leads to a significant improvement of the agent’s perfor-
mance in terms of satisfaction of safety specifications. Hence, in fields like
autonomous robotics, where safety concerns are paramount, systems can ben-
efit from constraint learning to increase the level of reliability and guarantee
a “safer” exploration.

iv

Contents

List of Tables vii

List of Figures viii

1 Introduction 1
1.1 Contextual Overview . 1
1.2 Motivations . 2
1.3 Main Contributions . 2

I First part: Overview 4

2 Safe Exploration 5
2.1 Reinforcement Learning . 5

2.1.1 Exploration and Exploitation Trade-off 5
2.2 Constrained Reinforcement Learning 6

2.2.1 Satisfaction of Safety Requirements 7
2.2.2 Constrained RL in Safety Gym 7

3 Constraint Learning 10
3.1 Learning from Data . 11

3.1.1 Formalization of Constraint Learning 11
3.1.2 Approaches to Constraint Learning 12

3.2 Constraints as Prior Knowledge 13
3.2.1 Importance of Prior Knowledge 13
3.2.2 Applications . 14
3.2.3 Prior Knowledge in Reinforcement Learning 15

v

II Second part: Constraint Learning from Trajecto-
ries 17

4 Method 18
4.1 Constrained RL Agent Training 18

4.1.1 Task Definition . 19
4.1.2 Environment Setting 19
4.1.3 Policy Optimization: Lagrangian Methods 21

4.2 Constraint Learning Process 23
4.2.1 Trajectories as Training Data 23
4.2.2 Constraint Learning 24
4.2.3 Validation . 30

4.3 Application in New Training 31
4.3.1 Penalty Function . 32
4.3.2 Reward Function Update 33

5 Experiments 35
5.1 Training of The First Agent 35
5.2 Constraint Learning Procedure 39

5.2.1 Variation . 43
5.2.2 Results . 46

5.3 Training of The Agent with Prior Knowledge 49
5.3.1 Results . 50

6 Conclusion 54

Bibliography 56

vi

List of Tables

5.1 Layout configuration of the environments. 36
5.2 Test performances using PPO-Lagrangian and TRPO-Lagrangian

in Environment-3 . 39
5.3 Results in terms of F1-score of the constraint learning pro-

cedure. The experiments were run with the same set of pa-
rameters except from the sample dimension S. Aggregated
statistics (mean and standard deviation) were calculated for
the results in experiments with the same configuration. 43

5.4 Results in terms of global F1-score and negative class recall
and precision achieved by the execution of the constraint learn-
ing procedure iterative variation. Aggregated statistics (mean
and standard deviation) were calculated for the results in ex-
periments with the same configuration. 48

5.5 Performance of the agent with prior knowledge in respecting
safety specifications. The results were averaged throughout
500 test episodes and compared with the ones achieved by the
first experiments without the integration of prior knowledge. . 51

vii

List of Figures

2.1 General structure of a constrained reinforcement learning sys-
tem. Figure source: [1]. 7

3.1 Supervised reinforcement learning block diagram. Figure source:
[2]. 15

4.1 Three environments created with Safety Gym. Environment-
1 contains three hazards with dimensions of 0.6 units, while
Environment-2 and Environment-3 present five and ten haz-
ards respectively with dimensions of 0.4 units. The green
cylinder indicates the goal. The agent is represented in red
with goal and hazards pseudo-lidars above. 20

4.2 Evaluation of five algorithms throughout the training of Point-
Goal1 (task: Goal, robot: Point, constraints: medium density
of unsafe elements). Three metrics are considered: average
episodic reward, average episodic cost and cost rate. Figure
source: [3]. 22

4.3 The first figure represents a sample of trajectories in Environment-
1 with three hazards. The formula χ retrieved by the learning
algorithm should be as similar as possible to the one shown in
the figure on the right. The area satisfied by χ is represented
by the green region, while the red parts represent the area
where χ is unsatisfied. 24

4.4 The orange and blue areas correspond to the regions satisfied
by Wθχ and χ respectively. The red dashed area represents
the false negative error, while the blue dashed area identifies
the false positive error. The validation score is an estimate of
the total error area. 31

4.5 Neighborhood of robot Point, 32 samples selected from two
circumferences with centre the position of the robot. 33

viii

5.1 Visualization of average performance in terms of average cost
and reward during the training of PPO-lagrangian in Environment-
3, using different values of z. 37

5.2 Comparison of training performances between TRPO-Lagrangian
and PPO-Lagrangian. The plot represent the aggregate results
of three different runs on Environment-3 for each algorithm.
For the sake of visibility the results are shown from the epoch
100. 38

5.3 Visualization of samples from trajectories in Environment-3
with increasing S. 41

5.4 Visualization of the formula χ̂ retrieved by the constraint
learning procedure in different environments with an increas-
ing amount of training data. The red areas represent the re-
gions classified as unsafe from χ̂. For the sake of visibility the
training data are shown (in black) only for the results with
the minimum amount of samples S. 44

5.5 Visualization of the constraint learning results in two simpli-
fied environments with 200 data uniformly distributed within
the safe region. The learned formulas can quite accurately
distinguish safe and unsafe areas (F1-score ≈ 0.87). 45

5.6 Example of sample selection from M sub-areas generated in
Environment-1. 47

5.7 Formulae χ̂ learned in three different environments using the
iterative variation of the constraint learning procedure. 49

5.8 Training performances of the original agent compared to the
agent with prior knowledge. On the left there are the average
costs per epoch and the red dashed line indicates the limit
boundary fixed in the constraints specification. The plots on
the right represent the average reward achieved throughout
the training. 53

ix

Chapter 1

Introduction

1.1 Contextual Overview
The trait that distinguishably characterizes human being is intelligence, the
ability to acquire and use knowledge to solve problems. The last century
has seen the need for faster and efficient problem-solving systems to deal
with tasks with increasing computational complexity, thereby requiring novel
technologies. In 1956 the term Artificial Intelligence (AI) was introduced to
define the ability of computers to perform human tasks. Machine Learning
(ML) is a branch of AI where a system is able to learn and make decisions
by utilizing algorithms to obtain inference from data.

The goal of ML models is to make predictions by identifying in the train-
ing dataset patterns which generalize the actual distribution of the data. In
real world problems, for a solution to be considered valid, ML systems must
often satisfy certain conditions along with solving the task. These conditions
represent limitations characterizing the task, like cost restrictions, safety re-
quirements, space limits. Identifying and measuring the limitations of the
problem is fundamental in order to formulate them in a machine-friendly
manner and quantitatively evaluate the results. Constraints are inserted
into the learning process of the algorithm as conditions to be fulfilled or, in
other situations, represent the expected outcome of the learner. The process
of learning a constraint theory from data is called constraint learning. The
goal of constraint learning is to define general rules expressed in the form of
logical formulas by identifying patterns in a set of training data.

Constraints learned from a dataset can reveal different aspects of the data
distribution, such as defining the variables domain, identifying relationships
and patterns within the data. Constraint learning algorithms can be applied

1

1 – Introduction

to automatize rules generation or integrate the knowledge of a system with
additional rules by exploiting past experimental data or data stored from
similar tasks. This thesis aims to use constraint learning to integrate a ML
system, thereby improving the results.

1.2 Motivations
Some ML models need a very high level of reliability in order to be applied
in the real world. This is the case of applications in the field of robotics
and autonomous systems. These systems demonstrated a strong impact in
the economy of industrial and commercial activities as well as in end-user
applications and markets. One of the main concerns when building an au-
tonomous system is to guarantee an adequate level of safety. In autonomous
robotics, safe exploration is defined as the ability of the robot to achieve safe
behaviours when exploring unknown states. Achieving the level of safety
required, to allow use in real world, is not always easy, especially if no in-
formation is available about the space in which the robot has to move. In-
formation acquired from past experiments or demonstrations is helpful to
enrich the system and increase its robustness from failures. Many studies
were conducted about guaranteeing safe exploration thanks to integration of
past experience in the training process of the robot [4, 5].

1.3 Main Contributions
In this thesis, constraint learning is applied to identify the areas which are
not covered by a set of data. The data are extracted from trajectories of
a trained agent which moves in a two-dimensional space and must reach
a randomly positioned goal while avoiding obstacles (considered as unsafe
areas). The objective of the constraint learning procedure is to determine
the unsafe regions by generalizing the true support of the trajectories data.

The outcome of the constraint learning procedure is used to integrate
with a constrained Reinforcement Learning (RL) system in order to improve
its performance. Constrained RL agents are trained to reach a goal while
avoiding some harmful regions in the space. The prior knowledge given by
the learned constraint theory is inserted into the training process of the
agent. In particular the agent is penalized when the learned formula predicts
that it is approaching an unsafe area. The addition of the penalty is meant
to reduce the probability that the trained agent will fail in satisfying the

2

1 – Introduction

safety constraints imposed in its task while still preserving its capability to
reach the goal. The integration of prior knowledge about the environment
characteristics should also make the agent’s training converge faster.

3

Part I

First part: Overview

4

Chapter 2

Safe Exploration

2.1 Reinforcement Learning
Reinforcement learning (RL) is an approach that implements a goal-directed
learning process deriving from interaction with an environment. It differs
from many other machine learning techniques as the actions of the learner are
not set a priori, but the learner finds out itself the most advantageous actions
to take. In fact, the idea of RL is to train an agent to perform a specific task
by using a trial and error strategy. In a RL system the agent must be capable
of perceiving the state of the environment and produce effects by interacting
with it [6]. The agent operates in the environment while gradually increasing
the likelihood of “behaving well” by maximizing the reward function, which
instructs the agent by rewarding for correct actions.

The applications of RL methods are numerous, for example they have
a fundamental role in creating AI (Artificial Intelligence) agents for video
games, which enables them to achieve super-human performances [7]. RL
allows also to perform a set of different tasks, like the ones proposed by
OpenAI Gym [8], a toolkit which implements various locomotive and robotic
movement tasks. In OpenAI Gym the agent is trained by using an episodic
approach and it interacts with the environment during the whole episode.
The goal is to maximize the cumulative reward expectation for each episode
and to achieve gradual improvement in results along the training process.

2.1.1 Exploration and Exploitation Trade-off
Supervised learning expects a training labeled dataset where each example
contains a description of a situation and a label which defines the correct

5

2 – Safe Exploration

output that the system should give in that situation [6]. Usual tasks of
supervised learning are classification and regression, where the objective is
to generalize the representations contained in the examples of the training
data in order to learn and be able to deal with new situations. While dealing
with interactive problems it is very unlikely to have examples which can be
considered representative of the reality since the state of the environment is
influences by the agent’s actions. Therefore, in RL the agent is trained to
learn from its previous actions.

At the same time RL cannot be inserted in the context of unsupervised
learning since its goal is different. In unsupervised learning the objective is
the definition of a structure and/or a pattern in a data distribution by using
an unlabeled dataset, while RL aims to maximize a given reward function.

RL implements the concept of trade-off between exploration and exploita-
tion. Exploration improves the agent’s awareness about the environment
possibly leading to long term benefits, while exploitation makes use of the
agent’s current ability to gain the maximum possible reward. The strategy
is to find an optimal balance between exploring new environments’ features,
even if selecting sub-optimal actions, and exploiting the prior knowledge [9].

