
POLITECNICO DI TORINO

Master’s Degree

in Mechatronic Engineering

Master’s Degree Thesis

STUDY AND IMPLEMENTATION
OF A SOFTWARE PROTOTYPE

FOR RELIABILITY EVALUATION
OF VEHICULAR ELECTRONIC

SYSTEMS

Supervisor

Prof. Giorgio Bruno

Company tutor

Eng. Raimundo Marcio Pontes

April 2022

Candidate

Antonio Padula

Abstract

The automotive industry is constantly evolving due to growing technology.
Modern knowledge in systems control and embedded software architectures has
made it possible to equip the latest commercial vehicles with advanced electronic
systems, to offer a constantly connected driving experience and actively guarantee
the safety of drivers and passengers. Certainly, one of the main objectives to be
achieved when it comes to innovating a vehicle equipped with advanced systems
is to provide a reliable and efficient solution, as complex integration through
multiple on-board systems is required. Indeed, the high complexity of a vehicle's
electronic architecture requires a time-consuming and expensive simulation phase
for component verification and validation. To this purpose, the thesis proposes the
implementation of a software prototype capable of faithfully reproducing the
behaviour of the commercial vehicle infotainment system. The prototype emulates
it in terms of logical architecture, user interface and telematics applications, taking
into consideration the challenging scenario of creating a communication interface
between the telematics Electronic Control Unit (ECU) and a personal computer.
With this, the prototype provides an easily accessible testing environment for this
case of integration of vehicular electronic units. It took some preliminary steps to
arrive at this implementation. Initially there is an in-depth study of the vehicle, to
understand the functional aspects of the electronic architecture and
communication between the systems, up to the introduction of software errors and
an initial classification of the problems encountered. Subsequently, an exemplary
case of integration between the various vehicular electronic systems, which
required various technical revisions, is sought. Then the history of the software
issues encountered and the related actions taken is created. Considering that the
validation operations are quite complex and repetitive, the main objective of the
software prototype is to simplify the testing of the telematics electronic control
unit in the software integration with the infotainment system. The concerned ECU
was designed to manage the telematics and connectivity functionalities, making
the contents displayed on the infotainment system available. Automated testing
sessions for component validation are performed using an innovative approach.
The instructions for the test are inserted into a JSON file, using a template created
specifically for the prototype. Then, through an iterative process, the instructions
are converted into actions to be performed on the control unit. The received
response is processed through an algorithm that compares the expected behaviour
with the one obtained. Consequently, once an appropriate percentage of matching
parameters is obtained, the software configuration is assumed to be acceptable and
the test is passed. The entire application was developed with the .NET platform,
following the MVVM (Model-View-ViewModel) architectural pattern to improve
the reusability and maintainability of the code. The programming language used
is C-sharp (C#).

Acknowledgements

I would like to express my appreciation to my supervisor Prof. Giorgio Bruno
for guiding me throughout the preparation of the final thesis, giving me valuable
support and suggestions to improve the writing and its content.

I would also like to make a special thanks to Eng. Raimundo Marcio Pontes with
deepest gratitude. His constant support and critical remarks helped me to ensure
continuous motivation in this thesis.

I also extend my thanks to all the members of the Iveco Telematics team,
especially to Eng. Ivano Lo Iacono, with whom I have had the pleasure of
working together in recent months and who have provided me with all the
support necessary to complete an ambitious project like this.

The biggest thank certainly goes to my family, to whom I owe all my
achievements.

To my parents, Paola and Gaetano, to whom I have always looked with great
admiration as I find them as a huge example to follow. Their teachings and their
support in my decisions have constantly encouraged me to do more and to
improve in every aspect of life.

To my brothers, Vincenzo and Giovanni, with whom we always support each
other even if we are located in different places. I am grateful for all the moments
spent together; we form the best team.

Finally, I thank immensely my girlfriend and personal happiness, Camilla. She
believed in me even when myself didn't, always staying by my side and
encouraging me in every moment.

Table of Contents

1 Introduction ... 1

1.1 Purpose of the Thesis project .. 1

1.2 IVECO and the Reliability Engineering sector ... 2

1.2.1 Reliability Engineering ... 5

1.3 Involvement of the Agile Methodology in the Thesis project 6

2 Preliminary activity in Software Reliability ... 9

2.1 Study of the heavy vehicle range .. 9

2.1.1 Commercial vehicle models and their missions 10

2.1.2 Connected vehicles ... 13

2.1.3 The role of automotive electronics in commercial vehicles 19

2.1.4 The Multiplex system and CAN BUS connections 21

2.2 Study of the electronic architecture of the vehicles 24

2.2.1 Electronic functional diagrams ... 25

2.3 Analysis and classification of vehicular software issues 29

2.3.1 Focus on software errors ... 30

2.3.2 Classification of software failures with Open Points List 31

2.3.3 Instrumentation for diagnosis and their application on vehicles 33

3 Research and analysis of the exemplary case in the Telematics sector 37

3.1 Study of the case: The integration between NIS and PCM 38

3.1.1 Introduction to PCM and NIS ... 39

3.1.2 Analysis of their integration .. 43

3.2 Creation of the history of issues encountered and related actions taken 47

3.2.1 Focus on DevOps methodology .. 48

3.2.2 The research of the issues in the company databases 49

3.3 Significant issues encountered .. 52

3.3.1 Analysis and identification: the approach used 53

3.3.2 Classification by cause and final effect .. 57

4 Implementation of the software prototype ... 60

4.1 Description of the project ... 61

4.2 Technical preparation for project development .. 62

4.2.1 Technologies used ... 63

4.2.2 The MVVM architettural pattern .. 68

4.3 Design of the NIS simulator ... 69

4.3.1 Creating the user interface .. 70

4.3.2 Implementation of the logic flow .. 75

4.3.3 Application configuration and PC interaction 79

4.4 The integration with the PCM .. 82

4.4.1 Test bench configuration .. 83

4.4.2 The calibration tests .. 84

4.4.3 Emulation of navigation with touch gestures 86

4.5 Test automation using the software prototype .. 90

4.5.1 Development of the functionality ... 91

4.5.2 Processing the scripts .. 94

4.5.3 Types of tests implemented ... 101

5 Conclusions .. 106

List of Figures .. 110

List of Tables .. 113

Bibliography ... 114

1

Chapter 1

Introduction

1.1 Purpose of the Thesis project

Product differentiation makes it difficult to integrate the subsystems that make

up the vehicle's hardware and software architecture.

It is possible to define a reliability index not only on testing but also on the way

in which the software was developed, on the type of hardware, on the type of

operating system or on many other factors, including critical issues in terms of

security, cyber security and many surrounding factors.

The thesis is oriented towards a study and research in the field based on the

reported vehicle faults and on how to properly verify and validate the software,

in order to increase its reliability, through the creation of a software prototype in

which it can be highlighted any system criticalities or failures related to the

integrated software of an Electronic Control Unit (ECU) and, in this case, the

specific event or factor that causes it.

As of today, the testing procedures of vehicular ECUs are often slow and

repetitive and they can require a lot of time and technical reviews from the

testing expert; thanks to modern knowledge in mechatronics engineering field,

it is possible to make the testing and validation of electronic components easier

and more efficient.

2

1.2 IVECO and the Reliability Engineering sector

IVECO (Industrial Vehicles Corporation) is a transport vehicle manufacturing

company founded in Turin in 1975. It designs, manufactures and markets a wide

range of light, medium and heavy vehicles; they can offer a span of vehicles that

goes from commercial vehicles to quarry/building site vehicles, city and intercity

buses and special vehicles for applications such as firefighting, off-road

missions, Defence and civil protection.

Figure 1.1: IVECO company logo.

Recently IVECO has completed its spin-off from parent CNH Industrial,

forming the new IVECO Group.

This new operational and financial brand incorporates all the brands and

industrial realities that refer to on-road mobility and that have their roots in the

history and traditions of IVECO.

Under the new logo, that can be seen in Figure 1.2, the range of protagonists of

this new chapter for special road transport is shown. In the middle, there are the

leading companies of the group: Iveco, which produces light, medium and heavy

commercial vehicles, and FPT Industrial, which produces engines and advanced

propulsion systems for the agricultural, construction, marine and commercial

vehicle industries.

Figure 1.2: IVECO Group logo and all its brands.

3

IVECO and CNH Industrial who have always shared a vision of quality and

sustainability together, now will be better placed to exploit their full potential in

terms of financial support, value generation and sustainability commitments.

Thanks to greater management focus, the new on-road vehicles group will be

able to accelerate their innovation, think faster on their strategic plans and be an

active participant in the industry consolidation.

Speaking about sustainability, IVECO is the only manufacturer to offer

ecological diesel and natural gas engines across its range; the company launched

their first commercial vehicle powered by natural gas in 1996. But the vehicle

range offered does not end there, the company, following the industry trend and

the sustainability principles already mentioned, intends to bring the first fully

electric IVECO truck to its price list. When it comes to sustainable mobility,

actually there is no alternative solution designed to fit all forms of transport and

applications. IVECO produces vehicles with alternative drive systems to try to

solve this need, by providing in addition to the propulsion systems described

above a Daily model of the light range equipped with an electric motor and also

a Eurocargo model of the medium range equipped with a hybrid engine.

Figure 1.3: IVECO Daily, for over 40 years one of the most successful vehicles of the
company.

But the desire to innovate has always been present in this company and by

analysing the history of the products offered by the company in recent years, it

is possible to see how the range of commercial vehicles has been enriched with

4

modern and technological features and systems that allow a new world of

integrated services and solutions.

It is important to highlight the involvement of the company into the Agile

Methodology and its philosophical and efficient approach to project

management; this method provides to the companies major flexibility and a

better way to respond to the always changing industry scenario. This topic will

be discussed in detail later.

For example, among the best-selling models produced by IVECO we find the

trucks available in the IVECO WAY Range, the “customer-centric” way, as

Iveco said. With this name, the company wants to focus the attention on their

approach that fully exploits the possibilities offered by connectivity and being

“always on” with the customer, included in these vehicles.

Figure 1.4: IVECO S-Way, the 100% connected truck

It is the case of IVECO ON, the latest pack of services that offers connected and

integrated systems and transport solutions to their customers. It enables the

driver to be always aware of the vehicle’s and driver’s main performance

parameters, such as fuel consumption, and to achieve reduction in Total Cost of

Ownership (TCO). In Figure 1.4 it can be seen the IVECO Stralis S-WAY model

of the heavy range, the absolute protagonist of this thesis project precisely for its

innovative equipment and complete connectivity functionalities.

5

With this entire offering, IVECO addresses the key trends driving the automotive

industry that saw a big jump up-wards in the product innovation cycle,

decreasing the gap separating the vehicle and the services around it, making

connected trucks and keeping skilled professional drivers possible, increasing

awareness on-road and fulfilling the demanding requirements in sustainability.

1.2.1 Reliability Engineering

Today, when speaking about a very reliable vehicle we suddenly think about a

vehicle that always fulfils its function and under any operating conditions.

It is interesting to note how over the years the definition of "reliability" has

grown and changed in meaning. In the 1940's the term was all encompassing and

a cure-all for whatever ailed the piece of equipment was, "Make it more reliable."

With the passing of time the definition took on many new implications and

became more quantitative. Splinter words such as “maintainability”,

“availability” and "product assurance" filled the voids that reliability could not

cover. [1]

The term "reliability" can therefore have more meanings if different types of

people are taken into consideration. For example, an academician refers to “the

ability for the part or assembly or system to fulfil its function under specified

operating conditions for a specified period of time under specified environment,

without failure” for what regards to reliability, while maintainability is “the

probability that, when maintenance action is initiated under stated conditions, a

failed system will be restored to operable conditions within a specified total

time”.

For the average customer, reliability and maintainability often have the same

meaning; the relevant aspect is that the vehicle is equipped with safety systems

in accordance with the law and that guarantees reliable travel on the road. The

purchaser has confidence in it.

6

To a manufacturer, reliability is not only a unique definition; it is a company-

wide program.

In Iveco, the Reliability sector is included in the company's industrial Quality

area; it includes all the activities related to the maintainability, availability of the

vehicle and also plays fundamental roles for the aspects inherent to the quality

of the vehicle and its efficiency.

1.3 Involvement of the Agile Methodology in the Thesis

project

The ever increasing need to manage diversified activities of human life, through

technologically advanced electronic devices, requires continuous improvements

and greater guarantees of the software that is used in them.

In the perimeter of software development, there has never been any shyness in

introducing new methodologies. In fact, over the past 25 years, several different

approaches to software development have been introduced, of which only a few

have survived to be used today.

Software vendors are required to improve the quality of the software provided

and reduce the overall cost. [2]

The business management models have had to adapt to the new “turbulent”

production conditions, characterized by very high competition and requests for

greater productivity, speed and quality. A context that has led to the change in

the nature of the projects to be managed, for which the principles of “traditional”

management are no longer enough.

In order to help PM (Product Managers) and the company organization in the

management of "complex projects", advanced project management

methodologies and techniques have been introduced. [3]

In recent years, a wide range of technologies have developed to make software

more reliable.

7

While there is no agreement on what the concept of "agile" actually refers to, it

has attracted a lot of interest among professionals and lately also in academia.

In the following sections, we will discuss some important proposals regarding

changes in software lifecycle management and their effect on the delivery of any

software product. [2]

Precisely for this reason, I was immediately able to see why the interest in these

new paradigms in software development is present in a large global company

such as IVECO.

For the purposes of the thesis work to be carried out in the company, I had the

opportunity to deepen and study the Agile methodology as well as to be able to

apply it together with the Telematics team with which I developed a software

prototype for the verification and validation of the telematics’ electronic control

unit capable of automating the testing process; this will be discusses in Chapter

4.

It should be added that the Agile methodology is a grouping of methods; each

illustrates important new proposals related to changes in software lifecycle

management and their effect on the delivery of any software product.

These methods are not based on the classic and linear design approach but take

advantage of the possibility of creating a project divided into phases, each called

"sprint". For each sprint a goal is agreed, such as the implementation of a new

functionality, which is agreed together with the customer, who is shown the

progress of the project up to that point.

A system based on iterative processes is created, a fundamental concept for the

Agile method, which allows you to easily make changes to the project, reduce

production costs, avoid wasting resources and unnecessary time; this allows,

eventually, to prevent a project failure by acting at the right moment.

Specifically, the method adopted in the company in the Telematics department

for project management and also adopted for the development of this thesis is

the Scrum model.

8

Scrum is the most widespread Agile method, particularly suitable for complex

and innovative projects. It is a framework, or a logical structure or architecture

on which a software development can be implemented using a set of practices

which, dividing the project management process into different sprints,

coordinates the development of the product with the customer's requests.

Figure 1.5: The various phases of a project management according to Scrum.

During the journey of this activity in the company it was impossible not to notice

the effective involvement of my business within the development team, thanks

to the various support meetings that the Scrum method provides. Among these I

report, for example, the brief daily meeting in which the whole team is updated

and each member is called to discuss what has been done compared to the

previous day and what is expected to be done for the next day. This meeting

becomes extremely useful especially in the case of critical issues or blocking

problems, where the support of the team can make the difference to unblock the

situation.

9

Chapter 2

Preliminary activity in software
reliability

2.1 Study of the heavy vehicle range

The purpose of the first phase of the thesis activity, held at Iveco S.p.A. in Turin,

was to deepen and study a series of methodologies and tools that are useful for

understanding the electronic components and systems with which I was going to

work during the internship.

In this chapter, beginning with a presentation of all the commercial vehicles of

Iveco and of the milestones the company achieved by developing technologies

that turned out to be pioneers in the industry, the concept of a connected vehicle

is introduced. This concept is an essential point in the digital revolution that has

revolutionized the automotive industry.

Iveco with its “Iveco On” services exploits the maximum potential obtainable

from integrating connectivity functionalities in a truck, providing its customers

with a new ecosystem of connected and always operational services. The concept

of remote diagnosis and monitoring is introduced by enhancing what can be

obtained from the implementation of telematic devices on commercial vehicles.

All this is made possible by the trend that the last twenty years has seen affecting

the automotive industry: digital transformation and the rise of embedded

electronic systems. The vehicles consist for the most part of electronic

equipment that command and manage the activation of switches, advanced

driver support systems (ADAS), engine management and control, and so on,

transmitting a multitude of messages and signals via highly efficient and reliable

CAN communication lines. Indeed nowadays it is enough to consider that the

majority of support requests received are inherent to failures related to vehicle

10

electronics, as a consequence of the ever increasing presence of these systems

on board.

It is therefore necessary to understand how the integration between so complex

systems works. To this purpose, some of the functional electronic diagrams will

be analysed below. These schemes highlight the work of optimizing the

electronic architecture, that is made possible by means of the multiplex system.

