
POLITECNICO DI TORINO
Master’s Degree in Data Science and Engineering

Master’s Degree Thesis

Benchmarking Self Supervised
Representation Learning methods on

Biological Datasets

Supervisors

Prof. Elisa FICARRA

Prof. Paolo GARZA

Prof. Francesco PONZIO

Candidate

Nicola OCCELLI

April 2022

Summary

Deep Learning, and especially Deep Supervised Learning has been the driving
force of computer vision in the last decade. Although this approach is the most
promising when applied to big dataset of annotated images, as the labelled data
decrease in quantity, also its performance decreases in quality. This is ever so true
when applied to highly specialized domains, such as Biological Imaging. For this
very reason, scientists have been developing the so called self-supervised paradigm.
This paradigm allows to learn a model even with a small number of annotated
data, without compromising the quality or generalization power of the learned
model. In this work we explore different ways of performing self-supervised learning,
exploiting the new Pytorch-based framework: PytorchLightning. We run multiple
experiments on different biomedical datasets on NVidia-powered GPU computing
nodes. Our main goal is to benchmark different self-supervised learning approaches,
and find out which one works best in the biomedical domain. As a side-product
of this work, we produce a reusable and scalable code base, which will speed up
research by removing completely the boilerplate, that allows for fast prototyping
and experimenting.

ii

Acknowledgements

I would like to say thanks to my family on top of everyone else, for always believing
in me, even when I am not believing in myself. I would like to thanks equally my
girlfirend, for always bearing with me and never stop caring about me. Special
thanks to my supervisors for helping me find the inspiration for my thesis. Lastly, I
would like to extend a thank you to every person that have been a positive influence
in my journey to this day.

iv

Table of Contents

List of Tables viii

List of Figures ix

Acronyms xii

1 Introduction 1
1.1 Technological Motivation . 1
1.2 Moral Motivation . 2
1.3 Chapters content . 2
1.4 Clinical Objectives . 3
1.5 Technical Objectives . 4

2 Background 5
2.1 Neural Networks . 5
2.2 Bottleneck of supervised learning 8

2.2.1 Transfer Learning . 8
2.2.2 Domain Adaptation . 9

2.3 Embeddings . 9
2.4 Self-Supervised Learning . 9

2.4.1 Contrastive . 10
2.4.2 Generative . 11

3 Datasets 13
3.1 Mesothelioma dataset . 13

3.1.1 Epithelioid Mesothelioma 14
3.1.2 Sarcomatoid Mesothelioma 14
3.1.3 Desmoplastic Mesothelioma 14

3.2 Colorectal Cancer Dataset . 15
3.3 Details . 17

3.3.1 Image Formats . 17

vi

3.3.2 Region of Interest . 17
3.4 Processing . 17
3.5 Tiling . 18

4 Methods 19
4.1 Baseline . 20
4.2 Pretext Training . 20

4.2.1 ImageNET Pre-Training . 21
4.2.2 Random Initialization . 21
4.2.3 Rotation Prediction . 21
4.2.4 Jigsaw Puzzle Solving . 22
4.2.5 Autoencoding . 24
4.2.6 Training Parameters . 24

4.3 Downstream Training . 26

5 Results 29
5.1 Mesothelioma . 29
5.2 Colorectal Cancer . 29

6 Discussion 33
6.1 Trade-off between memory size and speed 33
6.2 Random Initialization’s Success . 34
6.3 Further Development . 35

7 Conclusion 37

Bibliography 39

vii

List of Tables

4.1 The table shows the configuration of learning rate, scheduler and
optimizers for the various training tasks 25

4.2 The table reports the configuration of the Early Stopping callbacks
for the various training tasks . 26

5.1 The table shows the test f1 weighted scores for each of the baseline
training applied to the MESO dataset. 30

5.2 The table shows the test f1 weighted scores for each of the pretext
training tasks, applied to the MESO dataset. 30

5.3 The table shows the test f1 weighted scores for each of the baseline
training applied to the CRC dataset. 31

5.4 The table shows the test f1 weighted scores for each of the pretext
training tasks, applied to the CRC dataset. 31

6.1 The table shows the difference in size and speed of the various
memories of the device used to run experiments. The trade-off is
obvious, and shows how faster memory, being way more expensive,
is typically more scarce than cheaper slower memory. 33

viii

List of Figures

2.1 The typical Artificial Neural Network Architecture for a classification
model. A first input layer on the left presents the same number
of neurons as the number of inputs coming from the outside world.
Then the hidden layer(s) can be multiple, and determine the depth
of the model. Lastly, the output layers presents one neuron for each
output class . 6

2.2 The picture shows the first four steps of a convolution. On the left
we can see the input image which we set it to be 9x9 pixels. In the
top-center part of the image we can see the filter, which we set it to
be of size 3 (3x3 pixels), and with stride 2 (the filter travels 2 pixels
towards the next position). Each big colored square on the input
image represents the next position of the filter in the image. Each
small colored square in the output image on the right, represent the
output of the convolution. It is clear how the filter size and stride
affect the size of the filter output. 7

2.3 The figure shows the sample output of an encoder trained to repro-
duce a hand-written digit, from the MNIST dataset. 11

3.1 The images show a sample for each one of the classes in our MESO
dataset. From top-left to bottom right the image shows: Epithelioid,
Non-Epithelioid . 14

3.2 The images show a sample for each one of the classes in our CRC
dataset. From top-left to bottom right the image shows: Ulcerative
Colitis (UC), Adenocarcinoma (AC), Juvenile polip (J), Serreted
Adenoma (Serr), Healthy (H), Primary colorectal lymphomas (PCL),
Ulcerative Colitis (UC), Tubular Adenoma (T) 15

ix

4.1 A schema of the architecture used in the pretext side of the exper-
iments. On the top side the backbone network. On the bottom
side, three network examples with the respective output shapes, for
different pretext tasks. On path a we see a Head network for rotation
prediction. On path b we see a Head network for Jigsaw Puzzle
solving. On path c we see a Head network for Auto-encoding 20

4.2 The figure shows the Downstream task pipeline. On the left the
pre-trained backbone. The dashed contour shows that the weights
are frozen. The code outputted by the backbone is then fed to the
Downstream SVM which performs classification over the codes. . . . 21

4.3 In the rotation pretext task, each input is rotated according to a
random multiple of 90 degrees, sampled uniformly from the set of
multiples smaller than 360 degrees. The rotated image is then fed
into the model that predicts the actual rotation angle. 22

4.4 The picture shows from left to right the image being tiled, with
the tile frames being chosen randomly allowing for some pre-defined
jitter, to avoid adjacent tiles. Next the tiles are extracted and
scrambled according to a pseudo-random permutation. The tiles
are then fed to the siamese backbone. After the backbone is done
extracting the features from each individual tile, the features are
concatenated, and fed through the head. In the end, the head
outputs, for each original puzzle, a vector of size C, where C equals
the cardinality of the permutation set. 23

4.5 The encoder architecture in terms of Backbone and Head. The input
is fed to the Backbone-Encoder part, composed of a ResnNet18
model up until the last average pooling layer. The latent code is
then fed to the Head-Decoder part, composed of multiple stacks of
upsample and convolution blocks. The output of the model is a
reconstruction of the input. 25

