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Abstract

Nowadays, computer vision is built almost exclusively on deep learning methods.
Research in recent years has improved more and more the performances of convo-
lutional neural networks on several popular key tasks, such as image classification,
detection and segmentation. However, these methods require large amounts of
annotated data to be trained effectively, which are not always available.

For this reason, domain adaptation methods have been widely studied and de-
veloped. The goal is to transfer the knowledge learned by a machine learning model
on annotated data to data from other domains for which annotations are not avail-
able or only partially. A typical case is the transfer from synthetic data (easy to
generate in large quantities) to real data (expensive to collect and annotate).

This work focuses on domain adaptation for an object detection task, with the
goal of identifying methods that can be deployed in production environments. It
starts from a review of both the fundamental and some recently proposed methods
and explores a simple approach to domain adaptation, without the need for complex
modifications to the most commonly used network architectures. At the same time,
it attempts to address some issues of more popular domain adaptation methods for
object detection, that may hinder their use in actual applications.

The performed experiments show that the method can be easily applied by
engineers for satisfactory results in real world projects, when it is complex to obtain
image annotations.
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Introduction

Over the past few decades, machine learning and deep learning techniques have
achieved impressive results in a variety of tasks, of which computer vision and
language processing are probably the best known. However, they generally assume
that training and inference data are drawn from the same distribution, which is
not always the case. Furthermore, data collection and annotation is an expensive
and time-consuming task. It may therefore be desirable to apply a model trained
on annotated data to another domain for which annotations are not available or
only partially available. Several methods have been proposed to reduce the domain
shift between the two data distributions. They have been widely studied and are
presented in the following sections.

The starting point of this Master Thesis is a six-months internship carried out
at Neovision1, an engineering company based in Grenoble, France, and specialized
in artificial intelligence. Transferring knowledge between different domains in an
object detection scenario is a captivating but challenging task with applications
in a variety of domains of great commercial interest. In addition, the shortage
of available annotated data for the use case of interest is often one of the biggest
obstacles for machine learning projects: engineers have to spend several hours gath-
ering and possibly annotating related data, rather than focusing on algorithms and
optimization. On the other hand, synthetic data can be easily generated in large
quantities.

In addition, the tasks at hand can frequently be similar, but with data collected
under different conditions of brightness, light spectrum, camera angle, and more.
Previously trained models cannot be reused, and long training processes are there-
fore required. This is why Neovision is interested in tackling the domain adaptation
problem, in order to offer the acquired knowledge and methods to its numerous cus-
tomers. For this reason, the research documented in this Master Thesis proposes
and shows that simple approaches for domain adaptive object detection, indepen-
dent of specific employed network architectures and without introducing complex
architecture modifications, can obtain satisfactory results and compete with more

1https://neovision.fr/en/
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Introduction

challenging methods previously proposed in the literature.
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Chapter 1

Problem definition

1.1 Neural networks and computer vision
Thanks to their achievements in computer vision, deep learning methods based on
convolutional neural networks (CNNs) have aroused a lot of interest over the last
decade and have been used in many other branches of artificial intelligence. CNNs
are a class of artificial neural networks, designed for the processing of structured
arrays of data such as images.

1.1.1 Machine learning
The goal of machine learning is to extract patterns from raw input data, making
a computer program build its own knowledge without relying on any hard-coded
expertise. This knowledge is built from some representative data for the task of
interest (the training set) in order to make predictions or take decisions on new data
that may only be available over time (the test set). Machine learning approaches
are often organized in three broad categories:

• Supervised learning, in which training data are provided as input-output
pairs and the goal is to learn a rule that maps the inputs to the outputs.
Common supervised learning problems are classification, when the response
variable belongs to a discrete set, and regression, in which the objective is to
estimate a continuous mapping function.

• Unsupervised learning, in which patterns and similarities in the data are
sought without the need of data labels.

• Reinforcement learning, in which the computer program (called agent)
interacts with an unknown environment and records the rewards associated to
the actions it takes, progressively discovering the environment. The objective
is to learn sequences of actions that lead to reward maximization.

3



Problem definition

Popular supervised machine learning algorithms, such as Support Vector Ma-
chines (SVM) and K-Nearest Neighbors (KNN), have strong theoretical properties
and have matched human performances on numerous tasks.

Figure 1.1: SVM for binary classification

1.1.2 Deep learning
Performances achieved by traditional machine learning algorithms heavily depend
on the representation of the data with which they are fed. Indeed, they cannot an-
alyze the full world, but only some pieces of relevant information that are available
and used for learning. Each piece of information in the training examples is called
a feature. Traditional machine learning algorithms learn from these features, but
cannot influence how they are defined and extracted from the real world data.

Plenty of tasks can be solved by designing an appropriate set of features to
extract, that will be forwarded to a machine learning algorithm. This requires
previous knowledge, which is not always available, and intensive work and research
from human actors. In many cases, it is extremely difficult to know a priori which
features should be extracted. A clear example is dealing with images: humans can
immediately distinguish a dog from a cat, but the difference in, e.g., fur and shape
is not easy to describe in mathematical terms. A dog or a cat can take several poses
and be pictured in various weather and lightning conditions. In addition, dogs or cat
of different breeds can have very different appearance (high intra-class variation)
and sometimes have common traits with other animals (low inter-class variation),
but humans have no difficulty in classifying them as dogs or cats nevertheless. This
makes the task complicated for machines.
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1.1 – Neural networks and computer vision

Figure 1.2: A popular example of intra-class variation: even though they look
different, humans do not have any trouble in saying all the images contain chairs.

To solve the problem, it is possible to use machine learning to learn an effective
data representation in addition to the mapping from inputs to outputs, an approach
known as representation learning. This increases performances with respect
to hand-crafted features and enables the algorithm to easily adapt to new tasks.
However, not all extracted features may be useful to understand which animal is
present in an image, while some of them can be sound only if considered together
with other features.

Deep learning has been a fundamental milestone in representation learning.
In deep learning, representations are expressed in terms of other simpler represen-
tations that were previously extracted from the input data. In the case of dog
images, a deep neural network can represent the concept of dog in terms of simpler
concepts, such as corners and contours, which are in turn defined in terms of edges.

Different network architectures have been proposed for different tasks. The
basic model is the feedforward neural network or multi-layer perceptron (MLP),
whose schema is reported in Figure 1.3. Each node of the directed acyclic graph
represents a neuron (from which the name neural network): the first network layer
is the input layer, with as many neurons as input features, while the last layer is
the output layer, with one node for any class the network is designed to predict (or
a single node in the case of binary classification). The intermediate layers are the
hidden layers, in which every neuron computes the value of a linear function of the
features returned by the previous layer, followed by a scalar non-linearity. Each
output serves as input for all nodes in the next layer.
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Figure 1.3: Example of feedforward neural network

More formally, the output of the jth node of the first hidden layer h1, when
receiving an observation x from the n input nodes, is the composition of:

• a dot product aj between x and the node’s weight vector wj, considering its
bias term bj:

aj = bj +
n∑︂

i=0
wj,ixi

• and a differentiable activation function h, such that:

zj = h(aj).

This is incrementally repeated for all neurons of every network layer, until an output
is produced by the neurons of the output layer. The network learns the weights w
associated to all neurons as well as their biases b, which define the output of the
nodes when no input is provided[2].

Several activation functions have been proposed over the years to build deep
neural networks and effectively exploit their depth. Sigmoid and tan-h, respec-
tively defined as h(t) = 1/1+e−t and h(t) = tanh(t) = et−e−t/et+e−t, have often been
used as activation functions, as they squeeze input values to finite intervals ([0,1]
and [−1,1] respectively, as represented in Figures 1.4a and 1.4b) and are biologi-
cally inspired. In modern deep learning, the default recommendation is to use the
rectified linear unit (ReLU) function, defined as h(t) = max(0, t). With respect to
sigmoid and tan-h, the ReLU does not saturate (mitigating the risk of vanishing
gradient) and has faster convergence. An alternative is the leaky ReLU, defined as
h(t) = max(αt, t), α ∈ [0,1], which in turn mitigates the risk of “dying” neurons,
due to the fact that ReLU sets all negative values to 0.
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1.1 – Neural networks and computer vision
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Figure 1.4: Commonly used activation functions for neural networks

Network weights are learned through gradient based methods. In order to do so,
a fundamental step is the definition of a loss or cost function. Loss functions are
mathematical functions that map an event or the values of one or more variables
to a real number, which intuitively represents a certain cost associated with these
values. Therefore, each training of deep neural networks aims at minimizing or
maximizing one or more loss functions that depend on the problem, in order to
make network weights evolve in the desired directions.

In a multi-class classification scenario, the output of each output neuron is
mapped to the posterior probability of the corresponding class. This is usually
done through the softmax operation. If the kth node of the output layer returns
the value yk, it is computed as:

p(ck|x) = exp (yk)∑︁n
i=0 exp (yi)

which is therefore the probability that observation x belongs to class k. This is
computed for all classes and x is usually assigned to the class with the highest
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probability.
According to the backpropagation algorithm, classification error or loss is esti-

mated at the output layer, considering incorrectly classified examples, and network
weights are updated accordingly, from the output to the input layer. This is done
by computing the gradient of the loss function and distributing it backwards on the
network neurons, by recursively applying the chain rule of calculus[14]. A general
schema is reported in Figure 1.5.

(a) Forward step (b) Backward step

Figure 1.5: Propagation and backpropagation schema

1.1.3 Convolutional neural networks
Convolutional neural networks (CNNs) are a special class of feedworward neural
networks, designed to work with inputs that are organized as grids. Hidden units
are organized into grids as well. Indeed, if image pixels were directly fed to a feed-
forward neural network, the model could not extract meaningful relations between
adjacent pixels, possibly taking into account the different color channels.

CNNs are usually composed of two main sections: the first one deals with feature
extraction, while the second addresses classification or regression, depending on the
desired task. A simple CNN architecture is reported in Figure 1.6.

