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Summary

In a society where Internet has become a fundamental means of communication, the devices that
enable the access to this immense network have assumed a fundamental role. Gateways allowing
connection to the Internet are usually supplied by Internet service providers and offer a limited
range of services. From a security point of view, these devices, along with other low-cost products
on the market, often have configuration shortcomings that make them vulnerable to network
attacks. They also do not provide users with the possibility to configure or implement other desired
Internet services. This document proposes the development of an application that integrates a
router, a switch, an access point, a firewall, an intrusion detection system (IDS) and a secure web
browser. The application offers a high level of customization of services as well as the possibility
of adding new functionalities. Software development is based on the popular container technology,
allowing the isolation of individual services and increasing the level of security and portability on
different devices. Container management is realized through the Docker container engine. The
thesis deals with security issues in the container environment, analyzing the vulnerabilities and
risks of this technology and suggesting solutions and practices to mitigate them. This overview is
followed by the development of the application, starting with the explanation and containerization
of the individual services and ending with their integration in a single network in the final product.
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Chapter 1

Introduction

With the advent of the Internet age, now well advanced but still developing, a lot of hardware
components came into everyday life. While people are focused on computers, tablets and phones
they tend to overlook and take for granted those that instead allow them to stay in touch with
the entire web infrastructure: gateways. This term identifies a wide range of devices that allow
connection between different networks. This document refers to the kind of gateway called resi-
dential or home gateway that allows a local area network (LAN) to be connected to a wide area
network (WAN). This connection allows the hosts of a local area network access to the Internet.
Gateways can have different configurations and integrate different functions, e.g. router, NAT,
firewall, WiFi access point, switch. All these components have a specific function and may or may
not be present on the device depending on the configuration. Routers, for example, allow connec-
tions between networks and control the data traffic between them. All the data and information
sent through the Internet (e-mails, files, web pages) travels in the form of data packets.

When a customer that could be a person as well as a company needs to establish a connection to
the Internet it contacts an ISP. An ISP (Internet Service Provider) is an organization that provides
services for accessing and using the Internet. Typically the ISP with which customers stipulate a
contract for the Internet connection also provides the home gateway that manages it. This is a
common option that removes all the problems for customers such as buying the equipment and
setting it up on their own. Moreover in case of malfunctions the ISP would provide assistance and
solve the problem without any technical intervention of the customer. This could be a convenient
choice for a home gateway of a customer that only needs Internet connection and is not concerned
by other technical details. Unfortunately, contrary to what one may think, these kinds of devices
are usually vulnerable to network attacks, expose security risks and don’t offer a good flexibility in
terms of services and functionalities. The same applies to other low-cost products on the market
that can be purchased by users. For a customer or even a company concerned about these issues
and who wants to implement network security and Internet services in a completely customizable
way these devices are not a suitable choice.

Based on this prologue this document addresses one possible solution to the problem described.
The thesis proposes the development of an application that integrates a router, a switch, an
access point, two firewalls, an intrusion detection system (IDS) and a secure web browser. The
application offers a high level of service customization as well as the possibility of adding new
functionalities independently from the ISP. The application is compatible with any computer,
device or embedded system in general that meets certain requirements. All the software used are
free and for the most part open source. The application is developed with the trending technology
of so called “container”, which brings several benefits in terms of security and manageability of
the application.

In recent times there has been a new trend in the development of applications towards the use
of “microservices”. This term refers to a new architectural style for the creation of applications
different from the traditional monolithic approach. The microservices architecture consists in
the division of the application in services of small size independent from each other. These
services communicate with each other through special well defined APIs and provide the basic
functionalities of the application.
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Introduction

In monolithic applications all the processes are strictly connected and are executed as a single
service. This means, for example, that if the application workload is too high, the whole archi-
tecture needs to be resized. Adding a new feature to the application is complex because it needs
to be well integrated in the base code. Also since the numerous processes are dependent from
each other and tightly interconnected the malfunction of a single process can have a big impact
on the entire application. These limits and defects are overcome by adopting a microservices
architectural style. With the division in different, independent, little base services the application
becomes more scalable, flexible and resilient. Each service executes and provides a single base
function and is autonomous, which means that it can be developed, shared, modified without
affecting the other components. Also an error of one service is isolated from the others and can
be managed without blocking the entire application. Moreover from an organization point of view
this approach proposes a restructuring of the development teams. Each different team becomes
specialized in one particular service, making the development cycle faster and more independent.
Obviously this is not the perfect architecture for every application and with all these benefits
also come drawbacks like the complexity of the communication between services or the manage-
ment of multiple database transactions. Anyway the microservices architecture fits well with the
application addressed in this document.

Figure 1.1. Virtual Machine and Container Deployments

Now that the architectural style has been explained, how can it be implemented on a practical
level? Today’s applications based on microservices are implemented using “containers”. Contain-
ers are a lightweight form of virtualization that allow to package, distribute and run applications
in different environments. This trend has had a great diffusion in recent years and it’s used by
the largest IT companies in various sectors (cloud native applications, normal applications, data
centers). This technology allows to enclose in an image file everything needed (code, dependen-
cies, libraries, configuration files) for the operation of a given service or application: it therefore
makes it independent from the underlying hardware and software platform, and can be shipped
and implemented in other software environments. Containers are isolated and independent from
each other and take advantage of a lighter form of virtualization than traditional virtual machines
allowing a quicker and more manageable deployment for applications. In an application based
on microservices each of them can be included in a container appropriately connected to other
containers, building an application which is composed by different isolated processes, manageable,
shareable and fast to deploy in every environment compatible with this technology. There are dif-
ferent software for the management of containers, one of the most famous and popular is Docker,
which is an open source project that manages Linux based containers through a client-server
architecture.

8



Introduction

The implementation of the application proposed in this thesis takes advantage of this technol-
ogy born and refined in recent times and through Docker can be developed with a high level of
security, manageability and segmentation where every process is isolated in a container with the
appropriate connections.

This thesis focuses on the aspects concerning the implementation of containers, the creation of
the network through which the containers exchange data and the analysis of the security associated
with these processes. The first part of the document contains a general overview on those subjects
whereas the second part concentrates on the application development. In the next chapter a more
detailed explanation on containers will be given with a particular focus on the security aspects.

9



Chapter 2

Analysis on Container Security

2.1 Virtualization and Containers

Virtualization has been a very important subject during the last years. It applies to numerous
fields of information technology, among which cloud computing that requires many instances of
an application or software to run isolated one from the other but together on the same physical
server. Lately a new form of virtualization has evolved in order to solve this kind of situation:
application virtualization. Application virtualization differs in many ways from the older hardware
virtualization and offers a lot of benefits and advantages in specific environments, such the one
addressed in this document. Application virtualization offers a light, portable and reusable way to
pack up applications and run them on different platforms. This kind of virtualization is realized
with containers.

2.1.1 Containers

A container is a lightweight form of OS virtualization that allows to isolate applications from
the underlying system. Containers provide a portable, quick and compact way to package and
deploy applications reliably in different environments. One container can run anything from a
single process to an entire application and can be created, started, stopped or deleted in any
moment. Unlike traditional virtual machines that need to emulate all the system including the
hardware and, on top of that, the entire OS, containers share the same underlying hardware and
OS Kernel exploiting a virtualization only at application level as shown in figure 2.1. The main
benefit that derives is a lighter, quicker and more manageable way of deploying apps in different
environments. Containers that need to share information can be connected in networks. Typically
complex applications are divided into smaller components, each one with its different specific task
and running in its own container. These tasks are also called microservices.

All the containers on the same machine share the same OS kernel. Each of them runs a
process or an application, is isolated from the others and has its own private file system and
network stack. The most common operating systems used for containers are based on Linux. In
Linux the container isolation is achieved by means of two Linux Kernel features: namespaces and
control groups (cgroups).

namespaces are a feature of the Linux Kernel that allow the system to manage and isolate re-
sources like Processes, Mount points, Inter Process Communications (IPC), Network stacks
and Users. This is fundamental in a containerized environment since it allows every process
running inside a container to have visibility only on its resources and not the ones of other
containers.

cgroups are another Linux Kernel module that takes care of the access to hardware resources,
limiting and managing every process access to memory, CPU, and disk;
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To run a container it is necessary to have an image. A container is a running instance of an
image.

Figure 2.1. Virtual Machine and Container Deployments [1]

2.1.2 Container images

It is important to make a little overview on images since they are strictly related to containers
and play an important role in the whole container lifecycle. An image is just a static template
that contains all the instructions and files needed to run a container. Multiple equal containers
can be started from the same image. It comprehends the libraries, tools and executable code
required by the specific process that the related container should execute. Images make use of
techniques like copy-on-write and layering to improve efficiency and decrease space occupation.
An image is often divided in layers, the first layer (base layer) is typically an image of a common
operating system for example Ubuntu or Alpine Linux. Then on top of that base layer the user
can add more layers with specific programs, custom code or frameworks to build a unique image
that satisfies his needs. This layering technique takes advantage of layer caching to speed up the
process of building similar images. It follows that when an image is modified and rebuilt only
the modified layers are rebuilt: that makes images lightweight and fast to build. It is possible
to publish images in a public repository called Registry to facilitate sharing between users and
developers.

2.2 Docker overview

This shift towards container technology necessitated the creation of tools to manage containers
in a direct and simple way, with a high level of abstraction. Nowadays there are multiple choices
of container engine but the most used is Docker. Docker is an open source project which allows
the creation, shipping and execution of applications by means of Linux containers. It’s written
in Go programming language. This platform allows a fast and easy way to transfer and deploy
containerized applications in every stage of their development and production in different en-
vironments (laptops, servers, cloud providers, embedded systems). Docker is the name of the
technology as well as the name of the community and the actual company that works to improve
and provide this service.

Docker is a containerization technology born on top of LXC functionalities which uses the
already mentioned namespaces and cgroups Linux kernel features to isolate containers. Then in
2014 starting from version 0.9 Docker dropped LXC and introduced its own libcontainer library
written using Go programming language. Libcontainer is currently the default container execution
environment that allows the manipulation of control groups, namespaces, capabilities, network
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interfaces and Apparmor profiles in a predictable way without depending on LXC. Anyway it’s
still possible to switch back to LXC every moment.

Docker implements a client-server REST architecture composed by the Docker client, the
Docker daemon and Docker registries.

The Docker daemon is a Linux daemon that listens for Docker API requests by the clients and
manages all the Docker components like images and containers. It is the core of the Docker
system that builds containers starting from images and requires root access on the system.

The Docker client is a simple interface connected to the Docker daemon that calls Docker API
based on a REST client-server architecture. It allows the user to directly interact with the
Docker daemon through a Command Line Interface (CLI).

Docker registries are archives of Docker images where it is possible for organizations or single
users to push and pull images in specific repositories. The default registry is Docker Hub
which has public open-source images repositories as well as space where users can create
their private repositories.

Figure 2.2. Docker architecture [3]

2.2.1 Dockerfile

A container is a running instance of an image. To build a Docker image it is necessary a so-called
Dockerfile. A Dockerfile is a text file that contains all the instructions and commands to assemble
an image. Using the command docker build users can create images starting from Dockerfile.
This kind of file is going to be used multiple times throughout this document to create custom
images.

2.3 Other container engines

Docker has changed the way applications are developed and maintained making containerization
very popular but it’s not the only option on the market. In fact, Linux containers are defined
in a standard way and Docker is just one implementation to use them. The most interesting
alternative is Podman which claims to be more secure and more lightweight than Docker.
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2.3.1 Podman

Podman is an open source container engine written in Go and available on most Linux platforms.
It’s designed to build, share and run applications through containers. Podman was released in
2018 and was originally developed by Red Hat. This software is similar to Docker in many ways
and uses almost the same CLI commands. This allows users to perform on Podman the same
commands of Docker, facilitating the adoption of this software.

Despite the similarities there are two major differences that distinguish Podman from Docker.
The first one regards the daemon. Docker relies on a daemon that runs in the background and
manages all the Docker API calls from the Docker client and performs operations on containers.
Podman instead is daemonless and all the commands executed through the CLI interact directly
with the registry, the containers and the images storage. The second one is that, like Docker,
Podman relies on Linux namespaces, which provide isolation for the processes, but contrary to
Docker it does not require root privileges to run containers. Podman can run containers either
as root or as an unprivileged user. It manages the entire ecosystem of containers, images and
volumes through a library called “libpod”. Another feature is the use of pods, which are simply
the union of several containers inside the same Linux namespace, sharing the same resources.

There are two major benefits over Docker deriving from their differences. The first is that
Podman doesn’t rely on a single point of failure like the Docker daemon which is running in the
background and managing all the processes. The second one is that containers can be created, run,
and managed by users without administrator (root) privileges. Since the Docker daemon always
runs with root privileges, in case an attacker manages to gain access to it, he could perform every
sort of privileged operation with the containers on that host. However this scenario is improbable
and brought to attention only for illustrative purposes.

2.4 Container orchestration

2.4.1 Introduction

Now that the idea of container has been explained, the resulting advantages and the tools have
been introduced, it’s necessary to bring the attention to what is called an orchestrator. Container
orchestration is the automation of container deployment, management, scalability and networking
processes. It is a highly functional methodology for companies that need to deploy and manage
a really high number of containers for complex applications on multiple systems. Container
orchestration is applicable to any environment where containers are used, and is useful for de-
ploying the same application multiple times across multiple systems, without having to redesign it.
Through automation the orchestration of containers helps to simplify the management of multiple
operations such as provisioning and deployment of applications, resource allocation, monitoring
containers health and scalability based on the workload across the infrastructure. Different or-
chestrators has been created to manage containers architecture scalability. The most popular are
Kubernetes and Docker Swarm.

2.4.2 Kubernetes

Kubernetes is an open-source, portable platform that helps in the orchestration, configuration and
automation of containerized applications, managing their workloads and services. Kubernetes was
originally developed by Google and open-sourced in 2014. It’s often abbreviated in K8s.

Containers help in packaging, shipping and running applications. In a production environment
organizations need to manage a high number of containers and ensure that the applications work
correctly with no downtime. In the case a container unexpectedly brokes, Kubernetes takes care
of starting another container. Kubernetes provides a framework to run a resilient distributed
system with containers, in particular it provides:
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• Load balancing: if the traffic to a single node is too high, it automatically performs a
workload balancing across the network to other nodes;

• Automated storage mounting system;

• Automated containers management: Kubernetes automatically scale containers based on
the traffic or the organizations policy, it can deploy a new container or remove one and
manage the released resources;

• Automated resources distribution: provided Kubernetes with a number of nodes and the
resources (CPU and memory) each container should use, it will automatically deploys con-
tainers on the nodes in the best way;

• Container healing: containers are restarted, replaced or removed if they are failing or not
responding;

• Secret storage: Kubernetes provides secure storage of sensitive information such as private
keys or passwords.

Kubernetes introduces the concept of pods which is a group of several containers, with shared
network resources, storage and rules to run the containers. The pods are “logical hosts” that run
a containerized application in a cloud environment and can be compared to physical hosts that
instead run the application on a physical machine.

2.4.3 Orchestrator risks

When analyzing container risks and threats also orchestrators need to be taken into consideration.
Since the orchestrator plays an important role in the container environment and lifecycle, it’s
fundamental to analyze and limit the risks and vulnerabilities that an attacker could potentially
exploit, possibly leading him to take control over the entire container ecosystem.

In the past many orchestrators were designed to let every user access as administrator. Each
user could then have access to the entire containerized environment. However nowadays many
orchestrators run different apps with different sensitivity levels managed by different teams. In
these cases it’s good practice to limit the access of every user only to its specific needs, avoiding
involuntary or malicious user access to components that do not concern him.

In a multi-nodes containerized environment the traffic between hosts is realized through a
virtual overlay network typically managed by the orchestrator. Traditional network management
tools are not suitable for this kind of network because they would only see encrypted packets in
transit between two hosts with no visibility of the real traffic being sent. Although the overlay
network offers good security through encryption it creates a difficulty in monitoring the traffic
in transit. The situation is even more critical if the different components are not well separated
by sensitivity level allowing an attacker that has compromised for example a web site to use the
network to attack other sensitive components.

The orchestrator manages containers balancing and scaling the workload by creating, moving
or destroying a container when needed across different hosts based on the available resources. By
default the orchestrator makes no difference between containers with different sensitivity levels,
placing them possibly on the same host. This means that a critical vulnerability in a low-sensitivity
container could open a breach to a high-sensitivity one on the same host.

It’s fundamental to have a secure orchestrator configuration. A weak configuration could
expose all the environment to a high risk. An example is that all the cluster of hosts should be
well separated to avoid that the compromise of a single host results in the compromise of the
entire cluster.
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2.4.4 Orchestrator countermeasures

The orchestrator should be configured with a policy of least privilege access in which every user
can access only the components, images, containers his role requires.

Orchestrator administrative accounts access should be monitored and controlled because these
accounts grant access to all the resources of the environment. Strong authentication techniques
must be adopted such as multi-factor authentication.

Network traffic should be separated in different virtual networks based on sensitivity level.
For example the front-end of an application accessible by the public should use a virtual network
while the back-end should use another one and the communication between front-end and back-
end should be realized through a few well defined, monitored interfaces.

The deployment of containers in different hosts should be performed based on sensitivity level.
The orchestrator should not place both high and low sensitivity workloads on the same host.
Some rules should be defined to avoid this mix and separate the workloads on different hosts.
Orchestrators provide methods to group containers together to achieve this separation. This
allows a secure separation that decreases the attack surface and increases the layers of defense
considering, for example, an attacker that is able to exploit a vulnerable public-facing container.

The orchestrator should be configured to ensure a secure environment for all the applications.
All the nodes and their connectivity states should be monitored and logged. Orchestrator con-
figurations and policies should ensure that the compromise of a single node does not affect the
overall security of other nodes in the cluster. The tampered node should be isolated from the
cluster without invalidating the other nodes or cluster operations.

2.5 Container security

2.5.1 Introduction

Lately containerized environments are becoming more and more used due to their speed, lightness
and ease in managing applications in various systems. Obviously it is impossible that a change
of this magnitude brings only benefits. Every modification in the technology adopted brings also
new security aspects to take into consideration. Containers are intrinsically quite secure thanks to
the concept of isolation. When evaluating container security, there are many important aspects to
consider: image and container vulnerabilities, network connection, hardware resources and many
others. This section addresses these aspects analyzing the risks and threats introduced by this
technology and trying to give a solution for them. It is important to point out that containers do
not intervene in the application security. This means that if the application that is going to be
built in a containerized environment already exposes security problems then those vulnerabilities
would still be present and an attacker can take advantage of them.

2.5.2 Threats and vulnerabilities overview

This section analyzes one by one the container vulnerabilities and threats. The image 2.3 repre-
sents a visual schema of the points addressed.

Kernel Exploits

Differently from a Virtual Machine, in a containerized environment each container shares the
same underlying host kernel enlarging the attack surface. Therefore performing a kernel exploit
inside a running container will have a direct impact on the host kernel. This means that if an
attacker is able to exploit the host kernel then the isolation and security of the containers won’t
be guaranteed anymore because he could be able to take control over the entire machine. On a
virtual machine instead this attack is more difficult because, before actually attacking the host
kernel, the attacker should penetrate the VM kernel and the hypervisor.
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Figure 2.3. Docker threats [4]

For example, a common kernel privilege escalation exploit such as Dirty COW (CVE-2016-
5195) performed inside a container leads to root access on the host machine.

There are multiple aspects to take into consideration to mitigate this problem. It’s important
to keep the host OS always updated to the latest version. Moreover there are “minimalistic”
OS versions specially created for container services that reduce the overall attack surface like
CoreOS, RancherOS, Project Atomic or Snappy Ubuntu Core. Also it’s a good practice to apply
the Mandatory Access Control (MAC) which is a kernel-level control that constrains the ability
of a subject (user, thread, process) to perform various operations on an object or target of the
system itself. AppArmor, Seccomp, SELinux are tools designed to perform this kind of control.

Here some best practices to mitigate kernel exploits:

• Keep the base system updated;

• Use minimal, container-specific host systems;

• Implement Mandatory Access Control to avoid undesired container operations at kernel
level (Seccomp, AppArmor, SELinux).

Images risks

Images are fundamental in this kind of environment because they include all the components
to run containers. Consequently any kind of error or misconfiguration present in an image will
propagate to the relative running container. There are different aspects to analyze to determine
that an image is secure and won’t expose any vulnerability.

Since any component of an image like OSs or programs will run in a container it’s necessary to
analyze them first. Those components may be outdated or not updated to the latest version and
therefore present some security issues or vulnerabilities that may be exploited when running the
container. For example a web app running inside a container may be vulnerable to a XSS attack
or similarly a database could be exploited through an SQL injection. Eventually a compromised
container could be used to damage or steal sensitive data from other containers or the host itself.
It’s important to always keep all the components updated to the latest secure version. This needs
to be done continuously because new vulnerabilities may be discovered at any time.

Since containers are running instances of images, to update a program it’s necessary to change
the image itself and then redeploy the container. Another aspect to take into account is the image
configuration, for example an image may be configured to run with a specific user account. If
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this part is missing then the container will run with a privileged user and thus create unnecessary
risks exposing the machine to a privilege escalation attack. Another misconfiguration could be
an unnecessary SSH daemon included in the image that exposes the container to useless network
risks.

Usually images are built starting from other images taken from registries. It’s fundamental to
check the integrity of the base image and to download it from a trusted source. Solutions such
as PKI (Public Key Infrastructure) or hash digest are used to check the authentication and the
integrity of an image. Docker offers its own trusted registry called Docker Hub. Using images from
third parties whose reliability cannot be verified can be dangerous as they can include malwares
or software with known vulnerabilities. When starting the container such malwares own the same
capabilities of the other components in the image, leading to a possible attack to other running
containers or even to the host machine.

Another important aspect is that applications often need secrets like passwords or keys to en-
able secure channels of communication, access services or perform sensitive operations in general.
Though it is possible to embed those data into the image itself this could be a risk because anyone
that can access the image can parse it and steal the secrets. It is therefore best practice to store
them in another secure place and retrieve them at runtime.

Here some best practices to mitigate images risks:

• Images should be downloaded from trusted sources (e.g. Docker registry Docker Hub);

• Use Docker content trust feature to verify the integrity of the image and the authenticity of
the publisher;

• Periodically update and rebuild images to apply new security patches;

• Implement a security scanner like Clair.

Container outbreak

Container outbreak means that a container escaped its isolation managing to gain access to other
containers, to the host machine or acquiring new privileges. A common configuration mistake is
to let a container run as root where it is not necessary. If an attacker is able to exploit the service
inside that container and end up in a fully privileged container then he could be able to access
the host machine and steal sensitive information or perform damaging operations. For example
one risk is that a container with high privileges may be allowed to mount sensitive directories
exposing the host filesystem to a risk of file tampering or data leak. To avoid this possibility is
good practice to set filesystems and volumes to read-only where possible. Every container should
run with a least privilege policy and there are multiple ways to achieve this.

