
Politecnico di Torino

Master’s Degree in Data Science and Engineering

Master’s Degree Thesis

Convolutional neural networks for
statistical post-processing of wind

gusts speed

Supervisors:

Prof. Roberto Fontana

Prof. Elisa Perrone

Dr. Kirien Whan

Candidate:

Francesco Guardamagna

April 2022

Abstract

The wind gusts, are defined by KNMI, the royal Netherlands meteorological institute, as the largest
3-second wind speed value in the last 10 minutes. These sudden bursts in the wind speed are critical,
because they can cause different types of severe damages, to people and properties. For KNMI’s
weather warning system is of great interest to understand, if the speed of wind gusts will or not be
above a certain threshold. This can be of course really useful to emit alarms and activate protocols,
according to the severity level. Nowadays KNMI, in the Netherlands uses numerical weather prediction
models, to forecast future weather, in a certain geographical area. Due to the complex and chaotic
nature of the atmosphere system, these models present systematic errors and biases. Moreover NWP
forecasts are deterministic, so it’s impossible to estimate the amount of predictions’ uncertainty. It’s
a common practice to perform a Statistical Post-Processing procedure over NWP forecasts, to convert
deterministic predictions into probabilistic ones and to correct systematic biases and errors. Our
project focuses on the use of deep-learning convolutional architectures, for Statistical Post-Processing
of deterministic wind gusts predictions, obtained with the HARMONIE-AROME NWP model. CNNs
allow us to take advantage of the spatial relationships naturally present in our input data. We propose
a convolutional model able to estimate the probability for a specific input example, to be related to a
wind gust speed above a certain threshold. In other words we convert our forecasting problem into a
binary classification one. We also propose a pre-processing technique, to reduce the number of features,
considered during our features selection procedure. Moreover we propose 2 different techniques to
overcome the problem of the strongly imbalanced class distribution, that characterizes our training
data-set, due to the low number of entries related to high wind gusts speed, that are available.

1

Acknowledgement

I want to say thank you to professor Roberto Fontana, who has given me the opportunity to go abroad
for my final project and to live a really interesting and stimulating experience. Of course I want to say
thank you to Professor Elisa Perrone and Doctor Kirien Whan, who have supervised my thesis work,
in the last six months, kindly and patiently supporting me in every phase of the project. On a more
personal and intimate level I want to thank my family to have emotionally and economically supported
me in the last years, giving me the opportunity to finish my university studies and to follow my dreams.
I also want to thank all the friends I’ve met during the university’s years, for accompanying me in this
really difficult, but at the same time rewarding adventure.

2

List of Figures

1 Examples of grid predictions, about the the U and V orthogonal components of the
variable ”10m wind speed”, forecast by a run of the Harmonie-Arome Model, initialized
at 0000-UTC (the magnitude of the wind speed can be obtained using the Pythagorean
Theorem, on the U and V components). These images have been taken from [45] 7

2 Example of spaghetti plot. This image has been taken from [38] 8
3 Difference between EMOS and MOS frameworks. This image has been taken from [45] . 9
4 These images have been taken from [14] . 10
5 Scheme showing the relationship between AI, Machine Learning and Deep Learning.

This image has been taken from [30] . 11
6 Scheme of the typical learning tasks, with some examples. This image has been taken

from [1] . 13
7 Comparison between Monte Carlo and K-fold Cross-validation techniques. These images

have been taken from [33], by Renji Remesan et al. 15
8 Graphical comparison between the Forward and Backward Selection, showing the model’s

runs performed at each step. These images have been taken from [2] 17
9 Example of a Feed Forward Neural Network architecture, this image has been taken

from [3] . 18
10 Single layer Perceptron. This image has been taken from [4] 19
11 Example of a Multi-layer Feed Forward Neural Network architecture, this image has

been taken from [5] . 20
12 Example of the chain rule application. This image has been taken from [16] 21
13 Differences in how standard and stochastic Gradient Descent approach to the minimum

of the loss function. This image has been taken from [6] 22
14 Plot of the ReLu’s input/output.This image has been taken from [7] 23
15 Plot of the LReLu’s input/output. This image has been taken from [8] 23
16 Plot of the Sigmoid input/output. This image has been taken from [9] 24
17 Plot of the Tanh input/output. This image has been taken from [10] 24
18 4*4 RGB image with three channels. This image has been taken from [11] 26
19 General Structure of a CNN. This image has been taken from [11] 26
20 Example of the convolutional operation. This image has been taken from [30] 27
21 2 different Pooling techniques. This image is from [11] 28
22 Comparison between the performances of a shallow and a deeper, standard CNN archi-

tectures. This image has been taken from [19] . 29
23 Residual block. This image has been taken from [19] . 31
24 Comparison between a 34-layers standard CNN and a 34-layers Residual Network. This

image has been taken from [19] . 31
25 correlation indexes between all the input features for 2015 data 34
26 correlation indexes between all the input features for 2017 data 35
27 Heat map, showing the level of correlation per pixel between the variables ’wind speed

10m above the ground’ and ’Surface Roughness height above the ground 811’, over a
50*50 matrix . 36

28 Tables showing the weather conditions, necessary to emit a code yellow, orange or red.
This image has been taken from [12] . 36

29 class distribution of the training data-set (year 2015 and 2017) 37
30 Structure of the Confusion Matrix of a Binary Classification Problem. This image has

been taken from [36] . 39
31 General structure of a performance diagram, this image has been taken from [36] 40
32 Performance Diagram, showing the results obtained for different experiments, using the

variables ”Momentum of gusts” and ”Relative Humidity”, with a threshold of 16m/s . . 42
33 Misclassified samples applying only the Second Downsampling Technique described in

section 5.2.3, deleting 50% of the training data. 43
34 Misclassified samples applying the Second Downsampling Technique, described in sec-

tion 5.2.3, plus the Weights Method described in section 5.2.4, deleting 50% of training
data. 44

35 class distribution of the training data-set, 8m/s threshold 44

3

36 class distribution of the training data-set, 9m/s threshold 45
37 class distribution of the training data-set, 10m/s threshold 45
38 class distribution of the training data-set, 11m/s threshold 45
39 performance diagram, comparing the results obtained for lower thresholds 46
40 Performance Diagram, showing the results obtained for different experiments, using the

variables ”Wind speed” and ”Specific Humidity”, with a threshold of 16m/s 47

List of Tables

1 Results obtained in terms of F1 Score and Brier Score, for some of the experiments,
performed on the test data-set, using the variabels ”Momentum of gust” and ”Relative
Humidity”, with hyper-parameters: batch-size=128 and initial-learning-rate=0.0001.
The threshold adopted is 16m/s . 43

2 results using 1 and 2 variables . 53

Contents

1 Introduction 6

2 State of the art 6

3 Data 7

4 Background Theory 8
4.1 Numerical Weather Prediction models . 8

4.1.1 Statistical Post-Processing . 9
4.1.2 EMOS and MOS frameworks . 9

4.2 Covariance and Correlation . 10
4.3 Machine Learning . 11

4.3.1 Typical learning tasks . 12
4.3.2 Different stages of the learning process . 12
4.3.3 Different Learning Scenarios . 12
4.3.4 Cross-validation . 13
4.3.5 Feature Selection . 14

4.4 Feed Forward Neural Networks . 18
4.4.1 Perceptron . 18
4.4.2 Multi-layer Feed Forward Neural Network . 19
4.4.3 Back-Propagation . 20
4.4.4 Stochastic Gradient Descent . 21
4.4.5 Activations Functions . 22

4.5 Convolutional Networks . 25
4.5.1 Limitations of standard Multi-Layer Networks for image classification 25
4.5.2 Genearal structure of a CNN . 26
4.5.3 Convolutional Layer . 27
4.5.4 Pooling Layer . 27
4.5.5 Batch Normalization Layer . 28
4.5.6 Fully Connected Layer . 28
4.5.7 Overfitting problem and Dropout method . 29

4.6 Residual Neural Network . 29
4.6.1 Vanishing Gradient Problem . 30
4.6.2 Residual Learning . 30
4.6.3 The residual block . 31

4

5 Objectives of our project and proposed solutions 32
5.1 Binary classification approach . 32

5.1.1 The architecture of the model . 32
5.2 Problems identified working with the Binary Classification Approach 32

5.2.1 Dimensionality reduction . 33
5.2.2 The problem of the training data-set’s imbalanced class distribution 36
5.2.3 Downsampling techniques . 37
5.2.4 Different weights technique . 38

5.3 Feature selection and cross-validation procedure . 38
5.4 Confusion Matrix . 39
5.5 Categorical Scores and Performance Diagram . 39

6 Results 40
6.1 Results obtained during the feature selection and cross-validation procedure 40
6.2 Results on the test data-set . 41

6.2.1 Results on the test data-set in terms of F1 Score and Brier Score 42
6.2.2 Misclassified examples . 43

6.3 Results obtained with a more balanced training data-set 44
6.4 Other results on the test data-set . 46
6.5 Normalization . 47

7 Conclusions 48

8 Future Work 48
8.1 Quantized Softmax . 48
8.2 Bernstein Polynomials . 49
8.3 Up-sampling . 49

A Pearson Correlation Coefficient 50

B Predictors that characterize the NWP deterministic forecasts, we have worked
with 50

C Variables considered during our Feature Selection and Cross-Validation procedure 51

D Heaviside Function 51

E Binary Cross Entropy Loss 51

F F1-score 52

G Brier Score 52

H Results of the Cross-validation and Feature Selection procedure 52

I Categorical Cross Entropy Loss 54

J CRPS loss 54

K Quantile Loss 54

5

1 Introduction

This thesis project has been conducted at the Eindhoven University of Technology, in collaboration
with the Royal Netherlands Meteorological Institute (KNMI).
Wind gusts, are defined by The Royal Netherlands Meteorological Institute (KNMI), as the largest
3-second wind speed value in the last 10 minutes. These sudden bursts in the wind speed are critical,
because they can cause different types of severe damages, to people and properties. For this reason is
of great interest for meteorological institutes like KNMI to generate reliable and precise forecasts, to
emit alarms and activate protocols, according to the level of severity. Forecasts are usually produced
by Numerical Weather Predictions (NWP) models like the HARMONIE-AROME model of KNMI. To
be computationally feasible, these models need simplify assumptions, and moreover a perfect definition
of the initial conditions is not possible, due to the chaotic nature of the atmosphere system. For these
reasons NWP forecasts present systematic errors and biases. Furthermore a single, deterministic NWP
forecast, doesn’t provide an estimation of its uncertainty. A Statistical Post-Processing procedure is
performed, over NWP predictions to correct uncertainty and bias and to transform a deterministic
forecast into a probabilistic one. For our project, we perform a Statistical Post-Processing operation,
over deterministic NWP forecasts (about weather variables, related to wind gusts), taking advantage
of the spatial relationships naturally present in our input data. To do so we used a model based on
a Convolutional Neural Network, which is a deep learning architecture able to recognize the spatial
patterns present in the input data. To be more precise we transform a forecasting problem into a
binary classification one, estimating the conditional probability for the wind gusts speed, to be higher
than a certain threshold, given a specific input example. Our input data are in spatial format and
are characterized by a large number of predictors. For this reason an exhaustive search, that analyzes
all the possible combinations of input variables is unfeasible. To reduce the number of features taken
into consideration, during our feature selection procedure, we propose a pre-processing dimensionality
reduction technique, based on the level of correlation between the input predictors. Another problem
we focus on is related, to the strongly imbalanced class distribution, that characterizes the training
data-set we have worked with. In our data-set a few entries related to really high wind gusts speed
are available. For this reason if we define our Binary Classification problem, using a high threshold,
we obtain a training data-set, characterized by a strongly imbalanced class distribution. We propose
two different approaches to solve the class distribution problem.

2 State of the art

The most common traditional methods, used for statistical post-processing of NWP forecasts are
distributional regression approaches, where probability forecasts are estimated, fitting parametric dis-
tributions. The parameters of these distributions depend, through a link function, on statistics of the
raw predictions, about the weather variable of interest. The two most common examples are Model
Output Statistics (MOS) and its extension for ensemble forecasts, Ensemble Model Output Statistics
(EMOS), both this methods are described in 4.1.2. The use of Machine Learning and Deep Learning
techniques for Statistical Post-Processing, has been the focus of more recent research projects. Machine
learning and Deep Learning post-processing techniques enable the incorporation of other predictors,
besides the target variable of interest, and allow to estimate more complex relations, between NWP
forecasts and the real observations. Despite the importance of wind gusts, for weather warnings, most
of the work, concerning Statistical Post-Processing techniques, has focused in the recent years, on other
weather variables, like temperature, precipitation and mean wind speed. In [37] Schulz et al. have
performed a comparison between traditional statistical post-processing techniques, and more modern
Machine Learning and Deep Learning Techniques. They have focused on Statistical Post-Processing
of wind gusts ensemble forecasts, experimenting with Machine Learning methods like Quantile Regres-
sion Forests, and with Deep Learning Techniques, based on a Multi-Layer Perceptron architecture (the
standard Feed-Forward architecture). Our work focuses on Statistical Post-Processing of deterministic
and not ensemble forecasts, using a different deep learning architecture, the Convolutional one, able
to recognize spatial patterns in the input data. In [35] Veldkamp at al. apply the Convolutional
architecture for Statistical Post-processing of 48h lead time deterministic forecasts about the average
wind speed. They focused on a different weather variable, compared to the one taken into considera-
tion during our project. Moreover they developed methods able to estimate a continuous conditional

6

distribution, without transforming their problem into a binary classification task. We also focus on
one of the main problem we have to face when we apply deep learning to Weather Forecasting: the
scarcity of examples related to extreme events, that are available to train our model. Zoe van den
Heuvel et al. in [45], investigated the use of Convolutional networks, for statistical post-processing,
of wind gusts deterministic forecasts, comparing the performances with traditional post-processing
frameworks, like MOS and Logistic Regression. They converted, like us, a forecasting problem, into
a binary classification one, to improve the accuracy of weather warnings. Zoe van den Heuvel et al.
in [45], didn’t propose solutions to the problem of the imbalanced class distribution. In our work, we
also propose a pre-processing technique, able to reduce the number of features considered, during the
feature selection procedure.