For feature extraction, following the same principle of MLPs, increasingly com-
plex non-linear relationships between adjacent pixels are extracted from input im-
ages, by stacking convolutional layers with non-linear activation functions. Linear
mappings from one layer to the next one take the form of convolution operations
with three-dimensional convolutional filters of fixed size. Pooling layers can then
be added in order to reduce the size of the extracted feature maps. The goal of
pooling is to replace the output of a convolutional layer with a summary of its local
statistics, making it more robust to small differences in the input. Popular pooling
operators are max and average pooling.

Different architectures can be used for this part of the network, which is typically
referred to as backbone.

8



1.1 – Neural networks and computer vision

In the most simple case, extracted features are then forwarded to one or more
fully connected layers, that can be seen as a standard MLP introduced in the
previous section. The MLP assembles all local information into a global vectorial
representation and outputs a prediction for the input image.

However, this part of the network depends on the task of interest and several
architectures have been proposed over the years. These architectures can be com-
plex and composed of different units for different sub-tasks. They always rely on
the features extracted by the backbone, that are potentially shared among all the
components of the architecture, as several high level tasks may need to access the
same low level features

Figure 1.6: An example of CNN for handwritten digit recognition

1.1.4 Computer vision
Before the rise of CNNs, computer vision researchers focused on studying effective
algorithms to extract information related to the shapes appearing in the images.
This is inspired by how animal and human brain works, first focusing on edges or
lines, and only after on the full image.

Such algorithms include, but are not limited to, scale-invariant feature transform
(SIFT) and histogram of oriented gradients (HOG). SIFT extracts local features
from images, with the goal of describing different classes of objects by invariant fea-
tures[28]. HOGs, instead, describe images by the number of occurrences of gradient
orientations in different portions of the images[8]. Examples of the algorithms are
reported in Figure 1.7.

As mentioned in previous sections, features extracted from available images are
then used to train supervised or unsupervised machine learning algorithms, de-
pending on the task of interest.

In recent years, CNN-based methods have outperformed previous approaches
based on manually extracted features and classical machine learning algorithms,

9
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(a) Scale-invariant feature transform[28] (b) Histogram of oriented gradi-
ents[8]

Figure 1.7: Examples of hand-crafted feature extraction methods

since they are able to learn complex relationships in the data by progressively
extracting higher-level features from the raw data. Figure 1.8 shows an example of
the progresses made by CNNs in computer vision.

Figure 1.8: Evolution over the years of the top-5 error for the winning entries in
the ImageNet Large Scale Visual Recognition Challenge (ILSVRC), from right to
left[39][19].

Three main tasks can be identified in computer vision, all of which have benefited
from the development of deep convolutional neural network architectures:

• Image classification, whose objective is to predict the class label for an
image.

10



1.2 – Object detection

• Object detection, whose objective is to predict the position and the class
label for all the objects that appear in an image, which may belong to different
classes. The position of an object is represented by means of rectangular
coordinates, called bounding box.

• Semantic segmentation, whose objective is to predict a class label for each
pixel in an image. A possible extension is instance segmentation, which identi-
fies the object instance for each pixel, distinguishing different objects belonging
to the same class.

A summary is presented in Figure 1.9.

Figure 1.9: Comparison between classification, object detection and semantic seg-
mentation

1.2 Object detection
Object detection methods are able to recognize the objects represented in an image
and to highlight their position, returning the associated bounding boxes, rectangu-
lar boxes which contain an object. The bounding box format depends on the model
and on the dataset. Typically, they are determined by the x and y coordinates of
the upper-left corner or of the center and by the width and height of the bounding
box.

Object detection is a fundamental task in modern computer vision, with appli-
cations such as autonomous driving, robot vision and human-computer interaction.

1.2.1 Existing methods
An object detection task can be seen as a combination of two main steps: finding
image regions that may contain objects, and then independently classifying the

11
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Figure 1.10: An example of object detection[35]

objects in those regions. Before deep learning, this was achieved using a sliding-
window approach, where an image classifier was applied to different areas of the
image and only the predictions with the highest probability were retained. Nowa-
days, two main families of object detectors can be identified.

Several network architectures have been using as backbones of object detectors,
to extract features from input images to be fed to the high-level network components
for the object detection task. Due to high performances, one of the most popular
choices is exploiting a residual neural network (ResNet) architecture[16].

ResNets are neural networks characterized by the use of shortcuts or skip con-
nections. Through these skip connections, the output of a network block is added
to the same signal it received as input. This favors the transmission of the gradient
from high level to low level layers during the backpropagation phase, avoiding van-
ishing gradient. The contribution of the information extracted by the first network
layers during inference is favored as well. This has allowed the implementation of
very deep networks, solving the problems encountered by previous architectures
concerning training and accuracy. The structure of a residual block is reported in
Figure 1.11.

The number of layers of a ResNet is usually specified as a suffix. Common values
are 18, 34, 50 (ResNet-50), 152, up to over 1000 layers[17].

Two stage object detectors

As said, the most commonly used models for object detection are based on a two-
stage approach and belong to the family of region-based convolutional neural net-
works (R-CNNs). In basic R-CNN[13], a manageable number of possible Regions

12



1.2 – Object detection

Figure 1.11: An example of building block for residual learning[16]

of Interest (RoIs) are extracted from an image, following the Selective Search algo-
rithm.

Selective search aims at localizing objects in the input images, and is pitted
against previously used Exhaustive Search, in which the sliding-window approach
is followed to detect RoIs. In selective search, an input image is initially segmented
in small regions, which are then recursively merged according to their similarity.
The operation is repeated until bigger independent regions are generated. These
regions are returned as candidate RoIs.

A CNN is then evaluated independently on each proposed RoI to extract features
that are fed into a SVM to determine if an object is present in this bounding box
(classification task) as well as its location to match that of the object (regression
task). As SVM is a binary classification algorithm, as many SVMs as classes of
interest are used for the classification task. A summary of the method is reported
in Figure 1.12.

Figure 1.12: Description of standard R-CNN[13]

Fast R-CNN[12] and Faster R-CNN[36] enhanced the R-CNN architecture, im-
proving its performances and reducing the inference time.

13
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Fast R-CNN In Fast R-CNN[12], performances are improved through the in-
troduction of a RoI pooling layer and of a single-stage training procedure with an
optimized multi-task loss.

RoI pooling layer allowed to solve one of the main sources of slowness of the
previous R-CNN architecture: as described, in R-CNN each proposed RoI is inde-
pendently fed to a CNN for feature extraction.

With RoI pooling, the whole input image is forwarded only once to the feature
extractor. Rectangular feature maps, corresponding to each proposed RoI, are then
extracted from the image’s features.

Following a single-stage training, instead, Fast R-CNN discards the previously
used SVMs for classification. Two sibling output layers are used:

• the classification head returns, through softmax and for each RoI, a discrete
probability distribution p over K + 1 categories (the K classes of interest and
an “extra” background class);

• the regression head returns, for each RoI and class k, a bounding box off-
set tk, which specifies a scale invariant translation and height/width shift in
logarithmic space.

The two heads are trained jointly, thanks to a purpose-built loss function that
takes into consideration both classification and regression tasks. For each couple of
classes u, v, with u ground truth class, this multi-task loss is defined as:

L(p, u, tu, v) = Lcls(p, u) + λ [u ≥ 1] Lloc(tu, v). (1.1)

Here, Lcls(p, u) = − log pu is the standard negative log-likelihood for the correct
class u and is responsible for the training the classification head. Lloc(tu, v) is
instead responsible for the regression head and is defined as a robust L1 loss:

Lloc(tu, v) =
∑︂

i∈{x,y,w,h}
smoothL1(tu

i − vi)

in which

smoothL1(x) =

⎧⎨⎩0.5x2 if |x| < 1
|x| − 0.5 otherwise.

[u ≥ 1] is an indicator function that evaluates to 1 when u ≥ 1 and 0 otherwise,
meaning that the regression head is not trained for RoIs belonging to the back-
ground class (labeled u = 0 by convention). Indeed, the concept of ground truth
bounding boxes does not make sense for background regions.

Finally, the λ hyperparameter is used to assign a relative weight to the two tasks.

14



1.2 – Object detection

Faster R-CNN The main contribution of Faster R-CNN[36] over Fast R-CNN
is the introduction of a Region Proposal Network (RPN), which integrates some
convolutional layers of the image classifier into the region proposal phase. It is
designed to replace selective search, an expensive and time-consuming algorithm,
and helps to considerably reduce the required time. Faster R-CNN working scheme
is reported in Figure 1.13.

Figure 1.13: Description of Faster R-CNN[36]

The goal of RPN is to extract a set of RoIs from an input image, each with
a probability that it contains indeed an object instead of a background region.
Basically, this CNN shares a common set of convolutional layers with a Fast R-
CNN object detector and highlights the image regions on which it should focus.

In order to generate RoI proposals, the RPN receives as input the features ex-
tracted by the last shared convolutional layer, and a sliding-window approach is
followed to extract multiple proposals. Each RoI is mapped to a lower-dimensional
feature map, which is fed to two sibling fully-connected layers: a binary classifica-
tion layer which estimates the probability that the input RoI actually contains an
object, and a box-regression layer to refine the bounding box proposals.

The regions that are generated at each sliding-window location have different
sizes and aspect rations and are called anchor boxes. This is an important concept
in modern object detection, and is further detailed in Section 1.2.2.

RPN can then be trained with the goal of minimizing a multi-task loss function
that follows the same reasoning of (1.1).

However, the RPN and the Fast R-CNN detector share a set of convolutional
layers: independent training of the two components would modify the weights in
different ways and results would be inconsistent. Three techniques are proposed

15



Problem definition

for jointly training networks with shared features:

• Alternating training: the RPN is initialized as a pre-trained CNN and fine-
tuned end-to-end on the RoI proposal task, and the generated proposals are
used to train a Fast R-CNN object detection network. In this phase, no con-
volutional layer is shared among the two networks. Fast R-CNN is then used
to initialize RPN training, but fixing shared layers and fine-tuning only the
ones unique to RPN, making the two components share convolutional layers.
Finally, shared layers are kept fixed and unique layers of Fast R-CNN are
fine-tuned. The process can be repeated for many iterations.

