
POLITECNICO DI TORINO

Master of science program
in ICT For Smart Societies

Master Thesis

A deep reinforcement learning approach to
cooperative cruise control for connected cars

Supervisor Candidate
prof. Carla Fabiana Chiasserini Keyu Wang
prof. Nicola Amati

ACADEMIC YEAR 2021-2022

If you renew yourself for one day, you
can renew yourself daily, and continue
to do so.
[Confucius, Liji]

Summary

In this thesis, we use a deep reinforcement learning algorithm called Deep Deter-
ministic Policy Gradient (DDPG) to achieve vehicle longitudinal control in the
CoMoVe framework. And we properly design the reward function, considering
some key performance indicators like safety, comfort and stability to guide the
model’s learning direction. In the meanwhile, we apply multiple methods to re-
duce overfitting: fine-tuning hyperparameters, diversifying training scenarios and
regularization, which improve the performance and robustness of DDPG. In addi-
tion, we also test its improved version called Twin Delayed DDPG (TD3) algorithm
for comparison as well as providing reference for future research.

Key words: reinforcement learning, Deep Deterministic Policy Gradient, Co-
MoVe, longitudinal control, reward function, overfitting, Twin Delayed DDPG

2

Acknowledgements

First of all, my biggest thanks to my supervisor, prof. Carla Fabiana Chiasserini.
She gives me tremendous help throughout the period of writing this thesis and
provides invaluable guidance and insights at every stage. She always replies me
promptly when I have doubts. I will always be grateful for her help and trust for
providing this opportunity for me to participate in this thesis project.

I’d also like to thank prof. Nicola Amati from the Center for Automotive Re-
search and Sustainable Mobility for his supervision of my thesis project.

A special thanks to Dinesh Cyril Selvaraj, PH.D. student from Telecommunication
Networks Group, whose advice and support are crucial to my thesis.

I’m grateful to all my classmates and friends from ICT for smart Societies, we have
learned from each other and made progress together during this period, which is
a unforgettable experience in my master’s program.

Last, I would like to thank my parents for their continued encouragement and
support, which gives me the power I needed to complete my master’s program and
also become a priceless asset for my future development.

3

Contents

List of Tables 6

List of Figures 7

1 Introduction 9

2 Background 11
2.1 Connected cars . 11

2.1.1 Network architecture . 11
2.1.2 Types of connectivity . 12
2.1.3 Key communication technology 13

2.2 Platooning scenario . 13
2.3 Vehicle dynamics . 14
2.4 Reinforcement learning . 17

2.4.1 Learning process . 17
2.4.2 Key components . 18
2.4.3 Classification . 20

2.5 Deep reinforcement learning . 21
2.5.1 Deep learning basics . 22
2.5.2 DRL algorithms . 28
2.5.3 Prioritized replay . 32

3 Methodology 34
3.1 State & action definition . 34
3.2 Reward functions design . 35
3.3 CoMoVe framework . 36

4 Performance evaluation 38
4.1 Simulation scenario . 38

4.1.1 Two vehicles following scenario 38
4.1.2 Three vehicles cut-out scenario 39

4

4.2 Experiments and results analytics 40
4.2.1 DDPG in two vehicles following scenario 40
4.2.2 Fine-tuning DDPG in two vehicles following scenario 44
4.2.3 Comparison between DDPG and TD3 61
4.2.4 DDPG in three vehicles cut-out scenario 64

5 Conclusion 67

Bibliography 68

5

List of Tables

3.1 Observation state st . 34
4.1 DDPG hyperparameters . 40
4.2 DDPG with PER hyperparameters 58
4.3 TD3 hyperparameters . 61

6

List of Figures

2.1 Longitudinal dynamics model . 15
2.2 lateral and longitudinal force coefficients as function of slip ratio . . 16
2.3 Branches of machine learning . 17
2.4 Reinforcement learning process . 18
2.5 Perceptron unit . 22
2.6 Neural network sketch . 23
2.7 Neural network . 24
2.8 Deep Deterministic Policy Gradient framework 28
2.9 Twin Delayed DDPG framework . 30
3.1 Reward components . 36
3.2 CoMoVe framework . 36
4.1 Two vehicles following scenario . 38
4.2 Lead vehicle velocity trend . 39
4.3 Three vehicles cut-out scenario . 39
4.4 Average reward per simulation . 41
4.5 RL agent performance . 41
4.6 Reward components variation . 42
4.7 Reward components weighted variation 42
4.8 Distribution of Headway & Jerk . 43
4.9 Average reward per simulation with different batch size 45
4.10 RL agent performance (batch size=32) 46
4.11 Distribution of Headway & Jerk (batch size=32) 46
4.12 Average reward per simulation with different dropout probability . . 47
4.13 RL agent performance (dropout=0.1) 48
4.14 Headway & Jerk Histogram (dropout=0.1) 48
4.15 RL agent performance (dropout=0.2) 49
4.16 Headway & Jerk Histogram (dropout=0.2) 49
4.17 RL agent performance (dropout=0.3) 50
4.18 Headway & Jerk Histogram (dropout=0.3) 50
4.19 Average reward per simulation with different l2norm penalty 51
4.20 RL agent performance (L2norm penalty=0.1) 52

7

4.21 Headway & Jerk Histogram (L2norm penalty=0.1) 52
4.22 RL agent performance (L2norm penalty=0.2) 53
4.23 Headway & Jerk Histogram (L2norm penalty=0.2) 53
4.24 RL agent performance (L2norm penalty=0.3) 54
4.25 Headway & Jerk Histogram (L2norm penalty=0.3) 54
4.26 Average reward per simulation with different parameters random-

ization . 55
4.27 RL agent performance (Random initial spacing) 56
4.28 Headway & Jerk Histogram (Random initial spacing) 56
4.29 RL agent performance (Random initial lead vehicle velocity) 57
4.30 Headway & Jerk Histogram (Random initial lead vehicle velocity) . 57
4.31 Average reward per simulation with different sampling methods . . 59
4.32 RL agent performance (DDPG with PER method) 59
4.33 Headway & Jerk Histogram (DDPG with PER method) 60
4.34 Average reward per simulation of TD3 62
4.35 RL agent performance of TD3 . 62
4.36 Headway & Jerk Histogram of TD3 63
4.37 Average reward per simulation of cut-out scenario 64
4.38 RL agent performance of cut-out scenario 65
4.39 Reward components variation of cut-out scenario 65
4.40 Reward components weighted variation of cut-out scenario 66
4.41 Distribution of Headway & Jerk of cut-out scenario 66

8

Chapter 1

Introduction

With the development of the world economy, cars have become an important
method of transportation for people mobility. According to the forecast of the In-
ternational Energy Agency, in the global the number of passenger car will double
to 2 billion vehicles by 2050[1]. As a result, serious road safety problems arise.
Worldwide, road traffic accidents have caused nearly 1.3 million preventable deaths
and an estimated 50 million injuries each year over the past 20 years and the World
Health Organization predicts a further 13 million deaths and 500 million injuries
on the roads in the next decade[2]. To solve these problems, various technologies
are being developed. One of advanced applications is called intelligent transporta-
tion systems(ITS) aiming at enabling convenient transportation management to
maintain a safe, efficient and sustainable transportation network, reduce traffic
congestion and improve driver experience.
In order to better evaluate the performance of ITS, the related research group
developed the CoMoVe framework[3] to solve this problem. The CoMoVe frame-
work includes four main modules: vehicle mobility, vehicle dynamics, vehicle com-
munication and vehicle control module. The vehicle control module applies the
model-based method, so the design of the control logic needs to use the prior
knowledge and internal principles of the environment, which makes the control
algorithm complex, difficult to fine-tune, and cannot meet the needs of customiza-
tion. However, in recent years, due to the rapid development of deep learning and
its strong learning ability and good adaptability, it is widely used in computer
vision, risk control, natural language processing and many other fields. So, there
is an increasing amount of researches on how to apply deep learning techniques
on ITS[4]. In this thesis, we use the deep reinforcement learning(DRL) algorithm
to realize the vehicle control module of the CoMoVe framework, which takes into
account passenger comfort and vehicle stability while assuring driving safety.
The remaining chapters are organized as follows: Chapter 2 mainly introduces the
background knowledge related to CoMoVe framework and reinforcement learning,

9

Introduction

as well as the details of DRL algorithm frameworks and performance improving
methods; Chapter 3 mainly introduces the key steps in the process of integrat-
ing deep reinforcement learning algorithms into the CoMoVe framework; Chapter
4 mainly introduces the simulation scenarios, preliminary and optimized perfor-
mance evaluation and analysis of deep reinforcement learning; Chapter 5 contains
the thesis summary of and the future outlook.