There are different possibilities to run a container as a non-privileged user. If someone is
creating his custom image the recommendation is to create directly in the Dockerfile a user with
a chosen uid and run the service with that user. Otherwise if the image is pulled from a registry
it is possible to rebuild another image starting from that one as the base layer and then adding
the user as before. In any case it’s always possible to specify the user when starting a container.
However, doing it directly in the image makes the container secure by default.

Another way of running a container as a non-privileged user is to create an isolated user
namespace on the host. A process’s user ID can be different inside and outside that namespace.
In particular, a process can have a normal unprivileged user outside the namespace while at the
same time having a root user inside it. Considering a container that runs as “fake” root in that
namespace it can only perform full privileged operations that are limited to that namespace.

Another aspect to take into consideration is Linux capabilities. Linux kernel capabilities are
a set of privileges that can be given to any process to grant it permission to perform intended
privileged tasks. Those privileges were normally reserved for root processes (ID 0). Now Linux
divides the privileges traditionally associated with the root user into distinct units called capa-
bilities, which can be independently enabled or disabled for every process. It’s possible to drop
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or add capabilities based on what privileges a container needs. Basically no process should own
all the privileges but only those intended to perform its specific task. A good practice is to drop
all the capabilities of a container and then add only those necessary. Also it’s better to run
the Docker containers with the no-new-privileges option to prevent privilege escalation attack
through setuid binaries.

It’s worth noting that a container started as an unprivileged user has by default no capabilities.

Here some best practices to avoid container outbreak:

• Drop unnecessary capabilities and enable no-new-privileges option;

• Monitor dangerous mount points on the host (e.g. /var/run/docker.sock, /proc, /dev);

• If possible give just read-only privileges on the file system;

• Don’t run containers as root if it’s not strictly necessary, run them as a non-privileged user.

Compromising Secrets

Any application that needs to access a service typically requires some secrets. A secret could be
a password, an API key, an SSH key, a certificate or any kind of sensitive data which must not be
disclosed. These secrets should not be put in a Dockerfile neither in the application source code.
Learning the Docker architecture and using some best practices to secure this data will help to
mitigate risks.

Here some best practices to avoid secrets disclosure:

• Don’t store secrets in environment variable;

• Don’t store secrets in the container image;

• Implement secure secrets storage.

Network

It’s fundamental to correctly design the network architecture of the application. In a classic
application network scenario where the application provides services to an external network,
security is achieved thanks to a well designed DMZ (demilitarized zone) and components like
firewall and IDS, making sure that only the front-end service is reachable from the Internet. The
front-end is then securely connected to the back-end. An application network well segmented and
correctly organized and monitored implements a good level of security. This is the same approach
to adopt when planning a network in a containerized environment with microservices. With
containers the risk is that a badly-designed network results in a flat, unsegmented and insecure
network where any microservice can interact with the others. The complexity that derives from a
container-based infrastructure is that since each microservice typically runs in a different container
and some of them need to communicate to each other, it may be complicated to design a good
network. And while some containers need to be connected, others should definitely not. If a
container is compromised the more network connections it has, the larger the attack surface. For
example it could be used to scan the network in order to find vulnerabilities or weaknesses in
other containers connected to it.

Here are some general recommendation to build a multilayers well segmented network:

• Choose the network devices which best suit the application environment;

• If the application needs to expose services to the Internet realize the proper DMZ segmen-
tation with firewall and IDS to guarantee protection and inspect the packets;

• Expose to the network only the ports that are strictly necessary;
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• Implement only the connections between containers that need to communicate;

• Secure the management APIs, don’t expose them to the Internet nor in the DMZ, implement
whitelisting;

• Secure the host services;

• The communication with Docker registries should be TLS encrypted.

Resources protection

All the containers running on a host share the same Kernel and the same underlying hardware.
This means that CPU, memory, disks I/O and network resources of the host are shared between
all the active containers. Typically in these environments there are a large number of containers
running concurrently racing to have access to all these resources. The risk is that either a bug
in the software or an unexpected software behavior or a deliberate attack by some malicious user
can lead to a denial of service in terms of hardware resources. To mitigate this problem it’s
possible to limit adequately the resources of CPU, memory, network, swapping and other kernel
resources that any container can use. Docker offers all kinds of commands to manage and impose
limits to those resources when starting containers. By default, a Docker container has no resource
constraints and can use as much of a given resource as it needs. For this reason it is good practice
to check that all containers are started with the required limitations.

Here some best practices to mitigate resources abuse:

• Use Docker commands options to limit the system resources accessible by containers;

• Test the workload in pre-production;

• Monitor the resources in use by containers.

Registry risks

A registry is an archive where images are stored by users or organizations. It can be either private
or public. These images can be retrieved anytime and used to run containers. Images can contain
sensitive data which is transmitted over the network when they are retrieved from the registry. If
the channel over which the image is transmitted is insecure, an attacker could easily have access
to those sensitive components. Moreover there is the risk of a man-in-the-middle attack to steal
sensitive information or upload fraudulent images.

Another problem is outdated images. Since most of the images that are deployed are typically
those taken from the registries, then an outdated or vulnerable version of an image results in a
vulnerable container. All the images in the registries need to be monitored and kept updated.

Lastly an insecure access to a registry with insufficient authentication requirements could lead
to an unauthorized access of an attacker that could then maliciously upload or download data
from the registry.

2.5.3 Solutions to secure containers

Container technology has revolutionized the way applications are developed and deployed. Ship-
ping, deploying and managing applications has never been so easy as now with containers. Un-
fortunately with new technologies there are also new security challenges that both security teams
and developers must face carefully. Moreover being a fairly new technology some security issues
are still in a phase of definition and analysis.

Now that the main vulnerabilities and weaknesses of containers have been shown with some
short advice on how to mitigate them, this section proceeds to analyze in depth what are the
solutions and best practices to build a secure containerized environment. Furthermore this section
focuses on the way these practices can be included in the application development cycle from the
point of view of an organization.
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Images countermeasures

Old vulnerabilities management tools and processes don’t integrate well with the new technology
because of the different ways of running applications through images and containers. There is a
need for new tools and processes to validate the effective security of images. These operations
should reflect the pipelined-based build structure and immutability of images and containers to
bring good results. Some key aspects need to be followed.

• A complete integration with the lifecycle of images, starting with the pull from the registry
or the custom build to the actual use when running a container;

• Given the layered structure of images, an in-depth analysis of vulnerabilities should be
executed on every layer, from the base layer to the custom ones used by the organization;

• At the end of every stage of the build process it’s necessary to check that the images
respect all the security policies of the organization. For example checking if there are
vulnerabilities in the image with Common Vulnerability Scoring System (CVSS) that exceed
a given threshold and in case stop the development of the image.

Some image vulnerability scanners have already been created and can be adopted in the
security evaluation process.

A similar procedure should be done to check that all the images respect the configurations and
settings best practice. For example, if not necessary, an image should not run as a privileged user
(root) but as an unprivileged user that needs to be configured. SSH or other remote connection
tools should never be active by default inside a container to avoid unnecessary network attacks
and reduce the attack surface. Images compliance state must be continuously monitored and
updated if needed.

Since images are static files that can contain malwares, continuous monitoring should be
executed by the organization using malware signatures pattern and behavioral detection.

No kind of secret or sensitive data should be stored inside the images to avoid an attacker
parsing the image and finding it. Instead the secret should be given during runtime to the specific
container that requires it without storing it in the disk. The transit of secrets over the network
must always be encrypted with cryptographic algorithms approved by the Federal Information
Processing Standard (FIPS).

Organizations should always use trusted images, that are reliable images taken from trusted
sources that don’t expose containers to known vulnerabilities. The key aspects to mitigate this
risks includes:

• A list of trusted images drawn up and updated from the organization to make sure that
only the images on that list are used;

• Identification of each image by a NIST-validated cryptographic signature implementation;

• Before execution every image needs to be signature validated;

• Use only trusted repositories that are continuously monitored and maintained and don’t use
third-party untrusted images.

Containers countermeasures

Containers are active instances of images with actual processes running inside them. This means
that any vulnerability could lead to an attacker exploiting it and breaking into the system causing
potentially serious damages. For this reason organizations should use tools to scan containers for
Common Vulnerabilities and Exposures (CVEs) and quickly intervene if any problem occurs.

Organizations should use tools to monitor and assess configuration settings in the container
environment. These tools should frequently check if the configuration settings of the containers
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respect the configuration standards and if not enforce them. For example, if it is not necessary, a
container should not run as a privileged user (root) to prevent container outbreak attacks. Instead
configure the container to run as an unprivileged user if possible.

Containers should be deployed with the strictly necessary file system permissions. Containers
should not mount local file systems on the host but, if changes to files need to persist on the disk,
specific storage volumes need to be allocated for this purpose. Organizations should use tools to
enforce this policy and prevent violations.

Fundamental is to enable mandatory access control (MAC) technologies such as AppArmor
and SELinux. MAC is a type of OS access control that limits the access to resources based on
sensitivity level. It constrains the ability of a subject (e.g. user) to perform various operations on
an object or target of the system itself. This technology mitigates the possibility of a compromised
container to access sensitive resources by adding a new level of security and segmentation. MAC
technology should be used from organizations to ensure that containers have access to specific
paths, files and processes that they need. AppArmor and SELinux are two Linux security modules
that implement this technology, the difference is that the first is easier to manage and works with
paths while the second is more difficult to maintain and is based on labels.

Another Linux security module is Seccomp (Secure computing) that allows limiting the system
calls from the containers to the kernel. Custom actions can be specified when a certain system
call is executed. Container system calls are restricted to those strictly needed to reduce the attack
surface. Docker for example includes a default Seccomp profile to drop unsafe system calls, but
it’s alway possible to create custom profiles to best meet the requirements.

Old intrusion detection tools for monolithic applications are unable to detect in container-
based apps due to the different technology. Organizations should use new container aware tools
that well integrate with the new environment. The ideal is to use tools that automatically build
security profiles for containers based on behavioral learning. These profiles should detect and
mitigate anomalies such as unexpected processes, system calls, writings and changes to files,
network traffic and malwares storage or execution.

All the containers should be associated with individual identities and logged to supply a full
trace of activity and prevent rogue containers.

Host countermeasures

To reduce the attack surface it is recommended to use a container-specific OS where possible.
These kinds of minimalistic OSs are specifically designed to work with containers. They already
implement security features such as read-only file systems and other hardening practices. For
those organizations that cannot use such specific OSs but general purpose ones, it is highly
recommended to follow the NIST SP 800-123, Guide to General Server Security [2] to minimize
the attack surface. For example an host with running containers should not run any other apps
or services outside a container. Finally every layer of the host machine, from kernel to containers,
should be continuously scanned for updates and vulnerabilities.

No data or states or application dependencies should be persistently stored on the host. Instead
all these components should be packaged into containers, providing a host operating in a stateless
and immutable manner with a minimum attack surface and making it easier to identify lower
level anomalies.

Organizations should make sure that login and authentication to hosts is audited and logged
to ease the identification of anomalous access patterns and unexpected privileged operations.

The host filesystem should be set as read-only to prevent file tampering, if possible.

Registry countermeasures

The connection from hosts to registries should be always performed over secure encrypted chan-
nels. All the data pulled or pushed to the registries should be encrypted in transit.
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For what concerns outdated images there are two solutions. Organizations can totally remove
old, outdated or vulnerable images from the registry when they are no longer needed. Another way
is to use different tags to specify the image version, for example application:1.2, application:2.3.
In this way developers always know which version they are deploying.

Finally the access to registries must require secure authentication techniques so that only
trusted images are uploaded. A good practice is to let developers upload images only to reposi-
tories that concern them instead of giving them access to all the repositories.

All the write and read accesses to a registry should be audited and logged. Moreover organi-
zations should use tools to scan images for vulnerabilities and perform a compliance assessment
before pushing them to the repository.

Network best practices

The complexity of building a secure network derives from the containers virtual isolation. Each
container should perform its own service and be connected to other containers in order to ex-
change data. The best solution is to build a performing secure segmented network where each
container is connected to others based on the service it provides and its sensitivity level, lim-
iting the connections to those necessary and avoiding connecting containers that don’t have to
communicate.

Organizations should use tools to monitor the traffic between containers and at network bor-
ders, ensuring that only the necessary ports are open, that the traffic is legit and that containers
are not connected to networks of differing sensitivity levels. For example containers that host
secure data should not be connected directly to the Internet.

Limitation of capabilities

Capabilities are a feature of the Linux kernel that provides a set of privileges that can be given to
processes and containers. There is a list of privileges, from the permissions to change the system
time to the permission to mount a filesystem or even enable kernel auditing. By default container
engines such as Docker already provide containers with a minimum set of capabilities that can
be customized where required. An even more secure solution is to remove all capabilities from a
container and then enable only those strictly necessary. An attacker that successfully penetrates
into the container won’t be able to easily break out of the container because the actions he can
perform on the host and kernel are limited.

Limitation of hardware resources

By default a container has access to all hardware resources such as CPU, GPU and memory
without any limitation. If an attacker successfully breaks into a container he could perform a
DoS attack, saturating the resources and blocking other services. Containers should be limited
on the amount of resources that they can use. Docker provides a list of command options to limit
container resources.

2.5.4 KubeLinter security solution for Kubernetes

KubeLinter is an open-source command line tool to identify misconfigurations in Kubernetes
YAML files and Helm charts. KubeLinter runs multiple checks for security errors and DevOps
best practices. Some misconfigurations identified are for example running containers as root or
containers that expose port 22 with SSH. KubeLinter is configurable, checks can be enabled or
disabled and it’s possible to create custom checks. KubeLinter does not automatically solve the
issues but, when a check fails, gives recommendations on how to patch it. Since this tool is in an
early stage of development, at the moment KubeLinter provides around 40 security checks but
anybody can join the community and contribute to its development.
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Here is an example of the usage of KubeLinter taken from the official documentation site [7],
the box below shows a sample pod file pod.yaml.

apiVersion: v1

kind: Pod

metadata:

name: security-context-demo

spec:

securityContext:

runAsUser: 1000

runAsGroup: 3000

fsGroup: 2000

volumes:

- name: sec-ctx-vol

emptyDir: {}

containers:

- name: sec-ctx-demo

image: busybox

resources:

requests:

memory: "64Mi"

cpu: "250m"

command: [ "sh", "-c", "sleep 1h" ]

volumeMounts:

- name: sec-ctx-vol

mountPath: /data/demo

securityContext:

allowPrivilegeEscalation: false

This sample file has two production readiness issues and one security issue.

Security issue

• The container in this pod is not running as a read-only file system, allowing it to write to
the root filesystem.

Production readiness issues

• The configuration doesn’t specify the container’s CPU limits, allowing it to consume exces-
sive CPU;

• The configuration doesn’t specify the container’s memory limits, allowing it to consume
excessive memory.

To check this file with KubeLinter, run the following command:

kube-linter lint pod.yaml

KubeLinter runs the default checks and reports errors.

pod.yaml: (object: <no namespace>/security-context-demo /v1, Kind=Pod)

container "sec-ctx-demo" does not have a read-only root file system

(check: no-read-only-root-fs, remediation: Set readOnlyRootFilesystem to

true in your container’s securityContext.)

pod.yaml: (object: <no namespace>/security-context-demo /v1, Kind=Pod)

container "sec-ctx-demo" has cpu limit 0 (check: unset-cpu-requirements,

remediation: Set your container’s CPU requests and limits depending on

its requirements. See https://kubernetes.io/docs/concepts/configuration/

23



Analysis on Container Security

manage-resources-containers/requests-and-limits for more details.)

pod.yaml: (object: <no namespace>/security-context-demo /v1, Kind=Pod)

container "sec-ctx-demo" has memory limit 0 (check:

unset-memory-requirements, remediation: Set your container’s memory

requests and limits depending on its requirements. See

https://kubernetes.io/docs/concepts/configuration/

manage-resources-containers/requests-and-limits for more details.)

Error: found 3 lint errors
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Chapter 3

Containers on Linux

3.1 Containers on Linux embedded systems

Container technology has become increasingly popular in recent years in many fields, including
embedded systems. A lot of operating systems and tools have been developed to help such
integration like Torizon, BalenaOS or Linux microPlatform. These software provide a minimal
Linux system equipped with a Docker infrastructure to manage, build and deploy images and
containers in an easy way.

Creating a containerized environment on an embedded system is a difficult challenge due to
its intrinsic characteristics. Several aspects need to be taken into consideration like the limited
hardware resources that require building a lightweight and minimal system. Another example
could be the network access, which not all the embedded systems include. Fortunately a well
designed container ecosystem fits well with some of these characteristics.

The advantages that containers bring are numerous. They allow to develop an application
without caring about the underlying platform. The application environment is independent from
the base operating system and there are not incompatible dependencies. The application can
be executed on different platforms. The development cycle of the base OS and the one of the
application are decoupled, meaning that the upgrading of the two can be done in different times
when needed.

Other benefits brought from containerization are:

• container isolation;

• decouple the embedded OS from the application development;

• low overhead;

• faster development;

• limited hardware integration.

3.1.1 Challenges

Despite all the benefits that help in the integration of containers and embedded systems, there
are also some relevant challenges to consider in the process.

Hardware resources limitation

Embedded systems are special purpose, they are designed to offer a specific service. Based on this
they are built as low consumption systems with limited hardware resources, such as disk storage,
CPU and RAM. The containerization needs to be realized based on these potential constraints.
Containers should use as minimum resources as possible and this is not always easy, for example
when running a fully distro-based container.
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Data integrity and reliability

One of the major risks for an embedded device is data corruption. If the root filesystem is
compromised wrong behavior may occur. Therefore safety countermeasures should be adopted
to prevent and detect any kind of corruption. A good practice is to configure the filesystem as
read-only so that any write operation that would tamper with it is denied.

Cross-platform development

There are a multitude of devices with different characteristics, different CPUs or architectures.
Although containers can be shipped and deployed in different environments these aspects need
to be taken into account when building a containerized application. For example an application
built for a x86 platform and deployed on a platform with a different architecture like an ARM
based one won’t work correctly. Handling cross-platform development is necessary to make the
best out of different systems.

System provisioning

Some embedded devices may not have an Internet connection and this affects the design and build
of the application. A system with no network connection should have all the components already
present in it. For a containerized environment all the container images could be for example
deployed in the firmware image so that they are ready to be used.

System update

In a containerized system the application and the base OS could have different development cycles.
This also means different times for the update. The update time and method should be decided
before the development.

Container traceability

Docker containers traceability is a challenge as the deployment process may sometimes break.
Finding all the containers history, modifications and dependencies as well as the build and deploy-
ment stages can save a lot of time. A performing traceability system is a mandatory requirement
for today’s industrial world.

License compliance

Software licenses are always a challenge during application development. Each container image
inherits the legal obligations for each file and software. Legal risks should be minimized by paying
attention to license requirements. It’s important to maintain and track license compliance for
each software.

3.2 Docker and Linux networking

To understand and realize the application addressed in this document it’s necessary to have a deep
knowledge of Docker networking. All the containers are going to be isolated and connected over a
network. This section analyzes theoretically and practically how Docker network commands and
tools take advantage of Linux features to implement the network.

Container engines virtualize network resources to isolate containers by means of network
namespaces. Namespaces are an abstraction of global system resources which are visible only
to the processes within the namespace. This resource abstraction permits to isolate instances of
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resources and every different namespace sees only the resources assigned to it. There are 7 types
of namespaces: IPC, Cgroup, Network, PID, Users, Mount, UTS.

With network namespaces container engines assign containers a dedicated network stack and
each container can not interact with other containers’ network resources. A process in a namespace
has its own network interfaces, devices and stack.

The Linux command to create an isolated network namespace called “ns1” is

ip netns add ns1

and to run a process inside that namespace

ip netns exec ns1 [COMMAND]

for example

ip netns exec ns1 python3 -m http.server 8000

The command ip netns exec <namespace-name> [COMMAND] runs the process [COMMAND]

inside the network namespace specified by name. The default namespace of the host is called
default and every service or program executed on the host terminal will be assigned to that
namespace. To list all the namespaces the command is ip netns.

Isolated namespaces can be connected with a Linux feature called veth. Veth stands for virtual
Ethernet and is a network device that acts as a tunnel between network namespaces. It can be
considered as a virtual Ethernet cable. A veth has two endpoints and can be created with the
syntax

ip link add <p1-name> type veth peer name <p2-name>

In the code above “p1-name” and “p2-name” are the two names of the veth endpoints. Data
transmitted in one of the two device endpoints will immediately be received on the other one.
When one of them is down the link state of the pair is down. To move one endpoint in another
namespace the command is

ip link set <p1-name> netns <namespace-name>

and to set an endpoint interfaces in up state:

ip link set <p1-name> up

Bringing all together as an example, here is reported a script to create and connect two
isolated namespaces together through the default host namespace. Those are also the commands
that Docker uses to build networks between containers.

#!/usr/bin/env bash

#first namespace variables

NS1="ns1"

#first namespace endpoint

VETH1="veth1"

#default namespace endpoint

VETHNS1="vethns1"

#second namespace variable (as above)

NS2="ns2"

VETH2="veth2"

VETHNS2="vethns2"

# create namespaces

ip netns add $NS1
ip netns add $NS2

# create veth devices

ip link add ${VETH1} type veth peer name ${VETHNS1}
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ip link add ${VETH2} type veth peer name ${VETHNS2}

# setup veth interfaces up on the default namespace

ip link set ${VETH1} up

ip link set ${VETH2} up

# move veth end points into namespaces

ip link set ${VETHNS1} netns ${NS1}
ip link set ${VETHNS2} netns ${NS2}

# setup veth interfaces up on the ns1 and ns2 namespace

ip netns exec ${NS1} ip link set ${VETHNS1} up

ip netns exec ${NS2} ip link set ${VETHNS2} up

At this point both the namespaces are connected to the default one but have no network
connection. In order to connect a namespace to the network it needs to have at least one interface
and this interface must have an IP address assigned. The following commands assign an IP
address to the veth endpoints in the ns1 and ns2 namespaces:

ADDRNS1="192.168.2.10"

ADDRNS2="192.168.2.20"

# assign ip address to ns interfaces

ip netns exec ${NS1} ip addr add ${ADDRNS1}/16 dev ${VETHNS1}
ip netns exec ${NS2} ip addr add ${ADDRNS2}/16 dev ${VETHNS2}

The interfaces inside the two namespaces have now an IP assigned. The interfaces on the host
default namespace do not need an IP because they will be connected through a bridge.