• Approximate joint training: RPN and Fast R-CNN components are merged
into one network. However, this joint training leads to approximate results,
as RoI proposals are treated like fixed, pre-computed proposals when training
the Fast R-CNN. For this reason, during backpropagation the fact that the
proposed bounding boxes’ coordinates depend on the RPN is ignored.

• Non-approximate joint training: the above-mentioned problem could be re-
solved by computing gradients with respect to the box coordinates in the
backpropagation step. This would require the development of a RoI pooling
layer that is differentiable with respect to box coordinates. This is a nontrivial
problem.

Because of its good performances and speed, Faster R-CNN is widely used for
benchmarking and as base for several derived works.

One stage object detectors

Differently from two stage detectors, one stage object detectors skip the region
proposal phase and focus on predicting object regions and classes together. This
leads to faster predictions with respect to two stage models, making them suitable
for real-time applications at the cost of lower prediction quality. The pioneer work
for one stage object detection is OverFeat[42], published in 2014. Here, the last
classification layers of a standard CNN are replaced by a regression network for
each class, in order to predict the coordinates of the object bounding boxes.

YOLO The You Only Look Once (YOLO) model[35] uses pretrained CNN for
classification and splits each image in cells. If the center of an object falls into a cell,
that cell is responsible for detection and should predict the bounding box locations,
a confidence score and a class probability for the detected objects. A specific loss
function is used to efficiently learn to predict bounding boxes and object classes at
the same time.
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1.2 – Object detection

SSD Single Shot Detector (SSD)[27] uses a VGG-16 convolutional network as
backbone and adds on top several convolutional layers of decreasing sizes, in order
to build a pyramid representation of the images and efficiently detect object of
different sizes, at each pyramid layer. Instead of splitting images in cells, anchor
boxes are used for faster detection.

Figure 1.14: SSD’s pyramid architecture[47]

After their proposal, YOLO and SSD have both been extensively studied and
improved by the research community. The last versions of the two families are
architecturally close and work in very similar ways.

RetinaNet The main improvements of RetinaNet[25] over previous one stage
detection models are the use of Feature Pyramid Network (FPN) as part of the
backbone and of focal loss, which helps to approach the results of two-stage detec-
tors.

Feature Pyramid Network FPNs[24] adopt and improve the same approach
as SSD’s pyramid layers. They are built of a sequence of pyramid levels which
correspond to network stages. Each stage is composed by multiple convolutional
layers of the same size, divided by two at consecutive stages. In addition to standard
feedforward, different stages are linked by a top-down pathway in the opposite

Figure 1.15: RetinaNet architecture[25]
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direction, together with lateral connections. This allows the network to construct
a rich and multiscale feature pyramid for each input image.

After their proposal in the context of single-stage detectors, FPNs have also
been used as part of the backbone of two-stage detectors, aiming at improving
their performances.

Focal loss One of the main obstacles for the training of other object detection
models is the large imbalance between background and foreground examples, which
drives the model to focus on irrelevant background regions. As explained in previous
sections, each training of deep neural networks aims at minimizing or maximizing
one or more loss functions that depend on the problem. In this case, a specific loss
function can be used to encourage the network to focus on regions of the images
that actually contain objects.

The focal loss, introduced by RetinaNet, is based on the cross entropy loss. For
binary classification, the cross entropy loss is widely used and defined as:

CE(p, y) =

⎧⎨⎩− log(p) if y = 1
− log(1 − p) otherwise

(1.2)

where y ∈ {±1} is the ground truth class and p ∈ [0,1] is the model’s probability for
class 1. In this context, y = 1 and y = −1 represent the foreground and background
classes respectively. Defining pt as:

pt =

⎧⎨⎩p if y = 1
1 − p otherwise

(1.3)

cross entropy can be written as CE(p, y) = CE(pt) = − log(pt).

A balanced version of the cross entropy loss is sometimes used to deal with class
imbalance. A numeric factor α ∈ [0,1] can be introduced for class 1, with value
1 − α for class −1. αt is defined analogously to pt. Therefore, the cross entropy
loss, balanced by αt, is written as:

CE(p, y) = −αt log(pt). (1.4)

With cross entropy, also examples that are correctly classified with high confi-
dence (p close to 1 if y = 1, to 0 otherwise) produce non-negligible values for the
loss.

In focal loss, an additional modulating factor (1 − pt)γ is introduced, with tun-
able focusing parameter γ. Focal loss is therefore defined as:

FL(pt) = − (1 − pt)γ log(pt) (1.5)
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The contribution of easy predictions to the overall loss is more or less important
depending on the value of γ. With a high γ, well detected objects provide a very
little contribution to the total loss.

Considering the strong imbalance between the foreground (y = 1) and back-
ground (y = −1) classes, the focal loss balanced by the αt parameter as previously
defined is used in RetinaNet:

FL(pt) = −αt (1 − pt)γ log(pt). (1.6)

1.2.2 Basic components
This section introduces some basic aspects of object detection models. They are
necessary to understand the following sections and the performed work.

Object detection metrics

Algorithm evaluation is a fundamental part of machine learning projects and can be
performed in different ways, depending on the task and objective. Object detection
is a more complex task than traditional image classification: a non-fixed number of
objects can be present in the same image and the detection model has to accurately
predict their class, together with their position. For this reason, dedicated metrics
must be introduced and defined.

Precision and recall First, the following concepts must be defined in the context
of object detection:

• True positive (TP): a bounding box is correctly assigned to an object that
actually appears in the image;

• False positive (FP): incorrect detection, an object is detected but is not
really present in the bounding box or only partly;

• False negative (FN): an object present is the image is not detected by the
object detection model.

The concept of true negative (TN) does not make sense in an object detection
context, as the missing detection of a non-present object is not relevant. In fact,
this would mean that the model has correctly identified the background as not
belonging to any class.

Precision Precision measures how accurate the predictions of the model are,
so it returns the percentage or fraction of correct predictions.

precision = TP
TP + FP (1.7)

19



Problem definition

Figure 1.16: Graphical representations of precision, recall and IoU

Recall Recall measures the model detection ability, so it returns the percent-
age or fraction of correctly detected objects.

recall = TP
TP + FN (1.8)

Intersection over union For each predicted bounding box, the overlapping with
the ground truth bounding boxes is computed, in order to classify a prediction as
true or false positive. For a couple of bounding boxes, Intersection over Union
(IoU) is computed as:

IoU = area of overlap
area of union (1.9)

The resulting value is then compared to a threshold to classify a prediction as
correct or not. Typical values for the threshold are 0.5, 0.75 and 0.95, and that
defines how much we want a detection to be precise. Indeed, a prediction classified
as true positive with a certain threshold may be considered as false positive if a
higher value is used.

Mean Average Precision (mAP) Receiver Operating Characteristic (ROC)
curve is a popular concept in machine learning. There, recall (the true positive
rate) and false positive rate are plotted at different classification thresholds. The
associated Area Under the Curve (AUC) metric considers the area under the ROC
curve to assess the performances of a model[6]. It ranges from 0 to 1, with 0
meaning the model’s predictions are all wrong and 1 they are all correct. AUC
score is 0.5 for a model that always returns random predictions.

Similarly, the precision-recall curve shows the trade-off between precision and
recall for different thresholds[34]. Average Precision (AP) is defined as the area
under the precision-recall curve. A high area under the curve means both high
recall and high precision. The definition of mean Average Precision (mAP) depends
on the context. If AP is independently computed for each class or for different IoU
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thresholds, then mAP is the average of AP. In other cases, mAP and AP can be
used interchangeably.
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Figure 1.17: Comparison between ROC curve and precision-recall curve for a
trained classifier

Datasets

Several datasets have been published in the last years, with the purpose of training
and evaluating the performances of object detection algorithms for different use
cases.

COCO Common Objects in Context (COCO) is a large-scale object detection
and object segmentation dataset published by Microsoft, containing over 200000
images for 91 classes, annotated with bounding boxes and at pixel level[26]. It
defines its own annotation format as JSON files.

PASCAL VOC PASCAL Visual Object Classes (VOC) is a classification and
object detection dataset, developed for different machine learning competitions be-
tween 2005 and 2012[43]. Annotations are stored in XML format, with a file for each
image in the dataset. Bounding boxes are determined by the x and y coordinates
of the upper left and bottom right corners.

CityScapes CityScapes is an object segmentation dataset containing 5000 street
scenes images from 50 different cities, with the aim of training models for au-
tonomous driving[7]. When used for object detection, bounding boxes can be de-
rived from the tightest rectangles containing the segmentation masks.

21



Problem definition

Several variations of the dataset have been proposed with artificially added ad-
verse weather, such as fog[41] and rain[15], in order to evaluate the robustness of
detection methods in various weather conditions.

KITTI The Karlsruhe Institute of Technology and Toyota Technological Insti-
tute (KITTI) dataset[11] contains 7481 images captured in a context similar to
CityScapes. Bounding box annotations are stored in plain text, with one file per
image.

Sim10k Sim10k is a synthetic dataset containing 10000 annotated images for car
detection, rendered from the popular open-world video-game Grand Theft Auto 5,
with the objective of training models in a rich virtual world for detection in the
real[21].

Anchor boxes

In most cases, generating many possible bounding boxes is too cumbersome and
leads to inaccurate predictions. If we already know which classes we want to detect,
it may be more efficient to define a-priori a set of possible aspect ratios and zoom
factors for the bounding boxes. For example, if we are interested in detecting cars,
wide anchor boxes can be defined at different scales, to identify both near and far
objects of car shape.

As mentioned in Section 1.2.1, anchor boxes were first introduced for the RPN
of Faster R-CNN and were one of the main source of improvements in detection
performances and speed[36]. The basic working schema is reported in Figure 1.19.
Nowadays, anchor boxes are used in most architectures for object detection, such
as YOLO, SSD and RetinaNet. From an anchor boxes point of view, the difference
between one-step and two-step methods is that the former analyze each anchor box
independently, then refine and return only the most promising ones, while the latter
start from the anchor boxes to estimate the true bounding boxes of the objects in
the images.