10

Chapter 2

Background

2.1 Connected cars
The Internet of Vehicles can be seen as an extension of the Internet of Things in
the automotive industry. The connected cars in the network can use communica-
tion technology to exchange information with other entities[5].
In the driving scenario, connected cars collect information including vehicle driving
status, road conditions from chassis, powertrain, surrounding cars and infrastruc-
tures through electronic control units (ECUs)[6]. These collected information will
be further processed and shared to facilitate the related services such as on-board
diagnostics, collision avoidance, platooning and so on, providing customers with
safe, comfortable and intelligent driving experience.

2.1.1 Network architecture
The network architecture of connected vehicle is usually built as a layered struc-
ture, where each layer plays a different role. Currently, there is no specific ar-
chitecture because of the existing different comprehension of connected cars[7].
However, from a logical point of view, it can be divided into the following layers:

1) Perception layer: The perception layer is the basis of recognition services,
which collects information of vehicle status and road environment mainly through
multivariate information collection via radar, vehicle camera and GPS[7]. The
information will then be transmitted to the actor (driver or computer). Actor
will make appropriate actions based on feedback so as to realize assisted or
automatic driving.

2) Network layer: The main function of this layer is to realize network trans-
mission, data sharing and processing, and to provide low-latency, high-speed
and wide-range network connections for connected vehicles[8].

11

Background

3) Application layer: The application layer can provide a variety of services[8],
such as autonomous driving, in-vehicle entertainment, remote monitoring and
emergency rescue. With the development of AI technology, some resource-
intensive applications can also be realized to meet the growing market demand.

2.1.2 Types of connectivity
In real-world scenarios, connected cars will communicate with various entities in
the environment including pedestrians, traffic lights, other vehicles, and cloud
databases. To sum up, there are five types of connectivity[9]:

1) Vehicle-to-infrastructure(V2I): V2I technology uses infrastructure as a medium,
which collects information about safety status, environment and road conges-
tion information from vehicles, and forward these obtained data to others with
better decision-making suggestions[10].

2) Vehicle-to-vehicle(V2V): V2V technology refers to the communication method
used when exchanging information between cars. The information exchanged
mainly includes vehicle speed, distance and geographic location, etc., which
are crucial for avoiding collisions and improving traffic efficiency in congested
areas[11].

3) Vehicle-to-cloud(V2C):V2C technology refers to the exchange of information
between the car and cloud database. Due to the wide application of cloud
technology, automobile-related data can be access by other industries (such as
smart grids, gas stations, and high-precision maps), realizing mutual promotion
and common development of the entire automotive ecosystem[12].

4) Vehicle to Pedestrian(V2P): V2P technology mainly refers to the commu-
nication between cars and pedestrian electronic devices, which enables cars to
sense the surrounding vital signs in time and make reasonable actions, reducing
the risk of accidents and greatly improving road safety[13].

5) Vehicle-to-everything(V2X): V2X technology generally refers to the com-
munication between cars and all entities that can be interacted with in the
Internet of Vehicles, which includes other communication types such as V2V
and V2I[14].

12

Background

2.1.3 Key communication technology
Currently, dedicated short-range communications (DSRC) and cellular-based ve-
hicle to everything communication technology(C-V2X) constitute the main stan-
dards for vehicular communications[14].

1) DSRC: DSRC is a vehicular communication technology based on the IEEE
802.11p standard led by the United States, which works in the 5.9GHz fre-
quency band with bandwidth in range of 75Mhz. DSRC can support both
vehicle-to-vehicle (V2V) and vehicle-to infrastructure (V2I) type of communi-
cations.
DSRC device can be divided into two categories: on board unit(OBU) located
inside the vehicles and road site unit(RSU) acts as fixed access point mounted
along the roadside. These two type of units can transmit information to each
other and OBU can also transmit the obtained information to the cloud plat-
form. In order to ensure sufficient response time after receiving message, DSRC
is required to have round trip latency below 50ms in safety application[14].

2) C-V2X: C-V2X mainly refers to LTE-V2X and 5G-V2X technologies with two
communication modes: direct vehicle to vehicle communication and cellular
network-based communication. Cellular communications rely on existing LTE
and 5G cellular networks to enable information transmission with high band-
width and long distances. On the contrary, direct communication allows device
to device data transmission without infrastructure.
C-V2X technology is easier to be recognized by the market than DSRC in the
following aspects: First, cellular networks support communication over longer
distances, which allows sufficient time for connection establishment between
vehicles and base station. Second, the capacity of the cellular network is large,
which supports the access requirements of high bandwidth and big data. As
a result, the network switching frequency and control overhead are reduced
while ensuring communication quality. In addition, C-V2X deployment is cost-
effective, requiring no new infrastructure to be built, just upgrading existing
equipment.[15].

2.2 Platooning scenario
Recent technologies in artificial intelligence and vehicle-to-vehicle (V2V) communi-
cation allow cooperative driving between vehicles. Vehicle platooning as a type of
collaborative driving technology has received considerable attention over the past
few decades due to the considerable benefits once implemented. Vehicle platoon-
ing systems are also known as Adaptive Cruise Control (ACC)[16] or Cooperative

13

Background

Adaptive Cruise Control (CACC) systems[17], with the difference that CACC en-
ables vehicular communication.
Platooning is defined as a scenario in which vehicles travel in line and maintain a
safe distance with each other. Vehicles in platoon have the ability to communicate
based on specialized in-vehicle electronics and relative communication standards.
This allows a vehicle to share its own status (speed, acceleration, position, etc.)
with other members, and as a result platooning improves the road capacity, traffic
safety and travel efficiency[18].
Since the first platooning model was proposed in the 1950s[19], various models
have been developed. Among them, the most basic one is linear feedback control
model, which is designed to maintain a constant spacing[20] or time headway[21].
Recent studies have applied optimal control methods[22][23]whose objective func-
tions can incorporate multiple targets such as comfort , efficiency and key safety
constraints(e.g. collision avoidance).
Before commercialization, platooning technology must be thoroughly tested and
validated to prove its safety. But since vehicle platoon is an interdisciplinary
project, which involves control theory, communication engineering, software pro-
gramming and so on. Its field experiments are often expensive and the simulation
scale is far from reality. Although a number of researches have been performed in
field test, most of these studies are conducted in constrained environments[24][25].
An alternative approach is to develop a virtual framework that can simulate the
real driving environment, for which there are related researches and available sim-
ulation frameworks[26].

2.3 Vehicle dynamics
The subject of vehicle dynamics is very broad, but can be loosely defined as the
analysis of the motion of vehicles with the aim of describing various behaviors and
understanding their causes[27], which can be divided into three main parts: lon-
gitudinal dynamics, lateral dynamics and vertical dynamics[28]. Since this thesis
only deals with platooning scenario, we mainly focus on the vehicle longitudinal
dynamics, while also specifying the key indicators related to vehicle comfort and
stability used in thesis.

1) Longitudinal dynamics
In the longitudinal vehicle model, the traction force is provided by the power-
train, which mainly includes the engine, suspension, transmission system and
other components. At the same time, it is necessary to provide a basis for
describing the dynamic performance of vehicle by analyzing the forces balance
including gravity, resistance and driving forces. Figure2.1[29] shows the exter-
nal longitudinal forces acting on the vehicle when road slope angle is θ.

14

Background

Figure 2.1. Longitudinal dynamics model

The force balance equation of the vehicle is expressed as follows:

mẍ = Ff + Fr − Fa − Rf − Rr − mg sin(θ) (2.1)

where

• m is the mass of the vehicle
• ẍ is the vehicle acceleration
• Ff is the driving force of the front tires
• Fr is the driving force of the rear tires
• Fa is the aerodynamic resistance
• Rf is the rolling resistance of the front tires
• Rr is the rolling resistance of the rear tires
• g is the gravitational acceleration
• θ is the slope angle

2) Comfort
We use jerk to indicate driving comfort, which is defined as the derivative of
acceleration and is considered to have a large impact on passenger comfort[30].

jerk = ...
x (2.2)

15

Background

3) Stability
In this thesis, we choose slip ratio Sl to indicate the vehicle stability, which is
defined as[31]:

Sl =
3

ωre − v

v

4
(2.3)

where

• ω is the wheel angular velocity

• re is the effective free-rolling radius of tires, which can be calculated from
the revolutions per kilometer

• v is the vehicle velocity

As shown in Figure 2.2[32], the variation in slip ratio affects both lateral force
coefficient µy and longitudinal force coefficient µx of the tire.

Figure 2.2. lateral and longitudinal force coefficients as function of slip ratio

For example, when side slip angle α = 2◦[32], as slip ratio increases the lateral
force coefficient µy tends to zero, which means that tire can not provide enough
lateral force to maintain direction. Therefore, slip ratio Sl is usually need to be
controlled between 0.1 and 0.3 to obtain high vehicle stability.

16

Background

2.4 Reinforcement learning
Reinforcement learning(RL) is an area of machine learning, which is listed as the
three basic machine learning paradigms along with supervised learning and unsu-
pervised learning, as shown in Figure 2.3[33].