3.2.1 Linux bridge

A network bridge is a device that connects two Ethernet segments together, it creates a single
network connecting two or more network segments. The connection is protocol independent, which
means that all protocols can pass through a bridge transparently. The packets are transmitted
based on Ethernet address (MAC) and not IP address like routers do. While routers allow the
communication between two separated networks, bridges merge the networks into a single enlarged
one. Docker creates a bridge called “Docker0” as a default bridge for connecting containers.
Containers can communicate with each other or send and receive packets to the Internet all
through Docker0.

The following piece of code illustrates how to create a bridge, assign it an IP and connect the
previous interfaces to it.

BR_ADDR="192.168.2.1"

BRIDGE="br0"

# setup bridge

ip link add ${BRIDGE} type bridge

ip link set ${BRIDGE} up

# assign veth pairs to bridge

ip link set ${VETH1} master ${BRIDGE}
ip link set ${VETH2} master ${BRIDGE}

# setup bridge ip

ip addr add ${BR_ADDR}/16 dev ${BRIDGE}

Now the two namespaces are connected to the bridge but they don’t have the route tables
updated to communicate. A default route need to be added in each of them to communicate,
specifically the one of the bridge:
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# add default routes for ns

ip netns exec ${NS1} ip route add default via ${BR_ADDR}
ip netns exec ${NS2} ip route add default via ${BR_ADDR}

The namespaces are now properly connected and ready to be tested, for example with a simple
ping command:

ip netns exec ${NS1} ping ${ADDRNS2}
PING 192.168.2.20 (192.168.2.20) 56(84) bytes of data.

64 bytes from 192.168.2.20: icmp_seq=1 ttl=64 time=0.045 ms

64 bytes from 192.168.2.20: icmp_seq=2 ttl=64 time=0.039 ms

ip netns exec ${NS2} ping ${ADDRNS1}
PING 192.168.2.10 (192.168.2.10) 56(84) bytes of data.

64 bytes from 192.168.2.10: icmp_seq=1 ttl=64 time=0.045 ms

64 bytes from 192.168.2.10: icmp_seq=2 ttl=64 time=0.039 ms

The namespaces are correctly connected and visible to each other. The next step is to connect
them to the Internet. For this purpose another Linux feature needs to be introduced: iptables.

3.2.2 Iptables

Iptables is a command line utility to configure the kernel-level firewall of Linux, which is based on
netfilter modules. Iptables is based on a mechanism of RULES which determines if the incoming
or outgoing packets need to be accepted or not. Each rule is part of a rules CHAIN. When a packet
arrives, a specific chain is checked rule by rule to decide if it has to be accepted or dropped. There
are 5 different chains: INPUT, OUTPUT, FORWARD, PREROUTING and POSTROUTING.

INPUT works on the packets entering the system right before been delivered to a local process;

OUTPUT works on the packets exiting the system after being created by a local process;

FORWARD works on the packets transiting on the system directed to another host;

PREROUTING works on packets right after being received by an interfaces, before INPUT;

POSTROUTING works on packets right before leaving an interfaces, after OUTPUT.

Each chain is associated with a TABLE. There are three tables: FILTER, the default table
used for processing packets. NAT, used to change the source or destination address of packets.
MANGLE, used to modify packets. The table/chain combination is the following:

• FILTER: Input, Output, Forward;

• NAT: Prerouting, Postrouting, Output;

• MANGLE: Prerouting, Postrouting, Input, Output, Forward.

Returning to the script, to allow the traffic of the namespaces to exit the host machine and
reach the Internet it is necessary to create an iptables rule:

# enable ip forwarding in case it is not already enabled

bash -c ’echo 1 > /proc/sys/net/ipv4/ip_forward’

iptables -t nat -A POSTROUTING -s ${BR_ADDR}/16 ! -o ${BRIDGE} -j MASQUERADE

This command adds a rule to the POSTROUTING chain into the NAT table. The command
MASQUERADE allows to change the source IP address of the packets with the IP address of the
outgoing interface. Now all the outgoing bridge traffic will be masqueraded and sent out.

This is how Docker manages all the network-related operations for containers underneath the
Docker networking commands. Now that it’s clear how Docker uses the tools and the features from
Linux to build networks and connect containers, the next section analyzes the Docker network
options.
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3.2.3 Docker network explained

Docker creates an isolated network namespace and network stack for each container. It automat-
ically assigns an IP, a default gateway, a routing table and DNS service to containers. It offers
different options for the network.

Host networking

Host networking can be specified by adding the option --net=host in the Docker command
docker run [OPTIONS] IMAGE when starting a container. In this configuration the container
shares the same default network namespace of the host. Checking the network interfaces from
within the container or from the host will show identical results.

Bridge networking

Bridge networking allows connecting containers to the default bridge Docker0, this can be done
specifying --net=bridge when starting the container or by default without specifying the network
at all. This creates an isolated network namespace for the container and connects it to the
Docker0 bridge using a veth exactly as seen in the previous section. In fact, checking the network
interfaces on the host, a new veth interface appears. Containers connected to the same bridge
can communicate. The communications that go outside the host are masqueraded (NAT) as seen
before.

Custom bridge networking

This configuration is similar to the one before except for the fact that the bridge is created by the
user. The option to add when starting a container is --net=<bridge-name>. The custom bridge
needs to be created before connecting any container to it. Docker offers networking commands
to create custom bridges. When the bridge has been created it appears on the host network
interfaces.

Macvlan

Macvlan is a lightweight driver that allows the user to assign a MAC address to a container
exactly as if it was a physical device on the network. It does not make use of Linux bridge or port
mapping, it connects the container interface directly to a specified host interface. The container
is then given an IP address on the subnet of the external network connected to the host interface.

No networking

Specifying --net=none when running a container allows to create an isolated container with no
network connection. Only the loopback interface is present.
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Project Components

4.1 Introduction

This chapter analyzes from a practical perspective the development of the project and explains
the building process of the application. The application is developed and tested on a Ubuntu
20.04 LTS system with x86-64 architecture, then will eventually be published in order to be
usable by users on different systems thanks to the portability that containers offer. The container
engine adopted for managing images and containers is Docker. The application is divided into
microservices which run individually or in pairs in an isolated container. These containers are
securely connected over a custom network. First the microservices of the application need to be
illustrated. The services that the system incorporates are:

• A router to connect the private internal network with the public external one;

• A switch to connect all the multiple internal services and hosts to the network;

• An IDS (intrusion detection system) to increase the security by detecting malicious traffic;

• A perimeter firewall to create a barrier between the internal and external networks;

• An internal firewall to monitor and manage internal network traffic;

• An access point to allow WI-FI connection to the network;

• A web browser to have a secure sandboxed web connection.

The services described run on separated containers offering a higher segmentation avoiding
a single point of failure. The containers could be conveniently removed and restarted afresh if
needed. The following sections analyze one by one the programs used to realize the services
and the actual practical process for containerizing them as it was performed during develop-
ment. After that the network topology aspect will be analyzed together with the final application
implementation.

4.2 Router with OpenWrt

OpenWrt (open wireless router) is an open-source distribution based on Linux that target em-
bedded devices. The project is specifically design for wireless gateways but can be used on other
devices such as microcontrollers or personal computers. The purpose of this project is to extend
the functionalities of common access gateways provided by ISPs. It is optimized and small enough
to fit into system with limited resources. The software provides a rich archive of packages that
can be installed through opkg, which is a full lightweight package manager for the root filesystem.
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OpenWrt can be configured through a command line interface or more comfortably through a
web interface called LuCi. The software is based on Linux, musl, util-linux and BusyBox.

The purpose of the project is to run OpenWrt inside a container, to take advantage of the
container isolation, minimize the attack surface and avoid a single point of failure.

4.2.1 OpenWrt inside a container

To run OpenWrt inside a container it’s necessary to have an image. The official images repository
of the project can be found on Docker Hub under openwrtorg/rootfs. This repository offers several
OpenWrt base images for different devices and CPU architectures. The following image is built
for a system with x86-64 architecture but there is also an image with a different tag for a system
with ARM architecture.

To pull the image from the repository:

sudo docker pull openwrtorg/rootfs:x86-64

then, to verify that the image has been pulled, the command

sudo docker images

print a list with all the images present on the host.

openwrtorg/rootfs x86-64 1a1dfba2b4e9 5 weeks ago 8.29MB

The image of OpenWrt is correctly downloaded and has a size of 8.29 MB. The next step is
to understand how to connect the container to the external network. In a router perspective, the
WAN (Wide Area Network) is the upstream network which means the existing LAN in case the
router runs behind another router (for testing and developing purposes) or the Internet in case
it runs as the main home router. In the case of a normal home router the hardware is directly
connected to the WAN with an Ethernet cable. In the case of a container running a router it’s
necessary to reproduce this connection in order to have it directly connected to the WAN. This
is possible by moving the Ethernet interface of the system directly into the container namespace.
This operation is easy but brings a downside that needs to be considered: moving from the default
system namespace the Ethernet interface that, being connected to the WAN, provides the Internet
connection will lead to a lack of Internet connection in the main host (assuming that this Ethernet
interface was the only Internet source). The container instead will have direct connection through
the interface. This is not a problem since, if needed, the host can still connect to the Internet
through the LAN created by the application, as will be shown later in the document.

The network interfaces can be listed with the command ip a:

user@user:~$ ip a

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group

default qlen 1000

link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

inet 127.0.0.1/8 scope host lo

valid_lft forever preferred_lft forever

inet6 ::1/128 scope host

valid_lft forever preferred_lft forever

2: enp6s0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel state UP

group default qlen 1000

link/ether 74:d0:2b:46:c8:3b brd ff:ff:ff:ff:ff:ff

inet 192.168.1.6/24 brd 192.168.1.255 scope global dynamic noprefixroute

enp6s0

valid_lft 86308sec preferred_lft 86308sec

inet6 fe80::758a:824b:13dd:211a/64 scope link noprefixroute

valid_lft forever preferred_lft forever

3: wlp7s0: <BROADCAST,MULTICAST> mtu 1500 qdisc mq state DOWN group default

qlen 1000
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link/ether b8:76:3f:4e:43:25 brd ff:ff:ff:ff:ff:ff

4: docker0: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc noqueue state

DOWN group default

link/ether 02:42:b0:f6:80:69 brd ff:ff:ff:ff:ff:ff

inet 172.17.0.1/16 brd 172.17.255.255 scope global docker0

valid_lft forever preferred_lft forever

inet6 fe80::2248:53f5:f80:8f71/64 scope link

valid_lft forever preferred_lft forever

The Ethernet interface connected to the WAN is “enp6s0” and will be moved to the container
namespace after it is started. Note that the interfaces names are those of the system on which the
application was developed and tested and may vary on other machines. To start the container:

sudo docker run --cap-add=NET_ADMIN -it --name=openwrt_1 --net=none

openwrtorg/rootfs:x86-64

This command runs a container based on the openwrtorg/rootfs:x86-64 image with the name
“openwrt 1” which is not yet connected to any network (--net=none). The flag -it is a short for
--interactive and --tty and creates immediately an interactive shell in the container attached
to the current terminal. The command --cap-add=NET_ADMIN gives to the container the Linux
capability CAP_NET_ADMIN which allows it to perform various network related operations and is
necessary since the container runs a router. After the command, if no error occurred, the container
is started and the current terminal is directly connected to the command line interface of OpenWrt
as shown in figure 4.1.

Figure 4.1. OpenWrt CLI

After starting the container the “enp6s0” interface can be moved to its namespace. Before
this process there is a little modification that needs to be done on the host.

When Docker creates a container, it creates a new network namespace and links it to the
path /proc/<container-id>/ns/net. Most of the code that is going to be used is based on the
netns namespaces utility command. This command requires that the namespace files are in the
default location /var/run/netns/<container-name>. This allow commands like ip link set

<interface-name> netns <container-name> to work on the correct namespace. To solve this
problem it’s necessary to create a symlink of the containers namespaces from the first directory
to the second one. The commands are:

sudo mkdir -p /var/run/netns/

c1pid=$(sudo docker inspect -f ’{{.State.Pid}}’ <container-name>)

sudo ln -sfT /proc/${c1pid}/ns/net /var/run/netns/<container-name>
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The first command creates the directory in case it doesn’t already exist. The second command
extracts the container ID in a variable that is used in the third command to create the symlink.
This procedure should be done for all the containers whose namespace needs to be manipulated
with the netns command. At this point it’s possible to move the “enp6s0” interface to the router
container namespace and enable it with the commands

sudo mkdir -p /var/run/netns/

c1pid=$(sudo docker inspect -f ’{{.State.Pid}}’ openwrt_1)

sudo ln -sfT /proc/${c1pid}/ns/net /var/run/netns/openwrt_1

ip link set enp6s0 netns openwrt_1

ip netns exec openwrt_1 ip link set up enp6s0

The container with OpenWrt is connected and ready to be configured. The network config-
uration of a router typically consists of two interfaces called “wan” and “lan” which in this case
are associated with the devices enp6s0 and br-lan. Note that “lan” and “wan” are the name of
the interfaces that implement the actual LAN and WAN. enp6s0 is the Ethernet connection to
the upstream WAN network moved to the container namespace. br-lan is the bridge to which
all the hosts on the LAN should connect to get access to the Internet. The configuration of the
router is managed by the UCI system. UCI stands for Unified Configuration Interface and is a
command line program to centralize the configuration of the router. There are several files under
the directory /etc/config/ and each file relates to the part of the system it configures. Those
files can be modified in different ways. They can be edited with a text editor or modified through
the UCI command line program. The file to configure the network is /etc/config/network and
on the running container has the following content (command cat /etc/config/network):

root@b63e3ba8196b:/# cat /etc/config/network

config interface ’loopback’

option ifname ’lo’

option proto ’static’

option ipaddr ’127.0.0.1’

option netmask ’255.0.0.0’

config interface ’wan’

option ifname ’eth0’

option proto ’dhcp’

config interface ’wan6’

option ifname ’eth0’

option proto ’dhcp6’

The default file shows that the “wan” interface is present and associated to the device eth0

with the protocol DHCP for the IP management. eth0 is the default and most common Ethernet
interface name but isn’t correct in the current situation. This file must be modified according
to the application needs: the “wan” device must be changed to enp6s0 and the “lan” interface
which is not present needs to be created by editing the network file as follows:

root@b63e3ba8196b:/# cat /etc/config/network

config interface ’loopback’

option ifname ’lo’

option proto ’static’

option ipaddr ’127.0.0.1’

option netmask ’255.0.0.0’

config interface ’lan’

option type ’bridge’

option ifname ’veth2b’
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option proto ’static’

option ipaddr ’192.168.16.1’

option netmask ’255.255.255.0’

option ip6assign ’60’

config interface ’wan’

option ifname ’enp6s0’

option proto ’dhcp’

config interface ’wan6’

option ifname ’enp6s0’

option proto ’dhcp6’

Now the “lan” interface is created. It is associated with a device called veth2b which is a
veth endpoint that will be connected to the switch container in the final application and will
be explained better later in this document. The interface is of type bridge, which results in the
creation of a bridge called br-lan with the veth2b device connected. The protocol for the IP
assignment is static and the address is 192.168.16.1 with the specified netmask. The “lan”
and “wan” interfaces must have different subnets for routing to work.

WAN LAN

enp6s0
WAN provided IP

br-lan 
192.168.16.1

OpenWrt
router container

Figure 4.2. OpenWrt router Diagram

At this point the router in the container is properly configured but when the container is
deleted and another OpenWrt container is started from the same base image the configuration
changes made are lost. The way to fix this issue is to write a Dockerfile based on the OpenWrt base
image, add the configuration file and then build the new image. The purpose of the Dockerfile is
to build an image which has the network configuration already set up. To perform this operation
it’s necessary to create a folder containing two files: the Dockerfile and the network file with the
“lan” interface and the “enp6s0” device as shown above. The Dockerfile should contain the code:

FROM openwrtorg/rootfs:x86-64
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COPY network /etc/config/

CMD ["sbin/init"]

The command FROM specifies the base image to modify, COPY adds the specified network file
in the /etc/config/ folder as required. CMD specifies what command has to be executed on
container start. At this point it’s time to build the image with the command:

sudo docker build . -t router:1.0

This command builds a new image called “router” and tagged “1.0”. Note the . which specifies
the current directory to build the image, meaning that to run the command the current directory
must be the one containing the Dockerfile and the network configuration file. Now the container
can be started:

sudo docker run --cap-add=NET_ADMIN -it --name=openwrt_1 --net=none router:1.0

And the network configuration is already set up since the /etc/config/network file is now
updated. In fact when the devices enp6s0 and veth2b are moved into the container namespace
OpenWrt detects them and enables the LAN. In fact showing all the network interfaces inside the
container gives the following result:

root@552ab917ed15:/# ifconfig

br-lan Link encap:Ethernet HWaddr 12:BE:EA:1A:65:70

inet addr:192.168.16.1 Bcast:192.168.16.255 Mask:255.255.255.0

UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

RX packets:0 errors:0 dropped:0 overruns:0 frame:0

TX packets:3 errors:0 dropped:0 overruns:0 carrier:0

collisions:0 txqueuelen:1000

RX bytes:0 (0.0 B) TX bytes:450 (450.0 B)

enp6s0 Link encap:Ethernet HWaddr 74:d0:2b:46:c8:3b

inet addr:192.168.1.6 Bcast:192.168.1.255 Mask:255.255.255.0

UP BROADCAST MULTICAST MTU:1500 Metric:1

RX packets:0 errors:0 dropped:0 overruns:0 frame:0

TX packets:0 errors:0 dropped:0 overruns:0 carrier:0

collisions:0 txqueuelen:0

RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

lo Link encap:Local Loopback

inet addr:127.0.0.1 Mask:255.0.0.0

UP LOOPBACK RUNNING MTU:65536 Metric:1

RX packets:0 errors:0 dropped:0 overruns:0 frame:0

TX packets:0 errors:0 dropped:0 overruns:0 carrier:0

collisions:0 txqueuelen:1000

RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)

veth2b Link encap:Ethernet HWaddr 12:BE:EA:1A:65:70

UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

RX packets:34 errors:0 dropped:0 overruns:0 frame:0

TX packets:41 errors:0 dropped:0 overruns:0 carrier:0

collisions:0 txqueuelen:1000

RX bytes:5721 (5.5 KiB) TX bytes:6502 (6.3 KiB)

The br-lan device is the one specified in the network file for the LAN with IP 192.168.16.1

and veth2b attached. Any machine or other container connected to the br-lan with an IP in the
LAN subnet and the default gateway set to the br-lan IP will be successfully connected to the
newly created containerized router as part of the LAN.
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OpenWrt SSH

There are two different methods of accessing the container. The first is to access it from the host
with the command sudo docker attach openwrt_1. This attaches the terminal to a shell inside
the container. The other method is through SSH.

OpenWrt listens for SSH connections on port 22 by default. It uses a software package called
Dropbear that is designed to implement SSH (client and server) on devices with low memory and
processor resources, for example embedded systems. Access is only available to devices within the
LAN created by the router, with the command ssh root@192.168.16.1. By default when the
container with OpenWrt is started there is no password set. To avoid security risks the password
should be set immediately after starting the container. This process is automated in the final
project of the thesis with a password chosen by the user.

The use of SSH within a container brings a disadvantage concerning host keys, which are
automatically generated within the container. If these keys were automatically generated when-
ever the container is restarted, they would be different each time and devices that had already
connected with SSH to the container by associating its old keys would no longer recognise the
container and raise an error. In order to always start the container with the same keys, it is
possible to store them in a folder on the host and mount that folder inside the container each
time it is started. The folder that stores the host keys within the container is /etc/dropbear/.
As this folder is already correctly configured in the previous active container, it can be copied to
the host as a folder to be mounted on future OpenWrt containers. To perform this operation the
following command can be executed from the host terminal:

sudo docker cp <containerId>:/etc/dropbear .

It is a Docker command that copies the “dropbear” folder of the container to the current
directory on the host, which must be the one containing the Dockerfile. At this point, to start
the container and mount the host keys folder inside it, the command is

sudo docker run --cap-add=NET_ADMIN -it --name=openwrt_1 --net=none

$(pwd)/dropbear:/etc/dropbear:ro router:1.0

The option -v $(pwd)/dropbear:/etc/dropbear:ro mount the“dropbear” folder present in
the current directory (pwd) inside the container at the path /etc/dropbear as read-only (:ro).
This folder contains the host keys of the container which will be the same each time it is started,
avoiding SSH connection issues. Note that the current terminal directory needs to be the one
with the Dockerfile and the “dropbear” folder.

4.2.2 OpenWrt firewall

In addition to the router, OpenWrt offers many other services, including the implementation of
a default perimeter firewall. This component increases the security level of the entire network
creating a barrier between the internal private network (LAN) and the external public network
of Internet (WAN) and for this reason it is used in the final project. This section explains the
modules, rules and parameters of the default firewall.

The firewall takes care of filtering all traffic passing through the router. Packets can be
dropped, rejected (dropped with an appropriate response to the source) or accepted. The Open-
Wrt firewall is based on the Linux Netfilter project, which is a default kernel framework in all
Linux distributions that implements several network-related operations such as packet filtering or
network address translation. Furthermore OpenWrt uses an application called fw4 (Firewall4) to
provide the firewall. This application has different firewall provisioning mechanisms. The main
configuration file is /etc/config/firewall and can be edited to change the firewall settings.
The default content of the firewall is as follows:

config defaults

option syn_flood 1

option input ACCEPT

option output ACCEPT
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option forward REJECT

# Uncomment this line to disable ipv6 rules

# option disable_ipv6 1

config zone

option name lan

list network ’lan’

option input ACCEPT

option output ACCEPT

option forward ACCEPT

config zone

option name wan

list network ’wan’

list network ’wan6’

option input REJECT

option output ACCEPT

option forward REJECT

option masq 1

option mtu_fix 1

config forwarding

option src lan

option dest wan

# We need to accept udp packets on port 68,

# see https://dev.openwrt.org/ticket/4108

config rule

option name Allow-DHCP-Renew

option src wan

option proto udp

option dest_port 68

option target ACCEPT

option family ipv4

# Allow IPv4 ping

config rule

option name Allow-Ping

option src wan

option proto icmp

option icmp_type echo-request

option family ipv4

option target ACCEPT

config rule

option name Allow-IGMP

option src wan

option proto igmp

option family ipv4

option target ACCEPT

# Allow DHCPv6 replies

# see https://dev.openwrt.org/ticket/10381

config rule

option name Allow-DHCPv6

option src wan

option proto udp
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option src_ip fc00::/6

option dest_ip fc00::/6

option dest_port 546

option family ipv6

option target ACCEPT

config rule

option name Allow-MLD

option src wan

option proto icmp

option src_ip fe80::/10

list icmp_type ’130/0’

list icmp_type ’131/0’

list icmp_type ’132/0’

list icmp_type ’143/0’

option family ipv6

option target ACCEPT

# Allow essential incoming IPv6 ICMP traffic

config rule

option name Allow-ICMPv6-Input

option src wan

option proto icmp

list icmp_type echo-request

list icmp_type echo-reply

list icmp_type destination-unreachable

list icmp_type packet-too-big

list icmp_type time-exceeded

list icmp_type bad-header

list icmp_type unknown-header-type

list icmp_type router-solicitation

list icmp_type neighbour-solicitation

list icmp_type router-advertisement

list icmp_type neighbour-advertisement

option limit 1000/sec

option family ipv6

option target ACCEPT

# Allow essential forwarded IPv6 ICMP traffic

config rule

option name Allow-ICMPv6-Forward

option src wan

option dest *

option proto icmp

list icmp_type echo-request

list icmp_type echo-reply

list icmp_type destination-unreachable

list icmp_type packet-too-big

list icmp_type time-exceeded

list icmp_type bad-header

list icmp_type unknown-header-type

option limit 1000/sec

option family ipv6

option target ACCEPT

config rule

option name Allow-IPSec-ESP
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option src wan

option dest lan

option proto esp

option target ACCEPT

config rule

option name Allow-ISAKMP

option src wan

option dest lan

option dest_port 500

option proto udp

option target ACCEPT

All the configuration above is implemented in the default firewall. A minimum configuration
for a router usually consists of a “default” section, two “zones” (lan and wan) and a “forwarding”
section to allow traffic from lan to wan. The following paragraphs present the section types that
may be used in the firewall configuration.