Non-maximum suppression

Object detection models usually produce more than one detection for each object,
which is not desirable. Non-maximum suppression (NMS) is a method to select
one of many overlapping bounding boxes. For a set of overlapping boxes, the one
predicted with the highest confidence is selected and all remaining boxes whose IoU
with the chosen bounding box is over a certain threshold are discarded. In this way,
only the most probable detection is kept for each object. An example is reported
in Figure 1.20.
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(a) CityScapes[7]

(b) KITTI[11]

(c) Sim10k[21]

Figure 1.18: Examples of different street scenes datasets. It is evident that the
appearance of images from different domains varies, even though they contain the
same categories of objects. Indeed, images can be taken from different cameras and
in different lightning or weather conditions. More extremely, Sim10k only contains
computer generated images: the texture of the objects widely differ from the ones
in the other datasets.
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Figure 1.19: Anchor boxes, as used in Faster R-CNN’s RPN[36]. At each position
of the input image, k bounding boxes with different scales and aspect ratios are
proposed and forwarded to the rest of the network for evaluation.

1.3 Domain adaptation
For most use cases, a huge number of annotated images are necessary to train robust
and efficient deep learning models. In an industrial context, the process of collecting
and annotating data suitable for each specific customer case is often too expensive
and time-consuming. In contrast, synthetic data can be generated through various
rendering software, even free and open-source, easily and in massive quantities,
for simulating the environments in which the models will be applied. However,
deep learning models are effective if the training and test data are drawn from the
same data distribution, so a model trained on simulated data is likely to perform
badly on real data. Domain adaptation techniques can be used to transfer the
knowledge acquired on the source domain (e.g., synthetic data) to the target
domain (e.g., real data) without training a new model on the latter. In a domain
adaptation setting, the task to be performed on source and target domains and the
classes to be predicted remain the same, while the domain differs.

Domain adaptation methods are effective for several computer vision tasks,
therefore dealing with image classification, object detection and semantic segmen-
tation. In addition to the knowledge transfer from synthetic to real images, among
other cases they can be used to adapt a model to different cameras, different weather
conditions and moments of the day (e.g. from sunny to rainy weather or from day
to night) or from infrared to normal images.

Different types of domain adaptation can be identified, based on whether anno-
tations are available or not for the target domain:

• Supervised domain adaptation: labeled data are available for both source
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(a) Before non-maximum suppression

(b) After non-maximum suppression

Figure 1.20: Example of application of non-maximum suppression on a Faster R-
CNN detector: several bounding boxes are proposed for each detected car, but only
one per object is returned.

and target domains.

• Semi-supervised domain adaptation: labeled data are available for the
source domain, but only some data from the target domain are actually labeled.

• Unsupervised domain adaptation: labeled data are available for the source
domain, but no labeled data are available for the target domain. All data from
the target domain is therefore unlabeled.

Moreover, domain adaptation can be classified as homogeneous, if the domains
share the same feature space, or heterogeneous, if features differ.

Domain adaptation is mostly studied in the unsupervised and homogeneous
scenario, with one source and one target domain.
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1.3.1 Domain adaptation methods
Different approaches to the problem have been proposed in recent years. The most
frequent ones are domain-invariant feature learning and domain mapping.

Domain-invariant feature learning

Several methods try to align source and target domains by creating a domain-
invariant feature representation at the level of the neural network for feature extrac-
tion. Intuitively, if a model performs well on domain-invariant features extracted
from the source domain, it should generalize to the target domain since the two
distributions are aligned. A schema is reported in Figure 1.21.

(a) Training (b) Testing

Figure 1.21: General schema for domain-invariant feature learning[48]

Methods following this approach differ in how they align the domains. An ad-
versarial approach, as in generative adversarial networks (GANs), is often used
through a domain classifier which outputs whether the features extracted by the
CNN belong to source or target domain. At the same time, the feature extractor is
trained with the aim of fooling the domain classifier, so that it is unable to correctly
classify from which domain the feature representation originates. The two networks
are trained simultaneously and in an adversarial fashion.

Domain mapping

An alternative to creating domain-invariant feature representations is mapping one
domain to the other, making source images similar to the target or vice versa.
For example, synthetic images from Sim10k can be mapped to the real world,
transferring them to the CityScapes style. This can be obtained with conditional
GANs for image-to-image translation that do not take into account the annotations
of source images. Therefore, domain adaptation can be accomplished by training a
GAN to map data from source to target and then training a machine learning model
on the mapped labeled source images (that can now be considered as belonging
to the target domain). At test time, the model is used to make predictions on
unlabeled target data. A general schema is reported in figure 1.22. However, GAN
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training is challenging and may incur in several problems such as mode collapse,
when a generative network learns to only produce a limited amount of output
images.

(a) Training (b) Testing

Figure 1.22: General schema for domain mapping[48]

Previous works

Several fundamental domain adaptation methods can be identified in the case of
image classification. These methods have laid the foundation for many subsequent
works.

Domain Adversarial Neural Network Domain Adversarial Neural Network
(DANN)[10] is a classic method for unsupervised domain adaptation with the objec-
tive of learning domain invariant features. The network is composed of a standard
feature extractor, a label predictor and a domain classifier: without this last com-
ponent, it consists of a standard model for image classification.

The alignment between domains is achieved through the gradient reversal layer,
introduced in this work: this layer leaves input unchanged during the forward step
and reverses the gradient during backpropagation, multiplying it by a negative
factor −λ. The network is trained adversarially, with the aim of minimizing the
label predictor’s loss. At the same time, it also seeks the backbone parameters
that maximize the domain classifier loss and the domain classifier parameters that
minimize its own loss.

The objective is to align the two data distributions, fooling the domain classifier:
when alignment is accomplished, the label predictor is capable of correctly classify
an image, whether it is taken from the source or the target domain, while the
domain classifier can only return random guesses. A network representation is
reported in Figure 1.23.

More formally and using the same notation as in Figure 1.23, the aim is to find
the values of the parameters θf , θy and θd that minimize the following function:

E(θf , θy, θd) =
∑︂

i=1...N
di=0

Li
y (θf , θy) − λ

∑︂
i=1...N

Li
d (θf , θd) . (1.10)
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Figure 1.23: DANN architecture[10]

In (1.10), Ly and Ld are the objective functions for label and domain prediction
respectively: Li

y and Li
d are computed for the i-th training image. By mapping the

source and target domains to 0 and 1 respectively, the condition di = 0 in the first
sum implies that the label classifier is trained only if the network receives annotated
images from the source domain.

λ is therefore the only additional hyperparameter with respect to the training
of a standard classification model and its value is to be fixed a priori. To increase
the stability of the training and to foster good learning of the domain classifier
at the beginning of the training procedure, λ is sometimes set dynamically. The
following expression can be used to change its value from 0 (at the beginning of
the procedure) to 1 (at the end) according to the training progress represented by
p (in turn between 0 and 1):

λp = 2
1 + exp (−γ · p) − 1. (1.11)

This avoids the need to seek the optimal value for λ, but introduces the new hy-
perparameter γ (which represents the speed at which the value of λp converges to
1).

Adversarial Discriminative Domain Adaptation Adversarial Discriminative
Domain Adaptation (ADDA)[46] is an adversarial method like DANN, but is com-
posed of three consecutive phases:

1. A CNN is trained on labeled source examples in order to learn a feature rep-
resentation for the source domain that can be successfully identified by a clas-
sifier. This source CNN is frozen.
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2. Adversarial adaptation is then performed. The objective is to train a feature
extractor for the target domain: features extracted from the target domain
have to be aligned to the ones extracted by the feature extractor trained at
step 1 on images belonging to the source domain. A domain discriminator
that receives features extracted by the aligned feature extractor from an image
belonging to the target domain should therefore state that these features are
extracted from an image of the source domain instead.

This is done through “flipped labels”: the training procedure fools the do-
main discriminator into believing that the features extracted from the target
domain belong to the source domain instead. As a consequence, the target fea-
ture extractor is lead to learn features for the target domain that the domain
discriminator could misclassify (as belonging to the source domain).

3. For inference on images belonging to target domain, the aligned feature ex-
tractor (trained at step 2) is used to extract features that now belong to the
shared feature space. These features are then classified by the classifier that
was previously trained on the source domain (in step 1).

A method overview is reported in Figure 1.24.

Figure 1.24: ADDA working schema[46]. The dashed lines indicate the parts of the
networks that are previously learned and now frozen, while the network learns the
remaining parameters.
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Enhancing photorealism enhancement It is worth mentioning a domain map-
ping approach, recently proposed by Richter et al.[38], for generating photorealistic
images from computer games. Synthetic images, taken for example from the video-
game Grand Theft Auto 5, are processed in a way that they look realistic, following
the camera and lightning conditions of real street scenes datasets such as CityScapes
or KITTI. Resulting images are adapted to the data distribution of the dataset con-
taining real-world images and can be used to train machine learning models for any
computer vision task. The model can then be evaluated and applied on real data
that the model has never seen. A few examples are reported in Figure 1.25.

Figure 1.25: Examples of application of photorealism enhancement of images from
the video-game GTA 5 (left), to mimic the style of the CityScapes dataset (right)[38]

In this work, photorealism enhancement is performed starting from a set of
intermediate buffers, called G-buffers, that are produced by game engines during
the rendering process. These buffers are extracted from the computer graphics
pipeline and contain information about geometry, materials, and lightning in the
scene. It is therefore required to have access to these low-level elements. After
extraction, they are fed to an image enhancement CNN, with the goal of adapting
image features.

The image enhancement network is trained jointly with two objectives:

• a Learned Perceptual Image Patch Similarity (LPIPS) loss, first introduced
by Zhang et al.[50], is used to penalize large structural differences between the
rendered and the enhanced images;
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• a discriminator network is trained to discern between real and synthetic en-
hanced images and is used to evaluate the realism of adapted images.

