
POLITECNICO DI TORINO
Master’s Degree in ICT for Smart Societies

Master’s Degree Thesis

Design and development of an enterprise
digital distribution platform for mobile

applications

Supervisors

Prof. Sara VINCO

Ing. Ilario GERLERO

Ing. Claudio CHIEPPA

Candidate

Francesca DAVI

April 2022

Summary

Nowadays, over 6.3 billion smartphone users are present across the world and the
mobile application industry is exploding. Given the success of this industry, more
and more enterprises are embracing mobile technology and embedding enterprise
mobile applications into their business, to support their work processes, manage
the logistic flow and increase production efficiency.

Enterprise Mobile Applications (EMAs) are mobile apps developed by individual
enterprises to support their jobs, required to run the enterprise itself. An EMA
designed for a certain company is expected to be used by its own employees only.
In this context, the digital distribution of enterprise mobile applications to final
users, such as clients and partners, becomes a crucial topic.

The most popular way to distribute mobile applications is using the official app
stores provided by Apple and Google. An app store is a digital distribution platform
for mobile applications, allowing the users to browse and download them. Using
public distribution platforms is fast, secure and the infrastructure is ready-to-use.
On the other hand, public app stores may give access to restricted and confidential
information not only to employees but also to unauthorized users.

The aim of the thesis is the development of an enterprise distribution platform
for mobile applications, designed for a leading food company that needs to share
its own enterprise applications with customers and partners in a private, direct
and secure way, overcoming the privacy issue encountered with public app stores.
The project was carried out in collaboration with Reply S.p.A., as part of a real
industrial-oriented project.

The proposed solution aims at designing an architecture for distributing the
enterprise mobile applications over-the-air (OTA), sharing public links that are
valid only for a limited amount of time. Over-The-Air installation is direct and
fast. Furthermore, limiting the validity time window of a link avoids that too many
unwanted downloads could be performed.

In order to identify possible malicious behaviors, some analytical considerations
were carried out to include security features by monitoring the downloads during
the link validity time. In particular, the thesis considered the amount of downloads
for a specific link and the geographical position of the final users, to prevent undue

ii

spread of the applications. Additionally, downloaded data are aggregated to provide
insight and average adoption of the applications.

The implemented solution is a web application composed of a Front-end and
a Back-end, independently developed. The candidate was mainly involved in the
Front-end development.

Figure 1 shows the main development phases and the way they are intercon-
nected.

Figure 1: Methodology scheme

Front-end and Back-end were set up in parallel. The Front-end consists of
everything the user interacts with, through a web browser. In accordance to the
client company, five different pages were implemented to provide an interactive User
Experience (UX). React JavaScript and Material-UI libraries were used to build
the user interface. React was chosen in order to design a Single Page Application
(SPA). Single-Page Applications are web applications built over just one single
page and differ from traditional one because the content is loaded only once and
subsequently only the parts getting new data are updated, communicating with
the server through Web APIs. The complexity is slowly moved from the server to
the client and most operations are executed in the browser. This approach makes
the websites faster and responsive, since complete page reloads are unusual.

The Back-end is the part of the system hidden to the user and responsible of
storing and manipulating the data. In the current architecture, a Web server along
with a Microsoft SQLServer Database were implemented. The designed database
is composed of several tables (Application, Version, Link, Download, User and

iii

Groups), storing all data necessary to build the entire system.
Front-end and Back-end communicate through REST APIs, over the HTTP

protocol. The Front-end makes requests to the Back-end, that sends back the desired
data in JSON format as a response. This allows the designed web application to
refresh just a single part of the page, as in all SPAs.

Once the structure of Front-end and Back-end was created, the focus was
placed on the main functionalities of the system, i.e. the upload/download of
the applications. First, the upload and storage to the platform of the .apk and
.ipa files (the installation files of Android and iOS applications respectively) was
designed. The Front-end side provides a form where the user can upload the
intended file. When submitting it, a proper POST request is sent to the Back-end
and the application is uploaded and saved to the platform.

After that, the download procedure was implemented. The Front-end side
provides a form in which a link can be created by selecting the versions to be
shared (one version per platform at most), and the validity time window. For
Android devices, the download is the direct transfer of the file from the server to
the device only. Once the download is completed, the user is asked to eventually
install the application or just store the .apk file locally. The download procedure
for iOS instead requires more effort. The direct transfer of the file from the server
to the device only allows to locally store the .ipa file on the iOS device but not
to start the installation process. The creation of a dedicated manifest.plist file,
containing name, version, unique identifier of the application along with the URL
for the download, is instead necessary to perform the installation.

As a next step, Azure Active Directory have been integrated to make the core
functionalities of the system accessible to specific users only. Azure AD allows the
developers to build applications in which users and customers can be authenticated
through Microsoft identity platform, using their Microsoft work or social accounts.
The integration with Azure AD, already in use at the client company, was performed
using MSAL (Microsoft Authentication Library). MSAL enables developers to
acquire tokens from the Microsoft Identity Platform in order to authenticate users.
Two actors play a role in the system: the authenticated user and the final user.
The authenticated user is able to access all the Front-end pages and to use all the
designed functionalities. The final user instead receives from an authenticated user
a public link, that allows to download a certain application during a limited period
of time.

Once all the system was set up and made accessible to particular users only, the
development of the analytical part took place. In this phase of the project, additional
functionalities were added to the Front-end and Back-end already developed. The
pages were populated with ad-hoc designed charts and maps containing data related
to the amount and the position of the downloads. Thanks to these insights, the user
can monitor the trend of the downloads of its own applications and identify possible

iv

malicious behaviours, in order to preserve the secure sharing of the applications.
So far, all the system was locally developed only. After that both Front-end

and Back-end were deployed on an Azure Virtual Machine supplied by the client
company. Furthermore, a dedicated public domain was chosen and the designed
Web Application was hosted on the Virtual Machine and exposed to the Internet
through Microsoft IIS (Internet Information Services) configuration. After that,
the designed system and the correlated features are available to the users through
the Internet.

v

Acknowledgements

Grazie.
A mamma, papà e Giulia per la pazienza e le immense energie che hanno dovuto

spendere in questi anni per sopportarmi. Per avermi spronata a non mollare mai e
per avermi sempre supportato anche e soprattutto economicamente. Grazie.

A Dario, co-protagonista della fine della mia laurea triennale e dell’intero percorso
magistrale. Per la sua comprensione infinita, per ogni singola notte prima degli
esami passata silenziosamente accanto a me, per tutti i preziosi consigli che hanno
contribuito a portarmi dove sono arrivata oggi. Grazie.

A Cinzia, per avermi designata come sua degna erede in tutto e per tutto da quel
28 maggio 1993. Per aver sempre risposto repentinamente alle mie folli richieste
last minute di ripetizioni pre-esame e per aver spesso sentito più suo che mio questo
lunghissimo percorso. Grazie Cy.

A Chiara, agli zii, a Patrizia e a ogni membro della mia famiglia, per non aver
mai smesso di credere in me. Grazie.

A tutte le stelle che ho lassù, a quelli che non hanno vissuto abbastanza per
essere qui con me oggi, ma che mi hanno insegnato i valori dell’umiltà e della
determinazione, con cui ho affrontato questo percorso. Grazie.

A Giulia e Sonia, amiche di sempre, per aver condiviso con me gioie e dolori,
per non avermi mai lasciata sola. Per avermi accompagnata durante tutti i periodi
bui di questi anni. Grazie.

A tutta la Condove Che Conta, per “l’intrattenimento” (cit.) nei periodi di
stress e per aver allietato la mia gioventù con le migliori serate. Grazie.

A Mila e Andrea, fedeli “custodi” di gran segreti durante il percorso triennale e
sempre presenti durante tutte le battaglie affrontate lungo la Laurea magistrale.
Siete i migliori compagni di università che potessi trovare. Grazie AmiciAmici.

Ai Chicks: Elena, Riccardo e Damiano. Per tutti gli esami preparati insieme,
per le slides preparate fino a 2 minuti prima della presentazione, per i “bauli alzati”.
Grazie ragazzi, avete reso questo percorso magistrale più sereno. Speciale menzione
va a Damiano, senza il quale tutta questa esperienza in Reply e questa tesi non
sarebbero state possibili. Grazie amichetto.

A Sara Vinco, per la sua gentilezza e il suo sostegno durante la stesura di questo

vi

elaborato. Grazie Professoressa.
A Claudio e Dante, per avermi presa per mano dal primo giorno di questa

esperienza e aver creduto in me anche quando io stessa non ero in grado di farlo.
Grazie.

A tutti i ragazzi della BU IIOT di Concept Engineering Reply. Per avermi fatta
sentire a casa dal primo momento e aver reso questi mesi più leggeri e spensierati.
Grazie ragazzi.

Al migliore amico a quattro zampe che si possa desiderare, Artù. Per avermi
salvato la vita e le giornate in tante occasioni, senza nemmeno saperlo. Grazie mio
eterno cucciolone.

Ad ogni singola persona che ho incontrato durante questo lungo percorso e che
inconsapevolmente ha contribuito ad alleggerire il peso del Politecnico. Grazie.

E infine, grazie a ME. Per non aver essermi mai arresa, per avercela fatta. Per
aver superato tutti gli ostacoli più o meno grandi che la vita mi ha messo davanti
nel corso di questi lunghi anni. Grazie.

vii

Table of Contents

List of Figures xi

Acronyms xiv

1 Introduction 1

2 State of the Art 4
2.1 TypeScript . 4
2.2 Front-end . 5

2.2.1 React . 5
2.2.2 JSX/TSX . 6
2.2.3 MUI . 6
2.2.4 React Router . 7
2.2.5 Axios . 8
2.2.6 Recharts . 8
2.2.7 React Simple Maps . 8
2.2.8 React-i18next . 8

2.3 Back End . 9
2.3.1 NestJS . 9
2.3.2 TypeORM . 9

2.4 Azure AD . 9
2.4.1 MSAL . 10

2.5 IIS . 10

3 Methodology Overview 12

4 Methodology 15
4.1 Front-end pages development . 15

4.1.1 The Routes . 16
4.1.2 The Dashboard . 17
4.1.3 Applications Page . 21

ix

4.1.4 Application Details Page . 22
4.1.5 Download Page . 30
4.1.6 Profile Page . 31
4.1.7 Multilanguage Support . 36

4.2 WebServer and Database development 37
4.2.1 WebServer . 37
4.2.2 Database . 39

4.3 API . 42
4.3.1 Front-end . 42
4.3.2 Back-end . 45

4.4 Download . 46
4.4.1 Download for Android . 47
4.4.2 Download for iOS . 48

4.5 Microsoft Authentication Integration 50
4.5.1 Authenticated users . 50
4.5.2 Final users . 52

4.6 Analytics . 53
4.6.1 Database update . 53
4.6.2 Front-end components . 53

4.7 Deployment on Azure Virtual Machine 57
4.7.1 Deployment . 57
4.7.2 IIS configuration . 59

5 Conclusions 61

Bibliography 62

x

List of Figures

1 Methodology scheme . iii

2.1 TypeScript vs JavaScript . 4
2.2 SPAs vs MPAs . 5

3.1 Methodology scheme . 12

4.1 Dashboard Page . 18
4.2 <LastApps> component . 19
4.3 <LastLinks> component . 20
4.4 Applications Page . 21
4.5 Applications Details Page: top-half page 22
4.6 Step 1 . 25
4.7 Step 2 . 26
4.8 Step 3 . 27
4.9 Step 4 . 27
4.10 Link Generation Procedure: Step 1 28
4.11 Link Generation Procedure: Step 2 29
4.12 Link Generation Procedure: Step 3 29
4.13 Download Page - Desktop OS . 31
4.14 Profile Page . 32
4.15 User instance creation - Step 1 . 33
4.16 User instance creation - Step 2 . 34
4.17 User instance creation - Step 3 . 34
4.18 Group creation - Step 1 . 35
4.19 Group creation - Step 2 . 35
4.20 Language menu selection in Application Bar 36
4.21 Download Procedure on Android [63] 48
4.22 Download Procedure on iOS [63] . 49
4.23 <MapChart> . 54
4.24 <DownloadBarChart> . 55
4.25 <DownloadLinkChart> . 56

xi

4.26 Development instance . 58
4.27 Production instance . 58
4.28 New website creation with IIS . 59
4.29 IIS - Rule Definition . 60
4.30 IIS - Rules Overview . 60

xii

Acronyms

API
Application Programming Interface

EMA
Enterprise Mobile Application

JS
JavaScript

JSX
JavaScript XML

MPA
Multi-Page Application

MSAL
Microsoft Authentication Library

ORM
Object-Relational Mapping

OS
Operating System

OTA
Over-The-Air

RBMS
Relational Database Management System

xiv

SPA
Single-Page Application

TS
TypeScript

UI
User Interface

UX
User Experience

xv

Chapter 1

Introduction

With the spread of smartphones in late 2000s, the impact of mobile applications
faced a worth increase. Mobile applications consist of pieces of software/set of
program that runs on a mobile device and perform certain tasks for the user [1].
The reason why mobile apps became so popular is that they provide services over
tiny devices the user always has in its pocket.

Nowadays, over 6.3 billion smartphone users are present across the world and
the mobile application industry is exploding [2].

Given the success of this industry, more and more enterprises are embracing
mobile technology and enhancing their operations by embedding enterprise mobile
applications into their business, to support their work processes, manage the logistic
flow and increase production efficiency [3].

Enterprise Mobile Applications (EMAs) are mobile apps developed by individual
enterprises for their employees, to support their jobs required to run the enterprise
itself. An EMA designed for a certain company is expected to be used by its own
employees only [4].

In in this context, the digital distribution of enterprise mobile applications to
final users, such as clients and partners, becomes a crucial topic.

The term digital distribution refers to the delivery of digital media content
(e.g. audio, video and software) without the use of physical media, normally by
downloading it from the Internet [5].

