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Summary

Advances in Computer Vision technology paved the way for the development of produc-
tion pipelines which proved to perform similarly to human operators in terms of accuracy
and better then them in terms of time, when applied on repetitive analysis. These per-
formances increase with the introduction of Deep Learning algorithms, which narrow the
margin with human level behavior.
This Thesis work focuses on Deep Learning approaches for a Computer Vision application
in the Passive Safety checks field. In particular, the description of a tool aimed at checking
the correct deployment of airbag devices is provided, delving into the Deep Learning-
based detection engine. Experiments on the input data to the Machine Learning model
are made, focusing on highlighting weaknesses and biases of the current approach.
Based on the collected evidences, two proposals for approaches to the problems are in-
troduced. While both are based on Deep Learning implementations, the first solution is
an updated and reworked version of the previous methodology. The second approach is
far from the logic behind the previous ones and is accompanied by the presentation of
integration modules and algorithms that ensure the compatibility with the pre-existing
data and application. After a detailed description of the aforesaid alternatives, a test suite
implementation is reported and then employed for a fair comparison between the default
approach and the introduced ones.
The first introduced solution exploits the generalization capacity of the default model,
with only few modifications in the field of the training process and output format. On the
other hand, the second proposal offers a completely new horizon of solutions aiming at
an improvement in the working speed and the simplicity of integration of a simpler Deep
Learning task.

III



Contents

List of Tables VI

List of Figures VII

1 Introduction 1
1.1 Video Media employment . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Computer Vision and Machine Learning . . . . . . . . . . . . . . . . . . 1
1.3 Thesis domain and collaboration . . . . . . . . . . . . . . . . . . . . . . 2

2 Tool description 3
2.1 App functioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 App architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.1 Airbag stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.2 Keycloak stack . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.3 AirbagDetection container . . . . . . . . . . . . . . . . . . . . . 6

2.3 Video analysis pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Machine Learning approach . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4.1 Input and training data . . . . . . . . . . . . . . . . . . . . . . . 8
2.4.2 DCNN architecture . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4.3 DCNN training algorithm . . . . . . . . . . . . . . . . . . . . . 12

2.5 Detection algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Detection of biases and problems 17
3.1 Expected input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Preprocessed input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.1 Decolorization . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.2 Motion detection . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2.3 Background removal . . . . . . . . . . . . . . . . . . . . . . . . 23

4 First approach: data pre-processing and decolorization 27
4.1 Training algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.1.1 Pre-processing technique . . . . . . . . . . . . . . . . . . . . . . 29
4.1.2 Training procedure . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.2.1 Visual comparison . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.2.2 IoU comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

IV



5 Second approach: classifier with forced attention 33
5.1 Architecture choice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.2 Input and training data . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.3 Training algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.4 Detection Pipeline integration . . . . . . . . . . . . . . . . . . . . . . . 42

6 Test Suite and comparison 47
6.1 Classification with augmented dataset test . . . . . . . . . . . . . . . . . 48
6.2 Classification with varying resolution test . . . . . . . . . . . . . . . . . 49
6.3 Video simulation test with realistic ROIs . . . . . . . . . . . . . . . . . . 50
6.4 Empirical tool test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

7 Conclusion and Future Works 59
7.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
7.2 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Bibliography 61

V



List of Tables

4.1 Representation of the modified ERFNet architecture (a), with the addition
of an exploded view of the blocks used (b). . . . . . . . . . . . . . . . . 28

4.2 Comparison between the values of the Intersection over Union values
computed by means of multiple iterations of a segmentation process over
an aggressively augmented validation set. . . . . . . . . . . . . . . . . . 32

5.1 Representation of the architecture of the introduced Classifier with forced
attention, based on a Resnet50 with the addition of a second input con-
volutional layer for the ROI mask and the modification of the last linear
layer which generates an array with length 2, instead of the previous ver-
sion having length 1000, used for ImageNet classification. . . . . . . . . 36

6.1 Comparison between the Classifier algorithm, the introduced Detector
with decoloration and the default Detector approach, in terms of Clas-
sification accuracy, Standard deviation, Working resolution and total pro-
cessing time. The data are the result of 30 passes over a Validation Set
with ROIs generated by an automated ROI proposal algorithm. . . . . . . 49