4.6 The picture shows the transition from pretext (above) to downstream
(below). During the pretext task, the objective of the training is to
learn a meaningful low-dimensional representation of the input space,
with a "pretext". Once the training is over, the head is discarded,
and the backbone is frozen. In our downstream training, the frozen
backbone is used as a feature extractor, and a SVM is trained to
perform classification of the latent representations of the input images. 27

x

Acronyms

AE
Auto-Encoder

AI
artificial intelligence

ANN
Artificial Neural Network

CE
Cross-Entropy

CNN
Convolutional Neural Network

CRC
Colorectal Cancer

CT
Computerized Tomography

DAE
Denoising Auto-Encoder

DL
Deep Learning

FCN
Fully Connected Network

xii

GAN
Generative Adversarial Network

GB
GigaByte

Gb
GigaBit

GLCM
Gray-Level Co-occurrence Matrix

GPU
Graphics Processing Unit

HE
Hematoxylin and Eosin

LR
Learning Rate

MESO
Mesothelioma

MI
Mutual Information

MSE
Mean Squared Error

NN
Neural Network

PRP
Predict Relative Position

RAM
Random Access Memory

xiii

ROI
Region of Interest

SL
Supervised Learning

SSL
Self Supervised Learning

SSRL
Self Supervised Representation Learning

SVM
Support Vector Machine

TPU
Tensors Processing Unit

UL
Unsupervised Learning

VAE
Variational Auto-Encoder

VRAM
Video Random Access Memory

WSI
Whole Slide Image

xiv

Chapter 1

Introduction

1.1 Technological Motivation

Ever since the advent of LeNet5[1] in 1989, neural networks have been the main
approach to solve some of the most important computer vision problems. The
neural network paradigm then developed into what we call today Deep Learning (to
which we will be referring to as DL hereon). DL is a technique consisting in stacking
multiple neural networks layer on top of one-another, the more layers we stack, the
deeper the architecture. DL models are able to extract a hierarchy of representations
of an image, starting from intuitive high-level representation obtained in the first
superficial levels, and ending with complex low-level representation at the deepest
levels. One particular kind of DL models are Convolutional Neural Networks (to
which we will be referring to as CNN hereon). CNNs are inspired by the processing
done inside the visual cortex of animal’s brain (including human’s). Today we
employ CNNs to solve tasks like (but not limited to) Semantic Segmentation, Image
Classification[2] and Object Detection. Together with the development of these
models, the reason why we are able to run these learning algorithms successfully
is the concurrent high-speed development of the hardware components needed to
run them in the first place [3]. Some of these hardware components are Graphical
Processing Units (GPUs for short), and Tensor Processing Units (TPUs for short).
These are computing units, typically equipped with 10 to 20 Gb of high-speed
dedicated RAM memory, and specialised processors, able to perform trillions of
floating point operations per second. The most successful paradigm studied by
researchers in the last decade is Supervised Learning, and it consists in learning
DL models from large annotated datasets, (i.e. ImageNet [4]). Although, not
every imaging domain can afford a large annotated dataset. This means that
the Supervised Learning paradigm can fail to learn an effective model for that
task, because of the lack of data. For this reason, another paradigm emerged,

1

Introduction

called Self Supervised Learning (SSL hereon). SSL consists in learning meaningful
representation by training the model on unlabelled data. After this first training,
the model can be fine-tuned to perform a downstream task (i.e. image classification),
or can be used as is, as a feature extractor, to train a separate downstream model
on said features (i.e. a Support Vector Machine classifier).

1.2 Moral Motivation

In the field of biology and medicine it is common to produce images using micro-
scopes, Computerized Tomography (CT) scans and many other instruments. These
images are typically digitalized and stored in large clinical datasets. Although the
amount of data is consistent, annotating a microscopy image is costly, and requires
skills that are usually only possessed by a few employees at the hospitals. This
means that the amount of annotated data is far smaller than the raw data itself, and
most of the times is not suitable to train a supervised model. Moreover, fine-tuning
and domain adaptation techniques are difficult to apply, since the biological and
medical domain are far apart from that of natural images (which are the images
on which most of the state-of-the-art models are trained). For this reason, SSL
fits perfectly into this framework, and we think that it represents one of the main
research avenues for the years to come.

1.3 Chapters content

The work we are going to present is of two different natures. One component is a
research of the literature surrounding Self-Supervised learning in the current Deep
Learning landscape. This will include a general overview of the approach, compared
to the other state-of-the-art approaches currently in use in the research community.
The second, and most substantial part of is the coding and experimenting of some
of what we thought are the most promising techniques of SSL. For this last part,
we wrote a Python experimenting library/framework based on the recently released
PytorchLightning framework. One of our goals since the beginning was to focus
on writing reusable code, removing as much boiler plate as possible. During the
development, we consulted and included multiple existing solutions taken from
the code repositories of researchers, and while they should be on the top of the
priority list, readability and reproducibility are often disregarded. For this reasons,
we decided to adopt a framework that makes these two issues its main goals. What
we obtained is a Python library, available at our GitHub , easily scalable, aimed at
removing the effort of coding from the experimenting phase.

2

https://github.com/Nico995/ssrllib

Introduction

1.4 Clinical Objectives
From the clinical point of view, this work’s objective is the automated diagnosis of
cancer (or cancer subtypes) to a patient, given a (or multiple) microscopy images
of tissue samples.

The reason for automation has it’s basis in the two major drawbacks that can
be found in the literature.

• Time: Manual annotation is time consuming, especially for large datasets,
and even more for large images.

• Subjectivity: Manual annotations are subjective. The annotation of different
images is affected by variability. The effect of variability is twofold: it affects
inter-observer (i.e. the annotations of the same image between two different
observers are affected by variability) and intra-observer (i.e. different image’s
annotation by the same observer are still affected by variability)

For the reason just explained the research community is focusing its efforts
towards the automated diagnosis of tumors. The automated diagnosis can be
subdivided in two main branches:

• Automated Segmentation: This branch focuses on the automatic partition of
heterogeneous WSI samples of a given tissue into homogeneous tiles of the
same kind of tissue.

• Automated Classification: This is the branch that this work will focus on.
Researchers working in this direction aim at classifying regions of tissue into
either benign-malign class system, or any other class system that best defines
the task at hand. This classification is based on quantitative features. In our
work, the qualitative features will be extracted by means of a Neural Network
model.

The progress towards automated classification has been notable in the last few
years. Many different anatomical regions such as colon, brain, lungs, breast and
prostate have benefited from these new techniques. The most way of tackling this
problem however have been of the feature selection type: a limited local-descriptor
set has been extracted from the input images, such as Gray-Level Co-occurrence
Matrix or (GLCM), wavelet transforms and many others. These hand-crafted
features have then been fed to a machine learning classification algorithm such
as Support Vector Machine classifiers, Logistic Regression classifier or Random
Forest classifiers. The shortcoming of these methods has not been the classificator
itself, but instead the very features they have been trained on. The negative

3

Introduction

effects of hand picking features is twofold. First it requires the researcher a non-
trivial knowledge of which of the virtually infinite features are best suited for the
classification task. Second, the generalization power of the algorithm is severely
affected by such choice.

The natural reaction to the aforementioned limitations is the adoption and
specialization of Deep Learning architectures to the biomedical domain. CNNs
are the architectures that provide the greatest performances when applied to the
discussed problems.

1.5 Technical Objectives
Our main focus in this work is to compare the performances of supervised learning
with self-supervised learning. We are driven by the lack and high cost of annotations
in the biomedical field. Our objective is then to have a benchmark of multiple self-
supervised approaches, applied to multiple datasets, with different characteristics.
On top of that, we want to validate the results simulating different amounts of
labelled data for our algorithms, this way, we hope to find ad highlight the point
where supervised learning stops being optimal, and self-supervised learning shows
its strength in working with a fraction of labels with respect to the supervised
approach. Our second goal is to create a coding base, that does not stops to be
useful as soon as this works is terminated, but keeps being relevant, and allows for
an easy implementation of other newer self-supervised methods, without requiring
to write the whole project from the ground up.