3 Data

The Data we have worked with, are grid deterministic predictions, obtained using the Harmonie-Arome
NWP model, from KNMI. The model is run over a grid of 2.5km*2.5km grid boxes. This means that
the Harmonie-Arome NWP model produces predictions values for every 2.5 kilometers in the Nether-
lands. The data refer to three different years: 2015, 2016, 2017. The months considered are the ones
from April to October, corresponding to the summer period. The lead times we decided to take in
consideration are 3: 11 hours, 12 hours, 13 hours. The data we made use of, contains 27 variables
with a physical relationship with the observed wind gusts. The complete list of variables considered,
can be found in B. The target variable is the wind gusts speed, recorded by 46 different stations in the
Netherlands. The data-set we have worked with contains samples related to all the different stations.
We have decided to considered all the station at the same time, developing a general model, that
doesn’t refer to a single station.
The entries in Input to our model, have been obtained, constructing a smaller square matrix of dimen-
sion 100*100 grid boxes, around the geographical position of a specific station. The labels associated
to each example are, the real observations, measured by the corresponding stations. Experiments have
been performed, also taking into consideration more than one predictor. The different variables have
been superimposed, like different channels of an image.

(a) (b)

Figure 1: Examples of grid predictions, about the the U and V orthogonal components of the variable
”10m wind speed”, forecast by a run of the Harmonie-Arome Model, initialized at 0000-UTC (the
magnitude of the wind speed can be obtained using the Pythagorean Theorem, on the U and V
components). These images have been taken from [45]

7

4 Background Theory

4.1 Numerical Weather Prediction models

Numerical Weather Prediction (NWP) models, are able to predict, using mathematical models, the
future weather conditions, starting from the atmosphere current state. The history of NWP models
began in the 1920, when Lewis Fry Richardson, was able to produce a six-hour forecast for the state
of the atmosphere over two different points in central Europe. He took six months to do so. It was
with the advent of computers and computers’ simulation, that the time required for the computation,
reduce to less than the time of the forecast period itself. As it is reported in [38], NWP models employ
a set of equations that describe, the flow of fluids. These equations are translated into computer’s
code and using governing equations, numerical methods and the parametrization of certain physical
processes, the model is run over a specific domain (geographical area). Also the initial and boundary
conditions have to be specified, to generate the forecast.

• Numerical Methods: Numerical Methods are used in order to transform spatial and temporal
derivatives, into a form, that can be solved by computers.

• Parametrization: Physical Processes, that cannot be directly predicted in full details, by the
model’s forecast equations, need to be parametrized. These physical processes require a rea-
sonable statistical representation. In this way, we can take into account their effects in the
simulation.

• Initial Conditions: The initial conditions define the Atmosphere’s current state.

• The Boundary Conditions: The Boundary conditions define the different domains’ edges.

The Chaotic Nature of the Atmosphere system, combined with a certain level of approximation needed
to represent certain phenomena, introduce uncertainty in Numerical Weather Predictions. For this
reason Forecaster have always understood the value of examining multiple NWP forecasts, in order to
produce a more reliable prediction. For example the spaghetti diagrams, use statistical and graphical
tools, to allow the Forecaster to compare multiple runs of the same model, obtained using different
initial conditions or different configurations and parametrizations.

Figure 2: Example of spaghetti plot. This image has been taken from [38]

Figure 2 shows an example of spaghetti plot. Each line is a different model’s output, obtained
with different initial conditions or parameters. Looking at the figure on the left, we can notice a lower
spread in the solutions, and consequently a higher confidence in the prediction. Looking at the figure
on the right we can notice a larger spread and consequently a lower confidence.

8

4.1.1 Statistical Post-Processing

As it is reported by Schulz et al. in [37], Numerical Weather Prediction models usually generate prob-
abilistic forecasts in the form of ensembles of deterministic predictions. The different forecasts in the
ensemble, are obtained changing the initial and boundary conditions as well as the model specifica-
tions. Despite the substantial improvements in the last years, ensemble forecasts continue to exhibit
systematic errors and biases. For this reason to obtain accurate and reliable probabilistic forecasts a
Statistical Post-Processing operation, based on past, real observations is required. Statistical Post-
Processing has in fact become, an essential part of weather forecasting, to correct systematic errors
and biases in NWP forecasts. Statistical Post-Processing is also required to obtain a probabilistic
forecast, if we are working with deterministic and not ensemble forecasts. A popular technique for
statistical post processing is Model Output Statistics (MOS), which is able to estimate a statistical
relationship between the predictions, provided by the NWP models and the observed measurements.
MOS works with deterministic forecasts, while its extention, the EMOS (Ensemble Model Output
Statistics) framework, is able to work with ensemble forecasts. Both MOS and EMOS fit a parametric
distribution. MOS and EMOS are the standard and traditional Statistical Post-Processing techniques
for weather predictions. EMOS is an extention of the MOS framework, the only difference between
these 2 techniques, is in the input data.

Figure 3: Difference between EMOS and MOS frameworks. This image has been taken from [45]

4.1.2 EMOS and MOS frameworks

The following description of the EMOS and MOS frameworks, is based on [37] and [45], by Schulz et
al. and Van Den Heuvel et al. respectively. EMOS and MOS are distributional regression approaches.
They assume that given a deterministic prediction x (or an ensemble forecast in the case of EMOS), the
target variable Y , follows a parametric distribution Γ(θ). θ ∈ Θ, where Θ is the parameters’ space of
Γ. The parameters’ vector θ is related to the deterministic or ensemble forecast x, through a function g.

P (Y |x) ∼ Γ(θ) θ = g(x) ∈ Θ

The choice of the parametric family depends on the weather variable of interest. For example Gneiting

9

at al. in [15], decide to use a Gaussian Distribution, for temperature and Sea Level Pressure, while
Schulz et al. in [37], decide to use a Truncated Logistic Distribution for wind gusts. The parameters of
the function g are estimated minimizing a proper loss function like the Continuos Ranked Probability
score (CRPS) (The CRPS loss is described in appendix J).

4.2 Covariance and Correlation

Let’s take into consideration two random variables X and Y . If they are not independent, we can be
interested in understanding, how strongly they are related to one another. The Covariance, between
X and Y can tell us how strongly, the two random variables are related:

Cov(X,Y) = E[(X − ux)(Y − uy)]

(X − ux) and (Y − uy) are the deviations of X and Y , from their respective mean values, so the
Covariance between two random variables is the product of their deviations. Let’s suppose that X
and Y have a strong positive relationship. Large values of X will occur will large values of Y and
small values of X will occur with small values of Y . This means that (x− ux) and (y − uy) will tend
to be both positive or both negative, consequently (x− ux) ∗ (y − uy) will tend to be positive (x and
y are realizations of the random variables X and Y). For a strong positive relationship, Cov(X,Y)
should be quite positive. For a negative relationship the signs of (x − ux) and (y − uy) will tend to
be opposite, yielding to a negative product. For a strong negative relationship Cov(X,Y) should be
quite negative. If two variables are not strongly related positive and negative products will tend to
cancel one another, yielding to a covariance near 0.

(a) Positive covariance (b) Negative covariance (c) Covariance near zero

Figure 4: These images have been taken from [14]

The main limitation of the Covariance is that, it is sensible to the choice, of the units of measure-
ment. We can solve this problem scaling the Covariance.

The correlation coefficient between two random variables X and Y can be defined as:

Corr(X,Y) = Cov(X,Y)
σxσy

where:

• σx and σy are the standard deviations of X and Y .

The correlation coefficient is not affected by a linear change in the units of measurement. The strongest
possible positive relationship between two random variables X and Y , corresponds to Corr(X,Y) =
+1, while the strongest possible negative relationship corresponds to Corr(X,Y) = −1. It’s important
to specify that Corr(X,Y), is a measure of the degree of linear relationship between X and Y . A value
of the correlation index smaller than 1 in absolute value, only imply that the relation is not perfectly
linear, but there may still be a strongly non linear relationship. Also a value of the correlation index
equals to 0 doesn’t imply that two random variables are independent, but only that there is a complete
absence of linear relationship. If two variables are highly correlated, if we know one of the two features
we can derive the other. This means that if we already know one of the two predictors, knowing

10

the other it’s useless, we don’t obtain more information. All the information reported in this section,
describing the concepts of Covariance and Correlation, are based on [14], by Devore at al.

4.3 Machine Learning

Humans differently from machines can learn from past experiences. Instead to let computers do
something, we need to provide them precise step by step instructions. With Machine Learning, we let
computers learn from past data, improving their performances in fulfilling different tasks. As we can
see from figure 5 Machine learning can be defined as an application of AI, that provides to machines,
the ability of automatically learn from their experience, without being explicitly programmed to do so.
The learning process begins with the observation of the input data and the identification of relevant
patterns, which will allow the machine to make better decisions in the future, learning automatically,
without the human intervention.

Figure 5: Scheme showing the relationship between AI, Machine Learning and Deep Learning. This
image has been taken from [30]

Sections 4.3.1, 4.3.2 and 4.3.3, are based on the information reported in this book [28], by Mohri et
al. Section 4.3.5, describing different feature selection approaches, is based on the information reported
in [44], by Zengh et al. A more detailed description of the cross-validation techniques, described in
section 4.3.4, is reported in [13], by Arlot et al.

11

4.3.1 Typical learning tasks

• Classification: The Classification task consist of assigning a category to each input entry. For
example: document classification per topic or image classification.

• Regression: The Regression task consist of assigning a real value to each input entry. This is
what happen for example with the prediction of stock values. With regression we can compute
the penalty for a wrong prediction, as the distance to the real value.

• Ranking: The Ranking task consists of ordering a set of items, according to a specific criterion.
An example is Web search.

• Clustering: The Clustering task consist of partitioning a set of items, into different sub-sets.
The objects in each sub-set, will be characterized by common aspects. For example: Clustering
customers, based on their purchasing behaviours.

• Dimensionality Reduction: The Dimensionality Reduction task consists of transforming the ini-
tial representation of data, into a lower dimensional one. In other words we want to reduce
the number of features that characterized our entries, maintaining at the same time the most
important characteristics of the original representation.

4.3.2 Different stages of the learning process

The first action we need to perform is partitioning the data available to us into: training, validation
and test sets. Next, the most relevant features, that will characterized our data, must be selected,
based on a prior knowledge about the problem in exam or a statistical analysis (for example we can
analyze the level of correlation between the different features). The learning algorithm will then be
trained using the training data, tuning at the same time the hyper-parameters of the model, using the
validation set. The performances of the model, will finally be evaluated on the test set, which must
be kept separate from the training data-set.

4.3.3 Different Learning Scenarios

• Supervised learning: In this scenario the training data are labeled examples and the model
has no access to the test data, during training. This is the scenario that usually characterized
classification and regression problems.

• Unsupervised learning: In this scenario the training data are unlabeled and the model has
no access to the test data during training. Clustering is an example of unsupervised learning
problem.

• Semi-supervised learning: Training data consist of both labeled and unlabeled examples and the
model has no access to the test data, during training. This scenario is common, when labels are
expensive to be obtained.

• On-line learning: The on-line learning scenario consists of multiple rounds. At each round the
model receive a labeled training example, makes a prediction and the loss with respect to the
true label is computed. The objective is to minimize the cumulative loss over all the rounds.

• Reinforcement learning: In the reinforcement learning scenario the agent actively interact with
the environment and receives an immediate reward for each action. The objective is to maximize
the reward over a series of actions and interactions with the environment.

12

Figure 6: Scheme of the typical learning tasks, with some examples. This image has been taken from
[1]

4.3.4 Cross-validation

Cross-validation is a statistical method for evaluating and comparing different learning algorithms
or identify the best set of hyperparameters for a specific learning technique. It consists of splitting
the training data into two sets: one used for training and the other one used to evaluate the model.
Usually different rounds are performed, splitting each time the training data in a different way, such
that every training point has the chance to be evaluated against. The mean value of the results
obtained, on the evaluation sets, over the different rounds is usually taken as indicator of the model
performances. Cross-validation techniques give us a better idea of the model performances, because
they take into account the variance in the results. Using Cross-validation methods we can also have a
better idea about the model generalization capabilities on unseen data. It’s important to specify that,
the Cross-validation procedure must be performed only using the training data, keeping separate the
data we want to use for testing. After having identified the best learning algorithm and the best set
of hyperparamters, for that algorithm, the model is re-trained on the entire training data-set, to be
finally evaluated on the test data-set. There are different Cross-validation techniques which can be
divided into two groups:

1. Exhaustive Cross-validation: The train and evaluation rounds, are performed on all the possible
ways, in which we can divide our training data-set, into training and evaluation sets.

