
POLITECNICO DI TORINO
Master Degree in

SOFTWARE ENGINEERING

Master Thesis

Building a distributed ledger to support a
e-commerce website

Supervisori

Prof. LUCA ARDITO

Prof. TOMMASO FULCINI

Candidato

HUANG HAIHANG

03/2022

Abstract

In order to effectively solve the trust problem caused by traditional e-commerce
platforms storing and maintaining transaction data by themselves, improve the
authenticity of commodity information on e-commerce platforms and the ability of
customers to protect their rights when shopping, this paper designs and implements
a distributed ledger module based on Hyperledger Fabric and deployed on the
Digital Managment Events project. Users conduct transactions with merchants
through the website, and the transaction data is stored in the blockchain, which is
unmodifiable and highly credible. The transaction data is stored on the blockchain,
and the information used for business data statistics also comes from the blockchain.
Compared with traditional platforms, the implemented system greatly improves the
credibility of transaction history records and provides buyers and sellers with more
objective transaction credentials. It is highly reliable and easy to implement, and
the technology used can also be used in the development of websites for blockchain
applications in other fields.

Acknowledgements

Standing at the tail end of my master’s study career, too many things have happened
in the past two years. I found that my student status gave me too much protection,
and there were too many people who took care of me and helped me during this
period. There are too many thanks and gratitude.
First of all, I would like to thank Prof. LUCA ARDITO and Prof. TOMMASO
FULCINI for giving me the opportunity to participate in this topic. I completed the
research and writing of this dissertation under their guidance, and I benefited a lot
from their enthusiasm and wealth of knowledge. My learning ability, autonomy and
mentality have been greatly improved and improved.
The sudden outbreak of COVID-19 disrupted the original study abroad life, thank you
for the people who resisted danger and gave silently during this special period. And
thanks to the friends I met in Italy, Huang Chunbiao, Shi Feihong, Cao Peng, Chen
Jinzhuo, Zeng Haohang, Stefano Romboni, Cai Siqi, Giacomo and my landlord
Cecilia, you guys form a complete story, making me miss the time with you so
much, and I look forward to it again goodbye.
Finally, I would like to thank my parents and family for supporting me over the
years, you have made me more optimistic about everything in life. Thanks also to
my girlfriend Ma Xueli, thank you for always encouraging me, making me happy,
full of energy for projects, full of confidence in life, thank you for appearing in my
life.

i

Table of Contents

List of Tables iv

List of Figures v

Acronyms vii

1 Introduction 1
1.1 Distributed Ledger . 1
1.2 Microservices architecture . 2
1.3 Responsive Web Development . 5
1.4 The current problems of e-commerce 6

1.4.1 The lack of integrity of sellers leads to a crisis of platform
reputation . 6

1.4.2 Consumer privacy cannot be guaranteed 6
1.4.3 Supply chain enterprise information sharing is not immediate

and opaque . 7

2 Project DME 8
2.1 Reference scenario . 8
2.2 DME Architecture . 9

2.2.1 Objectives and constraints 10
2.3 Back-End Layer . 11
2.4 Front-End Layer . 13

3 Responsive Web Development 15
3.1 Introduction . 15
3.2 Creating a Responsive Site . 16

3.2.1 HTML . 16
3.2.2 CSS . 17
3.2.3 Bootstrap . 20
3.2.4 Angular . 21

ii

3.2.5 React . 23

4 Distributed Ledger 24
4.1 Blockchain . 24

4.1.1 Key elements of a blockchain 25
4.1.2 Advantages . 25

4.2 Smart Contract . 26
4.2.1 Historical background and definition 26
4.2.2 Operating characteristics . 27
4.2.3 Advantages and disadvantages of smart contracts 27

4.3 State of the art and tools used . 28
4.3.1 Hyperledger Fabric . 28
4.3.2 Spring . 37

5 Experimental phase and development of the Smart Contract 38
5.1 Preliminary stages . 38

5.1.1 Choice of technology . 38
5.2 Smart Contracts in DME . 42

5.2.1 Network initialization . 43
5.2.2 Drafting of the Smart Contract relating to DME 43

5.3 Smart Contracts in Lottery . 45
5.4 Microservice for Smart Contract . 46

5.4.1 Services . 46
5.4.2 Controller . 48

5.5 Overall view of the operation . 50

6 Future trends 51
6.1 An overview of the e-commerce transaction market 51

6.1.1 Third-party e-commerce trading platform 52
6.1.2 Decentralized e-commerce trading market 52

6.2 Overview of Online Payment Systems 53
6.2.1 Centralized online payment system 53
6.2.2 Blockchain payment . 53

7 Conclusions 55
7.1 Future developments . 56
7.2 Final considerations . 56

Bibliografia 57

iii

List of Tables

4.1 Certificate classification . 31

iv

List of Figures

1.1 comparison between monolithic scheme and microservices scheme . 3
1.2 microservice scheme . 4

2.1 Block diagram of the platform DME 9

3.1 Box model in CSS . 19

4.1 Hyperledger Fabric architecture . 30

5.1 Code related to the function of the transaction 41
5.2 DME blockchain network . 43
5.3 Reservation creation method . 44
5.4 Gateway . 47
5.5 creation of the transaction . 47
5.6 Register service . 48

v

Acronyms

GUI
Graphical User Interface

DOM
Document Object Model

API
Application Programming Interface

BND
Business Network Definition

CA
Certification Authority

CLI
Command-Line Interface

POC
Proof Of Concept

vii

Capitolo 1

Introduction

Digital Management of Events is a project funded by the Puglia region, aimed at
creating a digital platform, which is initially planned to be used in the Apulian
market but with the aim of expanding into the national territory. The digital
platform is aimed at supporting users and suppliers who want to organize, manage,
communicate and participate in various types of events. Having established the
vastness of the project, its partners are many: The Polytechnic of Turin, the
University of Bari, DS Graphic Engineering S.r.l, STRADE S.r.l, Linear System.
In particular, the role that the Polytechnic of Turin assumes is that of the Research
and Development of the platform in close collaboration with the Linear System
company. The work of the Politecnico foreseen during the period concerning the
thesis work concerns two macro-periods that we can divide into:

• Update and maintain some functions of the front end of the DME website;

• Study, and analysis of the solutions suitable for the project, based on Hyper-
ledger for the implementation of Smart Contracts;;

1.1 Distributed Ledger
With the steady growth of communication and security technologies, blockchains
have emerged as digital innovations that would transform many industries and
businesses.[5] These are the so-called "distributed" systems, which are characterized
by synchronized replication of the register in different points called nodes, which
behave as independent systems connected to each other by a communication
network, in which each node manages its own copy, kept aligned with the others.
What distinguishes DLT from a replica of information accessible locally by the
single node in reading but modified through the intervention of a central body that
determines which updates are to be distributed to all nodes in the network, is the

1

Introduction

capacity of the systems that adopt it to manage changes to the register itself in
a distributed manner. Each update of the register is regulated through consent
mechanisms that allow the network to converge on a single version of the register
itself. Despite the fact that the subjects within the network independently modify
the information. The most evident characteristics that allow to distinguish the
different distributed ledger systems involve three main aspects:

• The type of network that determines which actors are part of it and their role
in the validation process;

• The consent mechanism, which determines the ways in which the network
updates the register;

• The structure of the register that defines how information is organized within
the register;

Based on the type of network that has been chosen, we can distinguish between
different categories of systems:
Public: anyone can access to read transaction data without the need for explicit
approval by a person;
Private: on the contrary, there is a central body that manages access to data,
limiting only to a set of authorized users.

Systems are distinguished on the basis of the role attributed to the actors in
the validation process:
Permissionless: all the actors can access the data, validate the transactions,
without particular authorizations;
Permissioned: only certain actors are authorized to carry out operations. The
system that has been created can be said to have chosen a private type system
category with permissions. Finally, for the sake of completeness, there is a third
characteristic of distributed ledger systems which is the structure of the register,
or how the information is organized within the register:

• traditional ledger in which the information is validated and recorded at the
single transaction level;

• chain of blocks, a way in which transactions are collected within a block that
is validated and recorded at an aggregate level with another.

1.2 Microservices architecture
The microservice architecture is to split the unified system into several relatively
independent and autonomous sub-services according to business and data. Each

2

Introduction

service is independent and must implement a single business functionality. In
monolithic architectures, all processes are closely linked each other and run as a
single service. This means that if an application process experiences a peak in
demand, the entire architecture needs to be resized. Add or improve an application
functionality becomes more complex, as it will be necessary to increase the code base.
This complexity limits experimentation and makes it more difficult to implement
new ideas. Monolithic architectures represent an additional risk for the availability
of the application, since the presence of numerous dependent and closely related
processes increases the impact of an error in a single process.

Figura 1.1: comparison between monolithic scheme and microservices scheme

With a microservices-based architecture, an application is built from indepen-
dent components that run each application process as a service. These services
communicate through a well-defined interface that uses lightweight APIs. The
services are built for business functions and each service performs only one function.
Since run independently, each service can be updated, distributed and resized to
respond to the request for specific functions of an application. The size of the
microservices is such that they can be written and managed by a single small team
of developers. A team can update an existing service without recompiling and
redeploying the entire application.[16]

3

Introduction

Figura 1.2: microservice scheme

A service is responsible for the persistence of its data or external state. Painless
with the traditional way, where data persistence is managed solely by the data layer.
Create APIs to make these services accessible. How the service is implemented
internally is invisible to other services.The services do not need to share the same
frameworks, the same libraries, or the same technology stack. In addition to
services, some other components appear in a typical microservices architecture:

• Management/orchestration: This component is responsible for positioning
services on nodes, identifying errors, rebalancing services between nodes and
so on;

• API Gateway: The API Gateway is the entry point for clients. Instead of
calling the services directly, clients call the API gateway, which forwards the
call to the appropriate services on the backend.
The benefits associated with using an API gateway include the separation
of clients from services, which can be refactored or versioned without the
need to update all clients, another benefit is the use by the services of non-
web-compatible messaging protocols, such as AMQP, finally the API gateway
can perform other cross functions, such as authentication, registration, SSL
termination and load balancing

Splitting an app into its basic functions and avoiding the pitfalls of the monolithic
approach may seem familiar concepts, because the architectural style of microservi-
ces is similar to that of SOA (Service-Oriented Architecture), a well-established
style of software design.

In the early days of application development, even the slightest change to an
existing app required a complete update and a quality assurance (QA) cycle of
its own, which risked slowing down the work of various secondary teams. This
approach is often referred to as "monolithic", because the source code of the entire
app was compiled into a single deployment unit (for example with the extension

4

Introduction

.war or .ear). If updates to a part of the app caused errors, it was necessary
to disconnect everything, take a step back and correct. This approach is still
applicable to small applications, but growing businesses cannot afford downtime.

This is where the Service-Oriented Architecture (SOA) comes into play, in which
apps are structured into reusable services that communicate with each other via an
Enterprise Service Bus (ESB). In this architecture, each service has its own specific
business process and follows a communication protocol, including Apache Thrift,
ActiveMQ, or SOAP, to be shared through the Enterprise Service Bus. Overall,
this suite of services integrated through an ESB constitutes an application.[19]

In addition, this method allows you to build, test and modify multiple services
at the same time, freeing IT teams from monolithic development cycles. However,
since the ESB represents a single point of failure for the entire system, it could
pose an obstacle to the entire organization.

The difference between SOA architecture and microservices is that microservices
can communicate with each other, usually in a stateless manner, allowing apps
to be built with greater fault tolerance and less dependent on a single enterprise
service bus (ESB). In addition, they communicate via programming interfaces
language-independent applications (APIs), which allows each development team to
choose their own tools.

Considering the evolution of SOA[3], microservices are not an absolute novelty,
but lately they have become more attractive thanks to advances in containeriza-
tion technologies. Today, containers allow you to run multiple parts of an app
independently, on the same hardware, with much greater control over individual
components and life cycles. Containerized microservices form the foundation of
cloud-native applications[8].