4

Chapter 2

Background

2.1 Neural Networks

As previously discussed in 1.1, Artificial Neural Networks (ANNs) take relative
inspiration by the architecture of the optical nervous system. The general structure
of a ANN is made up of multiple nodes (or neurons), connected by set of weights
(or axons), which enables them to work with each other [5]. The neurons in the
model works together to generate an output, which is, in the case of classification
models, a probability distribution over the set of possible labels. All networks are
typically divided into three sections, as shown in 2.1. The input layer has one
neuron for each input value. If the input was an image, each pixel’s color would
have it’s own input neuron. The hidden layer then connects the input with the
output layers, and can have as many neurons as it is required. The number of
neurons has many effects on the behaviour of the network, some of them being
changing the complexity of the model, affecting the generalisation power and the
learning process and so on. By increasing the number of stacked layers in the
hidden part of the network, we can go from shallow to Deep Learning Models.

The architecture shown above represents a Fully Connected Network (FCN),
meaning that every neuron is connected with each other. This design choice means
that the number of total connections in a network is so high, that deep networks
are too big to be trained effectively.

Convolutional Neural Networks (CNNs) represent the solution to this problem.
CNNs now present convolutional windows, typically called kernels, that essentially
group together a number of input values equal to the size of the filter, squared.
The typical parameters that characterize a convolutional filter are the kernel size,
effectively the size of the square window, and the stride, the amount of pixels
that the filter moves each time. A more intuitive representation of the concept of
convolutional filter can be seen in 2.2

5

Background

Figure 2.1: The typical Artificial Neural Network Architecture for a classification
model. A first input layer on the left presents the same number of neurons as the
number of inputs coming from the outside world. Then the hidden layer(s) can be
multiple, and determine the depth of the model. Lastly, the output layers presents
one neuron for each output class

CNNs can be applied to two main paradigms, Supervised Learning (SL) and
Unsupervised Learning (UL).

Supervised learning means learning a mapping function between the inputs and
a set of labels. To carry out this type of learning, inputs needs to be pre-labelled.
For each input sample, a CNN trained to perform Supervised Classification, will
output a probability distribution over the set of labels (often also called targets).
The objective of this learning paradigms is to minimize the error function between
the actual true value (often referred as ground truth), and the network’s predictions.
We do not dive further into Unsupervised learning since it will not be used in our
work.

6

Background

Figure 2.2: The picture shows the first four steps of a convolution. On the left
we can see the input image which we set it to be 9x9 pixels. In the top-center
part of the image we can see the filter, which we set it to be of size 3 (3x3 pixels),
and with stride 2 (the filter travels 2 pixels towards the next position). Each big
colored square on the input image represents the next position of the filter in the
image. Each small colored square in the output image on the right, represent the
output of the convolution. It is clear how the filter size and stride affect the size of
the filter output.

The learning of neural network depends on multiple parameters, one of which
is the loss function. Convolutional Neural Networks (CNNs) are analogous to
traditional ANNs in that they are comprised of neurons that self-optimise through
learning. Each neuron will still receive an input and perform a operation (such as
a scalar product followed by a non-linear function) - the basis of countless ANNs.
From the input raw image vectors to the final output of the class score, the entire
of the network will still express a single perceptive score function (the weight).

7

Background

2.2 Bottleneck of supervised learning

Supervised learning is the standard approach to neural network’s training. The
task of supervised learning consists of learning a mapping functions based on
input-output sample pairs [6]. In order for the model to learn an approximately
correct mapping function, the training samples need to be representative of the
world that is generating the data. To increase the confidence of having a sample
which is representative of the real world, we can increase the size of the sample,
and this means adding more data and more labels to our dataset. When it comes
to adding labels, most often the process requires a human to manually examine
each sample and give it an annotation, according to the content. This very process
can be more or less expensive in terms of time and money. When building labels
for a segmentation dataset, for instance, we need to have a label for each pixel of
each image, and this can require quite an amount of resources, when iterated over
a sample size of thousands of images. While instead for classification tasks, we only
need one target value per image. The cost of annotations varies also depending on
the domain of the data. For instance, annotating an image coming from ImageNet
[7], does not require any special skill from the annotator, since the dataset mainly
contains everyday objects such as chairs and tables, or species of animals, such
as Labrador retriever or Siamese cat. On the other hand, if we approach more
specific domains such as biomedical images, the number of people bearing the skills
necessary to write correct annotations drops drastically, and with it, the total
amount of annotation we can possibly get access to also decreases. For this reason,
often the high cost of producing an annotation translates in a lack thereof.

Given the cost of labels that we have just discussed, many methods were
developed to address the lack of labels, the most notable of them being Transfer
Learning, Domain Adaptation and Self Supervised learning.

2.2.1 Transfer Learning

Transfer Learning addresses the lack of annotated data by training a model in
a two step approach. First, it trains a model in a Supervised fashion on a large
annotated dataset. Second, it transfers the learned knowledge to a second task,
which has to be somehow related to the first one. In order to successfully apply
Transfer Learning, the model must have a certain generalisation power, in order to
be able to transfer the knowledge obtained on the first task, to the second, related
task. Moreover, the two tasks need to be somehow related (i.e. it is sensible to
think that Transfer Learning applied to a model trained to recognize trucks, could
yield a model that is able to recognize motorbikes, and would fail if the end task is
to recognise planes)

8

Background

2.2.2 Domain Adaptation
Domain Adaptation is a special case of Transfer Learning, in which the feature
space of the source and domain target are the same. Domain adaptation techniques
address the gap that exists between the source label-rich, and the target label-poor
data distributions.

This works mainly focuses on the Self Supervised approach to reduce the anno-
tation requirement for label-hungry models, by learning meaningful representation
via a pretext task, that does not requires effort to generate labels.

2.3 Embeddings
Before jumping into the definition of Self-supervised learning, we must first introduce
the concept of embedding, and how it relates to the concept of neural network.
We define embeddings the relatively low-dimensional representation of the high-
dimensional object served as input to the neural network. After each convolutional
layer of a common DL architecture, we obtain an embedding, which is often referred
to as hidden representation. Hence, we can state that at each layer, we obtain
a different embedding of the starting image. What we are commonly interested
in, is the last level of embeddings, which will also be the most compressed in the
case of the architecture in the picture above. We can think of this embedding as
the projection of our high-dimensional input image (i.e. 224x224x3) onto a lower-
dimensional space. Ideally, if a model is able to convert an image into a meaningful
embedding, the embeddings themselves will have some important properties. As
an example, similar images in terms of content, will ideally yield embeddings that
are close in the feature space (by means of distance metrics i.e. cosine distance)
Moreover, powerful embeddings can be reused across different domains.

2.4 Self-Supervised Learning
As previously mentioned, Self-supervised learning is a family of methods that aim
at reducing the amount of supervision needed by classical Supervised Learning
methods. The concept of SSL first emerged in the field of robotics, where it referred
to the automatic labelling achieved by crossing the inputs obtained by different
sensors [8]. The same concept has been further explored by computer scientist in
the field of deep learning. Now we can summarize the most important features of
SSL as follows:

• Use a semi automated process to obtain labels from the data itself

• Predict part of the data from other parts of the data itself

9

Background

More in detail, concerning the second point, we can think of situations where
we corrupt or erase part of the data, and learn how to recreate them from what is
left untouched of the original data.

What we have just described, is what we will call from now on the pretext task.
The pretext task (or objective) is, as we just described, a task where we either:

• Perform a classification over the labels obtained by the semi automated process
described above

• Simply predict part of the data after having corrupted the original data as
described above.