The research experience of software issues related to Electronic Control Units,

(in short ECUs) within the company is then described to distinguish the actions

and technical reviews that are carried out during the product industrialization

phase and those instead used for post-marketing support of the product, with

customer reports of vehicle breakdowns and anomalies. There will be a specific

focus on the OPL document used for the management and resolution of

electronic systems anomalies related to cases of software errors that specifically

require the involvement of multiple figures (such as manufacturers and

suppliers).

Finally, to complete the discussion about vehicular diagnostic analysis and data

acquisition from the electronic systems, the instrumentation used for measuring

error parameters and for vehicles monitoring is presented.

2.1.1 Commercial vehicle models and their missions

The heavy range models represent the flagships of the Iveco brand; Stralis with

its most recent on-road version, the S-WAY, guarantees the perfect balance

between advanced vehicle technology and an efficient and powerful series of

engines produced by FPT Industrial, giving higher class fuel economy.

With all its vehicles, Iveco aims to guarantee high-level functional and technical

specifications; for this reason, the commercial vehicles fleet includes a wide

range of configurations and models suitable for any need and mission.

11

All Iveco commercial vehicles will be listed and described below; its

comprehensive offering starts from the light range 2.8-ton vans for urban use to

the 44-ton heavy range vehicles for long distances and heavy loads use.

All these vehicles provide customized transport solutions for their customers,

who have a wide choice of configurations based on cargo and load requirements.

Furthermore, as mentioned in the introduction to Iveco commercial vehicles in

Chapter 1, the fleet is completed by vehicles equipped with alternative

propulsion systems; these models are available for specific missions and can be

equipped by alternative Natural Gas, Hybrid and Electric tractions.

• STRALIS

Powerful and reliable, the new Stralis on-road range offers engines with

exceptional fuel efficiency, cutting-edge technologies and advanced

connectivity systems.

This model, being a 100% connected truck, is the spearhead in terms of

technological innovation.

Its advanced connectivity features can keep drivers in constant

communication with the fleet manager, Iveco service specialists and the

dealer network. This allows, in addition to constant monitoring of road

safety for those on board the vehicle, also a remote maintenance and

diagnosis service; a detailed description of these functions will be

provided in the paragraph dedicated to the connected vehicles.

Due to the technological nature of this vehicle, all the studies and

researches discussed later will refer specifically to the Iveco heavy range.

Figure 2.1: The Stralis of Iveco heavy range.

12

• EUROCARGO

The Eurocargo model represents Iveco medium range. Sustainable,

efficient and versatile, this is the perfect truck for urban missions and

municipal services for medium-sized transport.

This vehicle allows greater driving comfort during urban missions thanks

to the reduced width of the cabin, the greater steering angle and the better

turning circle compared to a model in the heavy range.

Figure 2.2: The Eurocargo of Iveco medium range.

• DAILY

The Daily model represents Iveco light range and it is the longest-

produced vehicle of the company. Boasting over 40 years of success, the

“Van of the Year 2018” is a true champion of sales and innovation. With

this vehicle, Iveco was the first in the industry to introduce a truck-

derived chassis with rear traction and independent front suspension. This

configuration allows heavy load transport maintaining a compact and

versatile vehicle body, as well as advanced systems such as Electronic

Stability Program (ESP) to regulate vehicle handling during steering and

braking maneuvers.

13

Figure 2.3: The Daily of Iveco light range.

2.1.2 Connected vehicles

In introducing the Iveco commercial vehicles fleet, it has been highlighted the

important presence of technologic implementations on board the vehicles.

Innovation in the production of smart vehicles is growing fast in both the

automotive and transport industry. Indeed, with the modern knowledge and

available technologies in the electronic and mechanical field, it is possible to

develop multiple functions that extend the operations done by all the vehicle

components: braking system control, engine management control, automated

gearbox, automatic suspensions, telematics, etc. In this way, the experience of

driving the vehicle acquires a much more efficient and safe meaning.

Among all the electronic systems, the vehicles are equipped with a telematics

ECU that allows wireless data transmission and communication: it is therefore

appropriate to define the “connected vehicle”.

The technology of connected vehicles is functional to the supply of digital

content and services, to the transmission of telemetry data and to remote

monitoring or managing of on-board systems.

These vehicles, capable of exchanging information via a wireless network, are

equipped with cutting-edge technological systems such as built-in cellular

modem, multifunctional infotainment and telemetry sensors capable of

interfacing with other vehicles or infrastructures.

14

Figure 2.4: Interaction of a connected vehicle with other systems. [4]

The modern truck fleet could unlock huge efficiency gains by adopting

connected vehicles and procedures. Once a fleet might only have monitored

immediate data points such as vehicle GPS data, for instance, but an increase in

sensor technology and cellular bandwidth is opening the door for more granular

data management centred on maximising vehicle uptime.

It is critical that fleets begin digitising their operations today. The e-commerce

boom accelerated by COVID-19 shows little signs of slowing and, as customer

expectations on delivery times ramp up, intelligent data management will be

vital in helping fleets meet ongoing demand.

The promise of capturing vehicle data and turning it into profitable new services

and business models has driven significant investments in the commercial

vehicle telematics space by truck manufacturers and suppliers alike.

Automotive telematics systems have become permanent presence in the industry

since the early 1990s, when General Motors company released the OnStar

system; the first ever unique combination of Global Positioning Satellites (GPS)

and cellular module technology to offer an always-on real operator instant

communication in case of any kind of emergency.

Nowadays, telematics and embedded systems in automotive industry are evolved

and they are surely more powerful than that. They allow manufacturers to collect

15

data also from event data loggers, communication systems and security systems

as well as data from other vehicle systems, such as mechanical components.

In fact, recent technological advancements and the push towards a fully

driverless vehicles scenario are incentivizing the implementation of these

systems. Truck manufacturers must therefore invest in their innovation sector

and think about how they can design these systems and integrate them into new

vehicles.

As expected, with the intensification of a methodological approach to the new

connected systems in vehicles, new opportunities have arisen in the field of

diagnostic analysis and real-time vehicle monitoring.

In fact, having integrated a telematics ECU that constantly exchanges data via

wireless network, it is possible to acquire parameters relating to the functional

status of all vehicle components in order to prevent any breakdowns and the

accidental consequences that they could cause.

This component integrated with a cellular modem allows the driver to have an

overview of all the safety and assistance services available; among these, for

example, the Iveco RAS (Remote Assistance Service) system which allows a

quick analysis of the errors/failures in the electronic systems even remotely.

Thus, it is possible for the maintenance technician to provide immediate

assistance to the driver and evaluate whether it is necessary to bring the vehicle

at maintenance for a complete check-up.

It should be denoted that with the increase of smart roads and smart cities, smart

trucks are a necessity; here also lies the big potential of the connected trucks.

With these arrangements a lot of space for improvements is given first of all to

fleets management, being able to manage and plan their cargo missions more

effectively.

With a unique platform that allows to monitor real-time import container data

like vessel and terminal information, actual location of the truck, expected arrival

at destination, holds and more, it is possible to completely eliminate those

inefficiencies present in management of commercial transport. The managers

16

would also be notified of potential problems in order to be able to propose a

resolutive action plan well in advance, avoiding costs for unnecessary delays.

To this purpose, the solution proposed by Iveco is the ecosystem of services

included in “Iveco On”, which is composed by five main services outlined in

Figure 2.5. These are: Iveco On Fleet, Iveco On Uptime, Iveco On Care, Iveco

On Maintenance & Repair, Iveco On Parts.

Figure 2.5: The offer of services and solutions in IVECO ON.

Iveco On is a flexible and customizable package, available for the heavy Way

range and the light Daily range, in which there are connected services to

maximize the efficiency and profitability of vehicles, up to a series of

aftermarket solutions for vehicle maintenance.

Iveco vehicles equipped with these services provide a more productive work

environment as they allow you to manage infotainment, navigation, driving

support tools and advanced fleet management services in a simple and integrated

way.

Among the connected functions designed to improve the driving experience and

the transport productivity, there are:

17

• A fleet management tool, capable of automatically calculating the best

route to travel based on the mass and size of the vehicle and optimizing

the routes based on the processing of the orders. The service also allows

you to receive advice on a quarterly basis from a TCO (Total Cost of

Ownership) expert aimed at how to reduce fuel consumption on the basis

of data acquired electronically;

Figure 2.6: Iveco On Fleet Management vehicle monitoring.

• The DSE (Driving Style Evaluation) system, an algorithm which by

processing the data acquired from the engine, the vehicle and via GPS,

allows the driver to have an evaluation of driving performance and to

effectively calibrate fuel consumption; by continuously exchanging data

via the Internet, the Iveco On system produces a smart report on the

performance of vehicles and drivers;

18

Figure 2.7: Indices for the evaluation of the DSE.

Figure 2.8: DSE user interface.

• The DAS (Driver Attention Support) system, a safety feature that protects

the driver from fatigue and sudden falling asleep at the wheel by

suggesting when to pay more attention to driving or when it is time to take

a break; using the data connection network, it constantly exchanges

information making it possible to remotely monitor and to finally create

the Safe Driving Report with the assessment of the safety level on board.

19

Figure 2.9: Safe Driving Report is done based on the driver's driving style.

Furthermore by fully exploiting the potential of connectivity, Iveco provides its

Customer Service remote support 7 days a week and 24 hours a day. In this way,

the support is able to respond instantly to any request for assistance made by a

driver on board the vehicle.

The scenario created by choosing the implementation of connectivity

functionalities on vehicles is full of advantages for all interested parties. With

connected vehicles the costs of operations are reduced by giving, at the same

time, an innovative and always active assistance and support service to the

drivers. They can count on an increasingly reliable and safe vehicle for their

commercial transport missions.

2.1.3 The role of automotive electronics in commercial vehicles

The commercial vehicles market is constantly evolving it comes to technology

development about automotive electronics. Vehicles have rapidly transformed

20

to create a new way of imagining the functioning and the applications of the

vehicle itself thanks to the development of embedded electronic systems.

For over a decade now, the first electronic systems applied to the automotive

field, namely starter motors and batteries, have been consolidated as a standard.

Over the years, the presence of electronics in a vehicle has followed a growing

trend, developing various applications for engine management, vehicle ignition

and shutdown, radio and multimedia functions, telematics units for connectivity,

advanced infotainment systems, electronically controlled transmission, on-board

climate control, active driving safety systems, smart navigation, adaptive cruise

control and others.

Figure 2.10: Roadmap of the evolution of vehicle electronics.

Focusing on safety features: it is a high priority in commercial vehicles. Thinking

of an active system that constantly monitors the navigation of the fleet, reducing

the risk of accidents, is enough to understand the enormous potential of these

applications.

Going further, drivers need technologies in their vehicles to reduce fatigue and

to prevent the accident of falling asleep to the wheel. With the development of a

telematics system electronically connected to sensors that acquire data from

21

vehicle components (such as the engine, the acceleration given by pressing the

pedal or sudden movements of the steering wheel) it is possible to detect these

extreme conditions for driving and prevent accidental events by instantly

reporting the fleet manager and alerting the driver on board.

Figure 2.11: Electronics system as percent of total car cost [5]

While ten years ago only premium vehicles contained multiple microprocessor-

based Electronic Control Units (ECUs) networked and engineered inside the

body of the vehicle, that could process million lines of code, today also low-end

vehicles are equipped with powerful ECUs that can manage software advanced

technologies like Advanced Driver Assistance Systems (ADAS), adaptive cruise

control or automatic emergency braking. These are becoming standard.

2.1.4 The Multiplex system and CAN BUS connections

Following the continuous functional and managerial innovations of the vehicle

components, the Multiplex system has been designed to simplify the wide

complexity of the electronic system and to improve its quality and reliability.

The Multiplex is a multifunction system made up of many electronic

components interacting with each other and that are continuously monitored.

The purpose of this system is the adoption of digital electronic technology

components that allow to significantly simplify and optimize the entire system

22

connections. In fact, the Multiplex is composed of a series of electronic control

units connected to each other by means of CAN lines.

The CAN acronym stands for “Controller Area Network”; it indicates a network

protocol, created by Bosch GmbH company in the early ‘80s, that allows the

communication among different electronic control units inside the vehicle.

Nowadays, it is a standard for the automotive industry.

The reason of its success can be summarized in relevant technologic

improvements:

• Fast response times while communicating;

• Simplicity and flexibility of connections management;

• High reliability when there are signals disturbances.

Communication on the CAN network occurs through two or more nodes which

can be represented by a simple I/O (input/output) device or by an integrated

computer with CAN transmission capability. Through special interfaces, the

node also allows to communicate on the network with external computers

through an Ethernet-over-USB connection in order to manage messages or,

perhaps, carry out an analysis of the vehicle embedded systems to find any faults.

Figure 2.12: CAN line configuration.

The nodes are put into communication through a serial communication channel

called BUS (Binary Unit System) composed of several cables intertwined with

each other, as in Figure 2.12, often shielded by a sheath. For this reason, in fact,

the use of connections via CAN BUS lines allows to limit the disturbances

23

caused by electromagnetic fields. These lines are an excellent solution for

applications that require a high level of reliability.

The CAN BUS lines allow to manage the bit rate and, therefore, the transmission

speed while being able to reach extremely fast response times. These are much

more convenient for the ECUs that manage main vehicle components since they

need quick communication channels, such as for the activation of the braking

system in the event of sudden braking.

Before the use of the multiplex system, the management of the connections

between electronic switch and mechanical actuator was very complex and often

this was the cause of breakdowns and malfunctions.

With the flexibility and efficiency made available by the CAN lines, it was

necessary to implement this technology in order to simplify the vehicular

electronic architecture. Finally, it could be proposed the implementation of the

multiplex system for connecting the ECUs.

In Figure 2.13 it is possible to see the multiplex system functional scheme: the

command from the switches is received from the first ECU, which is processed

and then transmitted via the CAN line to the second ECU, which processes the

input received and activates the actuators. All this takes place using a single

transmission point, thus reducing the complexity of traditional electrical

management which required multiple connections to reach each system.

Figure 2.13: Multiplex system scheme. [6]

24

Subsequently, the main vehicular electronic components and their functionalities

will be discussed.

2.2 Study of the electronic architecture of the vehicles

At the beginning of the thesis work in Iveco, it was decided to first focus the

attention and deeply study the electronic systems available on the Stralis model

of the heavy range in order to fully understand the functions of the ECUs and

their integration.

In the previous paragraphs the multiplex system and the CAN BUS serial

connections that allowed a better electronic management of the vehicle have

been introduced. This made it possible to implement new functions while

decreasing the number of cables, fuses and relays in the electronic architecture.

On this network travel signal messages that communicate various information,

such as the operation or status of a component, the presence of a fault, the

specific command to activate a warning light, the digital elements to show on a

display and many others.

However, in order for these messages to be processed by all the interoperating

systems, they have to circulate in a correct "format". So, it is necessary to use

electronic control units to convert these commands into actuations. The

messages can be acquired by the equipment (such as sensors, switches, buttons)

into digital signals.

The number of electronic control units available on the heavy range vehicles is

considerably high because of the rapid adoption of these systems seen in the

industry. Subsequently, some ECUs that guarantee the operation of main vehicle

components and the CAN lines involved will be examined.

25

2.2.1 Electronic functional diagrams

The primary objective of this study was to acquire a systemic vision of the

electrical and electronic systems of the trucks. For this purpose, a special

attention to the electronic functional diagrams is needed.

These documents, provided by the company, are detailed reports of all the

technical aspects that are involved in the electronic control units of the vehicles.

More specifically, in systems engineering, a functional block diagram describes

the functions and interrelationships of a system using a graphical language.

Therefore, it is very useful to better understand the function of the system under

investigation and the input and output variables that are involved, that are: the

signals to be processed by each electronic unit, the data inputs acquired by

sensors or the commands to send to actuators.

These lead to a complete technical specification of the electronic systems and

their software integration with the other vehicle systems.

In the network of the multiplex system of the Iveco Stralis (Model Year 2019)

the dialogue of vehicular electronic systems, such as the engine ECU, on-board

multimedia systems, telematics applications, electronically operated equipment

(wipers, windows, lights and so on) takes place via the following main CAN

lines:

• VDB – Vehicle Data Bus;

• BCB – Body Control Bus;

• ECB – Engine Control Bus;

• IB – Infotainment Data Bus;

• TB – Telematics Data Bus. [7]

Each of these connection lines contributes to the transmission of the signals to

the specific ECU. In particular, it is noted that the transmission speed of the

information contained in the signals is the same in all the above CAN lines

except for the VDB (Vehicle Data Bus) line.

26

The VDB, in fact, has a bitrate of 500 kBit/s that is exactly double compared to

the other lines, which transmit at a standard speed of 250 kBit/s. This is because

the information transmitted in VDB converges in many interconnected units

among which we find systems that require a very fast response time and greater

security and fidelity in data transmission, such as those related to movement and

dynamics of the vehicle.