Defaults

The default section implements the global firewall settings that do not belong to specific zones.
In the configuration file above this section sets the global settings for the INPUT, OUTPUT and
FORWARD chains. Moreover the line option syn_flood 1 enables SYN FLOOD protection by
default.

Zones

The zone section groups one or more interfaces and is used in other sections as source or destina-
tion parameter. The firewall configuration file contains two zones, lan and wan, associated with
their respective interfaces and sets policies for the chains INPUT (packets arriving at an inter-
face in the zone), OUTPUT (packets leaving an interface in the zone) and FORWARD (packets
transiting the zone). Moreover the wan zone also implements MASQUERADING with the option
option masq 1. IP masquerading is a NAT method that allows a local network using private
addresses to connect to the Internet via the public address of a router, in this case the one of the
wan interface.

Forwardings

The forwarding section allows the traffic flow from a source zone to a destination one. In the
configuration file the section

config forwarding

option src lan

option dest wan

allows the traffic flow from lan to wan.

Rules

A rule section defines a single rule that specifies if packets to/from specific ports or hosts should
be accepted, dropped or rejected. Options of this section include source zone (src), destination
zone (dest), IP address, MAC address, protocol, port, target and allow the creation of specific
rules to control traffic. If both source and destination options are specified, the rule matches the
forwarded traffic. If only one option between source or destination is specified, the rule matches
respectively incoming or outgoing traffic. If neither of the two options is specified, the rule matches
the outgoing traffic.
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The rules used in the default firewall configuration file are explained in short comments pre-
ceding the rules and allow the following operations and relative traffic:

• Accept udp packets on port 68 to allow DHCP renew;

• Allow IPv4 ping;

• Allow DHCPv6 replies;

• Allow essential incoming IPv6 ICMP traffic;

• Allow essential forwarded IPv6 ICMP traffic;

All the IPv6 rules can be disabled if needed by uncommenting the line

# option disable_ipv6 1

at the beginning of the file. The last two rules allow IPsec/ESP and ISAKMP passthrough
and are default rules for IPv6 gateways defined by IETF organization (for more information refer
to https://datatracker.ietf.org/doc/html/rfc6092).

4.3 Web browser with Firefox

This section explains theoretically and practically how to build a containerized web browser and
how to use it. The web browser chosen for this project is Firefox. It is a common browser that
satisfies all the requirements needed. It will run inside an isolated container and this brings lots of
advantages for what concerns the security of the system, reducing the application attack surface.
For example in case of an erroneous download of a malicious file from the web browser, it would
be isolated in the container, without affecting and damaging the host. The container could then
be easily destroyed and restarted with a new unaffected web browser.

4.3.1 X11 Window System

Since containers do not offer a graphical interface, the web browser GUI is going to be forwarded
using the X11 Window system also known as X11 or X, which is an architecture-independent
system for remote graphical user interfaces used in Unix-like environments. X provides a simple
way to access the GUI of a program from any display connected to the system. It could be the
display of the host or the display of a remote machine. It provides a basic interaction with a
mouse and a keyboard as well as moving and resizing the GUI window.

X uses a client-server architecture. The clients are the programs running remotely or on the
same machine. The server is the host connected to those programs displaying the GUIs. The
common way to access a X client application is through SSH. The steps to perform are:

• On the X server machine open a terminal;

• Connect to the X client remote machine with SSH specifying the Y forwarding argument in
the command;

• Request local display service.

These steps will be better analyzed in the following part.
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4.3.2 Firefox container

To build the image it’s necessary to start from a base image. It could be any base OS image such
as Alpine or Ubuntu. Alpine is a good choice given his lightness. Then in the Dockerfile the base
image needs to be modified by adding the required packages, in this case all the packages to run
Firefox, SSH and X11.

First the Dockerfile is created inside a new folder and edited as follows.

FROM alpine

RUN apk update && apk add --no-cache openssh openrc firefox xauth

libcanberra-gtk3 ttf-opensans

CMD["/bin/sh"]

The command RUN executes any commands in a new layer on top of the base image and
commits the results. In this case the installation of software packages through the alpine packets
manager apk. The software installed are:

• openssh: the tool for remote login using SSH protocol;

• openrc: an init system for Unix-like computer based on dependencies, it helps in the man-
agement of system services;

• firefox: the web browser itself;

• xauth: the program used to manage the authorization information used when connecting
to the X server;

• ttf-opensans: a packet required for the GUI characters visibility through X;

• libcanberra-gtk3: a package required by Firefox to run over X.

The CMD command specifies the entry point command to be executed when starting the con-
tainer, in this case a simple bash shell. Now the Dockerfile is ready, to build the image from inside
the directory:

sudo docker build . -t firefoxalpine:1.0

If no error occurs the image should be created and added to the local images archive with the
name and tag “firefoxalpine:1.0”.

At this point the container can be ran with the command:

sudo docker run --name firefox -it firefoxalpine:1.0

Without the network specification the container is connected to the default Docker bridge
Docker0. At this point the container is running and has Firefox installed. In order to activate
X applications through SSH some more configurations need to be done. Specifically the “sshd”
service which is the OpenSSH server process needs to be activated, listening for incoming SSH
connections. To accomplish this first the system needs a password. The command to add a
password is passwd which asks to type a password two times. The password is for root since the
system is running as root. Then some changes need to be made to the file that configures the
SSH server: /etc/ssh/sshd_config. The changes are:

• The line PermitRootLogin should be uncommented and set to yes. This allows the SSH
connection as root authenticating with the only password. This brings security risks and is
done just for demonstration purpose, other methods for authentication should be used;

• The line X11Forwarding should be uncommented and set to yes;
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• The line X11DisplayOffset 10 should be uncommented;

• The line X11UseLocalhost should be uncommented and set to no.

Another thing to check is that the hostname of the container is associated with its IP in the
file /etc/hosts. This avoids name resolution problems when forwarding applications with X11.
If the line is missing it needs to be added. At this point some configuration commands need to be
executed to enable the services. The commands rc-status and touch /run/openrc/softlevel

configure the correct operation of OperRC. Then the sshd service can be started:

service sshd start

If the system does not yet have the host keys for SSH, as in this case, they are generated
automatically. Host keys are cryptographic keys used for authenticating computers in the SSH
protocol. They are generated in pairs using RSA, DSA and ECDSA algorithms and stored in the
container at the path /etc/ssh/, together with the configuration files.

To SSH into the container from the host or a remote system (every machine that can reach
the container over a network can connect to it) the command is:

ssh -Y root@<ip_of_container>

The Y flag enable the use of X11 during the connection, root means that the connection into
the container is performed as root and <ip_of_container> is the IP of the host, in this case
the container which the connection is directed to. This IP can be found by simply running ip a

inside the container or by using the command docker inspect firefox on the host to list the
container informations. The password asked to access the container over SSH is the password of
the root account into the container. Once the password is inserted, if all went correctly, a shell
into the container should appear. At this point there is an active SSH connection to the container.
Since X11 is enabled, the GUIs of the applications started on the container through SSH should be
forwarded to the remote machine that created the connection. For example running the command
firefox should open a GUI of the firefox application running inside the container.

In the figure 4.3 it can be noticed that the Firefox application runs inside the container by
looking at the top bar writing “Mozilla Firefox (on bc936cf30c32)”, which is the hostname of the
container.

It’s possible to add a layer of security by enabling the SSH service on a non privileged user
rather than SSH as root. The reason is that the root account has full privileged access to the
system and an attacker that successfully penetrates into the network and gets a shell in the
container would have full privileged control over it. In order to avoid this eventuality the solution
is to create a non privileged user that cannot run dangerous commands or access sensitive files. The
command to create it inside the container is adduser <username>, then a password is requested
for the new user. Also in the file /etc/ssh/sshd_config the line PermitRootLogin can be set to
“no” to totally disable the SSH connection as root. The command to SSH into the container as
the new user becomes:

ssh -Y <username>@<ip_of_container>

All this configuration has been performed in the active container just to demonstrate how to
enable all the services. If the container is deleted and restarted from the image the configuration
is lost. To avoid this problem it’s necessary to incorporate the setup within the Docker image by
changing the Dockerfile and building a new image with the right configuration. The only problem
is the host keys automatically generated within the container. If these keys were automatically
generated whenever the container is restarted, they would be different each time and devices that
had already connected with SSH to the container by associating its old keys would no longer
recognise the container and raise an error. In order to always start the container with the same
keys, it is possible to store them in a folder on the host and mount that folder inside the container
each time it is started. Considering the container manually configured in the previous paragraphs,
the folder concerned is /etc/ssh which contains all the host keys and configuration files. As this
folder is already correctly configured, it can be copied to the host as a folder to be mounted on
future containers. To perform this operation the following command can be executed from the
host terminal:
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Figure 4.3. Firefox over X11

docker cp <container_Id>:/etc/ssh .

It is a Docker command that copies the “ssh” folder of the container to the current directory
on the host, which is the one containing the Dockerfile.

The updated Dockerfile has the following content:

FROM alpine

EXPOSE 22

RUN apk update \

&& apk add --no-cache openssh openrc firefox xauth libcanberra-gtk3 \

ttf-opensans \

&& mkdir -p /run/openrc \

&& touch /run/openrc/softlevel

RUN adduser user -D

RUN echo "user:password" | chpasswd

ENTRYPOINT ["sh","-c","rc-status; rc-service sshd start; sh"]

The EXPOSE command is just declarative and informs Docker that the container exposes a
service on port 22, which is SSH. The packages installed are the same as before. Then OpenRC
is set up. A new user called “user” is added to the container with useradd and right after the
password for that account is set to “password” with the command chpasswd. Setting the password
statically in the Dockerfile is not a good practice but it’s easier for demonstration purposes. Also
it can be changed inside the container at run-time. Finally the ENTRYPOINT command enables
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the sshd service and spawns a shell on the container when it starts. This shell runs as root but is
only accessible from the Docker host for configuration purposes if needed.

Then, after rebuilding the new image with the same build command, to start the container
and mount the “ssh” folder inside it, the command is

sudo docker run --name firefox -it -v $(pwd)/ssh:/etc/ssh:ro firefoxalpine:1.0

The option -v $(pwd)/ssh:/etc/ssh:ro mount the “ssh” folder present in the current di-
rectory (pwd) inside the container at the path /etc/ssh as read-only (:ro). This folder contains
the host keys of the container and the already prepared configuration files.

4.4 IDS with Snort

Snort is an open source IDS and IPS which uses a customizable set of rules to detect malicious
network activity in the traffic of packets generating alerts and logs. Snort has three main modes:

• Sniffer mode: reads packets transiting on the network and prints them on the console in a
continuous stream;

• Packet logger: logs the packets;

• IDS/IPS mode: performs analysis and detection of the network traffic in a configurable way.

4.4.1 Snort rules

Snort works with rules which are defined in configuration files. The IDS analyzes the traffic and if
a packet matches a rule then a customizable action is performed. Rules can be downloaded from
the Snort website or can be custom made and have a particular syntax that needs to be followed.
This syntax is divided into:

• Action: alert, log, pass, drop, reject, sdrop;

• Protocol: tcp, udp, icmp;

• Source address and port;

• Direction: “->” or “<-”;

• Destination address and port;

• Rule options: msg, sid, logto and others.

The action is the countermeasure to realize when a packet matches the rule, for example “alert”
generates an alert and logs the packet and “drop” blocks and logs the packet. Rule options are a
set of further specifications to define a rule, for example “msg” allows to specify the message to
print on the screen or “sid” defines the snort rule identification number. Here’s an example of a
rule:

alert icmp any any -> 8.8.8.8 any (msg:"Pinging...";sid:1000004;)

This rule prints an alert on the console with the message “Pinging...” whenever an icmp packet
coming from any address and port and directed to the IP 8.8.8.8 on any port is detected.

45



Project Components

4.4.2 Snort in a container

To run Snort inside a container it’s necessary to have an image. There are third parties custom
images already built on the DockerHub but Snort does not have an official repository with official
images. This section shows how to build the image starting from a base OS layer.

There are different methods to install Snort, Alpine offers a simple package installation which
requires some configuration files to be added. Moreover since Alpine is the lightest base layer
operating system it is a good choice.

All the configurations and rules files can be downloaded from the Snort site at https:

//www.snort.org/downloads/registered/snortrules-snapshot-2983.tar.gz where the last
numbers are the version of Snort. The snort.conf file is the core of the Snort configuration and
requires some other configuration and rules files to work. It is structured in sections and contains
a list of environment variables that should be set according to the situation, like PATH that needs
to specify the paths to the various folders. The file also includes the list of rules files that will
be used from the IDS. The rules that are not used should be commented out. A more careful
analysis of this file should be done by users to get a better overview of the tool. The Dockerfile
created in this section includes just a minimal set of files for demonstration purposes.

In a new directory two folders “config” and “rules” are created. The first one should include the
files classification.config, reference.config, threshold.conf, unicode.map, snort.conf

which can be found in the archive already downloaded from the site. The second folder should
contain the file local.rules. This file contains a single rule to illustrate how Snort works:

alert icmp any any -> any any (msg:"Pinging...";sid:1000004;)

This rule prints an alert on the console every time an icmp packet is intercepted. The resulting
Dockerfile is:

FROM alpine

RUN apk add update && apk add --no-cache snort

COPY config/classification.config /etc/snort/classification.config

COPY config/reference.config /etc/snort/reference.config

COPY config/threshold.conf /etc/snort/threshold.conf

COPY config/unicode.map /etc/snort/unicode.map

COPY config/snort.conf /etc/snort/snort.conf

RUN mkdir /etc/snort/rules

COPY rules/local.rules /etc/snort/rules/local.rules

CMD ["/bin/sh"]

The path to the rules files is defined in the snort.conf file and can be modified as desired.
The CMD spawns a shell in the container. At this point the command to build the image from the
Dockerfile directory is:

sudo docker build . -t snort:1.0

Then to run the image in interactive mode and attach the container shell:

sudo docker run -it snort:1.0

The container is connected to the default bridge Docker0. To test Snort with the rule in
local.rules the command to run inside the container is:

snort -A console -q -c /etc/snort/snort.conf -i eth0

This command runs snort in IDS mode and prints alerts on the console (-A console) without
showing the banner and status report (-q for quiet mode) using the snort.conf file on the
interface eth0. Now to test Snort the container needs to receive icmp packets, for example a
simple ping from the host to the container IP should work:
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user@user:~$ ping 172.17.0.2

PING 172.17.0.2 (172.17.0.2) 56(84) bytes of data.

64 bytes from 172.17.0.2: icmp_seq=1 ttl=64 time=0.317 ms

64 bytes from 172.17.0.2: icmp_seq=2 ttl=64 time=0.215 ms

64 bytes from 172.17.0.2: icmp_seq=3 ttl=64 time=0.185 ms

64 bytes from 172.17.0.2: icmp_seq=4 ttl=64 time=0.185 ms

64 bytes from 172.17.0.2: icmp_seq=5 ttl=64 time=0.185 ms

If the process was successful the alert messages should appear on the Snort console inside the
container as shown below.

/ # snort -A console -q -c /etc/snort/snort.conf -i eth0

11/22-17:19:13.665009 [**] [1:1000004:0] Pinging... [**] [Priority: 0] {ICMP}

172.17.0.1 -> 172.17.0.2

11/22-17:19:13.665054 [**] [1:1000004:0] Pinging... [**] [Priority: 0] {ICMP}

172.17.0.2 -> 172.17.0.1

11/22-17:19:14.675384 [**] [1:1000004:0] Pinging... [**] [Priority: 0] {ICMP}

172.17.0.1 -> 172.17.0.2

11/22-17:19:14.675452 [**] [1:1000004:0] Pinging... [**] [Priority: 0] {ICMP}

172.17.0.2 -> 172.17.0.1

11/22-17:19:15.699354 [**] [1:1000004:0] Pinging... [**] [Priority: 0] {ICMP}

172.17.0.1 -> 172.17.0.2

11/22-17:19:15.699415 [**] [1:1000004:0] Pinging... [**] [Priority: 0] {ICMP}

172.17.0.2 -> 172.17.0.1

11/22-17:19:16.723462 [**] [1:1000004:0] Pinging... [**] [Priority: 0] {ICMP}

172.17.0.1 -> 172.17.0.2

11/22-17:19:16.723523 [**] [1:1000004:0] Pinging... [**] [Priority: 0] {ICMP}

172.17.0.2 -> 172.17.0.1

11/22-17:19:17.747415 [**] [1:1000004:0] Pinging... [**] [Priority: 0] {ICMP}

172.17.0.1 -> 172.17.0.2

11/22-17:19:17.747475 [**] [1:1000004:0] Pinging... [**] [Priority: 0] {ICMP}

172.17.0.2 -> 172.17.0.1

The number of alerts is double the number of pings because Snort prints out also the ping
reply. This is a simple demonstration on the use of Snort inside a container. To set up an
efficient IDS a lot of rules could be implemented to cover various aspects of network security.
Snort offers three sets of rules ready to use: “Community Ruleset”, ”Registered Ruleset” and
”Snort Subscriber Ruleset”. The first two sets are free of charge and the last one requires a paid
subscription. All of them can be downloaded from the Snort website. The difference between the
Registered and the Subscriber rulesets is a time difference of thirty days in the release of official
rules, while the Community ruleset is submitted by members of the Snort community. The rules
chosen for a project must be included in the image by changing the Dockerfile and rebuilding
the image adding the new rules exactly as the local.rules file was inserted in the previous
Dockerfile. Also before building the image the file snort.conf should be modified according to
the rules files added, by inserting or uncommenting the line relative to those files under the section
7)Customize your rule set.

For testing purposes the Snort container was directly pinged but in the final project all the
traffic in transit on the network will be analyzed by mirroring it on the Snort container interface.

4.4.3 Snort logs

When Snort is active in IDS mode its operations are continuously logged. The default path to the
log files is /var/log/snort/. There are two types of log file: the files that contain the information
on the individual packets intercepted and the files that contain other general information. The
first type are PCAP files, which is a specific format to record packet data from a network scan,
and can be read with the command snort -r <file-name>. The others are standard text files.
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4.5 Switch and internal Firewall

The network topology defined for this project includes a switch and a firewall. The switch is a
layer 2 network device that is used to connect hosts and containers on the same network, making
them reachable to each other. In the project addressed in this document it is used to connect
all the containers on the same network. The firewall is a network security software or hardware
component that monitors and manages incoming and outgoing traffic based on internal security
rules by creating a barrier between two networks, typically the Internet (WAN) and an internal
private network (LAN).

While the default firewall offered by OpenWrt acts as a perimeter firewall creating a barrier
between the internal LAN and the WAN (Internet), the firewall created in this section monitors
and manages the traffic on the internal LAN, adding an extra layer of security. The switch shown
in this section allows the connection of all containers within the LAN to each other and to the
router. Switch and internal firewall are placed in the same container to allow the passage and
monitoring of internal traffic. The firewall should be set to allow only internally expected traffic
to pass through, based on the services implemented in the application and the operations that
users are authorized to perform within the LAN.

The Linux operating system has a lot of virtual networking options that are also used to host
containers, it offers different features to realize both the switch and the firewall without the need
to download other third parties software: specifically Linux bridges and iptables.

4.5.1 Linux bridges and iptables

A Linux bridge works as a network switch, it forwards packets through interfaces that are con-
nected to it. It is really easy to configure:

# ip link add <br-name> type bridge

# ip link set <interface-name> master <br-name>

These commands create a bridge named <br-name> and then connect the interface <interface-name>
to it.

Iptables is a command line utility to configure the kernel-level firewall of Linux, based on
netfilter modules. For more detailed information see 3.2.2.

4.5.2 Switch and Firewall in a container

In the final project this container will work as a switch between all the other containers in the
network, hence to demonstrate the functioning of this single container it’s necessary to have the
router container already up and running as described in the 4.2.1 router section. The switch
container is then started and connected to the router LAN.

As in the other containers the base image will be Alpine Linux, a minimal OS which supports
the Linux features, including bridges and Iptables.

The iptables module is not present in the standard Alpine image from Docker Hub but can be
easily added in a Dockerfile. Also the iptables firewall rules need to be set before the container
starts. For this reason another file called “enablefirewall.sh” has to be present in the same folder
of the Dockerfile. The content of the dockerfile is the following.

FROM alpine

RUN apk update && apk add --no-cache iptables

COPY enablefirewall.sh /

ENTRYPOINT ["sh", "-c", "/enablefirewall.sh; sh"]
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This file simply adds the iptables package and copies the “enablefirewall.sh” file inside the
Alpine image. Then when the container is started the command ENTRYPOINT executes the “en-
ablefirewall.sh” script and spawns a shell inside the container. The firewall file contains all the
rules that need to be enabled for the firewall, that vary from case to case. To build the image
from the Dockerfile directory:

sudo docker build . -t switchfirewall:1.0

The resulting image is called “switchfirewall” and tagged “1.0”.

The first part of this section explains the switch aspect of the container through the use of a
Linux bridge. The second part concentrates on the firewall (iptables and firewall rules file).