2. Non-exhaustive Cross-validation: The train and evaluation rounds are not performed on all
the possible ways, in which we can split our training data. Non-exhaustive methods are an
approximation of exhaustive techniques.

Examples of Exhaustive Cross-Validation techniques:

• Leave p-out Cross-validation: With this techniques p observations are used as validation set,
while the remaining ones are used for training. This is repeated for all the possible combinations

13

of p observations as evaluation set. This technique is computationally infeasible, also for training
data-set of relatively small dimensions. The number of iterations required by the Leave p-out
Cross-Validation Technique is equal to Cn

p

where:

– C is the binomial coefficient

– n is the number of samples

• Leave one-out Cross-validation: This technique is a special case of the Leave p-out Cross-
validation method, with p = 1. This method requires a number of iteration equals to the
training data-set dimension, so it’s more computationally feasible, compared to the Leave p-out
method, but for large training data-set, the time required can still be too much.

Examples of Non-exhaustive Cross-validation methods:

• K-fold Cross-validation technique: With this Cross-validation technique, the training data are
divided into k subsets. One subset is used for evaluation, while the remaining k − 1 folds are
used for training. This procedure is repeated k times, using each one of the k folds, exactly
once as validation set. The k results are averaged, to obtain a single estimation of the model
performances. The advantage of the K-fold Cross-validation technique is that, all the examples
are used for both training and validation. All the examples are used for validation exactly once.

• Monte Carlo Cross-validation technique: With this technique, multiple random splits of the
training data, into training and evaluation sets are generated. For each split the model is trained
on the training set and evaluated on the validation set. The results obtained over the different
splits are averaged, to obtain a single estimation of the model performances. The advantage
of this method, with respect to the K-fold Cross-validation technique, is that the proportion
between training and validation examples, is not dependent on the number of iterations. The
disadvantage of this method is that, some of the examples may never be selected to be part of
the validation set, while others may be selected more than once. In other words the validation
subsets may overlap.

A graphical comparison of the K-fold and Monte Carlo techniques, is shown in figure 7

4.3.5 Feature Selection

Feature Selection is the process of reducing the number of predictors, that characterized the data, in
input to our model. This process is required, to reduce the computational cost of the model and in
some cases to improve the performances. Through Feature Selection, we can identify the features, that
are more useful, to predict the target variable. At the same time, through Feature Selection, we can
eliminate the predictors, that are not relevant for our learning task. These types of predictors can
in some cases degrade the model performances. Feature selection methods can be divided into two
classes:

1. Unsupervised methods: This type of methods select features, ignoring the target variable.

2. Supervised methods: This type of methods select features, based on the target variable.

An example of Unsupervised technique is the one, based on the level of correlation between input
features. We can compute the pairwise correlation index between each couple of input features, to
then drop one of the two features, involved in the highly correlated couples. If two features are highly
correlated it means that, they are bringing redundant and not useful information for our problem in
exam. A description of the Pearson correlation coefficient, one of the most used correlation index, is
reported in A. The Supervised Features Selection techniques can be divided in:

1. Filter methods: This type of methods are generally used as pre-processing steps. The feature
selection in this case, is independent from the Learning Algorithm we are using. Features are
selected, based on their scores in specific statistical tests, about the input variables’ relationship
with the target variable. An example of this tests are the Anova or the Chi-Squared tests.

14

(a) Graphical representation of K-fold technique

(b) Graphical representation of Monte Carlo Cross-validation technique

Figure 7: Comparison between Monte Carlo and K-fold Cross-validation techniques. These images
have been taken from [33], by Renji Remesan et al.

15

2. Wrapper methods: With this type of methods our feature selection problem is essentially reduced
to a search problem. The model is run, using different subsets of the Input features, and the best
set of input variables is identified looking at the model’s performances. This type of techniques
are computationally expensive. The most common Wrapper Methods are:

• Forward Selection: With the Forward Selection Approach, we start with an empty set of
features. At each forward step the variable, that has given the best improvement in the
model’s performances is add to the set of the best features. This procedure goes on until
we reach the desired number of features or until adding a new variable, we don’t notice an
improvement in the model performances.

• Backward Selection: With the Backward Selection technique, we start from a set containing
all the input features. At each step, we try to remove, one at a time, all the variables. The
variable, which removal gives us the best improvement in the model’s performances, is
removed from the set of best predictors. This procedure goes on until the desired number
of predictors is reached or we notice no improvements in the model performances.

3. Intrinsic Feature Selection: Some Learning Models perform feature selection automatically as
part of the learning procedure. Examples of this models are Lasso and Decision Trees.

Feature Selection is obviously related to Dimensionality Reduction. The objective of both Feature
Selection and Dimensionality Reduction techniques is to reduce the number of input variables. The
difference is that: Feature Selection Techniques select which features, we have to keep or remove, in
order to improve the model’s performances, while Dimensionality Reduction techniques like PCA or
LDA, define a new data projection, resulting in a completely different set of features.

16

(a) Graphical representation of the Forward Selection technique

(b) Graphical representation of the Backward selection technique

Figure 8: Graphical comparison between the Forward and Backward Selection, showing the model’s
runs performed at each step. These images have been taken from [2]

17

4.4 Feed Forward Neural Networks

Neural Networks are a part of the Machine Learning discipline, inspired by how the human brain works
and especially by how neurons share information, in the form of electrical signals. Feed Forward Neural
Networks are the simplest form of Neural Networks. The goal of a Feed Forward Neural network is to
approximate an objective function y = f∗(x), mapping the inputs x to the output y. To be more precise
a Feed Forward Neural Network defines a mapping y = f(x, θ) and learns the values of the parameters
θ, that best approximate the objective function. A Feed Forward Network can be composed by many
layers and each layer can present many nodes, so many inputs and outputs. Even though each node,
implement a relative simple transformation, the function represented by the entire network can become
arbitrary complex. The name Feed Forward refers to the fact that, in Feed Forward Neural Networks,
the information moves in only one direction from the input nodes, through the hidden nodes (if they
are present) and finally to the output nodes. The connections between nodes don’t create cycles.

Figure 9: Example of a Feed Forward Neural Network architecture, this image has been taken from [3]

All the information reported in sections 4.4.1, 4.4.2, 4.4.3 and 4.4.4, referring to Feed Forward
Neural Networks and their learning procedure, are based on the books: [30] and [16], by Patterson et
al. and Goodfellow et al. respectively. Detailed information about the Stochastic Gradient Descent
technique are reported in [21], by Ketkar et al. A comparison of the most important activation functions
for deep learning can be found in [29], by Nwankpa et al.

4.4.1 Perceptron

The Perceptron is a linear binary classifier. The Single Layer Perceptron can be considered as the
simplest form of Feed Forward Neural Networks. As we can see from figure 10, in the Perceptron, the
input to the activation function is obtained, applying the following formula:∑N

i=1 xiwi, where xi is the ith position of the input vector and wi is the corresponding weight.

Typically with the Perceptron the activation function is a Heaviside step function (a definition of
the Heaviside step function is reported in D) with a threshold of 0.5, so in output we can have two
possible values 0 and 1, depending on the input. The value in output represents the class assigned to
the input entries. We also have a bias term, which doesn’t depend on the inputs and in figure 10 is
associated with the weight w0. The bias term can move the decision boundaries.

18

The Perceptron training procedure follows the following steps:

Figure 10: Single layer Perceptron. This image has been taken from [4]

1. The weights are initialized to a small random number or to 0.

2. For each example j in our training data-set D = {(x1, d1), ..., (xs, ds)}, where xj is the jth

n-dimensional input vector and dj is the desired output:

(a) The Perceptron output is computed as:

yj(t) = f(w(t) · xj), where f is the activation function and the symbol · represents the
dot product between w(t) and xj .

(b) The connections’ weights are updated as:

wi(t+ 1) = wi(t) + r(dj − yj(t))xj,i for 0 <= i <= n where:
r is the learning rate, a constant hyper-parameter, while xj,i the ith feature of the input
vector xj

The Perceptron’s training procedure goes on until all the training examples are correctly classified.
It’s important to specify that if the training data are not linearly separable the training algorithm will
not converge. The Perceptron is able to classify only linearly separable data.

4.4.2 Multi-layer Feed Forward Neural Network

The structure of a multi-layer Feed Forward Neural Network consists in one Input Layer, one or more
Hidden Layers and one Output Layer. Each layer can present many neurons, which are similar to the
single layer Perceptron described in section 4.4.1. The only difference is the activation function, which
can change, depending on the purpose of the layer.

19

Figure 11: Example of a Multi-layer Feed Forward Neural Network architecture, this image has been
taken from [5]

As we can see from figure 11, the neurons in each Layer are connected to all the neurons in the the
adjacent layers, this type of architecture is called Fully Connected. In input to the Input Layer we have
the raw vectors, while in input to all the other layers, we have the output of the other layers’ neurons.
It’s important to remember that, the output of each layer, pass through an activation function, which
can be different, depending on the purpose of the layer. The number of neurons in the input layer is
the same as the number of features, that characterized the input data. Like the Perceptron, to each
connection is assigned a weight and each layer also present a bias term. Weights and bias terms are
progressively changed during the training procedure, in order to approximate the best solution. The
Hidden Layers are the key factor, that allows Multi-layer Feed Forward Networks to model non linear
function, overcoming the main limitation of the single layer Perceptron, which is able to classify, only
linearly separable data.

4.4.3 Back-Propagation

The learning procedure for Feed Forward Neural networks consists in progressively adjusting weights
and biases, allocating more importance to certain information, minimizing at the same time, the oth-
ers. In this way the model is able to learn which predictors are related to which outcomes, to then
adjusts weights and biases, accordingly. One important aspect of the Feed Forward Networks’ learning
procedure is the Back-Propagation algorithm. The term Back-Propagation refers to the method used
for computing gradients in Feed Forward Neural Networks. The basic idea of the algorithm is that,
the partial derivatives of the cost function J , with respect to the network’s parameters θ, can be de-
composed recursively, considering the composition of functions that relate θ to J . The cost function J
represents the amount of error made by the network, with respect to the ground truth. Different types
of loss function can be used, based on the learning task we are working on. The partial derivatives
express how, changing a parameter, the cost function J is affected. In this way we can understand
how to update the network’s parameters, in order to minimize the cost. The basic mathematical tool,
to consider derivatives through a composition of functions is the Chain Rule:

Let’s take into consideration the variable x, which influences y, which influences z. We are inter-
ested in how a small change in x propagates to a small change in z, through a tiny change in y. In our
case z is the objective function J(g(θ)), x are some parameters θ and we have intermediate quantities
y = g(θ), which are the network’s intermediate activations (the outputs of the intermediate layers).
The gradient of interest can be decomposed as:

∇θJ(g(θ)) = ∇g(θ)J(g(θ))
∂g(θ)
∂θ

20

Where ∇θJ(g(θ)) is the gradient, with respect to some parameters θ.
The decomposition works also if J, g or θ are vectors, rather than scalars, in this case the partial
derivatives are Jacobian matrices of the appropriate dimensions.

A small change in θ, must be multiplied by ∂g(θ)
∂θ , to get the corresponding small change in g(θ)

and a small change in g(θ), must be multiplied by ∇g(θ)J(g(θ)) to get the corresponding small change
in J(g(θ)). The ratio of the change in J(g(θ)), corresponding to the change in θ is the product of the
partial derivatives. This interpretation is true in the purely scalar case. If g is a vector we can rewrite
the above equation as:

∇θJ(g(θ)) =
∑

i
∂J(g(θ))
∂gi(θ)

∂gi(θ)
∂θ

Recursively applying the chain rule, we are able to compute the gradient of the cost J , with respect
to each parameter of the network. First we compute the gradient of the cost J , with respect to the
output neurons. These gradients are then used to compute the gradient of J , with respect to the
last hidden layer neurons, which directly contribute to the output. We can continue this procedure,
computing the gradient of J , with respect to the weights of each layer of the network.

