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Chapter 1

Introduction

The possibility to develop a new type of algorithms that solve some known hard problems in
polynomial time given by quantum computing created a growing interest in it. Its applications
can be found in many fields, from the financial [1] to the chemical, so a large number of companies
are investing resources in its development. Important players like IBM [2] and Google [3] have
already begun the development of quantum computers to execute these algorithms and solutions to
let users from all over the world use them have been created, such as SDKs quantum programming
languages. The growth of these technologies is expected to be very fast, as we can see from figure
1.1, since in two years it estimates to improve by an order of magnitude the information that a
quantum device is able to store and manage.

Figure 1.1. IBM roadmap for scaling quantum technology. Source:[4]

A particular quantum algorithm, developed by Shor, solves the problems that are used as a
mathematical basis for various public-key cryptography algorithms. The threat caused by this
algorithm is certified by the NIST call for proposals for public-key quantum-resistant algorithms
[5] and by the development of quantum cryptography solutions. NIST is in fact selecting new
classical algorithms for key exchange, key encapsulation, and digital signature, that should be

7



Introduction

chosen in 2023, which are believed to be resistant to quantum algorithms as none has been found to
break them. Quantum cryptography follows the other path, developing solutions to cryptographic
problems with quantum computing. Important examples are Quantum Key Distribution [6] and
Quantum Digital Signature. In this work, we will not concentrate on these fields, as we want to
evaluate how distant we are from the day when quantum algorithms will be able to break the
algorithms we use.

Shor’s algorithm [7] uses some of the basic blocks of quantum computing to calculate the period
of a modular function in polynomial time, which permits finding the prime factors or calculating
the discrete logarithm of a number. In this way, it is possible to break both RSA and Elliptic
curves cryptography. To understand why the possibility to break these two algorithms brought
this great popularity and attention to the quantum world, we can think of all the applications
that we use every day in our life. For example, both are used in the key exchange protocol and to
perform digital signatures in TLS 1.3 [8], and elliptic curves also in the cryptocurrency field with
Bitcoin and Ethereum [9].

However, the actual device capabilities are far from being able to execute Shor’s algorithm to
break the version of RSA or of elliptic curves used, as many problems in the realization of them
must be taken into consideration. In fact, nowadays quantum computers are greatly affected by
noise and have a very limited capability in terms of memory.

In this work, we want to evaluate how distant we are from an implementation able to break
the cryptographic algorithms we use, understanding the capabilities of the needed device, based
on the methods that IBM plans to use for its future quantum computer architectures. We also
consider various enhancements to the basic version that have been published over the years, which
are able to reduce its complexity. In order to do this, we study Shor’s algorithm, both in the case
of integer factorization and discrete logarithm problem, the way to implement it, and how we can
execute it in a simulator or an actual quantum device.

We started from the Qiskit [10] implementation of Shor’s algorithm to write a parametrized
library that gives as output the integer factors of a biprime number, adding some functions to
slightly increase the success probability of this algorithm. We proved the correctness of this library
with a small example of decryption of an RSA-encrypted message, simulating the quantum part
of the algorithm in the IBM qasm simulator. In addition, we provide a library for the realization
of most of the gates for the circuit to break the Elliptic Curve Cryptography in Qiskit.

The work is divided in the following way:

� Chapter 2 introduces the basics of quantum computing, with its advantages and techniques.

� Chapter 3 lists some of the most important quantum algorithms, providing a high-level
description of them.

� Chapter 4 talks about the different types of physical realization of quantum devices, who
develop them, and how it is possible to use the solutions given by the manufacturers.

� Chapter 5 introduces the problems that must be taken into consideration when a user wants
to execute a quantum algorithm on a quantum computer.

� Chapter 6 is useful to recall the basics of asymmetric cryptography.

� Chapter 7 provides a first analysis about how the quantum world affects the cryptographic
algorithms we use nowadays, focusing on Grover’s algorithm.
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� Chapter 8 gives a detailed analysis of Shor’s algorithm to break RSA, with all the necessary
blocks to implement it, and an estimation of the resources that a quantum device would
need to be a threat.

� Chapter 9 contains an explanation of the more complex passages of our implementation of
the circuit for factorization.

� Chapter 10 makes the analysis performed on the previous two chapters for Shor’s algorithm
against the elliptic curves.

� Chapter 11 contains the tests we made to analyze our implementations and the resources
needed to implement them.

The analysis proved that quantum computers are still not a threat to nowadays cryptography,
so why the necessary measures to contrast it are already being chosen and, in the next few years,
applied? The NIST call for proposals for post-quantum cryptography algorithms can be seen
as an exaggeration looking at the current quantum hardware vendors’ roadmaps, but quantum
physics is in rapid growth, and we do not know when a certain technology in this field can be
produced: in other words, we can not rely on something like the Moore law, so we should be
provident and well prepared to these threats. In addition, we must remember that an important
message can be sniffed and stored by an attacker for many years, waiting for the needed quantum
device to break the security of the message: in this context, the solution adopted must guarantee
the wanted security even for 15 years, so it is not possible to rely on algorithms such as RSA with
certainty for that amount of time.

9



Chapter 2

Quantum Computing

The development that has been done so far in quantum computing allowed the discovery of a
series of possible applications in many different topics, like cryptography, finance, optimization,
and machine learning, so it is of particular interest to understand the basic foundations of this
emerging field.

2.1 Quantum Computing overview

Quantum computing is the branch of the computing theory that exploits the properties of the
quantum states, such as the superposition, the interference, and the entanglement, permitting
to obtain a huge speed-up in the computational complexity of some typical hard problems, like
the integer factorization, that even supercomputers will never solve with the currently known
algorithms [11]. These problems require the analysis of a great number of combinations, that
in classical computing will be performed sequentially. In quantum computing, we create multi-
dimensional spaces that are able to represent these combinations together, so that the analysis
can be performed in a parallel way, and then we translate this representation into a logical and
understandable one.

Nowadays, there are many ways to build a quantum computer, since there are many ways to
control a quantum state useful for computation. In the quantum circuit model, the computation
is a sequence of gates and measurements that act on a set of quantum information units, called
qubit (i.e., the corresponding of the bits for classical computers): we will use this one for this
work since is the prevailing one nowadays [12].

Since quantum computing is based on quantum states, it is not an easy task to understand
the quantum algorithms and the quantum protocols, mostly because the information carried by
the qubit is not “0” or “1” like the one carried by the bit, but it is probabilistic. The first
property that we will study is the superposition: as for classical waves, a quantum state can be
seen as the linear combination of other quantum states [13]. When this new quantum state is
measured (i.e., translated into a logical representation), it will result in a “1” with a probability
p, and in a “0” with a probability 1− p. Because of this, we will need to learn a new formalism
to represent the qubit states, which will be presented in 2.2. However, the characteristic of
“probabilistic information” permits to “play” with many intermediate results at the same time,
since the superposition allows to perform calculations on many states represented in the same
qubits, giving an exponential speed-up to the quantum algorithms. Then, using the interference
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effects we will be able to reduce the probability of getting “wrong answers”, while the probability
of “good answers” will increase, so we will be able to obtain our wanted result with a good
probability.

To obtain an understandable result from the quantum computation, we can measure the qubits
involved, but this will cause the state to lose its properties, decading into one of its states, since
we can obtain just one answer from one measurement, and not all the possible different answers
corresponding to the possible different states. In fact, when a quantum state that stores the linear
combination of different ones is observed by the external world, it reduces to one of them: this
state is said to “collapse”[14].

2.2 Qubit representation

To express a qubit, we need to first explain the concept of statevector. The statevectors are
vectors where all the possible values of the state of a system are represented, along with their
probability. This comes quite handy with qubits since they can only express the probability of
the values 0 and 1. So, we can represent a state that, if measured, gives with 100% probability
the output “0”, and a state that gives with 100% probability the output “1”, but also states that
give a “1” or a “0” with a determined probability.

|0⟩ =
[
1
0

]
|1⟩ =

[
0
1

]
(2.1)

These 2 states form an orthonormal basis, that we can use to express all the possible quantum
states, but before going into that field, let’s concentrate on the symbol used to express the states
that will give with probability 100% the 0 and the 1, called Dirac notation.

The Dirac (or “bra-ket”) notation uses angular brackets to describe quantum states, introduc-
ing the following symbols:

� ket: |a⟩ =
[
a1
a2

]
� bra: ⟨b| =

[
b∗1 b∗2

]
� bra-ket: ⟨a|b⟩ = a1b

∗
1 + a2b

∗
2 = ⟨a|b⟩∗

� ket-bra: |a⟩ ⟨b| =
[
a1b

∗
1 a1b

∗
2

a2b
∗
1 a2b

∗
2

]
As we said, being that |0⟩ and |1⟩ form an orthonormal basis, we can express every quantum state
as a linear combination of those two. In fact, ⟨0|1⟩ = 0 and we can normalize any quantum state
(a normalized quantum state is a state such that ⟨ψ|ψ⟩ = 1). So it is possible to use the notation
in equation 2.2, where α and β are complex numbers called probability amplitudes.

|ψ⟩ = α |0⟩+ β |1⟩ =
[
α
β

]
α, β ∈ C

(2.2)

The {|0⟩,|1⟩} is not the only basis possible, since there are infinite ones. Two of the most
important ones are {|+⟩,|−⟩} and {|+i⟩,|−i⟩}, which states can be written in the {|0⟩,|1⟩} basis
as:

|+⟩ := 1√
2
(|0⟩+ |1⟩) (2.3)
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|−⟩ := 1√
2
(|0⟩ − |1⟩) (2.4)

|+i⟩ := 1√
2
(|0⟩+ i |1⟩) (2.5)

|−i⟩ := 1√
2
(|0⟩ − i |1⟩) (2.6)

2.2.1 Measurements

The α and β values in the equation 2.2 can be used, according to the Born rule [15], to recover
the probability to obtain a 0 or a 1 with a measurement in the {|0⟩,|1⟩} basis.

p(0) = |α|2 p(1) = |β|2 (2.7)

This method is called projective measurement [16, sec. 2] since we choose an orthonormal basis
to describe and measure the quantum state. This measurement can be done on any orthonormal
basis, so we can find the probability of having any state |ψ⟩ giving as output of the measurement
in the basis {|x⟩,|x⊥⟩} the state |x⟩ with the equation.

p(|ψ⟩) = |⟨x|ψ⟩|2 (2.8)

This kind of “gadget” seems to give us the possibility to know at each step of an algorithm the
states of the qubits, but this is not true. In fact, observing a qubit change its state irreversibly: if
the result of the measurement is 0, α will become equal to 1 and β equal to 0, while in the other
case α will become equal to 0 and β equal to 1. This transforms the quantum computation into
a nearly classical one, so we will not be able to use the important quantum computing properties
in section 2.3.

In addition, this makes it impossible to measure the global phase of the complex number. We
can take as an example the probability of a state to be i |1⟩. Performing the measurement as in
equation 2.8 of a state |x⟩, we can see in 2.9 how this probability is equal to the one of measuring
|1⟩.

p(i |1⟩) = |⟨x| (i |1⟩)|2 = |i ⟨x|1⟩|2 = |⟨x|1⟩|2 (2.9)

However, projective measurements are not enough to describe all the types of measurements
that we can make on the quantum states, so we need some kinds of generalization of it, like the
Positive Operator-Valued Measures (POVMs) [16, sec. 3].

Another important effect of the measurement is the possibility, dealing with entangled states,
to measure a qubit and collapse the state of the other entangled qubits, but we will see this more
in detail in section 2.3.2.

2.2.2 Bloch sphere representation

Let’s take a step back, looking at equation 2.2: even if α and β are complex numbers, we can not
measure the global phase of these two number, but only the difference between the two phases,
so we can write that equation as

|ψ⟩ = α |0⟩+ eiϕβ |1⟩
α, β, ϕ ∈ R

(2.10)
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Being that the state has to be normalized, we know that
√
α2 + β2 = 1, so we can use a trigono-

metric variable in order to express both α and β, such that the equation become

|ψ⟩ = cos(
θ

2
) |0⟩+ eiϕsin(

θ

2
) |1⟩

θ, ϕ ∈ R
(2.11)

Having the quantum state written in this form, it is clear to see that it can be easily represented
in a sphere of radius 1, called “Bloch sphere”. Figure 2.1 shows the position of the most used
quantum states of a qubit in the Bloch sphere, as well as the meaning of the angles in the equation
2.11.

Figure 2.1. Bloch sphere. Source: [17]

Observing the figure, we can understand the meaning of an important piece of nomenclature:

� the Z-measurement is a projection done in the z-axis, so in the {|0⟩,|1⟩} basis;

� the X-measurement is a projection done in the x-axis, so in the {|+⟩,|−⟩} basis;

� the Y-measurement is a projection done in the y-axis, so in the {|+i⟩,|−i⟩} basis.

2.2.3 Multiple qubit states

We have seen so far the methods to represent a quantum state of a single qubit, but in our
algorithms, we will need many of them. Although we will not see in this paragraph the properties
that can be gained by using many qubits together, the way to represent quantum states of multiple
qubits is the same both in these cases and in the case of completely separated qubits.

As for the one-qubit case, we can express multi-qubit states using a state vector, but this time
it will contain 2n amplitude values, where n is the number of qubits to represent:

|x⟩ = x00 |00⟩+ x01 |01⟩+ x10 |10⟩+ x11 |11⟩ =


x00
x01
x10
x11

 (2.12)
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Also in this case we can use the Born rule to obtain the probability of each state to be measured,
as can be seen in equation 2.13.

p(|00⟩) = |⟨00|x⟩|2 = |x00|2 (2.13)

For example, if we perform a Z-measurement on the state |ψ1⟩ of equation 2.14, we will have as
output 00 and 10 in the 37,5% of the cases, and 01 and 11 in the 12,5%.

|ψ1⟩ =
1

2
√
2
(
√
3 |00⟩+ |01⟩+

√
3 |10⟩+ |11⟩) (2.14)

In order to express the state of two or more separated qubits into a single statevector, we have
to apply the tensor product between the two or more statevectors. For example, if we have the
qubits a, b and c, their collective state will be

|abc⟩ =



a0b0c0
a0b0c1
a0b1c0
a0b1c1
a1b0c0
a1b0c1
a1b1c0
a1b1c1


(2.15)

Even if the Bloch sphere can describe very well a state of a single qubit, it is not suitable for
a quantum state with two or more qubits, since every qubit would need a different sphere.

2.2.4 Q-sphere

IBM introduced, to represent a multi-qubit state, the Q-sphere, which uses the size of the blobs
to indicate the amplitude probability of that state, and the color of them to indicate the phase
[18], as can be seen in figure 2.2.

The basis states are equally distributed in the surface of the sphere, with the state with all
zeros (|0⟩⊗n

) in the north pole and the state with all ones (|1⟩⊗n
) in the south pole.

2.3 Qubit properties

As we already mentioned, the quantum operations are done in order to exploit the peculiar
quantum properties of the qubits. We already saw in detail the effects of the superposition, so we
can focus on the interference and the entanglement.

2.3.1 Interference

Until now we have described the quantum superposition as the capacity for a qubit to have the
probabilistic characteristic, but thinking just at this explanation, we may ask how it is different
from having a state that we simply know to be “1” or “0” with a certain probability: the inter-
ference effect answers this question, but brings with it a side-effect called decoherence, described
in section 2.3.3.
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Figure 2.2. Q-sphere representing |ψ⟩ = − |010⟩ − |110⟩ + |011⟩ + |111⟩. The sphere is always
shown together with a legend that permits to understand the phase of the various states. The
probability amplitude of each of them is represented by the size of the blob.

As we said in 2.2, we can express a quantum state using different bases, that are mathematically
correlated. If we have a quantum state |+⟩, the measurement in the {|0⟩,|1⟩} basis results in a
“1” and in a “0” the 50% of the times, and the same consideration can be done for |−⟩.

Now we can look at the state |ψ⟩ = 1√
2
(|+⟩+ |−⟩).

|ψ⟩ = 1√
2
(|+⟩+ |−⟩) = 1

2
(|1⟩+ |0⟩+ |1⟩ − |0⟩) = |1⟩ (2.16)

If we think about it classically, the measurement in the {|0⟩,|1⟩} basis should give the same outputs
as before. However, looking at equation , we can see how the two |0⟩ terms are eliminated.

This effect is called interference [20] and can be understood by remembering that quantum
states are complex numbers that can be represented as waves. In classical waves, the amplitude
is a physical property, while in quantum states, it represents the probability of obtaining with a
measurement a certain state. However, the interference effect acts in a similar way in the two
cases, changing the amplitudes when more waves or states interact.

2.3.2 Entanglement

When we have two or more qubits, we can have situations where they are strictly correlated. The
simplest example are the Bell states, listed in the equations below.

|ϕ1⟩ =
1√
2
(|00⟩+ |11⟩) |ϕ2⟩ =

1√
2
(|00⟩ − |11⟩)

|ϕ3⟩ =
1√
2
(|01⟩+ |10⟩) |ϕ4⟩ =

1√
2
(|01⟩ − |10⟩) (2.17)

As explained in section 2.2.3, measuring |ϕ1⟩ in the {|0⟩,|1⟩} basis will give the state |00⟩ with
probability 50%, and the state |11⟩ with probability 50%. However, being that these are in
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superposition, measuring the state of one of them, will automatically tell us the state of the
other: if we measure |0⟩ for the first qubit, we can be certain that the other qubit will also be in
state |0⟩, so it will collapse as well. In these situations, we can not write the two states separately
since it is not possible to attribute to them a pure state: we call them entangled states [19].

If it is not possible to associate a state vector to one of the entangled states, it is still possible
to represent it with a density matrix, as we will describe in section 2.5.

The most direct and intuitive example of the use of the entanglement is the teleportation
algorithm, but we will use this property for nearly every algorithm in quantum computing.

2.3.3 Decoherence

There are cases where a quantum state seems to not be affected by interference, due to the
interactions with the system: we call this effect decoherence [21]. This comes from the difficulty
of realizing an isolated environment, which makes it impossible to avoid interactions of a qubit
with the external world.

For example, in physical quantum computers, we may have an unintended measurement for
an unwanted entanglement between two qubits. Assume that we have the state |ψ1⟩ = |−⟩ and
that it is affected by an unintended measurement in the {|0⟩,|1⟩} basis: in this situation we lose
the interference effect and the resultant quantum state will be either |ψ2⟩ = |0⟩ or |ψ2⟩ = |1⟩ with
50% probability each, without any superposition effect.

This possibility poses a real challenge to the development of quantum computers since every
qubit maintains its state only for a window of time. Because of this, every qubit in a quantum
device is characterized by the so-called decoherence time, which gives us a measure of how much
time a qubit can maintain in average the state.

2.4 Quantum gates

Quantum gates are the basic block of the quantum circuits since they permit the transformation
between all the possible states.

Every gate acting on a quantum state performs an evolution governed by Schrödinger’s equa-
tion [22], and every transformation applied to this equation can be expressed as a unitary matrix.
The unitarity of the quantum gates gives us an important property called reversibility. If a ma-
trix U is unitary, then its inverse U−1 is equal to its conjugate transpose U†, so we can obtain
equation 2.18, and the sum of the square of every element in a fixed row or column is always one,
as expressed in equation 2.19.

U†U = 1 (2.18)
n∑

i=1

|Uij |2 = 1

n∑
j=1

|Uij |2 = 1 (2.19)

These equations tell us that a quantum gate is always reversible and that if it is applied on a
normalized quantum state the result will be another normalized quantum state.

They are usually expressed as matrices, but since they are just a rotation of the quantum
state, they can be represented in the Bloch sphere.
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2.4.1 Single qubit gates

The basic single-qubit gates are the Pauli gates and the Hadamard gate, but we can construct
every rotation, as we will see with the U-gate.

The Pauli gates perform a rotation of π around an axis of the Bloch Sphere, so we will have
the X-, the Y-, and the Z-gate.

X =

[
0 1
1 0

]
= |0⟩ ⟨1|+ |1⟩ ⟨0| (2.20)

Y =

[
0 −i
i 0

]
= −i |0⟩ ⟨1|+ i |1⟩ ⟨0| (2.21)

Z =

[
1 0
0 −1

]
= |0⟩ ⟨0| − |1⟩ ⟨1| (2.22)

The Hadamard gate is the one that permits the create the superposition of |0⟩ and |1⟩. Its matrix
representation is given by

H =
1√
2

[
1 1
1 −1

]
(2.23)

so it performs the operations described in the transormations below.

H |0⟩ = |+⟩ = 1√
2
(|0⟩+ |1⟩) H |+⟩ = |0⟩

H |1⟩ = |−⟩ = 1√
2
(|0⟩ − |1⟩) H |−⟩ = |1⟩ (2.24)

A digression should be done for the Hadamard applied on n qubits.

|x0⟩ |y0⟩

|x1⟩ |y1⟩

...

|xn⟩ |yn⟩

|x⟩

H

|y⟩
H

H

= H⊗n |x⟩ = 1√
2n

∑
k∈{0,1}n

(−1)k∗x |k⟩ (2.25)

This equation means that |y⟩ is the superposition of all possible 2n bit strings, so the probability
of measuring any number between 0 and 2n − 1 is the same: we will use this method in many
circuits, as well as in the one for the Shor’s Algorithm.

The U-gate is used in order to describe a generic rotation, as it has the form

U(θ, ϕ, λ) =

[
cos( θ2 ) −eiλsin( θ2 )

eiϕsin( θ2 ) ei(ϕ+λ)cos( θ2 )

]
(2.26)

For example, if we want to describe the Hadamard gate, we can use U(π2 ,0, π).

2.4.2 Multi qubit gates

The interaction between the different qubits (i.e. the entanglement) is created with the CNOT-
gate, that is an X-gate controlled by another qubit. If the control qubit is |1⟩, the X-gate is
applied in the target qubit:
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|x⟩ |x⟩

|0⟩ |y⟩

Figure 2.3. General application of the CNOT gate.

In this case |y⟩ will remain |0⟩ if |x⟩ was |0⟩, while it will become |1⟩ otherwise. With this gate,
we can create the Bell state described in section 2.3.2, using the simple circuit in figure 2.4

|0⟩ H

|0⟩

Figure 2.4. CNOT gate with a qubit in superposition as control qubit.

After the Hadamard gate, the first qubit will be in the state 1√
2
(|0⟩ + |1⟩), so the application of

the CNOT-gate will create the collective state 1√
2
(|00⟩+ |11⟩). We can see that by measuring the

target qubit, we can be sure of the value of the control qubit since the target will change to state
|1⟩ only if the control is in this state.

Other gates can be constructed using this one, like the Toffoli and the Swap.

The Toffoli is a 3-qubit gate where two qubit are used as control for the U-gate in the target
qubit. It can be constructed using just 2-qubit controlled rotations.

U

=

√
U

√
U

† √
U

Figure 2.5. Decomposition of a Toffoli using 2-qubit gates.

The swap is a 2-qubit gate that just exchange the state of 2 qubits.

=

Figure 2.6. Decomposition of a Swap gate using 2-qubit gates.

2.4.3 Phase kickback

Given the discussion done in the last section, one may think that the control qubit is completely
not affected by the application of the CNOT-gate. However, there is a trick that permits to
bring a change on the phase of the state of the control qubit that is used as a basis for most of
the quantum algorithms that we will see: this is called phase kickback [23]. To understand this
method, let’s look at this simple circuit identity of the following figure.
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=
H H

H H

Figure 2.7. Simple circuit that takes advantage of the phase kickback.

If both the control and the target qubit are in the state |+⟩ before applying the CNOT-gate,
really nothing happens, as expressed in the equation below.

|++⟩ = 1

2
(|00⟩+ |01⟩+ |10⟩+ |11⟩)→ 1

2
(|00⟩+ |01⟩+ |11⟩+ |10⟩) (2.27)

As we can see, the probability amplitudes stays unchanged, but if the control qubit is in state |+⟩
and the target is in state |−⟩, the equation becomes:

|+−⟩ = 1

2
(|00⟩ − |01⟩+ |10⟩ − |11⟩)→ 1

2
(|00⟩ − |01⟩+ |11⟩ − |10⟩) = |−−⟩ (2.28)

The phase of the control qubit change, since it passes from state |+⟩ to state |−⟩, thanks to the
relative phase on the target qubit. This method is used in many quantum algorithms because it
enables to encode the output of a circuit in the phase of the control qubits so that it can be easily
measured, as we will see in chapter 3.

2.4.4 Universality

A set of quantum gates is called universal when any possible operation can be reduced to a finite
sequence of these gates. Actually, a quantum circuit can always be expressed as a single unitary,
so the universality is the capacity to implement any possible unitary.

The most common universal set of gates is given by the Clifford gates and the T gate. The
Clifford gates are those that permit the permutation of the Pauli operator. The set formed by the
CNOT, the H, the S-gate (that is actually U(0,−π

2 ,0), so it is called also
√
Z), and the T-gate

(U(0,−π
4 ,0), so it is called also 4

√
Z) is the most common universal one.

The Hadamard and the S-gate, being Clifford gates, can be combined with the Pauli operators
to have the effect of different operations. For example, we can look at these identities:

HXH = Z HZH = X SXS† = Y SY S† = −X SZS† = Z

Using a universal set of quantum gates gives us the possibility to reproduce any classical
computation in a quantum computer, so we may think about a way to reproduce a function f(x)
in a reversible way.
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Gate Effect
X Rotation of π around the x axis of the Bloch Sphere
Y Rotation of π around the y axis of the Bloch Sphere
Z Rotation of π around the z axis of the Bloch Sphere
H H(|0⟩) = |+⟩ , H(|1⟩) = |−⟩ , H(|+⟩) = |0⟩ , H(|−⟩) = |1⟩

U(θ, ϕ, λ) Most general gate
S Rotation of π

2 around the z axis of the Bloch Sphere
T Rotation of π

4 around the z axis of the Bloch Sphere
CNOT Performs an X-gate on the target qubit if the state of the control qubit is |1⟩
Toffoli Performs an X-gate on the target qubit if the state of the two control qubits is |1⟩
Swap Swap the state of two qubits using 3 CNOTs

Table 2.1. List of described gates.

2.5 Density Matrix

Until now, we have seen states that are pure or in superposition. However, we can have cases
where a qubit has a state with a certain probability and another state with another probability
without being in superposition. For example, if Alice sends the state |+⟩ to Bob, using a channel
that has a percentage of error p, Bob will receive state |+⟩ with probability 1 − p and state |−⟩
with probability p: we can see that these states are not in superposition, and we cannot express
them using statevectors because they are not linear combinations of basis states. The states that
consist of statistical ensembles of different quantum states are called mixed states, and we can
represent them using the density matrix.

The mixed states can not be expressed with the bra-ket notation, since this brings the concept
of state vectors, but instead, they must be expressed as a list of possible states. For example,
suppose that we have a Hadamard gate that is applied to a qubit initialized to state |0⟩. However,
the initialization the 10% of the times fail so, after the application of the Hadamard, we can have:

1. with 90% probability the state |ψ1⟩ = 1√
2
(|0⟩+ |1⟩);

2. with 10% probability the state |ψ2⟩ =
√
3
2 |0⟩+

1
2 |1⟩.

In this case, the situation can only be represented as an ensemble of states, together with the
corresponding probability.