Figure 2.3. Branches of machine learning

Different from supervised and unsupervised learning, the the objective of RL algo-
rithms is to figure out how the agent (the entity that executes the RL algorithm)
take actions to maximize the cumulative reward in the environment. For example,
when playing chess, the algorithm need to decide how to move pieces according to
the current layout in order to win the whole game. Similar to supervised learning,
reinforcement learning also has a training process. It needs to continuously taking
actions and observe the corresponding effects, and finally a well-trained model is
obtained through the accumulated experience. However, the difference is that each
action in reinforcement learning does not have a labeled value as supervision. The
environment only gives a reward to current action, which is always lagged i.e. the
consequence of the current action cannot be fully reflected only after a period of
time.

2.4.1 Learning process
Formally, RL can be described as a Markov decision process (MDP)[34]. The
characteristic of Markov process is that the next state of the system is only related
to the current state and is independent of earlier moments.
The state transition of RL process can be represent as a tuple:

(st, at, rt, st+1) (2.4)

17

Background

where

• st is the state at time step t

• at is the action at time step t

• rt is the environment reward at time step t

• st+1 is the state at time step t

Its state transition probability is:

P (st, st+1) = P (s = st+1 | s = st, a = at) (2.5)

RL learning process is shown in the Figure 2.4. At current time step t, based on
observed state st, the agent takes action at to interact with the environment. Then
at next time step t + 1, the environment transitions to state st+1 and feeds back
reward rt to the agent. This forms a closed loop, in which the agent continuously
optimizes its own policy through reinforcement learning algorithm to maximize
cumulative reward.

Figure 2.4. Reinforcement learning process

2.4.2 Key components
A reinforcement learning system can be divided into four key components: agent,
environment, reward, and value function.

18

Background

1) Agent
An agent is the entity that performs actions such as a car in autonomous driving
scenario. It will act based on the policy function, which is generally classified
as stochastic policy and deterministic policy.

• Stochastic policy function π defined by parameter θ can be expressed
as:

at ∼ π (· | st, θ) (2.6)

at time step t, it takes state st as input and output the probability distri-
bution of actions, which is used for sampling to obtain value of the action
at.

• Deterministic policy function µ defined by parameter θ can be ex-
pressed as:

at = µ (st | θ) (2.7)

at time step t, it takes state st as input and output the deterministic value
of action at.

2) Environment
An environment is the entity that the agent can interacts with, which is capable
of state generation and transition. Besides, an environment should have a set
of rules to score the agent action, such as the Atari game.

3) Reward
Reward is a value returned by the environment after the agent performs an
action. We can customize the calculation rules of rewards function to guide the
agent learning direction in the desired way. In addition, the quality of reward
function design normally affects learning performance.

4) Value function
Value function is the expectation of the cumulative reward in the future, which
is used to assess the quality of the action. There are two types of value functions:
state and action value functions.

• Cumulative reward can be expressed as:

Rt =
∞Ø

k=0
γkrt+k (2.8)

with discount rate γ ∈ (0.1].
• State value function can be expressed as:

V (st) = E {Rt | st, π} (2.9)

19

Background

which means the expected return of cumulative reward in state st by fol-
lowing policy π.

• Action value function can be expressed as:

Q(st, at) = E {Rt | st, at, π} (2.10)

which means the expected return of cumulative reward for selecting action
at in state st by following policy π.

2.4.3 Classification
• Model-based and model-free method

In model-based methods, the agent will directly utilize the properties of
the environment including state transition function and reward function to
solve the problem. The main advantage is that the agent can predict future
states and rewards through the environment model, which leads to better
trajectory plan. Typical model-based algorithms are MBMF algorithm[35],
AlphaGo algorithm[36] and etc. The disadvantage of model-based methods
is that assumptions in which the model is constructed are usually too strong.
Dynamic models in practical problems can be so complex that they cannot
even be represented explicitly, making models often unavailable. On the other
hand, in real-world applications, the constructed models are often inaccurate,
which introduces estimated errors in training process. Policy optimization
based on the model with error often causes failure in real environment.
Model-free methods do not attempt to figure out the internal principles of
the environment, but directly explore the optimal policy. Taking Q-learning
algorithm[37] as example, the agent directly estimates the action value Q(s, a)
of the state-action pair, then selects the action corresponding to the maximum
Q value and uses the feedback reward to update the Q value function. As
the Q value converges, the policy gradually converges to reach optimal. The
feature of this type of method is that the agent does not focus on the model,
but directly searches for the policy that can maximize the value, which is rel-
atively easier to realize and train respect to model-based methods. However,
the disadvantages of model-free methods are also obvious. Due to the high
randomness of action selection in the early exploration stage, if this method is
directly deployed in a real world to learn, the agent may cause serious damage
to the environment as well as security issues.

• Value-based and policy-based method
Value-based methods usually optimize the action value function Q(st, at).
The explored optimal value function can be expressed as Q∗ = maxπ Q (st, at).
Value based methods can usually learn from samples for more efficiently and

20

Background

their estimation error of the value equation is smaller. In the process of it-
erative update, it is not easy to fall into the local optimum and results in
the failure of convergence. However, since value-based methods can usually
only deal with discrete action scenarios, they cannot be directly applied to
the simulation environment in this thesis.
Policy-based methods iteratively update the policy by estimating the pol-
icy gradient ∇θJ (πθ) = Es∼ρπ ,a∼πθ

[∇θ log πθ(a | s)Qπ(s, a)][38] to maximize
the cumulative reward. Compared with value-based methods, policy-based
methods converge faster and are suitable for continuous action.
Besides value-based and policy-based methods, Actor-Critic methods, the
combination of above two are usually used more widely. The Actor-Critic
methods benefit from the advantages of both methods, using the value-based
method(Critic) to improve the efficiency of experience sampling and using
the policy-based method(Actor) to deal with continuous or high-dimensional
spaces.

• On-policy and off-policy method
On-policy methods require that the behavior policy must be aligned with the
target policy. However, off-policy method don’t have this constraint. An off-
policy agent can use the experience collected from others to improve its own
policy. The behavior policy refers to the strategy that controls the interaction
between the agent and the environment, whose role is to collect experience by
observing environment states, actions, and rewards. The target policy refers
to the training purpose i.e. the agent needs to select actions based on this
policy. The most obvious property of off-policy methods is that they can use
the behavior policy to collect experience and save the tuple (st, at, rt, st+1)
into a buffer, the agent then can replay these experience to update the target
policy.

2.5 Deep reinforcement learning
Deep reinforcement learning(DRL) refers to reinforcement learning algorithms
where neural networks are used to estimate value and policy functions.
In recent years, there has been an explosion of deep learning algorithms based on
neural networks. With the development of big data technology, improved hard-
ware performance, and the emergence of new algorithms, it is now possible to
train models using raw inputs such as images, text, etc., in a manner similar to
humans. In the wave of artificial intelligence, a revolution is taking place that
uses neural networks to replace specific models to extract features. The DQN
network proposed by DeepMind[37] can be seen as a good example of integrating
deep learning into reinforcement learning, where the key is to estimate the action

21

Background

value function with a neural network. This algorithm is a model-free method that
does not require prior knowledge about the environment, but instead learns from
collected raw environmental data. With deep reinforcement learning, robots can
become more intelligent without the need for humans to impart specialized domain
knowledge. The developments taking place in this field are exciting.[33].

2.5.1 Deep learning basics
1) Neural network

The basic unit of neural network is called perceptron, shown in the Figure 2.5.

Figure 2.5. Perceptron unit

It take multiple inputs to generate output, which can be expressed as:

output = σ(input)

= σ

AØ
i

wixi + b

B
(2.11)

where

• σ() refers to activation function
• xi refers to input i

• wi refers to weight of xi

• b refers to bias

By connecting perceptrons to each other we can get a neural network, show in
Figure2.6. The input layer in the network is in the first column, the output
layer is the last column, and the columns of perceptrons between them cannot
be accessed from the outside of neural network, so it is called the hidden layer.

Those parameters related to the neural network settings are called hyperpa-
rameters, including width that refers to how many neurons per layer and the

22

Background

Figure 2.6. Neural network sketch

depth that refers to how many layers there are in network. Besides, there are
other hyperparameters related to the training configuration, such as batch size,
learning rate, L2 penalty and etc. These parameters have a large impact on
model’s training performance and usually require fine-tuning to achieve desir-
able results.