1.3 Responsive Web Development

In the chapter we will introduce responsive web development, the main technologies
used for the development of the latter will be illustrated. Recently, new languages
and frameworks have been created that are able to respond to users’ requests for
interactivity, as well as the greater diffusion of mobile devices with web connections.
The main teams are Microsoft and Google who have contributed to the creation
of tools capable of helping developers in the creation of increasingly advanced
applications.

5

Introduction

1.4 The current problems of e-commerce

1.4.1 The lack of integrity of sellers leads to a crisis of
platform reputation

Under the rapid development of e-commerce, the competition in the industry is
becoming more and more fierce. Improving the reputation of sellers has become
an indispensable step in healthy development. For example, some merchants use
the opacity of online transaction information to meet their own interests and
reduce commodity prices, giving away non-for-sale products and other promotional
methods to grab the attention of consumers. However, the sold products are
manufactured using low-cost defective products or pirated fakes. Some merchants
use gifts or post-purchase discounts to get favorable comments that go against the
buyer’s original intention, others will unscrupulously register fake customers or
steal consumer information for evaluation.

In addition, some consumers are worried about receiving disturbing information
from merchants after giving unfavorable comments, therefore, in order to avoid
trouble, they generally give good reviews. These methods have made the sellers
gain huge profits in a short period of time, but also to a crisis of reputation. On
the one hand, it is for their own brand image, and on the other hand, for the entire
e-commerce platform, they are trapped in public opinion. The brand image has
been seriously affected, and we have to pay attention to the supervision of the
merchant’s transaction process within the platform, and to crack down on the sale
of fake and shoddy products.[6]

1.4.2 Consumer privacy cannot be guaranteed
At present, the vast majority of e-commerce transactions are conducted through
third-party platforms, and the entire process is conducted in an opaque and
undisclosed environment. There is a possibility that personal information may be
exposed to the internet by criminals, which has aroused public concern to a certain
extent.

Although third-party platforms can protect consumers’ personal information
somehow, in recent years, incidents of platforms leaking or stealing consumers’
personal information have also caused them to be nervous and panic, and even
worse. The increased incidence of surveillance and security breach incidents in
recent investigations has led to questions about the security of users’ privacy, which
calls into question the current model. How to better protect consumption The
privacy of consumers, the protection of consumers’ rights and interests, and the
realization of worry-free online shopping have attracted the attention of e-commerce
platforms and consumers.[1]

6

Introduction

1.4.3 Supply chain enterprise information sharing is not
immediate and opaque

The entire supply chain will revolve around a core enterprise, through the control
of information flow, logistics, and capital flow transmission, through purchasing
materials, to intermediate products and final products, and finally delivering
products to consumers through terminal channels. Factory suppliers, distributors,
logistics and warehousing enterprises, consumers and after-sales service providers
are the main roles in the supply chain system.

Members in the supply chain need to strengthen communication, cooperation
and information sharing, so as to improve the overall collaboration efficiency.
Due to the dispersion of information, opacity and lack of communication, The
process of supply chain integration is seriously hindered. Insufficient and delayed
information communication between different organizations of the enterprise and
between supplier and manufacturer enterprises makes it impossible for enterprises
to respond quickly to the dynamic needs of consumers, and there will also be
procurement and logistics.[11]

At the same time, since the information is not completely accurate in the
transmission, it is very difficult to establish a mutual trust mechanism between
enterprises. If a dispute occurs between the supply chain member enterprises, how
to effectively produce evidence and pursue accountability will be a problem. In
the 21st century, the global division of labor has become a major trend, the supply
chain of modern enterprises has become more complex, and there are more and
more cross-border supply chain management, and the collaboration and response
time of the supply chain have also improved.[2]

7

Capitolo 2

Project DME

2.1 Reference scenario
Digital Management of Events is a project funded by the Puglia region, aimed at
creating a digital platform, which is initially planned to be used in the Apulian
market but with the aim of expanding into the national territory. The digital
platform is aimed at supporting users and suppliers who want to organize, manage,
communicate and participate in various types of events. Having established the
vastness of the project, its partners are many: The Politecnico di Torino, the
University of Bari, DS Graphic Engineering S.r.l, STRADE S.r.l, Linear System.

The DME project concerns the organization of events, which in the last ten
years has had a strong development, giving an important input also in the field
of marketing and interaction with companies. This has allowed an increase in the
number of professionals required in the sector, and has encouraged their collabora-
tion on the one hand and an improvement in productivity on the other.

In particular, the role that the Politecnico di Torino assumes is that of the
Research and Development of the platform in close collaboration with the Linear
System company.
The development process has adhered as much as possible to those reference rules
of the Agile methodology, in order to carry out the work purely remotely in the
most effective way possible both among us undergraduates of the Polytechnic and
with the Linear System company. The work of the Politecnico foreseen during the
period concerning the thesis work concerns two macro-periods that we can divide
into:

• A very substantial part on the development of the Front End and connection
to the Back End functions implemented at the same time by Linear;

8

Project DME

• Study and analysis of the solutions suitable for the project, based on Hyper-
ledger for the implementation of Smart Contracts.

The sector has seen great growth in the last decade: the organization of events
has established itself more and more, not only as an end in itself, but also as a
decisive lever in the field of marketing and corporate communication. For example,
the demand for professionals in the field of events by companies is constantly
increasing, as well as to promote products and services, also to organize corporate
team building events, aimed at motivating and uniting their staff. This is not
only valid for corporate events (for conventions, team building, incentives, product
launches, etc.) but also for private parties (weddings, birthdays, graduations ...) or
for events organized by public administrations (concerts, demonstrations, social
events, fundraising ...)

2.2 DME Architecture
Digital Management Event is a platform visible to the user as a set of services
accessible through the use of the Web. Its architecture can be described as in the
following image:

Figura 2.1: Block diagram of the platform DME

As can be seen from the image, there are two main layers:

9

Project DME

• Front End Layer: responsible for providing a user-friendly user interface for
accessing the various services of the platform. The interface is as responsive
as possible to the various types of devices: from the desktop version, to the
tablet, to the common smartphone.
This level simultaneously has the task of communicating with the Back End
microservices to retrieve the necessary data and show them to the user user;

• Back End Layer: responsible for communicating with the persistence layer and
providing answers to the Front End using a suitable and optimized business
logic. The Back End will allow all this by providing the REST APIs that can
be contacted by the Front End layer, in a secure manner through the use of
the OAuth2 authentication protocol.
Within the same layer there is a distributed ledger module to implement smart
contracts which is made available through a service that exposes special APIs,
in order to process transactions and payments between supplier and user;
Each module offers microservices, which communicate with each other with
synchronous or asynchronous protocols.
The reference elements for the design are as follows:

• Creation of a communication system between microservices, through the
components of Business Logic, using a communication protocol between
processes. In general, the HTTP / HTTPS synchronous protocol was used for
calls to Web API services while the communication between Business Logic
components (downstream of the invocation of one or more microservices) takes
place asynchronously to ensure the autonomy of the individual microservices;

• Implementation of APIs that allow collaboration between internal and external
resources on the platform, taking into account what will be shown to the user;

• Design of a distributed ledger that allows the creation and execution of smart
contracts between customers and suppliers;

• Creation of appropriate graphic mockups to establish the aspects of relevance
to the overall visual experience.

2.2.1 Objectives and constraints
The organization of events of all kinds (concerts, fairs, weddings, business meetings,
birthdays, etc.) is a rapidly growing market, which involves many players and in
turn stimulates various economic support activities.
The DME project is located in this context, and aims to create a digital platform
to support the organization, management, communication and participation in
events. To achieve the results described above, the project sets these objectives:

10

Project DME

• Create a platform, based on microservice architecture (MA), of reusable
elementary functions to support the definition of events and types of events,
creation of marketplaces for the definition of goods and services, definition
of users and profiles, horizontal authorization and authentication services,
backup and recovery.

• Create a distributed ledger for the definition and management of smart con-
tracts as a core for the management of the customer-supplier relationship
throughout the duration of the event.

• Create services for the collection, analysis and modeling of data on events,
goods, services, customers. The intelligent analysis of these big data with a
variety of Machine learning algorithms to build recurring customer and event
profiles is preparatory to the following point.

• Create recommender system to provide old and new customers with proposals
for typical events (including organizational model, packages of goods and
services, methods of collaboration and interaction) according to the customer
profile capable of simplifying the complexity and difficulties inherent in the
” organization and management of events, both for private and professional
users.

• Creating components for the multi-channel supply (web, mobile, social net-
works) of the services and processes seen above, with particular emphasis on a
high-level user experience, in line with the best offers currently on the market;

2.3 Back-End Layer
The core of the web application as well as the infrastructural layer which is created
through cloud infrastructure with proprietary hardware resources of Linear System.
In addition to the data saving part and the API mechanism to power the front end,
two fundamental modules were initially envisaged for the DME platform:

• The module "Recommend Systems";

• The module "Distributed Ledger / Smart Contract".

The recommender system recommending supplier to organizer and recommending
service when creating a new even. This have taken care of automatically and
punctually approaching the demand and supply of services relating to the events.
Generally, recommendation systems are applied in different sectors, and their
purpose is to help people make choices based on different aspects.
Given a person, these aspects can be for example their own history, or the purchases

11

Project DME

already made or the positive votes already given, or the preferences of people similar
to them. Based on these aspects and on how the recommendations are produced,
the recommendation systems are divided into various types.
The recommendation systems can be grouped into three main categories, based
on the approach used to obtain the recommendations, plus a fourth which arose
following the growing spread of social networks, and which is enunciated last:

• Content-based approaches: the person will be recommended objects similar to
those she has preferred in the past;

• Collaborative approaches: the person will be recommended items that people
with similar preferences to her have preferred in the past;

• Hybrid approaches: this typology includes the recommendation systems that
combine techniques used in the two previous typologies;

• Semantic-social approaches: we consider a set of people and one of objects,
where people are connected by a social network and both the latter and the
objects are described by a taxonomy.

Depending on the function used, the content-based and collaborative recommenda-
tion systems can be:

• Heuristic-based: they usually take various data as inputs and calculate
recommendations on the entire dataset of people using similarity metrics;

• Model-based: they build a model using training set-based techniques and
validate it on test set data. This model is then used to calculate the score for
items not yet recommended to people. Unlike the heuristic-based methods,
only a subset of active people of the dataset is given as input to the model,
which will produce the forecasts from it.

The Distributed Ledger / smart contract module takes care of saving transactions
between customers and suppliers within a distributed ledger and managing contracts
digitally by dematerializing them completely.
A distributed ledger manages a log that is nearly impossible to change in a
distributed network of nodes. Each node maintains a copy of the register by applying
transactions that have been validated by the consensus protocol, transactions are
divided into blocks, and each block is calculated as a hash of the previous block.
For business use, the following requirements are generally considered:

1. Participants must be identified / identifiable;

2. Networks must be licensed;

12

Project DME

3. High transaction throughput performance;

4. Low latency of transaction confirmation;

5. Privacy and confidentiality of transactions and data relating to commercial
transactions;

The Smart Contract is a contract written in a general purpose programming lan-
guage written in order to automatically determine the execution of the contractual
clauses upon the fulfillment of certain conditions included in the contract itself.
The application layer chaincode is an application running in a Docker container
environment independent of the endorsement node process. The application layer
chaincodes are independent of each other and do not affect each other.
The self-execution of the Smart Contract is based on a program capable of:

• verify the clauses that have been agreed;

• check the agreed conditions;

• automatically execute the contractual provisions when the factual information
is reached and verified and corresponds to the computer data referring to the
conditions and clauses provided for in the contract;

2.4 Front-End Layer
This layer involves the aspects of the interface to users of the Web App that
implements DME. The Front End layer provides registration and access services for
both the customer and the supplier, in classic registration and accounting forms.
It automatically recognizes whether it is a customer or supplier type user, offering
a customized page for the different types.
It allows access to the features provided in the analysis phase such as sections for
creating events, for managing events, a personalized agenda linked to all events but
also to the single event, sections to manage the budget and the contract. Operates
both the supplier search functions appropriate to the type of event to be organized
and the contract management functions directly within the platform.
As far as the supplier is concerned, the front end layer makes available not only the
accounting functions but also those for the creation of a service, allowing media to
be loaded by associating it with its own showcase.
The UI was designed through the use in the design and analysis phase of appropriate
mock-ups to study the visual composition of the various components within the
screen where the interface is displayed.
The principles on which the realization of the User Interface was based are:

13

Project DME

• Simplicity: since this platform is aimed at any type of user, of any age, the
view of the sections has been made as simple as possible;

• Multi-device access: since it makes tools available for the daily organization
of the event, there has been a lot of focus on making the Web Application
responsive to any type of device. Particular attention has been paid to screen
formats such as tablets or formats such as iPhones;

During the analysis phase, a possible creation of a mobile application was also
envisaged in order to make the same services more usable.
At present it has not yet been realized, however in addition of course to the
realization of the application structure of the same, therefore obviously to the
creation of an interface that is very close to what is the UI of the Web Application
which is visible through a mobile browser , it will be very easy to use the data as
the services are made available as described above by the RESTful API.