{|ψ1⟩ , |ψ2⟩} = {
1√
2
(|0⟩+ |1⟩),

√
3

2
|0⟩+ 1

2
|1⟩}

{p1, p2} = {
9

10
,
1

10
}

The density matrix is built summing the outer product of every possible state with itself
(|ψ⟩ ⟨ψ|) multiplied by its probability. In the situation of the previous example, the density
matrix is described in equation 2.29

ρ =
9

10
|ψ1⟩ ⟨ψ1|+

1

10
|ψ2⟩ ⟨ψ2| =

9

10

[
1
2

1
2

1
2

1
2

]
+

1

10

[
3
4

√
3
4√

3
4

1
4

]
=

[
21
40

√
3+18
40√

3+18
40

19
40

]
(2.29)
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This failure probability on the initialization of the qubits is always considered in real systems
since the error rates are high in modern architectures.

The importance of the density matrix representation relies on the possibility to calculate the
application of a gate, so a unitary matrix, directly on it. For example, if we apply a Y-gate to
the resulting mixed state of equation 2.29, it can be done as in equation 2.30.

ρ′ = Y ρY † =

[
0 −i
i 0

] [
21
40

√
3+18
40√

3+18
40

19
40

] [
0 −i
i 0

]
=

[
19
40 −

√
3+18
40

−
√
3+18
40

21
40

]
(2.30)

Another feature that the density matrix has, as said in section 2.3.2, is the possibility to
represent separately entangled states: in fact, if a unitary transformation is applied to the density
matrix of one of the entangled qubits, the density matrix of the other ones will not be affected
[19].

2.6 Classic computation on a Quantum computer

A quantum oracle Uf is a black-box that permits to perform a classical function f(x), so it can
be described as:

Uf |x, y⟩ = |x, y ⊕ f(x)⟩ (2.31)

We need two registers in order to ensure the reversibility of the operation: the first one will encode
the input, while the output will be represented in the second one. Additionally, we cannot encode
the output in the same register of the input because they can have different size. As we can see
from equation 2.31, Uf = U†

f , since y ⊗ f(x)⊗ f(x) = y.

For example, we can build the function f(x) = x+3 with an input register of 2 qubits |x⟩ and
an output register of 3 qubits |y⟩, which will result in the truth table of table 2.2.

x1 x0 y2 y1 y0
0 0 0 1 1
0 1 1 0 0
1 0 1 0 1
1 1 1 1 1

Table 2.2. Truth table of the function x+ 3.

To construct the circuit, we can find a boolean function for every bit of the output [24], so we
can build it as in figure 2.8.

|x0⟩

|x1⟩

|y0⟩

|y1⟩

|y2⟩
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Figure 2.8. Circuit for the oracle of the function f(x) = x+ 3.

Another type of oracle is the phase oracle Pf , that permits to apply a phase on the input
based on it. An example of that can be

Pf |x⟩ = (−1)f(x) |x⟩ (2.32)

This type of oracle can be useful if applied to a superposition or as a controlled operation. For
example:

Pf |+⟩ = 1√
2
((−1)f(0) |0⟩+(−1)f(1) |1⟩) = (−1)f(0)

√
2

(|0⟩+(−1)f(1)−f(0) |1⟩) = (−1)f(0)Zf(0)−f(1) |+⟩

And, being Z = Z†, so Zf(0)−f(1) = Zf(1)−f(0), this oracle actually changes the phase depending
on f(0) and applies a Z-gate.

We will see an application of this oracle in section 3.1 with the Deutsch-Jozsa algorithm.

2.6.1 Ancillae qubits

There are some cases where the classical function, in order to be transformed into a reversible
one, needs more qubits than the actual needed as output. We will see in the next chapters of this
work various examples of this kind of oracles since more complex operations usually need them,
in some cases also to lower the number of operations performed.

We can use an X-gate controlled by 5 qubits as an example, which without the use of ancillae
qubits would need many operations to be performed. We can lower this count using just 3 ancillae
and 4 Toffoli gates, as done in figure 2.9.

|c0⟩ |c0⟩

|c1⟩ |c1⟩

|c2⟩ |c2⟩

|c3⟩ |c3⟩

|c4⟩ |c4⟩

|x⟩ |y⟩

|0⟩ |c0 · c1⟩

|0⟩ |c0 · c1 · c2⟩

|0⟩ |c0 · c1 · c2 · c3⟩

Figure 2.9. Implementation of an X-gate controlled by 5 qubits using 3 ancillae.
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There are two types of ancillae qubits since some algorithms require qubits initialized to a
particular state like |0⟩ and others not. In the first case, we will refer to them as clear ancillae,
while in the second one as dirty ancillae. The important thing to note is that both of these need
to be returned to their original state at the end of the oracle. In order to do so, it is common
to copy the output of the function to another ancilla register, so that the inverse of the oracle
can be performed and the original states preserved. This permits, in a long computation, to use
ancillae qubits for different purposes, or even to use, as dirty ancillae, qubits that store the output
of other functions.

2.7 Logical qubits

We talked so far of a qubit as if it was perfect, without any error, but this is completely not true,
since the current quantum technologies are far to be perfect. In fact, every gate has a percentage
of error, the decoherence time of the qubits does not permit to have long circuits, and even the
measurements sometimes fail. We can refer to a “perfect” qubit as a logical qubit, while to a real
qubit as a physical qubit. If we run our algorithms using physical qubits, even in the most recent
quantum devices, we will obtain random results, since the error percentage is too high: we need a
way to make logical qubits out of physical ones. Due to the no-cloning theorem, we cannot create
copies of an unknown quantum state, so Peter Shor formulated a Quantum Error Correction
(QEC) code [25] to store the information of one qubit into nine entangled ones. The type of QEC
techniques that are based on the repetition of the logical information is called repetition codes.
However, since many errors can happen in the same logical qubit, we need an increasing number
of physical qubits for a single logical one if we want to gain more fidelity: the distance code d is
a number defined such that the maximum number of errors that can be simultaneously corrected
are ⌊d−1

2 ⌋.

Some important techniques must be considered: we need a way to detect and correct the error
(syndrome measurement), a way to retrieve the logical information from many physical qubits
(decoding), and a way to transform every logical operation so that it can operate on the entangled
structure (logical operation [26], made by many physical operations).

In order to better understand them, we will take as an example the Shor code in the rest of
this section to understand the steps needed to be taken into account, but we will expand this
subject in section 5.4, where an example of a modern error correction code is given.

2.7.1 Encoding

In the Shor code, the basis states |0⟩ and |1⟩ are encoded creating an entanglement between 9
qubits using the following transformations.

|0⟩ → 1

2
√
2
(|000⟩+ |111⟩)⊗ (|000⟩+ |111⟩)⊗ (|000⟩+ |111⟩) = |0L⟩

|1⟩ → 1

2
√
2
(|000⟩ − |111⟩)⊗ (|000⟩ − |111⟩)⊗ (|000⟩ − |111⟩) = |1L⟩

This encoding is created using the circuit in figure 2.10, that protect against an error the
information on the first qubit |ψ⟩.
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|ψ⟩ H

|0⟩

|0⟩

|0⟩ H

|0⟩

|0⟩

|0⟩ H

|0⟩

|0⟩

Figure 2.10. Encoding operation of the Shor code. Source: [25]

In this way, the state |ψ⟩ is encoded in the state |ψ⟩ = α |0L⟩+ β |1L⟩.

2.7.2 Syndrome measurements

The syndrome measurement is a measurement done on many qubits that, without affecting the
logical quantum information encoded, can detect an error and apply an operation to correct the
state. The output of the measurement, called syndrome tells which is the affected qubit and what
is the error that occurred. The effect of the noise is the same as a rotation around an axis of the
Bloch sphere, so we can refer to this as a Pauli error, so the QEC algorithm can use the same
Pauli operator to correct it. The errors are in practical two: the bit flip, which is like an X-gate,
and the sign flip, which is like a Z-gate. However, if these two happen together, they will become
like a Y-gate.

To protect against bit-flip errors, we use parity measurements. In the Shor code, this is
done acting on 3 chunks of 3 qubits, correcting a maximum of 1 bit-flip error each. The parity
measurement acts on 2 consecutive qubits, checking if they have the same state (resulting in a
|+⟩) or not (|−⟩). The measurements are done to the first and the second qubit (Z1Z2) and to
the second and the third one (Z2Z3). The correction to apply is retrieved using this truth table:

Z1Z2 Z2Z3 Correction
+ + I
- + X1

- - X2

+ - X3

Table 2.3. Correction to apply in regard of the measurements.
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To correct the phase errors, we act in the same way, with the difference that this time the
measurement is done in the {|+⟩,|−⟩} basis and that it is done considering as single qubit one
of the chunks of the bit flip correction, acting again in the single chunk if an error was detected
according to table 2.3.

2.7.3 Decoding

The decoding process is needed in order to retrieve the logical information from the encoded
entangled state. In the Shor code, this is done using a circuit that permits to recreate the
information on the first qubit, leaving the other qubits to state |0⟩, retrieving in this way all
the original states of the qubits before the encoding. Since the operation is the inverse of the
encoding, the needed circuit is the inverse of the one in 2.10.

|ψ⟩

|0⟩

|0⟩

|0⟩

|0⟩

|0⟩

|0⟩

|0⟩

|0⟩

H

H

H

Figure 2.11. Decoding operation in the Shor code. Source: [25]

2.7.4 The surface code

This basic background will help us to understand the way QEC is applied to modern architectures,
that are designed to be optimized for a specific surface code. In the surface codes [27] the physical
qubits interact only with their nearest neighbors, and we will see how much this property is
important in quantum computers in section 5.3. The surface code is implemented in a 2-d lattice
of physical qubits, which can be either data qubits or measurement qubits. The measurement
qubits are used to maintain the state of the data ones, so they are of two types: some perform
X-measurements (X-syndrome qubits) and some perform Z-measurements (Z-syndrome qubits).
We will see a type of surface code in section 5.4, called heavy hexagon code, that we used to
hypothesize the number of physical qubits needed for Shor’s algorithm implementation.
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Chapter 3

Quantum Algorithms

In this chapter, we study the most important and ground-breaking algorithms that are found in
the literature. We will see their possible use in our world and the way they can be implemented
in a quantum computer describing the high-level representation of the circuit.

This is important since many algorithms are used as basic blocks for the subsequent ones: for
example, Shor’s algorithm starts from the Quantum Phase Estimation idea and uses the Quantum
Fourier Transform.

3.1 Deutsch-Jozsa Algorithm

This algorithm [28] was the first example of a quantum algorithm that is faster than the best
classical algorithm for a problem, so it was one of the important milestones of quantum computing.
Given a function f which takes as input a string of bits, returns 0 or 1, and is guaranteed to be
balanced (50% of the times outputs 1 and 50% of the times 0) or constant (always 0 or always 1),
the problem is to determine if f is balanced or constant. The classical algorithm would need to
check 2n−1+1 inputs in the worst-case scenario, while the quantum algorithm solves this problem
with just one call of the function. However, it is not considered as an exponential speed-up
because the probability that we have to do many checks in the classical algorithm is very low.

n
|0⟩⊗n

H⊗n

Uf

H⊗n

|1⟩ H

x x

y y ⊕ f(x)

Figure 3.1. Implementation of the Deusch-Josza Algorithm.

After the application of the Hadamard gates, following equation 2.25, we have the superpo-
sition of all the possible states in the top register and the state |−⟩ in the qubit. Applying the
oracle the resulting state will be as in equation 3.1.

|ψ⟩ = 1√
2n+1

2n−1∑
x=0

|x⟩ (|f(x)⟩ − |1⊕ f(x)⟩) = 1√
2n+1

2n−1∑
x=0

(−1)f(x) |x⟩ (|0⟩ − |1⟩) (3.1)
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This equation can be understood by recalling section 2.4.3 for the phase kickback, and that f(x)
can only be equal to 0 or 1.

At this point, we can look only yo the top register. The Hadamard gates are applied to the
state, transforming it into the state in the equation below.

|ψ⟩ = 1

2n

2n−1∑
x=0

(−1)f(x)[
2n−1∑
y=0

(−1)x·y |y⟩] = 1

2n

2n−1∑
y=0

[

2n−1∑
x=0

(−1)f(x)(−1)x·y] |y⟩ (3.2)

Following the Born rule described in equation 2.8, we can calculate the probability to measure
the state |0⊗n⟩, that is the one obtained as done in the following one.

p(|0⊗n⟩) = |⟨0⊗n|ψ⟩|2 = | 1
2n

2n−1∑
y=0

[

2n−1∑
x=0

(−1)f(x)(−1)x·y] ⟨0⊗n|y⟩|2 (3.3)

The component ⟨0⊗n|y⟩ result 1 only in the case |y⟩ = |0⊗n⟩, 0 otherwise, so the probability
to measure this state will be one if the function is constant and 0 if it is balanced, as expressed
in equation 3.4.

| 1
2n

2n−1∑
y=0

[

2n−1∑
x=0

(−1)f(x)(−1)x·y] ⟨0⊗n|y⟩|2 = | 1
2n

2n−1∑
x=0

(−1)f(x)|2 =

{
1, if f is constant

0, if f is balanced
(3.4)

since
∑2n−1

x=0 (−1)f(x) =


+2n, if f(x) = 0

−2n, if f(x) = 1

0, if f(x) is balanced

The algorithm works because, when the oracle is balanced, before the measurements we obtain
a state that is surely orthogonal to |0⊗n⟩, thanks to the phase kickback.

3.2 Bernstein-Vazirani algorithm

This algorithm [29] solves a problem that is similar to the Deutsch-Jozsa one, but the function,
instead of being balanced or constant, performs the bit-wise product of the input for the string s
(f(x) = s · x (mod 2)): the problem lies in finding this string. Classically, the function must be
run n times, since we would have to try all the inputs with just one bit to 1, so that we find the
bits of the string s one by one, while the quantum algorithm needs only one call to f(x). The
quantum circuit is the same as the one we have seen for the Deutsch-Jozsa algorithm, but the
quantum oracle changes, providing the transformation in equation 3.5.

|x⟩ → (−1)s·x |x⟩ (3.5)

In this way, after the application of the oracle, the state of the input register becomes the one in
equation 3.6.

1√
2n

2n−1∑
x=0

(−1)s·x |x⟩ (3.6)

From this, we can obtain s simply by applying the Hadamard gates and measuring the state.
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3.3 Simon’s Algorithm

This algorithm [30] was the first quantum algorithm with an exponential speed-up with respect
to its classical counterpart. In the Simon’ problem, we have a function f that can perform a
one-by-one mapping (we have a unique output for every different input) or a two-by-one mapping
(we have a unique output for exactly two different inputs). In the second case, if the inputs x1 and
x2 have the same output, than x1 ⊕ x2 = b, where b is a hidden bitstring. We have to determine
if f is one-to-one or two-to-one and, in the second case, find b. We will see that the algorithm
just needs to find b since the one-to-one mapping lies in the case where b = 000..00. Classically,
we have to check up to 2n−1+1 inputs, where n is the bit length of b, especially in the case where
we have a one-to-one mapping, while using the quantum algorithm we need just a number of runs
of the oracle that is linear on n.

n
|0⟩⊗n

H⊗n

Uf

H⊗n

|0⟩⊗n

x x

|0⟩⊗n f(x)

Figure 3.2. Implementation of the Simon’s Algorithm.

As done in the other algorithms, we first apply the Hadamard gates following equation 2.25,
so that the superposition of all the possible states is created on the first register. Now the oracle
applies f(x) on the second register so that the state of the system evolves in the one in the
following equation.

|ψ⟩ = 1√
2n

2n−1∑
x=0

(|x⟩ |f(x)⟩) (3.7)

Performing the measurement of the second register, which can result in either x or y = x⊕ b,
the first register will collapse to the one of equation 3.8.

|ψ⟩ = 1√
2
(|x⟩+ |y⟩) (3.8)

Now we apply the Hadamard gates in order to return to the {|0⟩ , |1⟩} basis, obtaining the
following state.

|ψ⟩ = 1√
2n+1

2n−1∑
x=0

[(−1)x·z + (−1)y·z] |z⟩ (3.9)

In this situation, a state can be measured only if (−1)x·z = (−1)y·z, which means:

x · z = y · z ⇒ x · z = (x⊕ b) · z ⇒
⇒ x · z = x · z ⊕ b · z ⇒ b · z = 0 (mod 2)

We will in this way measure a string z that will be orthogonal to b, so repeating the circuit a
sufficient number of times we will obtain a system of n equations and n variables, that can be
resolved by Gaussian elimination:
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b · z1 = 0

b · z2 = 0

· · ·
b · zn = 0

3.4 Quantum Fourier Transform

The Quantum Fourier Transform (QFT) is one of the building blocks that we will use in the next
algorithms, including Shor’s one, so it is particularly important to understand it for this thesis
work. It permits to bring a state in the {|0⟩ , |1⟩} basis (or computational basis) to the {|+⟩ , |−⟩}
basis, denoted as Fourier basis.

QFT |x⟩ = |x̃⟩ (3.10)

If in the computational basis we store number as binary numbers, in the Fourier basis every qubit,
in order to store the state |x⟩ follows equation 3.11, which means that every qubit will perform
an increasing rotation around the X-axis to store a bigger x.

|x̃⟩ = 1√
N

n⊗
k=1

(|0⟩+ e
2πi

2k
x |1⟩) (3.11)

For example, using 4 qubits, qubit 0 will rotate of π
8 every time x increases by 1, qubit 1 of π

4 ,
qubit 2 of π

2 and qubit 3 of π. For example, we can see in figure 3.3 how the rotations are applied
depending on the input.

x x̃ x x̃

0 1

2 3

4 5

6 7

Figure 3.3. Visualization of the QFT rotations on a 3 qubit register, that can encode
numbers from 0 to 7.

29



Quantum Algorithms

The circuit to implement the QFT is quite simple, as it uses only Hadamard and controlled
rotation (CROT) gates. The CROT gates are defined as:

CROTk =

[
I 0
0 UROTk

]
, s.t. UROTk =

[
1 0

0 e
2πi

2k

]
(3.12)

CROTk |1xj⟩ = e
2πi

2k
xj |1xj⟩ (3.13)

The circuit of a QFT applied on n qubits is described in figure 3.4.

· · ·

· · · · · ·

. . .

· · · · · ·

· · · · · ·

|x1⟩ H UROT2 UROTn−1 UROTn

|x2⟩ H UROTn−2 UROTn−1

...

|xn−1⟩ H UROT2

|xn⟩ H

|ψ1⟩ |ψ2⟩ |ψ3⟩ |ψ4⟩

Figure 3.4. Implementation of the QFT.

We start applying the Hadamard gate on |x1⟩, leaving the system in the following state:

|ψ1⟩ = 1√
2
[|0⟩+ e

2πi
2 x1 |1⟩]⊗ |x2...xn⟩

Then the first UROT gate, controlled by the second qubit, is applied:

|ψ2⟩ = 1√
2
[|0⟩+ e

2πi
22

x2+
2πi
2 x1 |1⟩]⊗ |x2...xn⟩

After the application of all the CROT gates applied on the first qubit, we have:

|ψ3⟩ = 1√
2
[|0⟩+ e

2πi
2n xn+

2πi

2n−1 xn−1+...+ 2πi
22

x2+
2πi
2 x1 |1⟩]⊗ |x2...xn⟩

Being that every number x can be written as 2n−1x1+2n−2x2+ ...+21xn−1+20xn, we can write
the equation below in the form:

|ψ3⟩ = 1√
2
[|0⟩+ e

2πi
2n x |1⟩]⊗ |x2...xn⟩

We repeat the procedure for all the qubits, obtaining the following state.

|ψ4⟩ = 1√
2
[|0⟩+ e

2πi
2n x |1⟩]⊗ 1√

2
[|0⟩+ e

2πi

2n−1 x |1⟩]⊗ ...⊗ 1√
2
[|0⟩+ e

2πi
22

x |1⟩]⊗ 1√
2
[|0⟩+ e

2πi
2 x |1⟩]

In the end, we just swap the qubits in order to reorder them correctly.

As we will see in the next sections, the importance of the QFT for the quantum world is very
high: it permits to convert an information encoded in the phase of a state, that is not observable,
into something that is encoded in the {|0⟩ , |1⟩} that can be easily measured [31].
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3.5 Quantum Phase Estimation

The first application of the QFT is the Quantum Phase Estimation (QPE) algorithm, which
permits to perform an estimation of θ in the equation U |ψ⟩ = e2πiθ |ψ⟩, where |ψ⟩ is an eigenvector
and e2πiθ is its eigenvalue. In this algorithm, we use the phase kickback method (2.4.3) to encode
the phase of the gate U in the Fourier basis to the t control qubits. So, after the application of
the inverse QFT, we can measure it in the computational basis to retrieve the vale of θ.

· · ·

· · ·

...

· · ·

· · ·

· · ·

|0⟩⊗t
H⊗t QFT † 2tθ

|ψ⟩ U2t−1

U2t−2

U21 U20

Figure 3.5. Implementation of the QPE Algorithm.

The application of the Hadamard gates creates the superposition of all the possible states in
the top register, as described in equation 2.25. Now 2t U gates are applied, each one of a different
eigenvalue, resulting in a transformation of the top register as in equation 3.14. This equation
has the same form as the one of equation 3.11, just using 2tθ instead of x, so we can understand
why the inverse QFT is performed.

|ψ⟩ = 1√
2t
(|0⟩+e2πiθ2

t−1

|1⟩)⊗(|0⟩+e2πiθ2
t−2

|1⟩)⊗· · ·⊗(|0⟩+e2πiθ2
1

|1⟩)⊗(|0⟩+e2πiθ2
0

|1⟩) (3.14)

Applying the inverse QFT to this state, the register will encode the number 2tθ, so we can
measure the qubits to know it.

3.6 Shor’s Algorithm

In this section, we will briefly explain the theory of the quantum circuit for Shor’s algorithm [7],
which permits us to find the order of the function ar (mod N), i.e. the smallest r s.t. ar ≡
1 (mod N), as graphically described in figure 3.6.

Now we just describe the methods that are used, as we will provide a more complete and
exhaustive explanation in chapter 8.
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Figure 3.6. Visualization of the period of the modular function f(x) = 3x (mod 35). Source: [10]

To solve the order finding problem, Shor used QPE on the matrix U in equation 3.15: using
this operator, if we start from state |1⟩, after r iterations we will come back to the state |1⟩ since
Ur |1⟩ = |1⟩.

U |y⟩ = |ay (mod N)⟩ (3.15)

Applying successively the operator U , we will obtain a superposition of the states ak (mod N),
so an eigenstate of U would be the one described in equation 3.16, but this is not interesting since
we can not extract any phase from it. In order to select a good eigenstate, we use one that
depends on r and on an integer number s, s.t. 0 ≤ s ≤ r−1, so we can have a different eigenstate
for each value of s, as we can see in equation 3.17.

|u0⟩ =
1√
r

r−1∑
k=0

|ak (mod N)⟩ (3.16)

|us⟩ =
1√
r

r−1∑
k=0

e−
2πisk

r |ak (mod N)⟩ (3.17)

U |us⟩ = e
2πis

r |us⟩ (3.18)

Applying QPE to the unitary operator, will give as a result the angle ϕ = s
r , so we can use

the method of the continued fractions to retrieve r, as we will see in chapter 8.
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· · ·

...

· · ·

· · ·

· · ·n

|0⟩⊗n
H⊗n QFT † ϕ = s

r

|1⟩ U20 U2n−2

U2n−1

Figure 3.7. Implementation of the Shor’s Algorithm.

Actually, in order to apply U2n−1

, we do not have to repeat U 2n−1 times, since a is a classical
value and we can use the repeated squaring method to calculate a2

x

classically in an efficient way.

U2x |y⟩ = |a2
x

y (mod N)⟩ (3.19)

3.7 Grover’s Algorithm

Grover’s algorithm is one of the algorithms that made the interest towards quantum computing
grow since it enables to perform research in an unsorted database in O(

√
N) time, while classical

algorithms need O(N) time. It can also be used for other purposes since it is a general method to
speed-up many other algorithms.

It solves the problem where we want to find an item w in a list of N items. To find its location,
we will use Grover’s amplitude amplification trick, without doing any assumptions on the list. We
create an oracle that adds a negative phase to the solution state, as in the following equation.

Uf |x⟩ =

{
|x⟩ if x /= w

− |x⟩ if x = w
= 1− 2 |w⟩ ⟨w| (3.20)

We can construct this oracle using phase kickback, as done in the Deutsch-Jozsa Algorithm in
section 3.1. As we can see from the third member of the equation, it can be seen as a reflection
of the state at |w⊥⟩: this will be helpful since we will study the meaning of the circuit geomet-
rically. Another important piece of the circuit is the oracle Uf0 , which performs the function in
equation3.21.

Uf0 |x⟩ =

{
|x⟩ if x = 0

− |x⟩ if x /= 0
= 2 |0⟩ ⟨0|⊗n − 1 (3.21)

At the beginning, we don’t know where the element is, so we must create a superposition of all
the possible location using Hadamard gates, obtaining the following state.

|s⟩ := 1√
N

N−1∑
x=0

|x⟩ (3.22)

Now the amplitude amplification will transform the probability amplitudes, reducing the ones of
the non-marked items and improving the one of the target, so we run many times this procedure
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until we obtain the wanted probability to measure it. This process is explained in detail in the
Qiskit textbook.

V

n|0⟩ H⊗n Uf H⊗n Uf0 H⊗n

repeat r times

Figure 3.8. Implementation of the Grover’s Algorithm.

The V-gate is a reflection of the state at |s⟩, as expressed in the equation below.

V := H⊗n · Uf0 ·H⊗n = H⊗n · 2 |0⟩ ⟨0|⊗n ·H⊗n −H⊗n ·H⊗n = 2 |s⟩ ⟨s| − 1 (3.23)

In order to see graphically the application of these gates, we must define the plane Σ, that is the
one that is formed by |s⟩ and |w⟩, where we can define |w⊥⟩ as in equation 3.24.

|w⊥⟩ := 1√
2n − 1

∑
x/=w

|x⟩ (3.24)

In this plane, the state |s⟩ of equation 3.22 will be equal to the one in equation 3.25, that we can
express defining θ such that sin θ

2 = 1√
N

as in equation 3.26.

|s⟩ =
√

2n − 1

2n
|w⊥⟩+ 1√

2n
|w⟩ (3.25)

|s⟩ = cos
θ

2
|w⊥⟩+ sin

θ

2
|w⟩ (3.26)

Figure 3.9. Representation of the reflections of the state

We can now follow the protocol step-by-step, also looking at figure 3.9:
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1. Apply the Hadamard gate to obtain |s⟩;

2. Perform the reflection at |w⊥⟩;

3. Perform the other reflection at |s⟩;

4. Repeat steps 2 and 3 r times.

In step 4 we rotate the state by r · θ, choosing r s.t. r · θ + θ
2 ≈

π
2 . In this way, r will be:

r =
π

2θ
− 1

2
=

π

4 · arcsin 1√
N

− 1

2

N large−−−−−→ r =
π

4

√
N (3.27)

We can see from this equation why this algorithm runs in O(
√
N) time. Each time we apply the

two oracles, the probability amplitude of the wanted item rises, while the one of the other items
goes down.