2) Back-propagation method
The difference between the output of a well-trained neural network and the true
value should be as small as possible. This difference is called the loss, which can
be used to indicate the accuracy of the neural network’s predictions. There are
several types of loss functions, taking the mean square error(MSE) loss function
as an example, the expression is:

C = 1
N

Ø
n

...aL − y
...2

= 1
N

Ø
n

Ø
j

(aL
j − yj)2

(2.12)

where

• N is the total number of inputs
• aL = aL(x(n)) is the output vector corresponding to the input x(n), aL =

[aL
1 , ...aL

j , ...]T

• y = y(x(n)) is the true value vector corresponding to the input x(n), y =
[y1, ...yj, ...]T

23

Background

• x(n) is the nth input vector, x(n) = [x(n)
1 , ...x

(n)
i , ...]T

• aL
j is the output of the jth perceptron in output layer L

• yj is the true value corresponding to the jth perceptron

After we obtain the loss C, we can update the network parameters θ (mainly
including the weights and bias) based on the back-propagation method and
the optimization algorithm, and finally minimize the loss after iterations. The
purpose of the back-propagation method is to calculate the gradient of the
loss w.r.t the network parameters, which can be expressed as:

g = ∇θC (2.13)

First, let’s formally define the parameters in the neural network, as shown in
Figure 2.7[39] where

Figure 2.7. Neural network

• wl
jk is the weight of connection from the kth perceptron in layer l − 1 to the

jth perceptron in layer l

• bl
j is the bias of the jth perceptron in layer l

• zl
j is the input of the jth perceptron in layer l, zl

j = q
k wl

jkal−1
k + bl

j

• al
j is the output of the jth perceptron in layer l, al

j = σ(zl
j)

24

Background

The whole process of back-propagation method can be divided into four steps:

• BP1 Calculate the gradient of the loss C w.r.t the input zL
j of the output

layer:

δL
j = ∂C

∂zL
j

= ∂C

∂aL
j

∂aL
j

∂zL
j

= ∂C

∂aL
j

σ′
1
zL

j

2
(2.14)

The equation can be rewritten in a matrix form:

δL = ∂C

∂aL

l ∂aL

∂zL
= ∇aC ⊙ σ′

1
zL
2

(2.15)

where ⊙ refers to element-wise product.
• BP2 Back propagate and calculate the gradient of the loss C w.r.t the

input zl
j of each layer:

δl
j = ∂C

∂zl
j

=
Ø

k

∂C

∂zl+1
k

∂zl+1
k

∂al
j

∂al
j

∂zl
j

=
Ø

k

δl+1
k

∂
1q

x wl+1
kx al

x + bl+1
k

2
∂al

j

σ′
1
zl

j

2

=
Ø

k

δl+1
k

∂
1
wl+1

kj al
j

2
∂al

j

σ′
1
zl

j

2
=
Ø

k

δl+1
k wl+1

kj σ′
1
zl

j

2
(2.16)

The equation can be rewritten in a matrix form:

δl =
31

wl+1
2T

δl+1
4

⊙ σ′
1
zl
2

(2.17)

• BP3 Calculate the gradient of the loss C w.r.t the weight wl
jk:

∂C

∂wl
jk

= ∂C

∂zl
j

∂zl
j

∂wl
jk

= δl
j

∂
1q

x wl
jxal−1

x + bl
j

2
∂wl

jk

= δl
j

∂
1
wl

jkal−1
k

2
∂wl

jk

= δl
ja

l−1
k

(2.18)

25

Background

• BP4 Calculate the gradient of the loss C w.r.t the bias bl
j:

∂C

∂bl
j

= ∂C

∂zl
j

∂zl
j

∂bl
j

= δl
j

∂
1q

x wl
jxal−1

x + bl
j

2
∂bl

j

= δl
j

∂bl
j

∂bl
j

= δl
j

(2.19)

3) Optimization algorithm
After gradient g = ∇θC is obtained, we can choose one type of optimization
algorithm to update network parameters θ. For example, the gradient descent
method, which is expressed as:

θt = θt−1 − ηgt (2.20)

where

• t refers to current time step
• η refers to learning rate

However, there are some problems with the gradient descent method. For ex-
ample, the learning rate is difficult to determine. Optimal may never be reached
with high learning rate and the convergence will become slowly with low learn-
ing rate. To solve this problem, an adaptive learning rate algorithm can be used
to speed up the convergence. The principle of these algorithms is that when a
small gradient is obtained, the algorithm will increase the learning rate; on the
contrary, if the gradient is too large, the algorithm will decrease the learning
rate automatically.
Adam[40] is the most common adaptive learning rate algorithm and its key
step can be expressed as:

θt = θt−1 − α√
v̂t + ε

m̂t (2.21)

where

• m̂t = mt

1−βt
1

• v̂t = vt

1−βt
2

• mt is the first moment calculated by moving average method: mt = β1mt−1+
(1 − β1) gt

26

Background

• vt is the second moment calculated by moving average method: vt =
β2vt−1 + (1 − β2) g2

t

• β1, β2, α are predefined parameters
• βt

1 refers to β1 to the power of t
• βt

2 refers to β2 to the power of t
• ε is set to 10−8

4) Regularization
A machine learning model optimized to reduce the loss on train set can not
guarantee that it will also perform well on test set. An over-optimized model
will have a small loss in train set but a large loss in test set, this phenomenon is
known as overfitting. We need to use regularization methods to make a model
perform well in both train set and test set. Common regularization methods in
deep learning include dropout, weight decay and so on.
The basic idea of dropout is to randomly delete a certain proportion of percep-
trons in each iteration and only train the network composed of the remaining
perceptrons, which reduces the correlation between perceptrons and parameter
update no longer depends on the common effect of nodes. This is equivalent
to training multiple neural networks in parallel and averaging their outputs,
so that the overfitting of different networks cancels each other out, reducing
the overall overfitting phenomenon and increasing the model robustness, which
similar to bagging methods in ensemble learning.
Weight decay method is another regularization method used to reduce over-
fitting. It adds an extra term to the loss function, so that the network weights
w will have smaller absolute values after optimization. In a network with small
weights, when the input is slightly perturbed, the output will not change drasti-
cally, which objectively filters out noise and reduces overfitting. The L2 regular-
ization is the type of weight decay method usually used to reduce the overfitting
phenomenon, which adds one term λ

2N
∥w∥2 to construct a new loss function:

Cnew = C + λ

2N
∥w∥2 (2.22)

where

• λ refers to the regularization parameter
• N is the inputs size

The gradient of the new loss Cnew w.r.t the weight:
∂Cnew

∂wl
jk

= ∂C

∂wl
jk

+ λ

2N

∂∥w∥2

∂wl
jk

= δl
ja

l−1
k + λ

N
wl

jk

(2.23)

27

Background

The new weight iteration equation is:

wl
jk = wl

jk − η

A
δl

ja
l−1
k + λ

N
wl

jk

B

=
A

1 − ηλ

N

B
wl

jk − ηδl
ja

l−1
k

(2.24)

where

•
1
1 − ηλ

N

2
refers to weight decay with absolute value smaller than 1

The equation2.24 shows that weight will be re-scaled by weight decay in each
iteration making its absolute value close to 0.

2.5.2 DRL algorithms
The deep reinforcement learning algorithms we use in this thesis are Deep Deter-
ministic Policy Gradient (DDPG)[41] and Twin Delayed DDPG (TD3)[42] algo-
rithms which are both deterministic policy gradient, model-free, actor-critic and
off-policy based algorithms for continuous action.

1) Deep Deterministic Policy Gradient(DDPG)
The learning framework of DDPG algorithm is show in Figure 2.8

Figure 2.8. Deep Deterministic Policy Gradient framework

28

Background

Description of the DDPG algorithm:

- Initialize the actor & critic online neural network parameters: θµ, θQ;
- Copy parameters to corresponding target networks: θµ′ = θµ, θQ′ = θQ;
- Initialize the experience replay buffer R;
- for each episode:

- for each step t:
(The following steps correspond to the numbers in learning framework Fig-
ure 2.8)
1. The actor chooses an action at with noise Nt:

at = µ (st | θµ) + Nt (2.25)

2. The environment executes action at, then observes reward rt and gener-
ates new state st+1;

3. Store transition (st, at, rt, st+1) in buffer R as training dataset;
4. Randomly sample a batch of N transitions (si, ai, ri, si+1) from buffer R;
5. Calculate the gradient of the online Q network:

We use mean squared error (MSE) as Q network loss function L:

L = 1
N

Ø
i

1
yi − Q

1
si, ai | θQ

222
(2.26)

set
yi = ri + γQ′

1
si+1, µ′

1
si+1 | θµ′2 | θQ′2 (2.27)

Then base on back-propagation method, we can calculate the gradient
of L w.r.t θQ:

∇θQL (2.28)

6. Use Adam optimizer to update θQ;
7. Calculate the gradient of the online policy network:

We use sampled mean value to estimate the policy network loss function
J :

J ≈ − 1
N

Ø
i

Q
1
si, µ (si | θµ) | θQ

2
(2.29)

Then base on back-propagation method, we can calculate the gradient
of J w.r.t θµ:

∇θµJ (2.30)

8. Use Adam optimizer to update θµ;

29

Background

9. Soft update parameters of target networks:I
θµ′ = τθµ + (1 − τ)θµ′

θQ′ = τθQ + (1 − τ)θQ′ (2.31)

- end for
- end for

2) Twin Delayed DDPG(TD3)
The learning framework of TD3 algorithm is show in Figure 2.9

Figure 2.9. Twin Delayed DDPG framework

Description of the TD3 algorithm:

- Initialize actor online neural network parameters θµ and critic online neural
network parameters θQ1 , θQ2 ;