2.2 Constrained Reinforcement Learning

In constrained reinforcement learning the agent has an additional objective
with respect to maximizing the reward function which is to satisfy con-
straints. In constrained RL problems environment characteristics and limi-
tations due to the nature of the task are expressed as constraints, while the
reward function specifies the goal of task.

In real world applications, constraints specify varied types of restriction.
For example, in constrained RL models built in the field of robotics, con-
straints can represent safety specifications for a robot which aids in navigat-
ing obstacles [10, 3]. The objective of the agent is to reach the goal while
avoiding the harmful areas by satisfying the constraints. There are also some
applications for which the satisfaction of safety constraints is absolutely es-
sential like in the case of autonomous driving, where a lot of research is going
on to improve the models and apply them in the real world [11]. Other ap-
plications of constrained RL include limitations in resource allocation [12] or
budget expressed by constraints that have to be satisfied.

6

2 – Safe Exploration

Figure 2.1: General structure of a constrained reinforcement learning system.
Figure source: [1].

2.2.1 Satisfaction of Safety Requirements
In an environment with safety requirements the agent has to find the right
trade-off between satisfying the task objective and fulfilling the safety spec-
ifications. The outcome of the algorithm is a behavioural policy for the agent
which is based on the outputs of the previous states.

The trial and error process proposed by traditional RL would not be
feasible in some dangerous tasks, where the negative effects of an unsafe
exploration could be detrimental. In fact, there are some real-world problems
where simulators may not be reliable enough and, therefore, it would be
necessary to train the model directly in reality. A RL system that allows
exploration in compliance with safety specifications defines the concept of
safe exploration.

In order to address a safe exploration problem, the first challenge is to
identify the unsafe factors to be measured and define a formalism based on
how these metrics influence the outcome of the system. An approach to
the definition of this problem’s formalism is constrained RL and this is the
strategy implemented in Safety Gym by OpenAI [3].

2.2.2 Constrained RL in Safety Gym
Safety Gym implements safe exploration by adding safety specifications into
the RL models in the form of standardized constrained RL. The systems are
implemented following two main concepts:

7

2 – Safe Exploration

• keeping safety specifications and performance definitions separate;

• using constraints to encode safety specifications.

Constrained RL problem can be quantified by evaluating a set of policies
which satisfy the constraints and identifying the optimal one. The set of
feasible policies is defined by the framework of constrained Markov De-
cision Processes (CMPDs) [13]. Formally, a CMDP is denoted by a tuple
(S,A, C, R, K, x0) [14]:

• S is the state space;

• A is the action space;

• C is a set of cost functions, where cj : S ×A → R, j = 1, . . . , k;

• R : S ×A → R is the reward function;

• K : S ×A× S → [0,1] is the transition probability function;

• x0 : S → [0,1] is the distribution of the initial state.

ΠC is the set of the stationary policies restricted by C, where π ∈ Π =
π(a|s) : s ∈ S, a ∈ A. The reward-based objective function Jr(π) and the
cost-based constraint function Jcj (π) are defined as follows:

Jr(π) := E(s0,a0,...,)∼π[
∞Ø

t=0
γiR(si, ai)]

Jcj (π) := E(s0,a0,...,)∼π[
∞Ø

t=0
γicj(s, a)]

(2.1)

Hence, Jr(π) and Jcj (π) are defined as the expected value of the cumulative
future reward function and cost function cj, respectively, given a trajectory
distribution (s0, a0, . . . ,) depending on π and a discount factor γ ∈ (0,1).
Let zi be a human-defined threshold for the cost function ci, the formulation
of the optimal policy π∗ is the following:

π∗ = arg max
π∈ΠC

Jr(π), (2.2)

ΠC = {π : Jci(π) ≤ zi, i = 1, . . . , k}. (2.3)
Constraints formulate the safety specifications which practically refer to

hazards that the agent must learn to avoid. The goal is to find a good trade-
off between the reward for completing the task and the penalty associated

8

2 – Safe Exploration

with proximity to hazards. There is not a trade-off which is optimal a priori,
the right balance is highly dependent on the complexity of the environment,
the chosen policy optimization algorithm and, especially, the application’s
safety requirements.

Safety Gym gives the possibility to create environments with different
tasks and complexities. The agent is able to sense the world by using lidar
1 sensors of a robot and interacts with it. There are three pre-made robots
(Point, Car, Doggo) which have different characteristics in the way of moving
and have increasing complexity. The constraint elements are represented
by various objects which can be added to the environment to increase the
complexity and the probability for the agent to behave unsafely.

1Lidar is a way of determining ranges (varying distance) by focusing a laser on an
object and measuring the time it takes for the reflected light to return to the receiver.

9

Chapter 3

Constraint Learning

Constraints are fundamental in artificial intelligence, they define a restriction
on feasible combinations of assignments for a set of variables. In real-world
scenarios constraints are meant to represent different kinds of limitations
characterizing the application context. One approach to handle constraints
is an optimization problem with an objective function and (typically linear)
constraints. In every optimization problem common denominator is the goal:
test and improve the performance of a model while “being constrained” by
some factors, such as budget or physical restrictions. When formulating a
real world problem, an optimization problem with specified constraints can
be clearly limiting because of the potentially high level of uncertainty and
variability. In fact, it is also necessary to consider the extent of the limitations
and model the constraints appropriately.

A complete and precise specification of the constraints is not always pos-
sible. In some cases there are limitations concerning the task that are not
known a priori but are revealed from past experiments, moreover, modelling
new conditions in the form of logical constraints can be challenging and
computationally expensive. Knowledge about unknown constraints can be
inferred in many ways depending on the application and, especially, on the
type of limitations to be modelled. Furthermore, data acquired from pre-
vious simulations or obtained from a system in its past state can be used
for constraint learning. Whenever additional information expressed in the
form of constraint theories is available, it can be useful to improve the sys-
tem’s performance (i.e. in terms of accuracy and/or time) and also to create
different predictive models.

10

3 – Constraint Learning

3.1 Learning from Data
The meaning of constraint learning differs based on the use case and the
procedure used. A deductive strategy is applied by solvers’ technology where
constraint learning consists in speeding up the process by adding clauses
1 to the constraint theory whenever inconsistencies rise. A solver takes a
formula, containing Boolean variables (with true/false value), as input and
verify whether it is satisfiable or not. A formula is defined as satisfiable
if there are assignments for the variables within it that make it true. The
problem of satisfiability determination is called SAT (Boolean Satisfiability
Problem).

On the other hand, when a dataset is used to define a constraint theory, the
process is inductive [15]. Inferring general functions from a set of training
examples is a key point in machine learning, where concept learning is the
process of defining a general category from provided positive and negative
instances. This problem can be thought as a search through of as a set of
potential hypotheses for the one that best fits the training data. Constraint
learning can be compared to concept learning (where the goal is inducing a
binary function) since a constraint theory allows to identify satisfiable and
unsatisfiable instances. However, learning constraint theories can also be
useful in different contexts, where the purpose is different from just a binary
classification of the instances.

3.1.1 Formalization of Constraint Learning
Considering the definition of concept learning, constraint learning can be
formalized in line with the PAC-learning (Probably Approximately Correct
learning) framework [16]. The goal of PAC-learning is to find an algorithm
that, when trained on a random sample of a data distribution, selects a
function (defined as hypothesis) with a low generalization error.

Hence, a definition of constraint learning can be formulated as follows [15].

Let

• I be a set of possible instances representing partial or complete assign-
ments for the variables V of the unknown constraint theory;

1In logic, a clause is defined as disjunction of literals (representing normal atoms and
their negations). A more detailed explanation can be found in 4.2.2.

11

3 – Constraint Learning

• C be a set of possible constraints;

• T ⊆ C a target constraint theory (unknown);

• X be a set of training instances that are positive when they satisfy T ,
negative otherwise;

a constraint theory H (H ⊆ C) is found when all the positive instances,
and none of the negative ones, contained in X are satisfied (or satisfiable
when considering partial assignments) in H.

As before mentioned, the SAT problem consists in assigning a binary value
(true or false) to a specific formula basing on its satisfiability. However, the
set of problems that can be solved when formulating a constraint theory
goes beyond just binary classification. For example, one type of problem
that can be solved with constraints’ definition is to find a completion to
partial assignments of the variables within the formula. Constraint theories
can be used to infer values to a subset of variables V \Xv, given particular
assignments for the other variables Xv ⊆ V . If the task consists in finding
the best possible set of values for the variables with unknown assignments,
constraint learning recalls a problem of learning a probabilistic model.

3.1.2 Approaches to Constraint Learning
Many situations in which constraints or constraint optimization are applied
benefit from constraint learning. Learning logical theories is possible in appli-
cations like constraint programming, operations research and other machine
learning problems. A technique to learn constraint theories is inductive logic
programming, a branch of machine learning that looks towards inductively
building first-order clausal theories using instances and prior knowledge [17].

Constraints can be learned by data coming from different sources, such as
datasets or spreadsheets. A system called ModelSeeker [18] was developed to
work with data coming from many kind of domain (such as puzzles and sports
scheduling) to generate a set of matching constraints from a global catalog.
It resulted that the model could find constraints set even when dealing with
very limited amount of examples. Another example of a system constructing
constraints from a data source is a tool, named Tacle, which reconstructs
formulae applied in a spreadsheet by taking as input a comma separated file
[19]. An unsupervised approach was adopted to infer constraints defining
relations and/or formulas involving both rows and columns. The result was
a spreadsheet integrated with the dependency formulas between cells.

12

3 – Constraint Learning

Constraint learning can be helpful also in many Natural Language Pro-
cessing (NLP) 2 applications, where it is often necessary to reconstruct the
structure of the text and to do it by hand is a very tedious process.

A solution to reduce the human involvement was a model which detects
latent topics and their main linguistic properties in input documents and
then uses the acquired knowledge to infer constraints [20].

Furthermore, many studies were made in learning logical rules in the field
of knowledge base reasoning [21] and automatic error detection [22].

3.2 Constraints as Prior Knowledge
When creating a new system for any application, the initial phase usually
consists in building a reliable and fairly general model suitable for tasks
similar to the one considered. Clearly, in a specific use case the system may
need further specifications to achieve better (and in some cases acceptable)
performance.

An example is a supply chain optimization task, where the limitations to
be considered are multiple, in terms of costs, allocation of resources given
the limited space, production times and customer requests. In this case data
collected from different sites of the production chain can be used to get more
in-depth information on the process in its strengths and bottlenecks. In
contexts like this one, the output of a constraint learning process, consisting
in a constraint theory which specifies the data distribution, represents a very
powerful source of information that, if integrated into the system, helps to
improve the current model. Furthermore additional constraint specifications
can lead to the creation of different probabilistic models for other tasks, such
as monitoring and analysis of the system performances.

3.2.1 Importance of Prior Knowledge
Prior background knowledge, seen as critical acquisition of general informa-
tion, has a strong impact in learning since it allows to generalize to future
situations. Strong benefits were shown, for example, in category learning,
where prior knowledge, connecting to category’s characteristics, helps the

2Natural language processing utilizes computational techniques to analyse and create
natural language and speech.