Figure 12: Example of the chain rule application. This image has been taken from [16]

4.4.4 Stochastic Gradient Descent

After having described how the gradient of the cost function, with respect to the network parameters is
computed, we can now focus on optimization algorithms, describing in particular the SGD algorithm.
The optimizer we decide to use defines: how to progressively change our Network’s weights, to reduce
the loss. Optimization algorithm are responsible for guiding the Network to the optimum solution.
The standard Gradient Descent technique evaluates the cost function and the corresponding gradient,
for all the training example at the same time. For really large data-set, this approach is not feasible in
terms of memory. With the Stochastic Gradient Descent technique the gradient of the cost function,
with respect to the network parameters, is computed over one or a few training examples and the
parameters’ updates are computed in the following way:

21

θ = θ − α∇θJ(θ, x
(i), y(i))

Where (xi, yi) are one or a batch of training examples, with the corresponding labels, which rep-
resent the expected outputs. Generally is preferable to use a batch of training example for the update,
rather than only one example. Using a batch of training example, we can reduce the variance in the
parameters updates, reaching a more stable convergence. The parameter α is called learning rate and
represents the magnitude of the updates. The initial learning rate’s value is choose a priori, and is
then modified following a certain strategy during the training procedure. The optimization procedure
goes on for a certain number of epochs (one epoch corresponds to the analysis of the whole training
data-set) and the learning rate is reduced approaching the optimum. One of the limitations of the
Stochastic Gradient Descent approach is that it can stuck in local minima. We can use other optimizers
like AdaGrad, which use adaptive learning rate for each weight, or Adam.

Figure 13: Differences in how standard and stochastic Gradient Descent approach to the minimum of
the loss function. This image has been taken from [6]

4.4.5 Activations Functions

An activation function defines how the weighted sum of the inputs in a neuron is transformed, into
the node’s output. The choice of the activation functions in a Neural Network has a large impact
on the network’s performances and different activations functions may be used in different parts of
the network. Usually all the Hidden Layers use the same activation function, while the Output Layer
uses a different activation function, which depends on the predictive task the network has to perform.
Another thing we need to specify is that, the activation functions are usually differentiable (the first
order derivative can be computed given the inputs). This is required by the Back-Propagation learning
procedure, described in sections 4.4.3 and 4.4.4. Usually a differentiable non-linear function is used
for the Hidden Layers. The Network is, in this way, allowed to learn more complex functions, than the
ones a Neural Network can learn using only linear activation functions.
The most common activation functions for the Hidden Layers are:

1. ReLu: The Rectified Linear unit (ReLu) activation function is a piecewise linear function. If
the input is positive, the ReLu’s output is the input itself, while if the input is negative the
ReLu’s output is zero. The ReLu activation is now, the most used activation function for Neural
Networks’ hidden layers. It is easy to implement and is less susceptible to the Vanishing Gradient
problem (see section 4.6.1), compared to other activation functions like the Sigmoid or the Tanh.

22

Figure 14: Plot of the ReLu’s input/output.This image has been taken from [7]

The ReLu activation function has some limitations, like for example the ones concerning the
saturated or ”dead” units. If the weighted sum of the inputs to a node is always negative, the
ReLu activation function will always output zero. This means that the node’s weights will not
update, slowing down the training process. To overcome this problem some variants of the ReLu
have been proposed.

2. Leaky ReLu: Leaky ReLu or LReLu is a variant of the ReLu activation function, which allows
small negative values in output, when the input is negative, mitigating, in this way, the ”dead”
units problem.

Figure 15: Plot of the LReLu’s input/output. This image has been taken from [8]

3. Sigmoid: The Sigmoid activation function can take any real value in input, producing in output
a number between 0 and 1. Larger is the value in Input, nearer will be the output to 1, smaller
is the value in input nearer will be the output to 0. The sigmoid activation function is defined
by the following formula:

sigmoid(x) = 1
1+e−x

23

Figure 16: Plot of the Sigmoid input/output. This image has been taken from [9]

4. Tanh: The Iperbolic Tangent activation function is similar to the sigmoid. They have the same
s-shape form. The Tanh activation function can take in input any real value, producing in out-
put a value between -1 and 1. The Tanh activation function is described by the following equation:

tanh(x) = ex−e−x

ex+e−x

Figure 17: Plot of the Tanh input/output. This image has been taken from [10]

The most common activation functions for the Output Layers are:

1. Linear Activation Function: The Linear Activation Function doesn’t change at all the weighted
sum of the inputs to a node. The Linear Activation Function produces in output the same value
received in input.

2. Sigmoid Activation Function: The Sigmoid Activation Function, can be used, also for the Output
Layer. The Sigmoid is used in output from our Network, when we are dealing with a binary

24

classification problem. The input examples will be assigned to class ”0” or ”1”, based on the
Network’s single prediction, which will pass through the Sigmoid function.

3. Softmax Activation Function: The Softmax Activation Function is used in output from our Net-
work, when we are dealing with multi-class classification problems. The Softmax function takes
in input a vector of real numbers and produces in output a vector of the same length, containing
positive values, that sum to 1. The Softmax’s output can be interpreted as the probabilities for
an input example, to belong to each one of the classes, that define our classification problem.
The Softmax Activation Function is defined by the following formula:

Softmax(x)j =
exj∑K

k=1 exk

where:

• x is a vector of real values of dimension K.

• xj is the jth position of x, Softmax(x)j is the jth position of the output vector. Also the
output vector has dimension K.

4.5 Convolutional Networks

Convolutional Neural Networks (CNNs) are Deep Learning architectures, well suited for image analysis
and recognition. They can be used also in other fields, like sentiment or sound analysis. CNNs are able
to learn higher-level features from the input data, through a series of convolutional operations. The
biological inspiration for Convolutional Neural Networks is the visual cortex organization: individual
neurons respond to stimuli only in a restricted region of the visual field, called Receptive Fields. Such
fields overlap, in order to cover the entire visual field. Before describing CNNs’ architecture more
in details, we have to ask ourselves ”Why we can’t use traditional Multi-Layer Feed Forward Neural
Networks, to analyze and classify images?”. All the informations reported in sections 4.5.1, 4.5.2, 4.5.3,
4.5.4, 4.5.5 and 4.5.6, concerning different aspects of CNNs and CNNs’ architecture, are based on the
books [30], [16], by Patterson et al. and Goodfellow et al. respectively. A description of the Dropout
technique explained in section 4.5.7, is reported in [40], by Hinton et al.

4.5.1 Limitations of standard Multi-Layer Networks for image classification

Standard Feed Forward Multi-Layer Networks take as input a one-dimensional vector. Images are
three dimensional structures, characterized by specific width, height and depth (usually the depth
of an image is 3, corresponding to the RGB channels). If for example we convert an image from the
CIFAR-10 dataset, which has a dimension of 32*32*3 pixels into a one dimensional structure, we obtain
a vector characterized by a length of 3072. Feeding this vector into a standard Feed Forward Multi-
Layer Network, every neuron of the first hidden layer, will be associated to 3072 different weights.
As we can see standard Multi-Layer Feed Forward Networks don’t scale well with images. Moreover
converting an image to a one dimensional structure we lose the spatial relationships, present among its
pixels. Standard Feed Forward Multi-Layers Networks are not able to capture the spatial relationships
in the input images. For this reasons their performances in classifying complex, high resolution images,
are really poor.

25

Figure 18: 4*4 RGB image with three channels. This image has been taken from [11]

4.5.2 Genearal structure of a CNN

Figure 19: General Structure of a CNN. This image has been taken from [11]

As we can see from figure 19, the structure of a CNN usually consists in three main parts:

1. Input Layer

2. Feature Learning part

3. Classification part

The Input Layer is able to accept three-dimensional inputs, characterized by specific width, height
and depth (the depth corresponds, to the colour channels). The inputs can be four-dimensional,

26

when images are collected in mini-batches for training (the fourth dimension is the batch size). The
layers in the Feature Learning part follow a specific pattern: a convolutional layer, followed by a
ReLu activation function, followed by a pooling layer. The feature learning part is responsible for
the progressive extraction of the higher-level features, that will characterized the input image. These
features will be used by the classification part of the CNN, to generate in output the classes’ scores,
that can be converted to probabilities, using a Softmax Activation Function (see section 4.4.5). Based
on these scores or probabilities the input image will be classified in one of the output classes. The
classification part consists in one or more Fully Connected Layers. In this section I want also to specify
that, differently from standard Feed Forward Networks, which are Fully Connected in CNNs neurons
in a layer are connected to only a small region of neurons in the layer before (except for the layers, that
constitute the classification part of the network, which are Fully Connected). After having described
the general structure of a CNN, we can now talk about all the different layers individually.

4.5.3 Convolutional Layer

A Convolutional Layer receives in input a raw image or the output, produced by the previous Convo-
lutional Layer. The most important parameter of a Convolutional Layer, is the Kernel/Filter, which
can be seen as a matrix of lower dimensions, compared to the input image. The Filter slides over the
input image, performing every-time the operation showed in figure 20, between the kernel itself, and
the portion of image covered by the filter. The filter moves to the right, by a number of positions
equal to the Stride parameter, untill it covers the entire width of the image. Then it hops down, by
a number of positions again equals to the Stride parameter, returning at the same time to the left of
the image and the process is repeated. This procedure goes on until the entire image is covered.

Figure 20: Example of the convolutional operation. This image has been taken from [30]

If the image in input to the convolutional layer has more than one channel, the kernel will have the
same depth. The convoluted features obtained, for the different channels will be summed, to generate
a one-depth output. The result of the convolutional operation, just described is called activation map.
We will have one activation map for each Filter of the Convolutional Layer. This means that the
depth of the output of a Convolutional Layer, is the same as the number of Filters of that layer. CNNs
usually have more than one Convolutional Layer. The first Conv. Layers usually extract low-level
features like edges or colors. The other Conv. Layers extract higher-level features, which will give
us a better understanding of the images in our data-set. We need to specify that the output of a
Convolutional layer, before reaching the Pooling Layer pass through a ReLu activation function.

4.5.4 Pooling Layer

The operation performed by the Pooling Layer, is similar to one performed by the Convolutional Layer,
but the scope is different. The objective of the Pooling Layer is reducing the dimensionality of the

27

output of the preceding Convolutional Layer. There are two different type of Pooling:

1. Max Pooling

2. Average Pooling

The kernel of a Pooling Layer, performing a Max Pooling operation, slides over the input image,
selecting every time the maximum value of the portion of image covered by the filter. Instead the kernel
of a Pooling Layer, performing an Average Pooling operation, slides over the input image returning
every time the average, of the values of the portion of image covered by the filter. This dimensionality
reduction operation is performed to decrease the computational cost, necessary to analyze the data,
extracting at the same time the most important features.

Figure 21: 2 different Pooling techniques. This image is from [11]

4.5.5 Batch Normalization Layer

The Batch Normalization Layers, normalizes the activation (the output, which pass through the ReLu
activation function) of the previous layer at each batch, keeping the mean close to 0 and the standard
deviation close to 1. Normalization, directly inserted in the CNN architecture, through Batch Normal-
ization Layers, allow us to speed up training. Batch Normalization Layers also reduce the sensitivity of
the CNN, about weights’ initialization and mitigate the vanishing gradient problem (see section 4.6.1).

4.5.6 Fully Connected Layer

After the feature extraction procedure the High-level features, extracted from the feature learning
part of the CNN, are flattened into a column vector. This column vector is fed into a standard,
fully connected Multi-Layer Feed Forward Network, which will learn a non linear combination of that
features, in order to classify in the proper way the input images. In output from the network we have
the classes’ scores, and using a Softmax Activation function for a multi-class problem or a Sigmoid for

28

a binary classification problem, we can obtain from these score the probabilities for the input images
to belong to each class.

4.5.7 Overfitting problem and Dropout method

In general in Machine Learning overfitting occurs, when the model we are working with presents a
low error on the training data-set and a high error on the test data-set. If we incur in the Overfitting
problem, it means that, our model is too complex for the problem we are considering. The model fits
too much the characteristics of the training data and is not able to generalize. Talking about Neural
Networks this can happen for example, when large Neural Networks are trained using a small training
data-set. One of the technique, used to prevent overfitting with Neural Networks is called drop-out
and consists in ignoring, some randomly selected nodes of a certain layer, at each training step. In
this way each update of that layer during training, is performed using a different and random view of
the layer. This makes the training procedure more noisy and at the same time the model more robust.
Usually with CNNs, the Dropout method is applied only on the Fully-Connected Layer.

4.6 Residual Neural Network

All the information reported in sections 4.6.1, 4.6.2, 4.6.3, and in this section, are based on [19],
[20], by He et al. The AlexNet convolutional Architecture was the first one, to be more successful,
than traditional hand-crafted feature learning, in the ImageNet competion (see [34]), in 2012. AlexNet
consists of eight Layers, five Convolutional Layers and three Fully Connected Layers. This architecture
is the foundation of the standard CNN architectures, described in 4.5.2. What makes the CNN
architecture so powerful, is the idea that, adding more Convolutional Layers, the network will be
able to progressively learn more complex features, improving the performances in classifying the input
images. However He et al. in [19] has shown that, there is a maximum threshold for the depth of the
traditional CNN architecture.

Figure 22: Comparison between the performances of a shallow and a deeper, standard CNN architec-
tures. This image has been taken from [19]

Looking at figure 22 from [19], we can see that the test error of a CNN architecture with 56 layers is
higher, compared to the test error of a 20 layers architecture. A deeper architecture is able to estimate
a more complex function, so we can think that, we are incurring in an overfitting problem, which can
be solved using for example the Dropout technique (see section 4.5.7). The problem is that, not only
the test error is higher, using a 56 layers architecture, but also the training error. This means that
the reason for the decreasing of the performances, is not the overfitting. One of the reason for the
decreasing of the performances, using deeper architectures can be the so called Vanishing Gradient
Problem. Another more general problem of deeper architectures, is the so called Degradation Problem:
As the architectures get deeper and deeper, it becomes more difficult for the information, to be prop-
agated from the shallower layer, to the deeper ones.