- Copy parameters to corresponding target networks: θµ′ = θµ, θQ′
1 = θQ1 ,

θQ′
2 = θQ2 ;

- Initialize the experience replay buffer R;
- for each episode:

- for each step t:
(The following steps correspond to the numbers in learning framework Fig-
ure 2.9)

30

Background

1. The actor chooses an action at with noise Nt:

at = µ (st | θµ) + Nt (2.32)

2. The environment executes action at, then observes reward rt and gener-
ates new state st+1;

3. Store transition (st, at, rt, st+1) in buffer R as training dataset;
4. Randomly sample a batch of N transitions (si, ai, ri, si+1) from buffer R;
5. Calculate the gradient of the online Q1, Q2 network:

We use mean squared error (MSE) as Q1, Q2 network loss function:

L1 = 1
N

Ø
i

1
yi − Q1

1
si, ai | θQ1

222
(2.33)

L2 = 1
N

Ø
i

1
yi − Q1

1
si, ai | θQ2

222
(2.34)

set

yi = ri + γ min
î
Q′

1

1
si+1, ãi | θQ′

1
2

, Q′
2

1
si+1, ãi | θQ′

2
2ï

(2.35)

ãi = µ′
1
si+1 | θµ′2+ clip(ϵ, −c, c), ϵ ∼ N (0, σ) (2.36)

Then base on back-propagation method, we can calculate the gradient
of L1 and L2 w.r.t θQ1 and θQ2 :

∇θQ1 L1, ∇θQ2 L2 (2.37)

6. Use Adam optimizer to update θQ1 , θQ2 ;
- if step t mod delay-frequency = 0, then

7. Calculate the gradient of the online policy network:
We use sampled mean value to estimate the policy network loss func-
tion J :

J ≈ − 1
N

Ø
i

Q1
1
si, µ (si | θµ) | θQ1

2
(2.38)

Then base on back-propagation method, we can calculate the gradient
of J w.r.t θµ:

∇θµJ (2.39)
8. Use Adam optimizer to update θµ;
9. Soft update parameters of target networks:

θµ′ = τθµ + (1 − τ)θµ′

θQ′
1 = τθQ1 + (1 − τ)θQ′

1

θQ′
2 = τθQ2 + (1 − τ)θQ′

2

(2.40)

31

Background

- end if
- end for

- end for

2.5.3 Prioritized replay
The feature of off-policy algorithms is that they can learn from experience buffer.
The process of sampling from the buffer is called experience replay. Prioritized
experience replay (PER)[43] is a method that works better than random experience
replay for its faster convergence and better test performance. The main idea of
PER is to sample according to experience importance, data with higher importance
are easier to be replayed. PER uses temporal difference (TD) error to measure
the importance of each sample. In this thesis, we use PER to improve DDPG
algorithm.
Description of the DDPG with PER algorithm:

- Initialize the actor & critic online neural network parameters: θµ, θQ;

- Copy parameters to corresponding target networks: θµ′ = θµ, θQ′ = θQ;

- Initialize the experience replay buffer R;

- Set priority D1 = 1, exponents α, β;

- for each episode:

- for each step t:
(The following steps correspond to the numbers in learning framework Figure
2.8)
1) The actor chooses an action at with noise Nt:

at = µ (st | θµ) + Nt (2.41)

2) The environment executes action at, then observes reward rt and generates
new state st+1;

3) Store transition (st, at, rt, st+1) in buffer R as training dataset and set pri-
ority Dt = max {Dj} , j ∈ [1,2 · · · t − 1];

4) Sample a minibatch of N transitions (si, ai, ri, si+1) from buffer R with
PER algorithm:
- for i = 1 to N :

Sample transition (si, ai, ri, si+1) with probability P (i) = Dα
iq

j
Dα

j
;

Compute corresponding importance-sampling weight Wi = 1
V βP (i)β ;

32

Background

where V is the number of samples in buffer R;
Compute TD-error

δi = yi − Q
1
si, ai | θQ

2
(2.42)

set
yi = ri + γQ′

1
si+1, µ′

1
si+1 | θµ′2 | θQ′2 (2.43)

Update the priority of transition i Di = |δi|;
- end for
Normalize importance-sampling weight Wi = Wi/ max {Wj} , j ∈ [1,2 · · · N];

5) Calculate the gradient of the online Q network:
We use mean squared error (MSE) as Q network loss function L:

L = 1
N

Ø
i

Wiδ
2
i (2.44)

Then base on back-propagation method, we can calculate the gradient of L
w.r.t θQ:

∇θQL (2.45)

6) Use Adam optimizer to update θQ;
7) Calculate the gradient of the online policy network:

We use sampled mean value to estimate the policy network loss function J :

J ≈ − 1
N

Ø
i

Q
1
si, µ (si | θµ) | θQ

2
(2.46)

Then base on back-propagation method, we can calculate the gradient of J
w.r.t θµ:

∇θµJ (2.47)

8) Use Adam optimizer to update θµ;
9) Soft update parameters of target networks:I

θµ′ = τθµ + (1 − τ)θµ′

θQ′ = τθQ + (1 − τ)θQ′ (2.48)

- end for

- end for

33

Chapter 3

Methodology

3.1 State & action definition

1) State
The observation state st is an one-dimensional array and its elements are listed
in Table 3.1.

Elements Description
ego vehicle velocity vego

relative distance ∆D ∆D = Poslead − Posego

relative velocity ∆v ∆v = vlead − vego

longitudinal slip ratio of front left wheel (Sl)F L

Sl = ΩRe

V
− 1longitudinal slip ratio of front right wheel (Sl)F R

longitudinal slip ratio of rear left wheel (Sl)RL

longitudinal slip ratio of rear right wheel (Sl)RR

friction coefficient of front left wheel µF L

friction coefficient of front right wheel µF R

friction coefficient of rear left wheel µRL

friction coefficient of rear right wheel µRR

Table 3.1. Observation state st

2) Action
The action at is a value of acceleration or deceleration.

34

Methodology

3.2 Reward functions design
The reward consists of four parts, and (ω1, ω2, ω3, ω4) are their relative weights:

rtot =ω1r1 (∆D, vlead) + ω2r2(∆v)+
ω3r3(Jerk) + ω4r4 ((Sl)F L , (Sl)F R , (Sl)RL , (Sl)RR)

(3.1)

1) Distance reward

r1 (∆D, vlead)

=

−1 ∆D < 0.6vlead

1.6
(0.9∗vlead)2 ∗ (∆D − 0.6 ∗ vlead)2 − 1 0.6vlead ≤ ∆D < 1.5vlead

−0.4
(1.5∗vlead)2 ∗ (∆D − 3 ∗ vlead)2 + 1 1.5vlead ≤ ∆D < 4.5vlead

1.6
(0.9∗vlead)2 ∗ (∆D − 5.4 ∗ vlead)2 − 1 4.5vlead ≤ ∆D < 5.4vlead

−1 ∆D ≥ 5.4vlead

(3.2)

2) Speed reward
r2(∆v) = 2e−|∆v| − 1 (3.3)

3) Comfort reward

r3(Jerk) = 1 − 2 ∗ Sfuzzyfunction (Jerk, a, b), (3.4)

where

• Jerk = ∆acceleration
∆t

• a = 0.6
• b = 2
• Sfuzzyfunction is S-like shape function begins to climb from 0 when Jerk =

a, and levels off at 1 when Jerk = b.

4) Stability reward

r4 ((Sl)i) = min {2.0098 ∗ tanh (−3 ∗ (Sl)i) + 1} (3.5)

with i ∈ {FL, FR, RL, RR}

These four reward functions are shown in Figure 3.1.
The weights of reward components (ω1, ω2, ω3, ω4) can be customized according
to human demand to change the priority performance that the agent wants to
maintain when controlling the vehicle. Currently, weights are set to be

1
1
3 , 1

3 , 1
6 , 1

6

2
.

So that, the RL agent can be trained to prioritize the maintenance of safe speed
and distance to prevent collision respect to the comfort and stability.

35

Methodology

Figure 3.1. Reward components

3.3 CoMoVe framework
The CoMoVe framework shown in Figure 3.2[3] follows the micro-service design
pattern and divides the entire system into four modules: vehicle mobility, vehicle
dynamics, vehicle communication and vehicle control module.

Figure 3.2. CoMoVe framework

36

Methodology

The details are as follows:

• Vehicle mobility module:use SUMO simulator to design road scenarios, sim-
ulate car motion and visualize the vehicle driving.

• Vehicle dynamics module: use MATLAB/Simulink to simulate vehicle dy-
namics model and on-board sensors.

• Communication module: use ns-3 simulator to simulate the cellular network
based V2X communication.

• Vehicle control module: use pytorch to build deep neural networks and use
python to provide environment interfaces for DRL agent such as step (execute
one time step within the environment), reset (reset the state of the environ-
ment to an initial state) and close (end the simulation process) functions
based on the openAI gym standards to realize the model training and action
selection.