The most popular way to distribute mobile applications is using the official
app stores provided by Apple and Google. An app store is a digital distribution
platform for mobile applications, allowing the users to browse and download them.
Apple App Store was launched in July 2008 along with iPhone 3G and it was the
first example of real app storefront [6]. Competitors came after, trying to emulate
the same architectural idea. Apple App Store guarantees that more than two
millions apps offered on that store are held to the highest standards for privacy,
security, and content [7]. Google Play Store was released in October 2008 and it

1

Introduction

distributes mobile applications for Android devices.
Using public distribution platforms is fast, secure and the infrastructure is

ready-to-use. Some drawbacks are present, though. Mostly, enterprise mobile
applications often contain private features devoted to employees only and this
way they can be downloaded by unauthorized users. Furthermore, Apple takes
some days to review an app uploaded to the store, to ensure reliability and privacy
features [8] and at the end of the review period, the application can be rejected.
The risk is that the release of an application devoted to internal company usage
only is blocked because it does not respect the strict rules of Apple.

The aim of the thesis is the development of an enterprise distribution platform
for mobile applications, designed for a leading food company that needs to share
its own enterprise applications to customers and partners in a private, direct
and secure way, overcoming the drawbacks encountered with public stores. The
proposed solution aims at designing an architecture for distributing the applications
over-the-air (OTA), via public links that are valid only for a limited amount of time.
Over-The-Air installation is direct and fast. Furthermore, limiting the validity time
window of a link avoids that too many unwanted downloads can be performed.
In order to identify possible malicious behaviors, some analytical considerations
were carried out to include security features by monitoring the downloads during
the link validity time, like the amount of downloads for a specific link and the
geographical position of the final users, to prevent undue spread of the applications.
Additionally, the downloaded data are aggregated to provide insight and average
adoption of the applications.

The project was carried out in collaboration with Concept Engineering Reply,
as part of a real industrial oriented project. Concept Engineering Reply covers the
software development process from the Device, through the Gateway, to the Cloud
or Smartphone App. Its customized software typically handles a few thousand of
devices, covers security and maintainability. Concept Engineering Reply guides
customers through the design process of their application, specify the ideal Cloud-
solution architecture, develop in agile teams. Together with partners for hardware
and telecommunication it provides to the customers an individual software solution
based on IoT requirements.

This thesis is organized into these sections:

• The State of The Art in section 2 presents a quick overview of all the technolo-
gies applied to build the intended solution. For each of the library involved
and further cited along the work, a short description is reported.

• The Methodology Overview in section 3 briefly presents the methodology
applied to develop the required platform. The main development phases are
highlighted and described. A scheme clarifying the logical interconnections
among them is reported too.

2

Introduction

• The Methodology in section 4 is the core of the work. It describes all the
phases introduced in section 3 in details, with reference to the technologies
introduced in section 2.

• The Conclusion in section 5 summarizes the work and presents possible further
improvements available.

3

Chapter 2

State of the Art

2.1 TypeScript
TypeScript (TS) was chosen as a programming language to develop both Front-end
and Back-end. TypeScript is an open-source programming language developed by
Microsoft and it is a superset of JavaScript (JS), because it adds some additional
features to JS, as shown in Figure 2.1.

Figure 2.1: TypeScript vs JavaScript

All the JS code is also valid for TypeScript [9]. It shares the syntax and
run-time behaviour with JS and supports all the JS libraries. Since browsers are
not able to read TS code, TS files first have to be transpiled into JS before the
execution. TypeScript associates an explicit data type to each variable. Using
a typed programming language prevents from possible coding errors and bugs
without deploying specific lines of code [10].

TypeScript supports the same primitive types JavaScript uses: string, number,
and boolean. Developers can create their own variable types as well, in order to
refer to the same data structure more than once with a single name [11].

4

State of the Art

2.2 Front-end
In this section all the libraries adopted to build the user interface (UI) are reported
and described.

2.2.1 React
React is a JavaScript library for building user interfaces for Single-Page Applications
(SPA). The traditional web approach provides the use of Multi Page Applications
(MPA), that refresh the entire page when its content changes. Single-Page Applica-
tions instead are web applications built over just one single page and differ from
traditional one because the content is loaded only once and subsequently only the
parts the user interacts with are updated, communicating with the server through
web APIs. The complexity is slowly moved from the server to the client and most
operations are executed in the browser. This approach makes the websites faster
and responsive, since complete reloads of the pages are unusual [12].

Figure 2.2 shows SPAs and MPAs different approaches.

Figure 2.2: SPAs vs MPAs

React is one of the main libraries for building SPAs. It is a component-based
library, meaning that the user interface consists of several independent and reusable
components accordingly combined [13]. Every single component is able to keep and
modify its own internal state, making possible to re-render the web page without
reloading the entire content.

5

State of the Art

React Hooks are special functions that lets the developer “hook into” React
features. They allows to use state and other React features without writing a class.
useState and useEffect are two main Hooks, deeply used in thesis development.
useState declares a state variable. and then allows to preserve some values between
the function calls. It returns a pair of values: the current state and a function that
updates it [14].

useEffect instead allows the developers to perform side effects in function
components. Data fetching, setting up a subscription, and manually changing the
DOM in React components are all examples of side effects [15].

2.2.2 JSX/TSX
JavaScript-XML (JSX) is a syntax extension of JS that allows to write HTML in
React and makes creating React components easier. To create a React component,
it is sufficient to define a JS function returning one or more HTML elements
combined [16]. The following lines of code contain the definition of a simple React
component that will render a HTML text on a web page.

Listing 2.1: JSX component Example
1 export d e f a u l t unct ion HelloWorld () {
2 re turn <h1>Hel lo World!</h1>;
3 }

Once developed, the same component can be reused in different web pages
just importing it, typing "import HelloWorld from ...". It is possible to nest
different HTML elements by wrapping them in a single <div> HTML element.

A TSX file is just a TypeScript (TS) file written using JSX syntax. Each
variable involved needs an explicit data type declaration. The following approach
was adopted for the entire development of the Front End: a set of React components
written in TSX are combined to build all the pages, further described in section
4.1.

2.2.3 MUI
Material-UI (MUI) is another library employed in the project to build the user
interface. It is a React library providing a set of pre-built and customizable
components that allow the developers to speed up the UI creation process [17].
MUI brings together two of the main technologies for front end development: it
exposes Google Material Design principles in Facebook React. It is a bridge between
developers and designers worlds [18]. A list of the main pre-built components used
to design the UIs, along with a short explanation, is reported below.

6

State of the Art

• Autocomplete: a text input with a panel of suggested options [19]. So the
value for the textbox has to be chosen among a predefined set of values.

• Button: a button allows the users to perform actions and make choices [20].
They can appear under the form of text or icons.

• Card: a small surface displaying content and actions about a single topic [21].

• Chip: a small element that represents an input, an action or a message [22].

• Dialog: a type of modal window that appears to provide critical information
or ask for a decision [23].

• Progress: an indicator that informs users about the status of ongoing pro-
cesses [24].

• Select: it is used to collect user provided information from a list of options
[25]. Adding the multiple property, more than one element from the list can
be chosen.

• Stepper: it displays progress through a sequence of numbered steps [26].

• Table: it displays information in an organized way [27]. It is composed
of several <TableRow> elements which in turns are composed of smaller
<TableCell>s.

• Textfield: it allows users to enter some text [28].

2.2.4 React Router
React Router is a library to enable routing in React web applications. It allows
the navigation between different pages, changing the URL. Routing is the process
of deciding which React elements will be rendered on a given page of the web
application and how they will be nested [29].

To use React Router, a router element has to be rendered in the root of the
element tree. <BrowserRouter> or <HashRouter> routers should be used in a
web browser. Both store the current location in the browser address bar, but
the former uses clean URLs, while the latter hashes the URLs [30]. Inside the
router component, the routes have to declared. When using JSX/TSX, a <Routes>
wrapper and a <Route> element or each single page have to be stated. A <Route>
takes two parameters: a path and an element to be rendered when the URL
matches the path [31].

The library also provides a set of Hooks, to ease the navigation between different
views. useNavigate hook is a function allowing to programmatically navigate to
another page, for example after a form submission [32].

7

State of the Art

useParams hook returns some key/value pairs of the dynamic params from the
current URL. It allows the developer to save params in state variables and exploit
them [33].

2.2.5 Axios
Axios is a JavaScript library used to send asynchronous HTTP Requests to REST
endpoints and perform the CRUD (Create, Read, Update, Delete) operations. To
do that, it already provides methods like .get(), .post(), .put() and .delete()
[34]. The reason why using Axios is to get support for request and response
interception and for the conversion of received data into JSON format.

In React applications, the developer often needs to get data from the external
sources. Axios helps in retrieving the data adding it to the state [35]. This library
can be used both in server-side application and in the browser.

2.2.6 Recharts
Recharts is a Redefined Chart library, helping the developer to easily build charts
in React applications [36]. Recharts provides a set of pre-built components, con-
taining charts of various types. One only needs to import the desired chart (e.g.
<BarChart>), passing the data to be represented as a parameter and set the label
on the axis, the legends and the scale using the already present child components
[37].

2.2.7 React Simple Maps
React Simple Maps is a React library allowing to build SVG maps in React. This
library exposes a set of pre-built components that can be combined to create SVG
mapcharts with markers and annotations. To render a map, a reference to a valid
topojson file has to provided [38]. Three main components are used to design the
map. <ComposableMap> component is a wrapper component for every mapchart
built with this library [39]. The dimensions and a particular projection can be
passed as a parameter. Inside the wrapper, the <Geographies> component allows
to fetch geographies files. A link to a valid geojson file or directly a geojson array
can be set as a parameter for this component [40]. <Geographies> is a wrapper
for <Geography> component, able to render geographic shapes as SVG paths [41].

2.2.8 React-i18next
React-i18next is an internationalization library for React applications. Internation-
alization is an important feature for a web application, allowing to overcome the
language barrier among people who use the same software [42].

8

State of the Art

This library provides a set of components to ensure that needed translations
of strings get loaded or that the right content gets rendered when the language
changes [43]. React-i18next is also scalable: it allows to separate translations into
several files and to load them on request.

2.3 Back End
This section focuses on the libraries adopted to build the Back-end side of the
system.

2.3.1 NestJS
Nest (NestJS) is a framework for building efficient and scalable Node.js server-side
applications. It is built with and fully supports TypeScript. NestJS provides a
higher level of abstraction above the common Node.js frameworks (like Express),
but also directly exposes their APIs to the developer. This allows the developers
to use all the third-party libraries available for those platforms [44].

When dealing with server-side applications, NestJS is a good choice since because
it is built over a few simple components (controllers, modules, and providers), that
help dividing the app structure into microservices. Controllers handles incoming
requests and return responses to the client-side. Modules helps to organize the
structure of the application, separating the functionalities into reusable pieces.
Providers abstract the application logic away from the user [45].

2.3.2 TypeORM
TypeORM is a TypeScript ORM (Oject-Relational Mapper) library that connects
a TypeScript application to a relational database. An ORM is a programming
technique used to convert data between Relational Databases and Object-Oriented
Programming languages (OOP) [46]. It allows to write queries without writing
explicit SQL queries.

TypeORM helps to develop any kind of application that uses databases, from
small applications with a few tables to large scale enterprise applications with
multiple databases [47]. It works well with Nest.js, already cited in previous
section.

2.4 Azure AD
Azure Active Directory (Azure AD) is a centralized cloud-based identity and access
management service, that provides single sign-on and multifactor authentication

9

State of the Art

[48]. This service helps company employees to access external resources (such as
Microsoft 365, the Azure portal...), and thousands of other applications. Azure
AD also helps them to access internal resources like apps on the company network,
along with any cloud apps developed by their own organization [49].

Azure AD is intended also for application developers that can use it to add
authentication process to their applications, allowing it to work with a users’
pre-existing credentials, avoiding to design an authentication architecture from
scratch.

Azure AD allows the developers to build applications in which users and cus-
tomers can be authenticated through Microsoft identity platform, using their
Microsoft work or social accounts [50]. Authorized access to specific designed APIs
can be provided using Microsoft identity platform, though.

The Authentication is the process of proving that a user is who he says he is.
The Authorization is the act of granting an authenticated party permission to do
something. It specifies the data a user is allowed to access and what he can do
with that data [51].

Microsoft identity platform can be integrated into a Web Application using
MSAL Library, quickly described in the next section 2.4.1.

2.4.1 MSAL
The Microsoft Authentication Library (MSAL) enables developers to acquire tokens
from the Microsoft identity platform in order to authenticate users and access
secured Web APIs [52].

MSAL can be used in many application scenarios. Microsoft Authentication
Library for JavaScript (MSAL.js) enables both client-side and server-side JS ap-
plications to authenticate users using Azure AD for work and school accounts,
Microsoft personal accounts (MSA), and social identity providers accounts [53].

MSAL for React (@azure/msal-react) is a React-oriented package to enable
authentication in Javascript Single-Page Applications [54]. It provides a set of
pre-built React components to easily implement the authentication process in React
applications.

2.5 IIS
Internet Information Services (IIS) for Windows Server is a flexible, secure and
manageable Web server for hosting web applications on the Web [55].

An IIS Web server accepts requests from remote devices and returns the in-
tended response. This basic functionality allows web servers to share and deliver
information across the Internet [56].

10

State of the Art

IIS provides a scalable architecture. Instead of keeping the majority of func-
tionality within the server itself, IIS include a Web server engine in which several
components, called modules, can be added or removed, depending on the developer
needs. Modules are individual features that the server uses to process requests [57].

URL Rewrite Module has to be cited, since it was used in the project. The
Microsoft URL Rewrite Module enables server administrators to create customized
rules to map request URLs to other URLs easier to remember of to perform redirects
and send custom responses [58].