The two objectives described above, clearly do not have the need of "hard" labels
(i.e. manual annotation of the content of an image, after the active process of
understanding each image by a human annotator). Instead, we are completing
a task that needs semi automated labels (first point), or no labels at all (second
point). The power of Self-Supervised learning, stands in the art of defining a proper
pretext task. By defining a good objective on unlabelled data, ideally, we will
then obtain a model that is able to extract embedding that are meaningful, for
almost any downstream task (i.e. image classification-based objectives or object
detection).

In the following sections, we are going to shed some lights over the two main
branches of Self-Supervised learning: Constrastive and Generative Learning [9].

2.4.1 Contrastive
Contrastive learning is a learning paradigm that uses similar objective functions
to Supervised Learning. The core of the method stands in contrasting the latent
representation of different input pairs, while pushing together latent representation
of similar input pairs. The Contrastive Learning paradigm divides again in two
major branches: context-instance contrast and instance-instance contrast.

Context-Instance contrast

We use Context-Instance contrast in a SSRL framework when we exploit the
relations that a (local) portion of data has with respect of itself (global), for this
reason we can think of it as a local-global contrast. We will focus particularly on
that portion of methods called Predict Relative Position (or PRP for short). This
approach main goal is predicting the mutual positions among local components of
the input. In this case the global context serves as ground truth, required to predict
such relative position. In the following sections we will dig deeper in two methods
belonging to this category: Rotation Prediction and Jigsaw Puzzle Solving.

10

Background

Figure 2.3: The figure shows the sample output of an encoder trained to reproduce
a hand-written digit, from the MNIST dataset.

Instance-Instance contrast

Instance-Instance contrast is an alternative to the Context-Instance Maximizing-
Mutual Information (MI) approach, that has been proved not to bring any actual
improvement. Instance-Instance contrast instead models the the relationship among
instance-level representation of different samples.

2.4.2 Generative
Auto-encoder Models

The auto-encoder (AE) models are the most diffused generative models, because
of their flexibility. Blotzmann Machines can be seen as a first special version of
auto-encoder. The objective of an auto-encoder model is to output a reconstruction
of the input, which can be purposefully corrupted in some cases 2.3. It is generally
composed by a feed-forward neural network, whose training is aimed at reproducing
it’s input at the output layer. The structure is composed of an encoder h = fenc(x),
and a decoder g = fdec(x). The encoder and decoder function are composed to
produce as output, a reconstruction of the input, in other words x̂ = g (f (x)),
where the objective is minimizing a certain reconstruction loss between the original
input x and the reconstructed input x̂, in other words, making x and x̂ as similar
as possible

11

Chapter 3

Datasets

The data we use use in our experiments can be classified generally as digital
microscopy data. Digital processing of microscope images has been around since
before the advent of Deep Learning, and has been developed as a tool to extract
quantitative information about the specimen in exam. With the development of
computer vision, the ability of digitalizing a microscopy picture has enabled the
possibility of running deep learning models on this kind of data.

3.1 Mesothelioma dataset

Malignant pleural mesothelioma, is a tumor induced by the contact with asbestos
and it’s diagnosis represents a critical challenge for pathologists [10]. The diagnosis
of this kind of tumor comes from histologic evaluation. The very diagnosis is based
on morphological assessment, and has to be supported by radiology assessments,
morphological findings and molecular tests (the latter only more recently) [11]
Most commonly, mesothelioma is found in the pelura or the peritoneum. The
dataset used in this work, referred to as MESO for short, deals with Epithelioid
mesothelioma versus all other kind of mesothelioma. The WSIs in the dataset
contains pictures of tissues affected by either one of the aforementioned cancer
types. Epithelioid mesothelioma it is the most common type of mesothelioma, as
it accounts for 50% to 60% of cases. Sarcomatoid mesothelioma instead, is a way
rarer form of mesothelioma, as it accounts for 10% to 20% of cases. The remaining
percentages of cases present either Desmoplastic mesothelioma, or a mix of the
others. The insurgence of all the subtypes of mesothelioma cancer is caused by
exposure to asbestos, a group of minerals used in construction for their resistance
to corrosion and heat.

13

Datasets

Figure 3.1: The images show a sample for each one of the classes in our
MESO dataset. From top-left to bottom right the image shows: Epithelioid,
Non-Epithelioid

3.1.1 Epithelioid Mesothelioma

Epithelioid mesothelioma present itself in a wide variety of histological patterns.
Multiple different patterns can be observed in a single neoplasm, and typically
there is always one single predominant pattern. Cells cointained in the epithelioid
mesothelioma appear oval or cuboidal, and mimic the mesothelial cells that occur
after incurring in injuries of various types. Mitoses are infrequent except for
the more poorly differentiated epithelioid neoplasms, which are uncommon (6).
Trabeculara, solid, tubulopapillary and psammoma can be considered the second
most common histological pattern of epithelioid mesothelioma.

3.1.2 Sarcomatoid Mesothelioma

Sarcomatoid mesothelioma is the most agressive, albeit rarest of the three mesothe-
lioma histological types. The pattern of the sarcomatoid histological type can be
individuated by a proliferation of fascicles-arranged spindle cells, characterized by
different mitoic activity and nuclear apatia grades.

3.1.3 Desmoplastic Mesothelioma

Desmoplastic Mesothelioma appears as a patternless proliferation of the bland
spindle cells inside a band of collagenous stroma.

The annotations of this dataset were obtained by a pathologist. For our work,
this dataset presents the challenge of a binary classification between Epithelioid
and Non-Epithelioid mesotheliomas.

14

Datasets

Figure 3.2: The images show a sample for each one of the classes in our CRC
dataset. From top-left to bottom right the image shows: Ulcerative Colitis (UC),
Adenocarcinoma (AC), Juvenile polip (J), Serreted Adenoma (Serr), Healthy (H),
Primary colorectal lymphomas (PCL), Ulcerative Colitis (UC), Tubular Adenoma
(T)

3.2 Colorectal Cancer Dataset
The second study case tackled in this work is a dataset concering Colorectal
Cancer disease. This study case is particularly interesting because of the class
distribution. It is a multi-class classification problem, and the different categories

15

Datasets

are characterized by an important intra-class variability level [12]. This makes it so
that the case study is relevant to test all those classification techniques that do not
rely on pre-designed features, but instead discover those feature via gradient-based
learning.

Data coming from the World Health Organisation show that the colorectal cancer
stands in the second place as the most common tumor. The CRC is characterised
by a high survival rate: around 90% rate of 5 year survival if diagnosed at an
early stage. On the other hand, only around 40% of the polyps are removed before
developing in tumors. It is precisely this low early-diagnosis rate that makes it
among the main causes of cancer-caused in the occidental words.

The colorectal cancer originates in colon or rectum lining, and more precisely
from the epithelial cells. This typically happens in the innermost part of the
intestinal wall. The typical diagnosis process of colorectal cancer requires visual
examination of a sample of resected tissue, H&E stained and observed under the
microscope. The diagnosis of malign tissue is done based on the observation of
changes in the organization of the tissues. Healthy tissue is generally composed
by glandular structures made of epithelial cells, and filled with non-epithelial
cells. The adenoma is the main benign precursor of colorectal cancer, and it often
manifests as elongated nuclei arranged in stratified fashion. Adenomas instead
show irregularities with respect to healthy tissues, and can evolve into multiple
types of precancerous growth. Adenocarcinomas, instead, manifest by producing
abnormal glands and infiltrating the tissue surrounding the spot of interest.

The main challenge that this dataset poses for our work is the high inter dataset
and intra-class variability. This very challenge is not only to be found in the CRC
dataset, but is intrinsic of any histological imaging dataset.