6.2 Comparison between the Classifier algorithm, the introduced Detector
with decoloration and the default Detector approach, in terms of best Clas-
sification accuracy value achieved while varying the working resolution. . 50

6.3 Comparison between the Classifier algorithm, the introduced Detector
with decoloration and the default Detector approach, in terms of Clas-
sification accuracy, Standard deviation, Working resolution and total pro-
cessing time. The results are obtained through 10 epochs of simulation of
a real use case, with ROIs defined by a human and frames belonging to
the same video. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

VI



List of Figures

2.1 Taken from [17], Representation of the basic residual block (a) and the
bottleneck one (b) described in the work of Long et al. [13], together with
the non-bottleneck-1D version introduced by Romera et al. (c) . . . . . . 11

3.1 Sample frames extracted from a video of an airbag deployment, recorded
with a high speed camera (a), together with the segmented images ob-
tained by means of the default model (b). . . . . . . . . . . . . . . . . . 18

3.2 Focus on the false positive predictions around the logo area (a) and on the
false negative ones corresponding to some shaded airbag sections (b). . . 19

3.3 Collection of three sample frames after a heavy decolorization process (a)
and a lighter one (b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.4 Segmented predictions corresponding to a set of decolorized frames by
means of both the heavy approach (a) and the light one (b). . . . . . . . . 22

3.5 Sample frames generated by means of motion detection pre-processing,
together with the resulting segmented images from the default model. . . 23

3.6 Sample frames generated by means of background removal pre-processing
(a), together with the resulting segmented images from the default model
(b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.1 Comparison between the predicted segmented images obtained by means
of the default model (b) and the ones obtained by means of the updated
one (c). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.1 Representation of the Hard Tanh activation function: the default version
(a) on the left saturates in [−1,1], the scaled version (b) on the right spans
in the range [0,1] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.1 Representation of the trend of the Classification accuracy when it depends
on the working resolution. The image describes the three models’ outputs
trend. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.2 Visual comparison of the performances of the Classifier, the Dec. Detec-
tor and the default Detector in terms of Classification accuracy, together
with the respective computation times after testing their behavior in a re-
alistic use case, given by the dataset being composed by frames belonging
to a single video and the polygonal ROIs being defined by a human. . . . 52

6.3 Starting image for the first empirical test: in overlay it is possible to see
the polygonal ROIs drawn by the user through the UI. The first one covers
a section of the support structure of the airbag while the second one is in
the steering wheel logo area. . . . . . . . . . . . . . . . . . . . . . . . . 53

6.4 First comparison between the detection performed by means of the three
solutions on the user-defined ROIs, as in Figure 6.3 . . . . . . . . . . . . 54

VII



6.5 Starting image for the second empirical test. The first drawn ROI is on
the right side of the steering wheel rim, characterized by a better light
condition with respect to the second ROI, which is in the lower part of the
steering wheel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.6 Second comparison between the detection performed by means of the
three solutions on the user-defined ROIs, as in Figure 6.5 . . . . . . . . . 56

6.7 Starting image for the third empirical test. The ROIs are both positioned
on the steering wheel rim, symmetrically with respect to the logo. The
difference lays in how the light hits the airbag in those places as it is
directed from the upper left to the lower right corner. . . . . . . . . . . . 57

6.8 Third comparison between the detection performed by means of the three
solutions on the user-defined ROIs, as in Figure 6.7 . . . . . . . . . . . . 58

VIII



Chapter 1

Introduction

1.1 Video Media employment
Since the birth of video media and the dissemination of their use at affordable costs,
organizations, companies, scholars and other categories of people started employing it in
order to add abstraction and speed to some of the processes that, until then, used to impose
physical presence to be completed.

• Abstraction factor is given by the reduction of direct involvement of the operator
in the actions related to the collection of information for the main goal. By means
of video media, these information can be collected asynchronously and with more
elastic timing or, if they must be collected in real-time, with a bigger picture corre-
sponding to multiple situations at once (an example could be video surveillance).

• Speed factor can be seen as the capability of an operator to deal with accelerated
sequences of actions in an altered time state.

These same two factors can be evaluated even with the introduction of more complex
and automated ways for accomplishing the same goal as before or more indirect and
abstract ones.

1.2 Computer Vision and Machine Learning
Over time, with the raise of the computational power in everyday devices, more and more
technology was implemented as orchestrator for the information collected by means of
video media hardware. This led to the application of the Computer Vision coupled with
Machine Learning approaches for both the same goals as before and for new challenges
such as data mining and event predictions.