This algorithm can be easily applied also in the case where we have M marked elements, just
defining the state |w⟩ as in the following equation.

|w⟩ := 1√
M

M∑
i=1

|wi⟩ (3.28)

In this way, the other states will be:

|w⊥⟩ := 1√
N −M

∑
x/∈{w1,...,wM}

|x⟩ (3.29)

|s⟩ :=
√
N −M
N

|w⊥⟩+ M√
N
|w⟩ = cos

θ

2
|w⊥⟩+ sin

θ

2
|w⟩ (3.30)

The convergence of the algorithm is quicker, as it needs just O(
√

N/M) iterations.

We will study this algorithm more deeply in chapter 7, as it represents a threat for the modern
cryptographic hash and symmetric algorithms.

3.8 Quantum Counting

Quantum counting [32] is an algorithm that counts the marked elements of a list. It combines
QPE with Grover’s algorithm since we just use QPE to find an eigenvalue of a Grover search
iteration. Using the {|w⟩,|w⊥⟩} basis, we can write an iteration of the Grover algorithm as a
matrix as done in the equation below.

G =

[
cos θ − sin θ
sin θ cos θ

]
(3.31)

This matrix has eigenvectors

[
−i
1

]
and

[
i
1

]
and eigenvalues e±iθ, so when we measure the register

after the QPE algorithm we will obtain either +θ or −θ.
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· · ·

· · ·

...

· · ·

· · ·

· · ·

|0⟩⊗t
H⊗t QFT † 2t θ

2π

|0⟩⊗n
H⊗n G20 G21 G2n−2

G2n−1

Figure 3.10. Implementation of the Quantum Counting Algorithm.

Now that we know θ, we can obtain M from equation 3.30, as done in the following equation.√
N −M
N

= cos
θ

2
→M = N sin2

θ

2
(3.32)

If in the classical case the number of marked elements can be found only by performing a
lookup of the whole database, this algorithm performs the task with a logarithmic complexity on
the number of elements of the database.

This application of Grover’s algorithm can be used also to check the existence of a solution in
the functions, looking if M /= 0.
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Chapter 4

Quantum Computers

In May 1981 Richard Feynman gave a talk about the simulation of real physics using computers,
proposing the idea of exploring quantum mechanics with a new kind of computer [33]. From
that date, scientists put a lot of effort into building quantum devices capable of performing
this type of computation and discovering new algorithms that take advantage of them. The
continuous research brought to Shor’s discoveries of an efficient algorithm for factoring large
numbers, that proved the importance of this new field of computation and made the interest for
quantum computing grow exponentially, and of the error-correcting codes, that gave the possibility
to limit the effect of decoherence.

Today we have a situation that does not permit us to run many useful circuits due to the
hardware capabilities needed: we call this period Noisy intermediate-scale quantum (NISQ) era
[40]. In fact, the actual devices have a number not superior to a few hundred qubits (intermediate-
scale) and are sensitive to the environment noise (noisy), so they do not permit to achieve fault
tolerance or quantum supremacy [69], that is the demonstration that a programmable quantum
device can solve a problem that no classical computer can solve in any feasible amount of time.

In October 2019 google claimed to have been able to resolve in 200 seconds a task using the
Sycamore chip [3], when a supercomputer would take 10000 years, but IBM (that had the best
supercomputer available at the time) sustained that with several optimizations that task would
need just 2 years ad a half [70].

One year later, in December 2020, a team of the USTC led by Jian-Wei Pan reached quantum
supremacy with the Gaussian Boson Sampling (GBS) method [71], solving in 20 seconds what a
classical supercomputer would solve in 6× 108 years of computation (a speed-up on the order of
1014), and stated that important improvements to that record could be done by the development
of better hardware [72]. The GBS is a variant of the Boson Sampling, where non-classical light is
injected into a linear optical network, and the output is measured by single-photon detectors.

The same team in October 2021 reported that a new quantum computer had reached a speed-
up of 1024 against the classical supercomputers using the GBS method, while another team (led
always by Jian-Wei Pan) was able to improve the Sycamore computation by 3 qubits, so the same
classical computation would require a computation time of 2 or 3 orders of magnitude greater
[73].

These experiments prove that quantum computing will be able to overcome the classical algo-
rithms probably also soon, providing the possibility to speed up the computations in many fields,
such as pharmaceutics, finance, data center, chemistry, and many others. However, it represents
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also an important problem for cybersecurity since many cryptographic algorithms rely on the
exponential complexity of certain mathematical problems.

As we have seen, we have two distinct fields of research, one logical, related to the algorithms,
and one physical, related to the way the devices are built. The current quantum architecture has
these two worlds at the top and at the bottom of the stack, whit several layers that permit an
algorithm to be implemented in a certain quantum computer.

4.1 Full-stack Quantum Architecture

In order to run a quantum algorithm, we have to develop the components in figure 4.1.

Figure 4.1. Full-stack quantum architecture. Source: [34]

The first layers see the qubits as logical and are independent of the physical realization of the
device that will be used. The algorithm is written using a classic programming language, such as
C++ or python, or a quantum programming language like Q#. For this purpose, IBM developed
Qiskit, an SDK that uses python to describe quantum circuits that can be run in one of their
systems or simulators (4.4.1).

The next layers are needed to transform the classic description of the circuit into a repre-
sentation that can be used by a specific quantum device. In this context, the Quantum Error
Correction algorithm used drives the transformation of the logical qubits into physical ones, while
the compiler, after the classic logic compiling, translates the logical quantum operations to a series
of physical ones [34]. The instructions are now described in a Quantum Instruction Set Archi-
tecture, that contains low-level directives like single-qubit gates or measurements. This language
can be understood by the underlying quantum microarchitecture, which consists of two parts: one
that has a classical processor to execute part of the accelerator logic and the quantum chip that
contains the qubits that need to be executed in an analog way [35].

In the next sections we will propose different solutions for the layers in figure 4.1, starting
from the different types of quantum hardware and the current manufacturers (4.2), and providing
an overview of the current frameworks that can be used as an interface to these devices (4.4).
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4.2 Quantum hardware in the NISQ era

Quantum computers are the devices that exploit the quantum properties of section 2.3 to perform
the computations. The different types of quantum hardwares are classified regarding the way the
qubits are created. Some of the most important technologies are shown in table 4.1.

Technology Properties Companies

Photons
They can work at room temperature
and have weak interations with the en-
vironment and limited fault tolerance.

- Xanadu
- Amazon Quantum
Solutions Lab

Trapped Ions

They are manipulated by laser light,
so there is no need for complicated
wiring, and cooled by laser cooling not
cryogenics, while the qubit storage
times reaches minutes or even hours.

- Honeywell
- IonQ

Superconducting
qubits

They have both fast gate and operation
time, but also fast decoherence time.
They must be mantained below 100mK,
so they need cryogenic refrigerators.

- Intel
- Google
- IBM
- Rigetti

Table 4.1. Most known technologies to create a qubit, along with characteristics and current
developer companies. Source: [37, 38, 39]

To run a circuit on a quantum device, we need to be aware of the hardware capabilities that
we have, since current devices have many limitations:

� The number of qubits is at most between 10 and 100;

� The decoherence time does not permit to run long circuits;

� The gates (both singles and doubles) precision has to be considered;

� The topology of the qubits is not all-to-all, so the interaction between two not connected
qubits has to be propagated through other qubits; and

� Some quantum gates may not be present.

The number of qubits of the circuit (width) must be lower than the number of qubits of the
quantum computer and the number of gates should consider their precision. Another important
characteristic of a circuit is the depth, that is the number of gates on the longest path in the
circuit since many gates can be done in parallel: if the decoherence time is too small with respect
to the depth of the circuit the errors does not permit to retrieve good results.
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4.2.1 Manufacturers

Now we will see the properties of the most important quantum manufacturers seen in table 4.1
and their solutions, in order to confront them.

IonQ developed the first Reconfigurable Multicore Quantum Architecture (RMQA)[44], pro-
viding a technology that permits to change the topology of the device. This brought to an 11-qubit
fully-connected quantum processor, but the number of qubits is expected to pass the one hundred
wall in the next future. They provide cloud access with AWS, Azure, Google, and Qiskit, so their
hardware is accessible from nearly every provider available.

Rigetti[45] develops superconducting qubit-based quantum processors and supports integration
with a wide variety of classical resources through network APIs. These APIs can be used by their
SDK, enabling developers to construct their own software. Their most performing machine is
called “Aspen 8”, a machine with 31 physical qubits and fast gates.

Honeywell[46] built the Honeywell System H1, a 10 qubit device with high-fidelity, fully con-
nected qubits and features like mid-circuit measurement and qubit reuse, that was the first one
to obtain a quantum volume (a metric that we will describe in section 4.2.2) of 128. This system
has cloud access and is compatible with many frameworks. Mid-Circuit Measurement is a unique
feature that allows qubits to be measured during the circuit, while the non-measured qubits main-
tain their quantum state: we will better understand the importance of this property in section
8.4.1.

The IBM Quantum Experience is a cloud-based solution that permits the users to have free
access to real quantum hardware and powerful quantum simulators made available by IBM. The
IBM Q project estimate to be able to break the wall of a device with 1000 superconducting qubits
for 2023, but nowadays their most powerful quantum device has 27 qubits, but they provide
access also to devices with 65 and 127 qubits. They offer a big variety of topologies and different
kinds of connectivities between the qubits so that the user can choose the most suitable one for his
purpose. They provide also 5 simulators, such as the ibmq qasm simulator, that allows simulating
quantum systems of a maximum of 32 qubits: we will use it to test our algorithms in the next
chapters. The users can interact with the devices using the quantum circuit model of computation
that we have seen so far, so we need a way to code our algorithms in circuits that can be passed
to the devices.

As quantum computers become more complex and capable of performing bigger circuits, we
would need a fast way to understand the capabilities of a quantum device, so we need a measure
of its quality.

4.2.2 Quantum computers capability metrics

The Quantum Volume (QV)[41] is the IBM proposal to give a single-number measure to the
capabilities of a quantum device. It has been initially thought for near-term quantum computers
with less than 50 qubits, but the principals can be expanded also for bigger devices. It quantifies
the largest random circuit of equal width and depth that the computer successfully implements
with good precision, so it indicates in a fast manner the size of the circuits that it can run. It is
defined as in the following equation.

log2QV = argmax
m

min(m, d(m)) (4.1)

so it is the maximum m (width) of the minimum value between m and d(m) (depth) of all the
circuit that produced a correct result with good probability. In order to calculate the good result,
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the circuits are runned in a quantum simulator, and this is one of the reasons why it will be
difficult to use this measure for the future quantum computers.

Date QV measured (circuit size) Manufacturer Device and qubits number
2020, January 32 (5x5) IBM Raleigh, 28 qubits
2020, June 64 (6x6) Honeywell 6 qubits

2020, August 64 (6x6) IBM 27 qubits
2020, November 128 (7x7) Honeywell System Model H1, 10 qubits
2021, March 512 (9x9) Honeywell System Model H1, 10 qubits
2021, July 1024 (10x10) Honeywell Honeywell System H1, 10 qubits

Table 4.2. Hystorical records for QV, along with manufacturer and device. Source:
Wikipedia, free contributors.

If the QV measures the quality of a quantum computer, we need a measure to quantify the
performance in terms of speed of it, that is the number of QV circuits that the system can execute
per unit of time. IBM proposed a method to measure the Circuit Layer Operations Per Second
(CLOPS) [42], and used it to calculate the performances of its systems. They define CLOPS as
“the number of QV layers executed per second using a set of parameterized QV circuits, where
each QV circuit has D = log2QV layers”. They use 100 parametrized template circuits and
measure the time needed to run each of them 10 times. A PRNG is used to take the parameters
for the 100 parametrized circuit, which can now be executed using 100 shots. The results of the
circuits are used as seed for the PRNG to calculate the parameters to re-run the circuits again.

CLOPS =
M ×K × S ×D

time taken
(4.2)

The clops can now be calculated as in equation 4.2, where M is the number of templates (100),
K is the number of parameter updates (10) and S is the number of shots (100).

4.3 Quantum Circuits Simulation

The quantum algorithms described in chapter 3 would need hardware that is not available nowa-
days if the number of qubits needed starts to increase. Also, as we will see in chapter 5, the
quantum architectures are very susceptible to errors and this makes many computations hard to
be completed. In this context, how can an algorithm be tested and verified? We have already seen
that quantum states and quantum operators can be described as vectors and matrices respectively
and that the result of the application of an operator to a state is the multiplication between this
two. These elements can be easily described in a classical computer, which therefore can be used
as a quantum simulator, not susceptible to errors and where the programmer can easily check
step-by-step the evolution of the states. This technique is used for many purposes, for example,
it can provide a good base for the development of error correction codes, help to see if a quantum
speed-up is really possible for a certain circuit, or verify the correctness of the real quantum hard-
ware output for a certain circuit to test and benchmark it. In addition, it is possible to simulate a
certain error, in order to estimate how a circuit will behave in a real quantum architecture. As it
does not rely on real hardware, the simulation will not take into account the limited connectivity
between qubits typical of the quantum devices but will perform the computations as if qubits are
connected all-to-all.
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However, since the vectors that represent the qubit states grow exponentially in the number
of qubits (2n), the application of an operator would require a multiplication between a matrix of
dimension 2n×2n and a vector of 2n elements. For this reason, even modern computers can arrive
to compute the simulation of a maximum of approximately 30 qubits, while supercomputers with
petabytes of memory can simulate up to 50 qubits. A solution that mitigates this problem is based
on decision diagrams, that permit to reduce both the memory requirements and the simulation
time [43].

4.4 Frameworks for quantum computing

Cirq is the google quantum computing framework solution, a python library for writing and opti-
mizing quantum circuits, and then running them on quantum computers and quantum simulators.
This library introduces the concept of Moment, which is a set of gates operating on different qubits
that can be operated in parallel: even if constructing circuits in this way is time-consuming, this
provides a low-level optimization method easy to understand and to use, as well as a fast method
to slice and invert the circuits. The library provides a pure-states and a mixed-states simulator
for small circuits, but also an interface for some of the most important quantum devices in the
cloud (IonQ, Google Quantum Computing Service, Pasqal, and Alpine).

The Microsoft Quantum Development Kit is the framework for Q#, a quantum programming
language provided as a downloadable extension for Visual Studio, and for Azure Quantum, the
Microsoft cloud solution that works as an interface for Honeywell and IonQ devices. The frame-
work provides also methods for resource estimation and modules for some specific fields that are
of interest in quantum computing.

The Amazon braket framework is another SDK solution that permits to simulate and execute
quantum algorithms built on Jupiter notebooks. This framework provides three cloud simulators
that can be of help in different situations:

� a state vector simulator (SV1) that takes the full wave function of the quantum state and
applies the operations of the circuit to calculate the result for circuit up to 34 qubits;

� a density matrix simulator (DM1) where the user can specify realistic error models and
study the impact of noise on the algorithms for circuits up to 17 qubits; and

� a tensor network simulator (TN1) that encodes quantum circuits into a structured graph to
find the best way to compute the outcome for circuits up to 50 qubits in size, but with a
small depth.

For the execution on real quantum devices, it provides an interface for IonQ, Rigetti, and D-wave.

4.4.1 Qiskit

The Quantum Information Software Kit, or Qiskit, is an open-source development kit that provides
a set of tools and APIs to create quantum programs at the level of circuits, with the possibility to
optimize them for the wanted quantum device. It also provides an optimized simulator to execute
compiled circuits, with functions to reproduce errors that often occur in real quantum computers.
It is available in python, but also in Javascript and Swift. The script is then compiled into the
OpenQASM (open quantum assembly) language, which is directly given to the selected device.

Qiskit is made up of four principal packages, that can interact with each other in the realization
of a quantum circuit, called Qiskit elements:

42



Quantum Computers

� Terra permits to create circuits putting every gate step-by-step and to optimize them for
a certain device. It is the foundation where the other components lie since it is the most
low-level one.

� Aer contains the functions to simulate locally the circuits, providing good representations
of noise models.

� Ignis is used to study and benchmark quantum devices, error mitigation algorithms, and
error correction codes.

� Aqua contains a collection of algorithms of various topics, such as machine learning, chem-
istry finance, and optimization. It also contains well-known quantum protocols, such as
Shor’s algorithm, to allow high-level programming.

In addition, we have the API needed to interact with the IBMQ hardware and simulators, called
IBM Quantum Provider.

An important actor that permits to run more complex circuits in quantum devices is the
compiler: since the NISQ devices are non-fault tolerant, the compilers have to mitigate as much
as possible the operations and the errors that arise from the interactions between the qubits. The
compiler of Qiskit is constituted by the transpiler and the scheduler: the first transforms the
circuit in order to be optimized for the selected device, for example swapping qubits taking into
account the topology of them or analyzing the circuit depth, while the scheduler converts the
circuit into a series of pulses to be executed directly to the device. For example, it is possible
to perform a CNOT between any qubit of a circuit, but when the program is compiled, the
Qiskit compiler converts the single two-qubit gate into a sequence of CNOT gates allowed in
the connectivity: the Qiskit compiler, in fact, allows to specify an arbitrary basis gate set and
topology or relies on the information given by IBM about their devices to optimize circuits for
them. However, it is also possible to write quantum circuits directly in OpenQASM, as Terra
provides all the functions to develop them. These operations are effective only knowing as much
as possible the characteristics of the quantum device that has to be used: for this reason, the
IBM Quantum Experience provides all the necessary data to the users, like the topology of the
system, the properties of the single qubits and the error rates of the gates.

Given that there are various frameworks, we have to explain why we choose Qiskit to implement
and simulate our circuits for Shor’s algorithm. The first reason is the compatibility with the IBMQ
hardware and qasm simulator, that we widely used. The qasm simulator permitted us to test our
circuits using a decent number of qubits, even if the depth of these was really high. The second
reason is the variety of modules that Qiskit Aqua contains, providing also a starting point for
Shor’s algorithm circuit for the factorization problem. Another reason why we choose to use
Qiskit is the possibility to have a big community that helped me to clear every doubt that arose
during the development process and a vast documentation helpful to move the first steps in the
quantum computing world.
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Chapter 5

Quantum algorithms on real
devices

The execution of a quantum circuit in a quantum device, as we have seen in section 4.1, needs
some actions to be performed, such as the transpiling, the transformation of the circuit in QASM
instruction, and the readout of the results. In this chapter, we will explain the steps to create
and run more in detail, taking as an example the IBM Q procedure.

5.1 Circuit definition

As explained in chapter 4, one of the methods to define a quantum circuit is using classical
languages, such as python, and frameworks that contains functions to describe and execute them,
like Qiskit. In this environment, we start from the definition of the quantum and classical registers,
which are the sets of qubits and bits needed by the circuit, that are used as inputs for the
initialization of the quantum circuit. The qubits are then reset to state |0⟩ and initialized in the
wanted quantum state. Now it is possible to apply the wanted quantum gates and measurements.
As described in figure 5.1, Qiskit gives us the possibility to insert in the circuit quantum gates
controlled by classical bits: we will use these to reduce the number of qubits needed by the Shor’s
circuit, but they are not yet implemented in the IBM quantum computers so, using the IBM
Quantum Experience environment, we can only simulate it. The functions needed to set up the
circuit are all gathered in the circuit library1.

Now we have to choose and define the wanted backend and number of shots and execute the
circuit.

5.2 Transpiling

The first step that Qiskit does when a circuit requires the execution on a quantum backend is
the compilation, composed of 4 routines: assemble, schedule, transpile, and sequence. While the

1see https://qiskit.org/documentation/apidoc/circuit library.html
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Figure 5.1. Definition steps of a quantum circuit. Source: [10]

assemble, schedule, and sequence phases are just a rewriting of the inputs, a different task is
performed by the transpiler.

The basic process of transpiling is the mapping of the logical-level qubits of a circuit into
the physical qubits of a specific NISQ device that has limited connectivity, but other actions are
usually performed, like the transformation of the gates into a set of physical gates understandable
by the device.

Figure 5.2. Basic building blocks of the IBM Q transpiler. The process has not to be intended as
linear, but it may contain different sub-routines or loops. Source: [10]

Every quantum device does not support all the gates that we are present in the literature,
but often just a universal set of basis gates due to physical limitations or to the difficulty in
implementing multi-qubit gates. For example, the processors developed by IBM support only the
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gates CX, ID, RZ, SX, X, so the other gates have to be redesigned into a combination of these
five. This process can be quite expensive in terms of depth for a quantum circuit: for example, a
SWAP is decomposed into 3 CNOT gates. Another problem resolved by the transpilation is the
decomposition of multi-qubit gates using only basis gates, but in this case, the depth increases
even more, since a 3-qubit Toffoli-gate is decomposed into up to 6 gates.

5.3 Topology of qubits

The mapping of the qubits is an important step in many types of quantum hardware, including
the ones of the IBM that contains superconducting qubits. In section 4.2.1 we underlined the
importance of the RMQA of IonQ, which permitted to have a fully-connected quantum device
thanks to the properties of the trapped ions, but this is not the case for the superconducting qubits.
The topology of the device strongly influences the depth of our circuits, since the communication
between two non-adjacent qubits will need the interaction between all the qubits in one path
(possibly the shortest) between the two.

As we will see in chapter 8, to construct efficiently the circuit for the period finding algorithm
we would need a highly connected topology, so the depth of the compiled circuit will notably
increase due to this consideration in an IBM quantum device.

An example is provided in the circuit 5.3, that is referenced to the architecture in figure 5.6
when there is a CNOT gate qubit 0 as control and qubit 7 as target.

qubit 0

qubit 1

qubit 4

qubit 7

= =

Figure 5.3. Example of scheduling of a CNOT gate applied to non-adjacent qubits, referenced to
the architecture in figure 5.6 when there is a CNOT gate with qubit 0 as control and qubit 7 as
target. We can see that the depth grows from 1 to 7.

With this circuit we can see how a CNOT gate between two qubits separated by other two qubits
means an increase in the depth of 7 instead of 1: in our circuits we would need a highly connected
structure, but the heavy hexagon code permits to have a connectivity of degree 3 between even
the logical qubits, so we will need some ancillae logical qubits to reduce the distance between all
of these.

The subsequent problem that comes from the limited connectivity is the qubit routing, for
which we can find a solution in the Cambridge Quantum Computing’s t|ket⟩ compiler [51]. The
first operation that this compiler does is to slice the circuit into time steps so that the circuit is
divided into partitions of gates that can be executed simultaneously. Then an initial mapping
of logical qubits and physical qubits is done and a routing algorithm iteratively constructs a
new circuit adapted to the desired architecture. The last operation is called SWAP synthesis
and clean-up, which is needed just to rewrite the SWAP gates as CNOT structures and to clean
useless gates (for example, two consecutive CNOTs).
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Another possibility to solve this problem is to add ancillae logical qubits to act as bridges
between two qubits that want to communicate. For example, adding a clear connectivity ancillae
qubit in circuit 5.3 connected to qubits 0 and 7 will cause an increase in depth to just 3, as we
see in circuit 5.4.

qubit 0

|0⟩

qubit 7

=

Figure 5.4. Example of scheduling of a CNOT gate applied to non-adjacent qubits, refer-
enced to the architecture in circuit 5.6 when there is a CNOT gate with qubit 0 as control
and qubit 7 as target and a clear ancillae qubit connected to these two is added. We can
see that the depth grows from 1 to 3.

In a circuit with many qubits the number of ancillae to be added can be chosen with respect to
the resulting depth, obtaining a trade-off between depth and width, but this is possible only if we
have to develop a quantum computer for a specific purpose.

5.4 Quantum Error Correction

As we have seen in section 4.2, in the NISQ era one of the greatest obstacles to building large-
scale quantum computers that can execute long circuits is the noise that affects the qubits and
the gates. Quantum computations are prone to errors since each gate is slightly wrong, the qubits
involved are disturbed by external forces and measurements may fail. These problems, together
with the quantum decoherence, do not permit us to treat the qubits as perfect, and this represents
a problem for the algorithms that we have seen until now. To apply them, we need a way to create
a qubit that can be considered as ideal, that will be called “logical qubit”, starting from physical
ones, as we have described in section 2.7.

Taking into account the Error Correction Code is very trivial for the transpiling process,
as the physical operations change significantly: in fact, not only the logical gates will be more
complex, but many actions have to be performed just to maintain the correct state in the qubits.
The transpiling process is an NP-hard problem: adding variables makes the optimal solution
exponentially harder to be discovered, so heuristics have been defined for this, and performing
the transpiling algorithm multiple times does not give always the same optimized circuit.

5.4.1 Heavy Hexagon Code

In December 2019 IBM proposed the heavy hexagon code [48], a surface/Bacon-Shor code [49]
that is mapped into a hexagonal lattice that includes all the ancilla qubits required for fault-
tolerant error-correction. This type of code is of particular interest for us since IBM bases its
newest (and future) quantum devices on it, to create logical qubits with a minimum effort. In this
scheme, represented in figure 5.5, the 60% of the qubits have degree 2, while the 40% have degree
3: the overall degree is, therefore, 12

5 . IBM plans to use cross-resonance gates for its hardware
since the researchers achieved gate fidelities around 99%, so this low degree permits to mitigate
the issues of frequency collision and crosstalk [50]. The way to operate the CR gates requires that
the qubit frequency must be different from all its neighbors and selected from a predefined set.
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The possibility that this code gives is to have a set of only three frequencies present in the device,
so the frequency collisions are maximally reduced.

Figure 5.5. actual layout of the d = 5 heavy hexagon code which encodes one logical
qubit. The data qubits are represented by yellow vertices, white vertices are the flag
qubits and dark vertices represent the ancillae to measure the bit flip errors (red areas)
and the sign flip errors (blue areas). Source: [48]

As described in [48, sec. II.A], the total number of qubits np for a given distance code d is
given by the following equation.

np =
5d2 − 2d− 1

2
(5.1)

This number will be important in section 8.3, where we try to estimate the number of physical
qubits needed for the integer factorization with Shor’s algorithm. The logical error rate will be
strongly affected by the distance code, since it will be calculated using the probability that ⌊d−1

2 ⌋
errors occur simultaneously in a physical construction of a logical qubit.

In section 4.2 we have seen how the depth of the circuit is important to understand the needed
performance in terms of QV and CLOPS that a certain quantum device needs to implement it.
The logical error rate has to be maintained below a threshold dependent on the depth of the
wanted circuit so that a computation can be completed with a good percentage of success. Given
this assumption, we can estimate the distance code that the ECC should provide and in this way
the number of physical qubits needed for every logical one.

For example, we may consider a circuit of depth 106 and width 50 and a device that has a
physical error rate (PER) of 10−4 to calculate the number of physical qubits needed to execute
the circuit with fidelity of 90%. At each step, we must assure a probability of error ρ, that is
calculated as in equation 5.2.

ρ ≃ 1− 0,9

depth
= 10−7 (5.2)

Assuming to consider a distance code d = 7, using the formulae 5.1, we need 115 physical qubits
for every logical one and a total of 575 for the whole circuit. Given that we can correct up to 3
errors in a logical qubit at each step, we can calculate the error probability on each logical qubit
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ρL,d=7 using Binomial distribution2, as done in the following equation.

ρL,d=7 = 1−
3∑

k=0

(
115

k

)
(PER)k(1− PER)115−k = 6,85 · 10−10 (5.3)

Having 50 logical qubits, the probability of error at each step ρd=7 is therefore:

ρd=7 = 1− (1− ρL,d=7)
50 = 3,42 · 10−8 (5.4)

Given that ρd=7 < ρ, we proved that the usage of this distance code is sufficient.