11

Chapter 3

Methodology Overview

The goal of this thesis is the development of an enterprise distribution platform
for mobile applications, for a leading food company that wants to share its own
enterprise applications to customers and partners in a private and secure way.

The developed solution allows to distribute the applications over-the-air via
public links that are valid only for a limited amount of time.

This chapter quickly describes the methodology applied in the thesis, built by
using the technologies introduced in section 2.

Figure 3.1 shows the scheme of the methodology adopted to solve the problem.

Figure 3.1: Methodology scheme

12

Methodology Overview

The proposed solution is a web application composed of a Front-end and a
Back-end, developed independently.

The Front-end consists of everything the user interacts with, through a web
browser. React JavaScript and MUI libraries were used to build the user interface.
According to the client company, five different pages were implemented to provide
an interactive User Experience (UX). As mentioned in section 2.2.1, React is used
to design Single Page Applications (SPAs), so React Router library was necessary
to allow the navigation among different views. Front-end development will be
described in details in section 4.1.

The Back-end is the part of the system hidden to the user and responsible of
storing and manipulating the data. In the current architecture, a Web server along
with a Microsoft SQLServer Database were implemented. The designed database
is composed of several tables (Application, Version, Link, Download, User and
Groups), storing all the data necessary to build the entire system. The Back-end
development will be further explained in section 4.2.

Front-end and Back-end communicate through REST APIs, over the HTTP
protocol. The Front-end makes requests to the Back-end, that sends back the desired
data in JSON format as a response. This allows the designed web application to
refresh just a single part of the page, as in all SPAs. A more detailed description
of the APIs will be provided in section 4.3.

Once the structure of Front-end and Back-end was created, the focus was
placed on the main functionalities of the system, i.e. the upload/download of
the applications. First, the upload and storage to the platform of the .apk and
.ipa files (the installation files of Android and iOS applications respectively) was
designed. The Front-end side provides a form where the user can upload the
intended file along with some information. When submitting it, a proper POST
request is sent to the Back-end side and the application is uploaded to the platform.

After that, the download procedure was implemented. The Front-end side
provides a form in which the versions to be shared (one version per platform at
most), and the validity time window of the link can be selected. For Android
devices, the download is the direct transfer of the file from the server to the device
only. Once the download is completed, the user is asked to install the application
or just store the .apk file locally.

The download procedure for iOS instead requires more effort. The direct transfer
of the file from the server to the device only allows to locally store the .ipa file
on the iOS device but not to start the installation process. The creation of a
dedicated manifest.plist file, containing name, version, unique identifier of the
application along with the URL for the download, is instead necessary to perform
the installation. The download procedures and their differences will be described
in details in section 4.4.

To make the core functionalities of the system accessible to specific users only,

13

Methodology Overview

the integration with the Microsoft Identity Platform, already employed by the
client company, was performed using MSAL (Microsoft Authentication Library) [50].
MSAL enables developers to acquire tokens from the Microsoft Identity Platform
in order to authenticate users.

Two actors play a role in the system: the authenticated user and the final user.
The authenticated user is able to access all the Front-end pages, to upload the
mobile applications to the platform and to generate the temporary links for the
downloads. The final user instead receives from an authenticated user a public link
that allows to download a certain application during a limited period of time. The
users management phase will be further discussed in section 4.5.

Once all the system was set up and made it accessible to particular users
only, the development of the analytical part took place. In this phase of the
project, additional functionalities were added to the Front-end and Back-end
already developed. The pages were populated with ad-hoc designed charts and
maps containing data related to the amount and to the position of the downloads.
These statistics differ from one user to another. Thanks to these insights, the user
can monitor the trend of the downloads of its own applications and identify possible
malicious behaviours, in order to preserve the secure sharing of the applications. A
more detailed description of the statistics implemented will be reported in section
4.6.

So far, all the system was locally developed only. After that, both Front-
end and Back-end were deployed on an Azure Virtual Machine supplied by the
client company. Furthermore, a dedicated public domain was chosen and the
web application was exposed to the Internet through Microsoft IIS (Internet
Information Services) configuration. Thus at that moment, the designed system
and the correlated features are available to the users through the Internet. More
information about the deployment to the Internet of the web application will be
presented in section 4.7.

The last phase of the development is a test session of all the implemented
functionalities, which is still ongoing. As soon as the system will be delivered to
the client company, more insights about the system performances will be available.

14

Chapter 4

Methodology

This chapter aims at explaining every phase of the project development, introduced
in section 3, in details. The first phase provides the Front-end and Back-end
development. Both are coded using TypeScript as a programming language, quickly
described in section 2.1. They communicate through REST API and the Front-end
receives the data to be shown in JSON format. Most focus will be put on the
Front-end development part which is the one where the candidate was mainly
involved.

4.1 Front-end pages development
The Front-end development started with the creation of a React application,
introduced in section 2.2.1. First, to create a React app, NodeJS is required
to be installed. Then, a directory containing all the structure of the code and
all the necessary dependencies is created running the terminal command npx
create-react-app my-app –template typescript. The project folder should
contain necessarily the following files:

• public/index.html that is the page template;

• src/index.js that is the JavaScript entry point;

index.js renders the <App> root component, which in turns encapsulates all
the other designed components.

According to the client company, five different pages were created:

1. The Dashboard, containing the last applications uploaded to the platform
and the last links generated for the download, along with an overview of the
statistical analyses further explained in section 4.6.

15

Methodology

2. The Applications Page, containing the list of all the applications uploaded
to the platform.

3. The Application Details Page, showing all the details related to a single
application (versions, generated links and statistical analysis of its adoption).

4. The Download Page, which is a public page allowing final users to download
the applications.

5. The Profile Page, containing all the information related to users and groups.

Every page was written in TypeScript and the UI was built with the aid of Material-
UI components, quickly introduced in section 2.2.3. Using encapsulated components
helps programming in a good modular way.

4.1.1 The Routes
Each page must have a unique route to allow the navigation between different views
in React Single-Page applications. The routes were implemented using React Router
library, introduced in section 2.2.4. First of all, a router element has to be rendered.
This was performed by declaring a <BrowserRouter>, which stores the current
location in the browser address bar using clear URLs. Inside the <BrowserRouter>,
the <Routes> were declared and one single <Route> was associated to each page.
A <Route> takes a path and a JSX/TSX element to be rendered as parameters.

The following lines of code show how the routes, defined to allow the navigation,
were declared.

Listing 4.1: Routes of different pages
1 f unc t i on Pages () {
2 re turn (
3 <div>
4 <BrowserRouter>
5 <Routes>
6 <Route path=" / " element={<Dashboard />}></Route>
7 <Route path=" a p p l i c a t i o n s "
8 element={<Appl icat ionsPage />}>
9 </Route>

10 <Route
11 path=" a p p l i c a t i o n s / : appID "
12 element={<Appl i ca t i onDeta i l sPage />}
13 ></Route>
14 <Route
15 path=" : appID/download / : uuid "
16 element={<DownloadPage />}>
17 </Route>

16

Methodology

18 <Route path=" p r o f i l e " element={<Pro f i l ePage />}></
Route>

19 <Route path=" ∗ " element={<PageNotFound />}></Route>
20 </Routes>
21 </BrowserRouter>
22 </div>
23) ;
24 }

The <Dashboard> having "/" as a path is the homepage loaded when authenticat-
ing to the system. The <ApplicationsPage> element is rendered when navigating
to the "/applications" path and the ProfilePage element is shown when navigating
to "/profile" path.

Some URLs contains variable parameters. Syntactically, they are indicated as
colon followed by the parameter, e.g. :parameter. This is the case of the URLs
for <ApplicationDetailsPage> and <DownloadPage>, where different values of
the parameters imply different element rendering. When navigating to "applica-
tions/:appID", only the specific information related to the :appID application are
rendered.

Finally, when a user tries to access a route matching no one of the reported
paths, a <PageNotFound> element is rendered. This is performed by indicating the
path as "*". Once the routes were prepared, the real development of the pages was
taken in charge. The next sections will focus on the design of each page in details.

4.1.2 The Dashboard
The Dashboard is composed of a MUI <Grid> containing encapsulated components,
visible in the following lines of code.

Listing 4.2: Dashboard components
1 f unc t i on Dashboard () {
2 re turn (
3 <div className=" Dashboard ">
4 <Grid conta ine r spac ing={3}>
5 <Grid item xs={12} md={6} l g={6}>
6 <LastApps reverseData={reverseApps}/>
7 </Grid>
8 <Grid item xs={12} md={6} l g={6}>
9 <LastLinks reverseData={reve r s eL ink s } />

10 </Grid>
11 <Grid item xs={12} md={4} l g={4}>
12 <MapChart c o u n t r i e s={newObject4Plot}/>
13 </Grid >
14 <Grid item xs={12} md={4} l g={4}>
15 <DownloadBarChart downloads={download4Plot}/>

17

Methodology

16 </Grid>
17 <Grid item xs={12} md={4} l g={4}>
18 <DownloadLinkChart downloads={Link4Download}/>
19 </Grid >
20 </Grid>
21 </div>
22) ;
23 }

<Grid> helps organizing the UI and building responsive layouts, adapting the
pages to the screen size of the devices. The <Grid item xs=12 md=6 lg=6> line
of code makes the components occupy the entire screen (12/12) in small devices
and half of the screen (6/12) in large devices.

Each of the five reported components is a Material-UI <Card> component. A
<Card> is a small surface that can contain text and images. Figure 4.1 shows the
quick overview provided by dashboard page.

Figure 4.1: Dashboard Page

The top-left <Card> reports the last applications uploaded to the distribution
platform. Figure 4.2 shows the <LastApps> component.

18

Methodology

Figure 4.2: <LastApps> component

For each application, an <AppItem> component was created. It is a combination
of <Link> React Router and <Typography> MUI components. The former allows
to navigate from the home page to the one containing the details related to a single
application, by clicking on the name. The latter reports the description and the
upload date of the application.

The top-right <Card> renders the last links to be shared with customers or
partners for the download of the applications. Similarly to before, a <LinkItem>
was created for each generated link. It is again the combination of <Link> React
Router and <Typography> MUI. Furthermore, a reusable ad-hoc <LinkProgress>
component was built to monitor the progress of the validity of the link. To set it
up, the conditional rendering approach of React was adopted: different components
are rendered based on different conditions expressed by JS if.

Listing 4.3: <LinkProgress> component
1 <Box>
2 { prog r e s s === 0 && <Chip l a b e l=" Pending " var i ant=" f i l l e d "

c o l o r=" warning "></Chip>}
3 { prog r e s s === 100 && <Chip l a b e l=" Expired " var i ant=" f i l l e d "

c o l o r=" e r r o r "></Chip>}
4 {(p rog r e s s > 0 && prog r e s s < 100) &&
5 <LinearProgre s s
6 var i an t=" determinate "

19

Methodology

7 value={prog r e s s }
8 c o l o r=" primary "
9 sx={{width : 160 , he ight : 8 , borderRadius : 10}} />}

10 </Box>

As the lines of code reported in 4.3 show, different MUI elements are rendered
based on the value of the Progress variable, which is a number between 0 and
100, whose value is computed as the percentage of time already elapsed between
the validity_start and validity_end of a link. This value is recalculated every
second, so that the progress bar can be continuously updated, providing a more
interactive UI. Figure 4.3 shows the three different possibilities the user can face,
dealing with a link. Meanwhile the generated link is valid, a continuously updated
progress bar is shown; once the link expires or it is still not valid, a "Expired" or
"Pending" message appears.

Figure 4.3: <LastLinks> component

The bottom <Card>s are related to the analytical part. The bottom-left <Card>
shows the <MapChart> component, a Geographic Heat Map, created with React
Simple Maps library, quickly introduced in section 2.2.7.

The bottom-centered <Card> contains the <DownloadBarChart> component, a
chart showing the trend of the total downloads of its own applications during the
last two weeks, built using Recharts library, described in section 2.2.6. This allows
the authenticated user to see the total amount of downloads for its applications,

20

Methodology

aggregated per apps.
The bottom-right one contains the <DownloadLinkChart> component, a chart

showing the total amount of downloads per link. The last three components are
further described in section 4.6.

The data to be shown are fetched from an API endpoint using the React
Hook useEffect, able to perform side effects in components after rendering. The
GET/POST requests are performed through Axios library, described in section
2.2.5. Further details about REST API and about the way the data are taken will
be presented in section 4.3.

4.1.3 Applications Page
The Applications Page shows a single Material-UI <Table> containing all the
applications uploaded to the platform by the current user. Figure 4.4 shows the
designed UI for Applications Page.

Figure 4.4: Applications Page

The name, the icon, the platform and a short description are reported for each
<TableRow> in the <Table>. The possibility to look for an application by name
was provided too, through a Search Box. A <Button> opening a <Dialog> for
Uploading an Application was also included, further described in section 4.1.4.
The <TableCell> containing the name is a <Link> React-Router component that
allows to navigate from the current page to the Application Details Page.

21

Methodology

4.1.4 Application Details Page
The Application Details Page has a very complex UI, combining many React
components and information coming from the Back-end. Figure 4.5 shows the
top-half portion of the designed page.

Figure 4.5: Applications Details Page: top-half page

First of all, some general information related to each application are shown: last
update, platform and total amount of downloads.

Then, different versions of the same application are listed. Depending on the
nature of the application (cross-platform or not), the versions are shown through
two <Tab> allowing to navigate between different OS, or in a single table. The
app chosen to be represented in Figure 4.5 is cross-platform and two <Tab>s are
rendered.

To determine if an application is cross-platform or not, a reusable checkPlatform
function was designed.