In addition, a sampling strategy is followed to select synthetic and real image
patches with similar content. The full training procedure allows reducing visual
artifacts and providing temporally stable results.

1.3.2 Domain adaptation for object detection
Like classification models, object detectors suffer from domain shifts between dif-
ferent datasets, which can lead to drastic performance degradation. Annotating
images for an object detection task is even more expensive and time-consuming
than classification, since each image may contain more than one object that needs
to be assigned a bounding box and object category. Due to the different nature
of the problem, direct translation of domain adaptation methods for classification
may not be effective, and ad-hoc methods have been proposed, generally based on
existing object detectors.

Previous works

Domain Adaptive Faster R-CNN Domain Adaptive Faster R-CNN[3] is one
of the first works to tackle the problem of cross-domain object detection. It uses a
Faster R-CNN as base object detector and the network is trained with adversarial
adaptation with gradient reversal layers at different levels. Indeed, in an object
detection scenario the domain shift can occur at high level, such as image style
and illumination, and at low level, such as object appearance and bounding box
size. The former is referred to as image level, while the latter is defined as instance
level. An additional loss function, referred as consistency loss, is used to enforce
consistent predictions from the two domain classifiers.

At inference time, the aligned Faster R-CNN is normally used.

Strong-Weak Distribution Alignment Aligning image level features as in Do-
main Adaptive Faster R-CNN makes the strong assumption that image components,
such as backgrounds and scene layouts, must be similar across domains in addition
to object categories. In the case of large domain shifts, that may affect the model
performances. Saito et al.[40] propose a weak global alignment (at image level)
combined with a strong alignment of local features (such as texture or color of the
objects in the two domains), which are most likely to be similar.

For weak alignment between domains, the domain classifier should focus on
examples that are hard to classify, so near the boundaries between the two data
distributions. This can be achieved using the focal loss to train the domain classifier,
in order to tune the importance of source or target images whose domain is easy
to predict.
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Progressive Domain Adaptation Hsu et al.[18] introduce an intermediate do-
main between source and target, exploiting a GAN to map source images in the
target domain. Adaptation is performed in two steps, from source to intermedi-
ate and then from intermediate to target, in order to introduce a bridge between
source and target domains. That helps to reduce the domain shift and simplifies
the adaptation process, such that an object detection model can be trained on the
intermediate domain. In addition, a weight is assigned to generated data, giving
more importance to images that are closer to the target distribution.

When adaptation between the source and the intermediate domains is completed,
the aligned model can be used for inference on unlabeled images from the target
domain.

Domain Adaptive RetinaNet Recently, Pasqualino et al.[31] proposed an adap-
tation approach for the RetinaNet model, but that can be applied to any architec-
ture that includes a FPN backbone. Different domain discriminators with different
architectures are applied at different levels of the ResNet backbone which is used to
construct the feature pyramid, with gradient reversal layers. In this way, extracted
features are aligned at different levels in the backbone and the representation de-
rived by the FPN is coherent and meaningful.

Image statistics matching The method introduced by Abramov et al.[1] relies
on image transformations at pixel level instead of adversarial techniques or complex
architectures. The objective is to transform annotated source images in a way to
make them similar to the unlabeled target domain, matching color statistics and
histograms. During training, a target image is randomly chosen for each image
belonging to the source domain and the mean and covariance of its color channels
are aligned, as well as its color histogram that are matched accordingly. In this
way, a standard detection model can be trained on modified source image with
annotations and directly applied on the target domain.

Similar approaches are commonly used in networks for style transfer, but in
these cases the correspondence between source and target images is performed at
the level of extracted features and not at image level.

32



Chapter 2

Method

2.1 Introduction
This Master Thesis starts from the investigation of common approaches for domain
adaptive object detection, in order to identify and possibly correct critical points
and propose appropriate means of improvement.

A widespread belief is that extremely complex methods are more likely to achieve
good performances than simple ones. Considering for example neural networks, the
trend over the years has been to try making the networks deeper and deeper, which
has produced extraordinary results but at the same time led to several problems
in the training procedures. Recently, simple architectures like MLP-Mixer [45] and
Feed-Forward Stack[29], composed of multi-layer perceptrons only, reached surpris-
ingly good performances in image classification.

A similar question can be raised for the problem of domain adaptation in an
object detection scenario: can simple methods perform comparably or even better
than the complex ones that are mostly studied in the literature? Indeed, in an
industrial context engineers do not often have the time to deeply understand elab-
orate network architectures, potentially not useful for the problem they are facing,
and must consider the trade-off between complexity and expected efficacy. Simple
methods that are capable of reaching good performances are greedily researched
and can boost their productivity.

These “simple” methods are mostly explored in this work. However, traditional
domain adaptation methods, that deeply affect the network architecture, play an
important role in research, and present unresolved issues that may undermine their
use in actual engineering applications. Possible ways to address some detected
issues are explored and tested, in parallel to the aforementioned simple approaches
to domain adaptive object detection.

For the sake of completeness, the studied methods are implemented and tested
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on two popular object detection models presented in Section 1.2, when they are
compatible with both architectures: Faster R-CNN and RetinaNet.

2.2 Data augmentation for domain randomiza-
tion

Data augmentation is a widely used technique to ease the training of deep learning
models and improve their generalization capability. In a typical application, differ-
ent transformations are randomly applied on training images, in order to vary their
appearance and virtually introduce new data on which a model can learn.

Data augmentations can modify the orientation of the images or operate at pixel
level, transforming their color and appearance. Those operations can be geometric,
if they geometrically distort the image without modifying its content, or color-
based, if they distort color channels without modifying the position of the pixels.
Common transformations include, but are not limited to, horizontal and vertical
flip, rotation, translation and color shift. For an object detection task, bounding
boxes have to be updated coherently with the applied geometric data augmentation.

Figure 2.1: A few examples of data augmentation

Therefore, data augmentation techniques can extensively alter the image appear-
ance. If a model is trained with high-impact data augmentation on labeled images
from a domain, it can potentially achieve good results on a different domain it has
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never seen. That falls in the case of domain randomization: training images
are drawn from a data distribution which is way larger than the original one, so
the model can learn to generalize to different domains. In some ways, the network
is “overwhelmed” with different versions of the same images, in order to recognize
their contents in different conditions. For domain adaptation, the resulting data
distribution can possibly include the target domain or intermediates domains that
are closer to the target domain than the source domain. Intuitively, performances
on non-augmented images drawn from the source domain decrease as the data dis-
tribution gets larger, while the generalization capability to remote target domains
increases.

Most works that investigate domain randomization focus on sim2real knowledge
transfer and address the problem generating a large variety of synthetic training
images. The famous one by Tobin et al.[44] defines different randomization param-
eters that control, inter alia, position, number and type of the objects present in an
image, as well as lighting and camera conditions. An interval of values is defined
for each parameter and, for generating an image, each parameter is uniformly sam-
pled within its range and used to control the generator. A detection model is then
trained on the generated synthetic images and should be able to generalize to real
images containing the same kind of objects. Examples are reported in Figure 2.2.

Figure 2.2: Randomization in generating training images, in the framework pro-
posed by Tobin et al.[44]
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In the present work, instead, randomization is introduced through the combi-
nation of popular and commonly used operations for augmentation of image data,
both geometric and color-based:

• Horizontal flip: geometric transformation that horizontally mirrors the image.

• Rotation: geometric transformation that rotates image and bounding boxes of
a degree value, sampled from a provided interval.

• Translation: geometric transformation that horizontally and vertically trans-
lates image and bounding boxes of a given number of pixels, sampled from a
provided interval.

• Shearing: geometric transformation that deforms the image in a parallelogram
shape according to horizontal or vertical axis. Horizontal and vertical shearing
degrees are sampled from a provided interval.

• Color jitter : color-level transformation that changes brightness, contrast, sat-
uration and hue of the image. Jitter factors for each of the properties are
sampled from provided intervals.

• Solarization: color-level transformation that, for an image, inverts the color
of all pixels whose value is above a threshold. The threshold is sampled from
a provided interval.

• Equalization: color-level transformation that equalizes the color histogram of
the image.

The operations can be easily implemented and used in most popular deep learning
frameworks.

Many other operations are often used for data augmentation, but are not in-
cluded in the performed experiments due to time constraints and since the possible
combinations of the aforementioned operations are already numerous. An example
is cutout, which randomly masks regions of the training images in order to improve
networks’ robustness. Other operations, such as vertical flip, do not make any
sense in this context. Indeed, vertical flip would completely change the appearance
of objects and background, leading to scenes that can never (or extremely rarely)
appear in the real or simulated world.

More advanced data augmentation techniques, first introduced by Zoph et al.[51],
are specifically designed for the object detection task: they take into account the
bounding boxes and only apply data augmentation operations to the objects they
contain or to the background. The original work aims at finding the best combi-
nation of data augmentation operators, given the task and the training data. This
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(a) Original Sim10k image

(b) Sim10k image with random augmentations

Figure 2.3: Comparison between original and transformed images

combination is sought with reinforcement learning and should lead to the best per-
formances when training a model for image classification or object detection. A
few examples of the proposed transformations are reported in Figure 2.4.

In a data randomization scenario, the data augmentation operators presented
in the aforementioned work can be exploited to increase the variability of training
images and widen the data distribution associated to the source domain. However,
these peculiar transformations have to be used carefully: geometric operations can
lead to unintended results, if applied to bounding box content or to background
only. For example, if the bounding box is small and its content is translated hor-
izontally, the object may disappear if the number of translated pixels is too high
(see, for example, Figure 2.5b). Likewise, geometric transformations on background
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(c) Sim10k image with random augmentations

(d) Sim10k image with random augmentations

Figure 2.3: Comparison between original and transformed images (cont.)

Figure 2.4: Examples of usage of the data augmentation operators introduced by
Zoph et al.[51]

(the whole image except the content of bounding boxes) do not make sense, as they
inevitably duplicate objects without associated bounding box. This bad behavior
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is clear in Figure 2.5d. In both cases, this would produce erroneous training images
and lead to incorrect training procedures.