37

Chapter 4

Performance evaluation

4.1 Simulation scenario
In this thesis, we focus on the longitudinal control of the DRL model in platooning
scenario. In each episode, the total simulation duration is 25 seconds with a total
number of 250 steps and an interval of 0.1 second between each step. We use
CoMoVe framework to train the DRL model mainly in two scenarios:

• Two vehicles following scenario

• Three vehicles cut-out scenario

4.1.1 Two vehicles following scenario
In this scenario, the initial condition is shown in Figure 4.1:

• Ego vehicle (controlled by the DRL agent) departs at position = 5m with
initial velocity = 22.5m/s;

• Lead vehicle departs at position = 50m with initial velocity = 22.5m/s.

Figure 4.1. Two vehicles following scenario

38

Performance evaluation

During simulation, the variation of lead vehicle velocity is shown in Figure 4.2.
The DRL agent learns how to control ego vehicle velocity by maximizing the
accumulated rewards.

Figure 4.2. Lead vehicle velocity trend

4.1.2 Three vehicles cut-out scenario
In this scenario, the initial condition is shown in Figure 4.3:

• Ego vehicle (controlled by the DRL agent) departs at position = 5m with
initial velocity = 18m/s;

• Lead vehicle A departs at position = 35m with constant velocity = 18m/s
and changes line at position = 130m;

• Lead vehicle B departs at position = 130m with constant velocity = 12m/s.

Figure 4.3. Three vehicles cut-out scenario

39

Performance evaluation

4.2 Experiments and results analytics

4.2.1 DDPG in two vehicles following scenario
We preliminarily train the DDPG algorithm with 200 episodes in two vehicles
following scenario and test its performance. The hyperparameters of DDPG are
listed in Table 4.1

Parameter Value
optimization method Adam
actor learning rate 0.0001
critic learning rate 0.001
discount factor γ 0.99
soft update factor τ 0.01
buffer size 10000
number of hidden layers 2
number of perceptron in each hidden
layer

256

activation function ReLU
sampling batch size 128
dropout probability 0
l2norm penalty 0

Table 4.1. DDPG hyperparameters

The training results are shown as followed:
Figure 4.4 reflects the DDPG agent training history and Figure 4.5 ∼ Figure 4.8
present specific performances of the well-trained model.

40

Performance evaluation

Figure 4.4. Average reward per simulation

Figure 4.5. RL agent performance

41

Performance evaluation

Figure 4.6. Reward components variation

Figure 4.7. Reward components weighted variation

42

Performance evaluation

Figure 4.8. Distribution of Headway & Jerk

Figure 4.4 represents the variation of average step reward respect to simulation
episodes. As it shows, after 25 episodes, the average reward of RL agent begins to
stabilize at around 0.4, which is not a very high score(the average reward range is
[-1,1]). This phenomenon indicates that the model is trapped in a local optimum
during the training process and can no longer improve the cumulative reward value
as training episode increases.
Figure 4.5 contains variations of several key performance indexes (KPIs) with re-
spect to simulation time in one episode, which is generated from the DRL agent
with the highest average reward. Based on the velocity, headway, acceleration
and spacing trend information, it shows that, in most of the time, the ego vehicle
can follow the lead vehicle at a similar speed and maintain the spacing above 40
meters. However, due to lead vehicle performs emergency braking in the interval
[10,15]sec, the spacing is reduced below 40 meters. Referring to the jerk and slip
trend information, we can see the reason is that jerk and longitudinal slip rate
fluctuate drastically in this interval, and in order to maintain the passenger com-
fort and longitudinal stability, the RL agent sacrifices more spacing to smooth the
deceleration. Adopting such control strategy demonstrates how the model main-
tains vehicle safety while considering comfort and stability.
Figure 4.6 shows the variation of four reward components: the safety and stability
reward basically maintain at high level; the speed reward obtains some penalty in
the interval [10,15]sec, which is mainly caused by the emergency braking of the

43

Performance evaluation

lead vehicle; the comfort reward was the most penalized one and has high level of
oscillations, which mainly because of the low component weight in total reward,
DRL agent doesn’t prioritize maintaining comfort. Figure 4.7 shows their weighted
variation.
Figure 4.8 presents the distribution of headway and jerk, which shows that the
headway is relatively concentrated with small standard deviation, while jerk has
some larger discrete values that makes its standard deviation higher.
To sum up, the preliminarily training results of the DDPG algorithm are not ideal
and there is still a great potential for improvement. In Sec 4.2.2, various methods
will be applied to improve the performance of DDPG algorithm.

4.2.2 Fine-tuning DDPG in two vehicles following scenario
In the previous section, we train the model using the DDPG algorithm in the two
vehicles following scenario. The results show that there are some problems: the
model falls into a local optimum during the training process, which results in low
average step reward; the jerk has high level of oscillation, which causes negative
impact on human comfort.
In this section, we will apply some methods to optimize the performance of the
DDPG algorithm, including:

- fine-tune DDPG hyperparameters: batch size & dropout probability & L2
normalization penalty (weight decay);

- randomize initial state: the initial spacing and lead vehicle velocity;

- apply prioritized experience replay instead of sampling from buffer randomly.

• Batch size & Dropout & L2 normalization
First, in each simulation, we only change the batch size to find the value that
makes the model converge fastest. Then with optimal batch size, we separately
adjust the dropout probability and l2norm penalty to compare the agent per-
formance of each simulation.

44

Performance evaluation

a. batch size The value of batch size is chosen from list [1, 2, 4, 8, 16, 32, 64,
128, 256] and simulation results are as followed: Figure 4.9 reflects the DDPG
agent training history with different batch size and Figure 4.10 ∼ Figure 4.11
present test performance of model with the batch size with highest learning
rate.

Figure 4.9. Average reward per simulation with different batch size

By comparing the learning rate of different batch size, Figure 4.9 shows that
batch size = 32 is the best. Because its convergence speed is the fastest, and
the number of sampling is relatively small in every step. So, batch size = 32
is used in all following simulations. Figure 4.10 and Figure 4.11 are the test
results of batch size = 32, which show that jerk still has a relatively large
oscillation.

45

Performance evaluation

Figure 4.10. RL agent performance (batch size=32)

Figure 4.11. Distribution of Headway & Jerk (batch size=32)

46

Performance evaluation

b. dropout
Dropout probability is chosen from list [0, 0.1, 0.2, 0.3, 0.4, 0.5] and simu-
lation results are as followed: Figure 4.12 reflects the DDPG agent training
history with different dropout probability and 4.13 ∼ Figure 4.18 present
relative test performances.

Figure 4.12. Average reward per simulation with different dropout probability

Figure 4.12∼Figure 4.18 show that when the dropout probability is in range
of 0.1∼0.3, the model’s learning rate is almost the same, as well as its per-
formance in test scenario. But when the probability is greater than 0.4, the
model will fail to learn, and always end up with a collision.
Since the test performance of the model is not significantly improved after
setting dropout>0 and the learning rate is also slowed down, we do not rec-
ommend using this method and choose to keep dropout probability = 0.

47

Performance evaluation

Figure 4.13. RL agent performance (dropout=0.1)

Figure 4.14. Headway & Jerk Histogram (dropout=0.1)

48

Performance evaluation

Figure 4.15. RL agent performance (dropout=0.2)

Figure 4.16. Headway & Jerk Histogram (dropout=0.2)

49

Performance evaluation

Figure 4.17. RL agent performance (dropout=0.3)

Figure 4.18. Headway & Jerk Histogram (dropout=0.3)

50

Performance evaluation

c. l2 normalization
L2norm penalty is chosen from list [0, 0.1, 0.2, 0.3, 0.4, 0.5] and simulation
results are as followed: Figure 4.19 reflects the DDPG agent training history
with different l2norm penalty and Figure 4.20 ∼ Figure 4.25 present relative
test performances.

Figure 4.19. Average reward per simulation with different l2norm penalty

When the l2norm penalty is greater than 0.4, the model will fail to learn.
Figure 4.20 ∼ Figure 4.25 show that when l2norm penalty = 0.3, the model
can achieve excellent performance: The oscillation of jerk is significantly
suppressed and model can quickly adjust the velocity close to lead vehicle
with good human comfort and vehicle stability.

51

Performance evaluation

Figure 4.20. RL agent performance (L2norm penalty=0.1)

Figure 4.21. Headway & Jerk Histogram (L2norm penalty=0.1)

52

Performance evaluation

Figure 4.22. RL agent performance (L2norm penalty=0.2)

Figure 4.23. Headway & Jerk Histogram (L2norm penalty=0.2)

53

Performance evaluation

Figure 4.24. RL agent performance (L2norm penalty=0.3)

Figure 4.25. Headway & Jerk Histogram (L2norm penalty=0.3)

In summary, the best hyperparameter combination is considered as {batch
size = 32, dropout = 0, l2norm penalty = 0.3}

54

Performance evaluation

• Randomize initial state In this method, we randomize the initial spacing
and lead vehicle velocity separately in simulation.
Spacing varies in range 45 ± 10m.
Velocity varies in range 22.25 ± 3m/s.
The relative results are as followed: Figure 4.26 reflects the DDPG agent train-
ing history with different parameters randomization and Figure 4.27 ∼ Figure
4.30 present relative test performances.