13

3 – Constraint Learning

learner to speed up the learning process by identifying an eventual underly-
ing thematic pattern [23]. Prior knowledge has also been viewed as beneficial
because it imposes limits on the learning process, such as limiting the number
of hypotheses that learners consider [24].

Machine learning algorithms can be guided from different knowledge repre-
sentations (i.e. logic rules, algebraic representations, prior simulation results)
to create an “informed” model [25]. The advantages brought by this type
of process are mainly for models that do not have enough data to be able
to generalize on the real distribution or in cases where data are not infor-
mative enough to achieve the desired performance. The integration of prior
knowledge allows a greater robustness, accuracy and in some applications a
more computationally efficient learning process. Moreover, there are certain
types of applications that require a system with an extremely high level of
reliability to ensure an adequate level of safety or, in other cases, a successful
prevention from failures that would lead to considerable economic damage.
In these situations, ensuring the desired level of model’s performance often
requires the integration of additional knowledge and experience.

3.2.2 Applications
Prior knowledge can have an important role in Deep Learning (DL) 3. In fact,
Deep Neural Networks (DNNs) are usually trained by using large datasets
which are not always available, this is why transfer learning is frequently used
[26]. Transfer learning consists in building a machine learning model for a
problem by basing on knowledge acquired in solving similar tasks. In order to
make DL models less empirical, and more fast and scalable, the exploitation
of domain knowledge can be advantageous [27]. Different techniques are
applied in this field, such as the integration of logic rules describing some task
specifications and/or limitations to regularize and boost the performance of a
deep learning model for image classification [28]. Another common strategy
to use prior knowledge in DNNs is to add penalty components to the loss
function minimized by the model. This technique was applied by Rieger
et al. [29] that demonstrated how alignment with domain knowledge by
penalizing neural networks removes bias and improves the predictive accuracy

3In the context of machine learning, deep learning is focused in creating algorithms
which emulate the structure and the functionalities of the human brain. These algo-
rithms are called artificial neural networks or deep neural networks, depending on their
complexity.

14

3 – Constraint Learning

Figure 3.1: Supervised reinforcement learning block diagram. Figure source:
[2].

on different datasets. Prior domain knowledge can be expressed in the form
of constraints describing known rules (i.e. physics rules) and be used to
supervise the training of a neural network [30].

The incorporation of prior knowledge is also applied to causal networks
(structures containing causal relationships). Past experiments can be ex-
ploited to infer new constraints that complete and improve the original causal
model [31]. Furthermore, relationships between nodes can be used for the
creation of a knowledge graph to infer a causal Bayesian network with a
learning accuracy substantially higher with respect to the original one [32].

In time series the injection of prior knowledge to catch temporal rela-
tionships is more challenging since it is required a computationally efficient
method which is able to reveal latent causes even when the prior informa-
tion is not completely correct. This problem was tackled by creating an
efficient approach to reconstruct the timing of latent variables by using prior
knowledge from similar datasets or other time periods [33].

3.2.3 Prior Knowledge in Reinforcement Learning
Traditional RL systems are built to rely only on the current state of the
environment to predict the best future actions for the agent. This is one of
the limitations of RL that results in lack of robustness and stability in certain
applications, as well as in a slow convergence of the algorithm. The general
idea is to reproduce the human capability of recalling past experiences to

15

3 – Constraint Learning

take action when facing with danger.
Whenever some prior knowledge on the environment’s limitations is avail-

able (and it often happens in real cases), it can be used to enhance the
stability of the agent during its learning process and speed up the conver-
gence. This kind of process is applied in many applications in the robotic
field, where complex environments require very long training time for an
agent, without any prior information, to learn how to move in the environ-
ment and/or interact with it.

The integration of RL systems with additional information has been ad-
dressed by applying different strategies. For example, in [2] a control module
is developed to balance the information transfer between the RL module and
the prior knowledge sources throughout the training, generating a sort of
Supervised Reinforcement Learning (see Figure 3.1). Another technique to
avoid the so-called tabula-rasa learning is to initialize the network weights
by exploiting the information on the domain [34].

A further problem could be faced in the acquisition of information, be-
cause often the only strategy is to use examples, especially in the field of
robotics. If not known a priori, background knowledge can be extrapolated
from demonstrations (from source agents or humans) and used to learn a
policy [35] or as an integration for the learning process [36].

Frameworks proposed by OpenAI for RL algorithms development (Gym
[8] and Safety Gym [3]) were used to experiment the integration of external
knowledge in the training process. Recently, Hsu et al. [37] implemented
an unsupervised technique to select a action for the agent in a particular
state within a buffered store of safe actions. This method, when integrated
with the conventional policy optimization algorithm, significantly reduced
the number of agent’s failures. In another study conducted by Pinto et al.
two agents were jointly trained, one with RL to learn an optimal policy for
a specific task (chosen between the ones proposed by OpenAI Gym) and the
other to induce disruption in the learning process. This approach increases
the robustness of the RL model to errors and uncertainties in different test
environments [38].

16

Part II

Second part: Constraint
Learning from

Trajectories

17

Chapter 4

Method

The methodology involves three main steps:

1. Constrained RL agent traning;

2. Constraint learning process;

3. Application in new training.

The objective is to demonstrate that it is possible to use 2D data to learn
constraints which can help an agent to respect safety specifications in a re-
inforcement learning task. In this chapter the methodology is illustrated in
detail following the different steps.

4.1 Constrained RL Agent Training
As a first step, the environment is set and created to train the agent. The
framework that was used to build the environment is Safety Gym [3]
(overview in Section 2.2.2).

The library, as previously mentioned, provides different kinds of robot
(specified through MuJoCo XML files [39]), and for this work the simplest one
(the Point) is tested and used for the experiments. The set of algorithms for
constrained and unconstrained RL are implemented in a repository, provided
by OpenAI, which is called Safety Starter Agents [3].

All the environments are built in 2D space and the training of the agent
is episodic. All the actions of the agents are continuous and linearly scaled
in the interval [−1, +1].

18

4 – Method

4.1.1 Task Definition
Safety Gym proposes three different tasks, which are mutually exclusive. In
this thesis, Goal was implemented: a goal circle is generated in a random
position and the robot has to move towards it. Once the robot has reached
the goal, a new one is created in another random position in the 2D space
and the process repeats until the end of the episode.

Two types of rewards are associated to the goal achievement:

1. sparse reward: corresponds to the prize obtained when reaching the goal;

2. dense reward: an additional reward given for approaching the goal.

At each the step i, the total reward value is updated by summing the
contribution of the sparse rs(i) (always ≥ 0) and dense rd(i) rewards:

r(i) = rs(i) + rd(i)

rs(i) =
Rs if δ(i) ≤ Gr

0 otherwise

rd(i) = (δ(i− 1)− δ(i))Rd

(4.1)

Where δ(i) is the distance between the robot and the center of the goal
at the step i, Gr is the size of the goal radius, Rs and Rd are the values
associated to the sparse reward and dense reward respectively.

4.1.2 Environment Setting
Within the environment-builder Safety Gym it is possible to both use en-
vironments with predefined configuration and create customized ones. All
the specifications of a new environment (differing from the default ones) are
listed in a dictionary that is used as an input for the class Engine.

Considering that the purpose of the training is the collection of trajectories
of a trained agent, it is preferable not to insert constraint elements of different
types within the space since they would not be interpretable and would only
increase the complexity of the training. For this reason the elements chosen
as “obstacles” are the Hazards and they do not represent physical obstacles,
but rather areas to be avoided because potentially harmful.

19

4 – Method

Every hazard is represented in the 2D space with a cubic shape with a
specified dimension. Various environments were created with different levels
of complexity in order to test the behaviour of the agent while increasing the
number of constraints and changing their dimensions (see Figure 4.1).

(a) Environment-1 (b) Environment-2

(c) Environment-3

Figure 4.1: Three environments created with Safety Gym. Environment-
1 contains three hazards with dimensions of 0.6 units, while Environment-2
and Environment-3 present five and ten hazards respectively with dimensions
of 0.4 units. The green cylinder indicates the goal. The agent is represented
in red with goal and hazards pseudo-lidars above.

The robot Point is equipped with one actuator to turn and one to move
both forward and backwards. A small square is placed in front of the robot
and facilitates the interpretation of the direction of its movement.

The agent can cross the hazards during training, but every time it enters
one of them there is a penalty. The cost c(i) for each timestep i dependent
on the presence of the hazards is formulated as follows:

20

4 – Method

c(i) =
Ø

h∈H

ch(i)

ch(i) =
Hc(Hs − γh(i)) if γh(i) ≤ Hs

0 otherwise

(4.2)

Where H is the set of hazards in the environment, γh(i) is the distance
between the agent and the hazard h at step i, Hc is the cost associated to
the violation of the constraint and Hs is the size of the hazard (that is half
the side length).

The layout of the environment is randomly initialized at the start of the
training and it stays constant throughout the episodes. Instead, the initial
position of the agent is randomly selected at the start of each episode.

4.1.3 Policy Optimization: Lagrangian Methods
To address continuous control tasks, policy optimization is an efficient re-
inforcement learning strategy, where the policy represents the function that
maps the agent’s state to its next action. Reinforcement learning is consid-
ered to be an optimization problem in which the predicted reward is opti-
mized in relation to the policy parameters.

When dealing with constrained RL there is the need for an algorithm
where the policy improvement step ensures both an increase in reward and
the fulfillment of the constraints. The choice of the algorithm mainly depends
on the performance that it gives considering the metrics of interest for the
specific task.

In Safety Gym two methods are proposed for the constrained environ-
ments: Constrained Policy Optimization (CPO) [40] and Lagrangian meth-
ods. CPO guarantees constraints satisfaction by solving trust region opti-
mization problems each time the policy is updated. Lagrangian methods,
instead, are applied on Proximal Policy Optimization (PPO) [41] and Trust
Region Policy Optimization (TRPO) [42] to enforce the constraints by ap-
plying adaptive penalty coefficients.

For this application the key point is to have an agent that “fails as little
as possible”, which means that the most suitable algorithm is the one that
gives the lowest cost rate. In Safety Gym all the algorithms were tested on
different environments. By looking at the results on the experiment Point-
Goal1 (Figure 4.2), the algorithms which give the best performances in terms

21

4 – Method

Figure 4.2: Evaluation of five algorithms throughout the training of Point-
Goal1 (task: Goal, robot: Point, constraints: medium density of unsafe
elements). Three metrics are considered: average episodic reward, average
episodic cost and cost rate. Figure source: [3].

of safety are PPO-Lagrangian and TRPO-Lagrangian.
TRPO includes a Kullback–Leibler (KL) divergence constraint which al-

lows a monotonic improvement with the right hyperparameters. KL diver-
gence measures the difference between two distributions. TRPO ensures that
the policy does not change much from one step to another by limiting the
value of KL divergence. The formulation of the optimization problem imple-
mented by TRPO is the following:

maximize
θ

Êi[
πθ(ai|si)

πθold(ai|si)
Âi]

subject to Ei[KL[πθold(·|si), πθ(·|si)] ≤ τ

(4.3)

Where τ is the boundary set on the value of the KL divergence and corre-
sponds to the size of the trust region. Âi is a function which measures the
advantage of choosing a specific action in a certain state.