The Falcon and the Hummingbird quantum processors of the IBM, used by many of their
quantum computers, are already based on this code, as we can see from the configuration of the
ibmq montreal in figure 5.6. .

Figure 5.6. Physical topology of the ibmq montreal, implementing the heavy
hexagon code. Source: [2]

In Qiskit we have a useful function to calculate the depth of a circuit before the compiler
transformations in the Terra module: “QuantumCircuit.depth()”.

5.5 Execution of quantum circuits

The output of the transpiler is a series of gates, that are transformed into instructions directly
passed to the microarchitecture of the quantum device, defined using a type of language called
Quantum Assembly (QASM). IBM, in order to be used with the Qiskit framework, developed the
OpenQASM language[52], which is currently at version 3.0[53] and defines quantum circuits as
computational routines consisting of an ordered sequence of quantum gates, measurements, and
resets on qubits.

This representation can be also directly hand-written so that we can avoid unwanted trans-
formation of the compiler, using the functions that the Qiskit Terra module contains.

The OpenQASM program is classically compiled to generate a collection of quantum objects
(circuits and gates) with no branches and classical control instruction, which is then transformed
into low-level physical instruction by a controller that is able to execute them in the quantum

2see https://en.wikipedia.org/wiki/Binomial distribution
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device retrieving the results of the measurements. These results are post-processed in a classical
computer for further circuit generation in the case of quantum gates controlled by classical bits
or for retrieving the final result of the quantum computation.

In Qiskit, one option to visualize the result is the histogram representation, where it is pos-
sible to clearly see the most occurred results, using the “plot histogram” function, but other
visualization options are present3.

3see https://qiskit.org/documentation/apidoc/visualization.html
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Chapter 6

Public-key cryptography

Shor’s algorithm, for which we have briefly analyzed the high-level quantum circuit in section 3.6,
permits to break many algorithms that are used as basic foundations for public-key cryptography.
To understand these threats, we have to analyze their mathematical basis and study their usage
in our current digital world to see the impact that the possibility to break them would have. For
these reasons, a review of asymmetric cryptography is provided, focusing on the algorithms that
rely on mathematical problems breakable using quantum computers.

6.1 Introduction on asymmetric cryptography

In public-key cryptography, or asymmetric cryptography, every actor of the communication has
a pair of keys, that are:

� the public key, that must be distributed to every member of the communication;

� the private key, that is somehow correlated to the public key and that must remain secret.

Using them, it is possible to avoid the problem of key distribution, typical of the symmetric
cryptosystems. If a public key is used to cipher the message, then it is possible to decipher it
only with the private counterpart of the public key used, and vice-versa: this is possible thanks
to some mathematical tricks that we will see in the next sections of this chapter. These keys can
be used for two main purposes:

� encryption, where if the sender encrypts the message with the public key of the wanted
receiver, then he can be sure that only him can decrypt the message with his personal
private key;

� digital signature, where if somebody encrypts a message, or commonly the digest of a
document, with his private key, then whoever can be sure that he is the one who encrypted
the message since it is possible to decrypt it only using the corresponding public key.

As we said, asymmetric cryptography solves one of the most important problems of symmetric
cryptography, but it has a disadvantage: its complexity makes it slow, so it is suitable just for
small quantities of bits. This is the reason why we usually create the digest in the digital signature
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and we perform the encryption not directly of the message but of a secret bit string to establish
a symmetric key, that will be then used to encrypt the message, in a secure way. In addition,
to obtain a similar level of security, the keys used in the asymmetric algorithms are an order of
magnitude bigger than the keys of the symmetric ones.

Type Bit length
Symmetric 40 64 128 256
Asymmetric 256 512 1024 2048

Table 6.1. Comparison between the key lengths with similar resistance for asymmetric
and symmetric algorithms.

The security of the algorithms that use this kind of cryptography is given by finding the private
key starting from the knowledge of the public key, so it is related to the mathematical foundations
of the key generation. The strong cryptographic algorithms are the ones that require to solve a
known hard problem in the classic computation theory in order to be broken, like the factorization
problem and the discrete logarithm problem.

6.2 Key exchange problem

An important problem of symmetric algorithms is the need for a common key between the parties
of the communication. A first solution can be to exchange those keys out-of-band, but most of the
current uses of the symmetric algorithms need a more automatic way to do it. A second solution
is to use public-key cryptography to encrypt the symmetric key, as we already mentioned, but
there are some cases where one party does not want to trust the key created by the other party. A
key-agreement algorithm permits, starting from a security parameter known by the two parties,
to create separately two keys k1 and k2 such that k1 = k2, in such a way that k can be created
only by the two parties together.

6.2.1 Diffie-Hellman

Diffie-Hellman (DH) was presented as a method to perform a key agreement in a public channel in
1976, and is still used nowadays for many practical operations: in TLS, for example, it is used to
obtain perfect forward secrecy, an important property that permits to have the assurance that the
session keys used in TLS are not compromised even if the long-term keys become compromised in
the future. To achieve perfect forward secrecy, we need to have a private key that, if compromised,
compromises only the current and future traffic, so it must change continuously. To assure that
we use ephemeral mechanisms, we create a one-time key generated on the fly. In this way, the
server is not using directly on the messages his certificated private key but creates another key
pair, that is signed using the certificated private key. The point now is that the server must create
a new key pair for every session, so this has to be done quickly: DH is suitable for this problem,
because it is fast, so it became compulsory in TLS 1.3.

The two parties that want to start a communication have no common knowledge at the begin-
ning of the algorithm, so they agree on a prime number p and the so-called generator g. Then each
of them chooses a random number (A,B ∈ 1, ..., p− 1) and compute the modular exponentiation
of the generator g to the power of that number (gA (mod p), gB (mod p)), transmitting them to
the counterpart. Then, the two parties perform the same computation on the number received,
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obtaining the values in the following equations. The whole process is described graphically in
figure 6.1.

kA = (gB)A (mod p) kB = (gA)B (mod p) (6.1)

We can easily check that they are equal, so the two parties agreed on using the key k = kA =
kB . The generator is chosen in GF ∗(p), that denotes the set of integers {1, 2, ..., p − 1}. In the
algorithm, A and B represent the private keys, while gA and gB are the public keys. The strength
of the keys is therefore based on the discrete logarithm problem (DLP) and the DH problem,
described in section 6.2.2.

Figure 6.1. Representation of the DH algorithm when a client and a server want to start a
communication. The symmetric key that will be agreed is k = (gB)A = (gA)B . All the operations
must be intended in arithmetic modulo p.

An active attack that can be performed against DH is a Man in the Middle (MITM). In a
MITM, the communication between two parties is intercepted, and sometimes modified, by an
attacker. In the DH algorithm, the attacker intercepts and blocks the messages containing gA and
gB , transmitting to the two victims the number gC that he created selecting the random number
C. In this situation, the two parties that want to establish a symmetric key could not even notice
the presence of the attacker and, while they are thinking to talk each other, they are talking with
him, with the two different keys kA = (gC)A and kB = (gC)B , as described in figure 6.2.

In order to avoid being attackable via a MITM, the two parties should use certificates dis-
tributed by a trusted third party (TTP), such as the digital certificates.

6.2.2 Discrete Logarithm Problem

The DLP is based on finding A from the value gA under a modulus p, as presented in section
6.2.1: if an attacker finds a computationally feasible way to perform it and sniffs gA (mod p) and
gB (mod p), he can find the secret key exchanged easily. The most intuitive way would be to
perform many exponentiations on g up to gA (mod p) or gB (mod p), but this is exponential in
the number of bits of the modulus. Many algorithms speed up the computation, but none of them
is polynomial: at best they are exponential in the number of bits of the modulus divided by 2.
Examples are the number field sieve, the baby-step giant-step, and the pollard ρ [55, sec. 3].
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Figure 6.2. Representation of the MITM attack against DH when an attacker intercepts the
beginning of the communication between a client and a server. The symmetric keys produced
are k = (gC)A = (gA)C , which will be used to encrypt the messages to and from the client, and
k = (gC)B = (gB)C , that will be used to encrypt the messages to and from the server. All the
operations must be intended in arithmetic modulo p.

The DH problem takes the opposite way: it is based on finding the key k = (gA)B (mod p)
starting from gA (mod p) and gB (mod p). We can see that solving one of these two problems
permits to solve the other, but it is not known which is the easiest way to take.

6.3 Public Key Encryption Algorithms

One of the important use of asymmetric cryptography, as already mentioned, is the possibility to
encrypt a message with a key and to decrypt it with a different key, related to the first. In this
section, we will describe El-Gamal and RSA, two of the most important cryptographic algorithms
that, as we will see in chapter 7, are vulnerable against Shor’s algorithm.

6.3.1 El-Gamal

The El-Gamal algorithm is widely used and is based on the same mathematical basis of DH
(6.2.2): the generation of keys is performed following the same procedure, but everything is done
by just one node since the scope of this algorithm is different. At first, a prime number p and a
generator g ∈ GF ∗(n) are chosen, where n is the order of the generator, then a random number
A ∈ GF ∗(n) is picked, that will be the private key of the key pair, and the public key is computed
as h = gA (mod p).

For the encryption of a message m into the ciphertext C a random number B ∈ GF ∗(p) is
chosen as key and equation 6.2 is calculated, while for the decription the message is retrieved as
in equation 6.3.

C = (gB (mod p),m · hB (mod p)) = (c1, c2) (6.2)

m =
c2
cA1

=
m · hB

(gB)A
(6.3)
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The number B has to be ephemeral, because if two messages m1 and m2 are enciphered by using
the same ephemeral key B and the attacker knows or guess one message (mα) then it can read
the other (mβ). In fact, the term c1 of both messages will be the same and mβ can be calculated
as in the following equation. {

mα = c2α
(c1)A

mβ =
c2β

(c1)A

⇒ mβ =
c2β ·mα

c2α
(6.4)

Besides from the DLP, the plain El-Gamal algorithm can be attacked using a chosen-ciphertext
attack1 [56]: in fact, having the chipertext C = (c1, c2) of message m, it is easy to construct the
ciphertext corresponding to the message s · m just computing Cs = (c1, s · c2). To avoid this
attack, padding is added to the message, so that the receiver can check its integrity.

6.3.2 RSA

The most famous and used cryptosystem for Public-Key Encryption, but used also for digital
signature, is RSA. The acronym stands for Rivest Shadir Adleman, which are its three inventors.

The algorithm for the key generation starts choosing two prime numbers of λ bit p and q, where
λ is the half of the wanted security level for RSA (for example, in RSA-1024 λ = 512). Then
two numbers are computed starting from p and q: the modulus N = p · q and the value ϕ(N) =
(p− 1)(q − 1). Now the public exponent e is selected such that e ≤ ϕ(N) and gcd(e, ϕ(N)) = 1,
and finally the value d = e−1 (mod ϕ(N)) is computed. To understand this step, we have to
explain two mathematical properties:

� The gcd(e, ϕ(N)) = 1 requirement means that e and ϕ(N) have to be coprime; and

� The inverse of a number in modular arithmetic is that number such that x·x−1 = 1 (mod y),
and can be calculated efficiently using the Extended Euclidean Algorithm, that we will
describe in section 6.3.3.

Now that all the needed values are available, the private key is set as (ϕ(N), d) and the public
key as (N, e).

In order to perform the encryption of a message m, that has to be lower of the modulus N ,
into the ciphertext C, we perform the operation of equation 6.5, while for the decryption we follow
the one of equation 6.6

C = me (mod N) (6.5)

m = Cd (mod N) (6.6)

The decryption equation holds because of the following equation, that can be proved with the
Femat’s little theorem2.

m = me·d (mod N) (6.7)

The Femat’s little theorem states equation 6.8, where p is a prime number.

ap−1 ≡ 1 (mod p) (6.8)

1see https://link.springer.com/referenceworkentry/10.1007%2F978-1-4419-5906-5 556

2see https://en.wikipedia.org/wiki/Fermat’s little theorem
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In fact, being e · d = 1 (mod ϕ(N)), we can say that e · d − 1 = h(p − 1) = k(q − 1), for some
integers h and k. In order to prove equation 6.7, we check that this holds separately for mod p in
equation 6.9 and mod q in equation 6.10 using Fermat’s little theorem.

me·d = me·d−1m = mh(p−1)m = (mp−1)hm
6.8−−→ 1hm = m (mod p) (6.9)

me·d = me·d−1m = mk(q−1)m = (mq−1)km
6.8−−→ 1km = m (mod q) (6.10)

To have a more efficient encryption, e is often chosen to have a short bit length and small
Hamming weight (numbers of 1 in the binary form), like 3, 17, and 65537 (216 + 1). However,
using a too small number like 3 and 17, introduce a vulnerability, as we will see in section 6.3.5.

6.3.3 Extended Euclidean algorithm

The Extended Euclidean algorithm can be used to compute efficiently the gcd between two integers
a and b and the coefficients of the identity expressed in equation 6.11.

ax+ by = gcd(a, b) (6.11)

We know that in RSA d is the inverse of e in arithmetic modulo ϕ(N),so having selected e such
that it is coprime to ϕ(N), we can use equation 6.11 to find d:

ϕ(N)s+ ed = 1 (6.12)

The algorithm starts with the coefficients of the first two columns of table 6.2, that evolves
following the equations in the third column.

Starting parameters evolution of the parameters
r0 = ϕ(N) r1 = e ri+1 = ri−1 − qiri
s0 = 1 s1 = 0 si+1 = si−1 − qisi
t0 = 0 t1 = 1 ti+1 = ti−1 − qiti

Table 6.2. Initial parameters and their evolution in the extended euclidean algorithm. qi is that
number such that 0 ≤ ri+1 < |ri|.

The computation stops when rk+1 = 0, leaving us the following values:

� rk, that is the gcd between ϕ(N) and e, so it will be 1 in our case;

� sk, that corresponds to s in equation 6.12;

� tk, that is the d value in the RSA algorithm.

6.3.4 Prime Factorization

Prime factorization is the division of a number into a product of primes. The most intuitive
attack that can be performed on RSA is to try to factorize N in order to find p and q. This is
a known hard problem of mathematics since there are no classical algorithms that can solve it
polynomially. If an attacker is able to compute p and q, then he can easily recover the secret
key, doing the same feasible steps of the algorithm. Over the years, RSA factoring challenges
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have been made for this problem, to test the security of RSA and decide which bit length use.
Nowadays, keys of 512 bits can be attacked in four hours or less, even with solutions available in
the cloud [57], while keys of 1024 bits are breakable in some months [58]. The recommendations
suggest using keys of 2048 bits, that can be considered secure for the next decade, or keys of 4096
bits [59].

There are some special cases where the factorization becomes simpler. For example, if the two
numbers p and q are really close to each other, we can use Fermat’s factorization method. We
represent N as the difference of two squares:

N = a2 − b2 (6.13)

In RSA, N is the product of two primes, so we can apply the transformation in equation 6.14.

N = p · q = (
p+ q

2
)2 − (

p− q
2

)2 (6.14)

We try to guess a pair (a,b) that satisfies 6.13, starting considering a as ⌈
√
N⌉ and increasing it

step-by-step by one. When we find a good pair, we can calculate p and q:{
a = p+q

2

b = p−q
2

(6.15)

If p and q are close, the pair a and b will be found quickly: the number of steps that the algorithms

does to find them is approximately
(
√
p−√

q)2

2 .

In the general case, the best known classical algorithm to solve the factorization problem
is the general number field sieve (GNFS) [60]: this has been used to make the records done
during the RSA challenges. It is a random algorithm that has an expected time complexity

O(e
√

64
9 (logN)

1
3 (log logN)

2
3 ), it is also very complex and only the set-up phase requires a lot of

time, so it is not fast for small moduli, but it permits to speed-up the factorization for large ones.

6.3.5 Attacks on RSA

Apart from the factorization problem, various attacks exploit some vulnerabilities of the basic
RSA cryptosystem.

An attack that can be conducted is a chosen-ciphertext attack to retrieve a message m from
the correspondant ciphertext C. The attacker starts picking a random number r and computes
h = re ·C (mod N). Now he has to find a way to trick the private key owner in order to decrypt
h, obtaining the equation below.

hd = re·d · Cd = r · Cd = r ·m (mod N) (6.16)

The attacker can in this way obtain m just multiplying r ·m by r−1. The decryption performed
by the victim can be possible if the same key pair is used for both signing and encrypting because
the attacker can just ask the victim to sign a message instead of decrypting and resending it. So,
the two countermeasures to this attack are to use different key pairs for the encryption and the
signature and never decrypt a message at request.

Another method to break plain RSA is using a Chosen Plaintext Attack3. In this, the attacker
creates a dictionary encrypting with the public key of the victim many expected messages, so when

3see https://link.springer.com/referenceworkentry/10.1007%2F978-1-4419-5906-5 557
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he sniffs a ciphertext that matches one of the computed ones, he can be sure about the content
of the message. To resolve this problem, padding is added to the message before the encryption,
following a secure padding scheme.

As we have said in 6.3.2, using 3 or 17 as public exponent creates a vulnerability in RSA due to
the Chinese Remainder Theorem [61]. Supposing that the same message is encrypted with three
different key pairs, it is possible for an attacker to sniff the three different ciphertext of equation
6.17. 

C1 = m3 (mod N1)

C2 = m3 (mod N3)

C3 = m3 (mod N3)

(6.17)

Following CRT, we can obtain m considering a modulus N obtained as N = N1 ·N2 ·N3, that will
surely be greater than m3, and performing the recomposition steps for the CRT. This problem
can persist even using 17 as public exponent, so the most used one is 65537.

RSA is present in many chipersuites of TLS up to version 1.2, but the way it is implemented
opened the port to a very famous attack called the Bleichenbacher attack. In 1998 Daniel Ble-
ichenbacher described the so-called “million-message attack” [62], based on a vulnerability in the
way the RSA encryption was used in TLS. The attacker can perform an RSA private key opera-
tion without knowing the server’s private key by sending about one million crafted messages and
looking for differences in the error codes returned. It requires a lot of time, but it is possible. It
has been refined over the years and in some cases, it requires only some thousands of messages,
so it is feasible nowadays for a laptop. In 2017 the ROBOT attack made it possible to attack
major websites, like facebook.com. Even if you can’t copy the private key of the server, you can
perform one operation using this key, so you can create a fake server. Due to this vulnerability
and to the fact that it does not permit forward secrecy, in TLS 1.3 the RSA key exchange was
completely removed as declared in RFC-8446, but it can still be used for digital signatures, as we
will see in the next section.

6.4 Digital Signature

When we have to send a message or publish a document and we want to provide proof that we
are the author of it, we can provide a digital signature as an attachment to it. This permits to
achieve the following security properties:

� Authentication, using a method to bind the author to the private key used as the digital
certificates;

� Integrity, since any change in the data signed, invalidates the signature; and

� Non repudiation, that is the impossibility to deny the paternity of a signature, since the
signer is the only owner of the private key.

Since the encryption procedure can be slow for large documents or messages, the digital signatures
are often performed on its digest, which is calculated using a hash function.

Whit the RSA key generation algorithm we are able to produce a pair of keys, so we may think
to use them in order to perform digital signatures. In this case, the sender encrypts the digest
of the message using his private key performing the operation in equation 6.18 and transmits it
along with the message m, while the receiver verifies the signature with the public key of the
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Figure 6.3. Representation of the Digital Signature creation and verification process. The certifi-
cate is needed to prove the validity of the public key. Source: [64]

sender, checking if σe = m (mod n). However, producing many signatures can make it easy to
discover the private key of the sender, so the signatures are made with a secure padding scheme
and with a big modulus.

σ = SignskB
(m) = md (mod n) (6.18)

Another cryptosystem that can be used to sign messages and documents is the Digital Signa-
ture Algorithm (DSA). The key pair generation for a n bit public key length starts finding a prime
number p such that 2n−1 < p < 2n and selecting a number q, prime divisor of p − 1, such that
2λ−1 < q < 2λ, where λ is the size of the private key. The correlation between these two values
is described in table 6.3. The following step is to find an element α that generates a subgroup

Type of key Bit length
Public key (n) 1024 2048 3072 7680 15360
Private key (λ) 160 224 256 384 512

Table 6.3. Correspondency between key length for the DSA cryptosystem. Source: [63].

with q elements modulo p: this means that q is the order of a modulus p, so it is the smallest
number such that aq = 1 (mod p). This is not an hard step since we use an auxiliary number
h ∈ {2, ..., p− 2} and we compute α as in the equation below.

α = h
p−1
q (mod p) (6.19)
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Now an element d, that will be the private key, is chosen such that 0 < d < q, and the value
β = αd (mod p) is computed.

The public key will be composed by (p, q, α, β), while the private key, as we said, is d. As we
can see, the security of this algorithm is based on the discrete logarithm problem like DH.

The signature is done choosing a random integer kE (where E stands for ephemeral) such that
0 < kE < q and computing the values r and s as in the following equations.

r = αkE (mod p) (mod q) (6.20)

s = (hash(x) + d · r)k−1
E (mod q) (6.21)

In these equations, hash(x) is the output of a cryptographic hash function applied on the message
x. The key kE has to be ephemeral for the attack explained in section 6.5.2, where an attacker
can find the private key d just looking at two messages and their signatures. The signature will
be composed both of r and s, so it will of 320 bits, even if the overall security is only 80 bits.

The verification process is done computating the value v as in equation 6.22, and comparing
it with r in arithmetic modulo q: If the two numbers are equal, then we can bu sure of the
authenticity of the message.

w = s−1 (mod q)

u1 = w · hash(x) (mod q)

u2 = w · r (mod q)

v = αu1 · βu2 (mod p) (mod q) (6.22)

6.5 Elliptic Curve Cryptography

One of the major problems of asymmetric cryptography is the excessive length of the keys. RSA
keys are nowadays at least of 2048 bits, so the computations with this algorithm for decryption
and signing (the operations where we have xd) are heavy and also not always suitable for some
systems in the IoT. The same reasoning can be done for the other asymmetric algorithms, so we
need a method to lighten the computations obtaining the same cryptographic strength.

The elliptic curves are a mathematical method used to build the parameters of the public-
key algorithms, where the operations are executed on the surface of a 2-dimensional curve that
permits to reduce the length of the keys (as shown in table 6.4). This happens because the DLP
on a 2D surface, called Elliptic Curve DLP (ECDLP) is way more complex than the one studied
for the 1D case.

Type Bit length
ECC 110 160 224 256
RSA 512 1024 2048 3072

Table 6.4. Comparison between the key lengths with similar resistance for RSA and
elliptic curve algorithms.

As we have seen in section 6.2.2, the fastest known classical algorithms for this problem run
in O(

√
n), where n is the bit length of the key, so the security level will be half the key size.
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The current breaking record of ECDLP is on an EC of 118 bits, done in 2016 by D.J. Bernstein
et al. [68, 67] : this has been performed using the pollard ρ algorithm and a cluster of FPGAs.
They also demonstrated the scalability of the method, so even bigger modules can be attacked
with this method.

An elliptic curve (EC) is the set of solutions to the following equation.

f(x, y) = y2 − (x3 + ax+ b) = 0 (mod p) (6.23)

In this, a and b are two parameters such that 4a3 + 27b2 /= 0, together with the point at infinity
O, that is the identity element of the group. We can plot an example of a generic elliptic curve,
as shown in figure 6.4.

Figure 6.4. Representation of the elliptic curves. We can graphically see the addition of two
points (P and Q) as the reflection along the x-axis of the point where the straight line between P
and Q intersects the curve in a third point (-R). Source: [65]

In an elliptic curve E, we can perform an addition between two points of the curve obtaining
a third point of the curve, as we can see graphically in figure 6.4.

(x1, y1) + (x2, y2) = (x3, y3) (6.24)

This addition is computationally feasible so, any cryptographic algorithm based on the discrete
logarithm, like Diffie-Hellman and DSA, can be adapted to work on a elliptic curve. The formula
for the addition in equation 6.24 is:

(x3, y3) = (λ2 − x1 − x2,−(λx3 + ν))

λ = y2−y1

x2−x1
=

x2
1+x1x2+x2

2+a
y1+y2

ν = y1 − λx1

(6.25)

If in the modular arithmetic we can define the order r such that gr = 1 mod p, in the elliptic
curves the order n of a so-called generator G is that number such that

n ·G = O (6.26)

In the elliptic curve cryptography (ECC) we define the curves using six parameters:
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T = (p, a, b,G, n, h)

where the first three parameters are the ones present in equation 6.23, G is a generator, n is its

order and h is an integer such that h =
|E(Fp)|

n (the cardinality of the Galois field4 of p divided
by the order of G, that for the Lagrange Theorem5 will be an integer).

6.5.1 Elliptic Curve Diffie-Hellman

To reduce the length of the keys used for key agreement purposes, we can apply ECC on DH.
The first step that is carried out in the Elliptic Curve Diffie-Hellman (ECDH), is the agreement
on a curve E with parameters T= (p, a, b,G, n, h). Now one of the two actors, namely Alice, picks
a random number A ∈ {2, ...,#E − 1}, computes pA = A · G = (xA, yA) and transmit it. The
same is done by the other actor, namely Bob, so he picks a random number B ∈ {2, ...,#E− 1},
computes pB = B · G = (xB , yB) and transmit it. Now they have all the elements to calculate
the shared secret since it kA = A · pB = kB = B · pA. In this algorithm, Alice’s public key will
be pA, while her private key will be A and the same for Bob.

In this version of the DH algorithm we have to take the same precautions as the normal one:

� Ephemeral keys are needed to provide forward secrecy; and

� Mutual authentication is necessary to avoid MITM attacks.

There is a particular curve, named Curve25519, that has been designed by D.J. Bernstein
specifically for ECDH, and that is one of the fastest in ECC [66]. The name comes from the fact
that it is defined modulus p = 2255 − 19: it has a 256-bit key size and offers a security level of
128 bits. The generator is G = 9, because it generates a subgroup with n elements such that

h =
|E(Fp)|

n = 8 and n is prime.

The support for this curve is mandatory in TLS 1.3, so it is one of the most used cryptographic
methods nowadays.

6.5.2 Elliptic curve DSA

If the creator of a message wants to sign it with EC-DSA, the first thing he has to do is to
create the keys, following a procedure similar to the one of normal DSA. The signer chooses an
elliptic curve T= (p, a, b,G, n, h) suitable for cryptographic purposes and selects a random integer
d ∈ {1,2, ..., n− 1} to compute B = d ·G. The public key will be the tuple (p, a, b, n,G,B), while
the secret key will be d.

In order to sign the message x, he chooses a random integer K such that 0 < K < n, and
computes R = K ·G = (xR, yR), setting r = xR, and s as in equation 6.27, where hash(x) is the

4A Galois filed, or finite field, is a set of a finite number of elements where the operators of the multiplication,
addition, subtraction, and division are defined. The Galois filed of a number p is formed by all the integers modulo
p. https://en.wikipedia.org/wiki/Finite field

5Lagrange’s theorem states that for any finite group G, the order of every subgroup of G di-
vides the order of G, where a subgroup is a subset that can be formed with the multiplication.
https://en.wikipedia.org/wiki/Lagrange’s theorem (group theory)
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Figure 6.5. Representation of the secret key generation using Curve25519. Source: [66]

output of a cryptographic hash function applied on the message x. If s = 0, he has to restart the
signature procedure. The signature, as in the DSA case, is formed by the pair (r, s).

s = (hash(x) + d · r)K−1 (mod n) (6.27)

The procedure for the verification of the signature is done performing the following calculations:

w = s−1 (mod n)

u1 = w · hash(x) (mod n)

u2 = w · r (mod n)

P = (u1 ·G+ u2 ·B) = (xP , yP ) (6.28)

The verification succeeds if xP = r modulus n, otherwise it fails.