29

4.6.1 Vanishing Gradient Problem

Neural Networks’ architectures, characterized by a large number of layers, presenting certain activation
functions, can incur in the Vanishing Gradient Problem. Let’s take for example into consideration,
the Sigmoid Function (see section 4.4.5). This activation function squishes a large input space, into a
small output space. This means that, a large change in the input, will correspond to a small change
in the output, so the derivative will be small. Gradients in a Neural Network are found using the
Back-propagation technique (see section 4.4.3), starting from the final layers to arrive to the initial
ones. According to the chain rule the derivatives of each layer are multiplied through the network,
from the final layers to the initial ones, to obtain the gradient of the loss function with respect to all
the parameters of the network. If we have a large number of layers characterized by an activation
function like the Sigmoid, a large number of small derivatives will be multiplied together. This means
that, the gradient will exponentially decrease, approaching to the initial layers of the network. A
small gradient means that, the weights and biases of the initial layers will not be updated efficiently
during the training procedure, or will not be updated at all. One of the possible solution of the
Vanishing Gradient Problem is to use an activation function like the ReLu, which doesn’t generate a
small derivative. Batch Normalization Layers can also mitigate the problem, normalizing the input.
Another solution is the one introduced by Residual Networks architectures.

4.6.2 Residual Learning

An intuitive idea to solve the Degradation Problem of deeper architectures, could be to connect directly
the initial layers to the deeper ones, through an identity mapping. In this way the information is
passed directly, through an identity function, bypassing the intermediate layers. Let’s define g(x) as
the original function a layer has to learn and let’s define h(x) = g(x) + x, as the new function the
layer has to learn, in the Residual Learning Scenario. The +x term represents the so called skip
connection, which brings the original value. The layer, using the skip connection, in the Residual
Learning Scenario, has only to learn the residue of the input value x or in other words, how to change
the input value x. Using the Residual learning Approach, is really easy for the layer to learn the
identity function, it only needs to bring all the weights to zero (h(x) = 0 + x = x). Without skip
connections, all the weights and biases have to be modified to learn the identity function from scratch,
and this is really difficult for the network. Using Residual Learning we can overcome the Degradation
Problem of deeper architectures.

30

4.6.3 The residual block

Figure 23: Residual block. This image has been taken from [19]

Figure 23 shows the new layer introduces by the Residual Network architecture. The skip connection
of the Residual Block has no parameters, and is just there to add the output from the previous layer
to the layer ahead. The skip connection helps to bring the identity function to deeper layers, allowing
us to train much deeper architectures. Looking at the structure of the residual block we can notice
two things:

1. The addition is performed before the ReLu activation function. This is done because, if we
perform the addition after the ReLu, the Residual Layer will learn only positive increments,
decreasing a lot the learning capabilities.

2. The Skip Connection is add after two weights layers. This is done because, if we add the skip
connection after one weight layer before the ReLu, we obtain a simple linear function, equivalent
to just one weight layer, so there is no point in adding a skip connection. We need at least one
non-linearity before adding the skip connection, for this reason we add it after two weight layers.

Figure 24: Comparison between a 34-layers standard CNN and a 34-layers Residual Network. This
image has been taken from [19]

31

5 Objectives of our project and proposed solutions

5.1 Binary classification approach

For KNMI’s weather warning system is of great interest to understand, if the speed of wind gusts will
or not be above a certain threshold. This can be of course really useful to emit alarms and activate
protocols, according to the severity level. For this reason we decided to transform our forecasting
problem into a Binary classification one, assigning entries related to labels with a value under or above
a certain threshold to two different classes.

5.1.1 The architecture of the model

The architecture of the model we designed, to implement the Binary Classification Approach, is based
on two components:

1. A Feature Extraction part

2. A Fully Connected part

The architecture of the Feature Extraction part is based on the ResNet50 convolutional architecture,
while the Fully Connected part it’s a a Dense Layer (Fully Connected) with one output neuron (we are
considering a binary classification problem). The activation function that has been used in output is
the Sigmoid Activation Function, while the loss function used to train the model is the Binary Cross
Entropy Loss. A description of the Binary Cross Entropy Loss can be found in the appendix E The
optimizer we decided to use is Adam. The learning rate is dynamically reduced during the training
procedure, following a Reduce On Plateau policy (if after five epochs the mean loss doesn’t reduce
the learning rate is divided by 10). An Early Stopping policy has been implemented as well, in order
to avoid the overfitting problem. The Early Stopping policy stops the training procedure if the loss
doesn’t decrease for a number of epochs equals to ten. To be precise, what we have in output from the
network is the probability for a specific example to belong to the positive class (the class of the samples
above the threshold). In other words, we are able to generate a probabilistic forecast, estimating the
probability for the wind gusts’ speed to be higher than a certain threshold, given in input the NWP
deterministic predictions, described in section 3.

5.2 Problems identified working with the Binary Classification Approach

The large number of features that characterized our input data (see section 3), makes the feature
selection and cross validation procedure, really complex. Given the nature of our model and our data,
only Wrapper Feature Selection Techniques, can be applied, to identify the best set of predictors, for
our Binary Classification Problem. Analyze the performances, of all the possible combinations of input
variables and hyper-parameters, it’s practically infeasible. For this reason the first problem we have
faced, working with the Binary Classification Approach is:

• How we can design a pre-processing technique, to reduce the number of features considered,
during our feature selection procedure?

The number of samples in our data-set, related to a high wind gust speed, it’s exiguous. If we define
our Binary Classification problem, using a high threshold, we end up working, with a Training Data-
set, characterized by a strongly imbalanced class distribution. For this reason the second problem we
have faced working with the Binary Classification Approach is:

• How we can deal with a Training Data-set, characterized by a strongly imbalanced class distri-
bution?

In the next sections we are going to describe, which are the solutions we adopted, in order to solve
these two problems.

32

5.2.1 Dimensionality reduction

The HARMONIE-AROME deterministic forecasts, that constitute our data-set, are characterized by
a high number of predictors with a physical relationship to wind gusts (see section 3). To identify
the unessential variables the level of correlation between the different features that characterize our
data, has been analyzed. Two highly correlated variables bring only redundant information, which
slow down the training procedure, without increasing the model’s performances. The pairwise Pearson
correlation coefficient has been computed for each couple of predictors. The data, considered in our
project, are in spatial format, so for each couple of variables, the Pearson correlation coefficient has
been computed for each pixel (see figure 27). The mean of the correlation values per pixel, has then
been taken as indicator of the level of correlation between the different couples of predictors. Applying
this preliminary analysis we have been able to avoid considering, during our feature selection procedure,
two highly correlated features, at the same time. In this way we have been able to reduce the number of
features taken into consideration. In order to compute the Pearson correlation coefficient, the function
correlation, from the python library tfp.stats has been used. A description of the Pearson Correlation
Coefficient is reported in the appendix A.

33

Figure 25: correlation indexes between all the input features for 2015 data

34

Figure 26: correlation indexes between all the input features for 2017 data

Looking at figure 25 and 26, reporting the correlation matrices obtained for the data, related to the
years 2015 and 2017, we can notice that between some variables we have a level of correlation higher
than 0.5 in absolute value. This means that we can expect a certain amount of redundant information,
in our data-set. Another thing we can notice is that, some of the features we are working with are
the same physical variables, they only refer to different altitudes. Obviously between these types of
features we can expect a high degree of correlation. This is the case for example of the variable ”Geo
potential” or the variable ”wind components”. Also variables that are not the same physical variables
can be characterized by a certain amount of correlation. This is the case for example of the variables
”10m wind speed” and ”Momentum flux”. We have to specify that for this pre-processing analysis,
the Pearson correlation coefficient has been used, so we only investigated the level of linear correlation
between features. Our predictors can still be highly non linear correlated.

35

Figure 27: Heat map, showing the level of correlation per pixel between the variables ’wind speed 10m
above the ground’ and ’Surface Roughness height above the ground 811’, over a 50*50 matrix

5.2.2 The problem of the training data-set’s imbalanced class distribution

As it is reported in [12], the smallest threshold applied by KNMI weather institute, to identify an
event as extreme, emitting a code yellow warning, is a wind gust speed of 16m/s or 60km/h.

Figure 28: Tables showing the weather conditions, necessary to emit a code yellow, orange or red.
This image has been taken from [12]

36

The data we decide to use as training data, are the ones related to the years 2015 and 2017.
These two years present a larger number of extreme events. As we can see from figure 29, applying
a threshold of 16m/s, to define the two different classes, that characterize our Binary Classification
problem, we obtain a training data-set characterized by a strongly imbalanced class distribution.
A really imbalanced training data-set, affects the performances of a classification model, strongly
decreasing its ability in classifying the examples, belonging to the minority class. To mitigate this
problem, we decide to follow two different approaches:

1. Downsample the majority class, following a specific logic.

2. Weight in a different way the contributions to the loss function, of samples belonging to the two
different classes.

As I said before 2015 and 2017 data have been used as training data-set, while the data related to
year 2016, have been used as test data-set. This choice has been done, not only because year 2015 and
year 2017 present a larger number of extreme events, but also because in this way we ensure that, no
temporal relationships are present between test and training data-sets.

Figure 29: class distribution of the training data-set (year 2015 and 2017)

5.2.3 Downsampling techniques

The question behind the two Downsampling Techniques we have designed is: how we can find a way to
eliminate entries, that are useless for our training procedure? With the expression useless entries, we
mean examples that don’t bring useful information, but instead only slow down the training procedure,
decreasing at the same time the performances. The two Downsampling Techniques we have developed,
keeping in mind the preceding question, respectively consist of:

1. Deleting all the entries, which labels’ values are under a certain threshold.

2. Randomly deleting a certain amount of entries related to labels, which values are under a certain
threshold.

37

The intuition behind the first technique is that, entries related to a low wind gust speed are useless
to predict extreme events. Eliminating them we obtain a training data-set characterized by a more
balanced class distribution, improving the model performances. The intuition behind the second
technique is to try to keep, a little amount of information, about entries associated with a lower wind
gusts speed. This kind of information can be useful for the model.

5.2.4 Different weights technique

Another approach we have adopted, to mitigate the training data-set’s class imbalance problem, con-
sists of assigning different weights to the contributions to the loss function, of entries belonging to the
two different classes. A larger weight has been assigned to the contributions of the entries, belonging
to the minority class, while a smaller weight has been assigned to the contributions of the entries,
belonging to the majority class. To be more precise the weights associated to the samples, belonging
to class i, have been computed in the following way:

wi =
N

c∗Ni

where:

• N is the total number of samples.

• Ni is the number of samples belonging to class i.

• c is the number of classes.

5.3 Feature selection and cross-validation procedure

For our feature selection procedure we have considered a group of twelve different features. These
twelve features have been selected combining:

1. The results obtained during the preliminary analysis, about the level of correlation (see section
5.2.1).

2. The list of variables identified by Veldkamp et al. in [35] as more useful for their problem in
exam.

The results obtained for the pairwise Pearson correlation coefficients have been taken into consid-
eration, in order to avoid considering, during our feature selection procedure, two highly correlated
features at the same time. Two highly correlated features only bring redundant information, which
slow down the training procedure, without adding useful insights, about the problem in exam. The
complete list of variables considered, during our feature selection procedure is reported in appendix
C. To identify the best set of predictors, for our Binary Classification problem, we decided to adopt
a Forward Selection Approach (see section 4.3.5). For each combination of features analyzed, a sub-
search has been performed, to identify the best set of hyper-parameters, for that specific combination
of variables. We decided to focus on two different hyper-parameters:

• The initial learning rate

• The batch size

The optimal number of epoch for each combination of features analyzed, has been automatically
identified, exploiting an Early Stopping Policy (the Early Stopping Policy, we decided to adopt, has
been described in section 5.1.1). To evaluate the performances of the model, for each combination
of features and hyper-parameters, that has been analyzed, three different runs have been executed.
For each run, the training data (year 2015 and 2017) have been randomly splitted into training and
validation sets. The mean value of the results obtained during the three runs, has been taken as
indicator of the performances. During the Feature Selection and Cross-Validation procedure, on the
entries used for training, the first Downsampling Technique, described in section 5.2.3, has always been
applied, deleting the 50% of the data. Different weights have also been assigned to the contributions to
the loss function of the training examples, belonging to the two different classes, following the technique

38

described in section 5.2.4. Due to the low number of entries related to a wind gust speed higher than
the threshold we have worked with (16 m/s), the training data have been randomly splitted, using
every time, the sklearn function StratifiedShuffleSplit. This function ensures that in both the training
and validation sets, the same proportion of entries belonging to the two classes, will be present. The
metric used to evaluate the performances of the model during the cross-validation procedure is the
f1-score. This metric has been selected, because it gives a general idea about the model performances
on both classes. A description of the f1-score is reported in appendix F.