In PPO there is a variation with respect to TRPO, the constraint is not
added separately but it is incorporated into the objective function as penalty.
KL divergence is multiplied by a constant and subtracted from the objective
function. PPO’s performance is similar to TRPO’s in terms of reliability but,
since it uses only first-order optimization, the implementation is much sim-
pler. In both algorithms the objective function does not contain information
about the costs,it is rather a function of the expected reward. Hence, the
Lagrangian approach is combined with PPO and TRPO algorithms resulting
to solve the following max-min optimization problem:

22

4 – Method

max
θ

min
λ≥0
L(θ, λ) = f(θ)− λg(θ) (4.4)

Where f(θ) is the objective function, g(θ) ≤ 0 is the constraint and the
problem is solved by gradient ascent on the set of policy parameters θ and
gradient descent 1 on the regularization rate λ.

4.2 Constraint Learning Process
After training the agent, a sample of its trajectories, stored during the test
phase, is used as dataset for the constraint theory learning process.

The goal is to find a formula that generalizes to the true support of the
data distribution thereby distinguishing safe from unsafe areas. The ap-
proach used for the constraints learning process is based on INCAL+ [43],
an algorithm for support learning from positive-only data. Some additions
were applied to the method in order to guarantee optimal results in a two-
dimensional setting.

Part of the trajectories data is used as validation set to choose the formula,
if more than one is produced by the algorithm. The result is a formula which
is only satisfied by datapoints included in the area predicted as safe.

4.2.1 Trajectories as Training Data
Once trained, the agent is tested for a pre-defined amount of episodes during
which the process is monitored through a set of metrics. At the end of each
episode the following metrics concerning the current episode are provided as
an output:

• EpRet: cumulative reward obtained in the episode;

• EpCost: cumulative cost for violations in the episode;

• EpLen: number of steps for the episode;

The value of EpCost determines how much “precise” the agent has been in
the considered episode, thus a value of 0 indicates that the agent was able to

1Gradient descent and ascent are first-order optimization algorithms which, given a
function, find a local minimum and maximum, respectively.

23

4 – Method

Figure 4.3: The first figure represents a sample of trajectories in
Environment-1 with three hazards. The formula χ retrieved by the learning
algorithm should be as similar as possible to the one shown in the figure on
the right. The area satisfied by χ is represented by the green region, while
the red parts represent the area where χ is unsatisfied.

navigate without violating any of the safety specifications. This information
is helpful because it allows the identification of safe trajectories that can be
stored for the constraint learning process.

The result is a set of positions occupied by the agent which, considering
the strategy of choice, can be defined as an “expert agent”.

4.2.2 Constraint Learning
The approach of INCAL+ is to use an incremental scheme to find a formula
which correctly classifies the given examples, by gradually increasing the
complexity.

In this application, each two-dimensional position stored from the expert
agent represents an example of positive variable assignment and, since nega-
tive examples are not provided in the training data, the unfeasible region has
to be inferred. The goal of the learning process is to construct a formula that
designates the area occupied by the hazards in the environment as unsafe,
thereby distinguishing them from the safe region (see Figure 4.3).

Critical aspects Cleaning data by removing unsafe trajectories allows to
have datapoints that do not contain errors, but their distribution in the space
is far from being uniform. This could drive the algorithm to wrong solutions
in some cases.

24

4 – Method

For example, the agent probably follows circular trajectories and this
would imply a scarcity of data in the corners if considering a rectangular
or square window. These areas could be misclassified as unsafe if not con-
taining enough datapoints. For this reason the size of the training set has
to be such as to have points belonging also to areas with lower probability
density. On the other hand, a larger amount of data would result in a greater
probability of having points close to the unsafe areas. This would increase
the computational complexity of the algorithm, therefore it would be more
difficult to identify the unsafe areas.

As a solution, a subset of data representative for the particular window is
selected and a small percentage of error in the result of the formula is toler-
ated. The strategy to incorporate tolerance to exceptions into the learning
process is illustrated in 2.

Definitions In logic, propositional resolution represents a rule of inference
and it works on expressions in clausal form. A propositional logical formula
is composed by atomic propositions linked by logical connectives (such as
And, Not, Or). A clause is defined as disjunction of literals (defining normal
atoms and their negations), rendering it true even if only one of the literals is
true. Every logical formula can be expressed in a distinct normal form, such
as disjunctive and conjunctive normal forms. In boolean logic, Conjunctive
Normal Form (CNF) is an approach to represent formulas as conjunctions of
clauses with disjunctive clauses. Given the variables U, V, Z, an example of
a CNF formula could be:

(U ∨ V) ∧ (¬V ∨ Z)

Instead, in Disjunctive Normal Form (DNF) the formula is composed by
disjunction of conjunctive clauses. The approach implemented in INCAL+
represents a variation of INCAL [44], a SMT(LRA) learning algorithm, to
a case where negative examples are unavailable. SMT (Satisfiability Modulo
Theories) determines satisfiability of formulas considering a specific back-
ground theory (through generalizing SAT). The background theory LRA
refers to Linear Real Arithmetic, a logic theory that permits equations and
inequalities over real numbers. Given a set of positive and negative exam-
ples, a maximum number of clauses k and linear inequalities h, INCAL finds
a formula that correctly classifies all the examples. INCAL+ implements a
method to estimate the negative instances to be inserted in the data used to
learn the formula.

25

4 – Method

Algorithm The learning process consists of finding a SMT(LRA) formula
which covers all the positive instances, except from the percentage of excep-
tions allowed, and is not satisfied by examples “far” from the positive ones.
A distance measure d is calculated using the training data:

d = max min
x1∈X

L2(x1, x2),

∀x2 ∈ X ∧ x2 /= x1.
(4.5)

Hence, d corresponds to the maximum value of the N minimal euclidean
distances between every datapoint and all the others in X, where N is the
size of the training data.

In order to define the negative region, bounding boxes are constructed
from the training data with sides of dimension θ (given by d multiplied with
a user-defined threshold µ). A bounding box for a datapoint p = (px, py) is
formulated as follows:

b(p) = (x >= px− θx∧x <= px + θx)∧ (y >= py− θy ∧ y <= py + θy) (4.6)

The assumption is that the union of the bounding boxes Bθ of the training
data is a fairly accurate estimate of the true support χ∗. So the learned
formula χ̂ should cover as best as possible the region occupied by Bθ while
not covering its complement.

The value of d stays constant if the training data do not change, so the
value of the multiplier µ is changed throughout the various steps of the
algorithm. The methodology is shown in 1.

The algorithm starts the learning process with the predefined threshold
multiplier µ0 and time limit. If a valid solution is found, the formula is added
to the list of results and after every iteration the value of µ is updated. A
predefined constant mult is used to decrease the value of µ in case a solution
is found or increase it otherwise. In particular, given N iterations (hops),
the updating rule for µk, k = 0, . . . , N − 1 is the following:

26

4 – Method

Algorithm 1 Constraint learning process: adaptive search of the threshold
multiplier used by the LearnSupport algorithm.

1: procedure LearnSupportsAdaptive(X, µ0, timeout, mult, hops,
neg_bootstrap, tolerance)

2: i← 0
3: results← []
4: while i < hops do
5: res← LearnSupport(X, µi, timeout, neg_bootstrap, tolerance)
6: if res is found then
7: Add res to results
8: µi+1 ← decrease µi

9: else
10: µi+1 ← increase µi

11: i← i + 1
return results

µk =
decrease(µk−1) if valid formula in iteration k − 1

increase(µk−1) otherwise

decrease(µj) =
µj/mult if µj minimum multiplier

(µj + Ms(j)/2 otherwise

increase(µj) =
µj ∗mult if µj is maximum multiplier

(µj + ml(j)/2 otherwise

(4.7)

Where Ms(j) is the maximum of the previous multiplier values smaller
than µj, while ml(j) is the minimum of the previous multipliers larger than
µj

The threshold θ = µ · d determines the distance between the safe area
identified by Bθ and the unsafe area. Lower values of θ allow the formula to
learn a more detailed support but with increase in the runtime, so the adap-
tive search aims to find the most accurate result by respecting the imposed
time limit.

At every iteration of the adaptive search a formula is incrementally learned
from the training data (procedure details in 2).

27

4 – Method

Algorithm 2 Constraint learning algorithm: incremental scheme to learn a
formula χ ∈ CNF (k, h).

1: procedure LearnSupport(X, µ, timeout, neg_bootstrap, tolerance)
2: k, h← initialization
3: θ ← µ · d normalized for the variable domains
4: exceptions← tolerance · |X|
5: while timeout do
6: Neg ← negative examples from complement of Bθ

7: S ← X ∪Neg
8: D ← sample from S
9: while |D| > 0 do

10: χ← LearnFormula(D, k, h)
11: if solver sat for |S| − exceptions instances in S then
12: return χ
13: else
14: D ← sample from wrongly covered instances in S

15: k, h← increase by using updating rule

Every time the LearnSupport function is called, the initial complexity
of the formula χ is set: k corresponds to the number of clauses and h to
the halfspaces over bounded real variables. The maximum number of exam-
ples wrongly-classified by the final formula is computed by multiplying the
parameter tolerance (between 0 and 1) and the cardinality of the training
data. The parameter neg_bootstrap indicates the amount of examples to
sample for selecting negative instances positioned in the area covered by the
complement of Bθ. The examples with negative labels are selected using a
boostrap technique, consisting in a strategy of random sampling with re-
placement from a dataset. The value neg_bootstrap indicates the amount of
data (sampled within the variables domain) from which the negative exam-
ples are bootstrapped. Once selected, the negative samples are added to the
original dataset X containing only-positive instances.

The resulting dataset S is used as training set for learning a formula
χ ∈ CNF (k, h).

The goal of the procedure 2 is to find a valid formula with the minimum
complexity. Formally this leads to the following problem:

min
χ

wkk + whh (4.8)

where wk and wh are the weights associated to k and h respectively. A higher

28

4 – Method

weight indicates a slower increase for the parameter.
Every time LearnFormula returns unsat, which means that the solver

was not able to find a valid formula with the given k and h, the values of
the parameters are updated with respect to 4.8. This process is repeated
(the values of k and h keep increasing) until either a solution is found or the
time limit is reached (in this case no valid formula is returned by Learn-
Support).

The learning process of the formula follows the strategy adopted in INCAL
[44] for incremental learning of a SMT(LRA) formula. This technique makes
the learning process more efficient by gradually adding a subset of the training
data to pass to the solver (any state-of-the-art solver can be used, in this
project MathSAT [45] was chosen).

The incremental learning procedure to retrieve the CNF formula is
the following:

1. an initial subset D is randomly selected from the training data S, with
dimension n (i.e. 1÷ 10 of the original dataset X);

2. the solver starts the process to find a formula χ, with k clauses and h
linear inequalities, satisfying all the data in D;

3. if χ is found, the satisfiability is tested on all the data S;

4. if the formula satisfies all the data in S except from the maximum errors
allowed (exceptions), then χ is accepted as a valid solution. Otherwise a
set of maximum n/2 instances of S, wrongly classified by χ, are selected
to be passed to the solver (back to 2.).