Figure 2.14: Brake management electronic functional diagram. [7]

In Figure 2.14 it is possible to see an example of systems interconnected with

each other by the fast VDB line; this is the electronic functional scheme for

vehicle brake management system. The use of this line here is necessary as it

must transmit a multitude of vehicle data instantly, such as: vehicle speed,

steering angle, engine torque, front and rear axle speed, working status of

advanced driver-assistance systems (ADAS) like EBS and ABS, brake and

accelerator pedal position, and so on.

Figure 2.15 below shows the functional diagram with which the adaptive system

for cruise control was designed. This advanced feature allows the driver to be

able to set a fixed cruising speed for long distances thanks to the use of multiple

advanced systems, including positioning sensors and radar devices for detecting

vehicles along the trajectory. Also here there is an extensive use of the VDB

(Vehicle Data Bus) fast transmission line.

27

Figure 2.15: Adaptive Cruise Control Management electronic functional diagram. [7]

Finally, Figure 2.16 shows the electronic functional diagram of the telematic

system for evaluating driving performance and fuel consumption, the Drive

Style Management. This system, thanks to a combination of data packets

transmitted via wireless, allows the analysis of vehicle parameters remotely,

making its functionalities constantly connected with Iveco technical support.

Figure 2.16: Drive Style Management electronic functional diagram. [7]

In this schematic it can be seen a particular electronic control unit, namely the

PCM (Processing and Communication Module), which will be the subject of

chapters 3 and 4 as it is the absolute protagonist of the internship activity carried

28

out in Iveco. This electronic control unit allows the Drive Style Management

system to send and receive the score indices to the on-board infotainment system,

to the smartphone through a specific app and to the back-end through different

communication channels (USB, Bluetooth, Wi-Fi, 2G/3G cellular networks).

It should be noted that many of these electronic systems are reached by several

CAN lines: this is highlighted in the graph in Figure 2.17, which shows the

complexity of providing the vehicle's digital functionalities that constantly need

to communicate with multiple channels and to receive more data at the same

time from several interconnected lines. It is shown the relevance of the VDB

line, that contributes to the transmission of many systems data involved in main

vehicular functions which require speed and operational fidelity, as mentioned

previously.

Figure 2.17: Percentage of ECUs connected by each CAN line out of the total available.

VDB
55%

BCB
21%

ECB
11%

IB
8%

TB
5%

29

2.3 Analysis and classification of vehicular software

issues

Moving from the idea to the finished product involves the fulfilment of a series

of consecutive phases that are essential to make the new vehicle ready for

marketing and for the operations it will be used for.

After the necessary initial analysis and requirements specification phase of the

idea, we move on to what is called the vehicle industrialization phase. This

involves the creation of technical drawings, the design of the vehicle, the

simulations and tests for the evaluation of the performances of each vehicle

component and system, as well as the reliability over time. [8]

This phase is extremely important to detect any design problems and, if

necessary, to make the necessary changes at a much lower cost than applying

them later. In addition to a cost factor, the advantages offered by an accurate

industrialization process are many, whether we are dealing with full designed

vehicles, single components or other products, namely:

• Performances optimization;

• Improvement of the degree of reliability;

• Better control over environmental sustainability and End-Of-Life (EOL)

predictions;

• Apply more effective design and functionality changes. [8]

The path taken in Iveco for the development of this thesis is set purely with a

view to vehicles software reliability, this in order to study and analyse the

methodologies and practical approaches used in Iveco to improve their vehicles.

It is necessary to distinguish the reliability work done by Iveco during the pre-

marketing period, therefore during the design and industrialization of the

vehicle, from the post-marketing one, therefore during the use of the vehicle by

the customer. Below it will be described the in-depth analysis made regarding

the industrialization phase while in the next chapter the actions taken during the

30

post-marketing phase, dealing with the customers support claims, will be

considered.

This preliminary research activity points to the creation of a classification in

which we want to highlight all the issues affecting the reliability of the software,

considering that the reliability related to the vehicle's hardware components is

now very mature. The interest in the reliability of the software integrated into

the vehicle has become increasingly evident since, in the last twenty years, there

has been an increase in the presence of electronic components driven by

software. Hence, therefore, the need to investigate specifically all the aspects

inherent to the reliability of the software, that is how reliable the software that is

used in the individual electronic control units and in the integration with other

systems and subsystems is.

2.3.1 Focus on software errors

To understand the process of improving the quality of the software embedded

into the vehicle ECUs, it is first necessary to focus the attention on what these

issues actually are.

The discipline of Software Engineering provides various approaches to software

development consisting in systematic operations of management, maintenance

and improvement of the software and, because of this, it could be very easy to

come across terminologies that are similar to each other but with very different

meanings.

Software error defines the misunderstanding or misconception of the software

developer, where the developer can be a software engineer, a programmer, a data

analyst or a tester. A software error makes the system behave differently as it

was expected by the design requirements. The reasons for these errors can be

many where the most common are badly defined or misunderstood requirements

and syntactic or semantic defects in the logic. On the other side, the outcome of

a software error is a fault.

31

There are different types of faults, which can be divided according to different

categories. Some of them are permanent, which means once occurred the

software will be unable to recover and will fail. Some of them are temporary,

where the software is not working properly for some time, often in seconds or

minutes, or the faults even are only instantaneous, but after that it resumes as

nothing happened. Some faults occur frequently and can be easily predicted,

and/or removed. Moreover, there are faults called sporadic which are of

particular interest as it is not possible to predict in any way their nature and

behaviour. Sporadic faults may only appear once and never reappear again or

appear at irregular intervals. This makes them an element to be constantly sought

with extreme attention and, if possible, to intervene and correct in the shortest

time. [8]

2.3.2 Classification of software failures with Open Points List

The Open Points List (OPL) documents are used to report and keep track of the

actions taken to solve issues during the industrialization phase of the vehicle. It

was useful, during this preliminary research phase, to deepen their structure and

the methodology with which they are used. These were used to identify software

errors, detected in the ECUs and in their integration, that have been the cause of

software unreliability issues at the vehicular level.

A generic OPL file is similar to a common spreadsheet in which several figures

involved in the industrialization of the vehicle participate: if, for example, the

component on which the problem was detected comes from an external supplier,

here will be reported all the technical interventions that the latter has carried out

in order to resolve it. The history of the interventions carried out is shown in

chronological order, accompanying the description with an expected date on

which the feedback from the company that initially requested the fix will be

provided. [8]

The history of the interventions carried out is certainly helpful to understand the

effective approach to use if a similar issue arises again.

32

In addition to this information, each OP (Open Point) includes the device or

electronic system concerned, an indication of the main software functionality

affected by the anomaly, a brief description of the issue with its current state and

its degree of severity.

These last two parameters require specific in-depth analysis for their

understanding, as their values express at a glance important information for the

effective reading of the document:

• Status description

This parameter allows to quickly identify which of the points in the list

is still subject to evaluation (OPEN), which has been resolved

(CLOSED) and which has been annulled (CANCELED).

The interpretation is made more immediate thanks to the use of specific

colours for each box of the status.

Specifically, the OPEN status can be accompanied by another indication,

the sub status. This provides further information about the progress of

that point, such as if the issue is awaiting a response from the supplier or

if the manufacturer has to validate a fix received from the supplier and to

confirm a solution.

• Severity level

As its name suggests, this parameter defines the priority assigned to the

open point based on the severity of the issue; here too, as for the

description of the status, the interpretation is facilitated by specific

colours that recall the assigned severity and by numerical parameters in

order of priority.

This parameter can take on five values starting from level 5, the lowest

score, which is assigned to issues with a very low level of severity as can

be the case of a non-blocking anomaly that simply requires an update of

the software configuration, up to get to level 1, which is the highest score

33

and is assigned to blocking issues with a very high level of severity, such

as in the case of systematic errors that make the embedded system behave

differently from what is defined. [8]

The OPL documents that have been studied for the purposes of this discussion,

therefore, reported a series of cases with issues relating to the vehicles being

designed and manufactured. Subsequently, during the research of the software

issues, the exemplary case of software integration between two important

vehicular electronic components emerged, which will be discussed in chapter 3.

In chapter 4 will be described the project phase of the thesis, with which the

purpose was to create a software prototype able to reproduce the scenario during

the actual use of these two systems by the customers; thus carrying out

experiences and issues from the post-industrialization phase of the vehicle.

2.3.3 Instrumentation for diagnosis and their application on

vehicles

To conclude the discussion of the study and in-depth analysis carried out during

this preliminary phase of the thesis activity, it is necessary to describe the

instrumentation used by the Iveco technicians for the diagnosis and analysis of

vehicle data. These acquired parameters are used by the Iveco Quality sector to

improve the reliability of the vehicles and are also present in the OPL documents

described previously.

During the first period of the internship, there was the opportunity to use and

have a look at the instrumentation for the vehicle diagnosis at the Iveco

Maintenance and Diagnosis Centre; here standard procedures are carried out for

the vehicle maintenance, the improvement of the platform and for the

measurement of performance parameters in order to improve the fleet.

These tools, mainly used for vehicles data monitoring both via wired and

wireless remote connection, allow the acquisition of some vehicle parameters

useful for the evaluation of many aspects. Through this instrumentation it is

34

possible to carry out maintenance operations to ensure continuous improvement

of the vehicle on the market.

The tools in question, for which the company has provided a dedicated day of

demonstration sessions on the vehicles, are the following:

• Telemaco

• E.A.SY

• UDT System

The ECUs that make up the electronic structure of the vehicle are equipped with

advanced features for self-diagnosis. In fact, with the use of some of the tools

listed above, it is possible to read the faults memory of the electronic control

units and acquire all the failed parameters. A DTC (Diagnostic Trouble Code) is

used to identify the anomaly which, as specified in the SAE J1939 protocol that

defines in Europe the data structure of the messages sent on the CAN

communication lines and encodes the parameters, indicates the specific error

code.

Figure 2.18 schematically shows the structure of the DTC that is composed of

four elements:

• Suspect Parameter Number (SPN), indicates on which component or

system the anomaly occurred;

• Failure Mode Identifier (FMI), indicates what was the cause of the fault;

• Conversion Method (CM), used for the correct conversion of the SPN

code;

• Occurrence Count (OC), indicates how many times the anomaly has

occurred.

Figure 2.18: Diagnostic Trouble Code. [9]

35

The parameters are read via TELEMACO by directly connecting the diagnostic

tool to the OBD (On Board Diagnostics) port inside the vehicle, and then

acquired via a wired ethernet connection to an external notebook PC; the main

advantage in using this tool is the continuous acquisition of data since it is

connected to the vehicle for the entire diagnostic session.

The E.A.SY (Electronic Advanced System) device allows the diagnosis of the

vehicle parameters transmitted via CAN lines. The acquisition takes place

through an integrated software, called Silver Scan Tool, installed on the

Windows operating system. This tool sees its main utility when quick

acquisitions are needed or that do not require a particular operating environment,

as it is a compact and shock-resistant diagnostic tool.

Figure 2.19: E.A.SY device for the diagnosis of Iveco vehicles electronic
components.

Unlike Telemaco, which allows to acquire collected data already translated from

the standard transmission binary code into readable and understandable

parameters by the operator, E.a.sy requires a connection interface that performs

this task.

36

The UDT device, the most recent, was released by Iveco together with the release

of the heavy range Stralis model. With this one it is possible to directly send

signals and/or messages via the CAN line to the vehicle's electronic devices.

Once connected, it is possible to select a specific ECU or a specific path in the

CAN lines to carry out tests on several interconnected ECUs; after carrying out

the test, the system provides all the technical information necessary for the

maintenance and verification of the affected components, which can be for

example the DTC codes of the error messages encountered.

Figure 2.20: A truck during a diagnostic session.

37

Chapter 3

Research and analysis of the
exemplary case in the
Telematics sector

In the second chapter, the various types of errors and software anomalies with

the associated severity have been described in detail. During the internship at

Iveco, it was possible to get to know and listen to the experience of many people

who were able to work personally on important projects for the innovation of the

fleet of commercial vehicles offered by the company. Particularly relevant was

a detail regarding software errors, or commonly called "bugs" in computer

science: nowadays it is very rare to find this type of errors in vehicles; they are

practically non-existent. This gave particular emphasis during the research phase

of an exemplary case of issue related to the software used in the electronic

components of the vehicles.

It should be noted that for most of these software anomalies, if any, it is very

likely that they are software faults; these are due to hardware errors and/or

failures that lead to different behaviours of the ECU than originally specified

during the design phase. This is the case for example of a sensor which, not

working as it should, acquires incorrect data, consequently leading to incorrect

processing by the software.

The main objective of this thesis is to analyse, verify and validate the embedded

software of the ECUs in order to improve the reliability; to this end, in-depth

research of all the software integration cases was done in the Telematics sector.

With this research, the aim was to find an issue that took a lot of resources and

time to be understood and solved, in order to analyse and learn an effective

38

methodology to be applied in new software implementations and developments

that require integration with electronic components of the vehicle.

An exemplary case that definitely caught the attention during the research in the

database of support claims from customers is the one regarding the actions taken

in order to correctly and reliably integrate the New Infotainment System,

available on the whole range of Iveco vehicles and which is called more simply

with its acronym NIS, with the telematics electronic control unit PCM

(Processing and Communication Module).

3.1 Study of the case: The integration between NIS and

PCM

As seen in the previous chapters, Iveco vehicles are equipped with systems that

allow the receipt of wireless data which thus enable an ecosystem of services

that can be managed remotely and are always connected.

The heart of the communications that take place between interconnected

electronic systems is called “Processing and Communication Module”,

shortened as PCM.

This ECU was developed by the Iveco Telematics team, with whom I had the

opportunity to work together for the implementation project of a software

prototype, described in chapter 4, and to learn the work methodologies and

effective approaches for the software development. Thanks to this activity I was

able to improve my technical skills, by sharing work plans and carrying out a

full project up to its completion entirely using the Agile Scrum methodology.

The goal of the PCM is to improve the driving experience for the driver by

providing features such as advanced assisted driving, smart evaluation of driving

performance, management of on-board multimedia systems, data exchange for

applications that require wireless connection. [10]

Among the on-board electronic instruments connected to this electronic control

unit we find the New Infotainment System, shortened as NIS. As the name

39

implies, Iveco's infotainment system is all that allows the driver to interface with

the vehicle and get useful information. Here we find multimedia applications,

radio functionality, smart navigation integrated with fleet management, “Iveco

No Stop” app to request support at any time of the day and specific information

panels dedicated to fuel consumption and the driver's driving performance

evaluations.

The operation of each application is due to the software integration of these two

systems mentioned above. In fact, each window or panel shown on the NIS is

processed and transmitted by the PCM. This occurs via a network protocol over

which data packets are exchanged.

3.1.1 Introduction to PCM and NIS

The PCM (Processing and Communication Module) telematics unit is based on

a software architecture managed by a custom Linux OS. The basic software of

the PCM bundle, the Telematics applications and the framework, that is the layer

with all the available services, are produced by different external suppliers

together with the hardware. Iveco, therefore, provides the software integration

of all of them into the unit. [10]

Figure 3.1: PCM software bundle architecture. [10]

40

Within the proprietary framework we find a series of services that allow to:

• Control any application, service and device, collectively referred as

modules, in the system;

• Manage the underlying vehicle CAN Data Bus through a dedicated

interface, providing a homogeneous and agnostic view over the

vehicular information by mapping digital signals and messages to

logical ones;

• Access the hardware through a Bus Gateway from the OS interface

layer. [10]

Furthermore, the PCM is designed to guarantee the transmission of data through

the implementation of servers used for specific functions such as:

• Interface for diagnostic purposes split into two parts: one is toward the

CAN line and can be used by testing devices to make requests into the

client protocol, the other one is for applications so that they can make

requests and obtain diagnostic data too;

• Enable applications to register itself against one or more URLs and

receive the requests directed to such URLs via the related connector.

Applications can generate and expose HTML web pages relying on a

web server that provides the client with static resources and

dynamically generated data, separating the UI management from the

server logic;

• Update the applications and all the other software packages by means

of a dedicated server that is able to control and monitor all the runtime

characteristics and system resources related to the software bundle;

• Exchange messages with other applications or servers invoking the

appropriate methods on the related library;

• Validation of new software bundles integrity by signing bundle

manifest file with certificates. [10]

41

The PCM electronic control unit can communicate with the other integrated

systems through different channels, based on the required functionality, which

are: CAN lines, USB, Wi-Fi, Bluetooth and 2G/3G/4G cellular networks. Figure

3.2 shows the main connections involving on-board and off-board systems with

which the ECU exchanges data. It must be emphasized that all connections are

privacy-compliant, i.e. they comply with the cybersecurity of the data

transmitted. Every signal is processed according to specific protocols for user

data protection and to prevent any external malicious attack or unauthorized

access to vehicle systems.

Among these interconnected systems there is the NIS (New Infotainment

System), a system that is responsible for all the interactions that the driver has

with the vehicle’s functionalities. This component is manufactured by an

external supplier and consists of physical buttons (two knobs and two keys) and

a touch-enabled display.