5.4 Confusion Matrix

A Confusion Matrix can be described as a way to summarize and visualize the results obtained,
using a Classification Model. The accuracy score alone can be misleading, if we have to analyze the
performances of a Classification Model. This is particularly true if we have an unequal number of
observations in each class. The classification accuracy is simply the ratio between the number of
correctly classified test entries, and the total number test examples. The problem with this metric is
that it hides details, concerning the type of errors made by the model.

Figure 30: Structure of the Confusion Matrix of a Binary Classification Problem. This image has been
taken from [36]

Looking at figure 30, showing the structure of a Confusion Matrix for a Binary Classification
problem, we can notice that, this schema gives us useful insights, about the type of errors performed
by the model. Looking at the Confusion Matrix, we can understand better the model performances
on both classes, visualizing the number of correctly classified and misclassified examples. A Confusion
Matrix, with the structure of the one reported in figure 30 has been produced, for each experiment
we have performed on the test set (year 2016). The results reported on those Confusion Matrices,
have been used to compute specific categorical scores. All the information reported in this section,
concerning confusion matrices as well as all the information reported in section 5.5, describing different
categorical scores and the structure of a performance diagram, are based on [36], by Schreurs et al.

5.5 Categorical Scores and Performance Diagram

Observing the results reported on the Confusion Matrices, generated for each experiment we have
performed on the test data-set, we have been able to compute various verification scores commonly
used in meteorology:

1. POD: The probability of detection (POD) is defined as:

POD = true positives
true positives+false negatives

2. FAR: The False Alarm Ratio (FAR) is defined as:

FAR = false positives
true positives+false positives

3. CSI: The critical success index (CSI) is defined as:

CSI = true positives
true positives+false negatives+false positives

39

4. bias: The bias score is defined as:

bias = true positives+false positives
true positives+false negatives

Where true positives is the number of samples, correctly predicted as belonging to the positive class,
false positives is the number of samples, wrongly predicted as belonging to the positive class and
false negatives is the number of samples, wrongly predicted as belonging to the negative class. The
CSI and bias can also be expressed as a function of the POD and of the Success Ratio (SR=1-FAR):

CSI = 1
1

SR+ 1
POD−1

bias = POD
SR

All the terms defined before can be visualized, at the same time, using a performance diagram.

Figure 31: General structure of a performance diagram, this image has been taken from [36]

As we can see from figure 31, on the x-axis of a Performance Diagram is reported the Success Ratio
(1-FAR), while on the y-axis is reported the Probability of detection (POD). The dashed lines indicate
different biases, while the curved lines indicate different CSI values.

6 Results

6.1 Results obtained during the feature selection and cross-validation pro-
cedure

Like we specified in 5.3, for our Feature Selection procedure we decide to use a Forward Selection
approach. After the second step of the forward selection procedure we didn’t notice a large improvement
in the performances, using two variables, instead of one. For this reason we decide to stop our Forward
search at the second step, without investigating the use of three different variables. During our Feature

40

Selection and Cross-validation procedure the best results have been obtained combining the variables
”momentum of gusts out of the model 10m above the ground” with the variable ”Relative humidity
2m above the ground”, using as hyper-parameters a batch-size of 128 and an initial learning rate of
1−4. As we already specified in 5.3, the best number of epochs has been automatically identified using
an Early Stopping policy, which terminates the training procedure if the loss doesn’t decrease for more
than 10 epochs. Good results have also been obtained, using the variable ”wind speed 10m above the
ground”, the variable ”momentum of gusts out of the model 10m above the ground” and the variable
”Momentum-flux height above the ground 777” individually, using as hyperparameters a batch-size
of 256 and an initial learning rate of 1−4. Other variables combined with the variable ”momentum
of gusts out of the model 10m above the ground” show performances, really similar to the best ones,
we have obtained. This is the case for example of the variables ”Surface Roughness height above the
ground 810” and the variable ”Geopotential height isobaric in hPa 500”. The complete list of all the
experiments we have performed during our Feature Selection and Cross-Validation procedure, with the
related results is reported in H.

6.2 Results on the test data-set

After the Cross-Validation and Feature Selection procedure, different experiments have been performed.
For each experiment the model has been retrained, using the best set of variables and hyper-parameters,
identified during the Cross-Validation and Feature Selection procedure. The performances have been,
every-time evaluated, on the entire test data-set (year 2016). The two Downsampling Techniques
described in 5.2.3, have been combined with the Weights Method, described in 5.2.4, comparing then
the results with the ones obtained:

1. Applying only the 2 Downsampling Techniques alone.

2. Giving only different weights to the training entries’ contributions to the loss function, without
downsampling the training data.

3. Without applying any technique.

4. Applying the simplest possible downsampling technique, so randomly deleting a certain amount
of training samples, without following any logic.

All the obtained results can be compared, observing the performance diagram, reported in figure
32. Remember that: on the x-axis is reported the success rate of the model, while on the y-axis is
reported the probability of detection of the model.

• The success rate of a binary classification model is computed as 1 − false alarm ratio of the
model, where the false alarm ratio is computed as:

false positives
false positives+true positives

The success rate of the model reflects the tendency of the model, to generate false alarms.

• The probability of detection of a binary classification model is computed as:

true positives
true positives+false negatives

The probability of detection of the model, reflects the tendency of the model to generate misses
(extreme events not identified as extreme)

The models, characterized by the best performances, are on the top right of a Performance Diagram.

41

Figure 32: Performance Diagram, showing the results obtained for different experiments, using the
variables ”Momentum of gusts” and ”Relative Humidity”, with a threshold of 16m/s

Looking at the performance diagram reported in figure 32, we can make some considerations: Both
the Downsampling Techniques described in section 5.2.3, combined with the Weights Method described
in section 5.2.4, give us better performances in terms of POD, compared to the ones obtained, using
the two Downsampling Techniques alone, and without applying any technique. At the same time we
can notice a decrease of the performances in terms of SR. Using the first Downsampling Technique,
described in section 5.2.3, alone, we have obtained better performances in terms of both POD and
SR, compared to the ones obtained, without applying any technique. The performances, in terms of
POD, obtained applying the first Downsampling technique alone, are comparable to the ones obtained,
applying the Weights Method alone, but at the same time the performances in terms of SR, are better.
The second Downsampling Technique, described in section 5.2.3, applied alone, gives us performances,
similar to the ones obtained without applying any technique. The two triangles reported on the
Performance Diagram, refer to the results obtained, randomly deleting training examples, without
following any logic. This really simple downsampling technique, combined with the Weights Method,
gives us better performances in terms of POD, but at the same time the performances in terms of
SR largely decrease. In general all the results are between 0.35 and 0.51, in terms of probability of
detection and between 0.39 and 0.6, in terms of success ratio.

6.2.1 Results on the test data-set in terms of F1 Score and Brier Score

The experiments, performed on the test data-set, using the best set of predictors and hyper-parameters,
identified during the Feature Selection and Cross-Validation procedure, have been evaluated not only
in terms of the Categorical Scores, described in 5.5. For all the experiments performed, we have
also computed the corresponding F1 and Brier Scores. Looking at table 1, reporting the results we
obtained, in terms of F1 and Brier Score, for the most significant experiments we have performed
on the test data-set, we can notice that the Brier Score is not able to give a general idea about the
model’s performances on both classes (remember that the best performances correspond to a F1 Score
equals to 1 and a Brier Score equals to 0). Analyzing only the Brier Score, we can think that, our

42

experiments are characterized by good results, but it’s only because this metric considers the overall
performances of the model. If, like in our case, a classification problem is characterized by a strongly
imbalance class distribution, the results obtained, using metrics like the Brier or the Accuracy Scores,
can be misleading. A description of the F1 Score and the Brier Score, is reported in appendixes F and
G. For each experiments performed, the respective Categorical Scores have been computed, in order
to visually compare the results, reporting them on a performance diagram. In this way we can obtain
more insights about the model performances, than just looking at the F1 Score, which can be difficult
to interpret.

Table 1: Results obtained in terms of F1 Score and Brier Score, for some of the experiments, performed
on the test data-set, using the variabels ”Momentum of gust” and ”Relative Humidity”, with hyper-
parameters: batch-size=128 and initial-learning-rate=0.0001. The threshold adopted is 16m/s

Experiment configuration F1 Score Brier Score
No weights, no Downsampling 0.47679708826205647 0.018176101261951422
Only weights 0.4634146341463414 0.01855195093251284
Only first Downsampling Technique 50% 0.47922705314009656 0.017337507037177437
First Downsampling Technique+weights 50% 0.48648648648648646 0.0189613698785704

6.2.2 Misclassified examples

To have a better idea about, the type of errors made by the Binary Classification Model, the distri-
bution of the values of the labels, associated to the misclassified examples, has been analyzed. As we
can see from the bar plots reported in figures 33 and 34, showing the misclassified examples for two
different experiments, our Binary Classification Model has some problems in identifying the events
that are on the border, between the two different classes, defined by the 16m/s threshold. This is
a common behaviour for classification models, which usually have problems in correctly classifying
samples, that are on the border between the different classes. The labels’ values reported in figures 33
and 34, are on a 0.1m/s scale, so a value of 160 corresponds to 16m/s.

(a) False alarms only Second Downsampling
Technique, deleting 50% of training data

(b) Misses only Second Downsampling Tech-
nique, deleting 50% of the training data

Figure 33: Misclassified samples applying only the Second Downsampling Technique described in
section 5.2.3, deleting 50% of the training data.

43

(a) False alarms Second Downsampling Tech-
nique+Weights, deleting 50% of training data

(b) Misses Second Downsampling Tech-
nique+Weights, deleting 50% of training data

Figure 34: Misclassified samples applying the Second Downsampling Technique, described in section
5.2.3, plus the Weights Method described in section 5.2.4, deleting 50% of training data.

6.3 Results obtained with a more balanced training data-set

To have an idea of how much the model’s performances are affected, by the imbalanced training data-
set’s class distribution, we have performed different experiments using lower thresholds. Looking at
the bar plots, reported in figures 35, 36, 37 and 38, we can notice that, using a lower threshold to define
the two classes of our binary classification problem, we can work with a training data-set, characterized
by a much more balanced class distribution.

Figure 35: class distribution of the training data-set, 8m/s threshold

44

Figure 36: class distribution of the training data-set, 9m/s threshold

Figure 37: class distribution of the training data-set, 10m/s threshold

Figure 38: class distribution of the training data-set, 11m/s threshold

All the results obtained for the experiments performed, using lower thresholds, have been reported
on a performance diagram to be compared.

45

Figure 39: performance diagram, comparing the results obtained for lower thresholds

Looking at figure 39 we can notice that, training the model with more balanced training data-sets,
we have been able to obtain a large increase in the performances, both in terms of probability of
detection and success rate. This means that for sure, a training data-set characterized by a strongly
imbalanced class distribution, largely affects the performances of our Binary Classification model. For
all the experiments performed using lower thresholds, the model has been retrained using the best
set of predictors and hyper-parameters, identified during the Feature Selection and Cross-Validation
procedure.

6.4 Other results on the test data-set

The variables ”wind speed 10m Above the Ground” and ”Specific Humidity 2m Above the Ground”,
present a physical relationship with the variables ”momentum of gusts out of the model 10m Above the
Ground” and ”Relative Humidity 2m Above the Ground”. For this reason we decided to perform some
experiments on the test data-set using also these two variables, to have a more general idea about our
Binary Classification Model’s performances. We also increase the batch-size to 256, maintaining an
initial learning rate of 1−4. The obtained results, have been again reported on a performance diagram
to be compared.

46

Figure 40: Performance Diagram, showing the results obtained for different experiments, using the
variables ”Wind speed” and ”Specific Humidity”, with a threshold of 16m/s

Looking at figure 40, we can make some considerations: Both the Downsampling Techniques,
described in section 5.2.3, combined with the Weights Method, described in section 5.2.4, give us bet-
ter performances in terms of POD, compared to the ones obtained applying the two Downsampling
Techniques alone, and the ones obtained without applying any technique. On the other hand the
performances in terms of SR are worse. The two Downsampling Techniques applied alone, give us
similar results in terms of SR, compared to the ones obtained without applying any technique, but
the performances in terms of POD are better. Combining the Weights Method with both the Down-
sampling Techniques, we have been able to obtain better performances, in terms of SR, compared to
the ones obtained applying the Weights Method alone, maintaining similar performances, in terms of
POD. The two triangles on the Performance Diagram, refer again to the results obtained, randomly
deleting training examples, without following any logic. Applying this really simple downsampling
technique, we can notice a large increment of the performances, in terms of POD and a large decrease,
in terms of SR. All the results reported, for the variables ”Wind speed” and ”Specific Humidity” have
been obtained deleting the 70% or 60% of the training data, while the results reported for the variables
”Momentum of gusts out of the model” and ”Relative Humidity” have been obtained deleting 50% of
the training data. This choice has been done because, using the variables ”Wind speed” and ”Specific
Humidity”, we noticed better performances in terms of POD, deleting a larger amount of training
examples.

6.5 Normalization

In this section we want only to specify that all the results reported have been obtained, normalizing
the data in Input to the model, subtracting the mean and dividing by the standard deviation. This
procedure has been performed separately for each input predictor. The mean and standard deviation

47

values, have been computed, using the training data, to then apply the same transformation to the
data used to evaluate the model. Normalize the Input data is a common deep learning pre-processing
operation, that allows the model to converge to a better result, with a lower computational effort.