If in the DSA algorithm, to obtain a level of security of 80 bits, we needed a public key of 1024
bits, in the EC-DSA we need a public key of just 160 bits. However, the length of the signature
remains 320 bits, 160 for r and 160 for s. As in DSA, the parameter K has to be ephemeral,
since signing two different messages with the same K opens the door to a famous attack that was
performed against the PlayStation 3.

When the signer calculates s1 and s2 using equation 6.27 of the messages x1 and x2 with the
same K, he will obtain the two values as in the equations below.

s1 = hash(x1)K
−1 + rdK−1 (mod n) (6.29)

s2 = hash(x2)K
−1 + rdK−1 (mod n) (6.30)

An attacker can retrieve the secret key d since the rdK−1 term is equal in the two equations, just
following the passages reported.

s1 − hash(x1)K
−1 = s2 − hash(x2)K

−1 (mod n)

K =
hash(x1)− hash(x2)

s1 − s2
(mod n)

d =
s1K − hash(x1)

r
(mod n)

EC-DSA is present in TLS 1.3 and is the basis of the Bitcoin signature: here the hash function
used is SHA256, while the curve is called secp256k1, which is defined over a modulus of 256 bits
(2256 − 232 − 977) [9].
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6.6 Quantum threats for asymmetric cryptography

With this digression about asymmetric cryptography, we have studied some of the most common
algorithms used nowadays, and we have underlined the fact that they rely on two hard problems:
the factorization problem (RSA) and the DLP (DH, El-Gamal, DSA, ECC). We have also seen
that there are no classical algorithms that can solve them in polynomial time, but this consid-
eration falls when we point the attention to the quantum world: Shor’s algorithm [7], in fact,
permits to break in polynomial time both these two problems, so it represents a threat for all the
current asymmetric cryptography present in TLS, in the cryptocurrency world, and in most of
the Hardware Security Modules. We will see more in detail how this algorithm work in chapters
8 and 10.
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Chapter 7

The advent of quantum
computing for cryptography

The advent of quantum algorithms caused different consequences in cryptography. As we have
seen, due to Shor’s algorithm, many asymmetric cryptosystems will become vulnerable in the next
years, but this is not the only case that affects the cryptography world: in fact, Grover’s algorithm
can be used to reduce the computational complexity needed to break the symmetric and the hash
algorithms. However, quantum computing brought also new possibilities for important aspects of
cybersecurity, like the Quantum Key Distribution, that can play useful roles in the future.

7.1 Asymmetric schemes affected by Shor’s algorithm

As we have studied in chapter 6, the most used public-key algorithms are based on the factorization
problem or on the DLP. These two problems have a similar mathematical structure and can be
broken in polynomial time with Shor’s algorithm.

The current estimations for the factorization problem state that a 1000-bit number can be
factorized using a quantum computer with 2000 logical qubits, which can be not so far looking
at the current roadmaps of quantum devices manufacturers [4]. But the most problematic threat
regards the elliptic curves since the small key space makes them easier to be broken. In fact, it is
estimated that an elliptic curve defined over a modulus of 160 bits is attackable using only 1000
logical qubits.

As we will see more in detail the quantum circuits for Shor’s algorithm in chapters 8 and 10,
we will now discuss the security implications of Grover’s algorithm and the countermeasures that
the cryptographic world can take to face up these threats.

7.2 Grover’s algorithm against cryptographic protocols

In addition to Shor’s algorithm, there is another quantum algorithm that represents a threat
for modern cryptography: Grover’s algorithm, which we have introduced in section 3.7, permits
to have a quantum speed-up in brute-force attacks, so it applies to all the algorithms where
an exhaustive search can be applied meaningfully: symmetric and hash algorithms. In these
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algorithms, we can obtain a reduction of the security of a key/digest to half its length, since
Grover’s computational time is O(

√
N) [74]. For example, AES with keys of 256 bits would have

the same security that is currently provided by keys of 128 bits.

However, AES256 is still believed quantum-resistant because the current quantum computers
capability is far enough from the resource estimations that are currently taken into consideration,
but the use of AES128 is discouraged.

7.2.1 Resource estimation for AES256

We will now see the passages for the construction of Grover’s algorithm circuit for AES256, to
understand the estimations that have been done1. From section (3.7), we know that in the Grover
algorithm we need π

4

√
N application of the block formed by Uf and V . To study this circuit we

will often recall at references [75] and [76].

We can start with the construction of the V gate, that is actually an inversion of the phase of
the basis state |0⟩ on the upper k qubits, as we can see in the following circuit.

k

G

|−⟩ |−⟩
=

...
...

...
Uf

H H

H H

|−⟩ |−⟩

Figure 7.1. Expansion of the V gate in Grover’s algorithm. Source: [75]

In the Uf gate we need to develop a circuit that with a given key |K⟩ in input is able to
understand if this is equal to the secret key or not, so we have to check the encryption of a
plaintext with the corresponding known (plaintext, ciphertext) pair. To perform this encryption,
we will follow the construction of the AES algorithm in a reversible way step-by-step.

A first consideration that has to be taken regards the uniqueness of the solution: since the
blocks in AES are 128 bits long, we would need two (plaintext, ciphertext) pairs to have good
possibilities of having a unique key as result, as shown in [76, sec. 2.2]. From this, comes that an
attacker would need two pairs to perform the attack.

Now we can start to implement the building blocks of the AES operations, looking firstly at the
specifications of NIST [77] and then at their implementations [75, sec. 3.2]. The AES operations
are performed on a two-dimensional array of bytes called “state”, which consists of four rows of
bytes, each containing 4 bytes. The AES256 key is decomposed into 14 round keys via the Key
Expansion method, and each of these keys is used in one of the 14 rounds that are performed,
each of them is composed of the following basic blocks: the AddRoundKey, the MixColumns, the
ShiftRows, and the SubBytes.

In the AddRoundKey operation, the round key is added to the state by a simple bitwise XOR
operation, so we just need 128 CNOT operations in our quantum circuit to implement it.

1The estimations in this chapter always refer to logical qubits for simplicity.
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The MixColumns operates on the state column-by-column, transforming every one of them
with a matricial operation. This operation can be conducted in place using 277 CNOT gates and
a total depth of 39.

In the ShiftRows transformation, the bytes in the last three rows of the State are cyclically
shifted over different numbers of bytes: the second row is shifted of one position, the third of two,
and the fourth of three. To obtain this result in our circuit we do not need to insert any gate,
since we will just need to act on different qubits subsequently to emulate this shifting.

The SubBytes is the most expansive operation to perform in our quantum circuit: while in
the FIPS specification is just a classical table look-up, called S-box, that transforms every byte
of the state into a new one, we have to explicitly calculate the result of this operation. To realize
it, we will need 9 ancilla qubits, 9695 T -gates, and 12631 Clifford gates.

Before using the key, we need to transform it and divide it into many sub-keys. The key
expansion for AES256 takes the key K and generates an expanded key of 60 words, that are
divided into 15 round keys. The first 8 words of the expanded key are filled with K, while the
other words are created performing the following transformation to the previous word:

� The function RotWord, that is just a cyclic permutation;

� The S-box seen in the SubBytes operator; and

� The operation Rcon, which adds a round-constant value to the first byte of each word.

The resources needed for this part of the circuit are 416 storage qubits and 96 ancillae qubits,
while we obtain an overall depth of 16408 [75, sec. 3.2.2].

After the creation of the round keys, the first operation is the XORing between the first round
key and the input, so we need 256 qubits to store the input to do this operation reversibly, then
we start with the application of the rounds. Every round needs 16 SubBytes calculations: if we
want to do them in parallel, we need 384 auxiliary qubits, while an increase in depth of 8 SubBites
cycles permits us to spend only 24 auxiliary qubits. Since SubBytes is not done in place, every
round requires 128 qubits, so the computation would need 128 ∗ 14 qubits, in addition to the
number of qubits to store the original key, but we can reduce this number by reverting some
rounds during the computation. As we can see in figure 7.2, we need just 1336 qubits for one
round.

· · ·

· · ·

· · ·

· · ·

· · ·

R1 R1−1 R6

R2 R2−1 R7

R3 R3−1 R8

R4 R4−1

R5
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· · ·

· · ·

· · ·

· · ·

· · ·

R6−1 R10 R10−1 R13 R14

R7−1 R11 R11−1

R8−1 R12

R9

Figure 7.2. Order of application of the AES rounds and their inverse for AES256. Source: [75]

As we have said, we need 2 (plaintext,ciphertext) pairs for the computation, so we have 2 AES
circuits in parallel: from this comes that we need 1336 ∗ 2 + 1 qubits for the whole circuit, whit
a full depth on the order of 2145 [76, sec. 6.2], that is an acceptable level of depth for the NIST
specification for post-quantum cryptography [5].

7.2.2 Resource estimation for hash functions

In cryptography, a property that is often important is integrity, which is the assurance that a
particular message has not been modified and is the intended one. This can be obtained using a
cryptographic hash function, that is a type of hash function (that maps strings of any length into
strings of a fixed length) that has four additional properties:

� It is quick to compute the hash for any message;

� It is computationally infeasible to find a message with a wanted hash value;

� It is computationally infeasible to find two messages with the same hash value; and

� A small change to the message causes significant changes in the hash value, making it look
uncorrelated to the previous one.

The application of a cryptographic hash function to a message permits to calculate its “digest”,
which is then appended to the message to demonstrate that it has not been modified in the transit:
we have already seen an application of this type of function in figure 6.3.

Grover’s algorithm can be applied also to break cryptographic hash functions, making the
computational complexity of the pre-image attack the square root of the one needed for the basic
brute-force attack. This attack consists of finding a message of n bits that has a specific hash
value, so we would need to try randomly nearly 2n messages before finding one, if n is the length
of the digest, for a good cryptographic function.

However, the bit security of this algorithm is already half of the output bit length due to the
birthday paradox attack2 (the pollard ρ algorithm finds collisions even faster than Grover’s one),
so this algorithm is needed just to reduce the complexity of the pre-image attack and hence does
not reduce the cryptographic strength of the hash functions.

2see https://en.wikipedia.org/wiki/Birthday attack
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One of the most used cryptographic hash functions is SHA3-256, so it is of interest to talk
about the resource estimation to build Grover’s circuit to find a message with a specific hash
value computed with that algorithm.

The NIST specifications [78] for the SHA3-256 algorithm require an input register of 1600
bits that passes through 24 rounds of the Keccak Permutation, that is composed of 5 different
transformation (θ, π, ρ, χ, ι).

1600

1600

θ(A)

A

θ θ−1 χ χ−1

ιi Ri(A)

|0⟩ π ◦ ρ |0⟩

Figure 7.3. Implementation of the SHA3 oracle. Source: [79]

This implementation, requires 3200 qubits for the SHA oracle, plus one qubit for Grover’s algo-
rithm, while the depth is estimated to be 2 · 1041 [79].

Other implementations [80] have been able to combine birthday paradox attacks and Grover’s
algorithm: creating a table of 3

√
N and using Grover’s algorithm to find a collision in it, it is

possible to reduce the computational complexity of the attack. In this way, a hash function with
an output of n bit will have a n

3 -bit security level.

However, as in the case of symmetric cryptography, it is possible thanks to the speed of the
hash functions to use a bigger number of qubits, so the SHA2 and SHA3 families still remain
quantum-resistant.

7.3 Quantum-resistant cryptography

The algorithm that really put our cryptographic world at risk was the one made by Shor in 1996
[7] to break the asymmetric cryptosystems. This algorithm, together with recent progress in
quantum hardware, forced NIST to make a call for proposals [5] for public-key quantum-resistant
algorithms in 2016. 23 signature schemes and 59 encryption/key encapsulation schemes were
submitted, but just 7 of them (3 for signature and 4 for encryption/key encapsulation) advanced
to the third round, which is ongoing.

The selected cryptosystems consist of implementations of three types of cryptography, listed
in table 7.1

Lattice-based cryptography [82] includes all the algorithms that involve lattices in their con-
struction or their security proof. A lattice is the set of all the integer linear combinations of a
set of basis vectors bi. It is important to note that given a lattice, the set of basis vectors is
not unique. One of the finalist algorithms that is based on this type of cryptography is NTRU,
which relies on the hardness of the Shortest Vector Path (SVP) problem, which is not quantum
breakable. In this problem, we have as input a lattice (i.e. its basis) and we have to find the
shortest non-zero vector in it. This type of cryptosystem has several advantages (low memory
usage, efficient encryption, and decryption both in hardware and software implementations, fast
key generation), so it seems to be the most promising one.

Code-based cryptosystems [81] are the ones where the underlying one-way function uses an
error-correcting code, that is the addition of an error to a word or the computation of the syn-
drome of a parity check matrix. The first proposed was the McEliece algorithm, which still
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Algorithm Type PKE/KE DS
CRYSTALS-KYBER Lattice-based x

NTRU Lattice-based x
SABER Lattice-based x

CRYSTALS-DILITHIUM Lattice-based x
FALCON Lattice-based x

Classic McEliece Code-based x
Rainbow Multivariate x

Table 7.1. Selected cryptosystems for Round 3 of NIST call for proposals. PKE/KE stands for
public key encryption and key encapsulation, while DS stands for digital signature.

remains unbroken even if it was presented in 1978. The private key in this algorithm is a certain
binary irreducible Goppa code [81, sec. 2.1], a type of code for which an efficient error-correcting
algorithm is known. The problem of this type of algorithm is the length of the keys: in McEliece,
the public key is 1MB, while the private key is 11.5 KB

The Multivariate algorithms [83] are the ones where the one-way function is a multivariate
quadratic polynomial map over a finite field: the public key is given by a set of quadratic poly-
nomials with coefficients modulo q and the evaluation of these polynomials at any given value
corresponds to either the encryption or the signature verification. These algorithms rely on the
hardness of the inversion of these functions (MQ problem). However, since these functions must
have a trapdoor in order to be used for public-key cryptography, we can’t use random ones, but
selected and studied ones, because attacks may exist for any of them (the security level is not
based only on the MQ problem, but is different for any function).

7.4 Quantum cryptography

In quantum-resistant cryptography, we rely on the fact that there are no known quantum algo-
rithms that can break certain types of mathematical problems, but since quantum computing is
a relatively new field, we have no assurance that these algorithms will not be found, so we may
think to other ways to ensure the wanted cryptographic functions. The quantum physics proper-
ties can be exploited also to perform cryptographic tasks, and researchers have been developing
quantum algorithms suitable for different objectives in this field. The impossibility to observe a
quantum state without changing it in some way, in fact, gives us a property that is not possible
to achieve classically, that can be extremely important for the confidentiality of a transmission
[84]. The most well-known example3 is Quantum Key Distribution (QKD), but there are also
other applications, like Quantum Random Number Generation (QRNG) and Quantum Digital
Signature (QDS).

In the context of QKD, we have two different types of protocols: the ones that use a “prepare
and measure” approach and the ones that rely on the entanglement property of quantum states,
which we have seen in section 2.3.2.

In a “prepare and measure” protocol, the first step that the sender takes is to encode a
classical variable α into non-orthogonal quantum states sent over a quantum channel, so that the

3see https://en.wikipedia.org/wiki/Quantum key distribution
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receiver can retrieve and measure them obtaining a, probably different, classical variable β. By
doing these steps more times, the two parties will have a sequence of data, that using a classical
post-processing can be refined to obtain a shared key. In addition, part of the data is used to
obtain information about the quantum channel, like the quantum noise present, to evaluate the
quantity of post-processing needed and to perform an error correction phase that permits to
reduce the possibility of an attacker to retrieve information eavesdropping the quantum channel
to a negligible amount. The first example of a protocol of this type is the so-called BB84 [85],
where the sender uses the Z- and X-basis to encode the classical variables: he prepares a random
sequence of these two bases, and encodes the binary values using them, obtaining four possible
states (|0⟩, |1⟩, |+⟩ and |−⟩). The states prepared are sent in the quantum channel, so that the
receiver can retrieve and measure them using another random sequence of the Z- and the X-basis:
in the cases where the basis used to prepare and to measure the state is the same, the bit will be
equal, while in the cases where the basis is different, the measured bit will be random. Now the
two parties exchange the sequence of the bases used, and they discard all the bits corresponding
to the cases where different bases were used so that they will have the same sequence of bits.

The possibility to use the properties of the entangled states to perform QKD emerged in 1991
thanks to Artur Ekert [86], that presented the E91 protocol: here a source, that can be also an
independent third party, creates pairs of entangled qubits and sends the first of each pair to one
party and the second to the other one. The two parties measure the qubits using different bases,
in such a way that they can calculate the probability of the presence of an eavesdropper using
a Bell test4. These protocols based on entanglement are the key to the independence from the
underlying device, providing another layer of security [6].

Nowadays, standards for QKD protocols have already emerged5, and global networks to make
the theoretical solutions possible are in development, since it is possible to use the optical fiber
cables for that scope, using photons as qubits.

4see https://en.wikipedia.org/wiki/Bell test#A typical CHSH (two-channel) experiment

5see https://www.etsi.org/committee/1430-qkd
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Chapter 8

In-depth analysis of Shor’s
algorithm

We have seen in section 6.3.4 that there are various methods to break the factorization problem,
such as the GNFS and the Fermat’s method, but none of them runs in polynomial time, so they
become unfeasible if the number of bits used to represent the modulus grows.

Another algorithm proposes the reduction of the factorization problem to period finding [88],
opening the door to a new kind of attack: if we find an algorithm for period finding in polynomial
time, we can solve also the factorization problem.

In this chapter, we will present the basic implementation for Shor’s algorithm together with
some optimizations that are useful to reduce the depth and the width of the circuit, performing
an in-depth analysis of the gates that are needed.

8.1 From Integer Factorization to Period Finding

To find the factors p and q of a bi-primal number N , the first step to take is to choose a random
integer x < N , that is used as a basis to find (with a period finding algorithm) its order r, i.e. the
number such that xr ≡ 1 (mod N). If the order r is even, we can compute using the Extended
Euclidean Algorithm seen in section 6.3.3 the factors p and q as:

p = gcd(x
r
2 − 1, N) 1 = gcd(x

r
2 + 1, N) (8.1)

Since
(x

r
2 − 1)(x

r
2 + 1) = xr − 1 ≡ 0 (mod N) (8.2)

p is a non-trivial factor of N . This algorithm fails, and needs to be re-executed, only if r is odd
or x

r
2 ≡ −1 (mod N).

There are particular cases where the first condition can be not considered: in fact, we need
that only to divide r by 2 and compute the greatest common divisor, but when a is square we
can perform the operation [87] even with an odd order. In this way is possible to do not discard
useful values of r, even if square numbers are difficult to be obtained randomly when the module
N is big so the efficiency is not greatly increased.
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Applying this algorithm to a random number x, we can find a factor of N with probability
1 − 21−k, where k is the number of distinct prime factors of N , so if N is bi-primal such as in
RSA the probability of success will be the 50%.

The next ingredient for obtaining an algorithm able to break prime factorization in polyno-
mial time is the period finding one. This problem classically is considered NP-hard, but the
Shor’s circuit, together with classical post-processing that runs in O(log2N), permits to break it
polynomially.

8.2 Shor’s proposal

The basic idea of Shor for the order finding problem was to apply QPE, which we have studied
in section 3.5, to the unitary transformation in equation 8.3. The subsequent applications of this
operators, represents the operation of equation 8.4, as every exponentiation can be written as in
equation 8.5.

U |x⟩ = |ax (mod N)⟩ (8.3)

|x⟩ |0⟩ ⇒ |x⟩ |ax (mod N)⟩ (8.4)

ax = a2
2n−1x2n−1+22n−2x2n−2+...20x0 = a2

2n−1x2n−1 · a2
2n−2x2n−2 · ... · a2

0x0 (mod N) (8.5)

We have discussed in section 3.6 the high-level quantum circuit to find the period of the
function ar (mod N). This is reported in circuit 8.1, where n = ⌈log2N⌉, while in figure 8.2 we
have the decomposition of the oracle in unitary gates.

2n

n

|0⟩⊗2n
H⊗2n

Ufa,N

QFT †

|1⟩

Figure 8.1. High-level representation of the circuit for the Shor’s algorithm. Source: [90]

Ufa,N
=

. . .

. . .

...

. . .

. . .n

x0

x1

x2n−1

U20 (mod N) U21 (mod N) U22n−1

(mod N)

Figure 8.2. Implementation of the oracle for the period finding function. Source: [90]

As we can see from the implementation of the oracle, the complexity of this procedure is polyno-
mial since there are as many U gates as the number of bits of the modulus times 2.
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The circuit starts with the creation of the superposition of all the possible states in the top
register, creating the state in the equation below.

|ψ⟩ = 1

2n

22n∑
x=0

|x⟩ |1⟩ (8.6)

Now the oracle is applied, which leaves the system in the state described in the following
equation.

|ψ⟩ = 1
√
q

q−1∑
x=0

|x⟩ |ax (mod N)⟩ (8.7)

where q is the power of 2 such that n2 ≤ q < 2n2. Now we will apply the QFT † gate on the first
register, that will leave the system as in equation 8.8.

|ψ⟩ = 1

q

q−1∑
x=0

q−1∑
c=0

e
2πixc

q |c⟩ |ax (mod N)⟩ (8.8)

Now it is possible to perform the measurements, so we can compute the probability P that our
machine ends in a particular state |c⟩ |ak (mod N)⟩ where 0 ≤ k < r summing all the possible
ways to reach it, using the Born rule described in section 2.2.1.

P (|c⟩ |ak (mod N)⟩) =
∣∣∣∣1q ∑

x:ax≡ak

e
2πixc

q

∣∣∣∣2 (8.9)

In this equation, the sum is computed over all x < q such that ax ≡ ak modulo N , but since r
is the order of a, we can also say that this sum is over all x such that x ≡ k modulo r. In this
way, writing x as br+ k, where b ∈ N, the probability in 8.9 can be expressed as in equation 8.10,

since the term e
2πikc

q has magnitude 1.

P (|c⟩ |ak (mod N)⟩) =
∣∣∣∣1q

⌊ (q−k−1)
r ⌋∑
b

e
2πi(br+k)c

q

∣∣∣∣2 =

∣∣∣∣1q
⌊ (q−k−1)

r ⌋∑
b

e
2πibrc

q

∣∣∣∣2 (8.10)

It can be proven, as shown in [7], that if the value rc is close to a multiple of q, the probability to
obtain the correspondent state is larger: in particular, the probability of measuring a given state
|c⟩ |ak (mod N)⟩ will be at least 1

3r2 if there is a d ∈ N such that∣∣∣∣ cq − d

r

∣∣∣∣ ≤ 1

2q
(8.11)

Since q ≥ n2, we know that there is at most one fraction d
r that satisfies the inequality, so we

can retrieve it rounding c
q to the closest fraction with a denominator smaller than n using the

continued fraction expansion[89].

As stated in [7], there are ϕ(r) ·r different states that permit us to obtain a particular r, where
ϕ(x) is the Euler’s totient function1, so the probability to obtain a good value as output of the

quantum circuit is ϕ(r)
3r .

1The Euler’s totient function ϕ(x) calculates the number of numbers lower to x and coprime to x
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8.3 Oracle design

The next step to take for the construction of the circuit is to understand the components that are
used to build the oracles in circuit 8.2. To do this, we will follow a bottom-up approach, starting
from the most basic gate up to the most complex one, taking as reference the circuit described in
[90].

8.3.1 The adder gate

The first gate that we discuss is the adder gate, where we sum a classical number to a number
encoded in a quantum register. This classical number will be the a of section 8.2, that we already
know when we want to construct a circuit, so it is not necessary to have quantum-controlled
gates: for this reason, in our implementation, we will use classical if instructions. However, as the
addition takes place in the Fourier space, we have to transform a in such a way that the correct
phase is applied to each qubit of the quantum register. We can see the circuit in figure 8.3.

. . .|Φ(b)⟩

A0

|Φ(b+ a)⟩

A1

An−2

An−1

= |Φ(b)⟩ ΦADD(a) |Φ(b+ a)⟩

Figure 8.3. Addition of a classical value a to a quantum register encoding b in the Fourier space.
The values Ai are computed classically. Source: [90]

The phases Ai are calculated as

Ai = π

i∑
j=0

aj2
−(j−i) (8.12)

This gate, in order to prevent overflow, should be applied on a register of n+1 register, so Φ(b)
is a register containing the QFT of an n+ 1 bit number where the most significant bit is always
’0’. Being a reversible gate, we can apply the inverse of it, but in this case we will have two
possibilities: the result will be Φ(b− a) if b ≥ a, while it will be Φ(2n+1 − (a− b)) if b < a. This
inverted gate is useful to construct the modular version of the adder gate.

From figure 8.3, we can easily see that the adder gate has depth 1 and needs a register of n+1
qubits. For the next gates, we will also need the controlled and the doubly controlled versions of
this, which can be obtained by simply controlling each of the gates: however, since the control
qubits will be the same, the depth increases to n and to n ·T , where T represent the depth needed
for a Toffoli gate, in the case it is doubly controlled.
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8.3.2 The modular adder gate

For the circuit of the modular adder gate, we exploit the fact that performing b − a when b is a
number of n bits encoded on a register of n+ 1 qubits (as in the adder gate case) will bring the
most significant bit to ’1’ only if a > b. The circuit is described in its doubly controlled version
in figure 8.4, as we will need this for the oracle.

|c1⟩ |c1⟩

|c2⟩ |c2⟩

|Φ(b)⟩0...n−1

ΦADD(a) ΦADD(N)† QFT† QFT ΦADD(N) ΦADD(a)† QFT† QFT ΦADD(a)

|Φ(b)⟩n

|0⟩ |0⟩

= |Φ(b)⟩ ΦADD(a) (mod N) |Φ(b+ a)⟩

Figure 8.4. Doubly controlled modular addition of a classical value a to a quantum register
encoding b in the Fourier space modulo N . The result will be |Φ(a+ b) (mod N)⟩ if c1 =
c2 = |1⟩, |Φ(b)⟩ otherwise. Source: [90]

After the application of the first inverse QFT, the qubit used as control will be in state |1⟩ only
if a + b < N , so in this case we must sum the value N again: to do this, we have to pass from
the fourier basis to the {|0⟩ , |1⟩} one in order to control the value on the most significant qubit.
After the ΦADD(N) gate, the only purpose of the circuit is to recreate the state |0⟩ in the bottom
qubit.

In this case, the resource estimation will be affected by the type of QFT that will be used. If we
use the exact QFT seen in section 3.4, we would require O(n2) gates for n qubits, but approximate
versions of it exist that make it possible to reduce the number of gates used. However, the depth
remains O(n), si we will consider the depth of the exact QFT (2n) for our estimation. We
have 4 single-qubit gates, 4 QFT, 1 adder gate, and 4 controlled adder gates, but two of them
can be parallelized since subsequent and with different controllers, so we can consider only the
doubly-controlled one for the depth calculus:

depth = 4 + 4 · (2n+ 1) + 1 + 3 · (n · T ) = 3n · T + 8n+ 9 (8.13)

The number of qubits is n+ 4, with 2 of them used just as controllers.