• Adenocarcinoma (AC)

• Healthy (H)

• Juvenile polip (J)

• Moucinous Carcinoma (MC)

• Primary colorectal lymphomas (PCL)

• Serreted Adenoma (Serr)

• Tubular Adenoma (T)

• Ulcerative Colitis (UC)

• Villous Adenoma (V)

16

Datasets

3.3 Details
3.3.1 Image Formats
Digitalized microscopy images comes in different formats, depending on the brand
of the instrument used to take the picture in the first place.

• SVS : The SVS file format was originally developed by Aperio. This is a
pyramid file, meaning that the file contains multiple instances of the same
image, at different resolutions. The images contained in the file are typically
tiled, with a fixed dimension, usually about 240x240 pixels.

• ndpi: The ndpi format was originally developed by Hamamatsu. This image
format contains many JPEG tiles of the original images, since JPEG has a
maximum dimension of 65535 pixels on one side.

The reason of these exotic file extension is to be found in the original size of
the images. Many of the images we are going to use measure well over 1k pixels
per side. This size would make it impossible to display them as a common digital
image. For this reason, the images are tiled into smaller sub-images, small enough
to be displayed.

3.3.2 Region of Interest
One of the most common problem when it comes to image classification of WSIs is
the heterogeneity of the image content. By definition, for an image classification
task, we have one class label per image. Trivially tiling an image and applying the
same label to each tile can lead to a confused model. Since the image is a picture
of a big portion of tissue, and the tumor is typically concentrated in a fairly limited
portion of tissue, the network could be mislead by being fed patches of multiple
tissue samples (not containing the tumor itself), together with the label saying that
that very particular patch IS tumor. In order to avoid this, some images may come
with annotation files in XML formats, that denote homogeneous regions of tissue
called Regions of Interest (or ROIs for short). This kind of annotations consist in
x,y coordinates of a bounding box that can be cropped away from the rest of the
image, tiled, and used as training data for the model.

3.4 Processing
Both dataset’s images are in the form of whole slide images. For this reason, given
the constrains imposed by the models architectures and the available resources,
the images need to be resized and/or cropped before being used in the training

17

Datasets

pipeline. All the available images are used at the maximum zoom level available.
Once the maximum zoom level image has been extracted, a tiling procedure takes
place, where a given resolution is inputted (512x512 pixels for our work), and all
available, non-overlapping tiles of that size are returned. Tiles are then filtered in
order to discard portion of images where there is small to no tissue at all. The
filter is done by computing the mean over each pixel’s standard deviation over all
channels 3.1, and compared against a hand-picked threshold

vp = 1
w + h

wØ
i=0

hØ
j=0

öõõôq3
c

1
xc

i,j − µi,j

22

3 (3.1)

where xc
i,j is the value of the channel c of the pixel at position (i, j) and µi,j is

the mean over the RGB channels of the pixel in position (i, j).
Once the tiles are extracted from each image, they are saved in PNG format in

a separate directory. Since not all the images present the same original size (or
number of valid tiles), we discard any number of tiles necessary to balance the
number of tiles per each class. This choice of discarding is not only limited to
the balancing problem, but it is also necessary to reduce the amount of data to
accommodate the resources used to run the project.

To build the training, test and validation version of the dataset, the slides are
first split by patient, and we make sure that all the three datasets contain different
patients, to ensure generalization power. One thousand images are selected for
each class, for each dataset.

If the pretext tasks allows it, we perform stochastic data augmentation at
training time, where transformations are applied randomly.

3.5 Tiling
The digital representation of tissue samples (WSIs) have typically very large
resolutions (i.e. 3000x3000 pixels). For this reason, the diagnosis task of a single
WSI is split into the individual diagnosis of smaller portions of WSI (of a resolution
compatible with Neural Networks training). After having obtained a prediction
for each of the single tiles of a slide, different methods can be adopted to extract
the global diagnosis from the local ones of every single tile. In this work, we will
focus only on the neural network part of the task: we will explore and benchmark
methods whose performance will be measured on the single tile, without aggregating
the results at WSI level.

18

Chapter 4

Methods

As explained in the previous section, our training process will be split into a pretext
training, and a downstream training. In the pretext training, we will train the
network on the pretext-task that will allow it to learn how to embed meaningful
features from the input space to the latent space. The downstream task will be our
original task that we would have carried out, if we did not choose to use SSRL.

In our work, we will explore multiple pretext-tasks, and multiple dataset sizes.
In order to make the results of these experiments comparable, we must fix some
objects, among which the network architecture.

To achieve this in the pretext-training, we adopted a modular approach to our
network. By definition, different pretext-tasks require different outputs (i.e. for
an auto-encoding task the output will be of the same shape of the input, while
instead for a rotation classification task, the output will have a shape of four, one
for each rotation multiple of 90 degrees). For this reason, we cannot simply fix
one architecture, since it will not fit all the tasks. Instead, we split the part of the
network that remains the same among all the pretext tasks, and we call it backbone.
We can also define the Backbone that part of the network whose output is our
latent representation, in short, the backbone is the feature extractor of the network.
In our experiments, we choose the backbone to be a ResNet18 network, because
of its popularity among different papers facilitates comparison with other works.
We call the remaining of the architecture Head, and this is the part that changes
shape depending on the pretext-task. We can say that the Head is task-specific,
and will be discarded after having completed the pretext task.

19

Methods

Figure 4.1: A schema of the architecture used in the pretext side of the experi-
ments. On the top side the backbone network. On the bottom side, three network
examples with the respective output shapes, for different pretext tasks. On path a
we see a Head network for rotation prediction. On path b we see a Head network
for Jigsaw Puzzle solving. On path c we see a Head network for Auto-encoding

4.1 Baseline
Our main goal, as stated in 1.5, is to explore SSRL and find out if and which
pretext task brings the best improvement for classification of Whole Slide Images
(WSIs) containing tumor cells. More importantly, we try to measure if and how
much better is any pretext-task with respect to the classic Supervised Learning
approach. It comes natural that in order to asses the improvement, we must first
measure the baseline performance of the Supervised Learning that we are trying to
surpass.

Technically, our baseline consists of a ResNet18 backbone and a fully connected
head, with the output shape adapted to each dataset. As previously stated, the
baseline consists in training a network (a ResNet18 backbone and a single layer
Perceptron head) in a Supervised classification of images.

4.2 Pretext Training
We perform one training session for each pretext-task that we analyze, namely
Rotation Prediction, Jigsaw Puzzle Solving, Auto-encoding. Each pretext-training,
has its own unique configuration and hyper-parameters, as described below.

On top of the tasks above, we also include ImageNET Pre-Training to our
approaches.

20

Methods

Figure 4.2: The figure shows the Downstream task pipeline. On the left the
pre-trained backbone. The dashed contour shows that the weights are frozen.
The code outputted by the backbone is then fed to the Downstream SVM which
performs classification over the codes.

4.2.1 ImageNET Pre-Training
Although not properly a pretext task, the pre-training on ImageNET represents
one of the most common way of initializing a neural network for a downstream
task. One of the definitions of pretext-training that we have given above is a smart
initialization of the network’s parameters, able to extract a meaningful embedding
from the input images. For this reason, we consider the pre-training on ImageNET
as a weights initialization for our network. This allows us to study how effective
the ImageNET initialization is, when applied to a completely different domain
such as the biomedical one. Since we are using a ResNet18 backbone (and a Single
Layer Perceptron head), we are able to exploit the pre-trained weights configuration
available online, without the need to fully train the network on millions of images.

4.2.2 Random Initialization
As the previous subsection, also random initialization is not a proper pretext
task. Random initialization in this context means that we are using as a feature
extractor for the downstream task, an untrained network, whose weights follow the
initialization distribution.