Figure 3.2: PCM connections with other systems. [10]

42

The NIS is equipped on board the vehicles and offers, integrated with the PCM,

an intuitive UI (User Interface) with various functions and applications,

navigable through the user's touch inputs. At the bottom of the interface there is

a bar that shows the various applications tabs: there are the standard functions

for listening to radio channels and music, the access to the rear camera, direct

connection to the cellular network and to the services of the “Iveco Easy Way”

smartphone app, the “Vehicle” panel and a special section for configuring user

settings.

The "Vehicle" panel, shown in Figure 3.3, is where most of the main telematics

applications reside. Here there is access to: monitoring for remote vehicle

diagnosis (RAS), forwarding of non-stop Iveco support requests (ANS),

evaluation of driving style and fuel consumption (DSE), access to vehicle

information such as the VIN code (Vehicle Identification Number) and licenses,

etc.

Figure 3.3: Vehicle tab homepage with its applications. [10]

From here the discussion is focused on the thesis study case, which analyses the

software integration of the PCM electronic control unit with the NIS

infotainment system.

43

3.1.2 Analysis of their integration

These two systems are designed to provide information regarding different

aspects and functions of the vehicle only if the user makes specific selections

within the NIS menus and submenus or if there are starting events such as the

insertion of the key. Their activity must take place simultaneously according to

functional logics.

Let’s focus now on the “Vehicle” tab, introduced previously and that from now

on will be called VehicleApp for technical simplicity, as it plays a fundamental

role in describing the integration method developed by Iveco's Telematics sector.

The VehicleApp application includes core features such as:

• Provide a browsable HTML home page for all PCM applications;

• Host graphical resources for all PCM applications;

• Collect information and dispatch them on-board and off-board. [10]

Each application redirects, with each request made by the user, to a specific web-

app accessible as a graphic resource via an http address. This solution was

chosen because it offers several advantages, including the possibility of making

changes to the software architecture without going to operate on the NIS system

and the displayed graphic interface; consequently, there is an effective reduction

in maintenance costs and times. Below, images of some applications available

within VehicleApp tab are shown:

Figure 3.4: VehicleApp: Assistance Non-Stop service. [10]

44

Figure 3.5: VehicleApp: Evaluation of fuel consumption. [10]

Figure 3.6: VehicleApp: Remote assistance and ECUs monitoring. [10]

NIS is requested to grant the connection via any available USB high speed port

toward the external Telematics unit (PCM). The system has to be able to

interface via software to the PCM, in order to act as browser for Telematics

Applications without system re-design. [11]

Interface to Telematics-based Applications requires the following statements:

• PCM and NIS will be connected to Secure Gateway (SGW) by two

separate buses, to separate the “trusted” from “untrusted” signals. This

fulfils the cyber security requirement;

45

• An USB connection will be available between PCM and NIS, using

Ethernet-over-USB protocol;

• Telematics-based applications contain the whole application logics,

including the graphical resources of the model view part;

• NIS-based web-view applications are almost viewers of the Telematics

applications: they don't include logics, but just a HTML5 browser fully

integrated with the visualization of Telematics unit applications;

• Telematics-based applications will be displayed in the foreground,

according to a separate main logic, into NIS launcher; their accessibility

will be managed via the “ping” parameter. [11]

Figure 3.7: Scheme of the Telematics unit (PCM) and Infotainment system (NIS)
interconnected through the Secure Gateway (SGW). [11]

As can be seen in the scheme in Figure 3.8, the web-server is the central point

of data exchange between the Telematics applications and the NIS web browser.

In fact, this is the PCM module that offers and processes the contents to be shown

on the NIS in a totally independent way from this system which, as said before,

46

is produced from an external supplier; the web-server verifies that the Telematics

applications have the resources available to serve the request on the display. [11]

In order for the requested application page (coming from the PCM telematics

unit) to be displayed correctly on the NIS launcher, however, the “ping” logical

parameter must be able to complete the path highlighted in purple in the diagram:

when a request is made on the infotainment (which corresponds to the user's

selection on the launcher), the telematics unit is activated by receiving the

request for a new page to dispose on the NIS display.

When the PCM receives a request of new foreground visualization, the NIS will

evaluate if it is possible to serve it: to do this, a positive response from the “ping”

parameter is needed. Therefore, the following conditions must be met in order

to show the new page in the foreground:

- Requested Telematics application has the resources available to send

back to the launcher through the web-server;

- Ping monitoring task has access to ExComGw module, that is available

and informs that the server is reachable and the request can be fulfilled

(in other words, the server has not triggered any http error). [11]

Figure 3.8: Scheme of the software architecture for the management of Telematics
applications through the ping monitoring task. [10]

47

The design of this integrated operation has seen significant revisions during the

post-industrialization phase of the vehicles, as several anomalies have been

reported by customers who used its functionalities. Precisely for this reason, it

was interesting to retrace the interventions carried out in the resolution of the

issues raised and in the validation of all the changes made; the following

discussion, therefore, describes the research of the issues that occurred in the

implementation of the software architecture between NIS and PCM, by reporting

the history of the technical interventions taken.

3.2 Creation of the history of issues encountered and

related actions taken

To fully understand the nature of this software integration between two

electronic components that perform main functions for on-board telematics, it

was necessary to search for everything that has been done during the

development. These includes all the operations done starting from the first phase

of product design up to the improvements made, gradually, as the customers

reported any fault.

Once again, the intrinsic importance in this study case should be highlighted,

since it is not only a case of integration between two very complex and different

systems, in which two completely different software platforms are managed.

Above all, also, it required a considerable use of resources and time as it was

necessary to communicate effectively with external suppliers, to try to align two

separate workflows in the best possible way. This required more effort, during

development, by the engineers involved.

The use of the Agile approach in project management helps to simplify the

communication between teams and the operations of design and development,

including testing and software release, precisely in the projects in which more

figures are involved. As already mentioned previously, this approach involves

different methodologies: among these, there is “DevOps”.

48

3.2.1 Focus on DevOps methodology

DevOps methodology is used in software development and it emphasizes

collaboration and communication between developers and IT operations

professionals, as the name suggests. In fact, it comes from the combination of

the two words "Development" and "Operations".

With DevOps, it can be immediately gained a competitive advantage in terms of

faster deliveries of better software and continuous innovation; this allows to

effectively check the reliability of the software produced.

In traditional organizations the functions "Development", i.e. developers and

software engineers, and "Operations", i.e. IT professionals (system engineers,

verification and validation engineers), are very often distinct. In short, it can be

said that the former deal with code generation and development while the latter

deal with the correct integration and release into production.

As these functions have different objectives, there is a risk that some aspects of

the workflow may conflict, inevitably leading to slowdowns in production

releases and throughout the business.

Figure 3.9: DevOps means collaboration among different functions.

49

The DevOps movement has produced, and continues to produce, numerous

principles and tools that can be adopted by organizations of all sizes. All these

principles have given rise to a working methodology that aims to improve the

way the business provides value to its customers, suppliers and partners. [12]

The advantages of adopting the DevOps methodology are summarised below:

• Improvement of the quality of the code, products and services (fewer

failures, higher success rate of changes, etc.);

• Increased effectiveness (for example more time spent on activities that

create added value, greater product value for the customer);

• Time-to-market improvement;

• Better IT alignment and business responsiveness;

• Faster, smaller and more frequent releases of code;

• Less waste of resources and fewer anomalies;

• Improvement of productivity, customer satisfaction and staff satisfaction;

• Lower long-term costs. [12]

The opportunity offered to me by the company to be able to study, research and

deepen a relevant case, such as the one subject of this thesis, has seen an increase

in productivity and better management of time and resources by using the

DevOps methodology first and the Scrum methodology later, during

development of the software prototype.

Furthermore, by learning these methodologies I was able to further enrich my

personal experience and work skills regarding the development of an industrial

product according to an Agile approach.

3.2.2 The research of the issues in the company databases

DevOps methodology was first necessary for carrying out the consequent

research activity, that is the research of the issues concerning the development

of the software integration of the PCM telematics unit and of the NIS on-board

infotainment system.

50

To properly release a PCM software bundle a platform provided by Microsoft is

used, that allows to effectively manage all the phases that make up the

development cycle of a software release. This is Microsoft Azure DevOps,

which is a Software as a service (SaaS) platform that provides an end-to-end

DevOps toolchain for developing and deploying software. The platform offers

different tools: software version analytics and insights, reporting and feedback

through teams capabilites, specifications and requirements management, project

management tools, automated builds, test and management of new software

functionalities. It basically covers the entire application lifecycle.

In the Figure 3.10 it can be seen the diagram of a pipeline with integration and

continuous release of software, managed using the tools offered by Microsoft

Azure DevOps platform.

Figure 3.10: Software development cycle using Azure DevOps tools.

Obviously, therefore, if two distinct figures are working on a software release

or, as in the thesis software integration study case, two different companies, it is

clear that an enormous advantage is obtained by using this platform for the

combined management of two workflows.

Here, therefore, at this point of the thesis activity in Iveco, it was necessary to

request the access to the Microsoft Azure DevOps server used by the Telematics

team to communicate and receive feedback with the external suppliers about the

development of the PCM unit software bundles.

51

After obtaining access from the company to the internal Azure DevOps server a

work team for the in-depth research was created, together with me and my

company tutor Eng. Pontes. The support team designated for this activity

consisted of three people, who gave their contribution to design and develop the

software prototype implemented in the project phase of the thesis (which will be

discussed in chapter 4). Eng. Lo Iacono has been designated to support me

specifically during the development of the software project, as he has

participated in the development of the PCM-NIS software integration.

Within the Azure databases, the research was set up in such a way as to focus

the results obtained according to our needs: therefore, using keywords and

special search filters, the platform provided all the tickets regarding software

bugs, errors and faults found on the NIS system.

A total of 73 elements were found in the CLOSED and/or RESOLVED status:

the results indicating the OPEN status were deliberately discarded, as the

objective of the research was the reconstruction of the actions and technical

interventions carried out to correctly fix the NIS system software issues. It

should be noted, however, that some open cases have also been found, in fact,

even if with lower probability, issues continue to arise.

For the complete reconstruction of the history of issues encountered, the cases

found in an OPL file (Open Points List, the function and use of this document is

discussed in chapter 2) must also be added to the list.

Analysing the description of the problem, the effect observed by the user, the

reproducibility and the type of solution (where present), these issues where then

grouped by common aspects in order to build classes. Some of the discovered

bugs have been excluded as they were not inherent to the analysed case, leaving

therefore 33 exposed cases. These cases were then grouped by "cause" of the

problem, finding 8 categories and then by "final effect" of the problem, finding

11 categories.

Among these anomalies, some have been reported several times, highlighting

the repetitiveness of the errors in question. Others, on the other hand, totally fall

52

within the definition of intermittent error (which has been described in chapter

2), that is, it occurs once or at irregular intervals, making the understanding of

these issues and their resolution extremely complicated.

All the data collected during the research were then reported in an Excel

spreadsheet, attaching detailed graphs with percentages showing the breakdown

of the issues according to the classification. In this way, it has been created a

further product useful for understanding the resolution procedures and the effects

observed that were reported the most.

To conclude the reconstruction of the history of the issues inherent in the PCM-

NIS software integration case, it was organized a meeting with a person who

gave his availability to provide access to an additional database. This is called

Asist and it is used among the Iveco facilities globally; in this database the

research was unsuccessful as any report inherent to the under-investigation case

was find.

Subsequently, the main issues highlighted by this research undertaken in the

company's internal databases are reported and described.

3.3 Significant issues encountered

When dealing with the design of a complex integration such as the one regarding

the two electronic systems, PCM (Processing and Communication Module) and

NIS (New Infotainment System), it very often requires more efforts in the post

product release phase rather than in the preliminary design phase.

As mentioned previously, for the management of an entire software development

project, specific platforms are therefore used that provides servers located on

cloud infrastructures and advanced tools for the combined management of

multiple workflows. Each of these can include code development, building of

software packages, various tests on the concerned unit and on the integration,

release in production, taking charge of the claims on anomalies and failures. In

this scenario it must also be considered that for each workflow it is important to

53

respect the planned schedules to ensure a continuous release of new software.

Often, therefore, issues that may lie at the base of this pyramid of chained tasks,

during the development of the code, there is time to make the needed changes

and avoid blocking issues or sporadic errors after the release.

In the case of the PCM-NIS software integration various issues arose which

mostly affected the applications made available by the PCM on the NIS display,

in particular the VehicleApp, but also communication issues involving the

ExComGW module; it is responsible for giving feedback about server

connection status of the PCM via the network presence parameter (i.e. ping,

defined previously).

3.3.1 Analysis and identification: the approach used

The approach used for tracking anomalies within databases can be summarized

as follows:

1. Advanced search configuration focused on "SW bugs - SW errors"

category;

2. Display of all points relating to the NIS system, filtering the search

contents using selected keywords;

3. Unbundling of the list of points obtained on the basis of the status label.

Only points in the CLOSED and RESOLVED status are taken into

consideration;

4. Grouping of issues according to the effect generated;

5. Analysis of each individual issue using the description of the initial

report and of the interventions carried out until resolution (where

present);

6. Detection and definition of the different causes that led to the same

effect.

In this way it was possible to optimize the identification and the understanding

of the causes that led to a consistent number of closed and resolved points, trying

to create groupings and redirecting each problem to its solution.

54

The ticketing system, with which communications take place in the Azure

DevOps database, provides for each reported claim:

• The name and surname of the claimant;

• A unique identification code of the ticket;

• The vehicle electronic system affected by the fault/anomaly;

• The version of the software bundle installed at the time of the failure;

• The reproducibility of the problem (if frequent or intermittent);

• Any devices with which the monitoring was carried out;

• The logs with the data collected by the vehicle over time by the self-

diagnosis functions available in the Iveco vehicle’s electronic control

units;

• The logs with the data collected by the maintenance worker who carried

out the diagnosis (where available).

Although the availability of this information was necessary to understand the

reported claim and the issue encountered and allowed the groupings to be created

based on the reported effect, it was certainly not sufficient to make a hypothesis

of the cause of the issue itself: an adequate technical reasoning on every single

issue, using the notions studied and learned about the PCM and NIS systems,

has made it possible to group all the points also based on the cause of the issue.

Through this approach, it was possible to exclude most of the points that were

not relevant to the integration case but which perhaps only concerned the NIS

infotainment system. For example, the following report clearly refers to an

anomaly affecting the NIS system and the Iveco Easy Way App (EWA):

 55848 [SYS_T] Misalignment between NIS and EWA on media section

...

When cycling on/off, NIS/media turns ON but the EWA/media section

remains disabled

55

Therefore, not reporting software anomalies detected in the integration of NIS

and PCM systems, this and tickets with similar claims were excluded from the

identification, narrowing the search field and the total number of points to be

identified.

Many reports have been found regarding issues on the visualization of the

applications user interface in the NIS display for, perhaps, an incorrect

initialization of the PCM when the vehicle is turned on: the most striking cases

and which have had many technical interventions are those involving the

graphical elements called "spinners".

These graphical elements are the solution of the developers of the NIS software

architecture to "mask" all the loading times of a new interface/menu or when the

vehicle is switched on, as the graphic resources have not yet been made available

by the PCM. A “spinner” is also shown in the case of a disconnection of the web-

server or the communication channels unavailability between the two systems.

The functioning of these two systems must go hand in hand, as described in the

in-depth paragraph of their integration above; the “spinners” will also be

discussed and further explored in chapter 4 as, for the development of the

software simulator of the NIS system, they have been added to faithfully recreate

the behaviour of the infotainment.

These "spinners" have been the subject of various issues highlighting, in many

cases, design flaws in the VehicleApp application. In the ticket below there is a

significant technical intervention that was decisive:

 69071 [NIS] Circular spinner - Horizontal spinner - White page

Steps

 1. First test:

PCM on suspend, then wake up of the PCM from EWA ->

NIS was ok for few minutes then a Horizontal spinner appears on NIS.

Checking EWA

Vehicle info page is in loading. Recovery: restart VehicleApp

 2. Second test:

56

PCM up & running (due to the opening of the car) then put web-server &

VehicleApp in debug. After this reboot P&CM ->

After reboot Horizontal spinner appears on NIS and Vehicle info page on

EWA is in loading.

Two recoveries have been tried: 1) Restart web-server -> nothing happened.

2) Restart VehicleApp -> the system restarted working well

...

The issue has been observed also during intensive test taking on vehicles with last

software bundle… In order to avoid the NIS stuck over a spinner, VehicleApp has

been removed from suspend on RAM so at resume (after PCM suspend mode)

VehicleApp boots each time without causing any CUSTOMER experience

interruption on NIS.