The incremental scheme allows a faster and more efficient resolution than
learning using all the data in a batch, which, representing an NP-complete
problem 2, could be computationally very expensive in the case of a large
amount of data. Moreover, this strategy allows to accept a “non-perfect”
formula. In fact, the SMT solver finds a valid assignment to all the deci-
sion variables and, in this case, the resulting formula could be valid for a
portion of data large enough to be accepted without the need to look for a
perfect solution that is potentially difficult to find (in terms of efficiency and
complexity).

2NP-complete are problems yet to be efficiently solved by existing algorithms.

29

4 – Method

4.2.3 Validation
The procedure LearnSupportAdaptive (detailed in 1) returns a set of
CNF formulas retrieved by the learning algorithm with different values of
θ. It is therefore necessary to define a validation process to choose the best
formula χ̂. The objective is to find the formula which has the minimum
misclassification error when compared to the true support χ∗ of the data
distribution.

The validation procedure is described in 3.

Algorithm 3 Validation method applied to decide the best formula between
the set return by LearnSupportsAdaptive.

1: procedure Validation(formulas, X)
2: V ← samples from original dataset X
3: scores← []
4: for χ and θχ in formulas do
5: Wθχ ← union of bounding boxes with size θχ of samples in V
6: volW ′

θχ
← volume of W ′

θχ

7: volW ′
θχ

∩χ ← volume of intersection between W ′
θχ

and χ

8: falseNegative← portion of examples in V unsatisfied by χ

9: scores← add the score:
volW ′

θχ
∩χ

volW ′
θχ

+ falseNegative

10: χ̂← formula with minimum score in scores
11: return χ̂

A sample V is randomly selected from the trajectories set X and used as
validation set. V is then used to “construct” an estimate of the true support
by computing Wθχ, which consists in the union of the bounding boxes (4.6)
of each example in V with size θχ (where χ stands for the current formula
being validated).

A score is associated to every formula returned by the constraint learning
procedure and χ̂ corresponds to the one with lowest score. The score for each
formula χ is the sum of two contributions:

1. The first component is a division between two volume measures (the
volume of a formula ϕ, in case of 2D data, corresponds to the approxi-
mation of the area satisfied by ϕ). The score is given by a division with
numerator the volume of the intersection between W ′

θχ
(complement of

30

4 – Method

Figure 4.4: The orange and blue areas correspond to the regions satisfied by
Wθχ and χ respectively. The red dashed area represents the false negative
error, while the blue dashed area identifies the false positive error. The
validation score is an estimate of the total error area.

Wθχ) and χ and denominator the volume of W ′
θχ

. Practically, this mea-
sure represent the portion of region unsatisfied by Wθχ that is instead
covered by χ (false positive error).

2. The second measure of the score is computed as the quantity of samples
in V unsatisfied by χ normalized by the dimension of V . Since V contains
only positive data, this value consists in the false negative error.

Therefore, a lower score represent a less significant differences between the
areas described by the the two formulas χ and Wθχ (Figure 4.4).

4.3 Application in New Training
As a result of the constraint learning process, the formula χ̂ covers the area
estimated as safe and is unsatisfied for the region(s) estimated as unsafe.
Hence, χ̂ defines an additional information on the environment characteris-
tics that can be exploited by integrating it in the RL algorithm in order to

31

4 – Method

improve the agent’s performance (overview in Section 3.2.3).
A new agent is trained in an environment with the same safety speci-

fications and same configuration of the previous one from which the test
trajectories were used to learn the constraint theory. The strategy chosen to
add the prior information to the training of the new agent is the addition
of a penalty to the reward function whenever the robot “gets too close” to
an area predicted as unsafe. In order to define if and how much the agent
is approaching to an hazard, the formula is used to evaluate the robot’s
neighbourhood and retrieve the weight for the penalty.

4.3.1 Penalty Function
In the original model, a cost is assigned to the agent whenever it enters an
area occupied by a hazard, so the behavioural policy for the next step is
only determined by the actual position of the robot. To have a broader view
of the space in which the agent is moving, it is convenient to consider a
reasonable neighborhood N of the position occupied by an agent in a given
step. Assigning a penalty based on the neighborhood leads to two main
advantages:

• the best action for the agent is predicted not only basing on the current
state but also considering the possible steps in the near future;

• the penalty score can be regularized by a weight.

A sample of neighbors can be chosen using different techniques (i.e. sample
from a Gaussian distribution with center the current position of the robot, or
else select a sample from a uniform distribution around the point of interest).
In this case, the trajectories from the first training are used to estimate an
appropriate neighborhood from which to sample. In each step of the agent’s
training, a set of neighbors N is considered by sampling from concentric
circles around the current position of the robot (see Figure 4.5). Two circles
at distance ds and ds ∗ 2 are considered, where ds corresponds to the average
euclidean distance traveled by the agent between one step and another. An
estimate of ds is computed using a sample of consecutive positions occupied
from the original agent during the testing phase.

The penalty function p(·) for a step i is computed as follows:

p(i) = P

|N (i)|
Ø

(xn,yn)∈N (i)
(xn, yn) ⊭ χ̂ (4.9)

32

4 – Method

Figure 4.5: Neighborhood of robot Point, 32 samples selected from two cir-
cumferences with centre the position of the robot.

Where P is a penalty coefficient that is multiplied by the portion of neigh-
bors in N (i) which do not satisfy the formula χ̂.

The new agent takes the original configuration with the addition of a new
set of key-value assignments as input for the environment creation. The
parameter P is assigned by the user as hyperparameter of the algorithm.

4.3.2 Reward Function Update

The concept of penalty function is defined as the integration of a term to
the objective function, that imposes a significant penalty when constraints
are violated. This approach was introduced by Fiacco and McCormick [46].
Reward-penalized functions are a way to approximate a constrained opti-
mization problem using an unconstrained one.

Hence, in this procedure the regions identified as unsafe from the formula
χ̂ are used to integrate a soft constraint in the form of penalty to the objec-
tive function maximized by the algorithm. For every timestep i the original
reward function r(i) in 4.1 is substituted by a new function rp(i) including
the penalty computation p(i):

33

4 – Method

rp(i) = r(i)− p(i) (4.10)

The purpose of this re-formulation is to prevent the agent to assume unsafe
behaviours to increase the value of the reward function. From the start
of the training, the agent is penalized not only for violations of the safety
specifications but also for approaching the hazards. This means that it can
rapidly learn how to move safely even without violating any safety rule.

Moreover, since the penalty is weighted by the amount of unsafe neighbors,
rp(i) cannot have sudden changes between one step and another and the
stability of the learning process is not affected.

The influence of p(i) on the total reward function highly depends on the
hyperparameter P (in Eq. 4.9). It is important to appropriately choose the
value of P with respect of Rs and Rd in Eq. 4.1. The general rule is that
P < Rs ∧ P < Rd, otherwise the agent would fail to achieve the goal.

34

Chapter 5

Experiments

A complete pipeline of the methodology was developed by using Python as
programming language. A minimum of three experiments were run for each
section of the thesis and evaluated quantitatively.

In this chapter the results of the experiments for every step are illustrated
and discussed. In the Section 5.2 it is also presented a variation to the original
constraint learning algorithm caused by an empirical evaluation.

5.1 Training of The First Agent
The environments were customized according to the purpose of the problem
and all the changes are applied by modifying the files in the directory “envs”
inside Safety Gym. The reinforcement learning system takes as input a con-
figuration for the environment and task specifications in the form of key-value
pairs. Some of the parameters were keep as default, while the following ones
were used to create the different settings:

• placement_extents: spatial limits [Xmin, Y min, Xmax, Y max] of the
objects’ location (i.e. goal and hazards) in the environment;

• hazards_num: number of hazards in the environment;

• hazards_size: half of the side size for each hazard;

• hazards_locations: locations of the hazards, randomly initialized at each
training.

• goal_size: radius for the circular goal.

35

5 – Experiments

Environment Configuration and Parameters Setting Three environ-
ments were created: Environment-1, Environment-2, Environment-3 (shown
in Figure 4.1). The configuration for the environments is detailed in Table
5.1 (Number, Size and Locations refers to the hazards).

Name Placements Number Size Locations Goal size
Environment-1 [-1.5,-1.5,1.5,1.5] 3 0.3 random 0.3
Environment-2 [-1.5,-1.5,1.5,1.5] 5 0.2 random 0.3
Environment-3 [-2.5,-2.5,2.5,2.5] 3 0.3 random 0.3

Table 5.1: Layout configuration of the environments.

The parameters of the reward function (sparse and dense reward) were
kept as default: Rs = 1, Rd = 1. Since the goal was to train an agent
which respects the safety specifications as much as possible, the hazards cost
parameter Hc was set to 100.

All the agents were trained for 107 steps, with 30000 steps for every epoch
(resulting in 333 total epochs). For every epoch average metrics were stored
in order to evaluate the system performances throughout the learning process.
In order to reduce noise, some scores were produced by taking the average
over the last five epochs of training. The main metrics are listed below:

• AverageEpCost: normalized average cost;

• AverageEpRet: normalized average reward;

• CostRate: normalized cost rate, that is the sum of all the costs divided
by the amount of interactions with the environment.

After the training, the policy is tested and a set of metrics are computed
for every single episode (the metrics are described in Section 4.2.1). At
the end of the testing phase of the agent the metrics were averaged for the
different episodes and a metric measuring the percentage of episodes without
constraint violations was also calculated (PercentageSafe).

In order to define an upper boundary for the amount of safety breaches
allowed, different values of limit for the constraints violation cost were tested:
z = [5,10,25]. The different experiments were performed on Environment-
3 with the algorithm PPO-lagrangian in order to decide which z to use.
The results throughout the training are shown in Figure 5.1. The results
show that z = 5 gives the best performance in terms of safety specifications
satisfaction while still guaranteeing a high reward rate.

36

5 – Experiments

(a) z = 25

(b) z = 10

(c) z = 5

Figure 5.1: Visualization of average performance in terms of average cost
and reward during the training of PPO-lagrangian in Environment-3, using
different values of z.

Policy Optimization Algorithm After setting all the parameters for
training the RL agent, the policy optimization algorithms PPO-Lagrangian
and TRPO-Lagrangian were tested using the defined configuration of the en-
vironment. In order to choose the approach that best performs in constraint

37

5 – Experiments

satisfaction, the two algorithms were tested on three different runs of the
training in the most complex environment in terms of safety specifications,
Environment-3.

The performances achieved during the training using PPO-Lagrangian and
TRPO-Lagrangian are represented in Figure 5.2.

Figure 5.2: Comparison of training performances between TRPO-Lagrangian
and PPO-Lagrangian. The plot represent the aggregate results of three dif-
ferent runs on Environment-3 for each algorithm. For the sake of visibility
the results are shown from the epoch 100.

The results in terms of cost are quite similar between the two algorithms,
even if the values for PPO-Lagrangian are slightly lower on average. In-
stead, a consistent difference is revealed in the average reward, where PPO-
Lagrangian performs substantially better, especially in the last part of the
training. Thanks to this comparison, PPO-Lagrangian turned out to be more
robust in respecting constraints also in concurrence with an improvement in
task performance.

The test aggregated results achieved by the two policy algorithms are
shown in Table 5.2, the values are averaged between three agents trained in
Environment-3 (with different hazard locations). The average scores in the
test confirm that PPO-Lagrangian generally performs better.