8.3.3 The controlled modular multiplier gate

The next gate that we need is a modular multiplier that takes as input a controller qubit, a
register of n qubits that encodes the value x, and a register of n qubits that encodes the value b,
using this last one to output the value b+ (a · x) if the controller qubit is |1⟩.
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. . .

. . .

. . .

. . .

. . .

. . .

|c⟩ |c⟩

|x⟩ |x⟩

|b⟩ QFT ΦADD(20a)modN ΦADD(21a)modN ΦADD(2n−1a)modN QFT†

=

|c⟩ |c⟩

|x⟩
CMULT(a)modN

|x⟩

|b⟩

Figure 8.5. Controlled modular multiplication of a classical value a times a quantum register
encoding x modulo N , summing the result to a third register encoding the value b. The result will
be |b+ a · x (mod N)⟩ if c = |1⟩, |b⟩ otherwise. Source: [90]

In order to do the multiplication, we divide it into a series of additions using the following equation:

ax (mod N) = (((20ax0 (mod N)) + 21ax1 (mod N)) + ...+ 2n−1axn−1 (mod N) (8.14)

In this way, the multiplier gate can be constructed using only modular adder ones.

This gate has 2 QFT over n qubits and n modular adder gates, so the resulting depth will be:

depth = 2 · 2n+ n · (3n · T + 8n+ 9) = 3n2 · T + 8n2 + 13n (8.15)

The number of qubits will be 2n + 3, as n + 2 are used by the modular adder gates, n for the
register containing the state |x⟩ and 1 for the controller.

8.3.4 The controlled Ua gate

The Shor’s algorithm oracle performs the transformation |x⟩ |0⟩ ⇒ |x⟩ |ax (mod N)⟩, so we need
to perform a reversible exponentiation with the exponent encoded in a quantum register of 2n
qubits to create it. This exponentiation can be divided into a series of multiplications following
equation 8.5, so the last step is to save the result of the multiplication in the same register used for
the input so that we can save in it the intermediate result. The controlled Ua gate will therefore
perform the transformation |c⟩ |x⟩ ⇒ |c⟩ |a · x (mod N)⟩ if |c⟩ = |1⟩ and we can construct it in
the following way:

|c⟩ |c⟩

|x⟩
CMULT(a)modN SWAP CMULT(a−1)modN

|0⟩ |0⟩

=

|c⟩ |c⟩

|x⟩ Ua
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Figure 8.6. Controlled Ua gate. The result will be |a · x (mod N)⟩ if c = |1⟩, |x⟩
otherwise. Source: [90]

The controlled version of the swap gate can be implemented just using a Toffoli instead of a
CNOT gate in the circuit in section 2.4.2, so it has a depth of n · T + 2. The resulting depth of
the Ua gate will therefore be

depth = 2 · (3n2 · T + 8n2 + 13n) + (n · T + 2) = 6n2 · T + 16n2 + 26n+ n · T + 2 (8.16)

while the number of qubits needed is the same of the controlled modular multiplier gate (2n+3).

8.3.5 Discussion and resource estimation

In order to apply the multiplication times a2
i

we do not have to apply the Ua gate 2i times, but
we can perform classically a2

i

and apply the gate Ua2i , thanks to the fact that we can rewrite it
as in the following equation.

aix (mod N) = (((a · x (mod N)) · x (mod N))...) · x (mod N) (8.17)

In this way, following circuit 8.2, the oracle will need just 2n sequential controlled Ua gates, each
controlled by a different qubit, so the total width will be 4n + 2 and the total depth the sum
between the oracle, the Hadamard gate and the inverse QFT applied on 2n qubits.

depth = 2n · (6n2 · T + 16n2 + 26n+ n · T + 2) + 1 + 2(2n) ≃ 12n3 · T + 32n3 (8.18)

If we want to factorize a number of 2048 bits, that is needed in order to break RSA 2048, we
need in this way 8194 logical qubits that, given the high depth of the circuit, must be created using
a big distance code. In addition, the described circuit would need a highly connected topology
between these qubits.

A quantum device with these capabilities will probably be not available until the next decade
looking at the current roadmaps of manufacturers. However, various improvements can be done
to this basic version of the circuit, which we will see in the next sections.

8.4 Shor’s algorithm enhancements

We will now propose different optimization methods from the literature. In our implementation,
we will propose a version of the first two, but the third is an important case of study as a very
recent estimation of the resources needed to factor RSA 2048 is provided for it. In table 10.1, we
can see the resources needed to implement them.

8.4.1 Sequential QFT

The number of qubits of our estimation can be reduced using the sequential version of the inverse
QFT [91], permitting us to use just one qubit for the register that will be measured: this reduces
the width of the circuit from 4n + 2 to 2n + 3, without any increase in the depth. However, a
classically-controlled quantum gate is needed, that is not currently available on IBM hardware.
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Optimization Logical qubits Depth Toffoli count

[90] 2n+ 3 144n3 lg(n) +O(n2 lg(n)) 576n3 lg2(n) +O(n3 lg(n))
[93] 2n+ 2 52n3 +O(n2) 64n3 lg(n) +O(n3)
[95] 3n+ 0.002n lg(n) 500n2 + n2 lg(n) 0.3n3 + 0.0005n3 lg(n))

Table 8.1. Comparison between the different optimizations studied of the resuorce estimations.
The estimation for the depth of [90] has an additional factor of lg(n) to account for the need to
approximate arbitrary phase rotations using T states. Source: [95]

m0 m1

. . .

m2n−1

. . .

|0⟩ H H Xm0 H R0 Xm1 R2n−1

|1⟩ Ua20 Ua21 Ua22n−1

Figure 8.7. Circuit for the Shor’s algorithm with the sequential QFT. The Xm0 are CNOT gates
classically controlled using the result of each measurement (if the output of measurement mi is ’1’,
then the gate Xmi is applied). The R gates depend on the results of all the previous measurements
and are the ones that perform the QFT rotations. Source: [90]

In our implementation, we present a version of the circuit using this method, even if it is
possible to only simulate that. This version permits us to test the implementation factorizing
bigger numbers from the normal one since our tests are limited by the number of qubits needed.

8.4.2 In-place addition

Another possible optimization permits to save one qubit using a dirty ancilla qubit instead of a
clear one in the modular addition [92]: since we have many dirty qubits available when we perform
a modular addition, as the |x⟩ register in figure 8.6, we will be able to run the circuit using just
2n+ 2 qubits.

To perform the modular addition between a quantum register |b⟩ and a classical value a, we
compare the value of |b⟩ with N − a: if b > N − a, we subtract N − a, else we add a. Then we
compare the result with a, in order to clear the ancilla qubit.

n

1

n−1

|b⟩

CMP(N − a)

ADDa ADD†
N−a

CMP(a)

|b+ a modN⟩

|0⟩ |0⟩

|g⟩ |g⟩

Figure 8.8. Modular adder using n− 1 dirty ancillae of register |g⟩ and 1 clear qubit. Source: [93]

To build this comparator, as suggested in [93], we need a gate that calculates the carry of the
sum between a number encoded in a quantum register and a classical constant, which can be done
using n− 1 dirty ancillae qubits, available at each iteration of the controlled modular adder from
the x register in figure 8.6.
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To calculate the final carry of the addition between the number encoded in a register |b⟩ and
the classical value a, we would need to propagate the carry from each qubit to the last one so, as
described in [93, sec. 2], we toggle the qubit gi of the auxiliary register if the operation needs a
carry from bit i to bit i+ 1. So gi must toggle if bi = ai = 1, gi−1 = bi = 1, or gi−1 = ai = 1. It
is also possible to save the qubit g0, since it depends only on the condition b0 = a0 = 1: we will
use a0 instead of it to build the conditions for g1.

|b0⟩ |b0⟩

|b1⟩ |b1⟩

|g1⟩ |g1⟩

|b2⟩ |b2⟩

|g2⟩ |g2⟩

|0⟩ |(x+ a)3⟩

Figure 8.9. Carry gate for n = 3. The blue gates are present if ai = 1. In order to build the
circuit for n qubits, we must copy the same three gates of the g1a2g2 triple. Source: [93]

Another possible optimization is based on not performing the addition in the Fourier space,
so we will not need all the QFTs of the modular addition circuit, but it is based on the use of
Toffoli gates. This adder gate will be important also in chapter 10, since we will use it for the
implementation of Shor’s algorithm for the Discrete Logarithm Problem. In order to construct the
constant adder, we need a gate that calculates the carry of the sum between a number encoded
in a quantum register and a classical constant using n − 1 dirty ancillae qubits, that we already
described, and a controlled incrementer.

For the controlled incrementer gate, it is possible to obtain an incrementer starting from a gate
that performs the addition between two numbers encoded in two quantum registers of n qubits,
where one is composed of dirty ancilla qubits:

|x⟩ |g⟩ → |x− g⟩ |g⟩ → |x− g⟩ |g′ − 1⟩ → |x− g − g′ − 1⟩ |g′ − 1⟩ → |x+ 1⟩ |g⟩ (8.19)

In this equation, g′ − 1 is the bit-wise complement of g, so it is easy to obtain using n X gates.
The controlled version of this gate can be made controlling every singe gate, as well as using the
controller as the least significant qubit of the register to increment. The circuit to perform the
addition between two quantum register is described in [94, sec. 2.2]: it does not use any ancilla
qubits, except for the one to store the carry of the operation, as described in figure 8.10
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|b0⟩ |s0⟩

|a0⟩ |a0⟩

|b1⟩ |s1⟩

|a1⟩ |a1⟩

|b2⟩ |s2⟩

|a2⟩ |a2⟩

|b3⟩ |s3⟩

|a3⟩ |a3⟩

|z⟩ |z ⊕ s4⟩

Figure 8.10. Circuit to perform the addition between two quantum registers of 4 qubits, where
s = a+ b is stored on the register that contained b before its application. Source: [94]

The constant addition starts dividing the quantum register and the constant into two parts,
the lower half (xL and aL) and the higher half (xH and aH), and calculating the carry bit of
xL + aL using the |xH⟩ register as dirty ancilla qubits: depending on this, the higher part of
the |x⟩ register is incremented or not. However, since we have many dirty qubits available in
Shor’s algorithm, we can use one of them just inserting another incrementer and inverting the xH
register if the dirty qubit was |1⟩, as described in 8.11. This circuit is then repeated recursively
both for the lower and the higher part.

⌈n
2 ⌉

⌊n
2 ⌋

|xL⟩

CARRY CARRY

+cL |rL⟩

|xH⟩ +1 +1 +cH |rH⟩

|g⟩ |g⟩

Figure 8.11. Circuit to perform the addition of a constant (a) to a quantum register. The
CARRY gate computes the carry of xL + aL into the qubit with initial state |0⟩, borrowing
the xH qubits as dirty ancillae. Source: [93]

We can now use this gate to create the modular adder, which will have a Toffoli count of
8nlog2n+O(n). Following the procedure used in section 8.3, the overall number of Toffoli for the
Shor’s circuit is 64n3log2n+O(n3).

8.4.3 Eker̊a and H̊astad’s Algorithm

A recent study [95] used various optimization estimating a total time of 8 hours using 20 million
physical qubits to complete the factorization of a 2048-bit number. In this method, derivatives
of Shor’s algorithm are used to reduce the number of multiplications, applying also windowed
arithmetic to fuse several of them together [96]. In particular, the circuit used performs the DLP
of the value y in equation 8.20, where g ∈ 1, ..., N − 1 is a random number.

y = gN+1 (8.20)
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The discrete logarithm d = logg y, that is quantumly computed, will be in fact equal to p +
q (mod r), as shown in equation 8.21. This can be understood recalling that r divides ϕ(N) =
(p − 1)(q − 1), which is the order of Z∗

N for the Euler’s totient theorem2, and that pq + 1 =
p+ q (mod ϕ(N)).

d = N + 1 = pq + 1 = p+ q (mod r) (8.21)

The value d can then be used to retrieve classically the roots of the following equation.

p2 − dp+N = 0 (8.22)

The quantum circuit performs period finding on the function f(e1, e2) = ge1y−e2 , where e1 has
a bit length of n + O(1) and e2 of n

2 + O(1). More details about how Shor’s algorithm for DLP
works will be given in section 10.1. In this way, the total exponent has an asymptotical length of
1,5n, which is lower with respect to the one used in the basic circuit of 2n.

It is important to point out that their estimation is not based on the heavy hexagon code,
but on a different quantum error correction code, that requires a lower number of physical qubits
every logical one: using the same distance code (d = 27), if the heavy hexagon code is used
the physical qubits count increases to 25.5 million qubits instead of 23 million (this number is a
simplified estimation done in their study that will be lowered with some optimizations down to
20 million).

2see https://en.wikipedia.org/wiki/Euler’s totient function
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Chapter 9

Implementation of Shor’s
algorithm for factorization

In this chapter, we will see the implementation of Shor’s algorithm, both of the basic version of
4n+2 qubits and the sequential QFT version of 2n+3 qubits. We created a library that permits
to factor a number N selecting the wanted version of the Shor’s algorithm as input for the called
function, to facilitate its usability.

Qiskit contains a version of the basic algorithm adapted from the one present at the repository
https://github.com/ttlion/ShorAlgQiskit, so we used it as a reference for our library as it is
simpler to understand. The same repository contains also an implementation of Shor’s algorithm
with the sequential QFT, so we adapted it to build our parametric function. Another circuit can
be simply constructed using the modular adder described in section 8.4.2, which we implemented
from scratch following the theoretical paper: this can be used with both the described versions
to save one qubit and to reduce the depth. In addition, an improvement in the efficiency of the
previous implementations is provided considering the possibility of using odd orders as described
in [87].

In the first section, we will talk about the classical computation needed, that is common to
all the versions, while we will describe the code for the quantum part in the next ones.

9.1 Classical computation

To use the Shor function, we pass as input a number a and the number that has to be factored N .
The first steps are to check if the modulus N can be easily factorized since in this case, it would
be useless to use the quantum algorithm, so the following conditions have to be met to continue
with the program:

� N is not even;

� N is not a power of an integer number, that can be checked in O(n3) time; and

� The gcd between a and N is 1 since in the other case it will be a factor of N.
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Now we can start to build up the circuit, which will be done by selecting the wanted version
of the QFT (normal or sequential) and of the adder (in the Fourier basis or in the normal one).

After the measurements, each retrieved result c will be used as input for the “get factors”
function, together with the modulus N and the value a.

In order to retrieve the two factors, we perform a cycle in which each iteration corresponds
to putting one more term in the calculation of the continued fraction. To start this algorithm,
we calculate x = c

22n and we initialize a vector of integers b and a vector of floating numbers t:
the first will contain coefficients of the continued fraction, while the second the values needed to
calculate them.

b = array.array(’i’)

t = array.array(’f’)

b.append(math.floor(x))

t.append(x - b[i])

while(1):

[...]

b.append( math.floor( 1 / (t[i-1]) ) )

t.append( ( 1 / (t[i-1]) ) - b[i] )

Listing 9.1. Python code to calculate the values of the cotinued fraction expansion

The denominator of the resulting fraction is retrieved at each iteration, which will be a candidate
for r, so that we can calculate a

r
2 . However, not every value of r can be used for this purpose,

as it must be even if a is not a square. Now the factors are calculated as in equation 8.1 and
returned if they are different from 1 and N .

If the function “get factors” returns two values different from 0, these are the factors of the
modulus N .

9.2 Basic version

In this version, we will have a register (“up reg”) of 2n qubits that are the ones to which the
final QFT will be applied, a register (“down reg”) of n qubits that contains the results of the
multiplications, and a register (“aux reg”) of n+2 qubits that contains the auxiliary qubits used
in addition and multiplication. In addition, we have a classical register that will be used to store
the result of the last measurement.

Now we apply the Hadamard gate on up reg and a CNOT on the least significant qubit of
down reg. The next gates to apply are the 2n Ua, controlled each one by a different qubit of
up reg.

The Ua gate is created using the Qiskit QFT, imported from “qiskit.circuit.library”, n doubly
controlled modular adder multipliers, that are constructed using the function “ccphiADDmodN”,
and the inverse version of the QFT. A controlled swap gate between “down reg” and the first n
qubits of “aux reg” is applied using the function “cswap” of the circuit library, so the two QFTs
and the modular adders are reapplied as described in section 8.3.4.

The modular adders are made up of single-qubit gates, QFTs and inverse QFTs, and normal
or controlled versions of adders. The non-trivial part of this gate is how to calculate the correct
angles that are applied to the qubits in order to encode perform the sum: this is done using the
function “getAngles”, for which we provide here a detailed description.
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def getAngles(a,N):

s=bin(int(a))[2:].zfill(N)

angles=np.zeros([N])

for i in range(0, N):

for j in range(i,N):

if s[j]==’1’:

angles[N-i-1]+=math.pow(2, -(j-i))

angles[N-i-1]*=np.pi

return angles

Listing 9.2. Python code to calculate the angles that must be applied to a quantum register to
perform the addition in the Fourier basis.

The number a, which must be summed to a quantum register, is transformed in its binary repre-
sentation of N bits, and a new vector of N elements is created. Every angle to sum is calculated
starting from the last one and adding a decreasing factor for each preceding qubit to the corre-
sponding cell of the vector, finally multiplying it for π. These angles are then applied as gates to
the quantum register using the “p” function of the circuit library. For the inverse version, it is
just needed to apply the negative value of the angle retrieved with “getAngles”.

After the series of Ua gates, the inverse QFT is applied to up reg, and the same register is
measured.

9.3 Sequential QFT

Using the sequential version of the QFT, as described in 8.4.1, permits to nearly halve the number
of qubits used, but nowadays we can not execute this type of QFT in IBM quantum devices due to
the lack of a classically controlled quantum gate. The circuit for the construction of the Ua gate
is the same as in the basic version, but up reg is here of only one qubit and the final inverse QFT
is done in the cycle of the Ua gates using the function “getAngle”, that calculates the rotation to
apply at the qubit of up reg after each measurement. In addition, the measurement is copied in
a classical bit, so that in the next iteration this can be used to control a CNOT gate.

9.4 In-place adder

In order to use this type of adder, we eliminate the normal and inverse QFT performed at the
beginning and at the end of every series of doubly controlled modular adders, since this time
the additions will not be performed in the Fourier space. As described in figure 8.8, to create
the modular adder gate we need a comparator, that is constructed using a gate that calculates
the carry of the sum between the number encoded in a register and the number that we want to
compare, and a controlled constant multiplier.

The first step is the creation of the comparator, which can be done as in listing 9.3.

bitwise_complement(circuit,b,n)

carry_gate(circuit,b,a,g,c,n)

bitwise_complement(circuit,b,n)

Listing 9.3. Circuit to create the comparator gate.
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In this example, we use a clear qubit |a⟩ to save the result of the comparison between the number
encoded in register |b⟩ and c and a register of n−1 dirty ancillae: in case b < N−a, |a⟩ is toggled.
To obtain this result, we consider the bitwise complement of |b⟩ and we save the carry of its sum
with N − a in |a⟩. The n − 1 ancilla qubits are needed for the carry gate, as described in figure
8.9.

The instructions for constant adder follow figure 8.11, so we created a recursive function that
terminates when the registers are 1-qubit long.

A non-trivial addition that we did to the circuit is about how the doubly-controlled version
needed for the Shor’s circuit is done: instead of simply controlling each gate, it is possible to
control only the gates that affect the qubit used to control the constant additions, that are the
two carry gates.
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Chapter 10

Shor’s Algorithm against Discrete
Logarithm Problem

The Discrete Logarithm Problem, presented in section 6.2.2, is the second cryptography-related
problem that can be transformed into an order finding one and resolved in polynomial time using
the Shor’s Algorithm.

In this chapter, we first describe the high-level circuit to solve this problem for multiplicative
groups, like the one for DH, but then we focalize on the circuit for the elliptic curves providing
a gate-by-gate explanation of it, as it is the most dangerous threat in terms of resources needed:
we will see that, at an equal security level, Elliptic Curve Cryptography needs fewer qubits to be
broken with respect to RSA and DH.

10.1 High-level circuit

In this section, we will follow for semplicity the description provided by Proos and Zalka in [97],
to avoid the more mathematical one given in the original Shor paper. In order to find the value
d of x ≡ gd (mod p), we consider the following function:

f(a, b) = gaxb (mod p) (10.1)

This function has two different periods in Z2, that are

f(a+ q, b) = f(a, b) and f(a+ d, b− 1) = f(a, b)

where q is the order of g. In this way, we can apply the ideas of the Shor’s algorithm to solve
this problem, but with three registers instead of two and using, after the first Hadamard gates
that create the superposition of the two top registers, an oracle that performs the following
transformation:

1

q

q−1∑
a=0

q−1∑
b=0

|a, b,1⟩ ⇒ 1

q

q−1∑
a=0

q−1∑
b=0

|a, b, gaxb⟩ (10.2)

Since x ≡ gd (mod p), the third register will be left in the state |ga+db⟩ = |ga0⟩, so for each b we
will have only one solution and it is possible to rewrite the two top register as:

1
√
q

q−1∑
b=0

|a0 − db, b⟩ (10.3)
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Now we apply the inverse QFT on these two registers, obtaining the following state:

1

q
√
q

q−1∑
a′,b′=0

q−1∑
b=0

e
2πi
q (a0−db)a′

e
2πi
q bb′ |a′, b′⟩ (10.4)

The inner sum will be mantained only if b′ ≡ da′ (mod q), since we are interested only in this
cases.

q−1∑
b=0

e
2πi
q (a0−db)a′

e
2πi
q bda′

=

q−1∑
b=0

e
2πi
q a0a

′
= qe

2πi
q a0a

′

so we can rewrite the state as:

1
√
q

q−1∑
a′=0

e
2πi
q a0a

′
|a′, b′⟩ (10.5)

with b′ = da′ (mod q), so measuring the two registers we can obtain d by doing:

d = b′(a′)−1 (mod q) (10.6)

This circuit is able to extract a good pair (a′, b′) with probability p
240·q′ , where q

′ represent the

power of 2 such that p < q′ < 2p, as stated in [7]. Looking at this probability, we can note that
if the modulus of the algorithm is close to the value q′, that is the next power of 2, the number
of shots of the circuit needed will be lower. However, we have the possibility to lower-bound this
probability, since p < 2q′, obtaining a constant minimum probability of 1

480 .

This high-level circuit can be applied to solve the DLP in the case of Elliptic Curves, just
changing the operation performed by the oracle. It is important to note that many elliptic curves
nowadays used for cryptographic purposes have moduli that are close to the next power of two:
for example, Curve25519 is defined over 255 − 19, so the probability to obtaining a good value
from the quantum circuit is really close to 1

240 .

If we want to break the ECDSA algorithm (section 6.5.2) finding the secret key d knowing the
parameters of the curve, the generator G, and the point B = d ·G. In order to do so, we have to
apply the following oracle transformation:

1

2n

2n−1∑
a=0

2n−1∑
b=0

|a, b,1⟩ ⇒ 1

2n

2n−1∑
a=0

2n−1∑
b=0

|a, b, aG+ bB⟩ (10.7)

Since the operation needed is a multiplication, we can follow the double and add technique as
done for the factoring circuit, but the addition is based on the elliptic curve arithmetic, so we
must find a reversible way to perform it.

To compute the new coordinates (x3, y3) of equation 6.25, we can use the algorithm described
in [98] and reported in 1. In order to complete it, we need to build gates for the following
operations:

� Modular addition of a constant to a number encoded in a quantum register, as well as its
inverse for tu subtraction and their controlled versions;

� Controlled modular addition and subtraction between two numbers encoded in quantum
registers;

� Modular multiplication performed out-of-place between two numbers encoded in quantum
registers; and
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� Modular squaring and inversion performed out-of-place of a number encoded in a quantum
register.

Algorithm 1 Algorithm for reversible point addition between a point encoded in two quantum
registers (x1, y1) and a point assumed to be a precomputed classical constant (x2, y2). In the
case ctrl = 1, the result of P1 + P2 is stored in the register holding P1. All the operations are
performed in mudular arithmetic.
1: x1 ← x1 − x2
2: if ctrl = 1 then
3: y1 ← y1 − y2
4: end if
5: t0 ← x−1

1

6: λ← y1 · t0
7: y1 ← y1 ⊕ λ · x1 (= 0)
8: t0 ← t0 ⊕ x−1

1 (= 0)
9: t0 ← λ2

10: if ctrl = 1 then
11: x1 ← x1 − t0
12: x1 ← x1 + 3x2 (= x2 − x3)
13: end if
14: t0 ← t0 ⊕ λ2 (= 0)
15: y1 ← λ · x1
16: t0 ← x−1

1

17: λ← λ⊕ t0 · y1 (= 0)
18: t0 ← t0 ⊕ x−1

1 (= 0)
19: if ctrl = 1 then
20: x1 ← modular negation of x1
21: y1 ← y1 − y2 (= y3)
22: end if
23: x1 ← x1 + x2 (= x3)

10.2 Oracle design

We will now describe the various part of the oracle following a bottom-up approach as done in
chapter 8, to study the resources needed to develop algorithm 1. As for the factorization circuit,
the first basic block needed is a modular constant adder, that can be constructed as described
in section 8.4.2 using also a comparator and a gate that performs the addition of two quantum
registers. Starting from these, we can build the circuits of the next sections, which are described
in [98].

10.2.1 Modular addition and doubling

The circuit to compute the addition modulo p is described in figure 10.2: we can construct it
starting from the gates described in section 8.4.2 and a gate that performs the comparison between
two quantum registers, using only one clear ancilla qubit and a dirty one. The strict comparison
of two quantum register |x⟩ and |y⟩ is simple to build since it is made of just a subtraction and an
addition without calculating the carry: in the first subtraction, the qubit that stores the result is
toggled if y < x, then the addition without the carry restores the value |y⟩ in the second register.
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n

n

|x⟩

+ >

|x⟩

|y⟩

−p

+p |y⟩

|0⟩ |0⟩

|g⟩ +p |g⟩

Figure 10.1. Circuit for the modular addition between two numbers encoded in quantum registers.
The first gate represents the addition of two quantum registers using |y⟩ to store the result and the
clear ancilla qubit to store the carry bit of the operation, while the comparator toggles the ancilla
qubit to restore its value if the value encoded in |y⟩ is lower than the one in |x⟩. Source: [98]

An important feature of this circuit regards its controlled version, which is used in algorithm
1: as done for previous circuits, we don’t need to control every gate, but just the first (the adder)
and the comparator.

The circuit for the modular doubling, which is useful for the modular multiplication, follows
the same principles but requires one less register and a simple gate that performs the bit shift of
a quantum register, built using only qubit swaps.

n|x⟩
·2

−p

+p |2x (mod p)⟩

|0⟩ |0⟩

|g⟩ +p |g⟩

Figure 10.2. Circuit for the modular doubling of a number encoded in a quantum register. The
first gate represents the doubling of a register using the clear ancilla qubit to store the carry bit of
the operation. The last operation is controlled only by the least significant qubit of the |x⟩ register,
since the clear ancilla qubit is toggled only if 2x( (mod p) is even. Source: [98]

For the controlled operation, the same reasoning done for the addition can be done for the
doubling, since it is possible to create it by controlling only the binary shift and the last CNOT
and adding a CNOT gate controlled by the control qubit swapped to be sure to restore the clear
ancilla qubit.