• In this case, the Abstraction aspect is given by the further indirection layer that is
introduced by means of the computer automation. This takes the place of the previ-
ous human operator which is moved to an upper layer of orchestration, enabling the
chosen methods to learn from the selected data and to extract the desired information
from the environment.
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1 – Introduction

• How the processes speed benefits from the introduction of Computer Vision and Ma-
chine Learning is straightforward, since the improvement can be obtained by relying
on the greater speed that computer-based systems are able to achieve compared to
the human being in repetitive actions.

1.3 Thesis domain and collaboration
This thesis work focuses on a study executed over the possible improvements that can
be made regarding an existing tool powered by a strong Computer Vision and Machine
Learning background component. The tool is owned by the Italdesign Giugiaro company,
with whose collaboration it was possible to draw up an analysis of the current workflow
of the system, its weaknesses and the main improvements that the current study should
address. The described application is based on a patented system [18]

The main problems highlighted by the company can be clustered into two specific
domains:

• Performance in terms of robustness: the described tool is widely used in the field
of a service provided to third party airbag manufacturers. Being the application
based on Computer Vision it must be as able as possible to work in situations and
standards that are also very different from each other. Given that, the main focus of
this collaboration is the improvement of the detection robustness.

• Performance in terms of time: even though the tool is not supposed to work with
real time video streams, its time performances are fundamental since the amount of
data to be analyzed can be huge. Moreover, the application must represent a way
to speed up and automate a series of operations that, otherwise, would have to be
carried out by a human operator.

The described problems statements are approached in the next chapters, the analysis is
distributed in the following way:

• Tool description: the existing tool is described from the architecture point of view,
focusing on the backend section, which contains the actual ML-based pipeline of the
app itself.

• Detection of biases and problems: some tests results are presented, considering
both expected and non-expected input, in order to highlight the weaknesses of the
pipeline that is currently working in production.

• First approach: Data pre-processing and decolorization: a data pre-processing
step performed in order to achieve a better generalization from the model used in
the current version of the tool is described, accompained by a comparison with the
previous version.

• Second approach: Classifier with forced attention: another approach with respect
to the current one is presented, together with the description of the architecture of the
selected model, the pre-processing phase of the dataset and the training algorithm.

• Test suite and comparison: a set of automated and manual tests is described, useful
for the comparison of the approaches exposed in the Thesis work.
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Chapter 2

Tool description

As announced in Section 1.3, the tool has been adopted by Italdesign Giugiaro company in
the field of a service provided to various airbag manufacturers worldwide. The application
is called AIrbagAIrbagAIrbag, in order to recall the link between the object of the analysis made by the
tool and the Machine Learning based backend (which reference is represented by the
"base" of the expression in the name, that stands for Artificial Intelligence).

AIrbag is part of the improvements given by the digitalization and automation of the
processes actuated in Italdesign’s business units. As a company operating in the Automo-
tive field, one of the main lines in IG’s Research and Development operations is Passive
Safety. The conjunction between this research line and the digitalization and automa-
tion process led to the need for a new tool (among others) that automates the process of
analysis of videos depicting the deployment of test airbags in certain conditions. These
conditions may consist of either a fixed frame or the copy of a vehicle interior, both in-
cluding a steering wheel or another container equipped with an airbag.

In order to be as consistent as possible with the official aim of the original application,
in the following, a quote from the patent description [18] is reported:

In summary, the present invention is based on the principle of carrying out a method to
verify the correct deployment of an airbag device by means of a computer, programmed
to select or identify at least one investigation region in at least one image analysis
area, where “select” means an embodiment wherein the region is chosen a priori at
a given position in the image, “identify” means an embodiment wherein the system
automatically recognizes in the image a relevant area, regardless of its position in the
image. In the investigation region, at least one portion of the region representative of
the air chamber of an airbag device deployed at one or more measurable points in times
since the triggering of the deployment (inflation) of the air chamber is identified. The
investigation region is a two-dimensional region or a one-dimensional line.