14

Capitolo 3

Responsive Web
Development

3.1 Introduction
The English adjective "responsive" designates everything that reacts or responds
dynamically and appropriately to a stimulus.

The definition applied to the web world consists in adapting, by means of ru-
les, a website based on various factors, such as the size of the screen, platform
or orientation of the device. Responsive Web Design is one of the main trends in
web development, it is essential for creating web applications that are capable of
satisfying the diversity of devices used for web browsing. The first to write about
Responsive Web Design was Ethan Marcotte, in 2010, in "A list Apart":
Designers have craved printing because of its precise layouts, complaining about the
various contexts of use of their web users that compromise their designs. Ethan
Marcotte argues that we need to change the way we think about our designs to
overcome these limitations: using flex grids, flexible images and media queries, he
shows us how to adopt the ebb and flow of things with responsive web design. [18]
In the last ten years it has become the de facto standard used to adapt web pages to
a large number of devices, but although it has improved the usability of web pages
it is not without limitations and drawbacks, in fact, developers must manually
design web layouts for multiple dimensions and implement fitting rules. [12] The
RWD is made up of many specific rules, one of these consists in considering the
measures in a relative sense, and not fixed measures in pixels, which, on the other
hand, do not ensure flexibility of the layout, as the HTML element will always
keep the same size. switching from a view on large displays to mobile devices, or
tablets. A responsive website is an approach to web design that makes the contents

15

Responsive Web Development

adapt to mobile devices such as tablets and smartphones and to more traditional
devices such as computers and desktops, in this way a user-friendly experience is
offered to users, which they can use the website regardless of "where" and "when"
the customer uses the site. [17] Web Responsive Design is very important for
accessibility, which takes into account numerous factors centered on the difficulties
of the users as well as the characteristics of the devices.

3.2 Creating a Responsive Site
To create a Responsive site HTML and CSS is needed. As complexity increases,
however, the need to involve languages such as javascript increases, whose latest
technologies are Angular, React etc, these allow a more precise front-end both in
terms of performance and ease of use. [14]

3.2.1 HTML
HTML is a markup language, which allows to arrange the elements within a page.
It is considered an ever-changing language that adapts according to the needs of
time and technology. In October 2014, the HTML5 version [21] was published
as the W3C Recommendation, since that date this version has become the most
widely used version of the language. The World Wide Web Consortium (W3C)
is a voluntary standard association that decides what is to be presented in the
official version of HTML. Voluntary means that despite accepting the rules, it
is not necessary to follow them. Before W3C, browsers created their own rules,
which made pages very different depending on the browser used. Following W3C’s
rules ensures that the site is more likely to be compatible with future devices
and technologies. HTML 5, which is the version that was created specifically to
leave the Web environment alone and become a platform for creating applications,
including desktop and mobile. The HTML5 specification in fact consists of the
definition of:

• Syntax for markup, adapted to the most modern needs, with specific controls
for forms;

• APIs that allow to manage networks, multimedia, and device hardware;
The language is composed of elements, which are components that serve to describe
the elements within the page. The indications are contained in an HTML document,
called "HTML page", a text file with the extension .HTML. In order to create an
HTML document, it is necessary first to declare the dipo declaration (doctype) at
the top of the file which tells the browser the version of HTML used, then inside
there are the tag, some labels, which have the characteristic of being inside angled

16

Responsive Web Development

brackets. Through the tags, therefore, it is indicated which elements should appear
and how they will be arranged. [HTML].

<! doctype HTML>
<HTML lang = "en">
<head> <title> Hello World! </title> </head>
<body>
<h1> Hello World! </h1>
<p> This is our first HTML page! </p>
</body>
</HTML>

3.2.2 CSS
CSS, whose acronym represents the initials of Cascading Style Sheets represent
a complement to the markup language, providing instructions on how web pages
should be represented. CSS models the entire layout of a website, from the
formatting of the text to the positioning of the elements, to the arrangement
that the elements will have with respect to other elements. The term "cascading"
determines the order in which styles are applied, from the broader rules to the
more precise, with a decreasing importance.

A rule determines the style applied to an HTML element, each rule consists of
two elements, the selector and the declaration. The selector is the HTML element,
group of elements or their state, whereas the declaration is the quality of the
property to be changed, such as color, size, etc. Each property name is followed by
":" and its value, when it is necessary to declare more than one property, this is
followed by the ";".

p {
color: red;
font-size: 1.5em;
}

Styles can also be applied to a subset of elements, using ids or classes.

.nomeClasse{
color: blue;
}

#id{
color: green;

}

this particular code will affect all HTML elements with class = "classname" or with
id = "id", class and id work similarly.

17

Responsive Web Development

Like HTML, there are also different versions of CSS, the most recent is CSS3,
each version of CSS includes new stylizable components, but the biggest novelty of
CSS3 is the introduction of media queries, which allow the page to adapt to different
device sizes. Furthermore, as also happens for HTML, not all pages support CSS in
the same way, so there may be different renderings depending on the browser used.

The CSS rules can be applied to the web page in various ways: they can be in a
separate file, or included in the web page file: in the first case they will be applied
to all files, while in the second case they will be applied only to the related page.
However, it is a good idea to write the CSS code in a separate file, even if these
relate to a single page. To have an even more specific declaration, it is possible
to use the "inline" CSS, which are located in the HTML element, however it is a
technique not recommended, as it is easy to lose track of the CSS declaration, but
it can be used in test cases.

CSS Cascade

CSS follows very detailed rules for applying styles to an element, in particular, if
an element has styles that conflict, the cascades determine the order in which the
style sheets will be executed. Browsers follow a very specific hierarchy to decide
which property to apply to the element:

1. Rules marked important: property followed by! important;
2. CSS online;
3. Rules containing id;
4. Rules containing classes, attributes and pseudo-classes;
5. Rules containing elements and pseudo-elements;
6. Inherited rules;
7. Default values;

The order is called CSS specificy and goes from the most specific to the least specific
rules, so it will check that the rules considered important are present before those
containing id. For each element on the page the browser goes through a hierarchy,
in order until it finds a style for each property. In the case of two rules with the
same properties but with different values and applied to the same element, the one
that is written last in the order of the source code will have priority:

h1{
color: blue;
}
h2{
color: red;
}

18

Responsive Web Development

In this case the rule that will be applied will be the second one because it is the
last one to appear in the code.

Box Model

An important concept for CSS is Box modeling, which describes the space taken by
the HTML element. In the box-model, each model consists of four types of boxes:

• content;
• padding;
• border;
• margin.

Each of these can be modified via CSS.

Figura 3.1: Box model in CSS

In the image in the figure 3.1 starting from the inside we have the area where the
actual content is located, which can be text, image etc, the horizontal dimensions
can be modified with the property width and the vertical ones with height. The
padding is an empty space that can be created between the content and the
border of the element, by setting a background color for the content that extends
from the content area up to the padding. The margin is the space that separates
the data from adjacent elements, also modifiable in size. Finally, the border is a
line of variable size, style and color that surrounds the padding and content area.
[CSSboxmodel]

19

Responsive Web Development

The default HTML code, even without CSS, will set default settings, introducing,
for example, a certain margin between the two elements. The most common units
of measurement are:

• %: The percentage used in comparison to the containing item;
• em: they are relative to the font size of the element (font-size);
• rem: they are relative to the font size of the document (font-size), this is by

far the most common unit of measurement.
• px: pixels are absolute measures, but they are not necessarily consistent

between different devices;
• in, cm, mm: physical units of measurements map to pixels, but are not

consistent between devices;
• pt: dots, equal to 1/72 of an inch, are very common in printing.

In the box model each element has height and width that can be changed using the
CSS. The elements of a block are, by default, 100 % of the width of the containing
element, even if the content does not fill the space, while the height is high enough
to contain the element. Each element has margins which provide the outer space
for the element, and padding which provides its interior space. For Responsive
Web Design, the percentage is generally used to set the left and right margins, and
padding, in this way the layout can automatically resize to screens of different sizes.
The vertical margins (top and bottom) can instead be set by pixels, since they do
not need to correspond to the size of the visible area. The 4 sides of the element
can have different values both for the margin and for the padding, the dimensions
are defined clockwise starting from top, right, bottom, left, they can also be
defined individually with for example margin-top. The auto value for left and
right can be used to center an element inside the container.
Borders are placed between the padding and the margin and provide an outline for
the element, the declaration must include the line width, style and color. A new
property inserted in CSS3 is the border-box, this property can take on two values:

• content-box: the width refers to the content area;
• border-box: the width refers to the box in its entirety, so it includes padding

and border.

3.2.3 Bootstrap
Bootstrap is a toolkit, a library that contains a series of components that allow the
creation of responsive and mobile first applications. [4]
Bootstrap natively supports responsive design, thus allowing the use of the applica-
tion on different devices. Bootstrap was born in 2011 with the aim of developing

20

Responsive Web Development

an internal library that managed the layouts entirely, today it represents the main
resource for designing the cabinet of a site, moreover it is possible to easily integrate
the HTML5 and CSS3 components. One of the characteristics of this front-end
framework is the responsive design, in fact it helps developers in the creation of
applications that automatically support different resolutions.

3.2.4 Angular
Angular is a framework used for single-page client applications; it implements basic
and optional functionality always as TypeScript libraries. To build a responsive UI,
there are several ways, from using media queries and CSS, to using libraries like An-
gular Material. An useful component for this purpose is the BreakpointObserver
from the Angular Material CDK library, through this component the elements will
be rendered differently based on the target device.

The BreakpointObserver component allows you to define different types of
screens:

export declare const Breakpoints: {
Small: string;
Large: string;

};

After that the screen type can be subscribed like this: Once the BreakpointObserver
service has been injected into the component, we can subscribe to the desired screen
type:

this.cardsLayout = merge(
this.breakpointObserver.observe([Breakpoints.Small]).pipe(

map(({ matches }) => {
if (matches) {

return this.getHandsetLayout();
}
return this.getDefaultLayout();

})),
);

In the example we see the definition of the small screen only, but inside it it is also
possible to define other dimensions.
To then view the UI intended for mobile devices:

getSmallLayout(): Layout {
return {

21

Responsive Web Development

name: 'Handset',
gridColumns: 1,
layoutItem: [

{ title: 'Card 1', cols: 1, rows: 1 },
{ title: 'Card 2', cols: 1, rows: 1 },
{ title: 'Card 3', cols: 1, rows: 1 }
]

};
}
getDefaultLayout(): Layout {

return {
name: 'Web',
gridColumns: 2,
layoutItem: [

{ title: 'Card 1', cols: 2, rows: 1 },
{ title: 'Card 2', cols: 2, rows: 1 },
{ title: 'Card 3', cols: 2, rows: 1 }

]
};

}
}

Basically, the functions allow you to change the number of rows and columns
dedicated to the card component, depending on whether the device is of the Small
type, or of any other type (Default). In order to view the cards through HTML,
the colspan and rowspan properties are used, which allow you to asynchronously
update the number of columns and rows dedicated to the element.