Switch explanation

Since the bridge is isolated inside a container and it’s not a standard Docker bridge, the Docker
networking commands would not work and all the networking configuration is performed manually
using a Linux bridge and veth devices. These are also the Linux features that Docker uses
underneath the networking commands. The manual configuration exposes clearly all the processes
to connect the various containers to the network and also gives more flexibility to build a network
suited to this project.

By default a Docker container is limited on the operations it can perform on the network
because all the network functions are provided by the shared host kernel. To enable the possibility
of manipulating network devices as well as iptables the Linux capability CAP_NET_ADMIN needs to
be added to the container on start. This capability allows various network related operations. To
start the container:

sudo docker run --cap-add NET_ADMIN --name firewall --net=none -it

switchfirewall:1.0

This command runs a container named “firewall” from the “switchfirewall:1.0” image with
the added NET_ADMIN capability and connects the terminal to an interactive shell inside it. The
container is started with no network access because it will be connected to the running router
container.

From within the container to create a bridge named “br0” and enable it:

ip link add br0 type bridge

ip link set br0 up

At this point to illustrate the functioning of the bridge, the following actions have to be
performed:

1. Start the router container and move the Ethernet interface connected to the WAN inside
its namespaces. The procedure has been explained in section 4.2.1.

2. Connect the “br-lan” router bridge to the “br0” bridge inside the “firewall” container with
a veth device allowing the switch connection to the LAN;

3. Start another alpine container with no network and connect it to the “br0” bridge with
another veth device to test the connection to the router through the switch;

4. Add an IP address on the LAN subnet to the veth endpoint inside the new alpine container
and also add the default route through the router gateway;

5. Test the connection between the new alpine container and the router container as well as
the Internet connection through the router.
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This manual network connection of the three containers with two veth devices has to be done
from the host. Most of the following commands and network theory have been explained in section
3.2. Docker creates isolated namespaces for the different containers with different network stacks.
To connect two containers a veth needs to be created and the two endpoints need to be moved
into the two namespaces and added to the bridge where required.

Before performing this process there is a little modification that needs to be done on the
host. When Docker creates a container, it creates a new network namespace located at the
path /proc/<container-id>/ns/net. Most of the code that is going to be used is based on
the netns namespaces utility command. This command requires that the namespace files are in
the default location /var/run/netns/<container-name>. This allows commands like ip link

set <veth-name> netns <container-name> to work on the correct namespace. To solve this
problem it’s necessary to create a symlink of the containers namespaces from the first directory
to the second one. The commands are:

sudo mkdir -p /var/run/netns/

c1pid=$(sudo docker inspect -f ’{{.State.Pid}}’ <container-name>)

sudo ln -sfT /proc/${c1pid}/ns/net /var/run/netns/<container-name>

The first command creates the directory in case it doesn’t already exist. The second command
extracts the container id in a variable that is used in the third command to create the symlink.
This procedure should be done for all the containers whose namespace needs to be manipulated
with the netns command. At this point the following commands should be clear.

Bringing all together in a bash script:

#!/bin/bash

#start router container

docker run --cap-add=NET_ADMIN -dit --name openwrt_1 --network none router:1.0

#start firewall/switch container

docker run --cap-add NET_ADMIN --name firewall --net=none -itd alpine sh

#start alpine test container

docker run --name cont1 --net=none -itd alpine

#create bridge named br inside firewall container

docker exec firewall ip link add name br type bridge

docker exec firewall ip link set br up

#create veth device to connect router and firewall

ip link add veth2a type veth peer name veth2b

ip link set up veth2a

ip link set up veth2b

#symlink firewall container namespace and move veth endpoint inside

fwpid=$(docker inspect -f ’{{.State.Pid}}’ firewall)

mkdir -p /var/run/netns/

ln -sfT /proc/${fwpid}/ns/net /var/run/netns/firewall

ip link set veth2a netns firewall

ip netns exec firewall ip link set up veth2a

#add moved endpoint to firewall bridge br

docker exec firewall ip link set veth2a master br

#symlink router container namespace and move veth endpoint inside

owpid=$(docker inspect -f ’{{.State.Pid}}’ openwrt_1)

ln -sfT /proc/${owpid}/ns/net /var/run/netns/openwrt_1

ip link set veth2b netns openwrt_1
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ip netns exec openwrt_1 ip link set up veth2b

#move WAN Ethernet interface to router namespace

ip link set enp6s0 netns openwrt_1

ip netns exec openwrt_1 ip link set up enp6s0

#create veth device to connect test container and firewall

ip link add veth1a type veth peer name veth1b

ip link set up veth1a

ip link set up veth1b

#symlink test container namespace and move veth endpoint inside

c1pid=$(docker inspect -f ’{{.State.Pid}}’ cont1)

ln -sfT /proc/${c1pid}/ns/net /var/run/netns/cont1

ip link set veth1b netns cont1

ip netns exec cont1 ip link set up veth1b

#add static ip to endpoint interface and default gateway inside test container

ip netns exec cont1 ip addr add 192.168.16.50/16 dev veth1b

ip netns exec cont1 ip route add default via 192.168.16.1

#move veth endpoint inside firewall container and add it to bridge

ip link set veth1a netns firewall

ip netns exec firewall ip link set up veth1a

docker exec firewall ip link set veth1a master br

At this point, if everything worked correctly, the three containers should be running in detached
mode due to the option -d specified in the starting commands, meaning that they are not directly
connected to a terminal but running in background. From a host terminal to attach the test
container “cont1”:

sudo docker attach cont1

This command attaches the container shell to the current terminal. Now before testing the
Internet connection it’s convenient to change the DNS configuration. Since the system does not
provide a DNS service the container is not able to resolve domain names. A good solution is
to use Google’s DNS servers. The IP addresses of those servers are 8.8.8.8 and 8.8.4.4. To take
advantage of this service the following lines should be added to the file /etc/resolv.conf inside
the container:

nameserver 8.8.8.8

nameserver 8.8.4.4

At this point it’s possible to test the Internet connection through the router by executing a
ping to any Internet server, for example to the URL “www.google.com”.

/ # ping www.google.com

PING www.google.com (142.250.180.68): 56 data bytes

64 bytes from 142.250.180.68: seq=0 ttl=116 time=24.257 ms

64 bytes from 142.250.180.68: seq=1 ttl=116 time=23.432 ms

64 bytes from 142.250.180.68: seq=2 ttl=116 time=23.268 ms

64 bytes from 142.250.180.68: seq=3 ttl=116 time=23.611 ms

64 bytes from 142.250.180.68: seq=4 ttl=116 time=23.380 ms

^C

--- www.google.com ping statistics ---

7 packets transmitted, 7 packets received, 0% packet loss

round-trip min/avg/max = 22.435/23.389/24.257 ms

The connection is active. To show the route of the packets in transit across the network it is
possible to use the command traceroute:
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/ # traceroute www.google.com

traceroute to www.google.com (216.58.208.132), 30 hops max, 46 byte packets

1 192.168.16.1 (192.168.16.1) 0.029 ms 0.027 ms 0.016 ms

2 192.168.1.1 (192.168.1.1) 1.337 ms 1.720 ms 1.775 ms

3 10.1.3.131 (10.1.3.131) 167.359 ms 45.792 ms 35.165 ms

The first entry shows that the packets are actually transiting through the containerized router
whose gateway is at 192.168.16.1. All the components work correctly and the connection is
established.

Firewall explanation

The firewall is managed through the script “enablefirewall.sh”. This file has to be filled with all
the iptables rules to create the desired firewall functionalities. After writing or changing the rules
in this script the image needs to be rebuilt in order to update the file inside the new image. When
the container is started the script is executed inside it and the rules are applied to the container.
Just for demonstration here is reported an example that blocks all the network communications
and DROP all the packets. The file contains the following lines.

iptables -P INPUT DROP

iptables -P FORWARD DROP

iptables -P OUTPUT DROP

Those commands set the three chains INPUT, OUTPUT and FORWARD to drop all the
packets incoming, outgoing or in transit on the container. Rebuilding the image and running the
container results in a firewall container that blocks all the traffic, so that even a ping command
would not work.

The firewall rules should be chosen based on the requirements and the services offered in the
network. The rules of the project addressed in this document are illustrated in the next chapter.

4.6 Access Point

The wireless access point allows devices to connect wireless to the LAN. This section demonstrates
how to activate an isolated access point inside a Docker container. The process described is based
on another project [5] which has been modified according to the application requirements.

4.6.1 Access Point inside a container

To build the container image a Dockerfile is required. This file is created inside a new folder
together with another folder called “confs” which contains configuration files. Inside “confs”
another folder called “hostapd confs” is added for other configuration files. The Dockerfile has
the following content:

FROM alpine

# Install packages

RUN apk update && apk add hostapd iw dhcp vim iptables

# Configure Hostapd

ADD confs/hostapd_confs/wpa2.conf /etc/hostapd/hostapd.conf

# Configure DHCPD

ADD confs/dhcpd.conf /etc/dhcp/dhcpd.conf

RUN touch /var/lib/dhcp/dhcpd.leases

# Configure networking
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ADD confs/iptables.sh /iptables.sh

ADD confs/iptables_off.sh /iptables_off.sh

# Copy init file

ADD confs/start.sh /start.sh

CMD ["/bin/sh"]

Starting from the Alpine base image some packages are downloaded, specifically:

• hostapd: the software for the access point;

• iw: software for debugging the wireless interfaces;

• dhcp: dhcp service to give address to clients;

• vim: tool to edit files;

• iptables: Linux software for network routing and firewalling.

Then some files are added to the image. Those files will be discussed later. Finally the CMD

command spawns a shell when the container is booted.

To configure the access point a file named “wpa2.conf” is needed inside the folder “hostapd confs”.
The file has the following content.

interface=wlp7s0

driver=nl80211

ssid=apdocker_wpa2

hw_mode=g

ieee80211n=1

channel=6

auth_algs=1

ignore_broadcast_ssid=0

wpa=2

country_code=ES

macaddr_acl=0

wpa_passphrase=password

wpa_key_mgmt=WPA-PSK

wpa_pairwise=CCMP

rsn_pairwise=CCMP

This file configures a WPA2 secure access point. The “wpa passphrase” field contains the
network password and the “ssid” field contains the name of the wireless network. The “interface”
field contains the name of the wireless card interface which may change from host to host.

The access point provides a DHCP service configured with a file named “dhcpd.conf” in the
“confs” folder. The file has the following content.

authoritative;

subnet 11.0.0.0 netmask 255.255.255.0 {

range 11.0.0.10 11.0.0.20;

option broadcast-address 11.0.0.255;

option routers 11.0.0.1;

default-lease-time 600;

max-lease-time 7200;

option domain-name "local";

option domain-name-servers 8.8.8.8;

}
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This code creates a DHCP server and defines a network on the subnet 11.0.0.0/24 that grants
a range of 10 client addresses which can be modified according to the application requirements.

Then there are two iptables configuration scripts in the “confs” folder: “iptables.sh” and
“iptables off.sh”. These files contain the iptables rules that implement the NAT to allow the
transparent communication between the access point’s network and the external network. In this
case, the NAT will be created between wlp7s0 and veth4b interfaces, the second serving Internet
connection to the first. These interfaces are the two that will be present inside the container:
wlp7s0 is the interface of the wireless card to enable the access point and veth4b is the virtual
Ethernet interface connected to the switch that will provide the Internet connection.

The “iptables.sh” script contains the rules required to establish the NAT and has the following
content:

#/bin/sh

iptables-nft -t nat -C POSTROUTING -o veth4b -j MASQUERADE || iptables-nft -t

nat -A POSTROUTING -o veth4b -j MASQUERADE

iptables-nft -C FORWARD -i veth4b -o wlp7s0 -m state --state

RELATED,ESTABLISHED -j ACCEPT || iptables-nft -A FORWARD -i veth4b -o

wlp7s0 -m state --state RELATED,ESTABLISHED -j ACCEPT

iptables-nft -C FORWARD -i wlp7s0 -o veth4b -j ACCEPT || iptables-nft -A

FORWARD -i wlp7s0 -o veth4b -j ACCEPT

On each line it’s used the logical operator OR. The result is that for each line the first command
(the one on the left of the operator) will be executed. If the command exits successfully (return
code 0) the second command (the one on the right of the operator) won’t be executed. In case it
returns an error (return code 1), the second command will be executed.

On each line, the first command is iptables-nft, which is used on Alpine to manage the Linux
firewall system based on nftables (equivalent to iptables), but still using the classic iptables rule
syntax. It looks for a rule (-C) on the current applied ruleset. If the rule does not exist, the check
command returns a value 1 (error), and hence the second command is executed, which actually
adds (-A) the rule. This prevents rules from being applied twice. As for the rules themselves:

• The first creates a rule on POSTROUTING chain and NAT table over veth4b interface,
creating a Masquerade type NAT (this changes the original IP for the one defined on veth4b
on the outbound network packets);

• The second rule allows the redirection of the network packets from veth4b interface to-
wards wlp7s0 interface as long as they are related to an already established connection
(RELATED,ESTABLISHED);

• The third rule allows the redirection of the network packets from the wlp7s0 interface towards
the veth4b interface in any case, allowing the opening of new outbound connections.

The “iptables off.sh” script is similar and has the following content:

#/bin/sh

iptables-nft -t nat -C POSTROUTING -o veth4b -j MASQUERADE && iptables-nft -t

nat -D POSTROUTING -o veth4b -j MASQUERADE

iptables-nft -C FORWARD -i veth4b -o wlp7s0 -m state --state

RELATED,ESTABLISHED -j ACCEPT && iptables-nft -D FORWARD -i veth4b -o

wlp7s0 -m state --state RELATED,ESTABLISHED -j ACCEPT

iptables-nft -C FORWARD -i wlp7s0 -o veth4b -j ACCEPT && iptables-nft -D

FORWARD -i wlp7s0 -o veth4b -j ACCEPT

Note that the content is almost the same except for two details. The first is the substitution of
the OR operator for the AND operator. With this, the second command on each line is executed
only if the first one does successfully exit, meaning that the rule does exist and hence must be
dropped by the script. The second detail is that instead of adding the rules they are deleted using
the flag -D.

54



Project Components

Lastly there is an initial script “start.sh” in the “confs” folder. This script enables all the
services and starts the access point. It contains the following lines:

#!/bin/sh

NOCOLOR=’\033[0m’

RED=’\033[0;31m’

CYAN=’\033[0;36m’

GREEN=’\033[0;32m’

sigterm_handler () {

echo -e "${CYAN}[*] Caught SIGTERM/SIGINT!${NOCOLOR}"
pkill hostapd

cleanup

exit 0

}

cleanup () {

echo -e "${CYAN}[*] Deleting iptables rules...${NOCOLOR}"
sh /iptables_off.sh || echo -e "${RED}[-] Error deleting iptables

rules${NOCOLOR}"
echo -e "${GREEN}[+] Successfully exited, byebye! ${NOCOLOR}"

}

trap ’sigterm_handler’ TERM INT

echo -e "${CYAN}[*] Creating iptables rules${NOCOLOR}"
sh /iptables.sh || echo -e "${RED}[-] Error creating iptables rules${NOCOLOR}"

echo -e "${CYAN}[+] Configuration successful! Services will start

now${NOCOLOR}"
dhcpd -4 -f -d wlp7s0 &

hostapd /etc/hostapd/hostapd.conf &

pid=$!
wait $pid

cleanup

The first lines declare some ANSI color code in order to have a more colorful output and make
it more visually intuitive. Then the “sigterm handler” function is defined, which is used to catch
SIGTERM and SIGINT signals that the process might receive by sending a keyboard interruption
on interactive mode (CTRL+C) or by stopping the container via Docker commands. This handler
is enabled with the line trap ’sigterm_handler’ TERM INT. The function will stop the execu-
tion of the hostapd service and will execute the “cleanup” function. Then the “cleanup” function
is declared to bring back the container into the initial state removing the iptables rules with the
script “iptables off.sh”. After declaring the signal trap with “sigterm handler” the iptables.sh
script is executed in order to create the network iptables rules. Lastly, the services themselves
are executed:

• The dhcpd service is executed with parameters -4 -f -d wlp7s0, indicating that IPv4 addresses
are used, it is executed on the foreground (the logs are shown) and the logs are sent to stderr,
being executed explicitly on wlp7s0. Also there is the & character in the end, making the
process run in the background. This might seem to contradict -f parameter, but the result
is that even if the process runs in the background the logs are printed on the screen;

• The hostapd service is executed, also in the background making use of &, reading the config-
uration stored on /etc/hostapd/hostapd.conf which in this case enables a WPA2 protected
access point.

In the end, the script stores the PID of the hostapd process and waits until it is finished. If
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hostapd fails at any moment and terminates the execution, the cleanup function will always allow
the container to return to its initial state.

All the configuration files are created and everything is set to build the Docker image. To
build the image from the Dockerfile directory the command is:

sudo docker build . -t accesspoint:1.1

To illustrate the functioning of the container it needs to be connected to the LAN through
the switch container illustrated in the previous section. This means that before executing the
following commands the custom network composed by router and switch containers needs to be
already up and running. The process to activate the custom network and to connect containers
to the LAN is explained in section 4.5.2.

The following commands execute the container and connect it to the LAN network:

#start access point container

sudo docker run --name ap --cap-add=NET_ADMIN -dit --network=none

accesspoint:1.1

#create veth device to connect accesspoint and switch/firewall containers

sudo ip link add veth4a type veth peer name veth4b

sudo ip link set up veth4a

sudo ip link set up veth4b

#move veth end point inside firewall/switch container and add it to bridge

(symlink already done)

sudo ip link set veth4a netns firewall

sudo ip netns exec firewall ip link set up veth4a

sudo docker exec firewall ip link set veth4a master br

#symlink accesspoint container namespace and move veth endpoint inside

PID=$(sudo docker inspect -f ’{{.State.Pid}}’ ap)

sudo ln -sfT /proc/${PID}/ns/net /var/run/netns/ap

sudo ip link set veth4b netns ap

sudo ip netns exec ap ip link set up veth4b

#add static ip to endpoint interface and default gateway inside access point

container

sudo ip netns exec ap ip addr add 192.168.16.70/16 dev veth4b

sudo ip netns exec ap ip route add default via 192.168.16.1

The first command executes an access point container named “ap” with the added Linux ca-
pability NET ADMIN allowing the container to perform network related commands. The options
-dit means that the container is interactive and detached from the current terminal. The other
commands connect the container to the LAN (see 4.5.2). Note that the name of the veth end
point moved into the access point container should match the name of the interface used during
the image configuration which in this case is “veth4b”.

By default the wireless card interface wlp7s0 is in the default host namespace. Before accessing
the container and activating the access point the interface needs to be moved from the host
namespace to the container namespace with the following commands:

PID=$(sudo docker inspect -f ’{{.State.Pid}}’ ap)

PHY=$(sudo cat /sys/class/net/wlp7s0/phy80211/name)

sudo iw phy $PHY set netns $PID

The first command gets the container ID. The second one gets the physical device associated
with the wireless interface and the third moves the interface to the container namespace. At this
point the interface is set but has no IP address which needs to be statically configured. The IP
needs to be set to 11.0.0.1/24 to match the dhcpd.conf file. Also it is good practice to bring up
the interface in case it is down.
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sudo docker exec ap ip link set up wlp7s0

sudo docker exec ap ip addr add 11.0.0.1/24 dev wlp7s0

At this point it is possible to test the access point by attaching the container shell to the
current terminal:

sudo docker attach ap

Finally to enable the access point the “start.sh” script must be executed.

./start.sh

If the process was successful the following lines should appear on the screen.

/ # ./start.sh

[*] Creating iptables rules

iptables: Bad rule (does a matching rule exist in that chain?).

iptables: Bad rule (does a matching rule exist in that chain?).

iptables: Bad rule (does a matching rule exist in that chain?).

[*] Setting wlp7s0 settings

[+] Configuration successful! Services will start now

Configuration file: /etc/hostapd/hostapd.conf

Internet Systems Consortium DHCP Server 4.4.2-P1

Copyright 2004-2021 Internet Systems Consortium.

All rights reserved.

For info, please visit https://www.isc.org/software/dhcp/

Config file: /etc/dhcp/dhcpd.conf

Database file: /var/lib/dhcp/dhcpd.leases

PID file: /run/dhcp/dhcpd.pid

Wrote 1 leases to leases file.

rfkill: Cannot open RFKILL control device

wlp7s0: interface state UNINITIALIZED->COUNTRY_UPDATE

Using interface wlp7s0 with hwaddr b8:76:3f:4e:43:25 and ssid "apdocker_wpa2"

Listening on LPF/wlp7s0/b8:76:3f:4e:43:25/11.0.0.0/24

Sending on LPF/wlp7s0/b8:76:3f:4e:43:25/11.0.0.0/24

Sending on Socket/fallback/fallback-net

Server starting service.

wlp7s0: interface state COUNTRY_UPDATE->ENABLED

wlp7s0: AP-ENABLED

The access point is enabled and now other devices can be connected through WiFi. When a
device is connected to the network the connection process is shown on the screen. The same when
it is disconnected:

wlp7s0: STA 1e:3e:bd:70:ef:8b IEEE 802.11: authenticated

HT: Forty MHz Intolerant is set by STA 1e:3e:bd:70:ef:8b in Association

Request

wlp7s0: STA 1e:3e:bd:70:ef:8b IEEE 802.11: associated (aid 1)

wlp7s0: AP-STA-CONNECTED 1e:3e:bd:70:ef:8b

wlp7s0: STA 1e:3e:bd:70:ef:8b RADIUS: starting accounting session

EB54B7146E5BE0E0

wlp7s0: STA 1e:3e:bd:70:ef:8b WPA: pairwise key handshake completed (RSN)

DHCPDISCOVER from 1e:3e:bd:70:ef:8b via wlp7s0

DHCPOFFER on 11.0.0.10 to 1e:3e:bd:70:ef:8b via wlp7s0

DHCPREQUEST for 11.0.0.10 (11.0.0.1) from 1e:3e:bd:70:ef:8b via wlp7s0

DHCPACK on 11.0.0.10 to 1e:3e:bd:70:ef:8b via wlp7s0

reuse_lease: lease age 0 (secs) under 25% threshold, reply with unaltered,

existing lease for 11.0.0.10

DHCPREQUEST for 11.0.0.10 (11.0.0.1) from 1e:3e:bd:70:ef:8b via wlp7s0
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DHCPACK on 11.0.0.10 to 1e:3e:bd:70:ef:8b via wlp7s0

wlp7s0: AP-STA-DISCONNECTED 1e:3e:bd:70:ef:8b

wlp7s0: STA 1e:3e:bd:70:ef:8b IEEE 802.11: disassociated

wlp7s0: STA 1e:3e:bd:70:ef:8b IEEE 802.11: deauthenticated due to inactivity

(timer DEAUTH/REMOVE)

When a device is connected to the access point it joins the LAN network created in the previous
sections and, besides being connected to the Internet, it can reach the other devices or containers
connected.
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Final project

5.1 Introduction

The application is composed of all the components individually analyzed in the previous chapter.
Those containers are interconnected to build a network providing all their services. This section
illustrates the application characteristics and integrations.