Figure 4.26. Average reward per simulation with different parameters randomization

Figure 4.26 ∼ Figure 4.30 show that the model learning rate is faster with
random initial position while their test performances are similar: ego vehicle’s
velocity and jerk fluctuate a lot and cause discomfort and instability.
Simulation results expose the drawback of deep reinforcement learning, which
has poor generalization for random initial configurations. But in these two set-
tings, random initial spacing seems better than velocity. So, we recommend
randomizing the initial position only.

55

Performance evaluation

Figure 4.27. RL agent performance (Random initial spacing)

Figure 4.28. Headway & Jerk Histogram (Random initial spacing)

56

Performance evaluation

Figure 4.29. RL agent performance (Random initial lead vehicle velocity)

Figure 4.30. Headway & Jerk Histogram (Random initial lead vehicle velocity)

57

Performance evaluation

• Prioritized experience replay
In this method, we change the sampling strategy of DDPG to prioritized experi-
ence replay and compared with the original DDPG algorithm to verify whether
the test performance can be improved. The hyperparameters of DDPG with
PER are listed in Table 4.2.

Parameter Value
optimization method Adam
actor learning rate 0.0001
critic learning rate 0.001
discount factor γ 0.99
soft update factor τ 0.01
buffer size 10000
number of hidden layers 2
number of perceptrons in each hidden
layer

256

activation function ReLU
sampling batch size 32
dropout probability 0
l2norm penalty 0
exponent α 0.7
exponent β initial value = 0.5 and is linearly

increased to 1 at the end of simu-
lation

Table 4.2. DDPG with PER hyperparameters

The simulation results are as followed:
Figure 4.31 reflects the training history and Figure 4.32 ∼ Figure 4.33 present
test performances of DDPG with PER algorithm.

58

Performance evaluation

Figure 4.31. Average reward per simulation with different sampling methods

Figure 4.32. RL agent performance (DDPG with PER method)

59

Performance evaluation

Figure 4.33. Headway & Jerk Histogram (DDPG with PER method)

Figure 4.31 shows that the model using PER method can get a high score
with fewer episodes(episode=6) and the average reward upper limit is higher
than the original algorithm(episode=36). However, according to the variation
of the average reward, it’s obvious that DDPG with PER has lower convergence
stability.
After comparing the test performance of DDPG with PER(Figure 4.32 ∼ Fig-
ure 4.33) and the original one(Figure 4.10 ∼ Figure 4.11), we can see that PER
method does help DDPG achieve slightly better result because the oscillation of
jerk is reduced, but to be honest, the improvement is not significant. So we use
another actor-critic algorithm TD3 in Section 4.2.3 and attempt to get better
results.

60

Performance evaluation

4.2.3 Comparison between DDPG and TD3
A common problem with DDPG is that it tends to overestimates the Q value[42],
i.e. exploits the wrong Q value, which may cause policy breaking. Twin Delayed
DDPG (TD3) is an algorithm that solves this issue. So in this section, we train the
TD3 algorithm in two vehicles following scenario and compare its test performance
with the DDPG algorithm.
The hyperparameters of TD3 are listed in Table 4.3.

Parameter Value
optimization method Adam
actor learning rate 0.001
critic learning rate 0.001
discount factor γ 0.99
soft update factor τ 0.001
policy noise standard deviation σ 0.1
policy noise absolute value limit c 0.5
buffer size 10000
number of hidden layers 2
number of perceptrons in each hidden
layer

64

activation function ReLU
delay frequency 2
sampling batch size 32
dropout probability 0
l2norm penalty 0

Table 4.3. TD3 hyperparameters

The simulation results are as followed:
Figure 4.34 reflects the training history and Figure 4.35 ∼ Figure 4.36 present test
performances of TD3 algorithm.

61

Performance evaluation

Figure 4.34. Average reward per simulation of TD3

Figure 4.35. RL agent performance of TD3

62

Performance evaluation

Figure 4.36. Headway & Jerk Histogram of TD3

Figure 4.34 shows that since TD3 adopts a delayed policy learning strategy (up-
dates the policy network less frequently than the Q network), the learning rate of
TD3 is slower than that of DDPG in the first 100 episodes. However, as the num-
ber of episode increases, the average reward of TD3 algorithm becomes obviously
higher than DDPG and its convergence is quite stable, which is aligned with our
expectation that TD3 makes a significant improvement over DDPG indeed.
The comparison between Figure 4.35 ∼ Figure 4.36 and Figure 4.10 ∼ Figure 4.11
shows that TD3 also has better performance in the test scenario: the standard
deviation of jerk is reduced to less than half of DDPG and the acceleration os-
cillation is significantly suppressed, which result in high level of human comfort;
the model can control the ego vehicle speed basically the same as the lead vehicle,
which greatly improve driving safety and stability.

63

Performance evaluation

4.2.4 DDPG in three vehicles cut-out scenario
In order to verify the generalization of the DRL algorithm, we also train DDPG
in three vehicles cut-out scenario and test its performance. The simulation results
are as followed: Figure 4.37 reflects the training history and Figure 4.38 ∼ Figure
4.41 present test performances of TD3 algorithm.

Figure 4.37. Average reward per simulation of cut-out scenario

Figure 4.37 shows the model converges quickly in the training process. Although
the step average reward is not very close to 1 after stabilization, based on the
information of Figure 4.38, we can find that the DRL agent actually controls the
vehicle well: during the whole simulation, the model can quickly adjust velocity
close to vehicle B after vehicle A changes lane and keep the spacing above 20m,
which means ego vehicle successfully identifies the front slow vehicle B and avoids
the collision; and according to position variation plot, we can see that the model
imitates lead vehicle driving with approximately the same linear variation trend.
Figure 4.39 shows speed and comfort reward obtain penalty in the interval [15,20]sec
due to necessary reaction for the line change of vehicle A. Figure 4.40 shows their
weighted variation.
Figure 4.41 presents the distribution of headway and jerk, which shows that the
headway is relatively concentrated, while jerk has some larger discrete values that
makes its standard deviation higher.
In summary, the results show that model can well adapt to the cut-out scenario.

64

Performance evaluation

Figure 4.38. RL agent performance of cut-out scenario

Figure 4.39. Reward components variation of cut-out scenario

65

Performance evaluation

Figure 4.40. Reward components weighted variation of cut-out scenario

Figure 4.41. Distribution of Headway & Jerk of cut-out scenario

66

Chapter 5

Conclusion

In this thesis, we applied several deep reinforcement learning algorithms to achieve
vehicle longitudinal control in CoMoVe framework. Through a proper design of
reward functions, we guided the model to learn in the direction of achieving safe
driving while taking into account passenger comfort and vehicle stability. As for
algorithm optimization, we have significantly improved the performance of the
DDPG algorithm and suppressed its oscillation in test scenario by fine-tuning hy-
perparameters, regularization and prioritized experience replay methods. In the
meanwhile, by expanding the training scenarios of the DDPG algorithm, we im-
proved its generalisation and made the algorithm become more robust. Due to
the inherent drawbacks of the DDPG algorithm (such as overestimate of Q value),
we also tested its improved version TD3 and successfully increased the average
reward by 50%, which enriches the available options of control algorithms for Co-
MoVe framework and provides valuable reference for further improvement.
There are also some deficiencies during the process of algorithm deployment. So I
think the following aspects can be improved in the future: while ensuring the light-
ness, the complexity of the neural network can be appropriately increased, such
as the number of layers and perceptrons in the network; on the basis of achieving
vehicle longitudinal control, we can increase the dimension of DRL agent’s action,
such as the steering; explore the interaction behavior and algorithm performance
in the scenario where multiple DRL agents are coexisting to assist the realization
of multi-agent cooperative driving system.

67

Bibliography

[1] Stéphanie Bouckaert, Araceli Fernandez Pales, Christophe McGlade, Uwe
Remme, Brent Wanner, Laszlo Varro, Davide D’Ambrosio, and Thomas
Spencer. Net zero by 2050: A roadmap for the global energy sector. 2021.

[2] World Health Organization. Global plan for the decade of action for road
safety 2021-2030. 2021.

[3] DINESH CYRIL SELVARAJ, SHAILESH SUDHAKARA HEGDE, NICOLA
AMATI, CARLA FABIANA CHIASSERINI, and FRANCESCO PAOLO DE-
FLORIO. A reinforcement learning approach for efficient, safe and comfort-
able driving. http://hdl.handle.net/11583/2910374, 2021.

[4] Matthew Veres and Medhat Moussa. Deep learning for intelligent transporta-
tion systems: A survey of emerging trends. IEEE Transactions on Intelligent
transportation systems, 21(8):3152–3168, 2019.