4.2.3 Rotation Prediction
The rotation prediction task is self explicatory. At data loading time, we sample
from a uniform random distribution over the 4 multiples of 90 degrees angles, and
apply the said rotation to the image at hand. The goal of the task is essentially
a classification task over 4 classes, which represent the 4 multiples of 90 degrees

21

Methods

Figure 4.3: In the rotation pretext task, each input is rotated according to a
random multiple of 90 degrees, sampled uniformly from the set of multiples smaller
than 360 degrees. The rotated image is then fed into the model that predicts the
actual rotation angle.

applied to the images. Our expectation from this task applied to the biomedical
domain, is that it should not bring great improvement. The reason why is to be
found in the essence of the task itself. Predicting the rotation of the picture of
a car, can teach the network a meaningful representation of the car object itself,
since virtually in any picture of a car, the sub components have a fixed relative
position (the wheels are above the ground, and the windshields are on the top
part). The shape and dispositions of cells do not have instead a predefined relative
positioning of the sub components, for this reason we do not expect the task to
bring any improvement with its initialization of the network weights.

4.2.4 Jigsaw Puzzle Solving
Solving jigsaw puzzles has been always associated with learning since they have
been invented. They are typically used to access and test the solver’s visuospatial
processing abilities. By teaching a network to solve this task, we aim at teaching
the network how to extract a visuospatial representation of the input images.

The architecture of the network has been inspired by [13]. The simplest approach
to the task would be to stack the tiles along the batch dimension, and consequently
increase the number of filters in the first layers of the architecture. What happens
with this approach, is that the network focuses on low level cues to solve the puzzle.
Although the above behaviour is what us humans are used to do, it does not require
any understanding of the content of the tiles (and the whole puzzle), hence, it will
not yield to generalizable image embeddings. The way to avoid this trivial solution

22

Methods

Figure 4.4: The picture shows from left to right the image being tiled, with
the tile frames being chosen randomly allowing for some pre-defined jitter, to
avoid adjacent tiles. Next the tiles are extracted and scrambled according to a
pseudo-random permutation. The tiles are then fed to the siamese backbone. After
the backbone is done extracting the features from each individual tile, the features
are concatenated, and fed through the head. In the end, the head outputs, for each
original puzzle, a vector of size C, where C equals the cardinality of the permutation
set.

by the network is by feeding the tiles to the network one by one, until the fully
connected layer. This way our ResNet backbone is treated as a siamese network,
where nine batches (one for each tile of the puzzle) are fed to networks sharing
the same set of weights. After the feature extraction part, the embeddings are
concatenated to a single vector, and passed through the head of the architecture,
where the global context in re-injected in the process, and the network is able to
output the solution of the puzzle.

It is worth to further elaborate on the actual output of the network, and what

23

Methods

we mean when we refer to "solving" the puzzle. To start, it is important to
mention that after the tiling process of the input, the resulting tiles are scrambled.
Scrambling consists in extracting one permutation randomly from a set of pre-
computed permutation. These permutations indicate the order of the tiles in the
scramble, and are sampled from a uniform distribution over a pre-determined set of
scrambles. The characteristic of the set are important to determine the complexity
of the task itself. The task is essentially a classification task over a number of
classes equal to the cardinality of the permutation set.

1. The cardinality of the set of permutation determines the ambiguity of the
problem. In other words, the number of unique permutations in the set
translates in the number of classes among which the network have to choose
for its final prediction. By increasing the cardinality of the set, we increase
the complexity of the pretext task, but we will also increase the performance
of the downstream task, and vice-versa.

2. The heterogeneity of the scrambles inside the set of pre-computed permutations
is measured by the average Hamming distance of all the permutations. Greater
Hamming distances yield better performances both in the solution of the puzzle,
and downstream performances.

The network’s output are then checked against the ground truth, and a cross
entropy loss is used to back-propagate.

4.2.5 Autoencoding
The autoencoder is trained with the objective of reproducing as output, an image
which is as much similar to the input as possible. The auto-encoder architecture is
made up of an encoder, which takes an image as input, and compresses it into a
latent code, and a decoder structure, which tries to re-build the image starting from
the code. A correctly trained encoder is able to produce a meaningful representation
of the inputs in the latent space, and this is what we leverage by using the auto-
encoder task as a pretext. For our purpose, our encoder structure is our backbone,
and it is composed by a ResNet18, up until the last average pooling layer. The
decoder instead, is a chain of upsamples and convolutions, carefully crafted in a way
to recover the original image resolution as output. The auto-encoding pretext-task
falls into the Generative pretext-tasks category.

4.2.6 Training Parameters
For all the training, we adopted Adam as optimizer. The learning rate is tuned
according to the complexity of each pretext task, more detailed information can be

24

Methods

Figure 4.5: The encoder architecture in terms of Backbone and Head. The input
is fed to the Backbone-Encoder part, composed of a ResnNet18 model up until the
last average pooling layer. The latent code is then fed to the Head-Decoder part,
composed of multiple stacks of upsample and convolution blocks. The output of
the model is a reconstruction of the input.

found in the table ??. We also employ weight decay and we set it to 0.0001 for
all training instances. In all our training, we include an early stopping criterion,
namely the pytorch lightning implementation EarlyStopping callback. This early
stopping criterion allows us to monitor a desired (validation) metric, and stops the
training after a desired number of epochs without a significant improvement. The
parameters of the criterion vary for the various pretext tasks, and are reported in
the table 4.2. We make use of a learning rate scheduler, and more precisely, we use
a custom configuration of ReduceLROnPlateau from pytorch, for each individual
pretext training. We choose this schedule because it allows to lower the learning
rate each time the improvement over a given metric is lower than a certain threshold.
This particular scheduler works well in combination to the aforementioned early
stopping criterion, and they work best when the latter is set to act after a number
of epochs which is multiple of the one set for the former.

Task lr scheduler optimizer
Baseline 0.003 CosineAnnealingLR adam
Autoencoding 0.001 ReduceLROnPlateau adam
Jigsaw 0.001 ReduceLROnPlateau adam
Rotation 0.001 ReduceLROnPlateau adam

Table 4.1: The table shows the configuration of learning rate, scheduler and
optimizers for the various training tasks

25

Methods

Task metric min_delta patience (epochs)
Baseline CE 0.005 21
Autoencoding MSE 0.0005 11
Jigsaw CE 0.001 11
Rotation CE 0.001 11‘

Table 4.2: The table reports the configuration of the Early Stopping callbacks for
the various training tasks

4.3 Downstream Training
As we previously mentioned in section 1.4, our end goal is the automated diagnosis
of cancer, starting from the classification of small sub-images, obtained by tiling the
whole slide. Hence, our downstream task can be defined as standard classification.
Our downstream classification uses a Support Vector Machine Classifier, trained
over the features extracted by our pre(context)-trained backbone network.

To understand until which point SSRL can help overcome the lack of data, we
perform the downstream training on different dataset sizes. The aim is to assess
how much data is few data. If we consider 100% the dataset size fed to the pretext
training, we trained the downstream model with 5%, 10%, 20%, 50% and 100% of
data. What we expect to see from these experiments is a slow drop in performance,
an possibly an increase in performance with respect to the baseline at 100%.

For all the downstream training, we use a Support Vector Machine Classifier
implementation from scikit-learn. At this point in the training we are left with
a backbone and head networks pre-trained of the pretext task. Since the head
network is, in all pretext task, a portion of network that is needed exclusively to
adapt (or decode) the latent code to be compatible with the respective pretext
tasks, we can discard it. The backbone instead is the essential block needed to
compress and transform the input images. For this reason, when we load the best
checkpoint from the previous training, we only load the weights relative to the
backbone architecture. Once this is done, we proceed by freezing the weights of
the backbone. Freezing weights is a concept that relates to the gradient based
training procedures that all neural networks undergo during training. While using
the backbone network as a feature extractor, we do not need to further modify the
weight schema by effect of back-propagation, hence, it is best practice to freeze the
weights, which effectively means no shift will be applied to the weights, even if, for
some reason, the gradient is computed.