7 Conclusions

For KNMI’s weather warning system is of great interest to understand, if the speed of wind gusts will
or not be above a certain threshold. For this reason can be really useful to transform our forecasting
problem into a binary classification one, assigning the samples we are working with to two different
classes, based on the values of their labels. Applying this classification approach we have faced the
problem of working with a training data-set, characterized by a strongly imbalanced class distribution,
due to the low number of samples related to extreme events, that were available in our data-set.
This problem largely affects the performances of our model. The two different approaches, described
in sections 5.2.3 and 5.2.4, mitigate the class imbalance problem. In particular combining the two
Downsampling Techniques we designed, with the Weights Method, we have been able to obtain better
performances in terms of probability of detection, without a large decrease of the performances in
terms of success rate. The other problem we have faced during our project, is related to the large
number of predictors, that characterized the deterministic NWP forecasts, we have worked with. An
exhaustive Feature Selection and Cross-Validation procedure, to understand which was the best set
of variables and hyper-parameters for our problem in exam, analyzing all the possible combinations,
was practically infeasible. The pre-processing technique we designed, based on the level of correlation
between the different input predictors, allows us to reduce the number of variables considered during
our Feature Selection and Cross-Validation procedure. Analyzing the level of correlation between each
couple of input variables, we avoided to consider, during the Feature Selection procedure, two highly
correlated predictors, at the same time. Highly correlated features only bring redundant information.

8 Future Work

At the first stages of our project we not only design the Binary Classification model, but also other
two models, able to estimate a continuous conditional distribution P (Y |X). Y is the target variable
of interest (the wind gusts speed), while X are the deterministic NWP forecasts, in input. The two
models are:

1. The Quantized Softmax Technique

2. The Bernstein Polynomials Technique

These two models share the same Convolutional architecture of the Binary Classification approach, the
difference is in the last output layer, which has been modified, to adapt to the different techniques. The
idea behind these two techniques is to use the features extracted by the convolutional architecture, to
estimate the continuous conditional distribution P (Y |X). During our project we decide to focus more
on the Binary Classification approach, proposing different techniques to mitigate the class imbalance
problem, that characterizes our training data-set. For sure will be of great interest to perform in the
future, some experiments using also the Quantized Softmax and the Bernstein Polynomials Techniques,
to then compare the results, with the ones obtained using the Binary Classification approach.

8.1 Quantized Softmax

The Quantized Softmax Technique, as it is described in [35], is a non parametric method (no initial
assumptions are required), which approximates the conditional distribution P (Y |X), as a hystogram.
Y is the target variable of interest (wind gusts speed), while X are the same deterministic NWP fore-
casts, used with the Binary Classification Approach. To produce the output hystogram, our problem
has been converted into a classification problem, characterized by 300 different classes, one for each
bin of the hystogram we want to estimate. The architecture of the model is composed of two parts:

1. The feture extraction part, which is based on the ResNet50 architecture.

2. The fully connected part, which is a Dense layer with 300 output neurons.

48

The activation function, that has been used in output is the Softmax activation function, which is the
standard activation function for multi-class classification problems. We have designed two different
functions to train the model: one uses the Categorical Cross Entropy Loss, while the other one the
Crps Loss. The Categorical Cross Entropy Loss is described in appendix I, while the CRPS loss is
described in appendix J. To evaluate the model performances, we have implemented a function that,
given the predictions generated by the network, estimates a certain number of quantiles. The function
crps-ensemble of the python library properscoring is then applied, over the estimated quantiles. The
best set of quantiles to use, in order to evaluate the model performances, has been determined following
[43], by Zamo et al.

8.2 Bernstein Polynomials

The Bernstein Quantile Network is a non parametric method (no initial assumptions required), which
estimates the quantile function of interest, as a linear combination of the Bernstein Polynomials, fol-
lowing the formula:

Q(τ |x) =
∑d

l=0 αl(x)Bl,d(τ)

Where τ are the quantiles’ orders and Bl,d(τ) =
(
d
l

)
τ l(1− τ)d−l for l = 0, ..., d

The network we designed, uses again the ResNet50 architecture for the feature extraction part, while
the fully connected part consists in a Dense layer with eight output neurons (one for each coefficients we
need to estimate). The estimated coefficients αl have to be positive and non-decreasing. For this reason
the network targets the increments α̃l, from which the coefficients are derived using a recursive formula:

α0 = α̃0, αl = αl−1 + α̃l for l = 1, ..., d

The loss function we designed, for the training procedure, first computes 99 different quantiles, for
each input data example, using the quantile function described before. The mean quantile loss over the
99 estiamated quantiles, is then computed. A description of the Quantile Loss is reported in appendix
K. The best set of 99 quantiles to estimate has been determined following again [43]. For testing the
same function, as the one described for the Quantized Softmax Technique, has been used, but this
time the quantiles have been computed using the quantile function reported before, in this section.
We can notice that the Bernstein Polynomials technique is a non parametric method as the Quantized
Softmax technique. But The Bernstein Polynomials method requires a lower number of parameters,
because the number of outputs is equal to 8, while for the Quantized Softmax technique we have 300
output neurons. The loss function of the Bernstein polynomials technique is for sure more complex,
compared to the Quantized Softmax technique. The activation function used for the Bernstein poly-
nomials techniques is the RelU activation function. Using the RelU we ensure that all the outputs will
be positive and the coefficients will be non decreasing.

8.3 Up-sampling

For our project we decided to balance the training data-set’s class distribution, focusing on a down-
sampling approach. For sure will be of great interest in the future, to investigate also the use of
up-sampling techniques. The Generative Adversarial Networks (GANs) have demonstrated good skills
in generating synthetic images really similar to the real ones. This architecture can be applied also
to our weather forecasting problem, to generate synthetic examples, related to extreme events. Our
input data have similarities, with images’ data format. GANs could be able to simulate the spatial
patterns, that characterize examples, related to extreme events.

49

A Pearson Correlation Coefficient

The Pearson correlation coefficient, is the ratio between the covariance of two random variables and the
product of their standard deviations. It can be considered as the normalized version of the covariance
and it takes values between -1 and 1. As the covariance this coefficient, can only identify the level
of linear correlation between two random variables, which can still be highly non-linear correlated.
Using a sample from two random variables X and Y , the Pearson coefficient can be expressed in the
following way:

rxy =
∑n

i=1(xi−x̄)(yi−ȳ)√
n
∑n

i=1(xi−x̄)
√

n
∑n

i=1(yi−ȳ)

where:

• n is the number of entries in the sample

• xi and yi are the ith entries

• x̄ and ȳ are the samples’ means

B Predictors that characterize the NWP deterministic fore-
casts, we have worked with

1. 10 meters wind speed

2. Specific humidity height above the ground 2

3. Relative humidity height above the ground 2

4. Surface roughness height above the ground 810

5. Surface roughness height above the ground 811

6. Momentum flux height above the ground 760

7. Momentum flux height above the ground 770

8. Momentum flux height above the ground 0

9. AROME hail diagnostic height above the ground 0

10. Lifting condensation level (LCL) height above the ground 0

11. Level of free convection (LFC) height above ground 0

12. Level of neutral boyancy (LNB) height above the ground 0

13. Vertical velocity hybrid 32

14. TKE hybrid 47

15. Convective cloud cover height above the ground

16. Low cloud cover height above the ground 0

17. Medium cloud cover height above the ground 0

18. ’High cloud cover height above the ground0

19. Wind components height above ground 10

20. wind components isobaric hPa 925

21. wind components isobaric hPa 850

22. Specific humidity isobaric hPa 850

50

23. Pressure height above sea 0

24. Geopotential height isobaric hPa 850

25. Geopotential height isobaric hPa 700

26. Geopotential height isobaric hPa 500

27. momentum of gusts out of the model height above the ground 10

C Variables considered during our Feature Selection and Cross-
Validation procedure

1. 10 meter wind speed

2. Specific humidity height above the ground 2

3. Relative humidity height above the ground 2

4. Surface roughness height above the ground 810

5. Momentum flux height above the ground 770

6. AROME hail diagnostic height above the ground 0

7. Lifting condensation level (LCL) height above the ground 0

8. Vertical velocity hybrid 32

9. momentum of gusts out of the model height above the ground 10

10. High cloud cover height above the ground 0

11. Geopotential height isobaric In hPa 500

12. TKE hybrid 47

D Heaviside Function

The Heaviside step function or unit step function, is a discontinuous function. The output of the
Heaviside step function is 1, when the input is positive, is 0 when the input is negative.

H(x) = 1 if x ≥ 0

H(x) = 0 if x ≤ 0

The Heaviside step function can be defined using also a different threshold, instead of 0.

E Binary Cross Entropy Loss

The Binary Cross Entropy Loss can be defined as:

B = 1
N

∑N
i=1 −((yi log (pi)) + (1− yi) log (1− pi))

where:

• B is the Binary Cross Entropy Loss

• N is the batch-size parameter.

51

• pi is the probability predicted by the Network for the ith sample. Remember that in output from
our Network, using the Sigmoid Activation Function, we have the probability for a sample to
belong to the positive class or class 1 (We are considering a binary classification problem, classes
can be 0 or 1).

• yi is the class to which the ith sample actually belongs to. The classes can be 0 or 1.

The logarithm is used because it offers less penalty for small differences, and a high penalty for large
differences. The probabilities are between 0 and 1 so the log values are negative. To compensate we
take into consideration the negative average.

F F1-score

The F1-score is obtained combining two other metrics: precision and recall. The F1-score can be
defined as the harmonic mean of precision and recall:

F1 = 2 precision∗ recall
precision+recall

where:

• Precision is the fraction of true positives examples, among the ones that the model classifies as
positives

• Recall is the fraction of total examples, classified as positives, among the total number of positive
examples

Differently from other metrics like the Brier Score or the Accuracy Score, the F1-Score, in a Binary
Classification Problem Scenario, gives us a general idea, about the model’s performances on both
classes

G Brier Score

The Brier Score is used to measure the accuracy of probabilistic predictions. The Brier Score can be
applied to evaluate the performances of a model, which outputs are probabilities, assigned to a set
of mutually exclusive discrete categories or classes. The Brier score is a cost function. Given a set
of examples i ∈ 1....N the Brier Score measures the mean squared difference between, the predicted
probabilities, for the set of possible outcomes of each entry i and the actual outcomes. Therefore
lower is the Brier Score for a set of predictions, better the predictions are calibrated. Given a Binary
Classification problem, the Brier Score can be defined in the following way:

BS = 1
N

∑N
i=1(pi − yi)

2

where:

• pi is the predicted probability for the ith example.

• yi is the actual outcome, which can have value 0 or 1 (We are considering a binary classification
problem).

• N is the number of examples we are considering.

This definition can be used only if we are considering binary events (for example wind gusts speed
above the threshold or not).

H Results of the Cross-validation and Feature Selection pro-
cedure

52

Table 2: results using 1 and 2 variables

Features Best hyper-parameters Best mean f1-score
10m wind speed batch-size=256 initial learning-rate=1−4 0.7540336762603642
Specific humidity height above the ground 2 batch-size=128 initial learning-rate=1−4 0.651250810629865
Relative humidity height above the ground 2 batch-size=128 initial learning-rate=1−4 0.616317447733764
Surface roughness height above the ground 810 batch-size=128 initial learning-rate=1−4 0.6725195086718044
Momentum-flux height above the ground 770 batch-size=256 initial learning-rate=1−4 0.7435976906486009
AROME hail diagnostic above the ground 0 batch-size=128 initial learning-rate=1−4 0.30845142739782294
Lifting condensation level above the ground 0 batch-size=128 initial learning-rate=1−4 0.5603352928567604
Vertical velocity hybrid 32 batch-size=128 initial learning-rate=1−4 0.5596010925674355
TKE hybrid 47 batch-size=128 initial learning-rate=1−4 0.6407367440801214
High cloud cover height above the ground 0 batch-size=256 initial learning-rate=1−4 0.18960008101843293
momentum of gusts out of the model 10m batch-size=256 initial learning-rate=1−4 0.7575750413510286
Geopotential height isobaric In hPa 500 batch-size=128 initial learning-rate=1−4 0.6107486121171731

momentum of gusts out of the model 10m
10m wind speed

batch-size=256 initial learning-rate=1−4 0.7623877996958339

momentum of gusts out of the model 10m
Specific humidity height above the ground 2

batch-size=128 initial learning-rate=1−5 0.7490948508936706

momentum of gusts out of the model 10m
Relative humidity height above the ground 2

batch-size=128 initial learning-rate=1−4 0.7679143075093817

momentum of gusts out of the model 10m
Surface roughness height above the ground 810

batch-size=256 initial learning-rate=1−4 0.7649268149280378

momentum of gusts out of the model 10m
Momentum-flux height above the ground 770

batch-size=256 initial learning-rate=1−4 0.759729343574921

momentum of gusts out of the model 10m
AROME hail diagnostic above the ground 0

batch-size=128 initial learning-rate=1−4 0.7395058162522723

momentum of gusts out of the model 10m
Lifting condensation level above the ground 0

batch-size=256 initial learning-rate=1−4 0.7514691283026709

momentum of gusts out of the model 10m
Vertical velocity hybrid 32

batch-size=256 initial learning-rate=1−4 0.7219321396504131

momentum of gusts out of the model 10m
TKEhybrid47

batch-size=128 initial learning-rate=1−4 0.7449201414722832

momentum of gusts out of the model
High cloud cover above the ground 0

batch-size=256 initial learning-rate=1−4 0.7449969263495483

momentum of gusts out of the model 10m
Geopotential height isobaric In hPa 500

batch-size=128 initial learning-rate=1−4 0.762371842161128

53

I Categorical Cross Entropy Loss

The Categorical Cross Entropy loss is used for multi-class classification problems and is defined for
each example in the following way:∑n

i=1 yi ∗ log ỹi

where:

• n is the number of classes

• ỹi is the model output for class i, or using a Softmax activation function, the probability for the
input example to belong to class i.