Listing 4.4: checkPlatform function
1 f unc t i on checkPlatform (v e r s i o n s : Vers ion []) {
2 l e t i s I o s = f a l s e ;
3 l e t i sAndroid = f a l s e ;

22

Methodology

4

5 v e r s i o n s . f i l t e r (
6 (item : Vers ion) => item . plat form === " IOS"
7) . l ength > 0 ? i s I o s = true : i s I o s = f a l s e ;
8

9 v e r s i o n s . f i l t e r (
10 (item : Vers ion) => item . plat form === "ANDROID"
11) . l ength > 0 ? isAndroid = true : i sAndroid = f a l s e ;
12

13 i f (i s I o s && isAndroid) {
14 re turn (" Android ; iOS ; ")
15 } e l s e i f (! i s I o s && isAndroid) {
16 re turn " Android "
17 }
18 e l s e i f (! i sAndroid && i s I o s) {
19 re turn " iOS "
20 }
21 }

The checkPlatform function takes an array of versions related to a single
application as a parameter and look at platform fields of each single entry. Then,
it counts the occurrences of "IOS" and "ANDROID" and, based on the result of the
calculation, returns a string describing the nature of the application. That string
is used in TSX to render either a single <Table> or two tables.

Scrolling down, a Link <Table> containing the records of all the generated links
appears. For each <TableRow>, a <TableCell> containing the related versions,
the validity time and a <LinkProgress> component, already introduced in section
4.1.2 are shown. The possibility to reuse the same components, already built for
other pages, makes coding in React very modular and clean.

The bottom part of the page reuses the <MapChart> and <DownloadBarChart>
components, already introduced in section 4.1.2 and further described in section
4.6. The involved data change with respect to the Dashboard, since in this case
the amount of the download is related to that particular application only.

The Application Details Page allows the user to load a new version of the
application or to generate the link to spread the .ipa or .apk files with customers
and partners. These actions are performed through two pop-ups, properly designed
and accessible with two <Button> components rendered on top of the page.

The following listing shows how the components were nested in order to compose
such a complex User Interface.

Listing 4.5: <ApplicationDetailsPage>
1 f unc t i on App l i ca t i onDeta i l sPage () {
2 . . .
3 <UploadApp
4 buttonText={t ("New Vers ion ") }

23

Methodology

5 d i a l o g T i t l e={t (" Load a New Vers ion ") }
6 expectedAppID={myID}
7 />
8 <GenerateLink name={appName} v e r s i o n s={v e r s i o n s } plat form={

plat form}/>
9 . . .

10 { plat form === " Android ; iOS ; " ? (
11 . . .
12 <TabPanel va lue=" 1 ">
13 <App l i ca t i on sDeta i l sTab l e
14 columns={columns}
15 v e r s i o n s={v e r s i o n s . f i l t e r (
16 (item : Vers ion) => item . plat form === "IOS"
17) }
18 />
19 </TabPanel>
20 <TabPanel va lue=" 2 ">
21 <App l i ca t i on sDeta i l sTab l e
22 columns={columns}
23 v e r s i o n s={v e r s i o n s . f i l t e r (
24 (item : Vers ion) => item . plat form === "ANDROID"
25) } />
26 </TabPanel>) :
27 (< App l i c a t i on sDeta i l sTab l e columns={columns} v e r s i o n s={

v e r s i o n s } />)}
28 . . .
29 <LinkDeta i l sTable columns={linkColumns } l i n k s={ l i n k s } />
30 <MapChart />
31 <GlobalLineChart />
32 . . .
33 }

<Stack> and <Grid> components, allowing to make the layout responsive, were
omitted for sack of interest. The most important elements are reported. At lines 3
and 8 one can see how a component can be reused, by changing the particular data to
be shown as a parameter. At line 10, the conditional rendering can be clearly visible:
based on the result of checkPlatform, one or two <ApplicationDetailsTable>
are rendered.

Upload App

The <UploadApp> component is a Material-UI <Dialog> allowing to load a new
application or a new version of a pre-existing application. To be reusable, it takes
two strings, representing the text on the <Button> opening the pop-up and the
<Dialog> title, as parameters. It takes a third optional parameter too, the AppID
which is present only on the <ApplicationDetails> Page.

24

Methodology

The <Dialog> is organized by steps, using the <Stepper> Material-UI compo-
nent. The <Stepper> helps providing a more interactive User Experience (UX),
asking the user to fill a form in a sequential way.

The conditional rendering of React was again a key point for the design of
<UploadApp>. Based on the <Step> active at a certain moment, different compo-
nents are rendered. Figure 4.6 shows <Step> 1, containing an <Input> HTML
element, to select a file from the computer.

Figure 4.6: Step 1

A validation on the format is performed, by setting the accept parameter to
".ipa, .apk", so that the user cannot select files with different extension. Only
if one file is selected, the user can proceed to <Step> 2, otherwise an <Alert>
message is shown.

<Step> 2, represented in Figure 4.7, shows a <Stack> of <TextField>s automat-
ically filled with the most important information related to the application/version:
the name, the version number, the unique identifier (Bundle Identifier for iOS or
Package Name for Android) and the platform. This information is returned under
a JSON format from a specific designed function applied to the selected file, thanks
to the external app-info-parser JS library [59], able to parse .ipa and .apk files.
The following lines of code show the implemented parsing function.

Listing 4.6: File Parsing Function
1 import AppInfoParser from " app−i n fo −par s e r " ;
2 export d e f a u l t async func t i on f i l e S e l e c t (f i l e : F i l e) {
3 const va lue s = {
4 appName : " " , v e r s i on : " " , packageName : " " , i con : " " , p lat form : " "
5 } ;

25

Methodology

6

7 const par s e r = new AppInfoParser (f i l e) ;
8 const r e s u l t = await par s e r . parse () ;
9 i f (f i l e . name . i n c l u d e s (" . ipa ")) {

10 va lue s . appName = r e s u l t . CFBundleName ;
11 va lue s . v e r s i on = r e s u l t . CFBundleShortVersionString ;
12 va lue s . packageName = r e s u l t . CFBundle Ident i f i e r ;
13 va lue s . i con = r e s u l t . i con ;
14 va lue s . p lat form = " IOS" ;
15 } e l s e i f (f i l e . name . i n c l u d e s (" . apk ")) {
16 va lue s . appName = r e s u l t . a p p l i c a t i o n . l a b e l ;
17 va lue s . v e r s i on = r e s u l t . versionName ;
18 va lue s . packageName = r e s u l t . package ;
19 va lue s . i con = r e s u l t . i con ;
20 va lue s . p lat form = "ANDROID" ;
21 }
22 re turn va lues ;
23 }

The designed function takes a file as an input and at line 8 it returns a JSON
object containing all the information. Then, only the fields of interest are saved
and returned to the parent component. The parent <UploadApp> component keeps
these values in its state, using the React useState Hook.

Figure 4.7: Step 2

The user can check the information and proceed to <Step> 3, which is an optional
step added to manage the particular case in which a mono-platform application may

26

Methodology

become a cross-platform one. For example, an Android version of an application
that until that moment was iOS-designed only, has to be loaded, or viceversa. So,
only for those particular cases, the user can select the application he wants to
load the version to, from a list of already present applications. Step 3 is shown in
Figure 4.8.

Figure 4.8: Step 3

The authenticated user can skip this step and navigate to <Step> 4, represented
in Figure 4.9, where a short description of the application/version is required to be
inserted.

Figure 4.9: Step 4

27

Methodology

At this point, the form can be submitted and the collected data sent to the
Back-end. A POST request is performed to the Back-end. The body of the request
contains the loaded file and the related info (name, version number, platform...)
got from the parser and saved to proper variables in the State. If the user is loading
a completely new application, the POST request will be performed in two steps.
First, an application entry is created through a POST to the "apps" endpoint. The
server sends back a unique AppID identifier as a response. After that, a second
POST request is performed to the "version" endpoint and an entry is added to the
Version table. The details of requests/responses exchanged between the Front-end
and Back-end will be reported in section 4.3.

Link Generation

The <GenerateLink> component is a Material-UI <Dialog>, allowing the authen-
ticated user to generate a link for sharing a certain application during a limited
period of time. As for <UploadApp> described in the previous subsection, the
<Dialog> is organized in steps, using the <Stepper> Material-UI component. For
mono-platform applications, at most one version to be shared can be selected at
a time. For cross-platform applications, at most one version per platform can be
shared at a time, that is two versions belonging to different platforms can be spread
using the same generated link.
<Step> 1, represented in Figure 4.10, contains one or two Material-UI <Select>, a
dropdown menu to select one or two versions to be shared.

Figure 4.10: Link Generation Procedure: Step 1

If at least one version is selected, the user can navigate to <Step> 2, shown
in Figure 4.11, where a <DateTimePicker> component is rendered, to choose the
starting validity time of the link.

28

Methodology

Figure 4.11: Link Generation Procedure: Step 2

<Step> 3 in Figure 4.12 shows a <TextField> to insert the validity time period
of the generated link expressed in minutes. Only numbers are allowed.

Figure 4.12: Link Generation Procedure: Step 3

At this point, the form can be submitted and the collected data sent to the
Back-end. Again, the details of requests/responses exchanged between the Front-
end and Back-end will be reported in section 4.3. By clicking on Submit button,
the user is redirected to a Download Page, whose URL is the public link to be

29

Methodology

shared to customers and partners to download the files. The Download Page is
further described in section 4.1.5.

4.1.5 Download Page
The Download Page is the core page of the platform, allowing to download .apk and
.ipa files. The main difference with respect to the previous introduced pages is its
public nature: the final users can access it through the public link generated by one
authenticated user and click on the proper Download <Button> to download/install
the application of interest.

The conditional rendering feature of React was applied again. This time,
nested conditions were taken into account. First, a check on the validity time
period of the link is performed. If the link is expired or it is still not valid, a
<LinkNotValid> component containing the expiration/validity start date is shown.
The following lines of code shows how the components are rendered based on the
result of the compareTime function which takes as input the validity_start and
validity_end of a link and compares it with the current time now. If now is
included in the time interval between validity_start and validity_end, the link
is marked as valid. Otherwise, it is marked as not valid and the <LinkNotValid>
component is rendered.

Listing 4.7: Conditional rendering on link validity
1 f unc t i on DownloadPage () {
2 re turn (
3 {compareTime (l i n k . val id ity_end , l i n k . v a l i d i t y _ s t a r t) === " v a l i d " ?
4 (. . .) :
5 <LinkNotValid />}) ;
6 }

If the link is valid, different elements on the page are rendered depending on
the Operating System of the device opening that particular link. A proper JS
function able to detect the OS was implemented, reported in Listing 4.8.

Listing 4.8: Operating System Detection
1 f unc t i on getMobileOS () {
2 const ua = nav igator . userAgent
3 i f (/ android / i . t e s t (ua)) {
4 re turn " Android "
5 }
6 e l s e i f (/ iPad | iPhone | iPod / . t e s t (ua)
7 | | (nav igator . p lat form === ’ MacIntel ’ && nav igator .

maxTouchPoints > 1)) {
8 re turn " iOS "
9 }

10 re turn " Other "

30

Methodology

11 }

The string containing the OS, returned by the previous function, is used to
render different elements on the page. Let’s consider one OS at a time, starting
from "Other" which refers to Desktop Operating Systems. The Desktop Download
Page is represented in Figure 4.13.

Figure 4.13: Download Page - Desktop OS

When dealing with cross-platform applications and if one version per platform is
selected, both iOS and Android version numbers followed by the proper Download
<Button>s are rendered. The expiration date and the reused <LinkProgress>
component are reported too. The desktop version of the page also contains a
QRCode, to be scanned by a mobile device to directly reach this page.

Considering Android or iOS mobile devices instead, even when dealing with
cross-platform applications, only the version number relative to that particular
platform and the related Download <Button> are rendered, when connecting to
the same public URL. The real download/installation procedure will be described
in Section 4.4.

4.1.6 Profile Page
The Profile Page is the page responsible of managing the authenticated users.
Authenticated users can play 3 different roles and different components are rendered

31

Methodology

on the page, based on their conditions.
Users can be:

• USER: a user able to upload the applications to the platform and to generate
the links to share its own .apk and .ipa files worldwide. A normal user is
enabled to use the platform by a superuser or admin.

• SUPERUSER: a user with higher powers with respect to the normal user.
The superuser enables users to use the platform and assigns a role to each of
them. Furthermore it also assigns a user to one or more work groups.

• ADMIN: a super-partes user, responsible of manage and monitor the platform.

The components relative to a SUPERUSER-oriented page are now described, since
more functionalities and a more complex UI are contained. The main structure,
visible in Figure 4.14, is similar to ApplicationDetails page one.

Figure 4.14: Profile Page

First of all, the name, surname and the role of the user are reported on the
top-left corner.

Then two <Tab>s containing Users and Groups <Table>s are rendered. The
Users tab shows all the active users belonging to the work groups the superuser
supervises. For each <TableRow> in the <Table>, a <TableCell> with the name,
the email that uniquely identifies the user in the organization, the role and the
number of applications that user uploaded, are reported.

32

Methodology

The Groups <Table> shows all the data related to the work groups involved. A
<TableCell> with the name of the group, the amount of members inside the group
and the number of applications coded by that group are reported.

Similarly to the pop-ups already described in section 4.1.4, two <Dialog>s for
adding one user and one group were designed.

User creation

The <addUser> component is a Material-UI <Dialog> allowing to create one user.
To make the UI coherent with the previous section, the <addUser> <Dialog>
is again organized in steps, using the <Stepper> Material-UI component. The
<Stepper> helps providing a more interactive User Experience (UX), asking the
user to fill the form in a sequential way.

<Step> 1, shown in Figure 4.15, contains a <Select> Material-UI component,
allowing to choose one element from a list of unactive users. Each element in the
<Select> is characterized by its name and its unique identifier (its organization
email address).

Figure 4.15: User instance creation - Step 1

It at least one user is selected from the list, one can proceed to the <Step> 2,
where another <Select> Material-UI component, allowing to select one or more
groups, is rendered. Step 2 is shown in Figure 4.16.