Hence, despite the similarity of the two algorithms, the modification of the
TRPO surrogate objective function applied in PPO leads to better results as
well as drastically reducing the computation complexity.

Consequently, PPO-Lagrangian was used also for the experiments in
Environment-1 and Environment-2. The results in the different configura-
tions were used for the constraint learning process in the next step and for
the comparison with performance of the agent with prior knowledge.

38

5 – Experiments

Algorithm AverageEpRet AverageEpCost PercentageSafe
PPO-Lagrangian 14.072 4.520 0.685

TRPO-Lagrangian 12.305 4.986 0.649

Table 5.2: Test performances using PPO-Lagrangian and TRPO-Lagrangian
in Environment-3

5.2 Constraint Learning Procedure
Clean trajectories (as explained in Section 4.2.1) were stored from the testing
process of the agents in the environments. In order to have a significant
dataset of trajectories to sample from, each agent was tested for 500 episodes
with 1000 steps each. To generate a complete dataset within a limited size,
the positions of the agent were stored every five steps. The constraint learning
procedure takes several parameters as input:

• µ0: initial threshold multiplier;

• N : number of iterations of the algorithm;

• timeout: time limit for every iteration of the algorithm;

• m: constant value for µ updating;

• S: training sample dimension, selected from the trajectories data within
the region delimited by placement_extents

• V : validation sample dimension, selected from the trajectories data
within the region delimited by placement_extents

• k, h, wk, wh: initial values of k and h and the corresponding weights for
minimization problem in 4.8;

• α: tolerance of the algorithm to errors.

• nb: coefficient to compute the number of negative example generated,
the value is expressed as a float.

Parameters Setting All the experiments were run locally, so the param-
eters hops and timeout were set considering the limitations in terms of time
and computational resources.

39

5 – Experiments

The target of the algorithm is to retrieve a formula which is as precise as
possible in identifying harmful areas. Hence, the initial value of the threshold
multiplier µ0 was set to 1.5, value chosen because considered quite reasonable.
In fact, a value of θ0 = µ0 · d close to the distance measure d (Eq. 4.5),
calculated from the training data, allows to define a nearly accurate region
by the union of the training data bounding boxes Bθ and to consequently
identify the unsafe regions (even in the most complex environment). If a
formula with θ0 was found by the algorithm, θ0 becomes an upper bound for
the threshold value, else becoming the lower bound (Eq. 4.7).

The value of m has been set to 2 so as not to have too drastic variations
of the multiplier µk, since the range of vaules should be around d in this
application.

The initialization of k and h was set considering the use case and the type
of constraints that the algorithm should learn. The environments contain
hazards, which are closed areas with square shape, therefore, to represent
the region occupied by one hazard, a clause with four inequalities is needed.
The initial values were set considering the minimum complexity needed to
represent at least one hazard: k = 1 and h = 4. For a similar reasoning, it
was considered that the algorithm must scale with the increase in the number
of harmful zones, but this increase is not linear between the number of clauses
and inequalities (as mentioned above). This imbalance was reproduced by
giving different weights to k and h, keeping the weight of k greater so as to
have a slower increase. Since the goal is to approximate the hazard zones
from a non-uniform data set, wk was assigned the value 3 (instead of the
target value 4) and wh = 1. In this way, an increase 3 : 1 of k and h was
considered acceptable because it still allows the identification of k closed
areas in space.

The coefficient nb defines the amount NB of negative instances inserted
in the original dataset, computed as NB = nb ∗ S (being X the original set
of trajectories). Since the negative examples are bootstrapped from a set of
data, it is not possible to predict a priori the number of negative samples
generated. The value of nb was set to 1 in order to produce an amount
of estimated negative instances which is significant but does not exceed the
quantity of positive data.

The sample size S had to be large enough to distinguish safe and unsafe
areas, the choice depended on the dimension of the environment’s window and
of the hazards. An estimate of the minimum amount of datapoints needed
was made empirically (example in Figure 5.3). The following values were
chosen as lower bound Sm for dimension of S in the different environments:

40

5 – Experiments

• Environment-1 : Sm = 500

• Environment-2 : Sm = 800

• Environment-3 : Sm = 1000

(a) S = 100 (b) S = 500

(c) S = 1000

Figure 5.3: Visualization of samples from trajectories in Environment-3 with
increasing S.

A lower bound for the dataset size was set since a large amount of samples
would significantly increase the number of operations to be performed by the
solver, consequently, leading to a greater risk of not finding a valid solution
within the timeout.

The maximum time interval for the constraint learning process was set
to 10000 seconds (timeout = 1000 and N = 10). The tolerance to errors
was fixed to α = 0.2 in order to add some flexibility to the algorithm while
ensuring that the solution is not compromised and can be considered valid.

In every environment, experiments were run by starting from the defined
minimal sample size Sm and then increasing the amount of samples. The

41

5 – Experiments

constraint learning procedure returned a set of formulas (with size up to the
number of iterations N) and then χ̂ was chosen by the validation process.
The validation set was sampled from the original trajectories dataset and the
size was set as: V = 2S. Since the validation data were used to construct an
estimate of the true support to be used as a target for the learning process,
a greater amount of data was considered to ensure a better representation.

Evaluation of results In order to evaluate the performance in learning
constraints and to decide if the procedure was appropriate or modifications
were needed, the results were compared to the ground truth. To define a
measure, a set of 50000 examples within the environments space limits were
sampled and classified by the learned formula χ̂ and by the ground truth
χ∗ (constructed by using the hazards_locations of the environment). The
metric used to evaluate the classification performance of χ̂ was the F1-score,
calculated as:

F1(c) = 2 ∗ precision(c) ∗ recall(c)
precision(c) + recall(c)

F1-score = F1(Pos) + F1(Neg)
2

(5.1)

The result is an arithmetic mean between the F1 scores for the positive
class Pos and the negative class Neg. This metric was chosen since it gives a
“fair” score when the dataset imbalanced (like in this case were the positive
class is significantly more represented).

Table 5.3 reports the results achieved by the learned formula in the three
environments. The performances are not very satisfying in terms of F1 score,
especially for Environment-3, were the learned formulas could not identify
the unsafe regions properly. Constraint learning failed whenever there was
an increase of hazards in the environment configuration (see Figure 5.4). In
many cases, the formulae learned for the agents trained in Environment-3
fail to identify even one of the harmful areas. This is due to the fact that
in the learning process the algorithm cannot scale fast enough to reach the
complexity (in terms of k and h) necessary to represent 10 closed zones, the
hazards. In Environment-3 the target values of k and h are k = 10 and
h = 4k (since the unsafe zones are square), so the formula should reach a
similar complexity in order to represent the hazards fairly accurately.

Even when adding samples to the training dataset, the algorithm could
not improve its performance, indeed in some cases the results even worsened

42

5 – Experiments

Environment-1
Experiment F1, S = 500 F1, S = 800 F1,S = 1000
Point1-env1 0.760 0.501 0.748
Point2-env1 0.653 0.820 0.776
Point3-env1 0.653 0.601 0.785
Statistics µ = 0.689

σ = 0.050
µ = 0.641
σ = 0.133

µ = 0.770
σ = 0.016

Environment-2
Experiment F1, S = 800 F1, S = 1000 F1,S = 1500
Point1-env2 0.608 0.518 0.672
Point2-env2 0.537 0.609 0.607
Point3-env2 0.573 0.511 0.469
Statistics µ = 0.573

σ = 0.029
µ = 0.546
σ = 0.045

µ = 0.592
σ = 0.073

Environment-3
Experiment F1, S = 1000 F1, S = 1500 F1,S = 2000
Point1-env3 0.481 0.480 0.597
Point2-env3 0.475 0.480 0.493
Point3-env3 0.486 0.480 0.480
Statistics µ = 0.481

σ = 0.005
µ = 480
σ = 0.000

µ = 0.523
σ = 0.052

Table 5.3: Results in terms of F1-score of the constraint learning procedure.
The experiments were run with the same set of parameters except from the
sample dimension S. Aggregated statistics (mean and standard deviation)
were calculated for the results in experiments with the same configuration.

due to the increase of computational complexity. Moreover the system was
not considered very reliable due to the variability of performance between
the trajectories in the same type of environment and with the same set of
parameters (only variability is the random position of the hazards).

5.2.1 Variation
The results achieved by applying the constraint learning procedure were not
accurate enough to be used for representing the unsafe areas of the environ-
ment. To understand how to variate the procedure in order to get a formula
that identifies the unsafe regions with acceptable accuracy, the limitations of

43

5 – Experiments

(a) Environment-1 : S = 500, S = 800, S = 1000

(b) Environment-2 : S = 800, S = 1000, S = 1500

(c) Environment-3 : S = 1000, S = 1500, S = 2000

Figure 5.4: Visualization of the formula χ̂ retrieved by the constraint learning
procedure in different environments with an increasing amount of training
data. The red areas represent the regions classified as unsafe from χ̂. For the
sake of visibility the training data are shown (in black) only for the results
with the minimum amount of samples S.

the constraint learning process were analysed in a simplified example case.
The sample S was randomly selected from datapoints uniformly distributed

in the safe zones of a test environment with a configurable number of hazards.
The problems identified in the learning process were the following:

• the algorithm failed with an increasing number of hazards with a pro-
portionally small area with respect to the spatial window considered;

• when adding more samples to the training data, the execution time of
the algorithm increased consistently and in many cases the algorithm

44

5 – Experiments

was unable to correctly classify the desired portion (1− α)S of training
data.

Therefore, the test environment was created by using a low number of
hazards in a small space and reducing the number of training samples. All
the parameters of the algorithm were kept as before. The visualization of
the formulas learned in the simplified environment (in Figure 5.5) shows an
improvement in the performance of the constraint learning procedure.

Figure 5.5: Visualization of the constraint learning results in two simplified
environments with 200 data uniformly distributed within the safe region.
The learned formulas can quite accurately distinguish safe and unsafe areas
(F1-score ≈ 0.87).

These results led to the conclusion that, by decreasing the number of sam-
ples and increasing the area occupied by unsafe areas in proportion to the
total space, it was possible to learn acceptable constraint theories. This rea-
soning was transferred to learning from the trajectories of the agent by creat-
ing a series of subsets starting from the original data. The idea was to define
sub-areas smaller than the original space (delimited by placement_extents)
and individually learn the constraints using training data sampled from the
trajectories within the created sub-area. The final formula is given by the
union of the formulas learned in the individual created regions. The proce-
dure for the generation of the sub-areas from the original space is detailed in
4.

Given a desired minimal dimension for the new areas side (dimension),
every variables’ domain interval is divided in M sub-intervals, where M cor-
responds to the integer division between the original interval length and
dimension. The final set of intervals subsets, consisting in (subx, suby) pairs,
is used to define M sub-areas A from the original space.

45

5 – Experiments

Algorithm 4 Generation of multiple sets of training data to learn constraints
in sub-areas of the original data space.