10.2.2 Modular multiplication

The modular multiplication circuit that is needed for the point addition stores the result of the
operation of two numbers encoded in two quantum registers in a third quantum register, so it
needs at least 3n qubits in order to be run. It can be done in two ways: the first is following
equation 8.14, while the second one is using the Montgomery arithmetic [99] since numbers in
Montgomery representation will be used also in the modular inversion obtaining a most efficient
algorithm.
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The circuit using the double and add technique can be simply obtained as in figure 10.3
iterating the two gates seen in section 10.2.1. This circuit can be adapted to a squaring one by
controlling the additions using the same register involved in it and a clear ancilla qubit, as in
figure 10.4.

The first circuit needs 3n + 2 qubits and has a Toffoli gate count of 32n2 log2(n) − 59.4n2,
while the second one n2 + 3 qubits and the same amount of Toffoli gates.

. . .

...

. . .

. . .

. . .

. . .

. . .

n

n

2

|x0⟩ |x0⟩

|xn−2⟩ |xn−2⟩

|xn−1⟩ |xn−1⟩

|y⟩

+ + +

|y⟩

|0⟩
dbl dbl dbl

|x · y (mod p)⟩

|0g⟩ |0g⟩

Figure 10.3. Circuit for the modular multiplication between two numbers encoded
in quantum registers. Source: [98]

. . .

. . .

. . .

...

. . .

. . .

. . .

n

2

|0⟩ |0⟩

|x0⟩

+ + +

|x0⟩

|x1⟩ |x1⟩

|xn−1⟩ |xn−1⟩

|0⟩
dbl dbl dbl

|x2 (mod p)⟩

|0g⟩ |0g⟩

Figure 10.4. Circuit for the modular squaring of a number encoded in quantum register. Source: [98]

The Montgomery multiplication permits to obtain a trade-off between depth and width with
respect to the normal modular multiplication. In order to understand it, we must recall that a
number in Montgomery form is a number that is expressed as aR (mod p) with R coprime and
greater to p and that the Montgomery reduction algorithm computes cR−1 (mod p) for an integer
c given as input. In this way, if we perform the multiplication of two integers in Montgomery
form aR (mod p) and bR (mod p) and we apply the reduction algorithm to the result, we obtain
abR (mod p), that is the Montgomery form of the result of the product between a and b. This
can be simplified by selecting R = 2n so that the reduction can be performed with a series of
binary shifts.
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If the modular multiplication with the double and add approach needs two modular operations
per round, the circuit described in figure 10.5 needs only one of them, as the modular doubling
gate is not present: this however comes at the cost of an increase in the number of qubits because
it is necessary to store the information regarding if the intermediate result is even or odd.
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|0⟩ |m1⟩

|0⟩ |mn−1⟩

Figure 10.5. Circuit for the Montgomery modular multiplication between two numbers in Mont-
gomery representation encoded in quantum registers. Source: [98]

After the application of the circuit in figure 10.5, the result must be copied in another register,
so that its inverse can be executed to reset the clear ancillae. However, since this second execution
does not affect the register where the result is stored, it can be run in parallel to other parts of
the point addition algorithm, so we will consider just the first one for the depth count.

Considering also the register where the result will be stored, the Montgomery modular multi-
plication uses 5n+ 4 qubits and has a number of Toffoli gates of 16n2 log2(n)− 26.3n2.

The same adaptation done with the double and add technique for the modular squaring circuit
can be done for the Montgomery arithmetic: in this case, the number of needed qubits is 4n+ 5,
as we have one ancilla qubit instead of a register of n qubits.

10.2.3 Modular inversion

The modular inversion is the most costly operation to perform to execute the point addition
algorithm. For this task, we will report the circuit that implements Kaliski’s algorithm [100] for
inverting a number given in Montgomery representation with R = 2n: if x2n (mod p) is given in
input, the output of the circuit will be x−12n (mod p).

Kaliski’s algorithm needs 5 input registers to calculate the GCD between two numbers x and
p (4 of n bits to store the intermediate results and 1 of l = ⌈log2 2n⌉ that is needed as a counter),
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is divided into two phases as described in 2. In the first phase, the value x−12k is calculated, so
we need to save the value of k in order to execute phase 2. The circuit for phase 1 is constructed
considering the instruction inside the while loop as a basic block, and executing it conditionally
on the value of a qubit that starts as state |1⟩ and is toggled when v becomes 0. In figure 10.6
we can see the construction of the block inside the while loop, while in figure 10.7 we have a
high-level description of the circuit for the execution of phase 1.

Algorithm 2 Kaliski’s algorithm to calculate the pseudo inverse of x modulo p.

Phase 1
u← p, v ← x, r ← 0, s← 1, k ← 0
while v > 0 do

if u is even then
u← u

2 , s← 2s
else if v is even then

v ← v
2 , r ← 2r

else if u > v then
u← u−v

2 , r ← r + s, s = 2s
else

v ← v−u
2 , s← r + s, r = 2r

end if
k = k + 1

end while
if r ≥ p then

r ← r − p
end if
return r ← p− r, k
Phase 2
for i=1 to k-n do

if r is even then
r ← r

2
else

r ← r+p
2

end if
end for
return x← r

n

n

n+1

n+1

|ui−1⟩

− +

/2

−∗

/2

−
|ui⟩

|vi−1⟩ /2 /2 |vi⟩

|0⟩ |0⟩

|si−1⟩ ·2
+

·2
+∗

|si⟩

|ri−1⟩ ·2 ·2 |ri⟩

|0⟩ |0⟩

|0⟩ |0⟩

|0⟩ |mi⟩
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Figure 10.6. Block for the construction of the modular inverse circuit. The multi-wire gates store
the output the register at the bottom, except for the cases with “*”. Source: [98]

n

n

2n+6

l

|ui−1⟩

block

|ui⟩

|vi−1⟩ |vi⟩

|0si−1ri−1000⟩ |0siri00mi⟩

|f⟩ |0⟩

|k⟩ +1 |mi⟩

Figure 10.7. Round of the modular inversion circuit implementing Kaliski’s algorithm. In each
of the 2n rounds, a different mi qubit is used. The block gate is executed until v reaches 0, then
k starts to be incremented. Source: [98]

At the end of the 2n rounds, the register r stores the result, so we copy it in another register
and execute the inverse of the circuit to restore the original values of the registers. However, we
need to copy also the |k⟩ register, since we need its value to know how many times we have to
double the result. In this way, the total amount of qubits needed for phase 1 becomes 7n+2l+7,
while the number of Toffoli gates is 32n2 log2 n.

10.3 Resorce estimation

Now that we have all the gates needed for algorithm 1, we can provide an estimation of the total
number of qubits needed. This is limited by the one for the modular inversion, but we have to
add the qubit to which the sequential QFT is performed and 2 registers of n qubits that store
intermediate results during each inversion. Regarding the depth, in [98] it is stated that the
total number of Toffoli gates used scales as 224n2 log2 n + 2045n2 for each point addition, so as
(448 log2 n+4090)n3 for the whole Shor’s circuit since we have 2n point additions. These numbers
come from the fact that we have many ancillae qubits available for the modular multiplications,
so it is possible to use the Montgomery version.

An important reminder is that the gates that we have described work for the most types of
point additions, but do not for three exceptional cases: the addition of a point to itself, to its
negative, and to the point at infinity. It is stated in [97] that these cases occur in total 4n

p times,

so we have to add this fidelity loss to the probability to obtain a good pair 1
480 . In addition, we

must change the input of the oracle, since it can not start the additions from the point at infinity:
this problem is not difficult to solve because we can actually start from any point of the curve
without affecting the resulting phase.

Now we can compare the resources needed to break the ECDLP and the ones for the factor-
ization algorithm, looking at table 10.1. It is clear that ECC is more at risk than RSA nowadays.
Elliptic curves using moduli of 256 bits are considered strong algorithms but breaking them re-
quires less powerful quantum computers than the ones needed for RSA 1024.
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ECDLP for curves modulo p RSA with modulus N
⌈log2 p⌉ #qubits #Toffoli gates ⌈log2N⌉ #qubits #Toffoli gates
110 1014 9,44 · 109 512 1026 6,41 · 1010
160 1466 2,97 · 1010 1024 2050 5,81 · 1011
224 2042 8,43 · 1010 2048 4098 5,20 · 1012
256 2330 1,26 · 1011 3072 6146 1,86 · 1013
384 3484 4,52 · 1011 7680 15362 3,30 · 1014

Table 10.1. Comparison between qubits needed to break ECDLP and RSA at similar
security levels. The values for the RSA columns are derived by the version using the
in-place adder. Source: [98]

10.3.1 Proposed improvements

In recent years some improvements have been done to the described circuit, permitting to solve
the ECDLP with even fewer resources. In [101] the circuit is modified using pebbling, windowed
arithmetic, and other peculiar optimizations, and a series of functions in Q# is provided. They
have been able to reduce the number of qubits needed for the ECDLP on a curve of 256 bits
from 2338 to 2124, the number of Toffoli gates by a factor of 119 (they estimate that it scales as
436n3), and the depth by a factor of 54. They provide also different optimized versions based on
trying to reduce the depth so that it is possible to obtain different trade-offs of the resources.

Pebbling techniques permit to lower the depth of the circuits using the auxiliary qubits of
an operation as input for the next one. In our circuit, for example, these can be used for step
6 of algorithm 1: here the modular square of λ is saved in t0, which is then used to calculate
x1− t0 and restored to |0⟩ we another modular squaring. Using the Montgomery squaring circuit
as a black-box, the basic circuit that we described in section 10.2 used a not necessary modular
squaring, since it is possible to create a more efficient version as done in figure 10.8.
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n

|ctrl⟩ |ctrl⟩

|x1⟩
−∗

|x1 − λ2⟩

|0⟩ |0⟩
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squ squ† squ squ†

|λ⟩

|0⟩ |0⟩

|0⟩ |0⟩

⇒
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n

|ctrl⟩ |ctrl⟩

|x1⟩ −∗ |x1 − λ2⟩

|λ⟩

squ squ†

|λ⟩

|0⟩ |0⟩

|0⟩ −∗ |0⟩

Figure 10.8. Modification on the circuit for squaring-then-add using pebbling. The multi-wire
gates store the output the register at the bottom, except for the cases with “*”. The register with
n+ 5 qubits collects all the other needed ancillae used. Source: [101]

The same idea can be used also for the modular division in steps 5,6, and 8 of algorithm 2
and needs two inversions and a multiplication: in this case, pebbling techniques permit to save
the execution of a whole inversion circuit.
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One of the improvements provided is a modification to the block of Kaliski’s algorithm in
figure 10.6: instead of using a series of doublings and halvings, they used swaps, as described in
algorithm 3.

Algorithm 3 Modification provided in [101] to the operations inside the while loop of Kaliski’s
algorithm 2.

bswap ← false
if u is even and v odd, or u and v odd and u > v then

swap u and v
swap r and s
bswap ←true

end if
if u and v odd then

v ← v − u
s← r + s

end if
v ← v

2
r ← 2r
if bswap is true then

swap u and v
swap r and s

end if

Since the swap has nearly the same cost as a binary shift, this algorithm requires one modular
addition less, without adding any extra qubit.

Another improvement regards phase 2 of algorithm 2: instead of correcting the pseudo-inverse
using a separate circuit, a doubling operation is added to each round of the uncomputation
controlled by the same controller of the block operation toggled, so we either perform the block
or double the output. This permits to reduce the depth and also to save the l qubits needed to
copy the k register.

Providing these improvements, together with the use of windowed arithmetic for Montgomery
multiplication, they estimated an asymptotic number of 8n+10.2⌊log2 n⌋−1 logical qubits needed
for the low-width version, with a depth of 506n3 − 1.84 · 227.

10.4 Implementation in Qiskit

In this work, we provide a list of functions written using the Qiskit API to construct the circuit
described in this chapter. We also report tests performed with the ibmq qasm simuator in an
external GitHub repository to prove the correctness of all the functions up to the one that creates
the block for the Kaliski’s algorithm (see figure 10.6), since we have not been able due to resources
limitations to testing forward. In this section, we will explain the implementation starting from
the code for the addition modulo p, until the inversion algorithm.

The addition and the doubling modulo p, together with their controlled versions, follow step-
by-step the circuits in section 10.2.1. The comparator is in this case built using a subtraction and
an addition, without actually computing the carry.

def comparator(circuit,x,y,c,n):

subtraction(circuit,y,x,c,n)
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addition_without_carry(circuit,y,x,n)

Listing 10.1. Circuit to create the comparator gate using an addition and a subtraction.

In this way, |c⟩ will be toggled if x < y, and the value on register |x⟩ is restored without affecting
|c⟩.

The code for the modular multiplication and squaring with the double-and-add technique
does not need any important consideration to be understood. Their Montgomery counterparts
are built creating a subcircuit that represents figure 10.5, that is appended normally the first time
and inversely the second time, after having copied the result in another register.

...

circuit.append(subcircuit,x[0:n]+y[0:n]+c[0:1]+z[0:n]+g[0:1]+m[0:n])

for i in range (0,n):

circuit.cx(z[i],r[i])

circuit.append(subcircuit.inverse(),x[0:n]+y[0:n]+c[0:1]+z[0:n]+g[0:1]+m[0:n])

Listing 10.2. The Montgomery multiplication is performed appending the gate (subcircuit)
represented in figure 10.5, copying out the result, and appending its inverse.

In the block function, useful to recreate the circuit in figure 10.6, the doubly controlled addi-
tion and subtraction are created without considering the carry bit in the operation, since these
operations will never toggle it. We implemented also the improved version with swaps since the
controlled version can be implemented controlling only the first 2 gates (a CNOT and a Toffoli),
the doubling, and the halving. In this, we performed a correction on the circuit described in [101]:
before controlling the addition and the subtraction, the |a⟩ qubit (called cc in our code) shall be
toggled, controlling this xoring gate in the controlled version.

To build the round function, we first need a function that toggles a qubit if all the qubits in
a register are in state |0⟩ or |1⟩: this is called register cnot.

def register_cnot(circuit,x,t,type,n_ctrl):

if type==’0’:

for i in range(0,n_ctrl):

circuit.x(x[i])

circuit.mcx(x,t)

for i in range(0,n_ctrl):

circuit.x(x[i])

else:

circuit.mcx(x,t)

Listing 10.3. Python code that performs using Qiskit a Toffoli gate where the controllers
are all the qubits of a register. If the type is ’0’, then the X-gate is applied if all the
qubit of the register are in state |0⟩, while if the type is ’1’ the X-gate is applied if all
the qubit of the register are in state |1⟩

The “type” variable represents the state that the controller must have to change the target qubit.
The block presented in 10.6 is reported, but the controlled version is built using the version
with the swaps of algorithm 3 since the only gates needed to be controlled are the first two
gates (a CNOT and a Toffoli), the cyclic doubling and the cyclic halving. Here we also report
an error in the circuit presented in [101]: the ancilla qubit that controls the addition and the
subtraction needs to be toggled before performing the operations, and this X-gate is controlled in
the controlled version of the circuit. This block is used in the round function and performed 2n
times to calculate the wanted value, that is the pseudo-inverse of the input, so we have to perform
the modular doublings needed, that are encoded in the k register and are up to n.
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for i in range(0,n+1):

constant_subtraction(circuit,k[0:l]+f[0:1],ca,i+1,l+1)

controlled_doubling_modp(circuit,f,r,ca,cb,p,n)

constant_addition(circuit,k[0:l]+f[0:1],ca,i+1,l+1)

bitwise_complement(circuit,r,n)

Listing 10.4. Part of code to create the circuit to calculate the inverse starting from the
pseudo-inverse calculated with the Kaliski’s allgorthm.

In this snippet of code, we subtract iteratively a growing classical value i to the register containing
k, so that the ancilla qubit f is toggled only if i > k and we perform the doubling depending
on the value of f . After this step, the modular inversion circuit is run backward to restore the
ancillae.
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Chapter 11

Test and validation

In this chapter, we describe the test results regarding our solution. We adopted different metrics
to conduct them:

� The time of execution is the amount of time that the simulator needed to calculate the
output of the circuits;

� The depth, that we have described section 4.2, of the circuits where every gate has been
decomposed in gates understandable by the IBM devices; and

� The quality of the solutions, that is the percentage of times an execution of a circuit gives
as output a value that permits to retrieve the two factors.

To conduct the tests, we took into consideration the ibmq qasm simulator, which we described
in section 4.2.1. We have not been able to use real quantum hardware because of user restrictions
of IBM, which permits to use only 5-qubit devices to free users. Having full access to the IBM
quantum devices would permit us to have real quantum computers of up to 127 qubits, but it is
important to note, as we will see in section 11.3, that the quantum noise that is currently present
in those devices would not permit us to obtain good results from long circuits like ours. The QV, a
metric that measures the capabilities of a quantum device that we have described in section 4.2.2,
of the most powerful device is 64, so it would be necessary to use a Quantum Error Correction
Code to find good results.

Another option that we had was to use a local simulator, but we found the one given by IBM
to be more powerful. The ibmq qasm simulator is a 32-qubit general-context simulator that can
be programmed to execute every wanted circuit both ideally and subject to noise modeling.

In this section we will present the following tests:

� Study of the time of execution, the depth and the quality of the solutions of our implemen-
tations of the circuit for factorization;

� Demonstration of the obtained decrease in depth using our optimizations for the controlled
gates for the circuit for ECDLP and estimation of the total depth of the circuit;

� Study of the behavior of our circuit for factorization simulating real noise; and

� Demonstration of the portability of our circuit simulating it on a Rigetti quantum simulator.

99



Test and validation

11.1 Tests on the implementations of the circuit for factor-
ization

In this section, we describe the results obtained testing the four implementations for the factor-
ization problem present in our library. These are:

� The aqua implementation (4n+ 2 qubits);

� The Toffoli based implementation (4n+ 1 qubits);

� The aqua implementation with the sequential QFT (2n+ 3 qubits); and

� The Toffoli based implementation with the sequential QFT (2n+ 2 qubits).

We will analyze for each of these implementations how the retrieved values differ from the
expected ones with respect to the depth and the quality of solutions, recalling that the probability

of obtaining a good value from the quantum circuit is at least ϕ(r)
3r . The semiprimes that we use

to test the circuits are: 15, 21, 33, 35, 39, 51, 55, 65, 77, 85, 91, 119, and 143. For resource and
time limitations, we have been able to test the circuits with the normal QFT up until moduli
with 6 bits (up until 55), using only 100 shots for simulation. This number may be low to retrieve
good results with certainty, so more tests should be conducted in future works. We have been
able to perform simulations with 2000 shots for the sequential versions until 55.

The first thing we studied is the time consumed by each of these simulations with respect to
the method used. We can see from figure 11.1 how much the number of qubits used by the circuit
affects the time needed by the simulations: the sequential QFT permits to significantly reduce
it. Another important aspect that we can understand from figure 11.1 is the unexpected more
rapid growth of the Toffoli-based method with respect to the basic one. In fact, if we look at the
data in table 10.1, we expect to see that the basic method requires more time, but that does not
happen.

The distance between our data from the ones in table 10.1 is present because of the decom-
position we do of the circuit: in their estimation, a single Toffoli gate has count 1, while in our
estimation it has an increasing count depending on the number of controller qubits.

In figure 11.2 we can see how the depth of the Toffoli-based implementation grows significantly
faster than the one of the basic implementation in the decomposed circuit. Many factors can cause
this, but it is to note that in the decomposed circuit the Toffoli gates are divided into a series of
single-controlled gates, causing a notable increase in the depth and there are more Toffoli gates
in the Toffoli-based implementation than in the basic one.

We have also important variations between the circuits with the normal QFT and the sequen-
tial QFT. This happens because in the first case it is possible to parallelize many operations,
starting a Ua gate when the preceding one is not finished, since the control qubit is different, in
opposition to the second case.

It is to note that the circuits using the Toffoli-based implementation with the same modulus
have small variations in the depth concerning the value a, but these are negligible in the case
of figure 11.2. These variations are present due to the construction of the carry gate, which
inserts gates depending on the Hamming weight of the input: this gate is not present in the basic
implementation, so there are no variations in it. The situation is described in figure 11.3 in the
case of N = 33.
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Figure 11.1. Average time consumed for each method performing simulations with 100 shots
at the growth of the number of bits of the modulus n. The test was conducted using the
ibmq qasm simulator without the presence of noise. The circuits using the normal QFT are not
represented for n > 6 for resources limitations.

We can now concentrate on the quality of the solution given by the different circuits, that is
the percentage of times we have been able to obtain a value that can be transformed into the
period of the function. We also compare it to the minimum theoretical expected percentage of

success, which is calculated as in section 8.2 as ϕ(r)
3r .

In figures 11.4, 11.5, and 11.6 we see the different values that we obtain with the different
implementations when the number of bits of the modulus and the value a changes. An important
result is that whenever we have situations where the algorithm fails, each of the 4 implementations
fails. As we can see, we have differences in the quality of the solution for the Basic and the Toffoli-
based method, but for n = 4 and n = 5, the use of the sequential QFT does not seem to affect it
(small variations are normal since we performed only 100 shots for the Normal QFT circuits).

However, if we take a look at the cases where n = 6, that are the bar graphs with N = 33
and N = 55, we can see that the quality of the solution of the circuit with the normal QFT
and the Basic method collapses, also with respect to the circuit with the same method but with
the sequential QFT. In this case, the circuit used 26 qubits, so if the only limitation of the
simulator is the number of quits, it should be simulated without any problem and obtain similar
results to the sequential QFT version. This tells us that the ibmq qasm simulator have other
resource limitations other than only the number of qubits, that do not permit to maintain the
same performances on the quality of the solution for every circuit with less than 32 qubits.

Another important aspect that can be retrieved by this figure, is that the obtained quality of
the solution is bigger than expected: this can be seen also for greater moduli in figure 11.7. From
this figure, we can also see that the quality of the solution of the Basic method is better than the
one of the Toffoli-based: the only cases where this does not happen are when n = 6, where the
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Figure 11.2. Retrieved depth of the circuits with different modulus bit length and a = 2.
The data refers to maximally decomposed circuits, that were created using the qiskit function
decompose. The Toffoli-based implementation has a depth increase that is higher than the one of
the Basic implementation, in contrast with the theoretical data, because of the decomposition of
the Toffoli gates. The sequential QFT versions have a higher depth than the normal one, because
of the parallelization that is possible in the circuits with the normal QFT.

Figure 11.3. Retrieved depth of the circuits for the doubly controlled modular multiplication
with N = 33 at different value of a. The data refers to maximally decomposed circuits, that were
created using the qiskit function decompose. The Toffoli-based implementation has small variations
in the depth, that are not present in the Basic implementation. This is caused by the use of the
carry gate in the Toffoli-based circuit.
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Figure 11.4. Retrieved probability of success of the different implementations against the
minimum expected value for different a for N=15 (top) and N=21 (bottom). The tests were
conducted using the ibmq qasm simulator without the presence of noise. These tests shows
show a probability of success that strongly depends on the value a and on the method used,
and that is greater the minimum expected value.
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Figure 11.5. Retrieved probability of success of the different implementations against
the minimum expected value for different a for N=33. The test was conducted using the
ibmq qasm simulator without the presence of noise. This test shows how the probability of success
of the circuit using the normal QFT and the Basic method is lower than the one of the circuit
using the same method and the sequential QFT.
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Figure 11.6. Retrieved probability of success of the different implementations against
the minimum expected value for different a for N=55. The test was conducted using the
ibmq qasm simulator without the presence of noise. This test shows how the probability of success
of the circuit using the normal QFT and the Basic method is lower than the one of the circuit
using the same method and the sequential QFT.
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Basic method probability is affected by the limitations of the ibmq qasm simulator.

Figure 11.7. Average quality of the solution at different values of N compared with the ex-
pected minimum. The test was conducted using the ibmq qasm simulator without the presence
of noise. The graph shows how (with the exception of the circuits where n = 6), the Basic
method has a better probability of success than the Toffoli-based method, even if the latter
remains higher than the minimum expected value.

It is to note that the expected probability is asymptotical, so the important differences between
these two values can be understood recalling that we consider only small moduli.

We used our library to build a toy example of an RSA breaker. This program starts with the
creation of an asymmetric RSA key pair from the inputs p and q, that is used to encrypt a string
of bytes, using the code in Appendix A.2. The modulus and a random a are passed as input to
the library, which creates the circuit and executes it with 100 shots in the ibmq qasm simulator.
If no good values are returned, a different a is chosen and the circuit is recreated until the factors
are found. With these two factors, it is now possible to recreate the secret key and decrypt the
message.

We run this program with different values of p and q both with the Basic and the Toffoli-based
method. We can discuss the values retrieved testing the program with p = 23 and q = 17, which
give N = 391 (and n = 9): we tried these inputs using the sequential QFT and the two different
methods. It is to note that a correct implementation would try each output of the circuit every
time one is given, but for compatibility with our library and to avoid the problem of the queue
time of IBM simulators, we tested each random a using 100 shots of the circuit. The Basic circuit
has been able to try the factors using the first random a with probability 51%, spending 2881.573
seconds for the whole computation: this means that, given a good a, in average, it is possible to
find a good solution in 56.50 seconds1. For the Toffoli-based method, we had to try two different
values of a and the second computation succeded with a probability of 2%: it is possible that this
number is affected by the limitations of the ibmq qasm simulator that we have discussed. The
time needed to perform the computations was also higher than the one for the Basic method:
3116.345 seconds with the first a, and 4566.803 seconds with the second.

1(number of seconds per shot)/(probability of success)
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We considered the importance to build an optimized controlled version of certain gates: we
built different circuits to perform the controlled constant addition using an optimized version
of the controlled carry gate in figure 8.9 (where the only controlled gates are the two CNOTs
acting on the carry qubit) and similar circuits where the controlled carry gate was done simply
controlling each gate of the same figure, using different constants with a bit-length of 9. We then
measured the maximally decomposed circuit depth and the time of execution in the case of a
simulation with only 1 shot. We obtained in this way the following results:

� For the optimized version, an average time of 2.8 ms and an average depth of 958; and

� For the basic version, an average time of 29.4 ms and an average depth of 8781;

This demonstrates the important speed-up that is obtained for the whole circuit for Shor’s algo-
rithm since it contains 8n2 doubly controlled carry gates, in addition to the ones needed for the
controlled constant addition.

11.2 Tests on the implementations of the circuit for ECDLP

For our ECDLP circuit implementation, we provide all the functional tests conducted, that demon-
strate the correctness of our functions. These are listed in Appendix A.3, and we have been able
to simulate them up to the block for the modular inversion.

An important test, similar to the one done in section 11.1 for the controlled constant addition,
has been conducted for the optimized controlled version of the block, that follows algorithm
3, instead of just controlling each gate of algorithm 2. To demonstrate also the correctness
of the implementations, we used as input the values of figure 8 in [98]: using modulo 11, the
pseudoinverse of 7 is 8, and the one of 8 is 6. We obtained, performing the needed iterations of
the block, changing at each of them the input encoded in the registers with the output of the
preceding iteration, the same evolution of the values as the theoretical one.

We found that using our block, we have been able to reduce the maximally decomposed circuit
depth from 344041 to 2122 both for the inputs 7 and 8, going from an average time of execution
of 3.553 seconds to 0.336 seconds in the first case using only one shot, and from 6.090 seconds to
0.332 seconds using as input 8.