33

Methodology

Figure 4.16: User instance creation - Step 2

When at least one group is selected, the superuser can go on to <Step> 3,
represented in Figure 4.17, where a third <Select> allows to choose the role of the
user to be created will play.

Figure 4.17: User instance creation - Step 3

At this point an entry in the User table in the database is created, by clicking
on the Submit button and performing a POST request.

34

Methodology

Group creation

The <addGroup> component is a Material-UI <Dialog> allowing to create one work
group, containing different roled users working together. To make the UI coherent
with the previous section, the <addUser> <Dialog> is again organized in steps,
using the <Stepper> Material-UI component.

<Step> 1, represented in Figure 4.18, contains a <TextField> Material-UI
component, allowing to choose the name for the group.

Figure 4.18: Group creation - Step 1

If the field is not empty, one can proceed to the <Step> 2 in Figure 4.19 where
a <Select> Material-UI component, containing the list of all the active users, is
rendered. The superuser can select one or more users and, clicking on the Submit
button, an instance in the Group <Table> is added, performing a POST request.

Figure 4.19: Group creation - Step 2

35

Methodology

4.1.7 Multilanguage Support
Different languages are supported by the system. At the moment, only English and
Italian are available but the amount of languages available can grow, as the client
company requires it. The Multilanguage support is provided by react-18next
library, described in 2.2.8. First of all, a configuration file with the supported
languages has to be created. The system default language has to be set and saved
to JS localStorage. localStorage allows JS apps to save key-value pairs in a
web browser, with no expiration date. Then, one JSON file per supported language
has to be created. A list of strings pairs, in which the former element is a string in
the default language (English) and the latter is the translation to a certain language
to be further show in the page, have to be reported in each of this JSON files. One
single JSON is considered when the corresponding language acronym is selected.
To change the language, the user has to click on the proper language dropdown
menu in the top-right corner of the Application bar, shown in Figure 4.20.

Figure 4.20: Language menu selection in Application Bar

As one can see at line 18 in 4.9, everytime one element in the menu is clicked,
the handleChange function is triggered. This function allows to set the value of
the React state variable language to "en" or "it" and to change the global language
of the platform. All the strings present in the UI are translated to the desired
language, being picked from the proper JSON file properly prepared. That language
is also saved in the localStorage so that the user has not to change it everytime
the web application is opened.

Listing 4.9: MultiLanguage Support
1 export d e f a u l t func t i on LanguageSelect () {
2 const [language , setLanguage] = React . useState (i18next . language) ;
3

4 const handleChange = (event : SelectChangeEvent) => {
5 setLanguage (event . t a r g e t . va lue as s t r i n g) ;
6 changeLanguage (event . t a r g e t . va lue as s t r i n g) ;

36

Methodology

7 } ;
8

9 const changeLanguage = (ln : s t r i n g) => {
10 l o c a l S t o r a g e . set I tem (" lng " , ln) ;
11 i18n . changeLanguage (ln) ;
12 }
13 re turn (
14 <S e l e c t
15 . . .
16 value={language }
17 l a b e l={language }
18 onChange={handleChange}
19 inputProps={{
20 c l a s s e s : {
21 i con : c l a s s e s . i con
22 }}}
23 >
24 <MenuItem value={" en "}> <Icon icon=" openmoji : f l a g −united−

kingdom " /> Engl ish </MenuItem>
25 <MenuItem value={" i t "}> <Icon icon=" openmoji : f l a g −i t a l y "

spac ing={1}/> I t a l i a n o </MenuItem>
26 </Se l e c t >
27) ;
28 }

To make a string translatable, an instance of the useTranslation Hook has to
be declared in a page. After, that created instance has to be used as a wrapper for
all the strings to be translated.

4.2 WebServer and Database development
This section is about the Back-end development phase, occurred in parallel with
Front-end development. The Back-end development consists of the creation of the
WebServer and the related Database to collect the data from. The business logic
of the application is included too. Next sections will present a quick overview of
the steps followed to perform these tasks, taking into account the fact that the
candidate was not directly involved in these phases.

4.2.1 WebServer
First, Node.js has to be downloaded and installed in order to create a WebServer.
Node.js allows developers to use JavaScript to write Back-end code, even though
traditionally it was used to write Front-end [60].

NestJS library, introduced in section 2.3.1, was used as a framework to build a
Node server-side. The command nest new project-name was typed in a terminal

37

Methodology

window in order to create a new NestJS project. The project-name directory,
containing several core files, was created. The piece of code in 4.10, extracted
from main.ts file, shows the creation of the server-side application, through the
NestFactory class.

Listing 4.10: main.ts
1 async func t i on boots t rap () {
2 const app = await NestFactory . c r e a t e (AppModule , {
3 l o g g e r : [’ e r r o r ’ , ’ warn ’ , ’ debug ’] ,
4 bodyParser : f a l s e
5 }) ;
6 . . .
7 const c o n f i g S e r v i c e = app . get (Con f i gSe rv i c e) ;
8 const env = c o n f i g S e r v i c e . get (’NODE_ENV’) ;
9 const port = c o n f i g S e r v i c e . get (’PORT’) ;

10 await app . l i s t e n (port) ;
11 conso l e . l og (
12 ‘#### app ${ proce s s . env .APP_NAME} ve r s i on : ${ proce s s . env .

APP_VERSION} s t a r t e d @ http : // l o c a l h o s t : ${ port } with . env ${env } ‘ ,
13) ;
14 }

At line 10, the port which the application was listening to was set. It depends on
the environment the developer is using (development or production). Among the
other files in project-name directory, app.module.ts is reported in 4.11. All the
controllers, providers and the other modules related to all the entities declared, have
to be reported in the app @Module instance. The integration with the database,
further described in section 4.2.2 was included too, at line 4.

Listing 4.11: App Module
1 @Module ({
2 imports : [
3 . . .
4 TypeOrmModule . forRootAsync ({
5 useFactory : async () =>
6 Object . a s s i gn (await getConnect ionOptions () , {
7 autoLoadEnt i t i e s : true ,
8 }) ,
9 }) ,

10 AppsModule ,
11 VersionsModule ,
12 LinksModule ,
13 DownloadModule ,
14] ,
15 c o n t r o l l e r s : [AppControl ler] ,
16 prov ide r s : [AppService] ,
17 . . .

38

Methodology

18 })

4.2.2 Database
The Database is the part of the Back-end where all the data to be retrieved are
stored. Microsoft SQL Server was chosen as a Database for the project. Microsoft
SQL Server is a Relational Database Management System (RBMS) developed by
Microsoft, with the primary function of storing and retrieving data.

Since the full project development was carried out in TypeScript, TypeORM
was chosen as Object-Relational Mapper (ORM). An ORM is a programming
technique used to convert data between Relational Databases and Object-Oriented
Programming languages (OOP) [46]. It allows to write queries without writing
explicit SQL queries. TypeORM helps to develop any kind of application that
uses databases, from small applications with a few tables to large scale enterprise
applications with multiple databases [47]. TypeORM was also chosen because it
works well with Nest.js, already cited in previous section. To combine the two,
the dedicated @nestjs/typeorm package was used. First of all, a ormconfig.json
configuration file containing some useful properties related to the DB, like the type,
the port it is listening to, the username and the password to access the data, etc.
was created. Two instances of the database were created, one for the production
mode and one for the development/test mode. The lines of code [4-8], reported in
4.11, show the integration of TypeORM in the project.

Through getConnectionOptions, the connection options were read from the
ormconfig file. The Modules related to all the entities involved in the DB were
included too. Application, Version, Link and Download were four entities created
to manage the upload/download of the applications. User and Group entities instead
were created for users management phase.

TypeORM allows to create the entities mentioned above using the @Entity
decorator. Starting from an entity, the relative table was constructed. In 4.12
the Application entity was created. For each desired column in the Application
table, a @Column decorator was placed before and the expected type of the field
was specified.

Listing 4.12: Application Entity
1 @Entity ()
2 export c l a s s App l i ca t ion {
3 @PrimaryGeneratedColumn ()
4 id : number ;
5

6 @Column()
7 name : s t r i n g ;
8

39

Methodology

9 @Column()
10 d e s c r i p t i o n : s t r i n g ;
11

12 @Column({ type : ’ varchar ’ , l ength : ’max ’ , n u l l a b l e : t rue })
13 i con : s t r i n g ;
14

15 @OneToMany(() => Version , (v e r s i on : Vers ion) => ve r s i on . app)
16 v e r s i o n s : Vers ion [] ;
17

18 @CreateDateColumn ()
19 created_at : Date ;
20

21 @UpdateDateColumn ()
22 updated_at : Date ;
23

24 @DeleteDateColumn ()
25 deleted_at : Date ;
26 }

The @PrimaryGeneratedColumn decorator allows the id field to be automatically
incremented.

The @CreateDateColumn, @UpdateDateColumn and @DeleteDateColumn dec-
orators at lines 18, 21 and 24 allow those fields to be automatically filled and
updated. At line 15, the relationship between Application and Version entities
is established. The @OneToMany decorator tells that many versions correspond to a
single entry in the applications table.

Similarly to before, the following lines of code show how the Version table was
created.

Listing 4.13: Version Entity
1 @Entity ()
2 export c l a s s Vers ion {
3 @PrimaryGeneratedColumn ()
4 id : s t r i n g ;
5

6 @ManyToOne(() => App , (app : App) => app . v e r s i o n s)
7 app : App ;
8

9 @Column()
10 versionNumber : s t r i n g ;
11

12 @Column({ n u l l a b l e : t rue })
13 change logs : s t r i n g ;
14

15 @Column()
16 r e l eased_at : Date ;
17

40

Methodology

18 @Column({
19 type : ’ s imple−enum ’ ,
20 enum : Plat formsAvai lab le ,
21 })
22 plat form : P lat fo rmsAva i l ab l e ;
23

24 @Column()
25 bundleId : s t r i n g ;
26

27 @Column()
28 f i l ename : s t r i n g ;
29

30 @ManyToMany(() => Link , (l i n k : Link) => l i n k . v e r s i o n s)
31 l i n k s : typeo f Link [] ;
32

33 @CreateDateColumn ()
34 created_at : Date ;
35

36 @UpdateDateColumn ()
37 updated_at : Date ;
38

39 @DeleteDateColumn ()
40 deleted_at : Date ;
41 }

As before, a @Column decorator is placed before each desired column. versionNumer,
bundleId, platform are the most important fields, able to identify each version.
As opposed to before, at lines 6 the @ManyToOne decorator tells that many entry in
the versions table can correspond to a single entry in the applications one. At line
30, the @ManyToMany decorator establish the relationship between a Version and
a Link.

In 4.14, the Link entity was created. It is characterized by a validity_start
date and a validity_end date and an array of one or more versions. The
@ManyToMany decorator at line 12, equal to before, shows the biunivocal rela-
tionship between Version and Link entity.

Listing 4.14: Link Entity
1 @Entity ()
2 export c l a s s Link {
3 @PrimaryGeneratedColumn (’ uuid ’)
4 uuid : s t r i n g ;
5

6 @Column()
7 v a l i d i t y _ s t a r t : Date ;
8

9 @Column()
10 va l id i ty_end : Date ;

41

Methodology

11

12 @ManyToMany(() => Version , (v e r s i on : Vers ion) => ve r s i on . l i n k s)
13 @JoinTable ()
14 v e r s i o n s : Vers ion [] ;
15

16 @CreateDateColumn ()
17 created_at : Date ;
18

19 @UpdateDateColumn ()
20 updated_at : Date ;
21

22 @DeleteDateColumn ()
23 deleted_at : Date ;
24 }

The Download entity will be instead introduced in section 4.6.
Considering the user management part, a User Table and a Group Table were

created. The User Table contains an unique id identifier for the user (its or-
ganization e-mail), the name of the user and the role of the user in the work
group.

The Group Table instead contains an unique id identifier for each group, the
name of the group, the number of members in the group and a users array with
reference to one or more entries in the User Table.

4.3 API
The first phases of the project led to the Front-end and Back-end structure de-
velopment. The second phase focused on the communication between the two
parts. Front-end and Back-end communicate via API. An Application Programming
Interface (API) is a set of defined rules that explain how computers or applications
communicate with one another [61]. A client application (the Front-end) performs
a request, over the HTTP protocol, to retrieve some information. The server sends
a response back, containing the intended data under a JSON format. The APIs
are the bridge between the created Front-end and the Back-end.

This section will focus on how the APIs are served from the Back-end side and
used by the Front-end.

4.3.1 Front-end
The Front-end side uses Axios library, already introduced in section 2.2.5, to
perform the requests. These requests can be a GET request to retrieve a record, a
POST request to create one, a PUT request to update a record, and a DELETE request

42

Methodology

to delete one [61]. First of all an instance of Axios was created. A baseurl.ts
file, whose content is shown in 4.15 listing, was added to the root of the project.

Listing 4.15: Axios instance creation
1 import ax i o s from " ax io s " ;
2

3 const i n s t anc e = ax io s . c r e a t e ({
4 baseURL : proce s s . env .REACT_APP_BACKEND_BASE_URL,
5 headers : { Author i zat ion : ‘ Bearer ${ l o c a l S t o r a g e . getItem (" Token ") } ‘

} ,
6 }) ;
7

8 export d e f a u l t i n s t anc e ;

The create method at line 3 takes the baseURL to make the request to as a param-
eter, so that it can be omitted in the body of future requests. An Authorization
parameter with a unique token present in the header of each request, will be further
explained in section 4.5. The created instance can be imported inside any .tsx
component that needs to GET data from the database or POST some data. As an
example, the Dashboard page described in section 4.1.2 contains a huge variety of
data, coming from different API endpoints. When the authenticated user loads its
dashboard, several requests are made in parallel to the server.