A few images produced by these wrong transformations are reported in Fig-
ure 2.5.

(a) Original Sim10k image

(b) Horizontal translation of objects inside bounding boxes

Figure 2.5: Examples of unsuccessful geometric transformations on bounding boxes
or image background only

2.3 Adapting a two stage object detector
Domain Adaptive Faster R-CNN[3], presented in Section 1.3.2, is without any doubt
the most popular method designed to attain successful object detection in different
domains. Since its introduction, the paper has been cited hundreds of times and
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(c) Rotation of objects inside bounding boxes

(d) Rotation and translation of image background, keeping the ob-
jects in the original bounding boxes fixed

Figure 2.5: Examples of unsuccessful geometric transformations on bounding boxes
or image background only (cont.)

several methods based on it have been proposed. It is therefore a good adaptation
method to be used as baseline and for comparison with other architectures and
methods.

The training process considers annotated images from the source domain and un-
labeled images from the target domain at the same time. Adaptation is performed
at two different levels using the gradient reversal layers presented in Section 1.3.1:

• Image level: the features extracted by the network backbone are forwarded
to a patch-based domain classifier. Such patch classifiers, introduce by Isola
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et al.[20], divide each feature map of an image into N × N patches and clas-
sify them independently. For a domain classifier, each patch is classified as
extracted from source or target domain. In this way, the importance of the
global differences inside images is reduced and the classifier is trained more
precisely. Adaptation at this level aims at reducing the global differences such
as image style and illumination.

• Instance level: the features extracted by the RPN are passed to a domain
discriminator before being fed to the label classifier and bounding box regressor
for the final prediction. That helps to reduce differences related to the objects
that appear in the images, such as object size, texture and viewpoint.

In addition, a consistency regularization is added to encourage similar predictions
from the two domain classifiers. A method overview is reported in Figure 2.6.

Figure 2.6: Overview of the Domain Adaptive Faster R-CNN model[3]

A training batch is composed of both source and target images and the training
procedure is organized as follows:

• When the network receives, as input, labeled images from the source domain,
they are used to train both the base Faster R-CNN and the domain adaptation
components.

• When the network receives, as input, unlabeled images from the target do-
main, they are only used to train the domain adaptation components. Indeed,
unlabeled images are not useful for the base detector as object bounding boxes
and class information are not available.

For inference, additional domain adaptation components are not considered and
the standard Faster R-CNN with learned weights is used.
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2.4 Adapting the FPN
Feature Pyramid Network (FPN), first introduced by Lin et al.[24], is a cheap but
effective method to increase the performances of a detection model. Nowadays, it is
often included in the backbone network of object detectors such as Faster R-CNN
and is one of the fundamental bricks of the RetinaNet model. One of the most
popular computer vision frameworks for research, torchvision by PyTorch[33], only
provides pretrained backbones with FPN for Faster R-CNN models. Therefore,
using FPN for object detection problems is straightforward and highly performing
with respect to standard backbones without FPNs, that are rarely or never used in
real applications.

However, the FPN architecture introduces some problems for adversarial feature
alignment on the output of the backbone (such as the image level in the Domain
Adaptive Faster R-CNN model): backbone layers must be aligned in a way that
the extracted feature pyramid representation is logical and coherent. Consider, for
example, a case in which domain alignment is performed only on the last layer of
the backbone: at the end of the training procedure, the features extracted from the
last layer would be aligned between the domains, while the features extracted from
the previous layers may not be so. As FPNs construct rich feature representations
by linking the features extracted from different backbone layers, that would lead
to a meaningless feature pyramid.

Figure 2.7: FPN architecture[3]

2.4.1 Implementation on RetinaNet
Domain Adaptive RetinaNet, introduced in Section 1.3.2, takes into account ad-
versarial domain adaptation for a one-stage object detector with FPN backbone.
More precisely, in the RetinaNet model the FPN uses the features extracted from
the last three layers of a ResNet to construct a rich and multiscale feature pyra-
mid of three levels from an input image at single resolution. This representation is
then forwarded to two separate fully convolutional subnetworks, in order to predict
the probability of presence of an object in each anchor box and the bounding box
locations.
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As FPNs return feature maps of different sizes, considering all of them at the
same time for adaptation is not straightforward and may lead to non-optimal per-
formances. Pasqualino et al.[31] perform adaptation through three different domain
classifiers with different architectures. They receive as input the features extracted
from the three ResNet layers that are used to build the FPN representation.

For adversarial alignment, the features are forwarded through gradient reversal
layers as in DANN (described in Section 1.3.1): the overall network is trained
normally but the gradient resulting from the domain classifiers is multiplied by
a negative factor −λ, as in (1.10), during the backpropagation phase, in order to
push the ResNet to extract domain invariant features that can be used to accurately
detect objects in target images. This allows the model to preserve a meaningful
feature pyramid while aligning the two data distributions.

Labeled source images are used to train the whole network, while unlabeled
target images only train the three domain classifiers. At test phase, the domain
classifiers are plugged off and the adapted RetinaNet is normally used.

2.4.2 Implementation on Faster R-CNN
The addition of a FPN component to the backbone of a Faster R-CNN model
considerably improves detection performances. For example, the authors of the
paper that introduced the FPN method reported 3.7 AP points improvement on the
COCO dataset[24]. Thanks to the FPN, RPN receives a rich feature representation
at different resolutions and is able to better identify candidate RoIs of higher quality.
As it can achieve better results than the standard architecture without FPN at a
negligible price, Faster R-CNN with FPN backbone is commonly used.

If the base detector includes a FPN component, adaptation at image level as in
the Domain Adaptive Faster R-CNN method has to be reconsidered. Two possible
solutions can be identified in order to align the feature representations between
different domains:

• Adaptation can be directly performed on features extracted by the FPN. Dif-
ferent levels of the feature pyramid can be forwarded, one at a time, to a
domain classifier through gradient reversal layer (Figure 2.8a). The resulting
domain losses can be summed or averaged across all levels. This way, the ob-
jective is to push the ResNet backbone to extract feature representations that
can be used to build a feature pyramid which is independent of the domain of
each input image.

• Similarly to what is done by Pasqualino et al.[31], it is otherwise possible to
directly align the ResNet features that serve as input for the FPN: if they are
not dependent from the domain, neither the resulting pyramid representation
will be. The last three ResNet layers are therefore used to build the feature
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pyramid and are forwarded to three different domain classifiers with differ-
ent architectures, through gradient reversal layers for adversarial alignment
(Figure 2.8b).

Such approaches have not yet been followed in the academic literature for two stage
object detectors. In both cases, object detection network and domain adaptation
components are trained jointly.

(a) Adversarial alignment on pyramidal feature repre-
sentations, built by the FPN from ResNet layers

(b) Adversarial alignment on features extracted by
ResNet layers[31]

Figure 2.8: Approaches to adversarial domain adaptation at image level for an
architecture with FPN

The presence or absence of the FPN in the backbone has no impact on adapta-
tion at instance level, as RPN returns RoIs in the same format. If different domain
classifiers are used, the consistency regularization loss is independently computed
for each ResNet layer between the domain prediction and the prediction at in-
stance level, unique at each iteration. Otherwise, training proceeds as previously
described.
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2.5 Image statistics matching
As discussed in Section 2.2, data augmentation techniques that significantly modify
the appearance of images taken from a specific domain extend their data distribu-
tion, possibly covering several domains. A model can be trained on transformed
images from the source domain without any architectural modification, possibly
performing well on images drawn from a target data distribution.

Likewise, domain mapping methods transform images from a source domain in
a way that a model can confuse them with images from the target domain: they
focus on accurate modifications of images rather than upgrading base architectures.
That is typically attained through GANs for style transfer, but training of adver-
sarial networks is generally complicated and time-consuming. Instead, the method
introduced by Abramov et al.[1] tries to “keep it simple”, by performing easy but
effective operations at image level with the objective of matching image statistics
between source and target domains.

More precisely, for each labeled image from the source domain, an unlabeled
image belonging to the target domain is randomly selected. Two transformations
are applied one after the other:

1. Feature Distribution Matching: the first operation transforms the source image
in a way that it obtains the same color mean and covariance of the target
image, while keeping the image content. It works pixel-wise through Principal
Component Analysis (PCA) whitening with Singular Value Decomposition, in
order to efficiently uncorrelate the distribution of image pixels.

2. Histogram Matching: the second transformation is a common one in image
processing. It manipulates the pixels of the source image in order to align the
distributions of its color histograms to the ones of the target image.

A sample application of the method is reported in Figure 2.9.
A detection model is therefore trained on labeled mapped images that share

statistics with target images and can thus be considered as belonging to the target
domain. The model can then be directly used for inference on the target domain,
without any additional operation.

Additionally, transformations can be applied on a patch basis, in order to locally
match images from source and target domains. Aforementioned transformations
can be performed on smaller regions of the images, in correspondence between
source and target domain. This way, matching focuses on local features and is
less dependent on the global appearance of selected images from the two domains.
An example of application of patch-based Feature Distribution Matching and His-
togram Matching is reported in Figure 2.10.
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(a) Source image (b) Target image

(c) Feature Distribution Matching (d) Histogram Matching

(e) Combination of Feature Distribution
Matching and Histogram Matching

Figure 2.9: Results obtained through Feature Distribution Matching and Histogram
Matching on a sample image. Sim10k and CityScapes are considered as source and
target domains respectively.
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(a) Source image (b) Target image

(c) Feature Distribution Matching (d) Histogram Matching

Figure 2.10: Results obtained through 2 × 2 patch-based Feature Distribution
Matching and Histogram Matching on a sample image. Sim10k and CityScapes
are considered as source and target domains respectively.
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Chapter 3

Experimental results

3.1 Experimental settings
This chapter reports, compares and discusses the results obtained with the meth-
ods presented in the previous chapter. For coherence with previous works, Sim10k
and CityScapes are respectively considered as source domain and target domains.
Experiments deal therefore with sim2real domain adaptation, training a model to
recognize cars in a simulated world for detection in the real. Results are presented
in terms of mAP computed at IoU threshold of 0.5, separately for the experiments
performed with RetinaNet and Faster R-CNN base detectors. Impact of data aug-
mentation operations, in addition to domain adaptation methods, is also studied.
All experiments have been conducted with the PyTorch deep learning framework
and run on an NVIDIA GeForce RTX 2070 Graphics Processing Unit (GPU) with
8 GB of memory.