26

Methods

Figure 4.6: The picture shows the transition from pretext (above) to downstream
(below). During the pretext task, the objective of the training is to learn a
meaningful low-dimensional representation of the input space, with a "pretext".
Once the training is over, the head is discarded, and the backbone is frozen. In
our downstream training, the frozen backbone is used as a feature extractor, and a
SVM is trained to perform classification of the latent representations of the input
images.

27

Chapter 5

Results

5.1 Mesothelioma
For the MESO dataset, results of the various pretext methods are grouped in Table
5.2, while the baseline results are shown in table 5.1. The table shows weighted test
F1 scores of the downstream classification, for the different training set sizes, and
pretext-tasks. It is clear how the Auto-encoding and Jigsaw pretext tasks perform
better than any other methods. When lowering the training set size to the lowest
size though, pre-training with an auto-encoding tasks ensures that the downstream
performance still outperforms the baseline training, with the full training set size.
This is an very important results since it proves that generative pretext-training
represent a powerful tool to use when lacking annotations. All the other pretext
training, even if they do not perform as well, they still represent a significant
improvement over the non pre-trained baseline. The Rotation task shows very
similar values to the random task, we think this is because in order to solve the
rotation task itself, the network does not need to learn features that are meaningful
to the downstream task. The ImageNet pre-trained backbone performs better than
expected on images that are far from the original data distribution of the ImageNet
dataset. This means that classifying natural images leads the network to encode
high-level features such edges and patterns, that still are very useful to classify
biomedical images of this kind.

5.2 Colorectal Cancer
For the MESO dataset, results of the various pretext methods are grouped in
Table 5.4, while the baseline results are shown in table 5.3. While the general
consideration done in the previous section still holds also for the CRC dataset, here
we can see a slightly different situation. The gap between the baseline and our best

29

Results

Dataset Size (%)
5 10 20 50 100

Baseline 0.684 0.778 0.808 0.885 0.897
Table 5.1: The table shows the test f1 weighted scores for each of the baseline
training applied to the MESO dataset.

Dataset Size (%)
Pretext method 5 10 20 50 100
Autoencoding 0.908 0.909 0.927 0.956 0.957
Rotation 0.874 0.897 0.899 0.911 0.912
Jigsaw 0.857 0.863 0.894 0.938 0.952
Imagenet 0.825 0.862 0.880 0.917 0.928
Random 0.896 0.900 0.869 0.920 0.913

Table 5.2: The table shows the test f1 weighted scores for each of the pretext
training tasks, applied to the MESO dataset.

pretext method is wider than before. At the same time, now the autoencoding
task greatly outperforms every other task. This is probably due to the harder
classification tasks, as explained in section 3.2.

30

Results

Dataset Size (%)
5 10 20 50 100

Baseline 0.577 0.612 0.689 0.738 0.885
Table 5.3: The table shows the test f1 weighted scores for each of the baseline
training applied to the CRC dataset.

Dataset Size (%)
Pretext method 5 10 20 50 100
Autoencoding 0.893 0.917 0.936 0.961 0.957
Rotation 0.683 0.724 0.766 0.806 0.817
Jigsaw 0.704 0.741 0.778 0.857 0.922
Imagenet 0.781 0.814 0.851 0.888 0.906
Random 0.705 0.766 0.808 0.855 0.877

Table 5.4: The table shows the test f1 weighted scores for each of the pretext
training tasks, applied to the CRC dataset.

31

Chapter 6

Discussion

6.1 Trade-off between memory size and speed

Device Size Peak Transfer Rate
DISK 1000 GB 0.5 GB/s (Read)
RAM 16 GB 14 GB/s
VRAM 12 GB 20 Gb/s

Table 6.1: The table shows the difference in size and speed of the various memories
of the device used to run experiments. The trade-off is obvious, and shows how
faster memory, being way more expensive, is typically more scarce than cheaper
slower memory.

Having big datasets is often a problem since it yields to a trade off between
memory usage and speed. The best way to approach a Computer Vision is to load
all the dataset in RAM, and load one batch at a time to VRAM (Video RAM).
VRAM is much faster than RAM, but is also in limited size. For this reason, there
could be many different configurations in which we could run out of memory:

• Dataset size exceeds DISK size: When the size of all the images in the datasets
is greater than the available DISK space, the only available option is to store the
dataset on a remote server, or cloud, with enough DISK space. This approach
comes with the drawback of having to include in the overall computation the

33

Discussion

bandwidth and latency of the network connecting the computer to the remote
folder.

• Dataset size exceeds RAM Size: When the size of all the images in the datasets
is greater than the amount of system memory available, it means that not
all the images can be loaded in RAM. This also means that when loading
images to VRAM, we will have to first read them from the much slower
storage memory (DISK). Another solution to this problem would be to simply
upgrade the RAM of the system, since this kind of memory has become not
so expansive these days.

• The forward activations of the model exceeds VRAM size: Before starting the
training, the CPU loads into the VRAM the model’s parameters. Right after
the training started, a batch of data is loaded into the VRAM. Both this two
chunks of data do not represent a major problem. To give a quick example,
given that all data is represented by 32bit floating points, a ResNet 50 with a
batch size of 64 and an input size of 3x224x224 pixels would require 0.13 GB of
VRAM. During the training of the model, and more precisely during a forward
pass of the batch, the system will need to store all the intermediate forward
activations of all the layers, to be able to compute the gradients during the
subsequent backward propagation step. These forward activations can easily
fill up the VRAM and cause the training to stop if the model and/or the
batch size are too big. The solution to this problem is either to lower either
the model size, or the batch size or both. Alternatively, a more expensive
solution is to purchase another GPU to add to the first one, hence increasing
the VRAM size, and running the training algorithm in parallel between the
two GPUs.

6.2 Random Initialization’s Success
The results clearly shows, that the features extracted by a randomly initialized
backbone, still allow the downstream model to achieve a reasonable amount of
performance on the data. The reason this happens we think is to be found in the
nature of the convolutional layers inside the architecture. We think that even if it
uses random weights, a stack of convolutional layers are able to extract a code that
is good enough to perform downstream classifications on. In the case of Colorectal
Cancer, we even see the Random entry rise above the Rotation entry. In this case,
we think that the rotation pretext task not only is not useful for the downstream
classification, but that the mapping the backbone learns from solving the rotation
task is so far away from a representation useful to solve the classification task, that
is counterproductive.

34

Discussion

6.3 Further Development
Given the encouraging results obtained by our work, quite a few development
directions arise for the future. Primarily, the great success of generative pretext-
training methods suggest that further research on more complex models could be
beneficial. As such, considering other approaches like Denoising or Variational AEs,
or even GANs could yield even better results than those obtained here.

The essential step needed to validate the results clinically, is to further the
development to include the possibility of aggregating the tile-level results to slide
level. This would enable a researcher to obtain a prediction over a WSI, effectively
getting even closer to the automatic diagnosis goal stated in section 1.4.

Another step towards further validation of our work would be increasing the
absolute size of datasets. Because of constraints on our resources, the work was not
validated on large absolute datasets sizes. This is essential as feeding the network
with a considerable amount of images could consolidate even more our findings (or
uncover weak spots that we did not see in the current settings).