In this ticket there is evidence of some issues which, as will be seen in the

classification below, have been reported frequently highlighting their repetitive

behaviour. The PCM unit manages the start-up of all the applications available

on the NIS display on the basis of the assigned priority in the design phase. All

the modules that participate in the connectivity and in the communication

interfaces of the two systems are therefore activated one by one respecting the

priority assigned to each NIS functionality: this priority list generally sees

different “run levels” where the activation of key functions for the safety of the

driver and the vehicle cover the highest levels and are activated first while the

remaining functions, such as those offered by the VehicleApp application, are

put on hold until their activation level is reached.

For this reason, there have been issues such as the one described in the above

ticket, where the VehicleApp application remained blocked on "horizontal

spinner” despite the fact that the PCM was in the state of suspension; this graphic

element, in fact, should only be shown whenever the VehicleApp is not active

but the PCM unit is still ready to provide the necessary http resources. The driver

in this situation could not do anything.

So, two were the solutions: VehicleApp was moved to the right run level

assigning it a higher priority, in order to avoid that the PCM unit is in the

"suspend to run" state when the VehicleApp functions are requested, and the

57

"circular spinner” was introduced, a graphic element that suggests a loading in

progress every time the activation from the suspend state of the PCM is expected.

All categories of significant issues that are the result of this analysis and

identification will now be classified.

3.3.2 Classification by cause and final effect

From the research of the issues inherent to the case of software integration

between the PCM electronic control unit and NIS system within the company

databases, a total of 73 exposed cases have been found. All these cases have been

solved or closed, as they were not blocking or indirectly solved.

After the screening of the issues concerning only one of the two systems or not

inherent to telematics applications, 33 cases remained of which an in-depth

analysis and identification was made for each following the approach described

above.

From here, having these data, it was possible to see the integration case with

more clarity on its complexity. A lot of work has been done to improve the

design of these components and achieve an excellent level of integration. This

leads to a reflection: innovating is not easy but, starting with the right idea and

effectively organizing time and resources, it is possible to make constant

improvements, in order to provide the customer with cutting-edge technologies

that give the security of being able to start the vehicle and have everything under

control.

All 33 issues resulting from the research, analysis and identification activity

were classified according to two criteria:

• Final effect generated, obtaining the eleven categories in Table 3.1;

• Triggering cause and applied solution, obtaining the eight types in Table

3.2.

The data collected are represented by a qualitative graph with the percentages of

finding of each class with respect to the total number of cases found.

58

Table 3.1: Classification of PCM-NIS software integration issues by final effect.

CATEGORIES OF FINAL EFFECTS CASES FOUND

Horizontal Spinner 2

Circular Spinner 6

Infinite Spinner 6

White Page 7

Black Page 4

VehicleApp running false 1

Wrong visualization of NIS page 1

Web Server Error 2

Comunication Error 1

High CPU Consumption 1

NIS Blocked 2

Total Tickets Number: 33

Total Final Effects Number: 11

59

Table 3.2: Classification of PCM-NIS software integration issues by cause.

TYPES OF CAUSES SOLUTIONS CASES FOUND

Framework issue LiFT Release 10

VehicleApp application issue SW Release 5

Application configuration issue Bundle Release 4

ExComGW application issue SW Release 1

Issue no longer encountered Resolved indirectly 5

Issue not resolved (Borderline case) - 2

Issue on NIS SW Release 3

Issue not resolved on NIS (Borderline case) - 3

Total Tickets Number: 33

Total Causes Number: 8

60

Chapter 4

Implementation of the software
prototype

After an initial phase of study and in-depth analysis of the entire Iveco vehicle

range, the connected functions and the cutting-edge systems that make up the

electronic architecture, the work in the company continued with the research of

software issues. For each of these issues, an attempt was made to reconstruct the

resolution context and the components involved.

From a careful analysis of various claims regarding faults in the Iveco heavy

range electronic control units the significant issues were then highlighted,

namely those that had blocking effects for customers who use the vehicles.

By creating the groupings of the signals sought, two vehicle electronic

components particularly caught the attention, which with their integration

provide main functions for on-board telematics and connectivity: the NIS

infotainment system and the PCM electronic control unit.

This case of software integration between two different electronic systems that

perform completely different functions was of greatest interest for the

Telematics sector of Iveco. In fact, these are two components that enable main

functions for the driver and for which various technical interventions were

required to ensure that everything works properly. This aspect was highlighted

by the classification of the software issues inherent to the exemplary case, which

shows the frequency of encountering the major issues.

With this, the classification reported in the previous chapter represents the

culmination of the analytical phase of the thesis activity and the beginning of the

experimental project phase which this chapter will deal with.

61

4.1 Description of the project

The idea of creating a simulator of the NIS infotainment system arose from the

need to simplify the testing and validation operations currently carried out on

this component. It has been seen, in fact, how the software integration between

NIS and PCM required a lot of time and resources to be implemented at a high

level of design.

Although the two electronic systems in question are extremely different from

each other due to the functions they must perform, they have the common goal

of providing information.

Specifically, this information can have different priorities assigned. Telematics

applications must be able to constantly receive data from several main vehicle

systems, to provide information that gives the user safety while traveling on the

road. It goes without saying, therefore, that guaranteeing the reliability of the

components involved is of high importance.

Many of the software issues encountered in this exemplary software integration

case affected the way the information was shown on the infotainment display via

the telematics control unit. For example, these were blocking errors that

prevented customers from obtaining relevant information on their driving status

or even unable to access the remote assistance offered by Iveco.

Iveco employees had to manage and find the most suitable solution to correct all

the points that the customer found, as the software did not comply with what was

expected. The two systems were not well synchronized with each other, so

further checks were always needed to study, deepen, analyze and improve their

software integration.

What has also made the integration between the two systems more complex is

certainly the participation of two different companies in the project. In fact, the

PCM control unit is produced by Iveco S.p.A. while the NIS infotainment system

is supplied by an external partner.

62

With these premises, the opportunity offered me by Iveco was born. I was asked

to design a NIS simulator with the support of a team made up of engineers in the

Telematics sector. In this project, the first goal to be achieved was to reproduce

the behavior of the NIS system faithfully. Subsequently, to experiment the

reproduction of the issues occurred in the past, detected by the claims analysis,

for the functional validation of this software prototype.

Therefore, after this application calibration phase, it was possible to develop an

innovative functionality: automated testing. Through the automated tests, the

goal is to allow to detect many software issues in the shortest time and further

simplify the testing and validation operations. The automated procedures avoid

long and repetitive manual interventions for the verification and analysis of the

component.

The main purpose of this implementation is to bring out as soon as possible

software issues related to the visualization and processing of contents between

the two integrated electronic systems, which would otherwise lead to

malfunctions. By providing the ability to emulate the external partner's

component on a personal computer, there is no need to connect hardware to the

test bench. In this way, the testing and validation process of the Iveco telematic

control unit is faster and more accessible.

4.2 Technical preparation for project development

To start the development of the NIS simulator, a work plan was first set up, in

which the various phases of the project were defined. Throughout this part of the

internship I was able to use the fundamental concepts of the Agile Scrum

methodology which provides for targeted meetings according to portions of

work called "sprints".

The advantage of this software development methodology is the total absence of

downtime. In fact, having attended Scrum meetings daily of the Telematics team,

I was able to avoid slowdowns for the entire duration of the project as I was

provided with adequate support for its development.

63

The first day of work on the project was essential to properly set up the work.

We then organized a preliminary meeting in the company to define the technical

details of the activity.

During this meeting the PCM electronic control unit and the NIS system, their

communication interface and all that has been done in the past to improve the

implementation of the two electronic systems were defined in detail. I was also

provided with exhaustive documentation to further investigate the two

undisputed protagonists of this thesis (described in chapter 3).

After the necessary analysis of the internal documentation, I was then offered

the experimental activity object of this implementation: reconstructing the NIS-

PCM integration through software simulation.

Assuming that I am particularly inclined and attracted by the Software

Engineering field, I welcomed the proposal with particular interest, even though

I was not completely confident in my technical preparation. This feeling was one

of the most important personal motivations throughout the activity, as the desire

to understand new development techniques and to innovate has always pushed

me to act.

4.2.1 Technologies used

The entire application was developed with the C-sharp programming language

(C#). It is a flexible programming language that developers can use for virtually

every type of software or application development and testing purposes. For the

purpose of developing a desktop application specifically for Windows, this

language is widely used and specifically tailored to the architecture of

Microsoft's OS. [13]

Versatility might be the most salient feature of C#, but there are plenty of other

advantages for anyone who works with it. Some of the most important ones

include:

64

• Faster development time

C# has several features that allow developers to code faster than with

other languages such as statically typed and ease-to-read language.

• High scalability

Engineers can quickly make adjustments and build on top of any C#

program to expand its functionality and support more users.

• Object-oriented

Being object-oriented allows C# to be highly efficient and extremely

flexible, all of which makes development easier and less resource-

intensive.

• Gentle learning curve

C# shares many of the same features and overall approach to

programming as other popular languages, making it easier to understand.

• Vast support community

C# is one of the most widely used languages in the world, which means

that there are many sources available for documentation and support. [13]

This programming language, therefore, has all the features necessary to meet the

requirements defined for the development of the software prototype. Being an

object-oriented type of language and its familiarity with the C language (that I

have already used) allowed me to manage code writing effectively despite

having no previous experience with C#.

As for the development environment, the choice fell on Microsoft Visual Studio.

This hugely popular Integrated Development Environment (IDE) is the perfect

companion to the C# programming language, as they are both created by

Microsoft.

65

Figure 4.1: The Visual Studio IDE, with callouts indicating the location of key features and
functionality. [14]

Visual Studio includes features that have improved productivity during software

development, making coding more effective and faster. Most of these features

had great impact on my productivity during the project phase. Some of the most

popular are:

• Squiggles and Quick Actions

Squiggles are wavy underlines that alert you to errors or potential

problems in your code as you type. These visual clues help you fix

problems immediately, without waiting to discover errors during build or

runtime. If you hover over a squiggle, you see more information about

the error. A lightbulb might also appear in the left margin showing Quick

Actions you can take to fix the error.

• Refactoring

Refactoring includes operations such as intelligent renaming of variables,

extracting one or more lines of code into a new method, and changing the

order of method parameters.

66

• IntelliSense

IntelliSense is a set of features that display information about your code

directly in the editor and, in some cases, write small bits of code for you.

It's like having basic documentation inline in the editor, so you don't have

to look up type information elsewhere.

• Call Hierarchy

The Call Hierarchy window shows the methods that call a selected

method. This information can be useful when you're thinking about

changing or removing the method, or when you're trying to track down a

bug.

• CodeLens

CodeLens helps you find code references, code changes, linked bugs,

work items, code reviews, and unit tests, without leaving the editor.

• Go To Definition

The Go To Definition feature takes you directly to the location of a

function or type definition. [14]

Among the main features of Visual Studio we find the availability of the .NET

platform, fully integrated with the writing of code in C# language.

As a developer platform, .NET includes libraries, reusable components,

programming languages and a variety of tools that help engineers develop,

compile and deploy modern software for virtually any use case.

67

Figure 4.2: The various application targets of .NET platform. [15]

Figure 4.3: Key advantages of using .NET platform. [15]

This particular platform includes the .NET Framework for software

development, which allows to build and run web and desktop applications on

Windows. The ability to manage desktop applications with integrated web

browsers was fundamental for the creation of the NIS simulator, as it enabled

key PCM functions availability. The versatility of this platform in extending the

basic functionalities available was fundamental to solve various blocking issues

during the integration of the NIS simulator with the PCM control unit. In the

following discussions, all the difficulties and problems encountered during

development will be highlighted as well as all the resolving methods that have

proved effective.

68

4.2.2 The MVVM architectural pattern

The newly introduced technologies are functional to modern software

development, providing countless tools for simplified and immediate design.

Managing software applications involves several factors. The more the

functionalities implemented increase, the more the resources to be managed

considerably increase the number of lines of code. Adopting an organized

method of software development can be very helpful.

There are many architectural patterns to organize the workflow of designers and

software engineers. Certainly, among the most popular there is the Model-View-

ViewModel (MVVM) architecture.

Figure 4.4: MVVM software architecture. [16]

The MVVM pattern structures the software as in Figure 4.4, using the following

components:

• Model

The Model is where the business logic of the application and the

domain model reside to communicate with other objects of various

entities. The model code contains various methods to execute and is

designed independently of the specific UI platform. The software

prototype model is managed by the CoreLogic class code, entirely

written in C#. Here is where the network communication with the

external electronic control unit takes place.

69

• View

The View is responsible for defining the structure, layout and

appearance of what the user sees on the screen. In the software

prototype it is defined as MainWindow, designed exclusively with

XAML markup language.

• ViewModel

The ViewModel is the intermediary between the view and the model.

He is responsible for managing the logic of the view. Here the methods

of the model classes are invoked, supplying the data obtained from the

model to the specific view that requested the data. In the software

prototype it is defined as a class written in C#. [16]

The main benefit of implementing the software prototype using the MVVM

pattern is the improvement of the application testability due to the clear

separation between the application logic and the user interface. Furthermore, it

increases the opportunities for reusability of developed technologies and written

code.

It will be now discussed the design of the NIS simulator, realized with the use

of these software technologies and development methodologies learned. The

actions taken to integrate the software prototype with the PCM control unit will

then be described. Finally, we will deal with the implementation of the

innovative functionality of automated testing for the verification and validation

of the component.

4.3 Design of the NIS simulator

The software prototype is intended to faithfully emulate the behaviour of the

infotainment system. Reaching this goal has seen several stages of development,

in accordance with the Scrum methodology which involves organizing the

70

development phase using iterative processes, dividing all the work into many

portions.

The first step was to create the architecture of the prototype running on a

Personal Computer (PC), developing the graphic interface and the interaction

logic for each element. The second step was then to implement the main logic

for processing the signals received by the PCM.

The infotainment of Iveco vehicles includes various menus and submenus to

access the various multimedia functions, remote support services, vehicle

information and telematics applications for driving assistance. All the elements

shown on the NIS display are actually web pages carefully processed by the

PCM control unit, which must be available at each new input given by the user.

Since this is a software integration between two electronic systems that

constantly exchange information via network protocol, those who designed these

systems had to take into account the possibility in which, for any reason, the

PCM is not available or is inactive. During the phase of defining the functional

specifications, therefore, the developers of the NIS have devised a solution that

exploits a logical flow of interaction with a status signal.

The complexity of this behavior was evident during the first phase of the

software prototype, as it took several interventions to reproduce it using only the

personal computer.

4.3.1 Creating the user interface

There are very popular design templates that can often help software

development but managing and considering a large number of graphics can still

be tricky. This difficulty is usually due to design practices that require a lot of

effort and a lot of written code to effectively integrate the UI (User Interface)

part with the core logic part of the application.

Visual Studio provides access to an entire ecosystem of libraries and tools that

simplify the development of the desktop application. Specifically, what was

71

definitely useful for creating the simulator user interface is the Windows

Presentation Foundation (WPF) platform. This platform exploits the main

features of the Model-View-ViewModel (MVVM) architectural pattern and is

currently one of the most used.

As the whole application takes shape and the number of functions grows

considerably, the number of lines of code and parts interacting with each other

increases. It is therefore essential to adopt a design method organized according

to architectural patterns. The WPF architecture was used for the development of

the NIS simulator.

An essential feature of this platform is data binding: UI elements can be easily

chained to methods to execute, written in the code behind in C#.

Figure 4.5: Design area for the simulator’s user inteface.

The UI design interface in Visual Studio is configured as in Figure 4.5. The

creation of the graphic elements is done in a very intuitive way, by selecting and

dragging the desired control in the design surface from the column on the left.

The controls of WPF are different and each has a specific function: we can find

from the simple Button to more advanced controls such as the TabControl. With

this control it was possible to faithfully reproduce the interface for navigation on

72

NIS system, consisting of the various tabs of the available functions (Radio,

Media, Camera, Apps, Phone, Vehicle, Settings).

Each control, once added into the design surface, creates its own XAML markup

in the editor below. XAML (short for eXtensible Application Markup Language)

is the language used to describe the characteristics of the UI elements of

applications based on the WPF platform.

Taking advantage of the data binding offered by this platform, each property that

makes up the markup code of the elements is accessible and editable from the

code behind. Here the potential offered by this technology is highlighted which,

in full compliance with the MVVM architectural pattern, allows separating the

code of the view of the model from that which manages the functional logic of

each element. The advantage is the total reusability of the code by multiple

elements or the easy reconfigurability of portions of code for any

implementation of new features, without having to worry about the graphical

interface.

Moving now specifically to the Vehicle tab, this is where the user sees

everything that the PCM control unit processes on behalf of the NIS; this is the

VehicleApp, already mentioned previously. Through this tab it is possible to

view the NIS homepage.

The NIS simulator uses an implementation logic based on a "ping", that is a

parameter that communicates the current status of the PCM: the telematics ECU,

in fact, is designed to activate only when a new request is received from the

infotainment system or by other interconnected systems. As when starting the

vehicle after turning the key in the pawl, the PCM processes the requested

contents following the order of priority assigned to the functionality to be

disposed. This means that until the PCM is available, no content can be viewed

on the NIS.