1: procedure CreateSubsets(X, dimension, placement_extents)
2: ls← variables (x, y) intervals from placement_extents
3: for lv in ls do
4: M ← lv ÷ dimension
5: if M == 0 then
6: subv ← lv
7: else
8: subv ←M equal intervals from lv
9: subsets← set of length(subx) ∗ length(suby) intervals

10: return subsets

The constraint learning procedure LearnSupportsAdaptive is itera-
tively executed for every aj ∈ A (where j = 1, . . . , M) using as dataset the
set of agent’s trajectories in the area of aj. Every iteration of LearnSup-
portsAdaptive returns a formula χ̂j for the sub-area aj, the global formula
χ̂ is given by the union of the M formulas generated:

χ̂ =
MÛ

j=1
χ̂j (5.2)

5.2.2 Results
Considering the dimension of the original environments’ space in this task,
the minimum side dimension was set to 1 (dimension = 1). From the exper-
iments in the test environments it was found that the algorithm was able to
scale correctly with a number of samples equal to 200. This information was
used to set Sj = 200 for each aj. Hence, the amount of trajectories subsets
and of total training samples for each environment was:

• Environment-1 : M = 4, S = 800;

• Environment-2 : M = 4, S = 800;

• Environment-3 : M = 16, S = 3200;

The amount of training samples for Environment-1 and Environment-2
were consistent with the evaluation done before about the minimum number

46

5 – Experiments

Figure 5.6: Example of sample selection from M sub-areas generated in
Environment-1.

of samples Sm. For Environment-3 S was significantly greater with respect
to the first experiments and it was considered an advantage given the unsat-
isfactory results achieved in precedence.

The time limit was also modified since the procedure became iterative,
so potentially M times slower. The experiments in the test environments
showed that the algorithm could find valid solutions in very short time (a few
seconds). For this reason timeout was set to 180 and the number of iterations
was set to 8. In this way the time limit for the first two environments was
almost halved with respect to the previous experiments. The maximum time
interval for Environment-3 increased, but from the experiments revealed that
the effective execution time decreased from the first experiments in the same
environment.

Table 5.4 reports the results achieved by the iterative version of the con-
straint learning procedure. All the parameters except from the ones regard-
ing amount of training samples and time limit were kept as in the first set
of experiments. The results in terms of F1-score were significantly improved
with respect to the ones of the original constraint learning procedure. On

47

5 – Experiments

average there was an increase of 0.21 on the F1-score. The improvement
was especially seen in Environment-3 were the original method hardly ever
succeeded in producing a formula that would even partially identify unsafe
zones. Moreover the performance of the new learning model were more sta-
ble, in fact the standard deviation for the values of F1 scores was lowered,
never exceeding 0.02.

Environment-1
Experiment F1 score Recall neg. Precision neg.
Point1-env1 0.821 0.755 0.701
Point2-env1 0.861 0.810 0.732
Point3-env1 0.863 0.778 0.769
Statistics µ = 0.848

σ = 0.019
µ = 0.781
σ = 0.022

µ = 0.734
σ = 0.028

Environment-2
Experiment F1 score Recall neg. Precision neg.
Point1-env2 0.752 0.755 0.636
Point2-env2 0.799 0.702 0.655
Point3-env2 0.762 0.710 0.645
Statistics µ = 0.771

σ = 0.020
µ = 0.722
σ = 0.023

µ = 0.645
σ = 0.008

Environment-3
Experiment F1 score Recall neg. Precision neg.
Point1-env3 0.743 0.789 0.523
Point2-env3 0.774 0.870 0.551
Point3-env3 0.789 0.881 0.567
Statistics µ = 0.769

σ = 0.019
µ = 0.847
σ = 0.041

µ = 0.547
σ = 0.018

Table 5.4: Results in terms of global F1-score and negative class recall and
precision achieved by the execution of the constraint learning procedure it-
erative variation. Aggregated statistics (mean and standard deviation) were
calculated for the results in experiments with the same configuration.

In the table, recall and precision scores are reported for the negative class.
The values for the precision were quite lower than the recall scores, especially
when increasing the number of hazards in the environment. This indicates
that the regions identified as unsafe by the formula were a bit wider than
the original ones and probably not completely centered in the position of the

48

5 – Experiments

hazards. This result was due to the non-uniform distribution of the training
data which did not allow to have a perfect representation of the safe areas.

Considering the training data quality, the restrictions in terms of time and
computational resources, the results of the constraint learning procedure us-
ing subsets were evaluated to be satisfactory. A visualization of the predicted
constraint theories in different environments is provided in 5.7.

(a) Environment-1 (b) Environment-2

(c) Environment-3

Figure 5.7: Formulae χ̂ learned in three different environments using the
iterative variation of the constraint learning procedure.

5.3 Training of The Agent with Prior Knowl-
edge

For the second agent the environment’s configuration was kept identical to
the original one, in terms of layout and coefficients for cost and reward,

49

5 – Experiments

to have a fair comparison. The penalty coefficient P was instead fixed by
considering the reward parameter. In order to have a significant contribution
of the penalty but still allow the agent to learn to achieve the goal, P was
set to 1

10Rs, resulting in P = 0.1.
The training time of an epoch for the second agent, with penalty compu-

tation for each step, only had a small increase (between 10−15%). This was
possible due to an evaluation in batch of the neighborhood datapoints which
mapped them to satisfied or unsatisfied according to the predicted formula
χ̂. Since the addition of previous information was expected to lead to faster
training of the agent, the number of epochs, and therefore of interactions
with the environment, have been reduced in half compared to the first agent.

All the environments created in the first RL experiments were replicated to
train new agents with prior knowledge. The goal was to improve the agent’s
ability to avoid harmful areas. Aggregated statistics about the “safety” of
the agent’s exploration while testing were used, in order to compare the
performance of the agent before and after the addition of prior knowledge.
In particular, the measures used as metrics were:

• AverageTestCost: average cumulative episodic cost;

• PercentageSafe: percentage of episodes with safe trajectories.

5.3.1 Results
The safety results achieved by the agents with prior knowledge and the com-
parison with the first experiments are reported in Table 5.5. The results
improved both in terms of average episodic cost and percentage of zero-cost
episodes in all the environments. It can be observed that the average costs
are quite uniform among the different environments and, especially, they are
decidedly lower than the safety limit set (z = 5). The average percentage
difference in cost assigned to the agents with prior knowledge was over −30%
for Environment-3 and around −50% for the other two.

In order to analyse the training process and establish if the agents were
also learning how to reach the goal in addition to avoiding harmful areas,
graph showing the cost and reward values trends during the agent’s training
were inspected (Figure 5.8). The graphs represent the performance of the RL
training in the three environments with aggregate values of the experiments.

The cost trend was lower on average for agents with prior knowledge
throughout the training. In all the environments the average cost for the
new agents never exceeded the safety limit z after the first 25 epochs, while

50

5 – Experiments

Environment-1
Prior Knowledge Agent Results Comparison

Experiment AvgTestCost %Safe ∆AvgTestCost ∆%Safe
Point1-env1 4.016 79.4 -1.517 11.5
Point2-env1 3.466 82.8 -3.766 19.4
Point3-env1 1.510 90.2 -2.200 12.8
Average 2.997 84.1 -2.494 14.6

Environment-2
Prior Knowledge Agent Results Comparison

Experiment AvgTestCost %Safe ∆AvgTestCost ∆%Safe
Point1-env2 2.836 79.8 -1.714 7.8
Point2-env2 3.298 76.6 -1.838 15.8
Point3-env2 2.992 79.4 -5.614 23.6
Average 3.042 78.6 -3.055 15.7

Environment-3
Prior Knowledge Agent Results Comparison

Experiment AvgTestCost %Safe ∆AvgTestCost ∆%Safe
Point1-env3 3.248 79.2 -1.676 7.1
Point2-env3 3.856 77.0 -1.724 8.2
Point3-env3 2.842 80.4 -1.830 10.8
Average 3.315 78.9 -1.743 8.7

Table 5.5: Performance of the agent with prior knowledge in respecting safety
specifications. The results were averaged throughout 500 test episodes and
compared with the ones achieved by the first experiments without the inte-
gration of prior knowledge.

in the previous experiments the costs were more oscillatory and sometimes
over z also at the end of the training. The greatest decrease in terms of costs
was found in Environment-2, where the original agents were unable to com-
ply with the safety specifications, probably due to the high concentration of
hazards in space.

While satisfaction of safety constraints has been significantly improved,
agents have not lost the ability to reach the goal. The reward values achieved
by adding prior knowledge are on average very similar to those of the original
training. In Environment-3 the addition of the penalty function, even made
the agent’s learning more stable throughout the training, thus increasing the
reliability of the RL model.

51

5 – Experiments

Some experiments were run also by increasing the value of P to 0.2 or 0.5.
The results showed that with these penalty values the agent was learning
how to avoid the unsafe areas even better, but the high negative contribution
to the objective function was preventing the agent from achieving the goal
and it was reducing the training stability. A solution to this could be the
application of a non-constant penalty coefficient which adapts to the agent’s
current state and performance.

Hence, the addition of a penalty function, based on the learned formula’s
predictions regarding the safety of the environment, brought significant im-
provements in the safe exploration task. The safety requirements were on av-
erage always satisfied, even in environments with a greater amount of harmful
areas where the original RL agents could not learn safe enough behaviours.
In addition to this training time was also reduced by almost half with com-
parable results in terms of reaching the task goal but with a much higher
level of safety.

52

5 – Experiments

(a) Environment-1

(b) Environment-2

(c) Environment-3

Figure 5.8: Training performances of the original agent compared to the
agent with prior knowledge. On the left there are the average costs per epoch
and the red dashed line indicates the limit boundary fixed in the constraints
specification. The plots on the right represent the average reward achieved
throughout the training.

53

Chapter 6

Conclusion

Given a set of two-dimensional data sampled from the trajectories of an
expert reinforcement learning agent, a method was implemented to learn a
formula which approximates the support of the training data. The learned
constraint theory was used to predict the unsafe areas to be avoided by the
agent and to add a penalty to the objective function of the RL system.

An adequate learning of the formula was guaranteed even in the envi-
ronments with numerous hazards thanks to the partition of the constraint
learning process into subproblems considering data belonging to sub-areas of
the environment. This variation to the original procedure added scalability
to the process, also with the possibility to indicate the extent of dividing the
data for greater precision. Some further additions and/or adjustments could
be applied in real world applications:

• The use of more powerful computational resources could lead to even
more precise results than the ones achieved in this thesis, since the solver
would scale faster to more complex representations.

• The constraint learning processes on the data subsets could be paral-
lelized since the final constraint formulation consists in the union of the
singular formulas.

• A more trustworthy source providing the trajectories could lead to a
more uniform and representative training dataset. An example is the
use of human safe demonstrations to create or integrate the current
dataset (human experience was already used to add information to a RL
system and consequently improve its performance [47]).

This kind of solutions would lead to results compatible with use in a real
case with stringent security needs.

54

6 – Conclusion

In the last step of the methodology the learned formula was used to iden-
tify the portion of unsafe neighbors of the robot in the current position
throughout the training process. The penalty coefficient was passed as a
static hyperparameter of the RL algorithm. As a future alternative, it would
be possible to 1) make this coefficient as a learnable parameter during the
training 2) or else apply an updating function which, for example, increases
the coefficient value after a predefined number of interactions or after reach-
ing a certain level of safety learning by the agent. These strategies could
bring even better performance in terms of safety specifications satisfaction
by the agent trained with prior knowledge.