[5] Fangchun Yang, Shangguang Wang, Jinglin Li, Zhihan Liu, and Qibo Sun. An
overview of internet of vehicles. China communications, 11(10):1–15, 2014.

[6] Thomas Nolte, Hans Hansson, and Lucia Lo Bello. Automotive
communications-past, current and future. In 2005 IEEE Conference on
Emerging Technologies and Factory Automation, volume 1, pages 8–pp. IEEE,
2005.

[7] Fangchun Yang, Jinglin Li, Tao Lei, and Shangguang Wang. Architecture and
key technologies for internet of vehicles: a survey. Journal of Communications
and Information Networks, 2(2):1–17, 2017.

[8] Carlos Renato Storck and Fátima Duarte-Figueiredo. A survey of 5g tech-
nology evolution, standards, and infrastructure associated with vehicle-to-
everything communications by internet of vehicles. IEEE access, 8:117593–
117614, 2020.

[9] The Center for Advanced Automotive Technology. Connected and au-
tomated vehicles. http://autocaat.org/Technologies/Automated_and_
Connected_Vehicles.

[10] Intelligent Transportation Systems. Vehicle-to-infrastructure (v2i) resources.
https://www.its.dot.gov/v2i/.

[11] United States Department of Transportation. Vehicle-to-vehicle

68

http://hdl.handle.net/11583/2910374
http://autocaat.org/Technologies/Automated_and_Connected_Vehicles
http://autocaat.org/Technologies/Automated_and_Connected_Vehicles
https://www.its.dot.gov/v2i/

Bibliography

communication. https://www.nhtsa.gov/technology-innovation/
vehicle-vehicle-communication.

[12] Heejae Kim, Jiyong Han, Seong-Hwan Kim, Jisoo Choi, Dongsik Yoon, Minsu
Jeon, Eunjoo Yang, Nhat Pham, Sungpil Woo, Jeongkyu Park, Daeyoung
Kim, and Chan-Hyun Youn. Isv2c: An integrated road traffic-network-cloud
simulator for v2c connected car services. In 2017 IEEE International Confer-
ence on Services Computing (SCC), pages 434–441, 2017.

[13] Intelligent Transportation Systems. Vehicle-to-pedesrian (v2p) communica-
tions for safety. https://www.its.dot.gov/research_archives/safety/
v2p_comm_safety.htm.

[14] Khadige Abboud, Hassan Aboubakr Omar, and Weihua Zhuang. Interworking
of dsrc and cellular network technologies for v2x communications: A survey.
IEEE transactions on vehicular technology, 65(12):9457–9470, 2016.

[15] Zachary MacHardy, Ashiq Khan, Kazuaki Obana, and Shigeru Iwashina. V2x
access technologies: Regulation, research, and remaining challenges. IEEE
Communications Surveys & Tutorials, 20(3):1858–1877, 2018.

[16] Arne Kesting, Martin Treiber, Martin Schönhof, and Dirk Helbing. Adaptive
cruise control design for active congestion avoidance. Transportation Research
Part C: Emerging Technologies, 16(6):668–683, 2008.

[17] Vicente Milanés, Steven E Shladover, John Spring, Christopher Nowakowski,
Hiroshi Kawazoe, and Masahide Nakamura. Cooperative adaptive cruise con-
trol in real traffic situations. IEEE Transactions on intelligent transportation
systems, 15(1):296–305, 2013.

[18] Jeroen Ploeg, Bart TM Scheepers, Ellen Van Nunen, Nathan Van de Wouw,
and Henk Nijmeijer. Design and experimental evaluation of cooperative adap-
tive cruise control. In 2011 14th International IEEE Conference on Intelligent
Transportation Systems (ITSC), pages 260–265. IEEE, 2011.

[19] Louis A Pipes. An operational analysis of traffic dynamics. Journal of applied
physics, 24(3):274–281, 1953.

[20] Katsuya Hasebe, Akihiro Nakayama, and Yūki Sugiyama. Dynamical model
of a cooperative driving system for freeway traffic. Physical review E,
68(2):026102, 2003.

[21] Rajesh Rajamani and Steven E Shladover. An experimental comparative
study of autonomous and co-operative vehicle-follower control systems. Trans-
portation Research Part C: Emerging Technologies, 9(1):15–31, 2001.

[22] Meng Wang, Winnie Daamen, Serge P Hoogendoorn, and Bart van Arem.
Rolling horizon control framework for driver assistance systems. Transporta-
tion research part C: emerging technologies, 40:271–311, 2014.

[23] Yang Zhou, Soyoung Ahn, Madhav Chitturi, and David A Noyce. Rolling
horizon stochastic optimal control strategy for acc and cacc under uncertainty.
Transportation Research Part C: Emerging Technologies, 83:61–76, 2017.

69

https://www.nhtsa.gov/technology-innovation/vehicle-vehicle-communication
https://www.nhtsa.gov/technology-innovation/vehicle-vehicle-communication
https://www.its.dot.gov/research_archives/safety/v2p_comm_safety.htm
https://www.its.dot.gov/research_archives/safety/v2p_comm_safety.htm

Bibliography

[24] Hans Fritz. Longitudinal and lateral control of heavy duty trucks for au-
tomated vehicle following in mixed traffic: experimental results from the
chauffeur project. In Proceedings of the 1999 IEEE International Conference
on Control Applications (Cat. No. 99CH36328), volume 2, pages 1348–1352.
IEEE, 1999.

[25] Tom Robinson, Eric Chan, and Erik Coelingh. Operating platoons on public
motorways: An introduction to the sartre platooning programme. In 17th
world congress on intelligent transport systems, volume 1, page 12, 2010.

[26] Dinesh Cyril Selvaraj, Shailesh Hegde, Carla Fabiana Chiasserini, Nicola Am-
ati, Francesco Deflorio, and Giuliana Zennaro. A full-fledge simulation frame-
work for the assessment of connected cars. 52:315–322, 2021.

[27] Bruce P Minaker. Fundamentals of vehicle dynamics and modelling: A text-
book for engineers with illustrations and examples. John Wiley & Sons, 2019.

[28] Dinesh Cyril Selvaraj. Development of a framework for sensor- and
communication-assisted vehicle dynamic., 2020.

[29] Rajesh Rajamani. Vehicle dynamics and control. Springer Science & Business
Media, 2011.

[30] ID Jacobson, LG Richards, and AR Kuhlthau. Models of human comfort in
vehicle environments. Human Factors in Transport Research Edited by DJ
Oborne, JA Levis, 2, 1980.

[31] Vehicle Dynamics Standards Committee. Vehicle dynamics terminology.
2008.

[32] Genta. Automotive Chassis: Volume 1: Components Design. Springer Inter-
national Publishing, 2020.

[33] OpenAI Gym and Nimish Sanghi. Deep reinforcement learning with python.
[34] Martijn van Otterlo and Marco Wiering. Reinforcement learning and markov

decision processes. In Reinforcement learning, pages 3–42. Springer, 2012.
[35] Anusha Nagabandi, Gregory Kahn, Ronald S Fearing, and Sergey Levine.

Neural network dynamics for model-based deep reinforcement learning with
model-free fine-tuning. In 2018 IEEE International Conference on Robotics
and Automation (ICRA), pages 7559–7566. IEEE, 2018.

[36] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre,
George Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda
Panneershelvam, Marc Lanctot, et al. Mastering the game of go with deep
neural networks and tree search. nature, 529(7587):484–489, 2016.

[37] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing atari with deep
reinforcement learning. arXiv preprint arXiv:1312.5602, 2013.

[38] Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour.
Policy gradient methods for reinforcement learning with function approxima-
tion. Advances in neural information processing systems, 12, 1999.

70

Bibliography

[39] Michael A Nielsen. Neural networks and deep learning, volume 25. Determi-
nation press San Francisco, CA, USA, 2015.

[40] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980, 2014.

[41] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom
Erez, Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with
deep reinforcement learning. arXiv preprint arXiv:1509.02971, 2015.

[42] Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approxi-
mation error in actor-critic methods. In International conference on machine
learning, pages 1587–1596. PMLR, 2018.

[43] Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized
experience replay. arXiv preprint arXiv:1511.05952, 2015.

71

	List of Tables
	List of Figures
	Introduction
	Background
	Connected cars
	Network architecture
	Types of connectivity
	Key communication technology

	Platooning scenario
	Vehicle dynamics
	Reinforcement learning
	Learning process
	Key components
	Classification

	Deep reinforcement learning
	Deep learning basics
	DRL algorithms
	Prioritized replay

	Methodology
	State & action definition
	Reward functions design
	CoMoVe framework

	Performance evaluation
	Simulation scenario
	Two vehicles following scenario
	Three vehicles cut-out scenario

	Experiments and results analytics
	DDPG in two vehicles following scenario
	Fine-tuning DDPG in two vehicles following scenario
	Comparison between DDPG and TD3
	DDPG in three vehicles cut-out scenario

	Conclusion
	Bibliography