The combined usage of Axios and React useState and React useEffect Hooks
was needed to perform the requests. React Hooks are functions that make the
developer use state and other React features without writing a specific class, but
inside function components. The useState Hook adds React state to function
components. The useEffect Hook instead tells React that a component needs to
do something after render and make some "side effects" to be performed.

Axios was used to directly fetch or post the data. The following lines of code
show how the Dashboard fetches the applications to be rendered in the top-left
<Card>.

Listing 4.16: GET Apps
1 import api from " . / base−u r l " ;
2 const [apps , setApps] = useState<Appl i ca t ion [] > ([]) ;
3

4 u s e E f f e c t (() => {
5 const fetchApps = async () => {
6 t ry {
7 const re sponse = await api . get (" apps ") ;
8 setApps (re sponse . data) ;
9 } catch (e r r : any) {

10 i f (e r r . r e sponse) {
11 conso l e . l og (e r r . r e sponse . data) ;
12 conso l e . l og (e r r . r e sponse . s t a tu s) ;

43

Methodology

13 } e l s e {
14 conso l e . l og (‘ Error : ${ e r r . message } ‘) ;
15 }
16 }
17 } ;
18 fetchApps () ;
19 } , []) ;

The apps state variable was initialized as an empty array of Application type,
which is an ad-hoc type whose fields correspond to the ones included in the JSON
received as a response from the server. The application type contains id, icon,
name, versions and description fields, needed to populate the UI.

After the component is rendered, the fetchApps function is called. At line 7,
api.get is used inside the body of the function to GET the intended data. api
was again imported from the base-url.ts file, so that the previous created Axios
instance could be reused, without specifying the baseURL parameter again. Through
fetchApps data are fetched from the server under a JSON format and saved into
the React state variable apps, to be passed as a parameter to the <LastApps>
component. Other data are fetched in the same way, changing the endpoint of the
GET API.

Regarding the POST requests, they are performed after a form submission. Every
time a component previously described in section 4.1 contains a Submit button, a
POST request is involved. The piece of code in 4.17 shows a POST request example,
referred in particular to one user.

Listing 4.17: POST Example
1 import api from " . . / base−u r l " ;
2

3 export d e f a u l t async func t i on createUser (id : s t r i ng , name : s t r i ng ,
s t a tu s : s t r i ng , groups : number []) {

4

5 t ry {
6 l e t payload = { id : id , name : name , s t a tu s : s tatus , groups :

groups } ;
7 l e t r e s = await api . post (" / u s e r s " , payload) ;
8 conso l e . l og (r e s . s t a tu s) ;
9 } catch (e r r : any) {

10 i f (e r r . r e sponse) {
11 conso l e . l og (e r r . r e sponse . data) ;
12 conso l e . l og (e r r . r e sponse . s t a tu s) ;
13 } e l s e {
14 conso l e . l og (‘ Error : ${ e r r . message } ‘) ;
15 }
16 }
17 }

44

Methodology

Again api was imported from the base-url.ts file, so that the previous created
Axios instance could be reused. The api.post method is called at line 7 and the
API endpoint, along with a payload containing the data to be submitted, is set as
parameters.

4.3.2 Back-end
NestJS, already described in section 2.3.1, uses Controller classes to manage
requests. To implement the APIs, a Controller class was created for each of the
entities introduced in section 4.2.2. The following lines of code show the content
of the controller implemented to manage the requests related to the application
entity.

Listing 4.18: Apps controller
1 import {
2 Contro l l e r , Get , Post , Body , Patch , Param , . . . } from ’ @nest j s /

common ’ ;
3 import { AppsService } from ’ . / apps . s e r v i c e ’ ;
4 import { CreateAppDto } from ’ . / dto/ create −app . dto ’ ;
5 import { UpdateAppDto } from ’ . / dto/update−app . dto ’ ;
6

7 @ApiTags (’ apps ’)
8 @Contro l ler (’ apps ’)
9 export c l a s s AppsContro l ler {

10 con s t ruc to r (p r i va t e readonly appsServ i ce : AppsService) {}
11

12 @Post ()
13 @UsePipes (new Val idat ionPipe ({ trans form : t rue }))
14 c r e a t e (@Body() createAppDto : CreateAppDto) {
15 re turn t h i s . appsServ i ce . c r e a t e (createAppDto) ;
16 }
17

18 @Get ()
19 f i n d A l l () {
20 re turn t h i s . appsServ i ce . f i n d A l l () ;
21 }
22

23 @Get(’ : id ’)
24 f indOne (
25 @Param(
26 ’ id ’)
27 id : number ,
28) {
29 re turn t h i s . appsServ i ce . findOne(+id) ; }
30 . . .
31 }

45

Methodology

Using the decorator @ApiTags at line 7, the endpoint of the API was chosen.
Furthermore, for each of the CRUD methods (GET, POST, PUT, DELETE), a
function was instanced. Each of these functions contains its related decorator,
as visible at lines 12,18,23 (@Get, @Post). These methods exploit other functions
defined in the apps.service class, that is the Service related to the same entity.
These functions describe the actions to be performed over a certain entity. The
piece of code in 4.19 shows the implementation of findAll and findOne methods,
used over the App entity.

Listing 4.19: Apps service
1 async f i n d A l l () : Promise<App[] > {
2 re turn await t h i s . appRepository . f i n d ({
3 r e l a t i o n s : [’ v e r s i o n s ’] ,
4 }) ;
5 }
6

7 async findOne (id : number) : Promise<App> {
8 t ry {
9 re turn await t h i s . appRepository . f indOneOrFai l (id , {

10 r e l a t i o n s : [’ v e r s i o n s ’] ,
11 }) ;
12 } catch (e r r o r) {
13 throw new HttpException (‘ Cannot f i n d app ${ e r r o r } ‘ , 404) ;
14 }
15 }

Both methods exploit pre-built functions already provided by NestJS (.find and
.findOneOrFail), to fetch all the entries or just one from the Application Table.

A Controller class and a Service class were created for all the other entities, so
that all the APIs were implemented.

4.4 Download
This section focuses on the most important aspect of the system: the download
of the applications. In Android system, the applications code is compiled by
Android SDK tools along with any data and resource files into an APK (Android
PacKage) file with an .apk extension. An Android Package contains the contents of
an Android app that are required at runtime and it is the archive file that Android-
powered devices use to install the app [62]. For iOS instead, the installation files
have an IPA file extension. As APK, they are archive files for holding the various
pieces of data that make up an iPhone or iPad application.

To download and install an application using the designed system, the final users
can access the public Download Page, already described in section 4.1.5, opening a
link generated and shared by one authenticated user. According to the Operating

46

Methodology

System (OS) the final user is using to navigate to that page, different components
are rendered. Furthermore, the installation mechanism differs depending on the OS.
The differences between the two platforms are described in the next subsections.

4.4.1 Download for Android
This section focuses on the download using an Android device. The final user
only needs to click on the proper Download button to get the file related to a
particular version of a certain application. When the click event is triggered, the
handleDownload() function reported in 4.20, is called. It takes as a parameter
the URL to perform the GET request to and the file extension of the desired
application. The responseType: "blob" field is necessary to impose the fact
that a file-like type has to be received as a response. A Blob (Binary Large Object)
is in fact a data type that can store binary data like multimedia objects.

Listing 4.20: Download function
1 f unc t i on handleDownload (l inkText : s t r i ng , ex t ens i on : s t r i ng , name ? :

s t r i n g) {
2 api . get (l inkText , { responseType : " blob "
3 }) . then ((re sponse) => {
4 const l i n k = document . createElement (" a ") ;
5 const u r l = window .URL. createObjectURL (new Blob ([r e sponse . data

])) ;
6 l i n k . h r e f = u r l ;
7 i f (name) {
8 l i n k . s e tA t t r i b u t e (" download " , name + extens i on) ;
9 }

10 e l s e {
11 l i n k . s e tA t t r i b u t e (" download " , " app l i c a t i on −name" + extens i on)

;
12 }
13 document . body . appendChild (l i n k) ;
14 l i n k . c l i c k () ;
15 }) ;
16 }

The same function is triggered when dealing with iOS platform but using
different parameters. To ensure that the file with the right extension is received
upon button click, the proper <Button> is coded as in 4.21.

Listing 4.21: Download Button
1 const l inkTextAndroid = " download/ " + uuid + " /ANDROID" ;
2 <Button var i an t=" conta ined "
3 onCl ick ={() => handleDownload (l inkTextAndroid , " . apk " , appName)}>
4 { " Download Android " }
5 </Button>

47

Methodology

The linkTextAndroid URL parameter to make the request to is composed of
the unique identifier (uuid) of the generated link, followed by a string with the
right platform. The file extension is ".apk" and the optional parameter appName
is taken from the parameters of the URL of the page.

Once the user clicks on the <Button>, the download immediately starts and the
user is asked to either install the application or just store the .apk file over the
device. Figure 4.21 shows the steps followed by an Android device, in order to
download an application.

Figure 4.21: Download Procedure on Android [63]

4.4.2 Download for iOS
This section focuses instead on the download procedure on iOS. To download
an .ipa file, it is sufficient to click on the proper download button. The same
Download function cited in 4.21 is called with different parameters. The .ipa file is
downloaded and locally stored on the device but nothing else happens. Differently
from before, the user is not directly asked to install the application, but a further
step has to be performed.

First of all, a so called manifest.plist file has to be created through the
createManifestFile function reported in 4.22. This file contains some metadata
related to the application (name, version, unique bundle identifier...) along with
the URL to download the application from. This information is passed to the
creation function as parameters.

Listing 4.22: Download function
1 export const c r e a t e M a n i f e s t F i l e = (
2 appName : s t r i ng ,
3 appLink : s t r i ng ,
4 appBundleId : s t r i ng ,
5 appVersion : s t r i ng ,

48

Methodology

6 uuid ,
7) => {
8 const m a n i f e s t F i l e = path . j o i n (’ mani f e s t ’ , ‘ ${ uuid } . mani f e s t . p l i s t

‘) ;
9 const mani festContent = createMani fe s tContent (

10 appName ,
11 appLink ,
12 appBundleId ,
13 appVersion ,
14) ;
15 re turn new Promise<s t r i ng >((res , r e j) => {
16 f s . w r i t e F i l e (man i f e s tF i l e , manifestContent , (e r r) => {
17 i f (e r r) {
18 r e j (e r r) ;
19 } e l s e {
20 r e s (m a n i f e s t F i l e) ;
21 }
22 }) ;
23 }) ;
24 } ;

As opposed to Android, a URL pointing to the produced manifest file and not
directly to the .ipa file was needed. This URL is linkTextiOS (again composed
of a unique identifier (uuid) of the generated link, followed by IOS string), with
a ?installOnIOS= parameter set to true suffix. In iOS environment, URLs need
a prefix containing a specific task to be performed in the system. In this phase
the Apple scheme itms-services://?action=download-manifest pointing to
the generated manifest file was used. The complete URL became a concatenation
of the Apple prefix plus the linkTextiOS followed by ?installOnIOS=true.

Once the user clicks on this <Link>, a pop-up asking the user to install the
desired application will appear. If the user accepts it, a further GET request is
performed to the link contained in the manifest.plist file and the application is
finally downloaded. Figure 4.22 shows the installation process performed in iOS.

Figure 4.22: Download Procedure on iOS [63]

49

Methodology

4.5 Microsoft Authentication Integration
Once the main architecture was set up, an authentication system is needed to allow
only specific users to access the core functionalities of the platform.

This task was performed with the integration with Azure Active Directory
(Azure AD), already described in section 2.4. This allows users to be authenticated
using Microsoft identity platform, that helps to build applications in which users
and customers can sign in with their Microsoft work or social accounts and provide
authorized access to the designed APIs [50], without the need of designing an
ad-hoc identity provider from scratch.

Two actors play a role in using the system: the users authenticated to the
platform and the final users. Their differences and MSAL employment will be
described in next sections.

4.5.1 Authenticated users
The authenticated users are able to login to the platform and navigate through all
the pages presented in section 4.1. Furthermore, all the implemented functionalities
are accessible by a user authenticated to the system only.

Considering the Front-end, Microsoft already provides @azure/msal-react
library to authenticate users in React Single Page Applications. Before to use the
library, the client company needed to register the Front-end application in Azure
AD portal to get a clientId and a tenantId for configuration. The following lines
of code show how to integrate MSAL and are reported in the root of the project.

Listing 4.23: MSAL React
1 const msa l Instance = new Pub l i cC l i en tApp l i c a t i on (msalConfig) ;
2

3 export const msalConfig : Con f igurat ion = {
4 auth : {
5 c l i e n t I d : " c l i e n t −id " ,
6 author i ty :
7 " https : // l o g i n . m i c r o s o f t o n l i n e . com/ tenant−id " ,
8 r e d i r e c t U r i : " / " ,
9 }

10 } ;

To use MSAL, a PublicClientApplication object has to be declared. It
takes as a parameter a configuration file, where the provided clientId, tenantId
and a redirectUri are declared. When a user tries to access to the application
characterized by that particular clientId, it is redirected to the login page of the
organization represented by that tenantId. If the user is correctly authenticated, it
is redirected to the "/" route, corresponding to the Dashboard Page, as introduced
in section 4.1.1

50

Methodology

MSAL-React already provides a pre-built set of components and Hooks, making
the integration with the authentication easier. First of all, <MsalProvider> compo-
nent has to be declared at the top level of the component tree that requires access
to authentication, as a wrapper for all the <App>. All the children components will
have access to @azure/msal-react context, hooks and components.

The library already provides useful components as <AuthenticatedTemplate>
and <UnauthenticatedTemplate>, allowing to conditionally render part of the
pages or entire pages to authenticated users only. The lines of code in 4.24
show that, navigating to the same path of the application, an authenticated
user can access to all the <Pages> wrapped inside an <AuthenticatedTemplate>
component, while an unauthenticated user can see the element wrapped inside
the <UnauthenticatedTemplate> only. In the last case, a <WelcomePage> with a
proper <SignInButton> is rendered. By clicking on that button, a loginRequest
to the authority URL provided in 4.23 at line 6 is performed and the user can
authenticate to the system using its own organization account.