In the following sections, the models indicated as “oracle” are trained and tested
directly on the target domain (CityScapes in the sim2real context) using the base
detectors and without applying any data augmentation technique, except for the
simple horizontal flip. This represents an upper bound for domain adaptation per-
formance. Such a model cannot be trained in real applications, as, in the common
case of unsupervised domain adaptation, annotations are not available for the target
domain.

3.1.1 Data processing
As said, Sim10k and CityScapes are considered as source and target domain, for
unsupervised domain adaptation between synthetic and real image data. As men-
tioned in Section 1.2.2, the two dataset use different formats for storing bounding
box annotations. The Python library Datumaru[30] is therefore used to convert
them into a common format.
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As an official Python interface is provided to easily load the annotations and
compute the detection mAP, the Microsoft COCO format has been chosen. Only
annotations for the class “car” are kept, as this is the only common category in the
two datasets containing street scenes.

Finally, the open source tool cocosplit[23] is used to partition the Sim10k dataset
into training, validation and test sets with a proportion of 7:2:1, as standardized
set splits are not officially available. The dataset is quite large (10000 annotated
images) and it can be assumed that image distributions are similar between the
three splits. On the other hand, splits are made public for CityScapes, but annota-
tions are not available for the test images. The performances of the tested domain
adaptation methods are therefore evaluated on the provided validation set, as it is
never used during training.

When fed to the object detection models for training or evaluation, input images
are resized so that the shortest side is equal to 600 pixels.

3.1.2 Data augmentation
Impact of data augmentation is extensively tested, for both domain randomiza-
tion by itself or in combination with other methods for domain adaptation. The
following parameters are used for each previously introduced data augmentation
technique:

• random rotation (Rot.) between −10 and 10 degrees;

• random translation (Tr.) between −100 and 100 pixels, independently chosen
for the two axis;

• random shearing (Sh.) between −20 and 20 degrees (not always used);

• brightness, contrast, saturation and hue randomly jittered (C.J.) between 0.5
and 1.5, independently chosen for each property;

• for solarization (Sol.), the threshold over which pixels are inverted is randomly
sampled between 64 and 192 (with RGB pixel values going from 0 to 255 for
each color channel).

Additional performed data augmentation techniques are horizontal flip (HF, a
basic transformation which is always used) and equalization (Eq.). Both operations
are parameter-free and are applied with probability 0.5 each.

Notations in parentheses are referred to when reporting the results in the next
sections.

The Python library imgaug[22] is exploited for data augmentation.
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3.1.3 RetinaNet
The open-source RetinaNet implementation included in the PyTorch’s library for
computer vision (torchvision)[37] has been used as starting point for the experi-
ments with the base object detection model, which included domain randomization
and image statistics matching. For Domain Adaptive RetinaNet, the implementa-
tion provided by the same authors of the original paper[31] using the detectron2
framework[49][32] is followed and adapted.

All used RetinaNet networks include a ResNet-50 backbone and are pre-trained
on the COCO dataset. They are then finetuned on the data from one or both
domains using the Adam optimizer for 15 epochs, with initial learning rate 1×10−4,
reduced to 1×10−5 after 10 epochs. A training batch is composed of four annotated
images from the source domain. When the target domain is needed for adversarial
adaptation, two images are added to each training batch without considering image
annotations, for a final batch size of 6.

Additional configurations for RetinaNet include:

• anchor boxes of size 32, 64, 128, 256 and 512 are generated with aspect ratios
0.5, 1 and 2, for a total of 15 anchor boxes for each location of the feature map
returned by the ResNet backbone;

• best 1000 bounding box proposals are kept before NMS, and only if detection
confidence is greater than 0.05;

• best 300 bounding boxes are returned after NMS, performed with IoU thresh-
old 0.5.

The focal loss hyperparameters, as in (1.6), are set to α = 0.25 and γ = 2.
When adversarial adaptation is applied on the last three layers of the ResNet-50

backbone (layers 3, 4 and 5), the λ coefficient introduced in (1.10) evolves from 0
to 1, and is limited to 0.5 for layers 3 and 4, and to 0.1 for layer 5. The dynamic
update is performed independently for each adversarial coefficient following the
policy illustrated in (1.11). In this last equation, γ is set to 10.

3.1.4 Faster R-CNN
As for RetinaNet, torchvision’s implementation of Faster R-CNN model is used
as basic detector[9]. For Domain Adaptive Faster R-CNN, an implementation by
the authors of the paper[3] is considered[4], but is reimplemented in a more recent
version of PyTorch and torchvision. The original implementation is only used for
testing the method without FPN.

As for RetinaNet, all Faster R-CNN models include a ResNet-50 backbone and
are pre-trained on COCO. Networks are then finetuned on Sim10k (annotated)

51



Experimental results

and CityScapes (without annotations) for 15 epochs using the SGD optimizer with
momentum of 0.9 and weight decay of 5 × 10−4. Initial learning rate is set at
1×10−3 and is reduced to 1×10−4 after 10 epochs. In order to improve stability of
two-stage object detectors, the learning rate is initialized using a warm-up policy.
It is linearly increased from 0 to 1 × 10−3 during the first 1000 training iterations.

Batch size of 4 is used when the model is trained only on annotated images from
the source domain. When images from the target domain are used for adversarial
domain adaptation the size of a training batch is 2: it is composed of one annotated
image from the source domain and one unlabeled image from the target domain.

Additional configurations for Faster R-CNN include:

• anchor boxes of size 32, 64, 128, 256 and 512 are generated with aspect ratios
0.5, 1 and 2, for a total of 15 anchor boxes for each location of the feature map
returned by the ResNet backbone;

• during training, the RPN extracts 1000 bounding box proposals after NMS,
performed with IoU threshold 0.7;

• during inference, 100 bounding boxes are returned after NMS, performed with
IoU threshold 0.5, and only if their detection confidence is higher than 0.05.

When adversarial domain adaptation is performed, the adversarial coefficient λ
is set to 0.1.

3.2 Domain randomization
Table 3.1 and Table 3.2 contain the results obtained by RetinaNet and Faster R-
CNN (with FPN backbone) respectively, trained on Sim10k images using several
data augmentation techniques and evaluated on CityScapes test images. Images
belonging to the target domain as considered as they are for evaluation, without
applying any transformation. For each combination of data augmentation opera-
tions, the tables contain the detection mAP on CityScapes.

The resulting mAP values confirm the hypothesis of Section 2.2: the random
component introduced by the fundamental data augmentation operations helps to
reduce the mismatch between source and target domains. Presumably, the source
data distribution is expanded such that the intersection between the source and
target distributions becomes larger too.

Comparing the two tables, it can be noticed that the Faster R-CNN base detector
with FPN, trained with horizontal flip only, performs considerably better than
RetinaNet with the same transformation (difference of 15.9 mAP) and without
having seen any image belonging to the target domain, thanks to the use of the
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Table 3.1: mAP with different data augmentation techniques for a RetinaNet
model, trained on Sim10k and evaluated on CityScapes. Table columns indicate
the transformations that are employed in each experiment. Only horizontal flip is
used for the “oracle”.

HF Rot. Tr. Sh. C.J. Sol. Eq. mAP@0.5
✓ 30.4
✓ ✓ ✓ 37.6
✓ ✓ ✓ ✓ 39.2
✓ ✓ ✓ ✓ 49.4
✓ ✓ ✓ ✓ ✓ ✓ 52.7
✓ ✓ ✓ ✓ ✓ ✓ ✓ 49.8

68.7Oracle

Table 3.2: mAP with different data augmentation techniques for a Faster R-CNN
model with FPN, trained on Sim10k and evaluated on CityScapes. Table columns
indicate the transformations that are employed in each experiment. Only horizontal
flip is used for the “oracle”.

HF Rot. Tr. C.J. Sol. Eq. mAP@0.5
✓ 46.3
✓ ✓ ✓ 48.8
✓ ✓ ✓ ✓ 57.9
✓ ✓ ✓ ✓ ✓ ✓ 57.9

76.3Oracle

features extracted by the FPN in the IoU proposal phase. The feature extractor
helps in extracting relevant features from the different backbone levels, which are
used for the RoI proposal. This helps to identify low-level image features that are
common to different domains, such as tires or windows for cars, and capture them
in a meaningful way.

The addition of simple geometric transformations (rotation, translation and
shearing) helps both networks to better learn important features and has a large
impact on RetinaNet in particular (+7.2 mAP, +2.5 for Faster R-CNN). The usage
of shearing further improves the detection performances of the RetinaNet model
(+1.6 mAP).

The important contribution of randomization introduced by the data augmen-
tation techniques starts to become evident if color operators are used: the large
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variation in brightness, contrast, saturation and hue of the images makes the de-
tection results rise on CityScapes (+11.8 for RetinaNet, +9.1 for Faster R-CNN).
At this point, the additional solarization, equalization or shearing improve the final
performances slightly or not at all.

3.3 Domain adaptation methods
Table 3.3 and Table 3.4 present the results obtained by RetinaNet and Faster R-
CNN networks, with the domain-invariant feature learning and domain mapping
approaches described in the previous chapter. Models are always trained on Sim10k
and evaluated on CityScapes. Contribution of several data augmentation techniques
in addition to the methods themselves is also analyzed, and related performance
variations are reported. In Table 3.4, the FPN column states if a FPN is used or
not as part of the backbone.

For Domain adaptive Faster R-CNN, RN means that adversarial alignment is
performed at the level of the last three ResNet layers before being used to build
the feature pyramids, as done in Domain Adaptive RetinaNet[31] and described in
Section 2.4.2. Instead, the entry with the simple ✓ contains the result obtained
with adversarial adaptation on the network’s FPN.