<div>
...

<mat-grid-list [cols]="(cardsLayout | async)?.gridColumns"
rowHeight="350px">

<mat-grid-tile *ngFor="let card of
(cardsLayout | async)?.layoutItem"
[colspan]="card.cols" [rowspan]="card.rows">

<mat-card class="dashboard-card">
...

</mat-card>
</mat-grid-tile>

</mat-grid-list>
...

</div>

22

Responsive Web Development

3.2.5 React
React, a JavaScript library developed by Facebook, aims to simplify the development
of visual interfaces by dividing the UI into a collection of components. For the
realization of responsive web applications an npm package called react-responsive is
used, it combines media queries and breakpoints to define the elements in the DOM
that you want to show or hide depending on the device. [10] The package can be
installed using the npm install react-responsive command, and subsequently
imported via import useMediaQuery from ’react-responsive’, in this way it
will be possible to use the brakpoints in the components as in example:

import { useMediaQuery } from 'react-responsive'

export default function Layout({ children }) {
const isScreenBig = useQueryMedia({
query: '(min-device-width: 1224px)' })
const isScreenSmall = useQueryMedia({
query: '(max-width: 1224px)' })

return (
<div>

{isSmallScreen ? (
<LeftSidebar small={true} />

) : (
<LeftSidebar />

)}
</div>

)
}

23

Capitolo 4

Distributed Ledger

4.1 Blockchain

Blockchain can be considered as a complete set of solutions to reconstruct tru-
st problems using technical means such as timestamps, asymmetric encryption,
point-to-point transmission, consensus algorithms, smart contracts, chained data
structures and distributed storage. It is essentially an encrypted distributed instant
ledger system.

All participating nodes of the ledger system are connected to each other through
the Internet and can communicate directly. Any participating node saves all the
information of the ledger. The account book only allows adding new transaction
content, and does not allow any deletion and modification. All participating nodes
use asymmetric encryption algorithms to ensure data security in the process of
transaction information transmission, and use consensus algorithms to confirm
new transaction content. Participants link transactions in chronological order into
a chained data structure. Any node unilaterally tampering with the transaction
records in the blockchain does not affect the contents of the account books main-
tained by other nodes, so such unilateral tampering is invalid. In addition, any
programmable transaction logic after the blockchain 2.0 [13] can be automatically
executed when the preset conditions are met in the blockchain system, ensuring
the fairness and justice of the transaction rules.

Therefore, the most significant connotation of blockchain technology lies in
the ingenious combination and application of a series of mathematical algorithms
and information technology to ensure that data cannot be tampered with, the
whole process can be traced back, rules can be correctly implemented, and the
trust mechanism endorsed by third-party institutions in social transactions can be
changed. To form a social trust mechanism that is guaranteed by strict mathe-
matical algorithms and supported by high-tech information technology, everyone

24

Distributed Ledger

endorses me, and I endorse everyone, so as to quickly and efficiently complete the
fair allocation of resources and ensure that all participants have the same goals.

In the case of blockchain systems, two further elements are added in order to
make it possible to distinguish the different types: transfers, which determine the
characteristics of the transactions managed through the distributed ledger and the
assets, which determine the object of the transfer within the system.

4.1.1 Key elements of a blockchain
:

• Record immutability: Participants in the blockchain will not be able to
modify any transaction that has been recorded in the shared ledger, no attacker
will be able to tamper with the transitions. In order to handle an error or to
modify a transaction or just a record of it, it will be necessary to register a
new transaction. The mechanism by which the register is immutable is that
being a chain of blocks, each block is inserted a cryptographic fingerprint of
the previous block. It follows that to change a single piece of information it is
necessary to change the rest of the chain as well.

• Distributed ledger: A database that can be shared, replicated, and syn-
chronized among network members. A distributed ledger records transactions
between network participants, such as the exchange of assets or data. The tech-
nology can remove extremely inefficient and costly parts of the current market
infrastructure, increasing productivity through a wide range of application
scenarios.

• Smart Contracts: The "smart" contract is stored as a set of rules that will
be executed automatically. This can define the conditions for transfers of
corporate bonds, include the conditions for travel insurance to be paid and
much more.

4.1.2 Advantages
The intrinsic characteristics of a blockchain technology, in particular the peculiarities
concerning the security in the operations that can be carried out within it, has led
to many companies in the market to invest in this technology. Among these is the
IBM which reports: "Operations are often designed to prevent single points of failure
and systemic risks, requiring layers of audits to control risks, but this also results
in high internal costs. Data storage systems or third parties may be vulnerable to
attack and tampering. Limited transparency can slow down data verification. And
with the arrival of the IoT, transaction volumes have exploded. All of this slows
down the business and reduces revenue and makes us understand that we need to
adopt new methods.

25

Distributed Ledger

• Greater trust: Due to the characteristics of decentralization, the nodes joining
the blockchain can safely transmit point-to-point information without trusting
each other. And each transaction on the chain contains the sender’s signature,
which requires consensus of the entire network and multiple mechanisms.
Guarantees that the data cannot be tampered with and cannot be denied.[20]

• Greater security: Distributed ledger technology is based on computer algori-
thms. When a certain part is modified, nodes in the network can be quickly
identified by mathematical algorithms. If the system finds that the information
of the two ledgers does not match, it considers that the version with more
nodes in the same ledger is the real ledger, and the system will automatically
discard those few inconsistent node ledgers, which means that if one wants to
tamper with the content of data in a distributed ledger, the only way to do it
is by controlling the majority of the nodes in the entire system.

• High availability: The traditional distributed database uses the active-
standby mode. The main database has high requirements and generally runs
on a high-end server; the backup database synchronizes the information of the
main database in real time. When the primary database is used, the backup
database needs to be switched to the primary database. This mode requires
complex configuration and expensive construction and maintenance. In the
blockchain system, all nodes have equal status, and there is no master-slave
distinction. Even if a few nodes fail or is attacked, it will not affect other
nodes, and after the problematic node returns to a normal state, all data of
the entire network can be restored.

• Traceability: Part of the block records the timestamp of the block and all
transaction data since the beginning is stored on the entire chain. Based on
the immutability of the data and the existence of the timestamp, each node
and regulatory agency can easily trace and supervise any transaction.

This makes us understand the current importance of a blockchain, for which
giants like IBM are investing heavily in terms of financial resources, as they recognize
its advantages.

4.2 Smart Contract

4.2.1 Historical background and definition
In 1994, computer scientist and cryptographer Nick Szabo first proposed the
concept of "smart contracts". It predates the birth of the blockchain concept. Szabo
describes what is "a series of commitments specified in digital form, including an
agreement by the parties to fulfill those commitments". Despite its benefits, the

26

Distributed Ledger

idea of smart contracts has not progressed — mainly because of the lack of a
blockchain that could make it work.

It wasn’t until 2008 that the first cryptocurrency, Bitcoin, appeared, with the
introduction of modern blockchain technology. The blockchain originally appeared
as the underlying technology of Bitcoin, and various blockchain forks have led
to great changes. Smart contracts still couldn’t be integrated into the Bitcoin
blockchain network in 2008, but five years later, Ethereum brought it to the surface.
Since then, various forms of smart contracts have emerged, of which Ethereum
smart contracts are the most widely used.

The concept of smart contracts dates back to 1994 and was proposed by Nick
Szabo, but the blockchain technology required to adopt smart contracts did not
appear until 2008, and finally in 2013, as part of the Ethereum smart contract
system, smart contracts were first introduced appear.

Smart Contracts are defined as contractual clauses incorporated into the hard-
ware and software in such a way as to make violation almost impossible.

4.2.2 Operating characteristics
A smart contract is essentially a written piece of code that can automatically
execute the code content without user intervention when predetermined conditions
are met. Smart contracts are usually linked to business activities, and can be
deployed to all nodes in the entire network after the logic is written. In Ethereum,
the contract is stored on the blockchain, and is loaded and run by the Ethereum
Virtual Machine (EVM) when the contract is triggered when the conditions are met;
in Hyperledger Fabric, the contract is packaged into a Docker image, and all nodes
in the network will build their own based on this A Docker container that initializes
the contract at the same time, and then waits to be called. External applications
implement various transactions by calling smart contracts. To modify the smart
contract, consensus needs to be reached in the entire network, and all modifications
will also be recorded in the blockchain. In addition, the state database will also
save the modified results for easy and well-documented investigation (for example,
the transfer amount of the transfer transaction will be recorded in the blockchain,
and the increase or decrease of the account balance will be applied to the state
database). Only the query does not involve Consensus and records are not required
for modification.

4.2.3 Advantages and disadvantages of smart contracts
Just like any other new system protocol, smart contracts are not perfect. There are
several advantages and disadvantages to using smart contracts, including greater
efficiency and lack of regulation. Specifically: Some of the main advantages of

27

Distributed Ledger

using smart contracts include greater efficiency when processing documents. This
is thanks to its ability to employ a fully automated process that does not require
any human involvement, as long as the requirements outlined in the smart contract
code are met. As a result, time is saved, costs are reduced, transactions are more
accurate and cannot be changed.

Additionally, smart contracts remove any third-party interference, further
enhancing the decentralization of the network.

On the other hand, the use of smart contracts can also cause many problems.
Some disadvantages include: human error, difficulty in full implementation, uncer-
tain legal status. While many see the irreversible nature of smart contracts as its
main benefit, others see it as immutable if something goes wrong. Because humans
make mistakes, even when creating smart contracts, some binding protocols may
contain errors that cannot be reversed.

In addition, smart contracts can only use digital assets, and there will be
problems when connecting real assets and the digital world. Last but not least,
smart contracts lack legal supervision and are only subject to the obligations agreed
upon in the code. The lack of legal oversight may lead some users to be wary of
transactions on the web, especially if it matters.

The advantages of using smart contracts are greater efficiency in processing
transactions, irreversible, secure transactions, and fully automated processes. On
the other hand, the disadvantage is the lack of legal supervision, human error and
implementation difficulties.

4.3 State of the art and tools used
In the following section we will give an overview of the existing tools used for the
development of the web application

4.3.1 Hyperledger Fabric
One of the most popular permissioned blockchain platforms [7], [9] is Hyperledger
Fabric. Born from a project of the Linux foundation in 2015, Hyperledger is an
open source technology implemented via Blockchain. Hyperledger’s purpose is to
implement a Business Network Model through its frameworks and tools. Changes in
information can be screened based on algorithms to effectively prevent information
tampering. For the use we have to make of it, since it will then be aimed at
commercial use, we must consider the following requirements:

• identifiable/identifiable participant.
• Licensed network.
• The performance of transaction throughput is higher.

28

Distributed Ledger

• Low latency ensures transactions.

• guarantees the confidentiality and privacy of transaction data.

Hyperledger Fabric is highly flexible, confidential, resilient and scalable. It has a
wide range of applications in education, telecommunications, medical care, and
supply chain industries, and has more than 400 projects (including the feasibility
study stage) including major customers such as Maersk, Wal-Mart, Lenovo, and
Postal Savings Bank.

Fabric has a modular and versatile design that satisfies a wide range of indu-
stryuse cases, including finance, banking,health, human resources, insurance and
supply chain, and therefore also very suitable for our case study. Where Fabric
differs from other blockchain systems is the licensing mechanism. The Bitcoin
network is an open, permissionless system that allows users with unknown identities
to participate in system transaction verification, that is, bookkeeping. The system
employs a proof-of-work (PoW) consensus protocol to verify transactions and secure
the network. Members in the Fabric system that can participate in bookkeeping
need to register from a trusted Member Service Provider (MSP). Due to the po-
pularity of Bitcoin, Ethereum and some other derivative technologies have grown
up, and some innovative companies have begun to pay attention to the underlying
technology of blockchain, distributed ledgers and distributed application platforms.
However, many enterprises require higher performance that cannot be achieved
with permissionless blockchain technology. In addition, in many scenarios, the
identity authentication of participants is a core requirement, such as the financial
field.