To overcome this, the NIS displays particular graphic elements that suggest a

loading in progress to the user. These elements are shown only when necessary,

73

i.e. when the “ping” parameter returns the unavailability value for a certain

period of time.

Below is shown the XAML code that manages the properties of the UI elements

to display in the Vehicle tab:

<local:SpinnerControl EllipseSize="40" Height="160" Width="160"
Margin="301,93,339,144" Visibility="Visible"/>

<Image x:Name="PageNotFound" Source="/Resources/notfound.png"
Stretch="Fill" Visibility="Collapsed"/>

<Image x:Name="HeavyNotFound" Source="/Resources/notfound_heavy.png"
Visibility="Collapsed" Height="200" Width="120"/>

<Image x:Name="LightNotFound" Source="/Resources/notfound_light.png"
Visibility="Collapsed" Height="200" Width="120"/>

<Grid x:Name="BrowserGrid" Visibility="Visible">
 <Grid.ColumnDefinitions>
 <ColumnDefinition></ColumnDefinition>
 </Grid.ColumnDefinitions>
</Grid>

The "Visibility" property is managed by the code in C# and enables/disables the

displaying of the graphic elements to be shown during loading times or when the

PCM is not available.

The Circular Spinner, shown in Figure 4.6, has been implemented using a User

Control, a tool available in the WPF platform, and displays the animation shown

by the NIS infotainment system during loading times or when the PCM is not

available.

Figure 4.6: Circular Spinner in the NIS simulator.

74

The Error Page, in Figure 4.7, is shown after a prolonged period of unavailability

of the PCM, for example in the case of malfunctions or system blocks. To

recreate this page, showing a combination of images provided by the Telematics

team was enough. The page adjusts its graphical contents to show the vehicle

currently configured in the simulator.

Figure 4.7: Error Page in the NIS simulator.

Finally, a splash screen has been added showing the Iveco logo, to be shown

when the application is started. This graphic control element consists of a

window that masks the application as long as it is being loaded. It allows the

completion of the initialization operations in the background and avoids giving

access to the user interface when all the functions are not yet available.

Figure 4.8: Splash screen shown at NIS simulator startup.

75

4.3.2 Implementation of the logic flow

For the correct functioning of the software integration between NIS and PCM,

the developers implemented a communication interface based on a logic flow.

The PCM control unit processes the contents shown on the display of the NIS

infotainment system but, when this does not happen, feedback between the

software architectures of the two completely different components must be

guaranteed.

Introduced previously, the “ping” network presence parameter acts as a

communication bridge between the two systems. Its value is critical to the

functioning of all software integration.

This complex communication between two vehicular electronic systems took a

lot of work to find the correct implementation. Most of the problems encountered

are due to delays in the processing of content by the PCM or due to incorrect

configuration of the VehicleApp application. The final effect most reported by

customers using the in-vehicle features refers to infotainment systems stuck on

white pages.

From the in-depth study of the resolutive interventions applied, it is clear that

adopting a configuration of the VehicleApp specifically designed to interact with

the PCM has solved most of the problems.

The effective solution was to make the NIS system show the requested pages

only when the PCM control unit is available and has processed the content. If

there is no availability on the part of the PCM, the application shows screens that

inform the user to wait. In this way, the PCM control unit is guaranteed time to

process the response and the NIS system is still operational for the user.

The implementation of the logic flow inside the simulator has seen a large part

of the first phase of the project. With it, it was possible to enable the core part of

the software architecture of the prototype.

I was provided with internal documents with the functional specifications of the

PCM control unit to deepen the logical scheme of interaction with the NIS

76

system. Here I was able to fully understand the solution adopted and then

develop the logical scheme valid for my prototype. The scheme shows the path

of the ping to check the status of the PCM and the web page to be displayed. The

C# written code for the implementation of the logic flow in the software

prototype and the scheme in question are shown below.

while (currentStatus != Status.Idle)
{
 HttpWebRequest req = (HttpWebRequest)WebRequest.Create(address);
 req.AllowAutoRedirect = false;
 req.Timeout = 500;

 try
 {
 using (HttpWebResponse response = (HttpWebResponse)req.GetResponse())
 {
 startTime = DateTimeOffset.Now.ToUnixTimeSeconds();
 request = 0;

 if (currentStatus != Status.Success)
 {
 Debug.WriteLine("\nSUCCESS.");
 OnPingSuccess();
 }
 }
 }
 catch (Exception ex)
 {
 Debug.WriteLine("(" + request + ") NO SUCCESS...");
 if (currentStatus != Status.Timeout)
 {
 if (currentStatus != Status.Error)
 {
 if (request > 2)
 {
 OnSpinnerLaunch();
 currentStatus = Status.Error;
 }
 }
 else
 {
 currentTime = DateTimeOffset.Now.ToUnixTimeSeconds();
 if (currentTime - startTime > timeout)
 {
 OnErrorTimeout();
 }
 }
 }
 request++;
 }
 Thread.Sleep(3000);
}

77

Figure 4.9: Scheme for PCM-NIS interaction logic.

78

To check the availability of the web page to the PCM a new ping is created every

three seconds, that is an http request to the “…/ConnectionStatus” address of the

ExComGW. This module of the PCM signals the activity status of the control

unit.

If a successful response is received, then it means that the ECU is active and

available to send the page on the infotainment display. At this point the

application shows the NIS homepage sent by the PCM.

Figure 4.10: VehicleApp homepage displayed in the NIS simulator.

For the management of the element to be shown in the VehicleApp, whether it

is the homepage or the circular spinner or the error page, the application uses a

method that records the events arriving from the core logic and carries out the

operations based on the event received.

Having never used this programming technique before, it was useful to deepen

it through the official documentation available online. To keep the

implementation of the logic separated from the code that manages the graphical

interface, the use of C# events and delegates was essential.

79

In case of an unsuccessful response, the logic catches the exception and restarts

by sending a new ping request.

The "request" counter variable counts the unsuccessful http requests made and

if the following thresholds are reached without receiving a successful response,

the application shows the graphic control elements:

• After 3 unsuccessful requests (equal to 9 seconds) ➔ Activation of

circular spinner

• After 240 seconds from the first unsuccessful request ➔ Displaying

of error page

With this core logic, the prototype perfectly emulates all the operating conditions

of the real NIS system when selecting a content on the display.

In the event of an error condition (therefore after 240 seconds of unsuccessful

requests) the user can generally restart the logical flow from the beginning by

simply pressing the "Back" button on the NIS hardware keypad. This possibility

has also been integrated in the simulator by means of the button visible at the top

left in Figure 4.10, which resets all the counters and restarts the CoreLogic.

Having kept the CoreLogic code separated from all the rest of the code makes

this prototype potentially exploitable also by future new logic implementations.

4.3.3 Application configuration and PC interaction

The software prototype was developed using the Model-View-ViewModel

software architectural pattern, which made it possible to implement different

configurations in the simulator. Simply using the same methods of CoreLogic

with different parameters sent by the model or even different graphics elements.

Initially, the configurable parameters were designed in the Settings tab, visible

in Figure 4.11.

80

Figure 4.11: Settings panel in the software prototype.

The application parameters that can be modified are the following:

• VehicleApp Homepage

The address of the homepage to show in Vehicle tab. Making this

parameter editable was necessary for testing and debugging purposes.

The application has default URLs on which it is configured according to

the mode of the simulator (if connected to the PCM or in debug for

functional testing when not on the test bench).

• HTTP Server Address

The address to which CoreLogic makes http requests to know when PCM

is available for displaying web pages in the Vehicle tab. It was useful to

make this parameter also modifiable in order to use the simulator in

different work conditions.

• Error Timeout

This parameter manages the threshold for unsuccesful http requests

beyond which the Error Page is shown in the Vehicle tab. Requires the

81

entry of a numeric value that corresponds to the time limit in seconds. By

default, it is set to 240 seconds (per NIS system specification).

• Vehicle Type

Through this setting there is the possibility to change the vehicle of the

simulated infotainment system. The configurations of the Iveco Light and

Heavy range have been added; by changing this setting the graphic

resources of the selected vehicle are applied. Furthermore, it allows to

modify the operating CoreLogic applied to the model, guaranteeing the

possible use of a new logic implementation in the simulator.

• Debug Mode

This switch allows you to select the working mode of the simulator. When

deactivated, it configures all parameters in order to integrate the

prototype with the PCM control unit. If the Debug mode is activated, the

prototype creates a background process which configures a local web-

server. The http resources provided by the web-server allow to emulate

the behavior of the NIS-PCM software integration only within the

personal computer.

• Automated Testing

This button initiates an automated testing session, an innovative

functionality developed within the software prototype. It will be

discussed in detail later.

Introducing the switch for usage mode selection was essential for the

development of the software prototype. In fact, due to the global pandemic

taking place during the development of this thesis, I have not always had the

opportunity to access the company headquarters.

The idea of implementing this alternative use of the simulator, therefore, arises

precisely from the need to carry on the activity even though I could not carry out

82

unit testing of the prototype with the PCM control unit at the test bench. This

implementation was very effective.

To run the simulator in Debug mode, the application logic starts a background

process that creates a local web-server on the IP address of the personal

computer. The web-server is activated using command line parameters sent

through “Plink”: this small tool is the companion command-line utility for the

popular “PuTTY” SSH client. It allows you to create SSH process logins for the

execution of automated Linux commands from Windows. The created web-

server contains all the html resources useful to recreate the NIS homepage. This

is shown in the Vehicle tab by automatically setting the correct parameters, i.e.

URL of the local web-server and IP address of the personal computer, in the

Settings panel.

Finally, the operations that the application performs at each start have been

developed to exactly reproduce the behavior of the NIS system. Basically, each

time the application is closed, it saves the applied configuration in memory. At

the next start, the application keeps all the settings used in the last run of the

simulator and places the user interface on the last tab displayed. In addition, the

last selected usage mode (PCM or Debug) is activated.

4.4 The integration with the PCM

The development of the NIS simulator required several design phases to arrive

at a functional prototype. The main objective designated at the start of the

activity was to propose an implementation of a software prototype that emulated

the behavior of the NIS infotainment system. Once this is achieved, develop an

innovative functionality that leverages the prototype to simplify the verification

and validation of the PCM electronic control unit.

To achieve this last objective, however, the fundamental requirement was to

faithfully reproduce every characteristic of the NIS infotainment system: its

general behavior, each window displayed, the activation times of the control

83

graphic elements and the logical solutions implemented. Everything in the

simulator had to be implemented the same way.

Only after achieving this fidelity in the simulator it was possible to proceed with

the creation of the automated testing functionality.

4.4.1 Test bench configuration

The internship activity included two days a week for the meetings at the

company headquarters with my tutor and the Telematics engineer assigned to

me to support the development of the prototype, in accordance with the

restrictions in force due to the pandemic situation. These days were essential to

carry out the prototype checks on a weekly basis, as the functionalities of the

application were added and/or modified.

For this purpose, an electronic test bench was set up at the company headquarters

to work with. Figure 4.12 shows a photo of the installation.

This electronic bench reproduces the entire dashboard of Iveco commercial

vehicles including: at the top the Instrument Cluster, at the center the NIS

infotainment system and at the bottom various interconnected control units,

including the PCM telematics control unit. With this instrumentation it was

possible to verify each time the new functionalities developed in the software

prototype.

The integration with my personal computer took place by connecting the PCM

control unit via an Ethernet-over-USB connector.

Its usefulness has been seen above all after having concluded the initial design

phase of the software prototype. That is when it was necessary to carry out

calibration tests with the real NIS system, to reproduce as closely as possible its

behavior in the simulator and to test the software integration with the PCM

control unit.

84

Figure 4.12: The electronic bench used for the calibration tests.

4.4.2 The calibration tests

As previously mentioned, various technical interventions and revisions were

required to achieve the main objective of the software prototype. The NIS system

has to display a lot of contents and information since it is designed to show a

particular window to the user at any time.

To exactly reproduce its behaviour, therefore, I have analysed in detail the NIS

system when it is connected to the PCM control unit.

85

The PCM is designed with a Linux-based software architecture; this allows to

easily send commands via SSH client. The following examples are some of the

available commands:

mctl stop ExComGW ;

mctl start ExComGW ;

 mctl restart VehicleApp .

The first calibration test was done to verify that the thresholds for the activation

of the graphic control elements in the simulator (i.e. Homepage, Circular Spinner

and Error Page) matched the real ones of the NIS.

Therefore, I have analysed the behaviour of the NIS when the ExComGW, the

module responsible for the availability of the network together with the web-

server, is deactivated. The functioning of the application logic with the status

parameter “ping” is based entirely on the availability or not of this module.

This first test showed full correspondence with what happens inside the

simulator in reference to the activation times of the graphic control elements.

However, an inconsistency was found when starting the application: the Circular

Spinner did not respect the activations sent by logic. The problem was therefore

resolved, which resided in a variable that did not correctly trace the operating

status of the NIS in the core logic.

During the tests for the calibration of the simulator other issues emerged that

differentiated the behavior of the prototype from that of the real NIS system.

These were mainly graphical glitches (i.e. white flash when switching UI

elements, small delay when loading UI elements) which required better

optimization of the model for the management of the graphical interface.

It took several attempts to understand the nature of these issues. Eventually, it

turned out that the cause of the glitches was the implemented web browser. This

component, which makes interactive pages available in the Vehicle tab, has seen

several changes to be optimized to the fullest.

86

Microsoft's Edge technology-based WebView browser, initially implemented to

display homepage content, has proven to be limited in some functionality. For

the sole function of loading web pages this component worked properly, which

is why it took some time to understand that this component had to be replaced

with another solution.

Thanks to constant support from the designated team, I learned of an alternative

browser that is fully compatible with the .NET development platform. CefSharp

is a web browser based on Chromium technology, much more efficient than

WebView. With its implementation all the issues related to graphical glitches

have been solved.

This browser has also allowed the design of an important functionality to

conclude the development of the NIS simulator: navigation within the menus

and submenus of the pages shown in the VehicleApp.

4.4.3 Emulation of navigation with touch gestures

When using the NIS infotainment system in commercial vehicles, the interaction

with it takes place via touch gestures on the display. The user can navigate within

the menus and submenus available in the PCM software framework using this

type of inputs.

In the development of the simulator we wanted to reproduce this functionality to

achieve the complete emulation of the real NIS system. After having correctly

implemented the visualization of the pages, it was necessary to make accessible

every resource (information, applications, etc.) sent by the PCM.

The software architecture of the PCM was developed thinking about its use via

a touch device. The NIS, in fact, through its touch display sends the selections

on the view made by the user with the finger. Just like a smartphone.

The simulator, on the other hand, having been developed for use on a personal

computer, requires inputs via mouse clicks. The goal of this implementation,

therefore, was to devise a functional conversion method for mouse inputs. Were

87

it not for the particular functioning of the NIS-PCM software integration, this

functionality would not have required special efforts to be implemented.

As has already been said several times previously, all that is shown on the NIS

system are web pages processed by the PCM telematics control unit and then

made available to the user through an integrated browser. This means that as all

components of the UI, being part of the prototype model, were accessible from

the code behind easily, this could not be applied to the contents shown in the

browser.

The window displayed in the VehicleApp is basically an external rendering of

html resources shown through a client, the browser. Practically the view of the

contents takes place on the NIS but the current resources (the information of

each element, including the interaction area for selecting it) reside on the PCM.

The solution devised involves the use of the web browser introduced earlier,

CefSharp. This implementation is an easy way to embed a full-featured

standards-compliant web browser into a C# and .NET application. [17] CefSharp

has several browser controls for applications developed with WPF including the

OffScreen version, a headless browser specifically designed for automation

projects. The developer tools provided by this browser, based on Chromium

technology, make it extremely versatile for various applications.

The development of the navigation functionality through touch gestures within

the prototype took place as follows:

a. CefSharp Browser implementation in the Vehicle panel

This control replaced the previous integrated browser, Microsoft's

WebView. Two instances of the browser are required for the touch

functionality: standard CefSharp for WPF platform, which displays web

pages, and an OffScreen version which runs automated processes in the

background.