Even though we could not simulate the circuit, we can still provide an estimation of the depth
for it, summing the ones needed for the different parts of the algorithm. However, this estimation
will not take into account the possibility of parallelization between the gates, which can be an
important factor as we have described in the last section. The whole algorithm consists of 4
inversions, 2 squares, 4 multipliers, and 2 controlled constant additions. Important optimizations
are described in section 10.3.1, permitting to use 2 inversions, 1 square, 4 multipliers, and 2
controlled constant additions.

The multiplications can be performed using the Montgomery modular multiplication as we
have many ancilla qubits present, given that this gate has a lower depth with respect to the
normal one, as we can see from figure 11.8.

Having these data, we calculated the depth of the maximally decomposed circuits of the
inversion, of the squaring, and of the controlled constant adder, summing them following the
construction of the basic and the optimized circuits. The results are shown in figure 11.9, both
for the single Ua gate and for the whole circuit.
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Figure 11.8. Depth of the normal multiplication and of the Montgomery multiplication circuits
(without the copy of the result and the decomputation of the qubits) for input registers with a
qubit-size from 4 to 13. It is clear how the Montgomery multiplication has a lower depth.

Figure 11.9. Estimation of the depth for the single Ua gate (left) and for the whole circuit (right)
using the basic and the optimized circuits, for moduli that have bit-length from 4 to 13.

It is important to note that these plots derive from a simple sum of the depth of the single
gates. As we have seen in figure 11.2, the parallelization of the gates permits to reduce the depth
in a significant way. Important tests can be conducted creating the whole circuit and measuring
its depth.

11.3 Tests in presence of noise

As we have said, we have not been able to execute our circuits in real quantum devices. However,
it is possible to perform simulations where the qubits and the gates are affected by simulated real
errors. It is in fact possible to manually set all the noise configurations or to use default ones that
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simulate both the errors and the coupling maps of real quantum devices of IBM. For this purpose,
we used the qiskit.test.mock library, trying to see the results obtained from the execution of the
whole circuit for factorization in an environment that simulates the ibmq montreal device. This
quantum device has 27 qubits, a QV of 128, and a topology described in figure 5.6. In figure
11.10, we see the effect of the noise in a simple circuit that performs two cyclic binary halvings on
a register that was initialized encoding in it the value 1 in the computational basis, that is part
of the ECDLP library. This circuit consists of just n swaps, where n is the size of the register.

Figure 11.10. Results of the simulation of a circuit created using two binary halving gates created
with only swap gates in the ibmq qasm simulator without the noise and with the ibmq montreal
noise and coupling map using 1000 shots.

In this figure, we can see how a simple circuit is already greatly affected by the presence of
noise. In fact, when we try to perform the circuit to factorize the number 15 using the Sequential
QFT and the Toffoli-based method performing 100 shots, no good solutions are highlighted, as
shown in figure 11.11

This test demonstrates the need for an Error Correction Code to execute our circuits, as
otherwise, it would be impossible to have higher probabilities of obtaining good values.

11.4 Rigetti simulator

To simulate the circuit for factorization using a different simulator, we used the Quantastica web
application to transform our circuit written in qiskit language in pyquil, which is understandable
by the Rigetti simulator, as described in appendix B.3.

This test demonstrates the exportability of our circuits, providing a simulation that does not
rely on the ibmq qasm simulator. For this purpose, we used the Rigetti PURE-STATE-QVM, an
implementation of a quantum virtual machine that evolves pure state quantum systems, where
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Figure 11.11. Results of the simulation of Shor’s circuit with Sequential QFT and the Tof-
foli-based method in the ibmq qasm simulator without noise and with the simulation of the
ibmq montreal noise and coupling map using 100 shots.

the wavefunction of the quantum system is represented by a 2n qubit vector of amplitudes. In
this situation, the number of qubits is limited by the memory that can be allocated to it. In
addition, being a local simulation, the time of the computation is greatly affected both by the
performances of the local machine and by the width of the circuit.

We tested our circuit on this simulator trying to factorize N = 15 using a = 2 with the 4
different implementations, and N = 21 using a = 2 with the sequential QFT versions. The com-
parison between the results obtained with this quantum simulator and the ibmq qasm simulator
are reported in figure 11.12.

From this, we can see how it is possible to find good solutions even if we use a different type
of simulator. We have not been able to go further with the number of qubits of the circuit for
resources limitations, so it would be interesting as future work to try the circuit with bigger
moduli and also in other architectures.
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Figure 11.12. Comparison between the results obtained with the ibmq qasm simulator and
the Rigetti QVM for N = 15 (top) and N = 20 (bottom) using 100 shots. The time needed is
orders of magnitude higher for the Rigetti QVM, being it a local simulator, but the probability
of success are similar in the two cases.
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Conclusions

The objective of this thesis work has been to analyze Shor’s algorithm, in particular how it can
be used as an attack vector for RSA and elliptic curve cryptography. We tried to understand why
these cryptosystems are vulnerable and how distant we are from the possibility to build actual
attacks against them.

For the factorization circuit, we have seen how the quantum part is able to find with good
probability a value that can be used to retrieve the factors, and that the circuit runs in polynomial
time. We have studied two different implementations found in the literature, understanding their
construction and their resource estimations. The current Qiskit implementation is based on one
of these methods, so we implemented the needed gates for the other one. In this way, we have
been able to improve the current Qiskit implementation of Shor’s algorithm, providing different
gates that were not present in the SDK. We also modified some checks and operations performed
during the classical part of the algorithm, in order to avoid losing good solutions.

In section 11.1 we have proved that the probability to find good solutions using our library is
high as predicted, even if the resources limitations did not permit us to try to factorize numbers
that are representable with more than 9 bits.

Putting everything together, we created a parametrized library to facilitate the usage of these
circuits, providing the possibility to directly retrieve the wanted factors without knowledge of the
quantum part of the algorithm.

For the ECDLP circuit, we have understood why it represents a more urgent threat than the
first one as well as its challenges. Starting from a basic construction of the oracle, we analyzed
each gate, studying the resources needed for it. In this case, we implemented using Qiskit all
the different gates from scratch, providing some optimization to the basic circuit like optimized
controlled gates, and tested them, creating a starting point for the construction of the whole
circuit and gates that can be used also for other purposes.

We proved the portability of the implementations in section 11.4, performing the simulations
in a local Rigetti simulator, but it would be interesting to try other architectures, and evaluate
different other optimizations for Shor’s algorithm. The most important work to do in the future
is to test and use the library with real quantum devices, that are not available at the moment.

It is to note that Quantum Error Correction, as we have reported various times during this
thesis work, represents the most important player in the development of fault-tolerant quantum
devices, so future implementations and enhancements of Shor’s algorithm must be done according
to the future directions of this field.
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Appendix A

User’s manual

This appendix describes how to configure the environment used to implement the libraries and
the tests, and how the libraries’ functions can be used.

A.1 Using Qiskit with IBMQ devices in Jupyter

The first step to take to use the Qiskit framework is to install it, which can be done running the
following command:

pip install qiskit

To execute this command, Python 3.6 or later must be installed in the environment.

It is recommended to install Anaconda, a cross-platform Python distribution for scientific
computing. Jupyter, included in Anaconda, will be used for interacting with Qiskit.

In Jupyter, python notebooks can be written and executed step-by-step, with the possibility
to add explanatory text sections. To run it, we open the Anaconda prompt, and execute the
following command:

jupyter notebook [folder]

The folder chosen will be opened in the predefined browser of the environment, so that we can
create, manage or delete new python notebooks (.ipynb extension) or python files (.py extension).

When a new python notebook is created, we use the first cell of the file to import the necessary
libraries. If we want to create a quantum circuit, the library to import from qiskit is Quantum-
Circuit, which permits us to initialize the qubits and put every quantum gate that is available in
Qiskit.

from qiskit import QuantumCircuit

# Create a circuit with a register of three qubits

circ = QuantumCircuit(3,3)

# H gate on qubit 0, putting this qubit in a superposition of |0> + |1>.

circ.h(0)

# A CX (CNOT) gate on control qubit 0 and target qubit 1.

circ.cx(0, 1)
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# CX (CNOT) gate on control qubit 0 and target qubit 2.

circ.cx(0, 2)

# Measure the qubits

for i in range(0,3):

circ.measure(i,i)

The circuits can be simulated locally, or using the IBMQ hardware. In the first case, we import
the Aer library and execute the following code:

from qiskit import Aer, BasicAer, execute

backend = BasicAer.get_backend(’qasm_simulator’)

n_shots = 100

simulation = execute(circuit, backend=backend, shots=n_shots)

sim_result = simulation.result()

It is important to select a big enough number of shots to have a good view of the probability of
each output. In case we want to simulate our circuit using the iqmb qasm simulator, we create
an IBMQ account, and use the token they provide us to access their systems.

from qiskit import IBMQ, execute

IBMQ.load_account();

provider = IBMQ.get_provider(’ibm-q’)

backend = provider.get_backend(’ibmq_qasm_simulator’)

n_shots = 100

simulation = execute(circuit, backend=backend ,shots=n_shots)

sim_result = simulation.result()

The load account function authenticates the user with the credentials stored in the environment.

The next step is to see the results of the circuit. The clearest way is to use the plot histogram

function, which lets the user visualize a histogram with all the different outputs and the number
of times they happened.

from qiskit.visualization import plot_histogram

plot_histogram(sim_result.get_counts())

Using Qiskit we have also the possibility to execute our algorithms on real quantum devices of
IBMQ. To do it, we select the wanted quantum device and pass it as the backend of the function
execute.

from qiskit import IBMQ, execute

IBMQ.load_account();

provider = IBMQ.get_provider(’ibm-q’)

quantum_machine = ’ibmq_manila’

number_shots=1000

qcomp = provider.get_backend(quantum_machine)

job = execute(qc, backend=qcomp, shots=number_shots)

result = job.result()

IBM lets us have access to a restricted number of quantum devices with a free account, which have
a maximum of 5 qubits at the moment. Often there are also long queues, so even the simplest
experiment can be time-consuming. All the information, like errors and coupling maps, about
each quantum device, can be accessed from the IBMQ web application.
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This also gives us much information on each circuit that was executed in one of their systems,
like its measurement outcomes, its graphical representation, and its status timeline (how much it
stayed in the queue, how much it took for the computation, and so on): these are accessible from
the jobs overview.

An important auxiliary instrument to create quantum circuits are the functions to create
quantum and classical registers, that can be used in this way:

from qiskit import ClassicalRegister, QuantumCircuit, QuantumRegister

n=5

x = QuantumRegister(n)

y = QuantumRegister(n)

c = QuantumRegister(1)

clas = ClassicalRegister(n)

clas_c = ClassicalRegister(1)

circuit = QuantumCircuit(x,y,c,clas,clas_c)

[...]

for i in range(0, n):

circuit.measure(y[i],clas[i])

circuit.measure(c,clas_c)

A.2 Library for factorization

The first library that we implemented contains all the needed functions to factorize a biprimal
number. The interface function is called Shor, and is a parametrized function that, depending on
the input, provides different ways and methods to execute the algorithm. The first thing that the
function does is to check if the value N , that is the number to factorize, is even or of the form
xy, since in these two cases we can find easily the factors. It can not be checked the biprimal
feature of it, so it must be ensured by the user (a public key of RSA is with certainty a biprimal
number). Then it checks if the value a, passed as input or taken randomly, has a common factor
with N , as in this case we would have been lucky and this factor can be retrieved classically with
the extended Euclidean Algorithm.

Then the quantum circuit is executed and all the different values measured are given as input
for the function that performs the continued fraction expansion method. At the end of it, if
non-trivial factors are found from even one of all the different outputs, they are returned by the
function, otherwise, the pair (0,0) is given to indicate that the algorithm failed.

The only value that must be given to the function is the number to factorize, while it is possible
to use default values for the other inputs. These inputs are:

� N, the number to factorize.

� a, the random number needed by Shor’s algorithm. If not present, the function uses a
random integer between 2 and N-1.

� number shots, the number of times the circuit is executed or simulated. The default value
is 100.

� sequential, a binary value that tells if the sequential QFT method is used or not. The default
value is True.
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� simulator, a binary value that tells if the circuit must be simulated or executed in a real
quantum device. The default value is True.

� ibm, a binary value useful if simulator=’True’ that indicates if the IBM qasm simulator
must be used (True) or the circuit must be executed locally (False). The default value is
True.

� quantum machine, the name of the quantum machine that must be used in case the circuit
must be executed on a real quantum device. This value must be expressed if
simulator=’False’.

� method, the name of the method used to build the modular additions, which is Basic if
the method that performs the additions in the Fourier space is used, Inplace if the method
that uses Toffoli based additions is used. The default value is Basic.

� runtime, a binary value that is True if the runtime of the circuit is wanted in the outputs.
The default value is False.

� prob, a binary value that is True if the probability of success is wanted in the outputs. The
default value is False.

The outputs will be the two factors p and q, or two zeros if the algorithm failed. The user can
perform a while instruction, as in the example below to be sure that the program finds a solution.

(p_extracted,q_extracted) = Shor_library.Shor(N)

while (p_extracted == 0):

(p_extracted,q_extracted) = Shor_library.Shor(N)

A way to avoid reperforming the circuit with the same value for a can be taken into consideration.

used_a=[]

a = random.randint(2,N-1)

used_a.append(a)

(p_extracted,q_extracted) = Shor_library.Shor(N,a)

while (p_extracted == 0):

a = random.randint(2,N-1)

if a not in vec:

(p_extracted,q_extracted) = Shor_library.Shor(N,a)

Optional outputs, that will be given with respect to the inputs are the needed time to execute
the circuit and the probability of success of the circuit.

# Option with only the two factors as outputs

(p,q) = Shor_library.Shor(N)

# Option with the two factors and the time as outputs

(p,q,T) = Shor_library.Shor(N,runtime=’True’)

# Option with the two factors and the probability as outputs

(p,q,P) = Shor_library.Shor(N,prob=’True’)

# Option with the two factors, the time and the probability as outputs

(p,q,T,P) = Shor_library.Shor(N,runtime=’True’,prob=’True’)

We created a program to cipher using RSA and decipher with the values retrieved by the library
a message. The first part of this program create the RSA key pair and encrypts a message, then
the library is used to find the factors, and the last part recreates the secret key from the retrieved
factors and decrypt the message.
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N = p*q

phi = (p-1)*(q-1)

e = random.randint(3,phi-1)

while(gcd(e,phi)!=1):

e = random.randint(3,phi-1)

d = modinv(e,phi)

ciphertext = []

for m in message:

c = pow(m,e,N)

ciphertext.append(c)

IBMQ.load_account();

a = random.randint(2,N-1)

while(gcd(a,N)!=1):

a = random.randint(2,N-1)

(p_extracted,q_extracted,T,P) = Shor_library.Shor(N,a,100)

while (p_extracted == 0):

a = random.randint(2,N-1)

if(gcd(a,N)!=1):

a = random.randint(2,N-1)

(p_extracted,q_extracted,T,P) = Shor_library.Shor(N,a,100)

phi_extracted = (p_extracted-1)*(q_extracted-1)

d_extracted = modinv(e,phi_extracted)

message_extracted = []

n = len(ciphertext)

for i in range (0,n):

m_extracted = pow(ciphertext[i],d_extracted,N)

message_extracted.append(m_extracted)

In this code is not represented the needed division of every character of the message into two
nibbles in the case N < 28.

A.3 Library for ECDLP

The second library provided is a starting point for the construction of a circuit to break the
ECDLP. It includes all the needed gates to implement a reversible elliptic curve point addition
algorithm, as described in Algorithm 1. Parts of this library can be used also for different purposes.
Each one of these gates up to the Montgomery modular squaring has been functionally tested,
and optimized controlled versions have been created for some of them.

Addition

This gate can be appended to the circuit using the function addition. It calculates the sum of
two numbers encoded in two quantum registers, saving also the carry bit of the operation. The
inverse of this gate performs the subtraction, and the function to use it is subtraction. The
inputs of the two functions are:

1. the circuit to which the gate is appended;
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2. a quantum register of n qubits that encodes one of the addends;

3. a quantum register of n qubits that encodes one of the addends and that will be used to
store the output;

4. a clear qubit that is used to store the carry bit of the operation; and

5. n, the number of qubits of the two registers.

Constant addition

A function (constant addition) to append a gate that performs a reversible implementation of
the constant addition is provided, with its inverse implementation (constant subtraction). The
inputs of the function are:

1. the circuit to which the gate is appended;

2. the quantum register of n qubits that encodes one of the addends;

3. a dirty ancilla qubit;

4. the classical addend represented in binary form (of n bits); and

5. n, the number of qubits of the quantum register.

Optimized controlled versions have been created that can be called using the functions
controlled constant addition and controlled constant subtraction, that require another
input (the control qubit) after the circuit.

Comparator

This gate flips a qubit with respect to the value encoded in two different quantum registers. The
inputs of the function are:

1. the circuit to which the gate is appended;

2. a quantum register of n qubits that encodes one of the two values to compare;

3. a quantum register of n qubits that encodes the other one of the two values to compare;

4. a qubit that is flipped is the value encoded in the second quantum register is ≤ than the
value encoded in the first one; and

5. n, the number of qubits of the quantum registers.

Modular addition

The function to create the modular addition circuit is called addition modp. The inputs of the
function are:

1. the circuit to which the gate is appended;
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2. a quantum register of n qubits that encodes one of the addends;

3. a quantum register of n qubits that encodes one of the addends and that will be used to
store the output;

4. a clear ancilla qubit;

5. a dirty ancilla qubit;

6. the modulus of the operation represented in binary form (of n bits); and

7. n, the number of qubits of the quantum registers.

Optimized controlled versions have been created that can be called using the functions
controlled addition modp and doubly controlled addition modp, that require one or two
additional inputs (the control qubits) after the circuit.

Modular doubling

The modular doubling gate can be appended to the circuit with the function doubling modp. The
inputs of the function are:

1. the circuit to which the gate is appended;

2. a quantum register of n qubits that encodes the number to double and that will be used to
store the output;

3. a clear ancilla qubit;

4. a dirty ancilla qubit;

5. the modulus of the operation represented in binary form (of n bits); and

6. n, the number of qubits of the quantum register.

An optimized controlled version has been created that can be called using the functions
controlled doubling modp, which requires one additional input (the control qubit) after the
circuit.

Modular multiplication

A modular multiplication can be applied to the circuit using the function multiplication modp.
The inputs of the function are:

1. the circuit to which the gate is appended;

2. a quantum register of n qubits that encodes one of the factors;

3. a quantum register of n qubits that encodes the second factor;

4. a quantum register of n qubits that is used to store the output;

5. a clear ancilla qubit;

6. a dirty ancilla qubit;

7. the modulus of the operation represented in binary form (of n bits); and

8. n, the number of qubits of the quantum registers.
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Modular squaring

A modular squaring can be applied to the circuit using the function square modp. The inputs of
the function are:

1. the circuit to which the gate is appended;

2. a clear ancilla qubit;

3. a quantum register of n qubits that encodes the number which is squared;

4. a quantum register of n qubits that is used to store the output;

5. a clear ancilla qubit;

6. a dirty ancilla qubit;

7. the modulus of the operation represented in binary form (of n bits); and

8. n, the number of qubits of the quantum registers.

Montgomery modular multiplication

A Montgomery modular multiplication, as described in section 10.2.2 can be applied to the circuit
using the function montgomery multiplication modp. The inputs of the function are:

1. the circuit to which the gate is appended;

2. a quantum register of n qubits that encodes one of the factors;

3. a quantum register of n qubits that encodes the second factor;

4. a clear ancilla qubit;

5. a clear ancilla register of n qubits;

6. a dirty ancilla qubit;

7. a clear ancilla register of n qubits;

8. a clear ancilla register of n qubits that is used to store the output;

9. the modulus of the operation represented in binary form (of n bits); and

10. n, the number of qubits of the quantum registers.

Montgomery modular squaring

AMontgomery modular squaring can be applied to the circuit using the montgomery squaring modp

function. The inputs of the function are:

1. the circuit to which the gate is appended;

2. a clear ancilla qubit;
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3. a quantum register of n qubits that encodes the number which is squared;

4. a clear ancilla qubit;

5. a clear ancilla register of n qubits;

6. a dirty ancilla qubit;

7. a clear ancilla register of n qubits;

8. a clear ancilla register of n qubits that is used to store the output;

9. the modulus of the operation represented in binary form (of n bits); and

10. n, the number of qubits of the quantum registers.

Modular inversion

The last gate implemented applies a modular inversion to the value encoded in a register as
described in section 10.2.3. This gate follows the construction of the controlled block described
in algorithm 3. The inputs of the function mod inv are:

1. the circuit to which the gate is appended;

2. a clear ancilla register of n qubits;

3. a quantum register of n qubits that contains the value x encoded;

4. a clear ancilla qubit;

5. a clear ancilla register of n+1 qubits;

6. a clear ancilla register of n+1 qubits;

7. a clear ancilla qubit;

8. a clear ancilla qubit;

9. a clear ancilla register of 2n qubits;

10. a clear ancilla qubit;

11. a clear ancilla register of l = ⌈log2 n⌉ qubits;

12. a clear ancilla register of n qubits that will store the output of the function;

13. a clear ancilla register of l qubits;

14. the modulus of the operation represented in binary form (of n bits);

15. l, the number of qubit of two quantum registers; and

16. n, the number of qubits of most of the quantum registers.

We have not been able to test the whole gate due to resources limitations.
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This appendix describes the details of our Qiskit implementations contained in the two libraries
and the code we used to make the tests of chapter 11.

B.1 Libraries

The classical part of the library to create the circuit for the factorization problem is intended
to be used for small moduli, as certain instructions perform controls on the variables that must
not be considered when dealing with real-life moduli. These are intended to avoid wasting time
in unnecessary computations when the values are small. In future applications, the function
get factors must be modified, doing the following actions:

� improve the maximum number of iteration of the continued fraction expansion method, now
set to 15;

� use an optimized algorithm for the modular exponentiation (a
r
2 );

� erase the check on the value a
r
2 .

The library containing the gates for the ECDLP is intended to be a starting point for the
creation of the circuit. After having created the whole circuit just putting together the gates as
described in chapter 10, the only classical part needed to find the secret key of the cryptosystem
is to find the modular inverse of a number and a modular multiplication (fast python implemen-
tations of these functions are widely known). To complete the whole circuit, the first step to take
is to initialize a qubit which will be the one where the sequential QFT is applied with the same
method used for the factorization problem. This qubit will control the 2n different oracles, each
one performing a reversible point addition as in algorithm 1. An important action to take is to
initialize the registers of input of the first oracle to some coordinates (x, y) of the curve that are
different from the ones of the point at infinity.

B.2 Code for the test

The tests conducted in chapter 11 have been conducted using the Jupyter notebooks to create the
circuits and retrieve the results and using MATLAB to plot the figures shown. In this section, we
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will explain the methods used to retrieve the depth of the circuits and the time spent in quantum
working.

For what regards the depth, we used the Qiskit function depth() of the QuantumCircuit class,
which permits to retrieve the length of the critical path of the circuit. However, this function does
not resolve the compound gates that we created and used in our libraries, giving wrong results
if used in the wrong way. In order to solve the problematic situations, we had to use the qiskit
function decompose, which performs a 1-level decomposition of the circuit. An example of code
is here listed.

from qiskit import QuantumCircuit

N=15

a=2

circuit = circuit_builder(N,a,’True’,’Basic’)

print(circuit.depth())

dec1 = circuit.decompose()

print(dec1.depth())

The circuit builder function creates our circuit for factorization based on the inputs so that
we can consider its depth. Using this code, the first depth that we have retrieved is 98, while
after the decomposition is 273. There are also cases where just one decomposition is not enough,
so we have to use several times this function until the values of the depth of two consecutive
applications are the same so that we can be sure to have obtained the depth of the maximally
decomposed circuit. Using the following code, for example, we have as output the string “dec0:
51 dec1: 387 dec2: 487 dec3: 487”, so we are sure that the real depth of the circuit is 487.

from qiskit import QuantumCircuit

N=15

a=2

circuit = circuit_builder(N,a,’True’,’Inplace’)

dec1 = circuit.decompose()

dec2 = dec1.decompose()

dec3 = dec2.decompose()

print(’dec0:’,circuit.depth(),’dec1:’,dec1.depth()

,’dec2:’,dec2.depth(),’dec3:’,dec3.depth())

The decompose functions actually divide every gate that can not be directly passed to the IBM
simulator into a series of other gates. For example, a single Toffoli gate is decomposed into a
series of CNOT and P gates, that can be passed to the simulator (or to the quantum machine).
If we have created, using the qiskit function to gate(), a compound gate, with the first iteration
it will be decomposed in the circuit that it was prior to the call of this function, that can contain
Toffoli gates for example, so we have to reuse the decompose() on it.

Regarding the time consumed in quantum working, that in reality is the time in the simulator
system, it is a parameter of the job that is created with the function execute. For example, in
our library, we retrieve it from the field time taken of the job result, as described in this code.

job = execute(circuit)

result = job.result()

T = result.time_taken

The result retrieved by the job created by execute contains in fact, along the time taken for
the execution or simulation, different interesting parameters, such as the number of qubits, the
method of simulation, the noise model used, and the memory reserved.
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B.3 Rigetti simulator

To use the simulator necessary to perform the tests in section 11.4 we follow the instruction
present in https://github.com/quantastica/qps-api. The first thing to do is to install the
necessary modules using anaconda, which can be done by running the following command and
installing the Rigetti Forest SDK from https://qcs.rigetti.com/sdk-downloads.

$ pip install quantastica-qps-api

The next step is to login to Quantum Programming Studio (QPS) and copy the API token from
the Profile section. This token is passed to the function QPS.save account, which will permit us
to use the QPS API.

To use the Rigetti quantum virtual machine, we have to open an anaconda prompt and run
the following command.

qvm -S -c

This will create a virtual machine with a server running on it, to which we will perform HTTP
requests with the program to run. To create and simulate the circuits in it, we can create a
Jupyter notebook with the following code.

from pyquil import Program, get_qc

from pyquil.gates import X, CPHASE, CNOT, CSWAP, H, SWAP, MEASURE, PHASE

from functools import reduce

import numpy as np

from quantastica.qps_api import QPS

qc = circuit_builder(N,a,’True’,’Basic’)

QASM_circ = qc.qasm()

output_program = QPS.converter.convert(QASM_circ, "qasm", "pyquil")

exec(output_program[0:len(output_program)-281])

shots = 100

p.wrap_in_numshots_loop(shots)

qc = get_qc(’12q-qvm’,execution_timeout=2000)

results_list = qc.run(p).readout_data.get("ro")

results = list(map(lambda arr: reduce(lambda x, y: str(x) + str(y),

arr[::-1], ""), results_list))

counts = dict(zip(results,[results.count(i) for i in results]))

The output of the converter selects by default 1024 shots, so if we want to use a different number
we must execute the output program with the exception of the last 281 characters so that we
can select the number of shots wanted. Another important parameter is the execution timeout,
that is the seconds waited by the client for the server response: in case of long circuits, this must
be changed to a correct value. The qvm selected (’12q-qvm’ in the code) must be changed with
regard of the number of qubits of the circuit.

From the counts dictionary now we can retrieve the probability of success of the circuit, while
the time consumed is shown in the terminal where the server runs.
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