For enterprise use, there are the following comparative requirements: The iden-
tity of the participants is clear and identifiable Access to the network must be
permissioned High performance, concurrency Low latency of transaction confirma-
tion Suitable for private and confidential transactions in business scenarios. Based
on this, Hyperledger Fabric came into being. Hyperledger Fabric is an open source,
enterprise-grade permissioned distributed ledger technology platform. Meanwhile,
Fabric’s smart contracts are the first to support all general-purpose programming
languages such as Java, Go and Node.js.

The application client operates the blockchain system services through SDK,
API or events, including identity management, ledger management, transaction
management, deployment and invocation of smart contracts. The blockchain system
includes service components such as member management, consensus service, chain
code service, and security encryption. The Fabric system adopts a modular design,
and each component is pluggable. For example, the ledger data can be stored in
various formats, and the consensus mechanism can replace.

29

Distributed Ledger

Figura 4.1: Hyperledger Fabric architecture

Hyperledger Fabric architecture consists of three main parts: Membership
Servers (MSP), Blockchain Servers, and Chaincode Servers.

Membership Servers(MSP)

Registration, Identity Management, Auditability and other services. The Fabric
alliance chain provides member certificate (Certificate) management services th-
rough MSP to determine which nodes on the chain are trusted. All types of
nodes and clients must be authorized by MSP before they can join the network.
The premise of certificate authorization is to configure Public Key Infrastructure
(PKI). PKI is a technology and specification of a set of security basic platforms
provided by standard public key encryption technology. The Certificate Authority
(CA) on Fabric issues digital certificates to users through PKI and assigns keys
to realize node identity authentication and data access authorization management
in the consortium network. CA certificates are divided into two categories, Root
Certificate Authority (RCA) and Intermediate Certificate Authority (ICA), which
constitute a certificate chain of trust.

The certificate categories are shown in Table:

30

Distributed Ledger

Tabella 4.1: Certificate classification

Certificate name Issuing authority Describe
ECert Enrollment CA User’s real-name certificate
TCert Transaction CA Authentication during transaction

TLSCert TLS CA Communication Identity Information Certificate

Chaincode

Chaincode is an instruction to define assets and modify the state of assets. After
the chaincode is executed, a set of key-value pair data for writing will be generated,
submitted to the network, and finally recorded in the ledger.

Fabric’s smart contracts are written in chaincode. In most cases, the chaincode
only interacts with the ledger’s world state database, not the transaction log.
Chaincode can be implemented in a variety of programming languages and currently
supports Go, Node.js, and Java, among others.

BlockChain Service

It includes services such as P2P Protocol, Consensus Manager, Distributed Ledger,
and Ledger Storage. The ledger consists of two parts: Blockchain and State.
Blockchain is the so-called chain connected by blocks and is used to record historical
transactions; State is a database in the form of Key-Value, corresponding to the
current network. The latest world state of, for each transaction of the same key,
the state needs to be updated.

Asset

They represent the objects at the center of the exchange between two entities.
Fabric’s ledger records the status of assets. Assets can be tangible assets, such as
real estate, equipment, etc., or intangible assets, such as intellectual property rights,
claims, etc. In the modules of this article, assets are transaction data. Hyperledger
Fabric allows you to modify assets using transactions. They are represented as
a collection of key-value pairs, as the state record changes, it is written to the
channel’s ledger as a transaction.

Ledger

Each asset transaction generates a data record of asset key-value pairs, and these
key-value pair data are finally submitted to the ledger in the form of new additions,
updates or deletions. The ledger stores these transaction records in blocks and in

31

Distributed Ledger

an immutable order, and maintains the current asset state in a state database. For
each channel there is a register and consequently, each peer keeps a copy of the
register for each channel of which it is a member. Some features of the ledger:

• The transactions contain the signatures of each peer for approval.
• Transactions consist of versions of keys / values that have been read in chaincode

(read set) and keys / values written in chaincode (write set).
• The validated and executed transaction is immutable. By the very characteristic

of the ledger.
• Transactions are sorted into chunks and transmitted to peers in the channel.
• Retrieve and update the ledger using key-based lookups, range searches, and

combined key searches.
• Before inserting a new block, a version check is performed to ensure that

the states of the resources that have been read have not changed since the
chaincode code was run.

• The ledger of a channel contains a configuration block that defines policies,
access control lists and other similar information.

• Peers validate transactions with approval policies and enforce established
policies.

• Channels contain Membership Service Provider instances.

Privacy

Hyperledger Fabric uses an immutable ledger on each channel, as well as chaincodes
that can manipulate and modify the current state of an asset. The ledger exists
within the scope of the channel, and if each participant is on the same public
channel, the ledger can be shared across the entire network; the ledger can also be
privatized, allowing only specific participants to hold a copy of the ledger.

To achieve ledger privatization, the involved participants need to create a
separate channel that isolates their transactions and ledger from the rest of the
network. Install chaincode only on nodes that need access to asset state to perform
read and write operations, if chaincode is not installed on a node, then the node
will also not be able to interact with the ledger. Thus, channels keep transactions
private from the rest of the network, while collections keep private data within
subsets of organizations in the channel. To further hide the data, the values inside
the chaincode can be encrypted (partially or totally) using standard cryptographic
algorithms, such as AES, before sending the transactions and adding blocks to the
ledger. The encrypted data recorded in the ledger can only be decrypted with the
corresponding key, and the user uses it to encrypt the data.[15]

32

Distributed Ledger

Consensus

In distributed ledger technology, transactions must be written to the ledger in the
order in which they occur, even though they may be in different sets of participants
in the network. To do this, an order of transactions must be established, and
a method must be in place to reject illegal transactions that are erroneously or
maliciously inserted into the ledger. In short, a consensus mechanism for verifying
the correctness of transactions needs to be established.

Consensus is formed when the order and results of all transaction submissions in
a block pass the agreed-upon policy checks. Detection is done during the life cycle
of a transaction, and endorsement policies are used to specify which members must
endorse a transaction class, and these policies are enforced and maintained through
the system chaincode. Before committing, peers invoke the system chaincode to
ensure that sufficient endorsements exist and that the origin is correct. Each time
a version check needs to be performed in advance to see if it is consistent with
the current version, then the transaction block is submitted to the ledger, and the
current state of the ledger is approved or agreed. This check avoids threats that
could compromise data integrity, such as double-spend operations and others, and
allows functions to be executed against non-static variables.

In addition to version checking, endorsement and validity, authentication is
performed in both directions of the transaction flow. Access control lists are
implemented at the hierarchical layers of the network, and when transactions need
to pass through different architectural components, the payload must be repeatedly
verified, signed, and authenticated. To sum up, consensus is not limited to validating
transactions; It is a by-product of the ongoing validation of transactions as they go
from proposal to commitment.

Composer

Another framework used by the Hyperledger ecosystem is Composer. The purpose
of this tool is to speed up the development process and make it easier to integrate
blockchain applications into existing business systems. The Composer allows
you to model a business network and integrate existing systems and data into
the blockchain application. Hperledger Composer supports existing Hyperledger
Fabric blockchain infrastructures, which support consensus protocols to ensure
that transactions are validated, according to the policies of the business network
participants.

Hyperledger Composer is a programming model that includes a modeling lan-
guage, a set of APIs for defining and developing business networks and applications
that allow participants to send transactions to exchange assets.

33

Distributed Ledger

Status report of the Blockchain

The blockchain ledger stores transaction data within the network, and the state
database stores the current values of participants and assets. There is a state and
a ledger on a group of peers, and the ledger of each peer node is always consistent
through a consensus mechanism centered on the ordering node.

Connection Profiles

Through the configuration file we can make Hyperledger Composer connect to
the Fabric blockchain network and interact. Each type of execution runtime has
different configuration options. Connection profiles are referenced by name (in
code and on the command line), and connection profile files (in JSON format) are
parsed from the user’s home directory.

Asset

Assets also in this case are tangible or intangible items, services or properties,
and are stored in registers. Assets can potentially represent anything within a
business network, documents, real objects or patents. The asset must have a unique
identifier, but may contain any properties that need to be defined and can also be
linked to other assets or participants.

Participants

Is a member of a business network, can own assets or initiate transactions, must have
a unique identifier, and can also contain other optional attributes. A participant
can have one or more identities.

Identity

Different actors in a blockchain network include peers, orderers, client applications,
administrators, etc. Each of these actors, inside or outside the network, is able to
use the service’s active element, has a digital identity encapsulated in an X.509
digital certificate, and these identities are really important because they determine
the exact rights to the resource and the ability to participate in access rights to
the information that the user has in the blockchain network.

Business Network cards

Business Network Card is a feature that appeared in Hyperledger Composer V0.15.0.
A Business network card consists of an identity, a connection profile, and metadata;
the latter optionally contain the name of the business network to connect to.

34

Distributed Ledger

Starting from this version, whether to access the Fabric blockchain network or
access the business network, the card must be used.This card simplifies the process
of connecting to the business network, and extends the concept of identity outside
the network into a "container", in which each is associated with a specific business
network and a profile for the connection.

Transactions

It is a request, which is used to execute a function interact with assets on the
ledger, which is implemented by chaincode, for example the transfer of ownership
from one participant to another.

Query

Querying data in the blockchain can be done through the Composer API. As long
as the business network and related variables are defined.

Events

Events are defined in a business network in the same way that assets or actors are
defined. Once the event is defined, it can be triggered by the transaction handler.
Applications can subscribe to these events through the composer-client API.

Access control

Access control in Composer is done through participant and business network ACL
files. It provides declarative access control to domain model elements. By defining
ACL rules, which users/roles are allowed to create, read, update or delete elements
in the domain model of the business network. Access control to a business network
is defined by an ordered set of ACL rules. Rules are evaluated in order, and the
first rule that matches the condition determines whether access is granted or denied.
Access is denied if no rule matches.

Chronology

The history is a specialized register that contains the transactions carried out
successfully, including the participants and the identities who carried out them.
Transactions are recorded as assets named HistorianRecord, which are defined in
the Composer namespace.

35

Distributed Ledger

Hyperledger Fabric SDK

The SDK offers an abstraction layer used by client applications to interact with
the Hyperledger Fabric blockchain network.

In particular, the use of the Java SDK allows Java applications to manage the
life cycle of Hyperledger channels and also the user chaincode. In particular, the
great utility of this SDK is that it provides many features for the execution of
the user chaincode, query blocks, pre-packaged transactions on the channel and
monitor for channel events. For these reasons, great use has been made in the
creation of the DME ledger layer.

However, the SDK does not provide any means of persistence for applications,
but this is by choice as it leaves the management to the creation of channels that
can be serialized through Java serialization. Therefore, the application that uses
these SDKs requires the implementation of management policies for data migration.

Certificate authority

Of considerable importance is the fact that the SDK provides a certificate authority,
so that the client can communicate securely with the ledger layer. However, the
SDK is not dependent on a particular implementation of a certificate authority,
in fact other certificate authority implementations can be used. This was really
important for the creation of the user registration interface within the blockchain.

SDK Gateway

The Fabric Gateway SDK has also been widely used. This made it possible to
connect to the blockchain network and allowed the application to interact with
it. All this thanks to simple APIs that allow you to submit transactions to the
ledger or to query the contents of the ledger with a truly minimal code. The main
elements used in the Fabric Gateway were.

• Wallet which defines the interface for storing and managing the identity of
users in the Fabric network.

• Gateway using the createBuilder() method, it configures the connection used
to access the gateway by setting the wallet and network configuration.

Dependencies of the SDK

The SDK depends on third-party libraries which for its proper functioning must be
included in the classpath when using JARs.

In particular to build the project you have to add:
• A version of JDK 1.8 or higher.

36

Distributed Ledger

• a version of Apache Maven 3.5.0.
Then to launch the Fabric CA or for Unit tests that have not been implemented in
DME, it must be integrated:

• Docker version 18.03.
• Docker Compose 1.21.2.