88

b. Browser initialization with custom settings

To enable interaction with touch gestures, the two instances of the

browser were initialized with UserAgent set on mobile device and the

Remote Debug function set to a specific IP address. With the latter a

debug session is created on the http address of the homepage to be

displayed, enabling functions available only to developers on the html

source code.

public MainWindow()
{
 InitializeComponent();
 AppWindow = this;

 CefSharp.Wpf.CefSettings settings = new CefSharp.Wpf.CefSettings()
 {
 CachePath =
Path.Combine(Environment.GetFolderPath(Environment.SpecialFolder.LocalApp
licationData), "CefSharp\\Cache"),
 UserAgent = "Mozilla/5.0 (Linux; U; Android 4.4.2; en-us; SCH-
I535 Build/KOT49H) AppleWebKit/534.30 (KHTML, like Gecko) Version/4.0
Mobile Safari/534.30",
 RemoteDebuggingPort = 8088
 };
 Cef.Initialize(settings);

 InitializeBrowser();
}

c. HTTP request to the VehicleApp homepage

Through the main CefSharp browser the web pages arriving from the

PCM must be shown, while the secondary browser performs the

conversion of the inputs in real time. The process begins with the http

request to the PCM of the VehicleApp homepage, to be made available

on the primary browser. When the main frame of the primary browser is

loaded, the Remote Debugging session is requested.

private void Browser_FrameLoadEnd(object sender, FrameLoadEndEventArgs e)
{
 if (execOn == "PCM")
 {
 Dispatcher.BeginInvoke((Action)(() =>
 {
 browser.SetZoomLevel(-2.58);
 debugBrowser.Load("localhost:8088");
 }));
 }
}

89

d. Html source code retrieval via OffScreen browser

Via the OffScreen browser, not visible on the screen, automated

procedures are carried out in the background. Here, taking advantage of

the CefSharp developer features, a Remote Debugging session is created.

All the addresses available in the two instances of the browser are then

displayed, including the homepage of the VehicleApp previously

requested. The cybersecurity protocol requires that each address available

for debugging at each session has a different identification fragment in

the URL. The entire html source code of the page is then retrieved and

saved in a string.

private void DebugBrowser_FrameLoadEnd(object sender,
FrameLoadEndEventArgs e)
{
 Dispatcher.BeginInvoke((Action)(async () =>
 {
 string html = await debugBrowser.GetSourceAsync();
 TextReader tr = new StringReader(html);
 DoHtmlParse(tr);
 }));
}

e. Creation of the debug URL through html parsing

Once the source code has been obtained, its content is analyzed through

an additional library specific for the manipulation of html code.

Therefore, the property containing the identifying fragment of the URL

of the Remote Debugging instance is extracted from the source code.

Finally, through the following method the string containing the specific

URL for enabling the remote debugging session on the secondary

browser is constructed. For the correct implementation of this part of the

code, the importance of using the “try-catch” technique should be noted.

An exception occurred punctually during the html parsing of the page in

the secondary browser, blocking the execution. Handling the exception

with “try-catch” allowed to avoid the block. The Remote Debugging

session even without requesting a new URL remained active, thus

requiring a single initialization.

90

public void DoHtmlParse(TextReader html)
{
 HtmlDocument htmlDoc = new HtmlDocument();
 htmlDoc.Load(html);
 try
 {
 string result =
htmlDoc.DocumentNode.SelectSingleNode("//body/div[2]/p/a").GetAttributeVa
lue("href", "");

 StringBuilder sb = new StringBuilder("localhost:8088");
 string debugUrl = sb.Append(result).ToString();
 new CefSharp.OffScreen.ChromiumWebBrowser(debugUrl);

 debugBrowserActive = true;
 }
 catch (Exception)
 {
 if (debugBrowserActive == false)
 {
 Debug.WriteLine("No remote session.\n");
 }
 }
 SetPage(false, true, false);
}

f. Homepage display with navigation through touch gestures enabled

VehicleApp is then shown on the primary browser. Navigation via touch

is enabled throughout the use of the application, thanks to the secondary

browser that works constantly in the background. The whole process is

done only once, at the first http request to the PCM and it happens

instantly.

4.5 Test automation using the software prototype

The idea of designing a PCM control unit testing and validation system within

the software prototype arose from the need to make these operations simpler. As

seen throughout this experience in Iveco, in fact, the development of new

functions for the two integrated systems promptly required multiple technical

interventions.

Much of the complexity came from the fact that the software integration case

involves two completely different electronic components and that, above all,

they are manufactured by two different companies. This resulted in the extension

91

of intervention times: they had to wait for the feedback from both parties for

each technical revision and the validation of the components.

With the implementation of a software prototype capable of evaluating specific

areas and/or parameters in their software integration, an effective alternative

solution is proposed.

4.5.1 Development of the functionality

For the development of this functionality, the requirements to be met were first

defined. Through the use of scripts, that are text files containing the instructions

of the test to be performed, the prototype would have to read and "translate" them

in order to perform actions on the PCM and/or on the NIS simulator. This, in

order to evaluate certain factors useful for component validation, such as: correct

initialization of the application logic following software restarts, execution times

of functionalities, availability of applications and user interface components.

Figure 4.13: Automated testing launcher.

92

The automated tests are implemented in an additional panel accessible from the

simulator Settings tab, visible in Figure 4.13 above.

From this interface the directory for the files useful for the testing session is

automatically created. If there are scripts used previously, the application

automatically sets the specific directory when the session is started.

Using the buttons displayed on the right of "Current Files Directory" it is

possible to: set a new directory on the PC from which load the scripts, refresh

the contents of the directory and add a new script to the current directory.

All the scripts present in the selected directory are displayed in the Data Grid

below, providing the following information:

- Name

The name of the file loaded from the set directory, that is, the script with

the instructions for the test case.

- Type

Indicates the type of test case, giving a quick indication of the type of

validation carried out.

- Description

Brief description of the test case indicating the specific functionality or

component analysed by the test.

By selecting the header of each column the scripts can be sorted based on the

column property. In this way it is possible to see all the available test cases

relating, for example, to a specific Type.

This information is taken directly from the content of each scripts which is

compiled according to a template created specifically for the tests. The scripts

are text files in JSON format, a standard used in the company for various

activities in the Telematics sector. A JSON file is a text file that stores simple

data structures and objects in the JavaScript Object Notation (JSON) format,

93

which is a standard data exchange format. Based on plain text, it is easy to

understand for both humans and computers. Inside each script, in addition to the

information described above, there are the instructions for performing the test.

Some examples of scripts with JSON files are shown below.

1. Script to verify the correct reconnection of the PCM following a

restart of ExComGW

{
 "tstInfos": [

 {
 "name": "JSON_TEST_V1",
 "type": "Connection",
 "description": "Server restart"
 }
],
 "actions": [
 {
 "id": "StopExComGW",
 "cmdMsg": "mctl stop ExComGW",
 "check": 16
 },
 {
 "id": "StartExComGW",
 "cmdMsg": "mctl start ExComGW",
 "check": 8
 }
]

}

2. Script for testing the operation of the VehicleApp application

following a restart of the PCM

{
 "tstInfos": [
 {
 "name": "JSON_TEST_V2",
 "type": "Application",
 "description": "System reboot"
 }
],
 "actions": [
 {
 "id": "SetVehicleTab",
 "setMsg": "vehicleapp"
 },
 {
 "id": "RebootPCM",

94

 "cmdMsg": "reboot"
 },
 {
 "id": "SpinnerActive",
 "check": 16
 },
 {
 "id": "PingSuccess",
 "check": 8
 }
]
}

Each instruction can contain specific actions to be performed based on what is

needed to automate in the test case: command lines to be sent to the PCM for the

activation/deactivation or the restart of its software architecture’s modules,

automatic inputs to be performed on the user interface of the NIS simulator or

set the check of specific events arriving from the PCM during the software

integration with the NIS simulator.

In the automated testing launcher there is also a specific button to enable a new

recording of click inputs: it has been implemented an advanced method that gets

the user mouse click selection on the browser and retrieves the specific selected

element http resources. This feature is useful to create an automated navigation

inside the VehicleApp homepage and applications. Once selected the desired

inputs path, the application gets the information of all the selected elements (such

as the specific URL) and creates automatically the click actions template to put

inside the JSON test script.

Lastly, the launcher provides a window to look for the outputs received during

the test script runtime.

4.5.2 Processing the scripts

The scripts, using the JSON format, are easily configurable according to a data

structure model built specifically to be read and processed by the implemented

algorithm.

95

The functioning of automated tests has been implemented by writing a special

class of methods in C# language called TestLogic. After selecting the test case

script to execute from the launcher interface, the prototype elaborates its content

and executes the test through the TestLogic methods. Taking into consideration

the example script n.1 above, the automated test is performed as follows:

a. Initialization of the evaluation variables

Initially, the path of the selected file is saved in a string for later use. The

variables useful for the execution of the test are then initialized:

"resumeTest" changes its value in case of test failure, "nextResult" is reset

and will contain the evaluation code for the PCM events, "startTime"

marks the test start time in milliseconds.

string filePath = Settings.Default.filePath;
resumeTest = true;
nextResult = 0;
startTime = DateTimeOffset.Now.ToUnixTimeMilliseconds();

b. Reading and saving the instructions contained in the JSON file

The contents of the script are retrieved from the path specified above. A

special library performs the deserialization of the JSON file in order to

create data structures that separate the information on the type of test from

the instructions with the actions to be performed. For the actions to be

performed on the PCM, the algorithm creates a specific string. This string

contains the extracted commands to be sent via the SSH client, the check

codes to verify that the behaviour is as expected and the automated click

parameters (such as the element coordinates in the browser, its specific

URL and, eventually, a configurable timeout for the automated click

execution).

public void DoJsonConversion()
{
 string fileName = Settings.Default.filePath;
 if (fileName != "null")
 {
 string jsonString = File.ReadAllText(fileName);
 Script scriptData =
JsonSerializer.Deserialize<Script>(jsonString);

 StringBuilder sb = new StringBuilder();

96

 foreach (var action in scriptData.actions)
 {
 string setMsg = action.setMsg;
 string cmdMsg = action.cmdMsg;
 string check = action.check.ToString();
 string sleep = action.sleep.ToString();
 string click = action.click;
 string url = action.url;
 string timeout = action.timeout.ToString();

 if (setMsg != null)
 {
 sb.AppendLine("SET>" + setMsg);
 }
 if (cmdMsg != null)
 {
 sb.AppendLine("CMD>" + cmdMsg);
 }
 if (check != "0")
 {
 sb.AppendLine("CHECK>" + check);
 }
 if (sleep != "0")
 {
 sb.AppendLine("SLEEP>" + sleep);
 }
 if (click != null)
 {
 sb.AppendLine("CLICK>" + click);
 }
 if (timeout != "0")
 {
 sb.AppendLine("TIMEOUT>" + timeout);
 }
 if (url != null)
 {
 sb.AppendLine("CHECK>url>" + url);
 }
 }
 foreach (var tstInfo in scriptData.tstInfos)
 {
 tName = tstInfo.name;
 tType = tstInfo.type;
 tDescription = tstInfo.description;
 }
 cmdString = sb.ToString();
 OnStringBuild.Set();
 }
}

c. Execution of the extracted actions

The instructions extracted from the JSON script are then executed based

on the type of action to be performed. Different types can be performed:

actions that interact with the prototype user interface to simulate touch

inputs, set pauses between one action and another, change the http

97

address for the homepage request, send command lines to manage

specific functions of the PCM or its operational status. For the commands

to be sent to the PCM the following method is used, which creates an

SSH process through the “Plink” client, integrated in the prototype. Here

the commands for the PCM are read from the specific string created

earlier and executed in the order entered.

public async Task EstablishConnectionToPCM(string strCmdText)
{
 string username = "root";
 string host = "192.168.249.1";
 string password = "root";

 ProcessStartInfo psi = new ProcessStartInfo()
 {
 FileName = Directory.GetCurrentDirectory() + $@"\plink.exe",
 Arguments = String.Format("-ssh {0}@{1} -pw {2}", username, host,
password),
 RedirectStandardError = true,
 RedirectStandardOutput = true,
 RedirectStandardInput = true,
 UseShellExecute = false,
 CreateNoWindow = true
 };

 Process p = Process.Start(psi);

 StreamWriter strw = p.StandardInput;

 strw.WriteLine(strCmdText);
 strw.WriteLine("exit");

 p.WaitForExit();

 if (p.HasExited)
 {
 p.Close();
 p.Dispose();
 }
}

d. Receiving the response and checking the PCM behaviour

After launching the commands on the PCM, the algorithm intercepts its

behaviour for the required checks. To do this, it first registers for

receiving the CoreLogic events and then monitors specific codes sent

along with the activation of the events.

 public void RegisterToCoreLogic(bool active)
 {
 if (active)

98

 {
 CoreLogic.PingSuccess += OnReceivingEvent;
 CoreLogic.SpinnerLaunch += OnReceivingEvent;
 CoreLogic.ErrorTimeout += OnReceivingEvent;
 }
 else
 {
 CoreLogic.PingSuccess -= OnReceivingEvent;
 CoreLogic.SpinnerLaunch -= OnReceivingEvent;
 CoreLogic.ErrorTimeout -= OnReceivingEvent;
 }

 }

In the evaluation variable "nextResult" it is saved the expected code after

the execution of the command on the PCM and this is then compared with

the current code received by the CoreLogic events.

 public void OnReceivingEvent(object sender, CoreEventArgs e)
 {
 if (nextResult != 0)
 {
 if (e.Code == CoreEventArgs.SuccessCode)
 {
 currentEventMsg = EventMsg.Success;
 }
 if (e.Code == CoreEventArgs.SpinnerCode)
 {
 currentEventMsg = EventMsg.Spinner;
 }
 if (e.Code == CoreEventArgs.TimeoutCode)
 {
 currentEventMsg = EventMsg.Timeout;
 }

 if (e.Code == nextResult)
 {
 currentResultMsg = ResultMsg.OK;
 resumeTest = true;
 }
 else
 {
 currentResultMsg = ResultMsg.NOOK;
 resumeTest = false;
 }
 SendLogMsg(e.Code);
 OnEventCheck.Set();
 }

 }

The algorithm performs this process iteratively at each command line to

be executed, verifying the behaviour obtained from time to time. If the

expected codes are found for each action performed, the test is considered

99

passed. If, on the other hand, after the execution of a command the

expected code is not found the test is stopped and is considered failed.

e. Execution of automated clicks navigation

To perform the automated navigation inside the VehicleApp homepage

and the applications, the software prototype exploits a combination of

monitoring tasks. First, the primary browser sends http resources at each

change of the navigation address, providing the necessary information

to do the check at each automated click on an element. Then, a method

executes the click operation in loop over the coordinates extracted from

the scripts (that have been previously recorded by means of the specific

function available in the launcher). The click loop operation ends once

one of these two requirements have been met: the specific clicked

element’s URL is received in the browser (meaning a navigation

success), or the timeout interval set for the click action is elapsed

(meaning that the navigation is not found).

private void Browser_AddressChanged(object sender,
DependencyPropertyChangedEventArgs e)
{
 if (ReceivingHttpStatusCode != null)
 {
 ReceivingHttpStatusCode(this, new HttpEventArgs() { HttpUrl =
e.NewValue.ToString() });
 }
 currentClickUrl = e.NewValue.ToString();
}

public void OnReceivingClickEvent(object sender, HttpEventArgs e)
{
 if (e.HttpUrl == nextUrl)
 {
 MainWindow.AppWindow.ReceivingHttpStatusCode -=
OnReceivingClickEvent;

 urlMatch = true;
 double timestamp = DateTimeOffset.Now.ToUnixTimeMilliseconds();
 logs.Add($"\nCLICK: X={currentClickX}, Y={currentClickY}");
 logs.Add($"URL: {nextUrl}");
 logs.Add($"EXECUTED AT: {(timestamp - startTime) / 1000} sec.");
 logs.Add("RESULT: Navigation Success.");
 }
}

100

public void DoClickLoop()
{
 if (currentClickTimeout != 0)
 {
 double start = DateTimeOffset.Now.ToUnixTimeMilliseconds();
 while (urlMatch == false)
 {
 MainWindow.AppWindow.MouseClick(currentClickX,
currentClickY);

 double current = DateTimeOffset.Now.ToUnixTimeMilliseconds();
 if ((current - start) > currentClickTimeout)
 {
 logs.Add($"\nCLICK: X={currentClickX},
Y={currentClickY}");
 logs.Add($"URL: {nextUrl}");
 logs.Add($"TIMEOUT AT: {(current - startTime) / 1000}
sec.");
 logs.Add("RESULT: Not Found.");
 logs.Add($" ERROR (timeout {currentClickTimeout /
1000} sec.) ");
 break;
 }
 Task.WaitAll(new Task[] { Task.Delay(1000) });
 }
 MainWindow.AppWindow.CheckAddress(false);
 OnClickCheck.Set();
 }
 else
 {
 while (urlMatch == false)
 {
 MainWindow.AppWindow.MouseClick(currentClickX,
currentClickY);
 Task.WaitAll(new Task[] { Task.Delay(1000) });
 }
 MainWindow.AppWindow.CheckAddress(false);
 OnClickCheck.Set();
 }
}

f. Final report creation

At the end of the test, a text file is released from the prototype containing

all the logs collected during the test and the final result. All checks made

during execution are included.

The final report also includes the test information (name, type,

description) as well as the total execution time. These reports are finally

saved in a specific folder in the directory selected previously.