Listing 4.24: Authenticated/Unauthenticated
1 f unc t i on App() {
2 re turn (
3 <div>
4 <AuthenticatedTemplate>
5 <Pages />
6 </AuthenticatedTemplate>
7 <UnauthenticatedTemplate>
8 <WelcomePage />
9 </UnauthenticatedTemplate>

10 </div>
11) ;
12 }

As before, the client company needed to register the Back-end application in
Azure AD portal to get a clientId and a tenantId for configuration. To integrate
Azure AD, the passport-azure-ad library provided by Azure was implied with
NestJS and a BearerStrategy was chosen. BearerStrategy uses Bearer Tokens
protocol to protect APIs. A user sends a request with a Bearer token in the header
to the Back-end. Passport extracts and validates the received token, and verify if
the user is authorized to get the data. In case of error, an Unauthorized response
is sent back.

The integration with the Back-end requires the extension of the Passport
Strategy class, already provided by NestJS. The options related to the authenti-
cation service (azure-ad) and strategy (BearerStrategy) have to be set. To connect
Back-end and Front-end applications, the Front-end clientId has to be passed to
the constructor at line 10.

51

Methodology

Listing 4.25: Backend Passport
1 export c l a s s AzureADStrategy extends PassportStrategy (
2 BearerStrategy ,
3 ’ azure−ad ’ ,
4) {
5 con s t ruc to r (p r i va t e c o n f i g S e r v i c e : Con f i gSe rv i c e) {
6 super ({
7 ident i tyMetadata : ‘ https : // l o g i n . m i c r o s o f t o n l i n e . com/${

c o n f i g S e r v i c e . get (
8 ’TENANT_ID’ ,
9) }/v2 . 0 / . wel l−known/openid−con f i gu ra t i on ‘ ,

10 c l i e n t I D : ‘ ${ c o n f i g S e r v i c e . get (’FRONTEND_CLIENT_ID’) } ‘ ,
11 }) ;
12 }
13 }

When a user signs-in, he/she needs to acquire this unique Bearer token, to be
set in the header of all the requests to the Back-end. The idToken is acquired
using the acquireTokenSilent function, already provided by MSAL and visible
in line 8 of 4.26. It is saved in JS localStorage and added to the Axios instance
previously created and introduced in section 4.3.

Listing 4.26: Client Token
1

2 u s e E f f e c t (() => {
3 f unc t i on RequestAccessToken () {
4 i n s t anc e
5 . a cqu i r eTokenS i l ent (r eques t)
6 . then ((re sponse) => {
7 l o c a l S t o r a g e . set I tem (" IdToken " , r e sponse . idToken) ;
8 })
9 . catch ((e) => {

10 i n s t anc e . acquireTokenPopup (r eque s t) . then ((re sponse) => {
11 l o c a l S t o r a g e . set I tem (" IdToken " , r e sponse . idToken) ;
12 }) ;
13 }) ;
14 }
15 RequestAccessToken () ;
16 } , [i n s t ance]) ;

If the token is successfully acquired, the user is able to perform all the requests
and get the data of interest, to populate the pages.

4.5.2 Final users
The final users are not able to authenticate to the platform. They can be clients or
external partners of the company, interested in receiving a particular enterprise

52

Methodology

mobile application to work with. The platform can also be used to test some beta
versions of new apps tuned by one of the authenticated user. In this case, a final
user can also be a company employee not present in the users pool able to access
to the system, asked to test some functionalities of a certain application.

4.6 Analytics
This section focuses on the analytical part where all the statistical analyses are
performed. Some additional functionalities were added to the Front-end and Back-
end already developed. These features help the authenticated users to monitor
the spread of their applications, shared through the generation of public links.
The pages previously described in section 4.1 were populated with charts and
maps, providing insights related to the amount of downloads. Thanks to these
insights, the user can monitor the trend of the downloads of its own applications
and identify possible malicious behaviours, in order to preserve the secure sharing
of the applications. These statistics differ from one user to another.

4.6.1 Database update
To implement the new statistical features, a new Download Table was added to the
Database, previously described in section 4.2.2. Each entry in the Download Table
contains the timestamp at which the download was done, a uuid field representing
the particular link used to perform the download and the corresponding version of
the application. Then, the public IP Address and the corresponding country for a
certain request of download received by the server are saved to other two columns.
The country where a request comes from can be derived from the IP Address using
the Geoip-lite JS library [64], able to parse IP addresses and geo-locate them.

4.6.2 Front-end components
In the Front-end, <MapChart>, <DownloadBarChart> and <DownloadLinkChart>
ad-hoc reusable React components, already cited in 4.1.2 and 4.1.4, were created
to include interesting statistical features about the application downloads.

MapChart

<MapChart> was realized using React Single Maps library, quickly introduced in
section 2.2.7.

<MapChart> is a Material-UI <Card> showing a <ComposableMap> wrapper with
a <Geographies> component inside. <Geographies> takes as a parameter a geojson
file previously prepared, representing the whole world without annotations. The

53

Methodology

user can change the area of the world it is interested in, by clicking on the proper
button on the top-right corner of the <Card>. This way, the projection parameters
of <ComposableMaps> changes and a different region is shown. <MapChart> and
the relative dropdown menu is represented in Figure 4.23.

Figure 4.23: <MapChart>

This component takes as a parameter an array of Country4Plot type, containing
a country and the related amount of downloads performed. For each entry in
the array passed as props, a <Geography> element in the map is created and the
corresponding area is colored using a colorScale function that scales the colors
proportionally between the minimum and the maximum number of downloads in
the array, creating a HeatMap.

Ad-hoc APIs were created to send to the Front-end the correct data to be
shown through maps and charts. The related endpoint allowing to build this
map is statistics/countries/apps and returns an array of Country type, whose
entries are composed of a country and a corresponding array of apps with the
related amount of downloads for that country. To build the map, a Country4Plot
array composed of the country and the corresponding amount of downloads only is
needed, so a procedure of aggregation of the data per country was performed.

When used in the Dashboard, <MapChart> component contains the amount of
downloads per country, aggregated by all the applications uploaded by the user. In
the Application Details Page instead, it shows the amount of downloads aggregated
by all the versions of one single application.

The authenticated users can monitor the geographical spread of their applications
looking at the designed map. If one particular application is shared with partners
belonging to a certain geographical area, downloads in different areas should not

54

Methodology

appear on the map!

DownloadBarChart

<DownloadBarChart> was created using Recharts library, already introduced in
section 2.2.6. <DownloadBarChart>, shown in Figure 4.24, is a <BarChart> aggre-
gating the amount of downloads per day. It shows data related to last 10 days of
usage of the platform.

Figure 4.24: <DownloadBarChart>

Ad-hoc APIs were created to send to the Front-end the correct data to be
shown through the chart. The related endpoint allowing to build this chart
is statistics/downloads/apps, returning an array of Version4Download type,
whose entries are composed of an application and a corresponding array of
downloads which in turns contains the amount of downloads for each version of
the same application.

The designed component takes an array of Download4Plot type, which contains
a date field and the corresponding amount of downloads. To build the chart, a
procedure of aggregation of the downloads per date was necessary.

When used in the Dashboard, <DownloadBarChart> component contains the
total amount of downloads per date, looking at all the applications uploaded by
the user. In the Application Details Page instead, it shows the total amount of
downloads, looking at all the versions of one single application.

55

Methodology

The authenticated users can monitor the average amount of downloads of their
applications, looking at this chart. Possible malicious behaviours can be intercepted,
when a <Bar> overcomes the others.

DownloadLinkChart

<DownloadLinkChart> was still created using Recharts library, introduced in sec-
tion 2.2.6. It contains a <ComposedChart>, combining a <BarChart> and an
<AreaChart>. The former accumulates the amount of downloads per generated
link; the latter shows the maximum amount of downloads for the same generated
links, granted during the link creation phase. <DownloadLinkChart> is shown in
Figure 4.25.

Figure 4.25: <DownloadLinkChart>

The authenticated users can compare the amount of downloads performed for a
certain generated link and the total amount of downloads allowed for the same link.
If the number of downloads overcomes the threshold set during the link generation
phase (as in <Bar> 2 and 3 of Figure 4.25), the user can intercept possible malicious
behaviours, since that link has been used more than expected.

The user can use this feature in order to allow the download of the application
just to a limited portion of final users only.

56

Methodology

4.7 Deployment on Azure Virtual Machine

All the functionalities described in previous sections were only developed on
localhost. The employment of an Azure Virtual Machine (VM) provided by
the client company was necessary, to host the designed Web Application and expose
it to the Internet.

4.7.1 Deployment

Considering the Front-end, the deployment for production of the designed React
application was performed by running the command npm run build in a terminal
window. This command creates a build directory with a production build for
the application [65]. Through that command, a React app is minified into simple
HTML, CSS, and JavaScript files [66] that can be interpreted by the browser.
The obtained folder serves the React application through a single entry point
corresponding to index.html file, where the entire app resides.

After that, the build directory was uploaded to a shared folder belonging to the
developer company drive. The developer needed to login to the Virtual Machine,
open a browser window and reach the same folder just uploaded, in order to drag
it from the drive and move it on the VM.

Let’s now consider the Back-end. First, locally on the developer machine, the
command npm run create:zip was run in order to create a .zip folder of the
entire repository. Again the .zip directory just created was uploaded to a shared
folder in the developer company drive and locally downloaded to the VM, by
accessing to the same path.

Furthermore, the files in the .zip folder were extracted and the command npm
run azure:build:prod was run in a terminal window. This command installed
all the needed dependencies, built the application and started the server. This
command creates the production instance of the Web application, served on local
port 3000. Since two instances of the Web Application were needed (one for
production and one for development/test), npm run azure:build:dev command
was run in another terminal window to get the second instance devoted to the test,
served on local port 3999.

Figure 4.26 and Figure 4.27 show the two commands run in two distinct terminal
windows and both servers successfully started on different ports.

57

Methodology

Figure 4.26: Development instance

Figure 4.27: Production instance

At this point, Front-end and Back-end were moved to the Virtual Machine and
successfully running. Next section will focuses on the setup of Internet Information
Services (IIS), in order to expose the Web Application to the Internet.

58

Methodology

4.7.2 IIS configuration
First, the installation of IIS was necessary. Inside the Server Manager Portal, a list
of servers was presented. The server hosting the Web Application was selected from
the list and WebServer was set as its role. Once IIS was installed, IIS Manager
Tool could be opened and several operations could be performed.

Right-clicking on the server, a new website was created. Figure 4.28 shows the
form to be filled to create a new website, using IIS Manager Tool.

Figure 4.28: New website creation with IIS

The physical path of the Front-end build folder needed to be provided in the
Content Directory field. The hostname and the port over which the website will
be served were chosen. The protocol type (HTTP or HTTPS) had to be selected
too. HTTPS uses the SSL/TLS protocol to encrypt communications. SSL/TLS
confirms that a website server is who it says it is [67]. HTTPS was selected and a
valid SSL certificate provided by the client company was added to the website.

Two websites were created: one for production served on port 443 and one for
development/test on port 3443. Both websites use the same SSL certificate and
shows the same Front-end.

The IIS configuration procedure allowed to create two separated websites, avail-
able to the Internet. A further step needed to be performed: forwarding the requests
for the Back-end coming from that websites at https://hostname:port/api/...
to localhost:3000 and localhost:3999 of the VM, where the production and

59

Methodology

development instances of the Back-end were already running and ready to answer,
as introduced in previous section.

To perform this task, the installation of URL Rewrite Module of IIS was nec-
essary. This module modifies the requested URL before the Web server decides
which handler to use to process the request [58].

Two new In-bound rules has to be added to convert every request. The
Dev-Rule forwards the requests coming on https://hostname:3443/api/... to
localhost:3999.

The Prod-Rule forwards the requests coming on https://hostname/api/...
to localhost:3000. Figure 4.29 and Figure 4.30 show the configuration of the
in-bound rules to forward the requests to the right server.

Figure 4.29: IIS - Rule Definition

Figure 4.30: IIS - Rules Overview

60

Chapter 5

Conclusions

In this thesis, an enterprise distribution platform for mobile applications was
developed on behalf of a leading food company. The company needed to share
its own enterprise applications with customers and partners in a private, direct
and secure way. Possible privacy issue can be encountered using public app stores
because restricted and confidential information, contained in enterprise mobile
applications, can be accessed not only by employees but also by unauthorized users.
This issue was overcome designing an architecture for distributing the enterprise
mobile applications over-the-air (OTA), sharing public links that are valid only for
a limited amount of time, avoiding that too many unwanted downloads could be
performed. Furthermore, in order to identify possible malicious behaviors, some
analytical considerations were carried out to include security features by monitoring
the downloads during the link validity time. The entire system architecture was
designed and exposed over the Internet. A test session of all the implemented
functionalities gave some first promising results. As soon as the system will be
delivered to the client company, more insights about the performances will be
available.

The designed system can be enhanced with the following functionalities:
1. Possibility to stop the validity of a link, when the number of the related

downloads overcomes a threshold set during the link generation phase.

2. Restriction of link validity only on a certain geographical region. A final user
belonging to a country outside of the selected region will see an error page
instead of the public Download Page.

3. Automatic tests on the reliability of the applications loaded to the platform.

4. Scalability of the system on multi-servers and multi-databases, in case more
instances of the same web application are required.

61

Bibliography

[1] Dr. MD Rashedul Islam and Tridib Mazumder. «Mobile Application and Its
Global Impact». In: (Dec. 2010) (cit. on p. 1).