4.3.2 Spring
Spring Framework provides a comprehensive programming and configuration model
for modern Java-based business applications, on any type of deployment platform.

A key element of Spring is application-level infrastructure support: Spring
focuses on "plumbing" business applications so that teams, just like in our case, can
focus on application-level business logic, without unnecessary ties. with specific
distribution environments.

[6] In particular, the goal was to make the distributed Ledger available within a
RESTful Web service like other applications and Spring was just the framework
suitable for our purpose.

Spring Boot Among the various choices that Spring makes available, the
particular Spring distribution used was the Spring Boot, whose main features are:

• Directly embed Tomcat, Jetty or Undertow (no need to distribute WAR files);
• Provide "initial" dependencies to simplify build configuration;
• Automatically configure Spring and third-party libraries whenever possible;
• Provide production-ready capabilities such as metrics, health checks, and

outsourced configuration;
• No code generation and no XML configuration requirements;

37

Capitolo 5

Experimental phase and
development of the Smart
Contract

5.1 Preliminary stages

5.1.1 Choice of technology
The choice to use Fabric, in its pure version, was not immediate. In the firstinstance,
the use of the Fabric Composer was evaluated, as it guaranteed the advantages in
terms of development, asreported by the documentation. As previously mentioned,
Composer allows for faster development as it makes the integration and implemen-
tation of a blockchain easier. And also Fabric is the most active platform project
among the current 15 Hyperledger projects Composer installation prerequisi-
tes For the implementation of the blockchain, the decision was made to develop
it on a Linux environment. Therefore, to install the Composer prerequisites, all
the tools necessary to develop in this operating system had to be installed, which
specifically is the Ubuntu 18.04 LTS version.

The tools that have been installed are the following:

• Node v10.16.0;

• Npm 6.9.0;

• Docker-Compose: Version 1.8;

• Docker Engine: Version 17.03;

• Python: 3.5.2;

38

Experimental phase and development of the Smart Contract

The installation first undertaken individually for each tool could give rise to some
problems, so if you have chosen the Linux Ubuntu 18.04 LTS version, there is a
script made available by the official Hyperledger Fabric Composer documentation
that allows the automatic installation of all these tools.
For the execution of the same script, the commands useful for executing it are
shown here:

-curl -O https://hyperledger.github.io/composer/v0.19/prereqs-ubuntu.sh
-chmod u + x prereqs-ubuntu.sh
Composer installation and configuration Below we have installed a set of

client tools that are useful for developing through Composer and useful tools for
running the Rest server on your machine as a RESTful API.

The essential CLI tool is installed with the following command:
-npm install -g composer-cli@0.20
While to install the Rest server:
-npm install -g composer-rest-server@0.2 Very useful in the composer envi-

ronment is a browser application that is used to modify, manage and modify
the business network, this is called Playground and can be run locally during
development.

To install it:
-npm install -g composer-playground@0.20 Fabric installation Together with

the installation of these components, the installation of the Hyperledger Fabric is
essential. This provides a set of commands that are used to install a local Fabric
runtime.

The official Fabric documentation provides a script for downloading it. To
download and run it, we report the commands that have been launched:

curl -O https://raw.githubusercontent.com/hyperledger/composer-tools/master/packages/fabric-
dev-servers/fabric-dev-servers.tar.gz

- tar -xvf fabric-dev-servers.tar.gz You have to go back to the directory where
you are downloaded the script and execute it with:

- /.downloadFabric.sh
Experimentation of use of a Composer solution Before a possible imple-

mentation of our solution for DME, the use of Composer was evaluated and tested
by exploiting the demos made available by Hyperledger itself.

The script available after downloading is very useful as it not only allows you to
do this type of evaluation in the experimental phase but is also very useful in the
development phase as we will see later.

The ./startFabric.sh script takes care of the installation and configuration not
integrated into the network itself. It obscures the basics of the network at that
level and that’s fine for most application developers. They don’t necessarily have
to know how network components actually work in detail to build their app. In
particular in its default configuration:

39

Experimental phase and development of the Smart Contract

• creates a channel and joins the peer to the channel;

• installs the fabcar smart contract on the peer’s file system and instantiates it
on the channel(the instance starts a container);

• call the initLedger function to populate the channel register with 10 unique
cars;

That is, it is initialized and consists of a single peer node configured to use CouchDB
as a state database, a single node, a certification authority (CA) and a CLI container
for executing commands.

As a second step, the script is run to create a PeerAdminCard that contains a
single identity and is mapped to a participant, in this case the admin, and allows
the owner of the business network card to perform transactions in the business
network.

Subsequently, a tool was used to help us in the generation of the application,
the Yeoman (npm install -g yo), which in particular was used to generate the
structure of the Business Network Definition(BND), which defines the data model,
the transaction logic and the rules for access control for the blockchain. To do this,
you must specify in the yo commands the name of the business network, the name
and e-mail of the author, the type of server, the namespace and specifying that
you do not want to generate an empty BND we will have a skeleton composed of
assets, participants , transaction and the rules of access control, query and event.

The model is represented in a ".cto" file which contains the class definitions for
all assets, participant and transaction in the network. It also contains an access
control document (permissions.acl) with basic rules, a script (logic.js) that contains
the functions to perform transactions, and the package.json file that contains the
business network metadata.

For the purposes of testing the platform, the model was therefore modified by
adding a "Trader" participant, a "Commodity" asset and a "Trade" transaction that
indicates the relationship between Trader and Commodity.

The logic.js file describes the transaction functions contains the JavaScript logic
to execute the transactions defined in the model file. The "Trade" transaction has
been defined in such a way that it accepts the identifier of the "Commodity" asset
to be exchanged, and the identifier of the "Trader" participant to set up a new
owner.

The next step was to create a business network archive to make it

40

Experimental phase and development of the Smart Contract

Figura 5.1: Code related to the function of the transaction

contain the BDN and finally deploy the business network. Administrator
information is normally required to create a PeerAdmin identity, with the privileges
to install the chaincode on the peer and launch it on the channel. The PeerAdmin
identity was created during the installation phase of the development environment.
The deployment of the business network in Hyperledger Fabric requires it to be
installed on the peer, after which it can be launched, and a new participant, the
identity and its card must be created by the network administrator. Finally, the
network administrator’s business network card must be imported which can be
pinged to verify that the network is active.

Reasons why it was decided to abandon Composer Although the advan-
tages of using Composer are truly remarkable, as can also be seen from this experi-
mental phase, a careful analysis was made before proceeding with developments
with this technology.

In general according to the current state of the art, Composer has been regarded
as deprecated. But why is it choose such if the advantages are many and varied?
Basically it is that the major multinationals such as IBM, which is investing heavily
in blockchains, have abandoned it. Consequently, if the multinationals abandon
this track, the whole market moves accordingly. IBM’s reasons for this choice can
be summarized as follows:

• Composer is designed to support multiple blockchain platforms, plus Fabric.
There are two programming models - Fabric programming model (chaincode)
and Composer programming model (business network). This requires the
user to choose one of two programming models, which are almost completely
different. In this particular case, selection is a bad thing, and many users
choose not to use the "optional" part after the initial exploration or POC phase.

• This design has also made it much more difficult for IBM to adopt and expose
the latest Fabric capabilities. It is extremely difficult for IBM to keep up with

41

Experimental phase and development of the Smart Contract

and align with the latest Fabric features. This meant that users understandably
stopped using Composer and went back to developing with Fabric instead.

Finally, the comparison with Linear further pushed us to take the choice
of starting development simply by using a solution that involves the use
of only Hyperledger Fabric.

5.2 Smart Contracts in DME

The innovation of Digital Management of Event does not only concern the digitiza-
tion of a system that allows to have various functionalities at an organizational
level, but also concerns the possibility for the user to manage the entire process:
that is, to choose a location, contact and purchase a service from the various
suppliers who will be registered on the platform. All this will then be digitized and
consequently the possible constraints relating to privacy and digital contracts will
be implemented with Smart Contracts. The closing of contracts directly within
the platform through "smart contracts" is destined, as amply demonstrated by the
market analysis, to increase strongly in relation to the needs of manufacturing
companies to implement solutions for the digital transformation of companies, on
the one hand, and for the multidevice and mobile ubiquity of the services to be
provided.

The use of Smart Contracts is supported by the use of a distributed ledger to
allow communication between the various players in the supply chain.

The "Distributed Ledger / smart contract" module takes care of saving transac-
tions between customers and suppliers within a distributed ledger and managing
contracts digitally by completely dematerializing them. The smart contract con-
tains pre-defined status information, conversion rules, contract execution conditions,
and contractually agreed operations. After the node is verified, it is recorded in
the distributed ledger. The blockchain can monitor the status of the entire smart
contract in real time, and start and execute the operations specified in the contract
after confirming that the specific contract execution conditions are met.

To make the experience complete and innovative, the use of this technology
is essential. However, although it exists and is used in some branches, there is
still not a very wide use of this ecosystem based on ledgers and smart contracts,
so it can still be considered an implementation in an experimental phase that
will certainly be increasingly used over the years. Currently, in fact, there are no
academic documentation about it so everything that has been implemented was
based on official documentation of the various technologies used and on the study
and analysis of what could be more suitable as solutions for our DME platform.

42

Experimental phase and development of the Smart Contract

5.2.1 Network initialization
As for the initialization of the network, our DME application does not require a
particular configuration of the blockchain network, we have therefore chosen to use
the default initialization script of Fabric: /startFabric.sh. This command will create
a blockchain network consisting of two peers and a certificate authority. It will
also install and instantiate a TypeScript version of our DME smart contract that
will be used by our application to access the ledger. So we have only configured
the start within the network of our particular chaincode. The scheme of the
network according to which DME should operate can be summarized with an
outline reported by the Hyperledger documentation.

5.2.2 Drafting of the Smart Contract relating to DME
First of all it was necessary to choose in which language to develop the chaincode.
Hyperledger offers the possibility to choose between different types of languages for
writing the Smart Contract, including: GO, JavaScript, TypeScript, C ++. Since
in terms of performance or difficulty there is no advantage of one over the other,
the choice fell on TypeScript only for reasons of confidence with the language itself.

Figura 5.2: DME blockchain network

The Hyperledger Contract API was used, extending the Contract class with our
DMEContract class. The asynchronous methods that are part of the logic of the
contract have been implemented within, these will be listed below:

• initLedger: takes Context, another Hyperledger Contract API that makes
the transactional context available for the execution of transactions. As can be
seen from the name itself, the initLedger initializes the register, in particular
by reconstructing the Reservations (which we will see later, will be the element
that will be treated and recorded within the ledger) within our ledge.

43

Experimental phase and development of the Smart Contract

• createReservations: this method is used, passing all the parameters necessary
for the Reservation, to create a new reservation and insert it into the ledger,
always using the context method: ctx.stub.putState (prNumber, Buffer.from
(JSON.stringify (pr))).

• updateReservations: method similar to the previous one, only it updates
an existing reservation within the ledger. Remember that the transaction
actually updates the reservation in this case, but the ledger keeps track of all
transactions.

• getReservationsHistory:this method returns all the transactions linked to a
reservation to reconstruct a historical one, taking advantage of the characteristic
of the ledger that keeps transaction memory by transaction.

• queryAllReservations: utility method in case you need to return all ledger
transactions.

Demonstrative example of the code of the createPR method: From the image
shown, you can see how

Figura 5.3: Reservation creation method

the Prenotazione class plays a fundamental role. As already mentioned, it is the
element that is recorded in the ledger and keeps the information necessary for the
operating logic of our DLT. The Reservation structure is defined in an appropriate
Prenotazione.ts and imported into the chaincode. The fundamental fields of this
structure are:

• idCliente: stores the id of the customer who carries out the transaction;
• idVetrina: the id of the showcase on which the customer makes the reservation,

which is linked to the supplier.
• idEvento: links the booking to the customer’s event.