101

public void CreateOutputFile()
{
Directory.CreateDirectory(Path.Combine(Settings.Default.myTestsPath,
"Logs"));

 string date = DateTime.Now.ToString("d");
 string time = DateTime.Now.ToString("T");
 string[] lines = logs.ToArray();
 double duration = (endTime - startTime) / 1000;

 string resultPath = Settings.Default.myTestsPath + $@"\Logs\";
 string resultFileName = String.Join("_", "PCM_Test",
DateTime.Now.ToString("dd-M-yy"), DateTime.Now.ToString("HH.mm.ss"));

 resultFileName = String.Concat(resultFileName, ".txt");
 string docPath = Path.Combine(resultPath, resultFileName);

 using (StreamWriter outputFile = new StreamWriter(docPath))
 {
 outputFile.WriteLine("DATE: " + $"{date}" + " " + $"{time}");
 outputFile.WriteLine("ID: " + tName);
 outputFile.WriteLine("TYPE: " + tType);
 outputFile.WriteLine("DESCRIPTION: " + tDescription);
 outputFile.WriteLine();
 outputFile.WriteLine("Total execution time: " + duration + "
(sec.)");
 outputFile.WriteLine();
 outputFile.WriteLine("TEST LOGS:");

 foreach (string line in lines)
 {
 outputFile.WriteLine(line);
 }
 }
 Process.Start("notepad.exe", docPath);

 logs.Clear();
}

4.5.3 Types of tests implemented

The automated testing functionality has been developed so that various types of

tests can be performed by properly configuring the instructions file.

The types implemented in the prototype are three and each of them allows to

verify a specific functionality or feature available in the software integration

between the NIS simulator and the PCM electronic control unit. The

implementation of the JSON standard for the script document structure, makes

the testing configuration completely configurable to ensure different validation

102

targets. The types of tests implemented are the following. For each, it is provided

an example of script configuration:

• Automatic reconnection test

This test involves a series of command lines launched on the PCM control

unit in order to evaluate its functionality following reconnections. It is

possible to set the restart of a specific module of the control unit software

architecture or the complete restart of the unit.

The automatic reconnection test can be used primarily to verify that

everything is working correctly following, for example, a sudden reboot.

Or following changes to the framework to validate the connection

functionality of the PCM.

{
 "tstInfos": [
 {
 "name": "PCM TEST 1",
 "type": "Connection",
 "description": "Evaluation of PCM operating conditions after a
disconnection"
 }
],
 "actions": [
 {
 "id": "ShowVehicle",
 "setMsg": "vehicleapp"
 },
 {
 "id": "StopExComGW",
 "cmdMsg": "mctl stop ExComGW",
 "check": 16,
 "sleep": 10
 },
 {
 "id": "StartExComGW",
 "cmdMsg": "mctl start ExComGW",
 "check": 8,
 "sleep": 5
 },
 {
 "id": "Click1",
 "click": "468,280",
 "timeout": 5,

"url":
"http://192.168.249.1:4040/vehicleapp/pages/index.html#/ras/",

 "sleep": 0
 }
]
}

103

• Performance test

With this type of test it is possible to evaluate the general performance of

the PCM control unit. Through the use of timestamps recorded at the

beginning and at the end of the actions to be performed, it is possible to

evaluate the execution time taken. This test can be combined with other

types of tests to evaluate, for example, the time it takes to make a specific

page available in the interface. Additionally, the test is useful for

validating the PCM boot time in software integration with the NIS

infotainment system.

{
 "tstInfos": [
 {
 "name": "PCM TEST 2",
 "type": "Performance",
 "description": "Evaluation of timing performance on RAS
application availability"
 }
],
 "actions": [
 {
 "id": "ShowVehicle",
 "setMsg": "vehicleapp"
 },
 {
 "id": "RebootPCM",
 "cmdMsg": "reboot",
 "sleep": 20
 },
 {
 "id": "Click1",
 "click": "468,280",
 "timeout": 0,

"url":
"http://192.168.249.1:4040/vehicleapp/pages/index.html#/ras/",

 "sleep": 0
 }
]
}

• Long-running test

This type of test exploits the implementation of the automated touch

inputs functionality on the simulator user interface. Before the test, the

coordinates of the individual UI elements are recorded on the interface,

selecting them in the desired order. The test then performs the same

sequence of touch inputs, automating the process.

104

The test is useful for long-run sessions. That is, setting a certain time

window in which to repeat this sequence repeatedly, in order to trace any

component malfunctions. Specifically, it is possible to evaluate the

reliability of the electronic control unit in processing each application of

the VehicleApp, simulating a continuous sequence of requests from the

user.

{
 "tstInfos": [
 {
 "name": "PCM TEST 3",
 "type": "Monitoring",
 "description": "Evaluation of navigation events"
 }
],
 "actions": [
 {
 "id": "ShowVehicle",
 "setMsg": "vehicleapp"
 },
 {
 "id": "Click1",
 "click": "170,272",
 "timeout": 5,

"url":
"http://192.168.249.1:4040/vehicleapp/pages/index.html#/dse/",

 "sleep": 3
 },
 {
 "id": "Click2",
 "click": "733,40",
 "timeout": 5,
 "url": "http://192.168.249.1:4040/vehicleapp/pages/index.html#/",
 "sleep": 3
 },
 {
 "id": "Click3",
 "click": "326,281",
 "timeout": 5,

"url":
"http://192.168.249.1:4040/vehicleapp/pages/index.html#/ans/",

 "sleep": 3
 },
 {
 "id": "Click4",
 "click": "735,40",
 "timeout": 5,
 "url": "http://192.168.249.1:4040/vehicleapp/pages/index.html#/",
 "sleep": 3
 },
 {
 "id": "Click5",
 "click": "470,280",
 "timeout": 5,

105

"url":
"http://192.168.249.1:4040/vehicleapp/pages/index.html#/ras/",

 "sleep": 3
 },
 {
 "id": "Click6",
 "click": "728,41",
 "timeout": 5,
 "url": "http://192.168.249.1:4040/vehicleapp/pages/index.html#/",
 "sleep": 3
 },
 {
 "id": "Click7",
 "click": "613,280",
 "timeout": 5,

"url":
"http://192.168.249.1:4040/vehicleapp/pages/index.html#/ras-
unattended/",

 "sleep": 3
 },
 {
 "id": "Click8",
 "click": "728,40",
 "timeout": 5,
 "url": "http://192.168.249.1:4040/vehicleapp/pages/index.html#/",
 "sleep": 3
 },
 {
 "id": "Click9",
 "click": "760,47",
 "timeout": 5,

"url":
"http://192.168.249.1:4040/vehicleapp/pages/index.html#/vehicleapp
/info/",

 "sleep": 3
 },
 {
 "id": "Click10",
 "click": "721,42",
 "timeout": 5,
 "url": "http://192.168.249.1:4040/vehicleapp/pages/index.html#/",
 "sleep": 3
 }
]
}

106

Chapter 5

Conclusions
The technology currently implemented in vehicles sees a multitude of

sophisticated systems which, through the adoption of embedded software

architectures, perform advanced functions: the Electronic Control Units (ECUs)

and the set of interconnected devices. Today's vehicle, in fact, is mostly

composed of electronic components and advanced software systems.

The initial idea for carrying out this thesis was to study, analyse and verify the

reliability of the software used in the electronic devices of commercial vehicles.

This point of view was the backbone of all the activities carried out at Iveco

S.p.A. which, despite the particular emergency period and the closure of the

workplaces due to the pandemic situation, saw the effective completion of an

entire project and the achievement of the objectives set. The thesis, therefore,

describes this experience, reporting entirely the three phases of work with which

the activity was structured. For each of these phases, the working methods

learned and the approach used in the development of innovative functionalities

for the validation of electronic components in vehicles are highlighted.

The first approach was to study the full range of commercial vehicles and their

electronic architecture. In this phase it was particularly useful to deepen the

discussion by analysing the functional design schemes of the electronic systems

and the tools used for the diagnostic analysis of vehicles. Thus, in this way, the

necessary tools for understanding the software issues of these systems integrated

in vehicles were learned. The next step was the in-depth research in the

company's internal databases of Open Points (OP) relating to the software

engineering field, obtaining the first real product useful for the thesis: the

classification of software malfunctions in the various electronic components.

From this first analysis it was highlighted how the complexity in making ECUs

more and more reliable lies entirely in the embedded software. Most of the

reported anomalies are inherent to issues related to software rather than

107

hardware, highlighting how the reliability of the hardware of vehicle electronic

systems has already reached a certain maturity. To reach this conclusion, it was

necessary to investigate the entire electronic architecture of the Stralis heavy

commercial vehicle, highlighting in particular, how effective the implementation

of the Multiplex system and the CAN lines was on this vehicle.

From the study carried out in this preliminary thesis phase, a case of software

integration between two very different vehicular electronic components

emerged: the thesis activity then continued with the analytical and research

phase inherent to this exemplary case. The case of software integration between

the NIS infotainment system and the PCM electronic control unit was of

fundamental importance for the development of innovative telematics functions

on Iveco vehicles. This exemplary case required many technical interventions to

improve the software integration between the two electronic systems, therefore,

research was carried out on the methodologies adopted in the past. In this way,

a complete view of the actions that proved effective in the technical resolution

of the issues encountered was obtained. The subsequent classification by causes

and final effects of the points found, served to identify the areas of software

development that were most affected by anomalies, in order to understand the

nature of the error. Furthermore, with this product useful for carrying out the

thesis project phase, the substantial complexities with which they had to operate

in the Telematics sector during the resolution of these issues were highlighted:

in particular the relevant difference between the cause and the final effect

observed by the user on board the vehicle, concluding that it is not always

feasible to trace the factor or part of the code affected by the anomaly based

solely on the reports received. Specific tests are required in specific phases of

software development and, in most cases, it is necessary to loop the testing

operations on the code several times.

Finally, in the thesis the implementation of a software prototype for the

evaluation of the reliability of the embedded software in the PCM electronic

control unit was proposed. This ECU processes and provides all the telematics

applications and functions on the NIS infotainment system; their complex

software integration made it possible to conceive the activity carried out in the

108

project phase of the thesis. With the creation of a simulator of the NIS system,

compatible with any personal computer, it was therefore possible to create an

easily configurable and accessible testing and validation environment. The

opportunities provided by this tool are many: first of all the versatility of

navigating the contents of the PCM electronic control unit from the computer,

without the need to specifically create an electronic test bench in which the NIS

system is physically present. Continuing, thanks to the automated testing

functionality, it has been seen how it is possible to simplify the operations for

the validation of the two electronic components, through the integration of

logical methods that perform targeted checks within the software architecture of

the PCM electronic control unit.

Through the implementation of the MVVM architectural pattern for the software

development of the prototype, the use of this solution as a substitute for the

current operations for the validation of these components is further motivated.

In fact, having appropriately separated the logic of each functionality from the

model in the view, it is possible to add and configure new methods to automate

in tests with ease. It will also be possible, should it be necessary later, to make

changes only to the part of the code concerned in order to adapt the simulator to

a core application logic available in a new version of the electronic control unit.

Or, the reusability of the code could be exploited to extend the functional concept

to further electronic components. The scenarios of use for the software prototype

might be numerous, also considering the advantage that would be obtained by

the reduction of the costs used for the verification and validation phase of the

electronic components.

For the actual conclusion of the experimental project, a demonstration session

was organized in the company which was attended by the company tutor and the

members of the Telematics team. In this meeting I was able to present the main

features and advantages in the implementation of the software prototype. The

correct integration and execution in real time was verified using the equipment

available in the electronic test bench at the company to, then, launch the

automated tests on the PCM electronic control unit and review the outcome.

109

110

LIST OF FIGURES

1.1 IVECO company logo .. 1

1.2 IVECO Group logo and all its brands .. 2

1.3 IVECO Daily, for over 40 years one of the most successful vehicles of the
company ... 3

1.4 IVECO S-Way, the 100% connected truck .. 4

1.5 The various phases of a project management according to Scrum 8

2.1 The Stralis of Iveco heavy range .. 11

2.2 The Eurocargo of Iveco medium range .. 12

2.3 The Daily of Iveco light range .. 13

2.4 Interaction of a connected vehicle with other systems 14

2.5 The offer of services and solutions in IVECO ON ... 16

2.6 Iveco On Fleet Management vehicle monitoring ... 17

2.7 Indices for the evaluation of the DSE ... 18

2.8 DSE user interface ... 18

2.9 Safe Driving Report is done based on the driver’s driving style 19

2.10 Roadmap of the evolution of vehicle electronics .. 20

2.11 Electronics system as percent of total car cost ... 21

2.12 CAN line configuration .. 22

2.13 Multiplex system scheme ... 23

2.14 Brake management electronic functional diagram ... 26

2.15 Adaptive Cruise Control Management electronic functional diagram 27

2.16 Drive Style Management electronic functional diagram 27

2.17 Percentage of ECUs connected by each CAN line out of the total
available ... 28

111

2.18 Diagnostic Trouble Code ... 34

2.19 E.A.SY device for the diagnosis of Iveco vehicles electronic components ... 35

2.20 A truck during a diagnostic session .. 36

3.1 PCM software bundle architecture ... 39

3.2 PCM connections with other systems ... 41

3.3 Vehicle tab homepage with its applications ... 42

3.4 VehicleApp: Assistance Non-Stop service .. 43

3.5 VehicleApp: Evaluation of fuel consumption .. 44

3.6 VehicleApp: Remote assistance and ECUs monitoring 44

3.7 Scheme of the Telematics unit (PCM) and Infotainment system (NIS)
interconnected through the Secure Gateway (SGW) 45

3.8 Scheme of the software architecture for the management of Telematics
applications through the ping monitoring task ... 46

3.9 DevOps means collaboration among different functions 48

3.10 Software development cycle using Azure DevOps tools 50

4.1 The Visual Studio IDE, with callouts indicating the location of key features
and functionality .. 65

4.2 The various application targets of .NET platform .. 67

4.3 Key advantages of using .NET platform .. 67

4.4 MVVM software architecture .. 68

4.5 Design area for the simulator’s user interface .. 71

4.6 Circular spinner in the NIS simulator ..73

4.7 Error Page in the NIS simulator .. 74

4.8 Splash screen shown at NIS simulator startup .. 74

4.9 Scheme for PCM-NIS interaction logic .. 77

4.10 VehicleApp homepage displayed in the NIS simulator 78

4.11 Settings panel in the software prototype ... 80

112

4.12 The electronic bench used for the calibration tests ... 84

4.13 Automated testing launcher ... 91

113

LIST OF TABLES

3.1 Classification of PCM-NIS software integration issues by final
effect ... 58

3.2 Classification of PCM-NIS software integration issues by
cause .. 59

114

BIBLIOGRAPHY

[1] Lipson Charles, Sheth Narendra J., Sheldon David B., “Reliability and

maintainability in industry and the universities”, 1996

[2] Abrahamsson P., Salo O., Ronkainen L., Warsta J., “Agile Software

Development Methods: Review and Analysis”, 2017 – arXiv: 1709.08439

[3] Sorge C., “Metodo Agile e Scrum: i vantaggi di applicarli all’interno

dell’azienda”, 2016

[4] Hines J.F., “Forecast: Connected Car Production, Worldwide”, Gartner, 2016

[5] Charette Robert N., “How Software is eating the car”, IEEE Spectrum, 2021

[6] Iveco Group, CAN Line Evolution

[7] CNH Industrial, “Stralis MY2019 Electronic Functional Diagrams”, Internal

documentation, 2018

[8] Iveco Group, Reliability Engineering Methodologies & Practical Approaches

[9] Junger Markus, “Introduction to J1939”, Vector, 2010

[10] CNH Industrial, “PCM Items Definition”, Internal documentation

[11] CNH Industrial, “NIS-PCM Core Functional Specification”, Internal

documentation, 2019

[12] DevOps Methodology, QRP - url: https://www.qrpinternational.it/corsi/me

todologia-devops/

[13] The C# Programming Language, BairesDev - url: https://www.bairesdev.c

om/technologies/csharp/

[14] Welcome to the Visual Studio IDE, Microsoft, 2022 - url: https://docs.mic

rosoft.com/en-us/visualstudio/get-started/visual-studio-ide

https://www.qrpinternational.it/corsi/metodologia-devops/
https://www.qrpinternational.it/corsi/metodologia-devops/
https://www.bairesdev.com/technologies/csharp/
https://www.bairesdev.com/technologies/csharp/
https://docs.microsoft.com/en-us/visualstudio/get-started/visual-studio-ide
https://docs.microsoft.com/en-us/visualstudio/get-started/visual-studio-ide

115

[15] Digiteum Team, “Why Use .NET Platform: Advantages for Your Product

Development”, 2021

[16] Wikipedia, “Model-View-ViewModel” - url: https://en.wikipedia.org/wiki

/Model-view-viewmodel

[17] CefSharp Browser for .NET applications - url: https://cefsharp.github.io/

https://en.wikipedia.org/wiki/Model-view-viewmodel
https://en.wikipedia.org/wiki/Model-view-viewmodel
https://cefsharp.github.io/