[2] url: https://buildfire.com/app-statistics/ (cit. on p. 1).
[3] url: https://www.emergeinteractive.com/insights/detail/the-best-

mobile-enterprise-application-platforms/ (cit. on p. 1).
[4] url: https://www.hubspire.com/what-is-enterprise-mobile-applica

tion-development/ (cit. on p. 1).
[5] url: https://definitions.uslegal.com/d/digital-distribution/ (cit.

on p. 1).
[6] url: https://appleinsider.com/inside/app-store (cit. on p. 1).
[7] url: https://www.apple.com/app-store/ (cit. on p. 1).
[8] url: https://developer.apple.com/app-store/review/ (cit. on p. 2).
[9] url: https://www.typescriptlang.org/docs/handbook/typescript-

from-scratch.html#a-typed-superset-of-javascript (cit. on p. 4).
[10] Christopher Nance. TypeScript Essentials. Oct. 2014 (cit. on p. 4).
[11] url: https://www.typescriptlang.org/docs/handbook/2/everyday-

types.html#type-assertions (cit. on p. 4).
[12] url: https://docs.microsoft.com/en-us/dotnet/architecture/mod

ern-web-apps-azure/choose-between-traditional-web-and-single-
page-apps (cit. on p. 5).

[13] url: https://reactjs.org/docs/components-and-props.html (cit. on
p. 5).

[14] url: https://reactjs.org/docs/hooks-state.html (cit. on p. 6).
[15] url: https://reactjs.org/docs/hooks-effect.html (cit. on p. 6).
[16] url: https://reactjs.org/docs/introducing-jsx.html (cit. on p. 6).
[17] url: https://mui.com/ (cit. on p. 6).

62

https://buildfire.com/app-statistics/
https://www.emergeinteractive.com/insights/detail/the-best-mobile-enterprise-application-platforms/
https://www.emergeinteractive.com/insights/detail/the-best-mobile-enterprise-application-platforms/
https://www.hubspire.com/what-is-enterprise-mobile-application-development/
https://www.hubspire.com/what-is-enterprise-mobile-application-development/
https://definitions.uslegal.com/d/digital-distribution/
https://appleinsider.com/inside/app-store
https://www.apple.com/app-store/
https://developer.apple.com/app-store/review/
https://www.typescriptlang.org/docs/handbook/typescript-from-scratch.html#a-typed-superset-of-javascript
https://www.typescriptlang.org/docs/handbook/typescript-from-scratch.html#a-typed-superset-of-javascript
https://www.typescriptlang.org/docs/handbook/2/everyday-types.html#type-assertions
https://www.typescriptlang.org/docs/handbook/2/everyday-types.html#type-assertions
https://docs.microsoft.com/en-us/dotnet/architecture/modern-web-apps-azure/choose-between-traditional-web-and-single-page-apps
https://docs.microsoft.com/en-us/dotnet/architecture/modern-web-apps-azure/choose-between-traditional-web-and-single-page-apps
https://docs.microsoft.com/en-us/dotnet/architecture/modern-web-apps-azure/choose-between-traditional-web-and-single-page-apps
https://reactjs.org/docs/components-and-props.html
https://reactjs.org/docs/hooks-state.html
https://reactjs.org/docs/hooks-effect.html
https://reactjs.org/docs/introducing-jsx.html
https://mui.com/

BIBLIOGRAPHY

[18] Adam Boduch. React Material-UI Cookbook: Build captivating user experiences
using React and Material-UI. Mar. 2019 (cit. on p. 6).

[19] url: https://mui.com/components/autocomplete/ (cit. on p. 7).
[20] url: https://mui.com/components/buttons/ (cit. on p. 7).
[21] url: https://mui.com/components/cards/ (cit. on p. 7).
[22] url: https://mui.com/components/chips/ (cit. on p. 7).
[23] url: https://mui.com/components/dialogs/ (cit. on p. 7).
[24] url: https://mui.com/components/progress/ (cit. on p. 7).
[25] url: https://mui.com/components/selects/ (cit. on p. 7).
[26] url: https://mui.com/components/stepper/ (cit. on p. 7).
[27] url: https://mui.com/components/tables/ (cit. on p. 7).
[28] url: https://mui.com/components/text-fields/ (cit. on p. 7).
[29] url: https://reactrouter.com/docs/en/v6/api (cit. on p. 7).
[30] url: https://reactrouter.com/docs/en/v6/api#browserrouter (cit. on

p. 7).
[31] url: https://reactrouter.com/docs/en/v6/api#routes-and-route

(cit. on p. 7).
[32] url: https://reactrouter.com/docs/en/v6/api#usenavigate (cit. on

p. 7).
[33] url: https://reactrouter.com/docs/en/v6/api#useparams (cit. on

p. 8).
[34] url: https://www.digitalocean.com/community/tutorials/js-axios-

vanilla-js (cit. on p. 8).
[35] url: https://www.javatpoint.com/react-axios (cit. on p. 8).
[36] url: https://github.com/recharts/recharts/blob/master/README.md

(cit. on p. 8).
[37] url: https://recharts.org/en-US/api/BarChart (cit. on p. 8).
[38] url: https://www.npmjs.com/package/react-simple-maps (cit. on p. 8).
[39] url: https://www.react-simple-maps.io/docs/composable-map (cit. on

p. 8).
[40] url: https://www.react-simple-maps.io/docs/geographies/ (cit. on

p. 8).
[41] url: https://www.react-simple-maps.io/docs/geography/ (cit. on

p. 8).

63

https://mui.com/components/autocomplete/
https://mui.com/components/buttons/
https://mui.com/components/cards/
https://mui.com/components/chips/
https://mui.com/components/dialogs/
https://mui.com/components/progress/
https://mui.com/components/selects/
https://mui.com/components/stepper/
https://mui.com/components/tables/
https://mui.com/components/text-fields/
https://reactrouter.com/docs/en/v6/api
https://reactrouter.com/docs/en/v6/api#browserrouter
https://reactrouter.com/docs/en/v6/api#routes-and-route
https://reactrouter.com/docs/en/v6/api#usenavigate
https://reactrouter.com/docs/en/v6/api#useparams
https://www.digitalocean.com/community/tutorials/js-axios-vanilla-js
https://www.digitalocean.com/community/tutorials/js-axios-vanilla-js
https://www.javatpoint.com/react-axios
https://github.com/recharts/recharts/blob/master/README.md
https://recharts.org/en-US/api/BarChart
https://www.npmjs.com/package/react-simple-maps
https://www.react-simple-maps.io/docs/composable-map
https://www.react-simple-maps.io/docs/geographies/
https://www.react-simple-maps.io/docs/geography/

BIBLIOGRAPHY

[42] url: https://lokalise.com/blog/how-to-internationalize-react-
application-using-i18next/ (cit. on p. 8).

[43] url: https://react.i18next.com/ (cit. on p. 9).
[44] url: https://docs.nestjs.com/ (cit. on p. 9).
[45] url: https://enlear.academy/why-you-should-use-nestjs-as-your-

backend-framework-bd1ff1acce5d (cit. on p. 9).
[46] url: https://www.tutorialspoint.com/hibernate/orm_overview.htm

(cit. on pp. 9, 39).
[47] url: https://typeorm.io/#/ (cit. on pp. 9, 39).
[48] url: https://azure.microsoft.com/en-us/services/active-director

y/#overview (cit. on p. 10).
[49] url: https://docs.microsoft.com/en-us/azure/active-directory/

fundamentals/active-directory-whatis (cit. on p. 10).
[50] url: https://docs.microsoft.com/en-us/azure/active-directory/

develop/v2-overview (cit. on pp. 10, 14, 50).
[51] url: https://docs.microsoft.com/en-us/azure/active-directory/

develop/authentication-vs-authorization (cit. on p. 10).
[52] url: https://docs.microsoft.com/en-us/azure/active-directory/

develop/msal-overview (cit. on p. 10).
[53] url: https://github.com/AzureAD/microsoft-authentication-librar

y-for-js/tree/dev/lib/msal-browser#about (cit. on p. 10).
[54] url: https://github.com/AzureAD/microsoft-authentication-librar

y-for-js/tree/dev/lib/msal-react (cit. on p. 10).
[55] url: https://www.iis.net/ (cit. on p. 10).
[56] url: https://www.techtarget.com/searchwindowsserver/definition/

IIS (cit. on p. 10).
[57] url: https://docs.microsoft.com/it-it/iis/get-started/introduct

ion-to-iis/introduction-to-iis-architecture (cit. on p. 11).
[58] url: https://docs.microsoft.com/en-us/iis/extensions/url-rewrit

e-module/iis-url-rewriting-and-aspnet-routing (cit. on pp. 11, 60).
[59] url: https://www.npmjs.com/package/app-info-parser (cit. on p. 25).
[60] url: https://www.digitalocean.com/community/tutorials/how-to-

create- a- web- server- in- node- js- with- the- http- module (cit. on
p. 37).

[61] url: https://www.ibm.com/cloud/learn/rest-apis (cit. on pp. 42, 43).

64

https://lokalise.com/blog/how-to-internationalize-react-application-using-i18next/
https://lokalise.com/blog/how-to-internationalize-react-application-using-i18next/
https://react.i18next.com/
https://docs.nestjs.com/
https://enlear.academy/why-you-should-use-nestjs-as-your-backend-framework-bd1ff1acce5d
https://enlear.academy/why-you-should-use-nestjs-as-your-backend-framework-bd1ff1acce5d
https://www.tutorialspoint.com/hibernate/orm_overview.htm
https://typeorm.io/#/
https://azure.microsoft.com/en-us/services/active-directory/#overview
https://azure.microsoft.com/en-us/services/active-directory/#overview
https://docs.microsoft.com/en-us/azure/active-directory/fundamentals/active-directory-whatis
https://docs.microsoft.com/en-us/azure/active-directory/fundamentals/active-directory-whatis
https://docs.microsoft.com/en-us/azure/active-directory/develop/v2-overview
https://docs.microsoft.com/en-us/azure/active-directory/develop/v2-overview
https://docs.microsoft.com/en-us/azure/active-directory/develop/authentication-vs-authorization
https://docs.microsoft.com/en-us/azure/active-directory/develop/authentication-vs-authorization
https://docs.microsoft.com/en-us/azure/active-directory/develop/msal-overview
https://docs.microsoft.com/en-us/azure/active-directory/develop/msal-overview
https://github.com/AzureAD/microsoft-authentication-library-for-js/tree/dev/lib/msal-browser#about
https://github.com/AzureAD/microsoft-authentication-library-for-js/tree/dev/lib/msal-browser#about
https://github.com/AzureAD/microsoft-authentication-library-for-js/tree/dev/lib/msal-react
https://github.com/AzureAD/microsoft-authentication-library-for-js/tree/dev/lib/msal-react
https://www.iis.net/
https://www.techtarget.com/searchwindowsserver/definition/IIS
https://www.techtarget.com/searchwindowsserver/definition/IIS
https://docs.microsoft.com/it-it/iis/get-started/introduction-to-iis/introduction-to-iis-architecture
https://docs.microsoft.com/it-it/iis/get-started/introduction-to-iis/introduction-to-iis-architecture
https://docs.microsoft.com/en-us/iis/extensions/url-rewrite-module/iis-url-rewriting-and-aspnet-routing
https://docs.microsoft.com/en-us/iis/extensions/url-rewrite-module/iis-url-rewriting-and-aspnet-routing
https://www.npmjs.com/package/app-info-parser
https://www.digitalocean.com/community/tutorials/how-to-create-a-web-server-in-node-js-with-the-http-module
https://www.digitalocean.com/community/tutorials/how-to-create-a-web-server-in-node-js-with-the-http-module
https://www.ibm.com/cloud/learn/rest-apis

BIBLIOGRAPHY

[62] url: https://developer.android.com/guide/components/fundamental
s (cit. on p. 46).

[63] url: https://medium.com/@adrianstanecki/distributing-and-instal
ling-non-market-ipa-application-over-the-air-ota-2e65f5ea4a46
(cit. on pp. 48, 49).

[64] url: https://www.npmjs.com/package/geoip-lite (cit. on p. 53).
[65] url: https://create-react-app.dev/docs/deployment/ (cit. on p. 57).
[66] url: https://www.pluralsight.com/guides/deploy-a-react-app-on-

a-server (cit. on p. 57).
[67] url: https://www.cloudflare.com/it- it/learning/ssl/why- use-

https/ (cit. on p. 59).

65

https://developer.android.com/guide/components/fundamentals
https://developer.android.com/guide/components/fundamentals
https://medium.com/@adrianstanecki/distributing-and-installing-non-market-ipa-application-over-the-air-ota-2e65f5ea4a46
https://medium.com/@adrianstanecki/distributing-and-installing-non-market-ipa-application-over-the-air-ota-2e65f5ea4a46
https://www.npmjs.com/package/geoip-lite
https://create-react-app.dev/docs/deployment/
https://www.pluralsight.com/guides/deploy-a-react-app-on-a-server
https://www.pluralsight.com/guides/deploy-a-react-app-on-a-server
https://www.cloudflare.com/it-it/learning/ssl/why-use-https/
https://www.cloudflare.com/it-it/learning/ssl/why-use-https/

	List of Figures
	Acronyms
	Introduction
	State of the Art
	TypeScript
	Front-end
	React
	JSX/TSX
	MUI
	React Router
	Axios
	Recharts
	React Simple Maps
	React-i18next

	Back End
	NestJS
	TypeORM

	Azure AD
	MSAL

	IIS

	Methodology Overview
	Methodology
	Front-end pages development
	The Routes
	The Dashboard
	Applications Page
	Application Details Page
	Download Page
	Profile Page
	Multilanguage Support

	WebServer and Database development
	WebServer
	Database

	API
	Front-end
	Back-end

	Download
	Download for Android
	Download for iOS

	Microsoft Authentication Integration
	Authenticated users
	Final users

	Analytics
	Database update
	Front-end components

	Deployment on Azure Virtual Machine
	Deployment
	IIS configuration

	Conclusions
	Bibliography