5.1.1 Topology

The application is composed of the following services running inside containers: a router, a switch,
a perimeter firewall and an internal firewall, an access point, an IDS and a container to run a web
browser using X11 over SSH. Those services are connected to each other in a precise topology
shown in the image 5.1.

5.1.2 Programming language

The programming language chosen for the application is Bash. The reasons that led to the
adoption of this language are many. The main one is the direct interaction with the Linux
system. All the commands used, the Docker APIs, the Linux network settings and the kernel-
level operations are natively connected to the Bash shell and language. Also all the containers
implement Linux as a base operating system. The Bash language offers all the commands and
options needed for the implementation of the application making it the most suitable choice.

5.1.3 Setting the application firewall rules

In section 4.5.2 the creation and use of the container that provides the switch and the internal
firewall has been explained but no firewall rules have actually been inserted to enable the firewall.
The reason is that the firewall rules need to be adapted to the situation and can be different based
on the application services and requirements. This section illustrates a possible configuration
created for the addressed application.

The rules must be inserted in the “enablefirewall.sh” file relative to the switch/firewall image.
Every time the file is modified the image needs to be rebuilt to incorporate the new configuration.

In the case of the application realized in this document the internal firewall must allow only the
traffic expected by the containers through their interfaces connected to the switch. Only traffic
generated by these legitimate containers should be able to reach the router and only connections
generated from within the LAN to the external network should be allowed. The rules to be
inserted in the firewall file are:
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Figure 5.1. Application topology

iptables -P INPUT DROP

iptables -P OUTPUT DROP

iptables -A FORWARD -m physdev --physdev-in veth2a --physdev-out veth3a -m

state --state ESTABLISHED,RELATED -j ACCEPT

iptables -A FORWARD -m physdev --physdev-in veth2a --physdev-out veth4a -m

state --state ESTABLISHED,RELATED -j ACCEPT

iptables -A FORWARD -m physdev --physdev-in veth2a -j DROP

In this container the packets are in transit to reach other destinations through the switch,
meaning that the INPUT and OUTPUT iptables chains won’t be used. The first two lines DROP
all the packets matching these chains. The only chain used is FORWARD as it matches the
packets that are transiting the container to reach other hosts. The third and fourth rule allows
the Internet connection or more in general any traffic which has been requested from inside the
LAN. Specifically physdev is an iptables module that manages the devices enslaved to a bridge,
physdev-in and physdev-out identify respectively the interfaces from where packets are coming
and going out. The ESTABLISHED and RELATED flags allow incoming packets associated with a
connection which has seen packets in both directions or packets starting a new connection, but
associated with an existing one. In simple words packets are accepted only if the connection is
started from within the internal network. The connection can be started either from the devices
connected to the access point (coming from veth4a) or the web browser on the “firefox” container
(coming from veth3a). The last rule blocks any other connection that doesn’t match the previous
ones.

This set of rules can be expanded according on the services provided by the network.

5.1.4 Configuration variables

In the application two system network interfaces of the underlying system are used. The first is the
Ethernet interface of the WAN which provides the Internet connection, the second is the wireless
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card interface to enable the access point. Considering the computer used for the development and
testing of the application the name of the two interfaces are respectively “enp6s0” and “wlp7s0”.
Unfortunately those interface names are not equal on each system. Different systems may have
different names and if the wrong interfaces are used on another computer then the application
would not work.

This problem can be easily solved by adding to the script two variables that contain the names
of the two interfaces and then use those variables to configure the entire application. This method
allows each different user to use the same images and scripts just by changing those variables to
the correct values on its system. The operation is performed as follows. First the two variables
are created:

INT=’enp6s0’

WC=’wlp7s0’

Those variables store respectively the Ethernet interface and the wireless card interface names.
In this case the names are “enp6s0” and “wlp7s0”.

At this point there are two cases, the occurrences of the interface names are either inside the
application script or inside the containers that will be started when the script is executed. In
the first case any occurrence of the name is replaced with the relative variable preceded by $ to
retrieve its value. For example:

ip link set enp6s0 netns openwrt_1

becomes

ip link set $INT netns openwrt_1

Changing the occurrences of names inside the containers is a little more difficult. Two functions
are used, the first is the Docker API docker exec CONTAINER COMMAND which allows to execute
commands on a running container, the second is the Linux command sed which performs basic
text transformation on files. For example to substitute any occurrences of a text (<text1>) with
another text (<text2>) inside a file stored in a running container the command would be:

sudo docker exec <container-name> sed -i "s/<text1>/<text2>/g" <path-to-file>

In the application the two containers that include the interfaces names that need to be changed
are the access point and the router. In particular the router includes the “enp6s0” interface inside
the network configuration file and the access point includes the wireless card interface “wlp7s0”
in four files. For example, considering the access point container, to modify the interface name
instances with the WC variable defined the command would be:

sudo docker exec ap sed -i "s/wlp7s0/$WC/g" /etc/hostapd/hostapd.conf /iptables.sh

/iptables_off.sh /start.sh

As shown it is possible to insert multiple files separated by a space. This command should be
inserted in the script after the container starts.

The same procedure of creating a variable to change some configuration values can be used
also for other components to make the application customizable. For example an option that,
in addition to increasing the application functionality also increases its security, is the possibility
to choose the WI-FI password and SSID. The process to implement this option is the same as
before, creating a variable:

WIFIPASSWORD=’password’

and then change the old password occurrences inside the access point container after starting
it:

sudo docker exec ap sed -i "s/password/$WIFIPASSWORD/g" /etc/hostapd/hostapd.conf

Same for the SSID.
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5.1.5 Host connection

During application execution, the Ethernet (enp6s0) and wireless card (wlp7s0) interfaces are
moved from the default network namespace to the containers namespaces. Since these interfaces
allow the host to connect to the Internet, the host remains disconnected from any network when
the application is running. This behavior brings both advantages and disadvantages. From a
security point of view, the host is isolated from any network and therefore cannot be attacked
directly. In this way, however, it can no longer perform operations that require Internet access,
such as updating images by rebuilding them. In any case, if necessary, the host can be connected
to the LAN created by the application exactly as if it were a container by creating a veth, leaving
one endpoint in the host namespace and connecting the other one to the switch. Also, the host
must be given a new IP and default route to join the network.

5.2 Application

The application has been built and tested on a computer running Ubuntu 20.04 LTS with x86-64
architecture. Two manuals have been written as documentation: Developer and User manual.

The Developer manual illustrates and explains the implementation of the application, the
scripts, the material to build the images and the possible configuration choices. To see the
manual refer to 8.1.

The User manual focuses on the application usage for a normal user. It illustrates the procedure
to start the application, the system requirements and how to use the services provided by the
application. To see the manual refer to 7.1
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Experimental evaluation

This chapter is dedicated to the experimental evaluation of the application developed in this
document. The analysis is focused on four aspects:

• The speed of the Internet connection inside the custom network compared to the one of a
normal container outside the network on the host;

• The total size of the Docker images used by the application;

• The dynamic memory and CPU consumption of the containers when the application is
running;

• The network throughput;

Those aspects are even more important if the application is deployed on an embedded sys-
tem with limited hardware resources. After these evaluations, the last section focuses on the
implementation and testing of a port scan detector using the IDS provided by the application to
increase network security.

6.1 Internet speed comparison

To evaluate the speed of the Internet connection inside the custom LAN created by the application
two containers are taken into consideration. The first is the “firefox” container created inside the
LAN. The second is a simple alpine container started on the host that is not connected to the
custom LAN. From the application LAN perspective, this last container is directly connected to
the WAN which, for testing and developing purposes, is the home router LAN already present
in the local environment. Moreover, in addition to those two containers, another measure of the
Internet speed is taken from a device connected wireless to the custom access point created in the
application which therefore is also connected to the application LAN.

The speed is tested with a tool called “SpeedTest” provided by the Oockla [6] company. This
tool can be used either with a web browser or with a command line package. In the alpine
containers the tool is used through the command line. The command to download the package
is apk add speedtest-cli and to run the test speedtest. The process takes some seconds and
when it terminates the following lines should be shown on the screen:

/ # speedtest

Retrieving speedtest.net configuration...

Testing from Fastweb (93.35.147.242)...

Retrieving speedtest.net server list...

Selecting best server based on ping...

Hosted by HAL Service SPA (Milano) [126.14 km]: 118.494 ms
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Testing download speed......................................................

Download: 17.43 Mbit/s

Testing upload

speed...........................................................

Upload: 1.13 Mbit/s

Alternatively it is possible to run the tool at the site https://www.speedtest.net using a
web browser.

The purpose of the test is to compare the Internet speed of a container or device connected to
the application LAN with the speed of one which instead is not connected. The test is not meant
to check the absolute Internet speed of the application network rather to compare the relative
speed inside and outside the network.

The Internet speed comparison is performed on the download speed, measured in Mbit/s.

Since the Internet connection speed is variable throughout the day depending on different
factors, performing just one measure for each system could lead to inaccurate results. Instead an
average of five measures for each system is performed to obtain a more precise evaluation. The
measures are illustrated in table 6.1.

container LAN container WAN device LAN
17.40 17.54 17.56
16.79 17.36 17.81
17.63 17.83 17.57
17.54 17.71 17.90
17.47 17.47 17.79

Table 6.1. Measures of Internet speed.

The resulting averages of the five measures for each system are shown in table 6.2.

container LAN container WAN device LAN
17.37 17.58 17.73

Table 6.2. Measures of Internet speed.

The resulting averages of the measures in the three cases are quite similar. This means that
the network created by the application does not decrease the performance in terms of Internet
speed.

6.2 Images total size

The images used to run the containers inside the application need to be stored on the host when
the application is started otherwise the containers could not be executed. Every image occupies
a certain space on the disk. This could be a problem on systems with limited resources. This
section illustrates the total size of the images used and therefore the disk space used by them.
The images considered are those built as explained in this document. Any changes performed to
the images may lead to a variation in their size.

The command that shows the list of the images on the host as well as their size is sudo

docker images. The output is the following:

router thesis 1d5be637c3a5 2 months ago 8.29MB

switchfirewall thesis ad52ba6bffa3 13 days ago 9.96MB

firefoxalpine thesis f347906f164a 2 months ago 313MB

accesspoint thesis c8f8d7a2c39b 2 months ago 34MB

ids thesis 6bf990d69a57 7 weeks ago 44.5MB
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The resulting disk space used by those images is 409.75 MB.

Other files including the application scripts and the material to build the images have not been
considered in the total size calculation because their size is so small that it can be overlooked (less
than 0.5 MB)

6.3 Resources evaluation at runtime

When the application is executed the containers are started. Each container is an active pro-
cess that uses dynamic resources such as RAM and CPU. The consumption of these resources
varies depending on what is being executed inside the container. To display a live stream of con-
tainers resources usage statistics Docker offers the command sudo docker stats. The following
informations are shown as live stream columns in the output for each container running:

CONTAINER ID and NAME are the ID and name of the container;

CPU % and MEM % are the percentage of the host’s CPU and memory the container is using;

MEM USAGE / LIMIT are the total memory the container is using, and the total amount
of memory it is allowed to use;

NET I/O is the amount of data the container has sent and received over its network interface;

BLOCK I/O is the amount of data the container has read to and written from block devices
on the host;

PIDS is the number of processes or threads the container has created.

This section analyzes the RAM and CPU consumption of the application addressed in this
document. It’s not possible to give an absolute evaluation since the resources consumption of
the application depends on different factors such as how many devices are connected to the local
network and the operations every device is performing on the network. For this reason three
different situations are analyzed to give an idea of the application resources consumption. The
cases analyzed are the following.

• The application is running and no device is connected to the LAN nor any operation is
performed;

• The application is running and one device is connected to the LAN. This device is connected
to the “firefox” container over SSH and is using the web browser GUI forwarded with X11;

• The application is running, one device is connected and the IDS is enabled.

It’s important to consider that the output of the command sudo docker stats is a stream,
meaning that it continuously changes based on resource consumption variations. The outputs
here reported are just a screenshot of one instant of the stream to give an idea of how many
resources the containers are using. The NET I/O and BLOCK I/O columns are omitted because
they are not analyzed in this section.

Also note that the limitations on resource usage performed on the containers through the
docker commands have been removed to present true consumption values.

First case

The application is started and left idle without performing any operation. The resources statistics
are:
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CONTAINER ID NAME CPU % MEM USAGE / LIMIT MEM % PIDS

00f016088e48 ids 0.00% 380KiB / 3.435GiB 0.01% 1

70ad7315430f ap 0.50% 5.461MiB / 3.435GiB 0.16% 4

bc7271c492e6 firefox 0.00% 1.57MiB / 3.435GiB 0.04% 2

183f09b7afa8 firewall 0.00% 616KiB / 3.435GiB 0.02% 1

35813a5f9eb3 openwrt_1 0.01% 6.16MiB / 3.435GiB 0.18% 9

As shown the resources usage in this case is very limited. The “ap” and “openwrt 1” containers
consume a very limited quantity of CPU which slightly varies around the values reported. The
other containers do not use any CPU and the overall memory consumption is rather limited.

Second case

The application is started and one device is connected wireless to the access point. The device
is connected with SSH to the “firefox” container and is using the web browser inside it. The
web browser GUI is forwarded using X11 over SSH to the device. The application is therefore
performing some services and the resources statistics are:

CONTAINER ID NAME CPU % MEM USAGE / LIMIT MEM % PIDS

00f016088e48 ids 0.00% 380KiB / 3.435GiB 0.01% 1

70ad7315430f ap 0.31% 5.504MiB / 3.435GiB 0.16% 4

bc7271c492e6 firefox 139.17% 247.1MiB / 3.435GiB 7.03% 136

183f09b7afa8 firewall 0.00% 616KiB / 3.435GiB 0.02% 1

35813a5f9eb3 openwrt_1 0.01% 6.168MiB / 3.435GiB 0.18% 9

The consumption is quite similar to the previous one except for the “firefox” container which
is using a lot of CPU and a 7% of RAM. This is due to the Firefox web browser running inside the
container which consumes lots of the available resources. The percentage of the CPU is higher
than 100% because Docker considers a value of 100% for each CPU core. Docker containers by
default are not limited on the resources they can use but in the application some options are
added to limit them when the containers start.

Third case

The application is started, one device is connected to the access point and the Snort IDS is
enabled. The command used to start the IDS in the container is snort -A console -q -c

/etc/snort/snort.conf -i veth5b. This command enables Snort in IDS mode using all the
rules file specified in the file “snort.conf”.

CONTAINER ID NAME CPU % MEM USAGE / LIMIT MEM % PIDS

00f016088e48 ids 0.07% 242.8MiB / 3.435GiB 6.90% 3

70ad7315430f ap 0.63% 5.547MiB / 3.435GiB 0.16% 4

bc7271c492e6 firefox 0.00% 25.19MiB / 3.435GiB 0.72% 17

183f09b7afa8 firewall 0.00% 584KiB / 3.435GiB 0.02% 1

35813a5f9eb3 openwrt_1 0.08% 4.234MiB / 3.435GiB 0.12% 9

As expected the measures of the IDS container are changed, the CPU consumption is slightly
higher and the RAM usage is 6%. The other containers’ statistics remain unchanged. It must
be noticed that the IDS consumption depends on the workload of traffic that it has to analyze.
Moreover when the IDS is started and when it is stopped the CPU consumption reaches higher
peaks for short time intervals.
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6.4 Throughput performance testing

The throughput of a network is the amount of data successfully transmitted in a unit of time over
a communication channel on the network. It is usually measured in bits per second (bit/s). The
software used to calculate this value is iPerf3 [8], which is a cross-platform tool that can produce
standardized performance measurements for any network.

The main network component that can slow down throughput is the firewall. Since the network
created by the application includes two firewalls, the default OpenWrt firewall and the internal
firewall in the switch container, in this section four measurements are performed: the first with
both firewalls enabled, the second and third with only one firewall enabled and the other disabled
and the last with both firewalls disabled. This allows the measurements to reflect the influence
of the firewalls on network throughput.

The data flow is measured between the web browser container and the OpenWrt container. To
perform this operation the iPerf3 package must be downloaded to both containers with the com-
mand apk add iperf3 in the web browser container and opkg install iperf3 in the OpenWrt
container. Then the command iperf3 -s must be executed in the OpenWrt container to activate
the server that will receive the data. Instead, for each of the four cases considered, from the web
browser container the throughput calculation is started with the iperf -c 192.168.16.1 com-
mand that will start sending packets to the server. By default, the TCP protocol is used. The
process performs a 10 second measurement showing progress every second and finally calculating
an average over those measurements.

First case: both firewalls enabled

/ # iperf3 -c 192.168.16.1

Connecting to host 192.168.16.1, port 5201

[ 5] local 192.168.16.60 port 58118 connected to 192.168.16.1 port 5201

[ ID] Interval Transfer Bitrate Retr Cwnd

[ 5] 0.00-1.00 sec 422 MBytes 3.54 Gbits/sec 0 1.10 MBytes

[ 5] 1.00-2.00 sec 415 MBytes 3.48 Gbits/sec 0 1.72 MBytes

[ 5] 2.00-3.00 sec 424 MBytes 3.55 Gbits/sec 0 2.30 MBytes

[ 5] 3.00-4.00 sec 418 MBytes 3.51 Gbits/sec 0 2.67 MBytes

[ 5] 4.00-5.00 sec 419 MBytes 3.52 Gbits/sec 0 2.94 MBytes

[ 5] 5.00-6.00 sec 425 MBytes 3.56 Gbits/sec 0 3.08 MBytes

[ 5] 6.00-7.00 sec 420 MBytes 3.52 Gbits/sec 0 3.08 MBytes

[ 5] 7.00-8.00 sec 421 MBytes 3.54 Gbits/sec 0 3.08 MBytes

[ 5] 8.00-9.00 sec 422 MBytes 3.54 Gbits/sec 0 3.08 MBytes

[ 5] 9.00-10.00 sec 431 MBytes 3.62 Gbits/sec 0 3.08 MBytes

- - - - - - - - - - - - - - - - - - - - - - - - -

[ ID] Interval Transfer Bitrate Retr

[ 5] 0.00-10.00 sec 4.12 GBytes 3.54 Gbits/sec 0 sender

[ 5] 0.00-10.00 sec 4.12 GBytes 3.54 Gbits/sec receiver

The resulting throughput when both the firewalls are enabled is 3.54 Gbit/s.

Second case: only OpenWrt firewall enabled

/ # iperf3 -c 192.168.16.1

Connecting to host 192.168.16.1, port 5201

[ 5] local 192.168.16.60 port 58234 connected to 192.168.16.1 port 5201

[ ID] Interval Transfer Bitrate Retr Cwnd

[ 5] 0.00-1.00 sec 426 MBytes 3.57 Gbits/sec 0 607 KBytes

[ 5] 1.00-2.00 sec 433 MBytes 3.63 Gbits/sec 0 1.78 MBytes

[ 5] 2.00-3.01 sec 425 MBytes 3.54 Gbits/sec 0 2.17 MBytes

[ 5] 3.01-4.00 sec 432 MBytes 3.65 Gbits/sec 0 2.51 MBytes
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[ 5] 4.00-5.00 sec 434 MBytes 3.65 Gbits/sec 0 2.91 MBytes

[ 5] 5.00-6.00 sec 436 MBytes 3.66 Gbits/sec 0 3.06 MBytes

[ 5] 6.00-7.00 sec 435 MBytes 3.65 Gbits/sec 0 3.06 MBytes

[ 5] 7.00-8.00 sec 435 MBytes 3.65 Gbits/sec 0 3.06 MBytes

[ 5] 8.00-9.00 sec 438 MBytes 3.67 Gbits/sec 0 3.06 MBytes

[ 5] 9.00-10.00 sec 442 MBytes 3.72 Gbits/sec 0 3.06 MBytes

- - - - - - - - - - - - - - - - - - - - - - - - -

[ ID] Interval Transfer Bitrate Retr

[ 5] 0.00-10.00 sec 4.23 GBytes 3.64 Gbits/sec 0 sender

[ 5] 0.00-10.00 sec 4.23 GBytes 3.64 Gbits/sec receiver

The resulting throughput when only the OpenWrt firewall is enabled is 3.64 Gbit/s.

Third case: only internal firewall enabled

/ # iperf3 -c 192.168.16.1

Connecting to host 192.168.16.1, port 5201

[ 5] local 192.168.16.60 port 58266 connected to 192.168.16.1 port 5201

[ ID] Interval Transfer Bitrate Retr Cwnd

[ 5] 0.00-1.00 sec 448 MBytes 3.76 Gbits/sec 0 553 KBytes

[ 5] 1.00-2.00 sec 448 MBytes 3.76 Gbits/sec 0 1.45 MBytes

[ 5] 2.00-3.00 sec 458 MBytes 3.83 Gbits/sec 0 2.04 MBytes

[ 5] 3.00-4.00 sec 455 MBytes 3.83 Gbits/sec 0 2.61 MBytes

[ 5] 4.00-5.00 sec 456 MBytes 3.83 Gbits/sec 0 3.02 MBytes

[ 5] 5.00-6.00 sec 460 MBytes 3.86 Gbits/sec 0 3.02 MBytes

[ 5] 6.00-7.00 sec 454 MBytes 3.81 Gbits/sec 0 3.02 MBytes

[ 5] 7.00-8.00 sec 448 MBytes 3.75 Gbits/sec 0 3.02 MBytes

[ 5] 8.00-9.00 sec 458 MBytes 3.84 Gbits/sec 0 3.02 MBytes

[ 5] 9.00-10.00 sec 430 MBytes 3.61 Gbits/sec 0 3.02 MBytes

- - - - - - - - - - - - - - - - - - - - - - - - -

[ ID] Interval Transfer Bitrate Retr

[ 5] 0.00-10.00 sec 4.41 GBytes 3.79 Gbits/sec 0 sender

[ 5] 0.00-10.00 sec 4.41 GBytes 3.79 Gbits/sec receiver

The resulting throughput when only the internal firewall is enabled is 3.79 Gbit/s.