44

Experimental phase and development of the Smart Contract

• prezzo: the total to be paid for the provision of the service to be respected by
the customer.

• data: delivery date of the supply, to be respected by the supplier.
• stato: keeps track of the status of the reservation made in the ledger. A

reservation can be in the status of only "booked" or with a balance not fully
paid, in the case of payment in installments;

• totalePagato: it keeps track of how much the customer has paid. Fundamental
for the customer’s obligation to fulfill the contract. Only when the total paid
coincides with the price the customer has fulfilled the contract..

• dataModifica: indicates the last change of status of the existing Contract.
So this is the Smart Contract whose instance will be initialized during the network
execution phase when the blockchain is launched within the environment that will
host it

5.3 Smart Contracts in Lottery
The traditional model is that lottery players buy lottery tickets, and then transfer
the money to the intermediary platform of a third-party payment institution. After
the seller issues the order and the buyer confirms that the bet is successful, the
buyer notifies the payment institution to transfer the money to the account of
the lottery institution. The lottery transaction model supported by blockchain
technology is different. Lottery players and institutions can trade directly without
going through any intermediary platform.

Here we mocked up a lottery ledger. For the basic data structure of one lottery,
we designed like :

• contractId: the id of the transaction contract;
• orderId: the id of the order which the customer buy the lottery;
• buyerId: stores the id of the customer who buy the lottery;
• sellerId: the id of the seller which the customer buy the lottery
• buyerCompanyName: Purchaser’s company name information.
• sellerCompanyName: Seller’s company name information.
• buyerTaxPayerIdentificationNumber: Buyer Taxpayer Identification Num-

ber;
• sellerTaxPayerIdentificationNumber: Seller Taxpayer Identification Num-

ber;
• address: indicates the address of the seller;

45

Experimental phase and development of the Smart Contract

• buyerFiscalCode: stores the Fiscal Code of buyer.
• buyerAddress: indicates the address of the buyer;
• orderTotal: how much the buyer should paid for this order.
• note: note for this order
• attachments: it’s form withname:String; uri:String, should include the name

and the URI.

5.4 Microservice for Smart Contract
To make the smart contract available to the end user so that he can make his
transactions, a microservice has been implemented in Spring Boot, which by
exposing RESTful API calls expose the Hyperledger Fabric SDKs to interact with
the blockchain .

5.4.1 Services
The services that have been implemented to support are:

• ChainCodeService

• RegisterService

ChainCodeService The service core is implemented in this class. The fundamental
method that is called in each method is the Contract connect (String user).

This method uses Hyperledger’s fundamental SDK: the Gateway. Gateway
allows us to carry out the primary operations to connect to our blockchain. First
of all, it checks the presence of the user within the wallet which guarantees the
registration not only on the platform, but also within the blockchain. Passing the
configurations of our network (the peer organization, the name of the network,
the name of the connection) to the gateway builder it initializes it so that in turn,
receiving the name of the channel in which the DME smart contract is initialized,
it creates a Network object of the SDK. This finally allows with the getContract
method to return our smart Contract DME.
Each of the other methods are used to invoke the methods of creating, updating,
and returning the history.
Taking as a starting point the service method for creating the reservation:
note that the previously described connect () method is called, and then the
transaction is submitted on the contract by creating a new reservation and setting
the status to "created". The data is taken from a DTO for the transaction which is
managed and passed to the createPR of the contract.

46

Experimental phase and development of the Smart Contract

Figura 5.4: Gateway

Figura 5.5: creation of the transaction

RegisterService The registration service is used when creating a new customer
/ supplier. During the registration phase, the FE in addition to calling the endpoint
relating to the saving in the database of the new user, through the appropriate
controller, which will be shown later, the registration service within the blockchain
will be called.
This service will receive the user’s ID and save it in the wallet related to our
chaincode. In short, the wallet is a container of the SDK where a key and value
pair is recorded, where the key is the User ID while the value is an Identity. This
Identity is formed using another key object, the HFCAClient. The steps are as
follows:

• A new RegistranRequest is created by passing the user ID;
• Of this new object, the following are set: the affiliation, that is the department

of our blockchain, the enrollment ID, that is that of the user;
• We call the register function of the HFCAClient object, passing the registra-

tionRequest and the admin, this will return an enrollment secre;
• Subsequently, the ID and the enrollmentSecret are passed to the HFCAClient

enrollment and this will return an Enrollment object;

47

Experimental phase and development of the Smart Contract

• Finally, a new X509 Identity is created by passing the enrollment, with a
method of the Identities object that contains the admin’s certificate;

• Finally it is added to the wallet;

Figura 5.6: Register service

These two objects mentioned above are initialized as Java Beans when the service
is started using always appropriate SDKs. To use them within the service, the two
objects are injected.

5.4.2 Controller
Controllers expose endpoints to serve requests from the FE, call services by injecting
them.
RegistrationController Endpoint mapped to "/registration", has a single Post
createUser method for creating a new user.
The user id is passed through the RequestBody, which will be created when a new
user is created. The circumstance that this id will certainly be unique is exploited,
as its uniqueness is managed by the DME database. Here, too, the registration
service described above is injected, the creation method is thus invoked within the
post, and will return a 200 OK if the registration within the blockchain is successful.

TransactionControllerEndpoint mapped to "/transaction". By means of the
injection of the chaincodeService, it allows you to use all its services, and therefore
allow to expose them as Web services, essential for the whole platform, an impor-
tance that will be discussed later.
The Post methods exposed are as follows:

• createTransaction: Fundamental for the whole logic of the smart contract.
This controller receives as a parameter the userid of the user who is booking a
service and a dto with the main parameters of this transaction. The controller
uses the chaincode service to create this new booking linked to the DME Smart
Contract within the blockchain. Of fundamental importance is the set of the

48

Experimental phase and development of the Smart Contract

reservation status, of default, at the time of creation it is set as "created" and
this is inextricably linked to the reservation, to the blockchain register and
is valid as the status of the contract. To vary this conditioning is possible
only through a payment or an interaction with the supplier acting with the
blockchain through other calls.

• transactionHistory: It receives the userid as a parameter and through
this data calls the getAllTransaction of the service passing the userid as an
argument. It receives the history of the transactions linked to a single booking
of a service made by the customer, ready to be shown in the Front End. In
this way the user can analyze all the changes of the states in his contract with
the absolute certainty offered by the blockchain and its services, being able to
observe the various changes in status by monitoring the time and date

• getTransaction: It receives the userid and transaction ID as a parameter.
It uses the getTransactionById chaincode method that allows you to view
information relating to the single transaction, should it be necessary..

• getReservationsHistory:this method returns all the transactions linked to a
reservation to reconstruct a historical one, taking advantage of the characteristic
of the ledger that keeps transaction memory by transaction.

• queryAllReservations: utility method in case you need to return all ledger
transactions.

The Get Methods:
• getAllTransactions: this method is a helper method. It receives the userid

as a parameter and returns all transactions, no longer linked to a reservation,
but a list of all transactions linked to the individual user.

The Put methods
• updateTransaction: Together with create Transaction, this is the other

fundamental endpoint of the chaincode operating architecture.
This method updates the reservation in the editable fields with a new transac-
tion. It is mainly used for status changes allowed for a given booking.
Please note that all transactions and therefore changes in the booking status
will be visible to both the user and the supplier, thus establishing a solid
trusting bond, thanks to the smart contract.

PaymentController EndPoint mapped to "/payment". This controller also uses
the chaincodeService, and uses it to record and control payment statuses. At the
current stage of development, payments are mocked, but an easy introduction of a
module is left that can implement a real payment service, which can be: a banking
service, PostePay, PayPal, etc.
The only method is a Post method: pay

49

Experimental phase and development of the Smart Contract

It receives as the userid of the user who wants to make the payment and as the
body the Data Transfer Object data structure of the Reservation.
The method first of all checks if the payment method is not null, in the negative
case a BADREQUEST is returned to the Front End. Then follows the payment
management logic and therefore the contractual closing conditions. The last status
of the reservation is reconstructed using the user ID and the reservation, from
which two fundamental data are processed: the status of the reservation and the
total amount paid up to that moment. Therefore, it is verified whether the amount
paid in this transaction plus the amount paid up to that moment corresponds to
the total amount of the booked service. From here two scenarios open up:

1. If the amount paid plus the sum of the previous amount is equal to the price
of the booked service, the status is set as PAID and consequently the date of
the last payment and the total paid are updated. At this point, the entire
reservation is updated with a new transaction.

2. If the amount paid plus the current payment is not equal to the total amount
of the service price, this is considered as a partial sum of the amount due and
therefore considered as the payment amount of an installment.
The status is then set as INSTALLMENT PAYMENT and the total amount
paid so far is updated and, as in the previous case, the date of the last payment.

5.5 Overall view of the operation
In conclusion, it can be said that the operating logic of the entire smart contract
is distributed among the various services, the controllers, the chaincode and the
network.
For our infrastructure, it can be said that the network provides the skeleton of the
blockchain, using the standard startup of a Hyperledger network that instantiates
our chaincode. This defines the behavior of the smart contract, i.e. the possible
transactions on what the asset is, i.e. the Booking.
The services through the SDK communicate with the blockchain and enter the
various transactions within the blockchain register.
Finally, the controllers activate the various functions of the services and are
activated by the front end as they expose endpoints that are contacted by the web.
In addition, it implements validation logics for the various states or payment.
It should be emphasized that any anomalies certainly cannot occur within the
blockchain as it is practically unassailable in any way.
But in addition, any insertion anomalies, or attempts to evasion to fulfill the
payment will in any case be recorded, therefore at the limit both supplier and
customer are protected from this point of view.

50

Capitolo 6

Future trends

With the development and integration of blockchain technology and e-commerce,
a decentralized e-commerce model will emerge. At present, the mainstream e-
commerce platforms use a centralized service model. Well-known e-commerce
platforms such as Amazon, Ali Baba acts as a trusted third party. At the same
time, online payment systems such as Alipay and PayPal also play a third-party role.
By integrating blockchain and e-commerce, the centralized mode of e-commerce
trading market and online payment system may change. The following will compare
the two different models of e-commerce trading platform and payment platform to
explore new trends in future development.

6.1 An overview of the e-commerce transaction
market

An e-commerce trading platform can be defined as a virtual market for online
transactions between buyers and sellers. This virtual market for online transac-
tions can be generally described as having a central management agency and a
decentralized management agency (peer-to-peer). For example, third parties such
as Amazon and Taobao The e-commerce trading platform is a typical one with the
characteristics of a central management structure. The decentralized management
structure refers to a market where there is no third-party platform to intervene in
free transactions between buyers and sellers. At present, most of them adopt the
first and more mature model. The latter has recently been compared by experts and
scholars. Attention, its application in e-commerce is also being tried by e-commerce
platforms, but there are many disputes.

51

Future trends

6.1.1 Third-party e-commerce trading platform

Since the 21st century, e-commerce has ushered in rapid development. Enterprises
relying on the third-party e-commerce service platform model, such as Alibaba,
Amazon, ebay and other e-commerce companies, have risen rapidly and changed
people’s lives. The development of the Internet has further optimized the sales
process. It improves the response efficiency of the traditional trade supply chain,
thereby reducing the cost of commodity circulation, making consumers profitable,
and gaining a large number of loyal consumers. At the same time, more and more
consumers have changed their identities in the process of experience. In the process
of high centralization, the platform brings more value to consumers and terminal
manufacturers on the one hand, but also brings many hidden dangers on the other
hand. For example: the platform In order to compete for more market share,
sellers may spend money on third-party trading platforms to purchase exposure,
search rankings, click-through rates, etc. to increase customers, resulting in vicious
competition or oligopoly. The need for personnel expansion will increase expenditure
costs. In order to alleviate the pressure of expenditure costs, the platform may
open more privileges and permissions to sellers to ease the pressure. The continuous
occurrence and further fermentation of these situations will inevitably affect the
experience of consumers , e-commerce will fall into a vicious circle of development.