• yi is the target value for class i

If we use a Softmax activation function the target value for the class to which the example belongs to
is 1, while the target value for the other classes is 0. Talking about the Quantized Softmax Technique
the target value for the bin to wich the input example falls into is 1, while the target value for the
other bins is 0.

J CRPS loss

The CRPS loss is defined in the following way:∫∞
−∞(F (y)−H(y − x))2dy

where:

• y is the target value

• F (y) is the estimated cumulative distribution function

• H is the Heaviside step function (see appendix D).

The crps loss doesn’t focus on a single point of the distribution, but allows to consider the all distri-
bution at the same time.

K Quantile Loss

The quantile loss can be defined as:

Lτ = max[τ(y − z), (τ − 1)(y − z)]

Where:

• y is the target value

• z is the estimated quantile of order τ

54

References of the Images

[1] url: https://medium.com/analytics-vidhya/machine-learning-intuition-9e20bf6cadf8.

[2] url: https://medium.com/@sagar.rawale3/feature-selection-methods-in-machine-
learning-eaeef12019cc.

[3] url: https://medium.com/mlearning-ai/training-feed-forward-neural-network-ffnn-
on-gpu-beginners-guide-2d04254deca9.

[4] url: https://towardsdatascience.com/what-the-hell-is-perceptron-626217814f53.

[5] url: https://brilliant.org/wiki/feedforward-neural-networks/.

[6] url: https://pythonmachinelearning.pro/complete-guide-to-deep-neural-networks-
part-2/.

[7] url: https://machinelearningmastery.com/rectified-linear-activation-function-
for-deep-learning-neural-networks/.

[8] url: https://clay-atlas.com/us/blog/2020/02/03/machine-learning-english-note-
relu-function/.

[9] url: https://www.mathworks.com/matlabcentral/mlc-downloads/downloads/24e59eb7-
2e7f- 4f5d- 8624- e8796b617ac6/c1512698- fee2- 4e87- b57b- 2b8f86930b45/previews/

sigmoid/html/sigmoid_documentation.html.

[10] url: https://help.scilab.org/docs/6.0.0/en_US/tanh.html.

[11] url: https://towardsdatascience.com/a- comprehensive- guide- to- convolutional-
neural-networks-the-eli5-way-3bd2b1164a53.

References

[12] Jos Diepeveen et al. 2015. url: http://euroforecaster.org/newsletter21/07-21-23.pdf.

[13] Sylvain Arlot and Alain Celisse. “A survey of cross-validation procedures for model selection”.
In: Statistics surveys 4 (2010), pp. 40–79.

[14] Jay L Devore. Probability and Statistics for Engineering and the Sciences. Cengage learning,
2011.

[15] Tilmann Gneiting et al. “Calibrated probabilistic forecasting using ensemble model output statis-
tics and minimum CRPS estimation”. In: Monthly Weather Review 133.5 (2005), pp. 1098–1118.

[16] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.

[17] Keunhee Han, JunTae Choi, and Chansoo Kim. “Comparison of statistical post-processing meth-
ods for probabilistic wind speed forecasting”. In: Asia-Pacific Journal of Atmospheric Sciences
54.1 (2018), pp. 91–101.

[18] Kaiming He et al. “Deep Residual Learning for Image Recognition”. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). June 2016.

[19] Kaiming He et al. “Deep residual learning for image recognition”. In: Proceedings of the IEEE
conference on computer vision and pattern recognition. 2016, pp. 770–778.

[20] Kaiming He et al. “Identity mappings in deep residual networks”. In: European conference on
computer vision. Springer. 2016, pp. 630–645.

[21] Nikhil Ketkar. “Stochastic gradient descent”. In: Deep learning with Python. Springer, 2017,
pp. 113–132.

[22] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. 2017. arXiv:
1412.6980 [cs.LG].

[23] William H Klein and Harry R Glahn. “Forecasting local weather by means of model output
statistics”. In: Bulletin of the American Meteorological Society 55.10 (1974), pp. 1217–1227.

[24] Max Kuhn, Kjell Johnson, et al. Applied predictive modeling. Vol. 26. Springer, 2013.

55

https://medium.com/analytics-vidhya/machine-learning-intuition-9e20bf6cadf8
https://medium.com/@sagar.rawale3/feature-selection-methods-in-machine-learning-eaeef12019cc
https://medium.com/@sagar.rawale3/feature-selection-methods-in-machine-learning-eaeef12019cc
https://medium.com/mlearning-ai/training-feed-forward-neural-network-ffnn-on-gpu-beginners-guide-2d04254deca9
https://medium.com/mlearning-ai/training-feed-forward-neural-network-ffnn-on-gpu-beginners-guide-2d04254deca9
https://towardsdatascience.com/what-the-hell-is-perceptron-626217814f53
https://brilliant.org/wiki/feedforward-neural-networks/
https://pythonmachinelearning.pro/complete-guide-to-deep-neural-networks-part-2/
https://pythonmachinelearning.pro/complete-guide-to-deep-neural-networks-part-2/
https://machinelearningmastery.com/rectified-linear-activation-function-for-deep-learning-neural-networks/
https://machinelearningmastery.com/rectified-linear-activation-function-for-deep-learning-neural-networks/
https://clay-atlas.com/us/blog/2020/02/03/machine-learning-english-note-relu-function/
https://clay-atlas.com/us/blog/2020/02/03/machine-learning-english-note-relu-function/
https://www.mathworks.com/matlabcentral/mlc-downloads/downloads/24e59eb7-2e7f-4f5d-8624-e8796b617ac6/c1512698-fee2-4e87-b57b-2b8f86930b45/previews/sigmoid/html/sigmoid_documentation.html
https://www.mathworks.com/matlabcentral/mlc-downloads/downloads/24e59eb7-2e7f-4f5d-8624-e8796b617ac6/c1512698-fee2-4e87-b57b-2b8f86930b45/previews/sigmoid/html/sigmoid_documentation.html
https://www.mathworks.com/matlabcentral/mlc-downloads/downloads/24e59eb7-2e7f-4f5d-8624-e8796b617ac6/c1512698-fee2-4e87-b57b-2b8f86930b45/previews/sigmoid/html/sigmoid_documentation.html
https://help.scilab.org/docs/6.0.0/en_US/tanh.html
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
http://euroforecaster.org/newsletter21/07-21-23.pdf
https://arxiv.org/abs/1412.6980

[25] Yunjie Liu et al. Application of Deep Convolutional Neural Networks for Detecting Extreme
Weather in Climate Datasets. 2016. arXiv: 1605.01156 [cs.CV].

[26] Agnes Lydia and Sagayaraj Francis. “Adagrad - An Optimizer for Stochastic Gradient Descent”.
In: Volume 6 (May 2019), pp. 566–568.

[27] Mart́ın Abadi et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Soft-
ware available from tensorflow.org. 2015. url: https://www.tensorflow.org/.

[28] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of machine learning.
MIT press, 2018.

[29] Chigozie Nwankpa et al. “Activation functions: Comparison of trends in practice and research
for deep learning”. In: arXiv preprint arXiv:1811.03378 (2018).

[30] Josh Patterson and Adam Gibson. Deep learning: A practitioner’s approach. ” O’Reilly Media,
Inc.”, 2017.

[31] F. Pedregosa et al. “Scikit-learn: Machine Learning in Python”. In: Journal of Machine Learning
Research 12 (2011), pp. 2825–2830.

[32] Payam Refaeilzadeh, Lei Tang, and Huan Liu. “Cross-validation.” In: Encyclopedia of database
systems 5 (2009), pp. 532–538.

[33] Jimson Mathew Renji Remesan. Hydrological Data Driven Modelling. Springer, pp. 64, 65.

[34] Olga Russakovsky et al. “ImageNet Large Scale Visual Recognition Challenge”. In: International
Journal of Computer Vision (IJCV) 115.3 (2015), pp. 211–252. doi: 10.1007/s11263-015-
0816-y.

[35] Maurice Schmeits, Simon Veldkamp, and Kirien Whan. “Statistical post-processing of wind
speed forecasts using convolutional neural networks”. In: EGU General Assembly Conference
Abstracts. EGU General Assembly Conference Abstracts. May 2020, 16849, p. 16849. doi: 10.
5194/egusphere-egu2020-16849.

[36] Koert Schreurs et al. “Precipitation Nowcasting using Generative Adversarial Networks”. In:
(2021), pp. 24–25.

[37] Benedikt Schulz and Sebastian Lerch. Machine learning methods for postprocessing ensemble
forecasts of wind gusts: A systematic comparison. 2021. arXiv: 2106.09512 [stat.ML].

[38] US National Weather Service. Numerical Weather Prediction (Weather Models). url: https:
//www.weather.gov/media/ajk/brochures/NumericalWeatherPrediction.pdf.

[39] Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning: From theory to al-
gorithms. Cambridge university press, 2014.

[40] Nitish Srivastava et al. “Dropout: A Simple Way to Prevent Neural Networks from Overfitting”.
In: Journal of Machine Learning Research 15.56 (2014), pp. 1929–1958. url: http://jmlr.org/
papers/v15/srivastava14a.html.

[41] David J Stensrud. Parameterization schemes: keys to understanding numerical weather prediction
models. Cambridge University Press, 2009.

[42] Stéphane Vannitsem, Daniel S Wilks, and Jakob Messner. Statistical postprocessing of ensemble
forecasts. Elsevier, 2018.

[43] Michaël Zamo and Philippe Naveau. “Estimation of the continuous ranked probability score
with limited information and applications to ensemble weather forecasts”. In: Mathematical Geo-
sciences 50.2 (2018), pp. 209–234.

[44] Alice Zheng and Amanda Casari. Feature engineering for machine learning: principles and tech-
niques for data scientists. ” O’Reilly Media, Inc.”, 2018.

[45] Kirien Whan Zoë Van Den Heuvel Elisa Perrone. “Post-processing wind gust forecasts using
CNNs to improve weather warnings”. In: Eindhoven University of Technology, 2021.

56

https://arxiv.org/abs/1605.01156
https://www.tensorflow.org/
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.5194/egusphere-egu2020-16849
https://doi.org/10.5194/egusphere-egu2020-16849
https://arxiv.org/abs/2106.09512
https://www.weather.gov/media/ajk/brochures/NumericalWeatherPrediction.pdf
https://www.weather.gov/media/ajk/brochures/NumericalWeatherPrediction.pdf
http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html

	Introduction
	State of the art
	Data
	Background Theory
	Numerical Weather Prediction models
	Statistical Post-Processing
	EMOS and MOS frameworks

	Covariance and Correlation
	Machine Learning
	Typical learning tasks
	Different stages of the learning process
	Different Learning Scenarios
	Cross-validation
	Feature Selection

	Feed Forward Neural Networks
	Perceptron
	Multi-layer Feed Forward Neural Network
	Back-Propagation
	Stochastic Gradient Descent
	Activations Functions

	Convolutional Networks
	Limitations of standard Multi-Layer Networks for image classification
	Genearal structure of a CNN
	Convolutional Layer
	Pooling Layer
	Batch Normalization Layer
	Fully Connected Layer
	Overfitting problem and Dropout method

	Residual Neural Network
	Vanishing Gradient Problem
	Residual Learning
	The residual block

	Objectives of our project and proposed solutions
	Binary classification approach
	The architecture of the model

	Problems identified working with the Binary Classification Approach
	Dimensionality reduction
	The problem of the training data-set's imbalanced class distribution
	Downsampling techniques
	Different weights technique

	Feature selection and cross-validation procedure
	Confusion Matrix
	Categorical Scores and Performance Diagram

	Results
	Results obtained during the feature selection and cross-validation procedure
	Results on the test data-set
	Results on the test data-set in terms of F1 Score and Brier Score
	Misclassified examples

	Results obtained with a more balanced training data-set
	Other results on the test data-set
	Normalization

	Conclusions
	Future Work
	Quantized Softmax
	Bernstein Polynomials
	Up-sampling

	Pearson Correlation Coefficient
	Predictors that characterize the NWP deterministic forecasts, we have worked with
	Variables considered during our Feature Selection and Cross-Validation procedure
	Heaviside Function
	Binary Cross Entropy Loss
	F1-score
	Brier Score
	Results of the Cross-validation and Feature Selection procedure
	Categorical Cross Entropy Loss
	CRPS loss
	Quantile Loss