Fourth case: both firewalls disabled

/ # iperf3 -c 192.168.16.1

Connecting to host 192.168.16.1, port 5201

[ 5] local 192.168.16.60 port 58254 connected to 192.168.16.1 port 5201

[ ID] Interval Transfer Bitrate Retr Cwnd

[ 5] 0.00-1.00 sec 457 MBytes 3.83 Gbits/sec 0 1.01 MBytes

[ 5] 1.00-2.00 sec 466 MBytes 3.91 Gbits/sec 0 2.02 MBytes

[ 5] 2.00-3.00 sec 469 MBytes 3.94 Gbits/sec 0 2.59 MBytes

[ 5] 3.00-4.00 sec 465 MBytes 3.89 Gbits/sec 0 2.85 MBytes

[ 5] 4.00-5.00 sec 464 MBytes 3.89 Gbits/sec 0 3.15 MBytes

[ 5] 5.00-6.00 sec 464 MBytes 3.90 Gbits/sec 0 3.15 MBytes

[ 5] 6.00-7.00 sec 461 MBytes 3.87 Gbits/sec 0 3.15 MBytes

[ 5] 7.00-8.00 sec 460 MBytes 3.85 Gbits/sec 0 3.15 MBytes

[ 5] 8.00-9.00 sec 458 MBytes 3.85 Gbits/sec 0 3.15 MBytes

[ 5] 9.00-10.00 sec 470 MBytes 3.94 Gbits/sec 0 3.15 MBytes

- - - - - - - - - - - - - - - - - - - - - - - - -

[ ID] Interval Transfer Bitrate Retr

[ 5] 0.00-10.00 sec 4.52 GBytes 3.89 Gbits/sec 0 sender

[ 5] 0.00-10.00 sec 4.52 GBytes 3.89 Gbits/sec receiver
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The resulting throughput when both the firewalls are disabled is 3.89 Gbit/s.

From the analysis carried out it can be seen that firewalls have an impact on network through-
put. In particular, starting from the configuration in which both are disabled, the internal firewall
has a negative impact of about 2.6%, while the OpenWrt firewall decreases throughput by about
6.4%.Overall, considering both firewalls active, the throughput is decreased by about 9%. Con-
sider that these measurements are not completely accurate as throughput varies slightly over
time.

6.5 Detect port scans with Snort

Considering an attack aimed to penetrate inside a network, one of the early phases is the port
scanning. In this phase the attacker knows the IP of the victim machine and performs a scan of all
the ports to find active services and collect as much information as possible about that machine.
This section analyzes how to detect those scans with the IDS implemented inside the container.

The most used tool for port scanning is “nmap” which is an open source utility for network
discovery and security auditing. The default and most adopted option for port scanning is called
“TCP SYN scan”. It is really fast (thousands of ports scanned per second), relatively hidden and
minimally invasive, as it never completes TCP connections.

To detect this kind of scan the IDS needs to be properly configured. Snort provides a module
named “sfportscan” which has many options such as memory to save packets and analyze them
based on time out and number of connections. To enable it open the “snort.conf” file, find the line
# preprocessor sfportscan:... under the section 5)Configure preprocessors and change
it with the following line:

preprocessor sfportscan: proto { all } scan_type { all } sense_level { high }

logfile { scan }

that enables the “sfportscan” preprocessor. This operation allows the IDS to detect SYN and
other types of scan and to log them in the log directory in the “scan” file declared in the option
logfile.

Also another configuration can be performed to reinforce the scan detection. The “sfportscan”
module gathers and logs information about the overall scan but, as it is shown later in the test,
does not allow to see the individual packets intercepted. To perform this operation instead a rule
needs to be created:

alert tcp any any -> any any (flags:S; msg:"TCP SYN packet intercepted"; sid:

1000005;)

This rule matches the TCP packets with the SYN flag set thanks to the option flags:S and
needs to be inserted in a rules file included in the “snort.conf”.

Now the scan detection is fully enabled and ready to be tested. All these operations have to
be done before building the image in order to have the configuration already enabled when the
container starts.

testing

After building the images with the script “build.sh” to integrate the new configuration, start the
application running the “start.sh” script. At this point to properly test the IDS container two
terminals should be connected to it. One to monitor in real time the intercepted packets and
one to check the log files. The first terminal can be connected with the command sudo docker

attach ids while the second should run the command sudo docker exec -it ids sh to open
and attach a new shell in the container. Note that the same procedure can be performed also by
executing the commands from the host with the Docker API docker exec CONTAINER COMMAND.
Then to enable the IDS the command snort -A console -q -c /etc/snort/snort.conf -i

veth5b is executed in the first terminal. At this point, from a device outside the application
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network, the scan with “nmap” is executed running the command nmap <router-external-IP>.
The scan in the test has been performed from a device with IP 192.168.1.5 to the external router
IP 192.168.1.79 with the command nmap 192.168.1.79. This command executes a “TCP SYN
scan” on the machine targeted. All the thousands of TCP packets intercepted by the IDS are
shown in real time in the first terminal. One line is reported as an example:

02/07-18:44:53.030339 [**] [1:1000005:0] TCP SYN packet intercepted [**] [Priority:

0] TCP 192.168.1.5:60957 -> 192.168.1.79:1055

The line shows the time, the IP and port of the sender and recipient. Each line signals a
packet intercepted.

When the scan terminates the stream of packets on the screen also ends. At this point on the
other terminal connected to the container it’s possible to see the log files without disabling the
IDS. In the directory /var/log/snort/ there should be at least two files. One is called “scan”
which is a standard text file created by the “sfportscan” module and has the following content:

Time: 02/07-18:44:14.840594

event_ref: 0

192.168.1.5 -> 192.168.1.79 (portscan) TCP Filtered Portscan

Priority Count: 0

Connection Count: 200

IP Count: 1

Scanner IP Range: 192.168.1.5:192.168.1.5

Port/Proto Count: 200

Port/Proto Range: 21:60443

It shows the time the scan was started, the IP of the sender and the receiver, the type of scan
and the range of ports scanned.

The other log file is called “snort.log.<timestamp>” where <timestamp> is the moment when
Snort was started in IDS mode marked in Unix time. This file can be read with the command
snort -r snort.log.<timestamp> and contains the details of all the individual packets inter-
cepted as follows:

WARNING: No preprocessors configured for policy 0.

02/07-18:44:53.198436 192.168.1.5:60961 -> 192.168.1.79:14238

TCP TTL:254 TOS:0x0 ID:0 IpLen:20 DgmLen:64 DF

******S* Seq: 0xD36DD6E2 Ack: 0x0 Win: 0xFFFF TcpLen: 44

TCP Options (8) => MSS: 1460 NOP WS: 6 NOP NOP TS: 1903800874 0 SackOK EOL

=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+

WARNING: No preprocessors configured for policy 0.

02/07-18:44:53.240816 192.168.1.5:60962 -> 192.168.1.79:7019

TCP TTL:254 TOS:0x0 ID:0 IpLen:20 DgmLen:64 DF

******S* Seq: 0xDDACF152 Ack: 0x0 Win: 0xFFFF TcpLen: 44

TCP Options (8) => MSS: 1460 NOP WS: 6 NOP NOP TS: 1903800915 0 SackOK EOL

=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+=+
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7.1 Overview

This guide explains how to start the application and use the services provided. The application
creates a private network consisting of:

• A router and a perimeter firewall;

• An intrusion detection system (IDS);

• A switch and an internal firewall;

• A Firefox web browser;

• An access point that allows wireless connection to the network.

The application takes advantage of container technology using Docker container engine. Each
component or pair of components listed is isolated in a different container that therefore provides
a specific service. Those containers are interconnected as shown in the figure 7.1.

7.2 Requirements

This section illustrates the requirements to use the application.

7.2.1 System requirements

It’s necessary to have a Linux based system provided with a wireless card and Internet connection
through Ethernet. The application has been tested and developed on a computer with Ubuntu
20.04 LTS. The application has been developed for x86-64 architecture systems.

To install Linux follow this guide.

7.2.2 Software requirements

In order to run the application it’s necessary to have Docker installed on the system. To install
docker follow this guide.

Also it’s necessary to have the “thesisproject” folder which contains all the application com-
ponents.
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Figure 7.1. Application topology

7.3 Configuration

Some configurations must be performed before starting the application, otherwise it will start
with the default values which may not be correct.

7.3.1 Change Wi-Fi name and password

It is possible to change the Wi-Fi name and password of the access point before starting the
application. This operation is not mandatory but is highly recommended for security reasons. If
it is not changed the default password will be “password”.

To change the password, open the application “start.sh” script with any text editor. Find the
following lines at the top of the script:

#set wi-fi name

SSID=’apdocker_wpa2’

#set wi-fi password

WIFIPASSWORD=’password’

The values inside the single quotes are assigned to the two variables. Change them if desired
and save the file. Those values will be the new name and password of the Wi-Fi when the
application is started.

7.3.2 Change OpenWrt container password for SSH

The OpenWrt container enables SSH connections on port 22 by default each time it is started.
The password for this connections is set automatically by the script when the application starts
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and is customizable. To change the password, open the application “start.sh” script with any text
editor. Find the following lines at the top of the script:

#set OpenWrt container password (SSH)

OWPASS=’password’

The value inside the single quotes will be the OpenWrt container password for SSH. Change
it if desired and save the file.

7.3.3 Change wireless card interface name

The default wireless card name is “wlp7s0”. If the name of the wireless card is different from the
default values it is mandatory to change it in order to make the application work. To find out this
information on the current Linux system open a terminal and run the command iw dev. This
command lists all network interfaces for wireless hardware. The output should be similar to the
following:

user@user:~/Desktop$ iw dev

phy#0

Interface wlp7s0

ifindex 3

wdev 0x1

addr b8:76:3f:4e:43:25

ssid NETGEAR24

type managed

channel 10 (2457 MHz), width: 20 MHz, center1: 2457 MHz

txpower 20.00 dBm

The line Interface wlp7s0 shows the name of the wireless card, which in this case is “wlp7s0”
as the default value. If the name is different the following operations must be performed.

Open the application “start.sh” script with any text editor. Find the following lines at the
top of the script:

#set wireless card name

WC=’wlp7s0’

The string inside the single quote must be the correct wireless card name. Change it if it’s
different from “wlp7s0” and save the file before starting the application.

7.3.4 Change Ethernet card interface name

The default Ethernet interface name is “enp6s0”. This is the interface connected to the WAN
which provides the Internet connection. If the name of the interface is different from the default
values it is mandatory to change it in order to make the application work. To find out this
information on the current Linux system open a terminal and run the command ip link show.
This command lists all network interfaces on the host. The output should be similar to the
following:

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN mode

DEFAULT group default qlen 1000

link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

2: enp6s0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel state UP

mode DEFAULT group default qlen 1000

link/ether 74:d0:2b:46:c8:3b brd ff:ff:ff:ff:ff:ff

3: wlp7s0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP mode

DORMANT group default qlen 1000

link/ether b8:76:3f:4e:43:25 brd ff:ff:ff:ff:ff:ff
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In this case the Ethernet interface is “enp6s0” which is the second in the list and may be
different in other systems. If the name is different the following operations must be performed.

Open the application “start.sh” script with any text editor. Find the following lines at the
top of the script:

#set WAN interface name

INT=’enp6s0’

The string inside the single quote must be the correct Ethernet interface. Change it if it’s
different from “enp6s0” and save the file before starting the application.

7.4 Build the images

The application makes use of Docker images to start the containers. Those images needs to be
built before starting the applications. To perform this operation open a terminal and move to the
“thesisproject” folder, then run the “build.sh” script with the command:

sudo ./build.sh

The command requires administrator (root) permissions. Wait for the execution to finish.

7.5 Application startup

To execute the application open a terminal, move to the “thesisproject” directory and run the
“start.sh” script with the command:

sudo ./start.sh

Administrator (root) permissions are needed to execute the program.

The following line should appear on the screen if the application started correctly:

user@user:~$ sudo ./start.sh

[sudo] password for user:

[+] Starting OpenWrt router container

d2afaa6b5b61e68c3dd859d94a4a06a2afeb1a01310b529f1018977a70b9e89a

[+] Container name: openwrt_1

[+] Starting switch/firewall container

5969cd8fd63b0f358c61bc31633f5e311a826365c249bdcb189e89ffe958db0a

[+] Container name: firewall

[+] Starting firefox container

62d6817a24470ec074482e6ebffe8822c93e8d80988c8d835209d5ea7dea2479

[+] Container name: firefox

[+] Container IP: 192.168.16.60

[+] Starting access point container

d355abe76387ae50814ffe6e1f1ab63e42c751c96bc41155075fa88d7f978958

[+] Container name: ap

[+] Container IP: 192.168.16.70

[+] Starting Snort IDS container

4099c0ad6df99e02a8488f73d6aab59795e2cd8c234bfb2a19fd189cb9f98309

[+] Container name: ids

[+] Creating interfaces to connect containers

[+] Connecting switch and router containers

[+] Connecting firefox container to switch

[+] Connecting access point container to switch

[+] Connecting ids container to router

[+] Configuring containers

[+] Moving wireless card interface wlp7s0 to access point namespace
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[+] Enabling access point

[+] Changing OpenWrt container password

Changing password for root

New password:

Bad password: too weak

Retype password:

passwd: password for root changed by root

[+] Mirror traffic on router to ids

[+] Application started

[+] To attach container run: sudo docker attach <container-name>

The startup can take some seconds, wait until it ends. It’s possible to display a list with all
the active containers executing the command sudo docker ps to make sure that the containers
are running.

The output on the screen gives important information about the application components. It
shows all the containers name, the IP of those connected to the switch and lastly the command
to enter in a container from the host terminal.

7.6 Terminate the application

To terminate the execution of the application open a terminal, move to the “thesisproject” direc-
tory and run the “stop.sh” script with the command:

sudo ./stop.sh

The name of the terminated containers is printed on the screen.

7.7 Application error

If any errors occur during application startup the last lines of the output on the screen will be
similar to the following.

[+] Error occurred!

Command that caused the error: "docker exec openwrt_1 opkg update"

Cleaning up the following containers:

ids

ap

firefox

firewall

openwrt_1

[+] Exiting!

In this case a command failed during the execution of the script. The command that raised
the error is reported on the screen for debug purposes.

7.8 Application usage

The names of the containers are specified in the screen output. In particular:

openwrt 1 is the OpenWrt router and perimeter firewall container;

firewall is the container with the switch and the internal firewall;

firefox is the web browser container;
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ap is the access point container;

ids is the intrusion detection system container.

The output also specifies the private IP address of the containers connected to the switch.

7.8.1 Access the OpenWrt router container

The OpenWrt container can be accessed from the host with the command

sudo docker attach openwrt_1

It can also be accessed from any devices within the application LAN through SSH with the
command

ssh root@192.168.16.1

then the password for the OpenWrt router container is requested to perform the access. For
more information refer to 7.3.2.

7.8.2 Manage the container services

All the containers are accessible from the host for managing the network services. To access a
container open a terminal and run the command:

sudo docker attach <container-name>

Then a shell inside the container should appear in the current terminal and the commands
can be executed directly inside it. The names of the containers are shown in the output of the
“start.sh” script or they can be retrieved by running the command sudo docker ps that shows
a list of all the active containers and their names.

Another equivalent method to execute commands inside the containers from the host without
accessing them is to use the Docker API docker exec as follows:

sudo docker exec <container_name> [COMMAND]

which is the same as executing [COMMAND] inside the container named “<container name>”.

7.8.3 Connect devices to the Wi-Fi

The access point creates a Wi-Fi network. Devices can be connected wireless to it. The access
point name and password are the ones set following the section 7.3.1, which illustrates how to
change the Wi-Fi password and SSID. If this operation has not been performed, the default
password is “password” and the default SSID is “apdocker wpa2”. It is highly recommended to
change those values as the default ones are insecure.

7.8.4 Use the Firefox web browser inside the container

Note: the web browser runs inside the container and its graphical interface is forwarded over SSH
using a protocol called X11. X11 is a computer software and network protocol that provides a
graphical user interface (GUI) for networked computers common on Unix-like systems. Therefore
some systems support this functionality natively while others do not. To perform the operation
illustrated in this section make sure that the system used supports X11. If not it’s necessary to
download a software that integrates this functionality in the current system.

The “firefox” container offers an isolated environment to perform potentially dangerous oper-
ations such as browsing dangerous Internet sites or downloading untrusted files. The container
can be accessed using the SSH protocol from devices connected to the network, the container IP
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is 192.168.16.60. To access the container open a terminal on a device connected to the network
and execute the command:

ssh -Y user@192.168.16.60

Then insert the password. The default password is “password”. To change user or password
refer to 8.6.4.

Once the container is connected to open the web browser run the command firefox. The
Firefox GUI should be prompted on the screen.

This container is mainly dedicated to execute a web browser but it can be used also to execute
other X11 applications or other pieces of software. Software present as a package in the Alpine
Linux packages library can be downloaded with the command apk add <package-name>.

To close the SSH connection run the command exit inside the SSH terminal.

7.8.5 Enable and use the IDS

The IDS is disabled by default and can be enabled at any time by attaching the container with
the command sudo docker attach ids and then running the command:

snort -A console -c /etc/snort/snort.conf -i veth5b

This command starts the tool in IDS mode showing in real time the intercepted packets
matching the chosen rules (see 8.6.3). The -q option (quiet) can be added to hide the verbose
startup configuration output. The same operation can be also performed from the host terminal
by running the same command preceded by sudo docker exec ids.

When Snort is active in IDS mode its operations are continuously logged. The default path
to the log files is /var/log/snort/. There are two types of log file: the files that contain
the information on the individual packets intercepted and the files that contain other general
information. The first type are PCAP files, which is a specific format to record packet data from
a network scan, and can be read with the command snort -r <file-name>. The others are
standard text files.

The IDS is configured to detect network scans that target the application network, for more
information refer to 6.5.

7.9 Update the images

To update the images, simply run the “build.sh” script as shown in section 7.4. The images will
be rebuilt to the latest version.

If the application is running and the host has no Internet connection, before rebuilding the
images it’s necessary to connect the host to the LAN created by the application. To perform
this operation move to the “thesisproject” directory and run the “connecthost.sh” script with the
command:

sudo ./connecthost.sh

It is strongly recommended to read section 8.4.5 before executing this script as some modifi-
cations may have to be performed.

After rebuilding the images, the application must be terminated and restarted to integrate the
new updates. See 7.6 (stop) and 7.5 (start).
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8.1 Introduction

The application creates a private network composed of a router, an IDS, a switch, a perimeter
firewall and an internal firewall, a web browser and an access point.

The application takes advantage of container technology using Docker container engine. Each
component or pair of components is isolated in a different container that therefore provides a
specific service. Those containers are interconnected as shown in figure 8.1.
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Figure 8.1. Application topology
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8.2 Images and software

To create the containers, the application needs the related Docker images. Those images must be
present on the host when the application is executed. The main software used to build the images
are:

• Openwrt for the router and perimeter firewall;

• Snort as the intrusion detection system (IDS);

• Linux kernel features: Iptables for the internal firewall and Linux bridges for the switch;

• Firefox, OpenSSH and X11 for the web browser image;

• Hostapd, dhcp, iptables for the access point.

8.3 Application components

All the application components are located in the “thesisproject” folder. The folder has the
following content:

accesspoint build.sh connecthost.sh ids router start.sh stop.sh

switchfirewall webbrowser

./accesspoint:

confs Dockerfile

./accesspoint/confs:

dhcpd.conf hostapd_confs iptables_off.sh iptables.sh start.sh

./accesspoint/confs/hostapd_confs:

accept wpa2.conf

./ids:

all_rules config Dockerfile rules

./ids/all_rules:

rules

./ids/all_rules/rules:

(list of all the snort rules files)

./ids/config:

classification.config reference.config snort.conf threshold.conf unicode.map

./ids/rules:

black_list.rules white_list.rules

./router:

Dockerfile dropbear network

./router/dropbear:

dropbear_ed25519_host_key dropbear_rsa_host_key

./switchfirewall:

Dockerfile enablefirewall.sh
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./webbrowser:

Dockerfile ssh

./webbrowser/ssh:

moduli sshd_config ssh_host_dsa_key.pub ssh_host_ecdsa_key.pub

ssh_host_ed25519_key.pub ssh_host_rsa_key.pub

ssh_config ssh_host_dsa_key ssh_host_ecdsa_key ssh_host_ed25519_key

ssh_host_rsa_key

The folder contains four scripts to manage the application together with five folders with the
material to build the related five images. The four scripts are analyzed in depth in the next
section.

8.4 Application scripts

The application consists of four bash scripts: “build.sh”, “start.sh”, “stop.sh”, “connecthost.sh”.
Before explaining these scripts it is best to illustrate all the APIs and functions that they use.

8.4.1 Functions and APIs

The scripts use APIs provided by Docker to interact with the Docker daemon, which manages
the containers. The APIs used are docker build [OPTIONS] PATH to build Docker images,
docker inspect [OPTIONS] NAMEID [NAMEID...] to find out container informations, docker
run [OPTIONS] IMAGE[:TAG@DIGEST] [COMMAND] [ARG...] to run a container and docker exec

[OPTIONS] CONTAINER COMMAND [ARG...] to execute commands inside a running container.

Finally to stop the container execution docker rm [OPTIONS] CONTAINER [CONTAINER...].

The “start.sh” script makes great use of the ip Linux command which is used for performing
several network administration tasks. In particular it is used to create and manipulate veth
interfaces for connecting containers together. Those interfaces are created on the host and then
moved to the containers namespaces to connect them. Two containers are connected if they have
the two endpoints of a veth inside their namespaces.