6.1.2 Decentralized e-commerce trading market

With the birth and development of mobile social tools, the e-commerce model with
a decentralized structure has a new development space. It has the characteristics of
low customer acquisition cost and fast promotion speed. For producers, it maximizes
economic benefits and maximizes revenue At the same time, due to the lack of
reputation guarantee provided by third-party platforms, this idea was difficult to
achieve before. However, its concept has also begun to be applied in some aspects,
such as on-demand The production mode directly matches the needs of consumers
with the machine resources of manufacturers, and has the characteristics of no
intermediary, no cost, and high transparency. In the process of transaction, there
is no third-party platform intervention to directly conduct transactions. Buyers
and sellers in this transaction With both identities in the platform, buyers can
become sellers, and sellers can also become buyers. Through constant point-to-
point exchange of demand information and completion of transactions. In this
decentralized trading platform, the transaction process does not require There is
no transaction cost for review, so consumer information is highly confidential, and
leakage and abuse will not occur. Manufacturers do not need to worry about the
customer base being controlled by third-party platforms, and all customers are in
their own hands. Transactions The information of the process is recorded in the

52

Future trends

blockchain and traceable to the source, which can eliminate the phenomenon of
fake goods, and can detect and punish criminals in the first time.

6.2 Overview of Online Payment Systems
At present, third-party payment monopolizes the vast majority of payments, and
central institutions are used to protect online payments between buyers and sellers.
The birth of blockchain payment with a decentralized structure has impacted the
status of third-party payment, and it will be more efficient in the use process, the
customer experience is better.

6.2.1 Centralized online payment system
At this stage, centralized payment systems such as online banking and third-party
payment institutions all rely on the bank account system. To perform payment,
both parties to the transaction must have bank accounts, and third-party payment
platforms such as Paypal must rely on banks for fund settlement. With so much
transaction data engraved, it can be said that in order to ensure payment security,
the cost of investment is huge, and the process is cumbersome, which leads to low
efficiency. Among them, cross-border payment is a typical example. On the other
hand, handling fees are generally on the high side, and at the same time, problems
such as false transactions, high chargeback rates, and long arrival times have also
hindered the development of the cross-border economy.

6.2.2 Blockchain payment
Blockchain payment has changed the original online payment mode. With the
research and development of blockchain technology, blockchain payment technology
has gradually matured. The digital currency based on blockchain technology has
changed the traditional payment mode and is designed to be A trusted digital
payment method that does not rely on third parties. It hopes to build a decentralized
payment system, and the blockchain payment model has many advantages. First,
blockchain payments can bypass banks to reduce unnecessary fees , because of its
safe, transparent and low-risk characteristics, it will ensure the security of cross-
border payments, improve settlement efficiency, and ensure the authenticity of the
transaction process and the integrity of records. Secondly, due to the immutability
of blockchain technology All transactions are open and transparent and cannot
be changed by both parties, which can solve the problems of false transactions
and untraceability that may occur in payment. Finally, a fast foreign exchange
settlement platform can be created through blockchain technology. Multiple parties
in the joint transaction process conduct real-time settlement and transactions,

53

Future trends

thereby greatly improving efficiency and speeding up the turnover of funds. At
the same time, through the point-to-point (P2P) network structure, it can achieve
instant arrival, convenient withdrawal, all-weather payment and other traditional
currencies as payment media. Because of a "centralized" entity (such as a bank), the
value transfer of digital currency as a payment medium is point-to-point transfer,
which is actually a "decentralized" payment process. This weakens the payment
medium function to a certain extent.

54

Capitolo 7

Conclusions

This paper applies blockchain technology to e-commerce websites, and uses bloc-
kchain to store transaction information. Relying on its transparent and non-
tamperable characteristics, it meets the needs of both supply and demand for high
authenticity of transaction data, and hits the industry’s pain points. This article
uses common technologies to develop the front end of the website, and uses the
Fabric Java SDK to access the blockchain. The technologies used are easy to learn
and master, and have high efficiency. The solutions provided in this paper are
suitable for different industries, especially applications that require highly authentic
and credible information, such as stock securities transactions, product traceability,
bank loans, and credit checks.

Blockchain technology is slowly gaining acceptance, and its features such as
traceability, tamper resistance, decentralization, and timestamps provide innovative
solutions for e-commerce in areas such as reputation, privacy, and supply chain
to a certain extent. At the same time, with the establishment of a decentralized
e-commerce trading market and the improvement of blockchain technology, a new
model of e-commerce will inevitably follow in the future. However, because the
current mastery of blockchain technology is not comprehensive enough, the complete
ecology of blockchain has not been completed, which also makes the research of this
paper in the early stage of analysis, but it is undeniable that blockchain technology
will become the future e-commerce. The driving force for development, and some of
the problems existing in e-commerce will disappear with the support of blockchain
technology. A more open and transparent new e-commerce ecosystem will also be
born.

55

Conclusions

7.1 Future developments
Future research will increase the number of Orderer nodes and reduce the depen-
dence on a single node. Apply Kafka’s multi-node mode to achieve high concurrent
throughput of the website. In addition, more information will be stored and
maintained in the blockchain, to achieve a blockchain system with more optimized
functions.

7.2 Final considerations
Based on the requirements and project specifications, the following functions for
DME have been implemented and tested:

• Manager / Supplier/ Guests registration
• Authentication
• Creating and editing an event
• Search and book a service
• Viewing and booking of appointments
• Management of guests
• Table management
• Service selection recommendation system
• Creation and management of smart contracts through the use of a blockchain

This project gives an early taste of the analysis and research of the most commonly
used techniques in web application development today. The dissertation work is
very helpful in applying the knowledge learned in the course, learning new skills
and connecting with the real world of modern business.

56

Bibliografia

[1] Godwin J Udo. «Privacy and security concerns as major barriers for e-
commerce: a survey study». In: Information management & computer security
(2001) (cit. a p. 6).

[2] Ari-Pekka Hameri e Juha Hintsa. «Assessing the drivers of change for cross-
border supply chains». In: International Journal of Physical Distribution &
Logistics Management (2009) (cit. a p. 7).

[3] Michael Rosen, Boris Lublinsky, Kevin T Smith e Marc J Balcer. Applied
SOA: service-oriented architecture and design strategies. John Wiley & Sons,
2012 (cit. a p. 5).

[4] Jake Spurlock. Bootstrap: responsive web development. " O’Reilly Media, Inc.",
2013 (cit. a p. 20).

[5] Tareq Ahram, Arman Sargolzaei, Saman Sargolzaei, Jeff Daniels e Ben Amaba.
«Blockchain technology innovations». In: 2017 IEEE technology & engineering
management conference (TEMSCON). IEEE. 2017, pp. 137–141 (cit. a p. 1).

[6] Yue Hongfei. «National report on e-commerce development in China». In:
Inclusive and Sustainable Industrial Development Working Paper Series WP17
(2017) (cit. a p. 6).

[7] Elli Androulaki et al. «Hyperledger fabric: a distributed operating system
for permissioned blockchains». In: Proceedings of the thirteenth EuroSys
conference. 2018, pp. 1–15 (cit. a p. 28).

[8] Nane Kratzke. «A brief history of cloud application architectures». In: Applied
Sciences 8.8 (2018), p. 1368 (cit. a p. 5).

[9] Parth Thakkar, Senthil Nathan e Balaji Viswanathan. «Performance bench-
marking and optimizing hyperledger fabric blockchain platform». In: 2018
IEEE 26th International Symposium on Modeling, Analysis, and Simulation
of Computer and Telecommunication Systems (MASCOTS). IEEE. 2018,
pp. 264–276 (cit. a p. 28).

57

BIBLIOGRAFIA

[10] Adam Boduch e Roy Derks. React and React Native: A complete hands-on
guide to modern web and mobile development with React. js. Packt Publishing
Ltd, 2020 (cit. a p. 23).

[11] Xiaofang Xue, Junpeng Dou e Yao Shang. «Blockchain-driven supply chain de-
centralized operations–information sharing perspective». In: Business Process
Management Journal (2020) (cit. a p. 7).

[12] Laine Zhang Santala Jokinen Oulasvirta A. «Responsive and Personalized
Web Layouts with Integer Programming. Proceedings of the ACM on Human-
Computer Interaction». In: (2021) (cit. a p. 15).

[13] ETHEREUM.Ethereum whitepaper[EB/OL].[2020-05-15]. url: https://
ethereum.org/en/whitepaper/ (cit. a p. 24).

[14] How to Make your Angular Responsive Web App Design? url: https://
aglowiditsolutions.com/blog/angular-responsive/ (cit. a p. 16).

[15] Hyperledger Fabric Model. url: https://hyperledger-fabric.readthedo
cs.io/en/release-2.2/fabric_model.html (cit. a p. 32).

[16] Microservicesarchitecturestyle. url: https://docs.microsoft.com/en-
us/azure/architecture/guide/architecture-styles/microservices
(cit. a p. 3).

[17] Responsive pixel. url: http://www.responsivepixel.com/ (cit. a p. 16).
[18] Responsive Web Design di Ethan Marcotte 08 Giugno, 2010. url: https:

//alistapart.com/it/argomenti/responsive-design/page/3/ (cit. a
p. 15).

[19] What is an application architecture? url: https://www.redhat.com/en/
topics/cloud-native-apps/what-is-an-application-architecture
(cit. a p. 5).

[20] What is blockchain technology? url: https://www.ibm.com/in-en/topics/
what-is-blockchain (cit. a p. 26).

[21] wikipedia: HTML 5. url: https://en.wikipedia.org/wiki/HTML5 (cit. a
p. 16).

58

https://ethereum.org/en/whitepaper/
https://ethereum.org/en/whitepaper/
https://aglowiditsolutions.com/blog/angular-responsive/
https://aglowiditsolutions.com/blog/angular-responsive/
https://hyperledger-fabric.readthedocs.io/en/release-2.2/fabric_model.html
https://hyperledger-fabric.readthedocs.io/en/release-2.2/fabric_model.html
https://docs.microsoft.com/en-us/azure/architecture/guide/architecture-styles/microservices
https://docs.microsoft.com/en-us/azure/architecture/guide/architecture-styles/microservices
http://www.responsivepixel.com/
https://alistapart.com/it/argomenti/responsive-design/page/3/
https://alistapart.com/it/argomenti/responsive-design/page/3/
https://www.redhat.com/en/topics/cloud-native-apps/what-is-an-application-architecture
https://www.redhat.com/en/topics/cloud-native-apps/what-is-an-application-architecture
https://www.ibm.com/in-en/topics/what-is-blockchain
https://www.ibm.com/in-en/topics/what-is-blockchain
https://en.wikipedia.org/wiki/HTML5

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Distributed Ledger
	Microservices architecture
	Responsive Web Development
	The current problems of e-commerce
	The lack of integrity of sellers leads to a crisis of platform reputation
	Consumer privacy cannot be guaranteed
	Supply chain enterprise information sharing is not immediate and opaque

	Project DME
	Reference scenario
	DME Architecture
	Objectives and constraints

	Back-End Layer
	Front-End Layer

	Responsive Web Development
	Introduction
	Creating a Responsive Site
	HTML
	CSS
	Bootstrap
	Angular
	React

	Distributed Ledger
	Blockchain
	Key elements of a blockchain
	Advantages

	Smart Contract
	Historical background and definition
	Operating characteristics
	Advantages and disadvantages of smart contracts

	State of the art and tools used
	Hyperledger Fabric
	Spring

	Experimental phase and development of the Smart Contract
	Preliminary stages
	Choice of technology

	Smart Contracts in DME
	Network initialization
	Drafting of the Smart Contract relating to DME

	Smart Contracts in Lottery
	Microservice for Smart Contract
	Services
	Controller

	Overall view of the operation

	Future trends
	An overview of the e-commerce transaction market
	Third-party e-commerce trading platform
	Decentralized e-commerce trading market

	Overview of Online Payment Systems
	Centralized online payment system
	Blockchain payment

	Conclusions
	Future developments
	Final considerations

	Bibliografia