For the RetinaNet detector, tested adaptation methods (image statistics match-
ing and alignment on FPN) performed well, with an increase over the baseline of
17.8 and 22.4 mAP respectively. The use of data augmentation does not have a con-
siderable impact for the Domain Adaptive RetinaNet, while color transformations
remarkably increase the detection performances when matching image statistics
between source and target domains.

Regarding Faster R-CNN, adaptation at image and instance levels yields im-
provements with respect to the basic Faster R-CNN architecture without FPN,
consistently with previous works[1][3][40].

On the other hand, adding a FPN to the network backbone (a scenario that
was not considered in the previously mentioned works) significantly increases the
performances of the base detector (around +12.6 mAP) and mAP results are way
better than the ones obtained through image and instance level adaptation with-
out FPN, even on a domain it has never seen for the already mentioned reasons.
Adapting the FPN by gradient reversal layer gives no contribution to the knowledge
transfer and even degrades the mAP values when all levels of the feature pyramid
are considered at the same time for adversarial domain alignment. If different dis-
criminators are used to align different ResNet layers, the information acquired by
the FPN is preserved (+0.5 mAP). Since the Faster R-CNN network without FPN
can be considered as outdated and adversarial adaptation on the features extracted
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Table 3.3: mAP with different domain adaptation method for a RetinaNet model,
trained on Sim10k and evaluated on CityScapes. Table columns indicate the trans-
formations that are employed in each experiment. Only horizontal flip is used for
the “oracle”.

Method HF Rot. Tr. C.J. Sol. Eq. mAP@0.5
✓ 30.4
✓ ✓ ✓ ✓ ✓ ✓ 52.7
✓ 48.2
✓ ✓ ✓ 52.0
✓ ✓ ✓ ✓ 62.7
✓ 52.8
✓ ✓ ✓ 54.2
✓ ✓ ✓ ✓ 54.8

Oracle ✓ 68.7

Baseline

Image statistics matching

DA RetinaNet

Table 3.4: mAP with different domain adaptation method for a Faster R-CNN
model, trained on Sim10k and evaluated on CityScapes. FPN column states if
FPN is used or not (RN means different domain discriminators are applied to the
three ResNet layers used to build the FPN). The other columns indicate the trans-
formations that are employed in each experiment. Only horizontal flip is used for
the “oracle”.

Method FPN HF Rot. Tr. C.J. Sol. Eq. mAP@0.5
✓ 33.7[1]

✓ ✓ 46.3
✓ ✓ ✓ ✓ ✓ ✓ ✓ 57.9
✓ ✓ 55.0
✓ ✓ ✓ ✓ 62.0
✓ ✓ ✓ ✓ ✓ 62.5

✓ 36.3
✓ ✓ 45.0

RN ✓ 46.8
Oracle ✓ ✓ 76.3

Baseline

Image statistics
matching

DA Faster R-CNN
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Table 3.5: mAP with different combinations of data augmentation techniques, in-
dependently applied to whole images (I), bounding boxes (O) or backgrounds (B)
only, for a RetinaNet model trained on Sim10k and evaluated on CityScapes. Ta-
ble columns indicate the transformations that are employed in each experiment. y
means operation is only applied on the vertical axis. Only horizontal flip is used
for the “oracle”.

HF Rot. Tr. Sh. C.J. Sol. Eq. mAP@0.5
I 30.4
I I I + O I I + O 21.0
I O B O 29.1
I I Oy I 34.1

68.7Oracle

by the backbone with FPN is not efficient, further improvements through data
augmentation operators are not sought for Domain Adaptive Faster R-CNN.

Finally, image statistics matching proves to be effective for domain adaptation
on Faster R-CNN with FPN as well (+8.7 mAP), even though it is a very simple
method. Statistics matching is even more efficient if additional geometric transfor-
mations are used.

3.4 Additional experiments

3.4.1 Bounding box data augmentation
A few extra experiments have been performed with data augmentation techniques
on bounding boxes, mentioned in Section 2.2. In this case, the method is only
tested on RetinaNet. All the transformations described above, applied to the whole
images, to bounding boxes or to backgrounds only, add a considerable number of
additional combinations. It is not obvious a priori which ones can have a more
important contribution than the others, with the goal of effectively reduce the
distance between source and target domains. The tested combinations are therefore
selected almost randomly, mostly considering the operations that contributed to
achieving the best results in the original work by Zoph et al.[51], but obtained
results (reported in Table 3.5) are not satisfactory. Actually, they often degrade
the performances of the basic detector.

Ostensibly, the achievements of different combinations highly depend on the
dataset, and so they should be investigated thoroughly. For this reason, these
transformations have not been explored in detail.
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Table 3.6: mAP with different domain adaptation method for RetinaNet and Faster
R-CNN models, trained on Sim10k and evaluated on CityScapes with patch-based
image statistics matching.

Model Method mAP@0.5
Baseline 30.4

1 × 1 matching 48.2
2 × 2 matching 45.0

Oracle 68.7
Baseline 46.3

1 × 1 matching 55.0
2 × 2 matching 55.5

Oracle 76.3

RetinaNet

Faster R-CNN

3.4.2 Patch-based domain mapping
A similar reasoning as bounding box augmentations is followed for experiments on
patch-based image statistics matching. Matching on 2 × 2 grids is only tested, on
RetinaNet and Faster R-CNN with FPN, and results are reported in Table 3.6.
Again, results are neither completely satisfactory nor explanatory. The method
would therefore require further study.

3.5 Final considerations and possible research di-
rections

Reported results show that implemented approaches are indeed effective for domain
adaptive object detection, from a computer-generated source domain to a real-
world target domain. Extremely simple modifications of the appearance of training
images have high impact on detection performances: the best results, on both
RetinaNet and Faster R-CNN detectors, are obtained through domain mapping
based on matching the image statistics of source and target domains. This method
works without any architectural modifications and does not require any annotation
for the target domain.

Prior to this, performed experiments clearly show that domain randomization
alone, introduced through basic data augmentation operators, can return satisfac-
tory results and considerably reduce the shift between source and target domain.
The method is extremely simple to set up and experiment with and, if combined
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with fast one stage object detectors such as RetinaNet, can help to achieve good
performances in a short time. It is therefore suitable for real applications and for
use in production environments. In addition, the experiments also showed that
the data augmentation component combines well with existing domain adaptation
methods. Their matching significantly improved the results obtained with a single
domain adaptation method, either based on domain mapping or domain-invariant
feature learning. Furthermore, domain randomization approaches can be easily
extended to all computer vision tasks, and are not limited to object detection.

On the other hand, widely-studied methods for domain adaptation, mostly based
on adversarial feature learning and requiring deep modifications to the network ar-
chitectures, have reached similar or lower performances than these simple methods,
despite requiring much more time to investigate and implement. Furthermore, of-
ten it is not possible to transfer these methods from one base detector to another.
They are surely interesting from a research point of view, but their actual viability
to real use cases seems uncertain, especially by engineers that may have little or no
experience in the domain adaptation setting.

Studied domain adaptation approaches present interesting open questions that
can be further studied. Among them, how to align the features extracted by a
backbone with FPN is probably the prominent one. Although adversarial adapta-
tion of the ResNet layers that are used to build the feature pyramid, as proposed
by Pasqualino et al.[31], is particularly effective for the RetinaNet model, it does
not generalize well to two stage object detectors as Faster R-CNN, in which the
FPN is used to extract interesting RoIs. Due to the higher detection performances
with respect to one stage architectures, Faster R-CNN and the like are mostly used
for applications in which high accuracy is preferable over high speed.

In a recent work, Chen et al. have tackled this issue proposing what they call
Scale-Aware Domain Adaptive Faster R-CNN[5]. They extend their previous Do-
main Adaptive Faster R-CNN (widely discussed in the preceding sections), applying
adversarial adaptation at image and instance level independently for each pyramid
level. It might be interesting to study this method more specifically.

Additionally, image transformations that take into account the bounding boxes
could be explored more broadly for domain randomization. Taking inspiration by
the work by Zoph et al.[51], it may be interesting to study a way to find an optimal
data augmentation pipeline starting from the available data for source and target
domains.

However, when performing domain adaptation, one must be aware of the nature
of the two domains. They could impose limitations on the performances of even
the best of the methods.

Consider the discussed Sim10k and CityScapes datasets. Neglecting for a mo-
ment their different nature (synthetic and real datasets), the street scenes contained
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in the two datasets are largely different: CityScapes contains images captured in the
center of several German cities, while the video-game Grand Theft Auto V is set in
a fictional region of Southern California. Scenarios are clearly diverse. This means
that, for example, surrounding buildings and more popular car models are different
in the two datasets. In addition, CityScapes may contain more scenes with high
numbers of pedestrians, while Sim10k contains landscapes (such as desert areas)
which are unlikely to be found in Europe. Discussed domain adaptation methods
cannot deal with such structural difference between domains.
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Chapter 4

Conclusions

In a real production environment, being able to successfully transfer the knowl-
edge learned by a deep learning model from one domain to another can introduce
considerable improvements in many projects, new and already in place, and in-
crease general productivity. This would allow the same data to be used in multiple
projects that deal with the same task. More extremely, data collection and annota-
tion may not be necessary anymore, once a generator of synthetic data is available
and domain adaptation from simulated to real data is deployed effectively. Many
methods address the domain adaptation problem in the different computer vision
domains: image classification, object detection and semantic segmentation.

Focusing on object detection, most studied methods in the literature involve
architecture-specific modifications. However, all this complexity seems excessive
when very simple methods can obtain similar or even better detection performances.
Overall, domain mapping based on image statistics can yield results that approach
models with full knowledge of the target domain, and perform even better when sup-
ported by data augmentation techniques. The domain randomization introduced
through classic image transformations also helps to reduce the mismatch between
the two data distributions and may be sufficient for several use cases. However,
domain adaptation is an open problem, for which research is always active. New
promising methods and innovative approaches can be published from one day to
another.
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