8.4.2 Build script

The “build.sh” script builds the five images that will be used to start the application. The content
is:

#!/bin/bash

cd router

docker build --pull . -t router:thesis

cd ../switchfirewall

docker build --pull . -t switchfirewall:thesis

cd ../webbrowser

docker build --pull . -t firefoxalpine:thesis

cd ../ids

docker build --pull . -t ids:thesis

cd ../accesspoint

docker build --pull . -t accesspoint:thesis

The script changes one by one the five directories building for each one the relative image.
The command docker build --pull . -t <image-name>:<tag> builds an image based on the
Dockerfile present in the directory with the name and tag specified. The option --pull makes
sure that the base image in the Dockerfile is updated by pulling it from the DockerHub. All the
images are tagged “thesis” and are used in the other two application scripts.
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8.4.3 Start script

The “start.sh” script is the core of the application. It starts all the containers, configures and
connects them. The content is:

1 #!/bin/bash

2
3 #set wi-fi password

4 WIFIPASSWORD=’password’

5
6 #set wi-fi name

7 SSID=’apdocker_wpa2’

8
9 #set OpenWrt container password (SSH)

10 OWPASS=’password’

11
12 #set wireless card name

13 WC=’wlp7s0’

14
15 #set WAN Ethernet interface name

16 INT=’enp6s0’

17
18 NOCOLOR=’\033[0m’

19 GREEN=’\033[0;32m’

20 CYAN=’\033[0;36m’

21 RED=’\033[0;31m’

22
23 cleanup(){

24 echo -e "${RED}[+] Error occurred! \nCommand that caused the error:

\"${last_command}\" \nCleaning up the following containers:

${NOCOLOR}"
25 docker rm -f ids ap firefox firewall openwrt_1

26 echo -e "${RED}[+] Exiting! ${NOCOLOR}"
27 exit 0

28 }

29
30 #call cleanup function when any command fails

31 trap ’cleanup’ ERR

32 #keep track of the last executed command

33 trap ’last_command=$current_command; current_command=$BASH_COMMAND’ DEBUG

34
35 echo -e "${GREEN}[+] Starting OpenWrt router container ${NOCOLOR}"
36 docker run --cap-add=NET_ADMIN -dit --name openwrt_1 --network none

--memory="500m" --memory-swap="500m" --cpus="0.5" -v

$(pwd)/router/dropbear:/etc/dropbear:ro router:thesis

37 echo -e "${CYAN}[+] Container name: openwrt_1 ${NOCOLOR}"
38
39 docker exec openwrt_1 sed -i "s/enp6s0/$INT/g" /etc/config/network

40
41 echo -e "${GREEN}[+] Starting switch/firewall container ${NOCOLOR}"
42 docker run --cap-add NET_ADMIN --name firewall --net=none -itd

--memory="100m" --memory-swap="100m" --cpus="0.2" switchfirewall:thesis

43 echo -e "${CYAN}[+] Container name: firewall ${NOCOLOR}"
44
45 echo -e "${GREEN}[+] Starting firefox container ${NOCOLOR}"
46 docker run --name firefox --net=none -itd --add-host firefox:192.168.16.60

--hostname firefox --dns 8.8.8.8 --dns 8.8.4.4 --memory="1200m"

--memory-swap="1200m" --cpus="1.0" firefoxalpine:thesis
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47 echo -e "${CYAN}[+] Container name: firefox ${NOCOLOR}"
48 echo -e "${CYAN}[+] Container IP: 192.168.16.60 ${NOCOLOR}"
49
50 echo -e "${GREEN}[+] Starting access point container ${NOCOLOR}"
51 docker run --name ap --cap-add=NET_ADMIN --network=none -dit --memory="300m"

--memory-swap="300m" --cpus="0.5" accesspoint:thesis

52 echo -e "${CYAN}[+] Container name: ap ${NOCOLOR}"
53 echo -e "${CYAN}[+] Container IP: 192.168.16.70 ${NOCOLOR}"
54
55 echo -e "${GREEN}[+] Starting Snort IDS container ${NOCOLOR}"
56 docker run --name ids -itd --net=none --cap-add=NET_ADMIN --memory="1200m"

--memory-swap="1200m" --cpus="0.8" ids:thesis

57 echo -e "${CYAN}[+] Container name: ids ${NOCOLOR}"
58
59 echo -e "${GREEN}[+] Creating interfaces to connect containers ${NOCOLOR}"
60 ip link add veth2a type veth peer name veth2b

61 ip link set up veth2a

62 ip link set up veth2b

63
64 ip link add veth3a type veth peer name veth3b

65 ip link set up veth3a

66 ip link set up veth3b

67
68 ip link add veth4a type veth peer name veth4b

69 ip link set up veth4a

70 ip link set up veth4b

71
72 ip link add veth5a type veth peer name veth5b

73 ip link set up veth5a

74 ip link set up veth5b

75
76 #create bridge inside switch/firewall container

77 docker exec firewall ip link add name br type bridge

78 docker exec firewall ip link set br up

79
80 echo -e "${GREEN}[+] Connecting switch and router containers ${NOCOLOR}"
81 owpid=$(docker inspect -f ’{{.State.Pid}}’ openwrt_1)

82 ln -sfT /proc/${owpid}/ns/net /var/run/netns/openwrt_1

83 ip link set veth2b netns openwrt_1

84 ip netns exec openwrt_1 ip link set up veth2b

85
86 #move WAN Ethernet interface to router namespace

87 ip link set $INT netns openwrt_1

88 ip netns exec openwrt_1 ip link set up $INT
89
90 fwpid=$(docker inspect -f ’{{.State.Pid}}’ firewall)

91 mkdir -p /var/run/netns/

92 ln -sfT /proc/${fwpid}/ns/net /var/run/netns/firewall

93 ip link set veth2a netns firewall

94 ip netns exec firewall ip link set up veth2a

95
96 docker exec firewall ip link set veth2a master br

97
98 echo -e "${GREEN}[+] Connecting firefox container to switch ${NOCOLOR}"
99 ffpid=$(docker inspect -f ’{{.State.Pid}}’ firefox)

100 ln -sfT /proc/${ffpid}/ns/net /var/run/netns/firefox

101 ip link set veth3b netns firefox
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102 ip netns exec firefox ip link set up veth3b

103 ip netns exec firefox ip addr add 192.168.16.60/16 dev veth3b

104 ip netns exec firefox ip route add default via 192.168.16.1

105
106 ip link set veth3a netns firewall

107 ip netns exec firewall ip link set up veth3a

108
109 docker exec firewall ip link set veth3a master br

110
111 echo -e "${GREEN}[+] Connecting access point container to switch ${NOCOLOR}"
112 appid=$(docker inspect -f ’{{.State.Pid}}’ ap)

113 ln -sfT /proc/${appid}/ns/net /var/run/netns/ap

114 ip link set veth4b netns ap

115 ip netns exec ap ip link set up veth4b

116 ip netns exec ap ip addr add 192.168.16.70/16 dev veth4b

117 ip netns exec ap ip route add default via 192.168.16.1

118
119 ip link set veth4a netns firewall

120 ip netns exec firewall ip link set up veth4a

121 docker exec firewall ip link set veth4a master br

122
123 echo -e "${GREEN}[+] Connecting ids container to router ${NOCOLOR}"
124 idspid=$(docker inspect -f ’{{.State.Pid}}’ ids)

125 ln -sfT /proc/${idspid}/ns/net /var/run/netns/ids

126 ip link set veth5b netns ids

127 ip netns exec ids ip link set up veth5b

128
129 ip link set veth5a netns openwrt_1

130 ip netns exec openwrt_1 ip link set up veth5a

131
132 echo -e "${GREEN}[+] Configuring containers ${NOCOLOR}"
133
134 #change wi-fi name and password inside ap container

135 docker exec ap sed -i "s/apdocker_wpa2/$SSID/g" /etc/hostapd/hostapd.conf

136 docker exec ap sed -i "s/password/$WIFIPASSWORD/g" /etc/hostapd/hostapd.conf

137
138 #change wireless card name inside ap container

139 docker exec ap sed -i "s/wlp7s0/$WC/g" /etc/hostapd/hostapd.conf /iptables.sh

/iptables_off.sh /start.sh

140
141 echo -e "${GREEN}[+] Moving wireless card interface ${WC} to access point

namespace ${NOCOLOR}"
142 #move wireless card to ap namespaces

143 PHY=$(cat /sys/class/net/$WC/phy80211/name)
144 iw phy $PHY set netns $appid
145 docker exec ap ip link set $WC up

146 docker exec ap ip addr add 11.0.0.1/24 dev $WC
147
148 echo -e "${GREEN}[+] Enabling access point ${NOCOLOR}"
149 docker exec -d ap ./start.sh

150
151 echo -e "${GREEN}[+] Changing OpenWrt container password ${NOCOLOR}"
152 (echo "$OWPASS"; echo "$OWPASS") | docker exec -i openwrt_1 passwd

153
154 echo -e "${GREEN}[+] Mirror traffic on router to ids ${NOCOLOR}"
155 docker exec openwrt_1 nft add table netdev filter
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156 docker exec openwrt_1 nft add chain netdev filter ingress0 ’{ type filter

hook ingress devices = { ’"${INT}"’, br-lan } priority 0; }’

157 docker exec openwrt_1 nft add rule netdev filter ingress0 dup to veth5a

158
159 echo -e "${GREEN}[+] Application started ${NOCOLOR}"
160 echo -e "${GREEN}[+] To attach contaner run: sudo docker attach

<container-name> ${NOCOLOR}"

The script can be divided into five sections to facilitate the analysis:

Lines 3 to 21 are dedicated to variables initialization;

Lines 23 to 33 deal with possible script errors;

Lines 35 to 57 start the five containers from the relative images;

Lines 59 to 130 deal with the connection of the containers;

Lines 132 to 160 are dedicated to the containers configuration.

Those sections are analyzed one by one in the following paragraphs.

Variables initialization (lines 3-21)

In these lines all the variables used throughout the script are initialized. They should be changed
according to the user needs before starting the application. The variables are:

WIFIPASSWORD defines the Wi-Fi password;

SSID defines the Wi-Fi network name;

OWPASS defines the OpenWrt container password for SSH;

WC defines the wireless card name;

INT defines the Ethernet interface name;

Other variables are just colors definition used in the echo commands to improve the visibility of
the script output.

Error handling (lines 23-33)

It’s good practice in every script to handle possible command failures. If a command fails it
is better to find out the problem and solve it than to risk that the application breaks without
knowing why. Also if something fails and the script terminates it is good practice to perform a
cleaning of all the components created before the failure. All these functionalities are implemented
in this section.

The first lines implement the “cleanup” function which prints on the screen that an error has
occurred and also which command raised it (with the variable last_command explained later).
Then it removes the containers that may already be active to bring back the system to the initial
state and finally terminates the script.

The command trap ’cleanup’ ERR calls the function “cleanup” if any error occurs during
the script execution which means if any function returns a non-zero exit value indicating a failure.

Finally the command

trap ’last_command=$current_command; current_command=$BASH_COMMAND’ DEBUG

keeps track of the last command executed which will be printed in case it fails. The variables
last_command and current_command contain respectively the last and the current command
being executed.

84



Developer manual

Starting containers (lines 35-57)

This section of code starts the five containers with the Docker command:

docker run [OPTIONS] IMAGE[:TAG@DIGEST] [COMMAND] [ARG...]

The following containers are started from the specified images.

• The router container from the “router:thesis” image;

• The switch and firewall container from the “switchfirewall:thesis” image;

• The web browser container from the “firefoxalpine:thesis” image;

• The access point container from the “accesspoint:thesis” image;

• The IDS container from the “ids:thesis” image.

Each container is given a different name and provides a different service and therefore is
started with different options. All the containers are started without any network connection
(--net=none) because they will be interconnected later in the script. The option --cap-add

NET_ADMIN is specified on the containers that need to perform network related tasks. All the
containers are started with the option -dit which runs them interactively in the background
allowing users to connect to them at a later time. The router and web browser containers are
started with the option -v to mount the SSH folders with the correct host keys from the host to
the containers.

Each container is started with a specific hardware resources limitation in order to avoid cases
of resource starvation or, in the worst case, DoS attacks. The options used are

• --memory="<value-MB>m"

• --memory-swap="<value-MB>m"

• --cpus="<core-value>"

to respectively limit the RAM, the memory swap and the CPU. These values can be changed
according to the system resources and to the services provided by the various containers.

The command at line 46 runs the “firefox” container with some additional options. The flag
add-host adds the host “firefox” with IP 192.168.16.60 and then hostname gives the hostname
“firefox” to the actual container. This is necessary to make the X11 screen forwarding work
correctly. Finally the dns option adds the Google DNS servers IP to the container;

At line 39 the Ethernet interface stored in the variable “INT” is set inside the router container,
specifically in the network configuration file.

Connecting containers (lines 59-130)

In this piece of code the containers are connected following the topology shown in figure 8.1. The
connection between two containers is performed by creating a veth device with the command ip

link add <end-point1> type veth peer name <end-point2>. The veth device created has
two interfaces “<end-point1>” and “<end-point2>”. The two containers are connected when the
two endpoints are moved inside their namespaces with the command ip link set <end-point>

netns <container-name> performed on both the containers.

At line 77 a bridge device is created inside the switch/firewall container. This device works as
a switch and all the veth endpoints moved inside this container are connected to it allowing the
other containers to join the network.

Also the containers connected to the switch are assigned an IP address and default route after
the veth endpoints are moved inside their namespaces with the commands:
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ip netns exec firefox ip addr add 192.168.16.60/16 dev veth3b

ip netns exec firefox ip route add default via 192.168.16.1

At line 87 the WAN Ethernet interface is moved from the default host namespace to the router
container namespace in order to directly connect the router to the WAN.

Configuring containers (lines 132-160)

In the last section the containers are configured. The operations performed are:

• The correct Wi-Fi SSID, password, and wireless card name that are stored in the variables
at the beginning of the script are set inside the access point container (lines 135 to 139);

• The wireless card interface is moved to the access-point container (lines 143 to 146);

• The access point is enabled (line 149);

• The OpenWrt password stored in the variable “OWPASS” is set inside the container (line
152);

• All the traffic in transit through the router is mirrored to the IDS container. To realize
this procedure the traffic incoming and outgoing on the router is mirrored with nftables
commands (lines 155 to 157). Nftables is the packet filtering framework of Openwrt.

8.4.4 Stop script

The “stop.sh” script terminates the execution of the application. The content is:

#!/bin/bash

#remove the container to stop the application

docker rm -f ids ap firefox firewall openwrt_1

The content it’s just a single command that stops and removes all the containers in use by the
application.

8.4.5 Connect host script

When the Ethernet and wireless card interfaces are moved to the containers namespaces, the
host remains disconnected from any network, including Internet. Anyway, if needed, it can be
connected to the LAN created by the application running the “connecthost.sh” script. The content
of this script is the following:

#!/bin/bash

#connect host to switch

ip link add veth6a type veth peer name veth6b

ip addr add 192.168.16.90/16 dev veth6b

ip link set veth6a netns firewall

ip netns exec firewall ip link set up veth6a

ip netns exec firewall ip link set veth6a master br

#set DNS

printf "nameserver 8.8.8.8\nnameserver 8.8.4.4\n" >> /etc/resolv.conf

#add firewall rule

docker exec firewall iptables -I FORWARD 1 -m physdev --physdev-in veth2a

--physdev-out veth6a -m state --state ESTABLISHED,RELATED -j ACCEPT
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#set default route

ip route add default via 192.168.16.1

The script connects the default host namespace to the switch using a veth device, in the same
way as a container would be connected. One veth endpoint is left in the host namespace and a
static IP address is assigned to it. The other endpoint is moved in the switch/firewall container
and added to the bridge. Then the Google DNS servers are added to the “resolv.conf” file of the
host to make sure that the DNS service works correctly. At this point a rule that enables the host
connection is added to the firewall. Finally the default route is set on the host.

The correct operation of this script is highly dependent on the configuration of the host which
may vary from system to system. Consequently, the file may need to be modified according to
the situation. For example, some commands may interfere with automatic network services on
the system or the host may not need the Google DNS service. Anyway, even if modifications are
made or some commands are executed manually, all the operations written in the script must be
performed to enable the connection.

8.5 Network details

The network created is a LAN on the 192.168.16.0/16 subnet. The router gateway is at the IP
192.168.16.1.

8.5.1 Router

The router connects the LAN to the WAN. The WAN is the external network that provides
Internet connection. The connection is performed by moving the Ethernet interface which is
connected to the WAN inside the router container namespace (lines 87,88 of the “start.sh” script).
The router is configured to get the IP of the Ethernet interface through DHCP from the WAN
and to create the LAN.

8.5.2 Switch

To join the network a host needs to be connected to the switch. All the containers that provide
network services are connected to the switch. It is built using a Linux bridge called “br” inside
the switch/firewall container (lines 74,75). To connect a container to the switch the veth interface
moved inside the switch/firewall container must be added to the bridge as follows:

sudo docker exec <switch-container> ip link set <veth-endpoint> master br

In addition, the internal firewall configuration should be updated accordingly.

8.6 Images configuration

The “build.sh” script builds the five images starting from the contents of the five folders in the
“thesisproject” directory. These folders contain all the files to configure the services packaged
inside the images and, although they have already been set during the development of the appli-
cation, there are some files and concepts that the user or developer should be aware of.

8.6.1 Internal firewall configuration file

The file “enablefirewall.sh” inside the “switchfirewall” folder contains all the iptables rules to
configure the internal firewall. The developer should edit this file if he wants to change the
firewall rules for any reason.
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8.6.2 OpenWrt perimeter firewall configuration file

OpenWrt offers a default firewall that creates a barrier between the internal private network and
the external public network to which it is connected. The configuration file for this firewall is
located at path /etc/config/firewall within the OpenWrt container and can be modified if
necessary (see 4.2.2). The firewall can also be modified in a user-friendly way using the LuCi
graphical interface offered by OpenWrt, which needs to be installed as it is not present by default
(see 8.8.1). The described operations require the application to be running. To perform a perma-
nent configuration that persists each time the container is started, it is necessary to change the
configuration file in the Dockerfile to include the changes directly in the image.

8.6.3 IDS configuration file

The IDS configuration file is “snort.conf” under the path thesisproject/ids/config. Among all
the settings this file contains the list of all the rules files used by the tool to identify the malicious
network activity. Those rules can either be created for custom checks or downloaded from the
snort site. In both cases to enable a set of rules they should be written inside a .rules file
and moved to the thesisproject/ids/all_rules/rules directory which contains all the rules
files. Then the new rules file should be included inside the file “snort.conf” under the section
7)Customize your rule set

8.6.4 Web browser container SSH configuration

The credentials to access the “firefox” container through SSH are the same as the relative user ac-
count inside the container. The default user and password are respectively “user” and “password”.
Those values can be changed inside the relative Dockerfile at thesisproject/webbrowser/. The
lines that configure user and password are:

RUN adduser user -D

RUN echo "user:password" | chpasswd

and, to modify user and password, can be changed as follows:

RUN adduser <new_user> -D

RUN echo "<new_user>:<new_password>" | chpasswd

Note that to create an SSH connection to the “firefox” container, a device must be already
connected to the application LAN.

8.6.5 Network interfaces

The application uses two network interfaces: the one related to the wireless card and the one
related to the Ethernet physical connection to the WAN. The default interfaces set in the images
are “wlp7s0” and “enp6s0” which are the ones used during development. Even if the system on
which the application is executed has different interfaces names, those inside the images config-
uration files should not be changed. Instead they should be left ad placeholders and the correct
names should be configured in the “start.sh” file (see 8.4.3). The correct configuration is then
performed at application runtime.

Note that if the interfaces names were correctly changed inside the images configuration files,
the application would work anyway and the relative variables would become useless. However this
operation is more complicated in terms of configuration and less functional in terms of portability.
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8.6.6 Access point white-list and black-list access

White-list

It’s possible to configure the access-point to allow only the devices with a specific MAC ad-
dress to join the wireless network. The white-list file that contains the list of the MAC ad-
dresses (one per line) allowed to access the Wi-Fi is named “access” and is located at the path
thesisproject/accesspoint/confs/hostapd_confs/ (create the file if it doesn’t exist). Also
to enable this functionality the file “wpa2.conf” in the same path must contain the following
variables definition:

macaddr_acl=1

accept_mac_file=/etc/hostapd/accept

Black-list

It’s possible to deny the access to the network to devices with a specific MAC address. The black-
list file that contains the list of the MAC addresses (one per line) to which the access is denied is
named “deny” and is located at the path thesisproject/accesspoint/confs/hostapd_confs/

(create the file if it doesn’t exist). Also to enable this functionality the file “wpa2.conf” in the
same path must contain the following variables definition:

macaddr_acl=0

deny_mac_file=/etc/hostapd/denied

Default access

To leave the default password authentication access to every device without implementing white-
listing nor black-listing the “wpa2.conf” must contain the “macaddr acl” variable set to 0 and no
file (“deny”, “accept”) must be included. This option is adopted by default in the application.

8.6.7 Configure access point DHCP IP addresses range

The default access point DHCP configuration provides a range of 10 IP addresses (from 11.0.0.10
to 11.0.0.20), meaning that a maximum of 10 devices can connect to the wireless network. To
change this configuration open the “dhcpd.conf” file at path thesisproject/accesspoint/confs

and edit the line:

range 11.0.0.10 11.0.0.20;

with the desired IP addresses range on the subnet 11.0.0.0 with netmask 255.255.255.0.

8.7 Add new containers

It’s possible to modify the base script to add functionalities and services to the application, for
example by adding a new container to the network. To perform this operation, create a new
Docker image that provides the desired service, then add to the script the new code to run the
container based on that image and connect it to the switch following the same process adopted
for the other containers. The container should be started with suitable options.
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8.8 Download OpenWrt packages

It’s possible to download packages to the Openwrt container to add functionalities if desired. The
command to download the new packages from the host is:

sudo docker exec openwrt_1 opkg install [PACKAGE]

The command that follows sudo docker exec is executed inside the container. In case the
command line interface is already connected to the container, this first part of the command needs
to be removed. opkg is the packet manager of Openwrt.

This command can either be executed manually or inserted into the “start.sh” script under
the configuration section to automate the download.

8.8.1 OpenWrt GUI

OpenWrt offers a functional web GUI called “LuCI” which is not present by default and needs
to be downloaded. This graphical interface is not necessary but facilitates the management and
configuration of the router and other software inside the container. This feature can be enabled
by downloading two packages:

opkg install luci

opkg install luci-ssl

The second package allows the connection to the “LuCI” web interface with HTTPS support.
Then from a device connected to the application LAN open a web browser and navigate to the
secure URL https://192.168.16.1 and the interface should appear asking for authentication.
The standard username is “root” and the password required is the same password used to access
OpenWrt via SSH. For more information refer to 7.3.2.

The process of downloading the packages can either be performed manually after the applica-
tion startup or by adding the commands in the “start.sh” script under the configuration section.

TLS/SSL Certificate

The certificate used for the HTTPS connection is a self signed certificate automatically generated
during the download of the “luci-ssl” package. For this reason the certificate will not be trusted by
the web browser which will generate a warning. To deepen and resolve this issue and to generate a
personal self signed certificate trusted by the web browser refer to https://openwrt.org/docs/

guide-user/luci/getting_rid_of_luci_https_certificate_warnings.
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Chapter 9

Conclusion

The application developed overcomes the shortcomings of some insecure gateways provided by
ISPs or available on the market. It features a high level of service configuration and portability
to different Linux-based devices. The application has been designed and tested to fit into limited
resources systems through the choice of lightweight software that are free and easily available on
the Internet, ensuring easy accessibility by users. The study conducted on the threats and risks
related to container technology has allowed the development of the application with a dedicated
attention to security. The document illustrates the whole development process of the single
components and the related containers, allowing an easy analysis of the performed steps. The
customization of the application is independent of the limitations that the ISP integrates into
its products and provides a high level of security through the use of container technology and
the integration of network security components such as IDS and firewall. The evaluation tests
performed on the application provided an analysis of performance in several aspects. The adoption
of Docker allows easy management of containers and images thanks to its large number of APIs.
The application can be used in different environments and provides a starting point for new
developments. It can be adapted to different contexts by extending its functionality or modifying
its configuration in order to best suit each user’s needs.
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