The implemented method was meant to increase the safety level of an
agent trained by constrained reinforcement learning. There are many real
applications that could benefit from this kind of solution. For instance, a
company could decide to integrate the production process with autonomous
robots which have to perform locomotive tasks. The robots must be able to
navigate obstacles while moving from a location to another. In this case it
would be necessary that the autonomous agent is trained so that it will avoid
risky areas with a very high confidence.

High safety requirements are present in every system that has an objective
of being an autonomous device. In order to be applicable in real life, these
models are integrated with experience, additional hand-made rules and/or
adjusted data from similar applications. This is the case of self-driving cars,
where additional information from experimental data or from autonomous
systems in different domains with similar safety concerns can be crucial to
ensure a safe behaviour of the vehicles [48].

55

Bibliography

[1] K. Wang and W. Sun, “Meta-modeling game for deriving theory-
consistent, microstructure-based traction–separation laws via deep rein-
forcement learning,” Computer Methods in Applied Mechanics and En-
gineering, vol. 346, pp. 216–241, 2019.

[2] D. L. Moreno, C. V. Regueiro, R. Iglesias, and S. Barro, “Using prior
knowledge to improve reinforcement learning in mobile robotics,” 2004.

[3] A. Ray, J. Achiam, and D. Amodei, “Benchmarking Safe Exploration in
Deep Reinforcement Learning,” 2019.

[4] J. Garcia and F. Fernandez, “Safe exploration of state and action spaces
in reinforcement learning,” Journal of Artificial Intelligence Research,
vol. 45, pp. 515–564, dec 2012.

[5] A. Hans, D. Schneegass, A. Schäfer, and S. Udluft, “Safe exploration for
reinforcement learning,” pp. 143–148, 01 2008.

[6] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
The MIT Press, second ed., 2018.

[7] K. Shao, Z. Tang, Y. Zhu, N. Li, and D. Zhao, “A survey of deep rein-
forcement learning in video games,” CoRR, vol. abs/1912.10944, 2019.

[8] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schul-
man, J. Tang, and W. Zaremba, “Openai gym,” arXiv preprint
arXiv:1606.01540, 2016.

[9] M. Coggan, “Exploration and exploitation in reinforcement learning,”
Research supervised by Prof. Doina Precup, CRA-W DMP Project at
McGill University, 2004.

[10] J. Choi, G. Lee, and C. Lee, “Reinforcement learning-based dynamic
obstacle avoidance and integration of path planning,” Intelligent Service
Robotics, vol. 14, pp. 1–15, 11 2021.

[11] B. R. Kiran, I. Sobh, V. Talpaert, P. Mannion, A. A. A. Sallab, S. K.
Yogamani, and P. Pérez, “Deep reinforcement learning for autonomous
driving: A survey,” CoRR, vol. abs/2002.00444, 2020.

56

Bibliography

[12] A. Bhatia, P. Varakantham, and A. Kumar, “Resource constrained deep
reinforcement learning,” CoRR, vol. abs/1812.00600, 2018.

[13] E. Altman, Constrained Markov Decision Processes. Chapman and Hall,
1999.

[14] Y. Zhang, Q. Vuong, and K. W. Ross, “First order optimization
in policy space for constrained deep reinforcement learning,” CoRR,
vol. abs/2002.06506, 2020.

[15] L. D. Raedt, A. Passerini, and S. Teso, “Learning constraints from ex-
amples,” in AAAI, 2018.

[16] L. G. Valiant, “A theory of the learnable,” in STOC ’84, 1984.
[17] S. Muggleton and L. de Raedt, “Inductive logic programming: Theory

and methods,” The Journal of Logic Programming, vol. 19-20, pp. 629–
679, 1994. Special Issue: Ten Years of Logic Programming.

[18] N. Beldiceanu and H. Simonis, “A model seeker: Extracting global con-
straint models from positive examples,” in Principles and Practice of
Constraint Programming (M. Milano, ed.), (Berlin, Heidelberg), pp. 141–
157, Springer Berlin Heidelberg, 2012.

[19] S. Paramonov, S. Kolb, T. Guns, and L. De Raedt, “Tacle: Learning
constraints in tabular data,” in Proceedings of the 2017 ACM on Con-
ference on Information and Knowledge Management, CIKM ’17, (New
York, NY, USA), p. 2511–2514, Association for Computing Machinery,
2017.

[20] Y. Guo, R. Reichart, and A. Korhonen, “Unsupervised declarative
knowledge induction for constraint-based learning of information struc-
ture in scientific documents,” Transactions of the Association for Com-
putational Linguistics, vol. 3, pp. 131–143, 2015.

[21] F. Yang, Z. Yang, and W. W. Cohen, “Differentiable learning of logical
rules for knowledge base completion,” CoRR, vol. abs/1702.08367, 2017.

[22] A. Meló and H. Paulheim, “Automatic detection of relation assertion
errors and induction of relation constraints,” Semantic Web, vol. 11,
pp. 1–30, 04 2020.

[23] G. Murphy and P. Allopenna, “The locus of knowledge effects in concept
learning,” Journal of Experimental Psychology: Learning Memory and
Cognition, vol. 20, pp. 904–919, July 1994. Copyright: Copyright 2018
Elsevier B.V., All rights reserved.

[24] J. Tenenbaum, T. Griffiths, and C. Kemp, “Theory-based bayesian mod-
els of inductive learning and reasoning,” Trends in cognitive sciences,
vol. 10, pp. 309–18, 08 2006.

[25] L. von Rueden, S. Mayer, K. Beckh, B. Georgiev, S. Giesselbach,

57

Bibliography

R. Heese, B. Kirsch, M. Walczak, J. Pfrommer, A. Pick, R. Ramamurthy,
J. Garcke, C. Bauckhage, and J. Schuecker, “Informed machine learning
- a taxonomy and survey of integrating prior knowledge into learning sys-
tems,” IEEE Transactions on Knowledge and Data Engineering, pp. 1–1,
2021.

[26] C. Tan, F. Sun, T. Kong, W. Zhang, C. Yang, and C. Liu, “A survey on
deep transfer learning,” 2018.

[27] A. Borghesi, F. Baldo, and M. Milano, “Improving deep learning models
via constraint-based domain knowledge: a brief survey,” 2020.

[28] S. Roychowdhury, M. Diligenti, and M. Gori, “Regularizing deep net-
works with prior knowledge: A constraint-based approach,” Knowledge-
Based Systems, vol. 222, p. 106989, 04 2021.

[29] L. Rieger, C. Singh, W. J. Murdoch, and B. Yu, “Interpretations are use-
ful: penalizing explanations to align neural networks with prior knowl-
edge,” CoRR, vol. abs/1909.13584, 2019.

[30] R. Stewart and S. Ermon, “Label-free supervision of neural networks
with physics and domain knowledge,” CoRR, vol. abs/1609.05566, 2016.

[31] G. Borboudakis and I. Tsamardinos, “Incorporating causal prior knowl-
edge as path-constraints in bayesian networks and maximal ancestral
graphs,” in ICML, 2012.

[32] M. Sinha and S. Ramsey, “Using a general prior knowledge graph to
improve data-driven causal network learning,” 03 2021.

[33] M. Zheng and S. Kleinberg, “Using domain knowledge to overcome latent
variables in causal inference from time series,” Proceedings of machine
learning research, vol. 106, pp. 474–489, 2019.

[34] A. Silva and M. Gombolay, “Neural-encoding human experts’ domain
knowledge to warm start reinforcement learning,” 2020.

[35] B. Argall, S. Chernova, M. M. Veloso, and B. Browning, “A survey
of robot learning from demonstration,” Robotics Auton. Syst., vol. 57,
pp. 469–483, 2009.

[36] S. Badreddine and M. Spranger, “Injecting prior knowledge for transfer
learning into reinforcement learning algorithms using logic tensor net-
works,” 2019.

[37] H.-L. Hsu, Q. Huang, and S. Ha, “Improving safety in deep reinforcement
learning using unsupervised action planning,” 2021.

[38] L. Pinto, J. Davidson, R. Sukthankar, and A. Gupta, “Robust adversar-
ial reinforcement learning,” CoRR, vol. abs/1703.02702, 2017.

[39] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for model-
based control.,” in IROS, pp. 5026–5033, IEEE, 2012.

58

Bibliography

[40] J. Achiam, D. Held, A. Tamar, and P. Abbeel, “Constrained policy
optimization,” CoRR, vol. abs/1705.10528, 2017.

[41] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Prox-
imal policy optimization algorithms,” CoRR, vol. abs/1707.06347, 2017.

[42] J. Schulman, S. Levine, P. Moritz, M. I. Jordan, and P. Abbeel, “Trust
region policy optimization,” CoRR, vol. abs/1502.05477, 2015.

[43] P. Morettin, S. Kolb, S. Teso, and A. Passerini, “Learning weighted
model integration distributions,” Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 34, pp. 5224–5231, Apr. 2020.

[44] S. Kolb, S. Teso, A. Passerini, and L. D. Raedt, “Learning smt(lra) con-
straints using smt solvers,” in Proceedings of the Twenty-Seventh Inter-
national Joint Conference on Artificial Intelligence, IJCAI-18, pp. 2333–
2340, International Joint Conferences on Artificial Intelligence Organi-
zation, 7 2018.

[45] A. Cimatti, A. Griggio, B. Schaafsma, and R. Sebastiani, “The math sat
5 smt solver,” Tools and Algorithms for the Construction and Analysis
of Systems (TACAS’13), vol. 7795, pp. 95–109, 01 2013.

[46] A. V. Fiacco and G. P. McCormick, “Nonlinear programming;: Sequen-
tial unconstrained minimization techniques,” 1968.

[47] M. E. Taylor, H. B. Suay, and S. Chernova, “Integrating reinforcement
learning with human demonstrations of varying ability,” in The 10th In-
ternational Conference on Autonomous Agents and Multiagent Systems -
Volume 2, AAMAS ’11, (Richland, SC), p. 617–624, International Foun-
dation for Autonomous Agents and Multiagent Systems, 2011.

[48] P. Koopman, U. Ferrell, F. Fratrik, and M. Wagner, A Safety Standard
Approach for Fully Autonomous Vehicles, pp. 326–332. 08 2019.

59

	List of Tables
	List of Figures
	Introduction
	Contextual Overview
	Motivations
	Main Contributions

	I First part: Overview
	Safe Exploration
	Reinforcement Learning
	Exploration and Exploitation Trade-off

	Constrained Reinforcement Learning
	Satisfaction of Safety Requirements
	Constrained RL in Safety Gym

	Constraint Learning
	Learning from Data
	Formalization of Constraint Learning
	Approaches to Constraint Learning

	Constraints as Prior Knowledge
	Importance of Prior Knowledge
	Applications
	Prior Knowledge in Reinforcement Learning

	II Second part: Constraint Learning from Trajectories
	Method
	Constrained RL Agent Training
	Task Definition
	Environment Setting
	Policy Optimization: Lagrangian Methods

	Constraint Learning Process
	Trajectories as Training Data
	Constraint Learning
	Validation

	Application in New Training
	Penalty Function
	Reward Function Update

	Experiments
	Training of The First Agent
	Constraint Learning Procedure
	Variation
	Results

	Training of The Agent with Prior Knowledge
	Results

	Conclusion
	Bibliography