35

Chapter 7

Conclusion

The results obtained from the experiments show that the self supervised learning
approach represents a promising avenue for the biomedical domain. It is apparent
that every domain requires a careful study of a meaningful pretext tasks that can
lead to the learning of meaningful features. The results reflected our expectations
in the fact that the generative approaches yield better results than every other ap-
proach. As expected, the rotation prediction pretext task does not yield interesting
performances, because solving that task in a biomedical domain, does not require
the learning of meaningful features from the data. This is mostly due to the fact
that the orientation of cells and tumors in the WSI do not follow the same rules
that the orientation of a physical macro-object follow in a everyday picture.

Another point worth noting is the high performance of the random methods,
which seems counterintuitive at first. Our interpretation of this result is that
the SVM model trained for the downstream classification, is still able to learn a
mapping from the latent code to the class labels, even if the latent code has been
extracted by a randomly initialized neural network. This could be because even if
the weights are randomly initialized, the spatial characteristics of a convolutional
filter (and moreover a stack of them) could still be able to map the image to a
space which retains most of the images features.

We also believe that the reason why the generative models yield such great
performances downstream is that, opposed to the contrastive methods, they are
required to learn the distribution of the whole image. The reason behind this ability
could be that for the auto-encoder, each pixel is dependent of the surrounding
context, where instead in a jigsaw puzzle solving task, the context for all the pixels
belonging to the same tile is always the same.

Our work clearly shows how the supervised learning performances drop drastically
when the amount of supervision decreases under the 50%, while instead the self-
supervised learning methods are able to retain performance, and the decrease is
sensibly slower. Our work shows promising results, with the (generative-based)

37

Conclusion

self-supervised learning methods surpassing the classical supervised learning also
when compared at 100% of training data. This means that on top of being a viable
approach when labelled data is completely missing, self-supervised learning could
also be used as a pre-training for regular supervised learning task, as a way to
increase it’s performance.

38

Bibliography

[1] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard,
and L. D. Jackel. «Backpropagation Applied to Handwritten Zip Code Recog-
nition». In: Neural Computation 1.4 (1989), pp. 541–551. doi: 10.1162/neco.
1989.1.4.541 (cit. on p. 1).

[2] Zhengyu He. «Deep Learning in Image Classification: A Survey Report». In:
2020 2nd International Conference on Information Technology and Computer
Application (ITCA). 2020, pp. 174–177. doi: 10.1109/ITCA52113.2020.
00043 (cit. on p. 1).

[3] Gunter Röth. «Tutorial 1: NVIDIA’s platform for Deep Neural Networks». In:
2015 IEEE International Conference on Data Science and Advanced Analytics
(DSAA). 2015, pp. XXXVII–XXXIX. doi: 10.1109/DSAA.2015.7344778
(cit. on p. 1).

[4] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei.
«ImageNet: A large-scale hierarchical image database». In: 2009 IEEE Con-
ference on Computer Vision and Pattern Recognition. 2009, pp. 248–255. doi:
10.1109/CVPR.2009.5206848 (cit. on p. 1).

[5] Keiron O’Shea and Ryan Nash. «An Introduction to Convolutional Neural
Networks». In: CoRR abs/1511.08458 (2015). arXiv: 1511.08458. url: http:
//arxiv.org/abs/1511.08458 (cit. on p. 5).

[6] Li-Pang Chen. «Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar:
Foundations of machine learning, second edition: The MIT Press, Cambridge,
MA, 2018, 504 pp., CDN, ISBN 9780262039406». In: Statistical Papers 60
(July 2019), pp. 1793–1795. doi: 10.1007/s00362-019-01124-9 (cit. on
p. 8).

[7] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Fei-Fei Li. «Ima-
geNet: a Large-Scale Hierarchical Image Database». In: June 2009, pp. 248–
255. doi: 10.1109/CVPR.2009.5206848 (cit. on p. 8).

39

https://doi.org/10.1162/neco.1989.1.4.541
https://doi.org/10.1162/neco.1989.1.4.541
https://doi.org/10.1109/ITCA52113.2020.00043
https://doi.org/10.1109/ITCA52113.2020.00043
https://doi.org/10.1109/DSAA.2015.7344778
https://doi.org/10.1109/CVPR.2009.5206848
https://arxiv.org/abs/1511.08458
http://arxiv.org/abs/1511.08458
http://arxiv.org/abs/1511.08458
https://doi.org/10.1007/s00362-019-01124-9
https://doi.org/10.1109/CVPR.2009.5206848

BIBLIOGRAPHY

[8] Bram Wallace and Bharath Hariharan. «Extending and Analyzing Self-
Supervised Learning Across Domains». In: vol. abs/2004.11992. 2020. arXiv:
2004.11992. url: https://arxiv.org/abs/2004.11992 (cit. on p. 9).

[9] Xiao Liu, Fanjin Zhang, Zhenyu Hou, Zhaoyu Wang, Li Mian, Jing Zhang, and
Jie Tang. «Self-supervised Learning: Generative or Contrastive». In: CoRR
abs/2006.08218 (2020). arXiv: 2006.08218. url: https://arxiv.org/abs/
2006.08218 (cit. on p. 10).

[10] Kouki Inai. «Pathology of mesothelioma». In: Environmental health and
preventive medicine 13 (Apr. 2008), pp. 60–4. doi: 10.1007/s12199-007-
0017-6 (cit. on p. 13).

[11] Greta Alí, Rossella Bruno, and Gabriella Fontanini. «The pathological and
molecular diagnosis of malignant pleural mesothelioma: a literature review.»
In: Journal of thoracic disease 10 Suppl 2 (2018), S276–S284 (cit. on p. 13).

[12] Francesco Ponzio, Enrico Macii, Elisa Ficarra, and Santa Di Cataldo. «Col-
orectal Cancer Classification using Deep Convolutional Networks - An Exper-
imental Study». In: Jan. 2018, pp. 58–66. doi: 10.5220/0006643100580066
(cit. on p. 16).

[13] Mehdi Noroozi and Paolo Favaro. «Unsupervised Learning of Visual Represen-
tations by Solving Jigsaw Puzzles». In: CoRR abs/1603.09246 (2016). arXiv:
1603.09246. url: http://arxiv.org/abs/1603.09246 (cit. on p. 22).

40

https://arxiv.org/abs/2004.11992
https://arxiv.org/abs/2004.11992
https://arxiv.org/abs/2006.08218
https://arxiv.org/abs/2006.08218
https://arxiv.org/abs/2006.08218
https://doi.org/10.1007/s12199-007-0017-6
https://doi.org/10.1007/s12199-007-0017-6
https://doi.org/10.5220/0006643100580066
https://arxiv.org/abs/1603.09246
http://arxiv.org/abs/1603.09246

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Technological Motivation
	Moral Motivation
	Chapters content
	Clinical Objectives
	Technical Objectives

	Background
	Neural Networks
	Bottleneck of supervised learning
	Transfer Learning
	Domain Adaptation

	Embeddings
	Self-Supervised Learning
	Contrastive
	Generative

	Datasets
	Mesothelioma dataset
	Epithelioid Mesothelioma
	Sarcomatoid Mesothelioma
	Desmoplastic Mesothelioma

	Colorectal Cancer Dataset
	Details
	Image Formats
	Region of Interest

	Processing
	Tiling

	Methods
	Baseline
	Pretext Training
	ImageNET Pre-Training
	Random Initialization
	Rotation Prediction
	Jigsaw Puzzle Solving
	Autoencoding
	Training Parameters

	Downstream Training

	Results
	Mesothelioma
	Colorectal Cancer

	Discussion
	Trade-off between memory size and speed
	Random Initialization's Success
	Further Development

	Conclusion
	Bibliography