In the next section, an overview of the tool is provided, starting from the description
of how the application works and which operations are possible, then focusing on the
architecture of the application, on its Machine Learning backend and on the description
of the actual Neural Network model and training process.
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2 – Tool description

2.1 App functioning

In order to make an introduction to the jargon used within the application domain, in the
following some acronyms or words are highlighted:

• A Job is an object that contains all the information required to activate the pipeline
of operations (called Run) on a single or a set of videos. In particular, a Job includes
a name, the video input path that is used once that they are loaded, the video output
path and a mode chosen between the two provided in the UI. Each Run is saved for
each Job and a recap is showed in a dedicated page.

• ROI is the acronym for Region Of Interest: it corresponds to each single polygonal
section that a user can select on a set of frames belonging to a video.

• In the context of this Thesis work, any reference to the word Detection should be
interpreted as the operation of recognition of the presence of an airbag in a user
defined set of ROIs.

The main functions and features offered by the described tool are reported in the fol-
lowing flow of operations, where each step is deliberately described abstractly, since the
interaction with the graphical interface is not the main topic of this Thesis.

The first fundamental operation that is allowed to the user by the UI is either the cre-
ation of a new Job or the selection of an older one from a dedicated interface, that reports
the latest Runs and their corresponding Jobs. In the case the user creates a new Job, she
has to load a new video or set of videos and provide all of the details reported in the
acronym list, otherwise the video should be already available in the interface, showing
the elements and options regarding the selected Run among those available for a Job. For
each new Job or Run for an existing one, the user has to select or modify some ROIs. In
particular, there are at least two necessary ROIs to insert, corresponding to the one that
highlights the name and the temperature condition of the video sample and to the one that
contains the increasing timestamp for each frame of the video. These ROIs will be ana-
lyzed by means of a OCR (Optical Character Recognition) tool if fired by the detection
algorithm. In addition to these ROIs, a user can select any number of polygonal regions
within the images borders; the aim of the selection is to let the algorithm perform the De-
tection of the airbag through either the whole video or a set of user-defined frames. After
the Run command is activated, all the information is sent to the backend that performs the
detection and returns a set of details that are collected in a report presented in the UI. In
particular, for each polygonal ROI, the report contains the frame that fired the detection
(together with some other frames around it), the timestamp and the frame number of the
detection itself. Moreover, the report contains the name of each video (corresponding to
the characters recognized by the OCR system) and some other information regarding each
airbag deployment, such as the frame where the bag reaches its maximum extension in
case the selected Run category is Passenger instead of Knees.

4



2.2 – App architecture

2.2 App architecture
With the aim of keeping the tool as compatible as possible with various environments
(such as a clustered architecture), each stack is deployed by means of some Docker con-
tainers. The following subsections dive into the details of the Airbag stack and the Key-
cloak stack, describing each of the containers that are part of them.

2.2.1 Airbag stack
The Airbag stack contains the actual client-server application code, including a database
container dedicated to the backend work. In the following, each relevant container is
presented and described.

mongo container

The first container in the dependencies chain is the Mongo container, that is based on an
official image1 from the MongoDB repository on DockerHub and it works as a simple
and fast database service for the server section in the backend of the application. More
precisely, it handles all the information regarding each Job and Run belonging to every
user of the tool.

ms-airbag container

Working as a middle layer between the MongoDB database, the client interface and the
actual ML-based pipeline of the application, the ms-airbag container implements all the
APIs that enable the communication with the clients. This communication includes the
run command that is activated by the client (equipped with all the information needed
for the ML-based pipeline to perform the detection), the dismiss command, the updates
coming from the ML-based pipeline regarding the analysis status, the history of the Jobs
for each user.

One of the main set of operations mediated by the ms-airbag container is the file
management: the described section of the application has access to the storage through
some ad-hoc mounted volumes. The storage contains a couple of input and output folders
and a Job folder: the former two contain all the input videos and the output data of the
analysis, grouped by user and Job name, the latter one works as a temporary storage for
the intermediate data generated for each run of a Job.

The described container is based on a custom Docker image and the actual server code
is written in Java language.

fe-airbag container

The UI of the application is provided to the client by means of the fe-airbag container
that enables the work of the front-end section of the tool. The relevant interfaces are in
the form of an history report regarding the Jobs and runs after the login page, a summary
regarding the available resources on the cluster, a page containing a form that has to be

1https://hub.docker.com/_/mongo
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2 – Tool description

filled for a new Run. The latter interface is used in two cases: a new Job is created with
the loading of a video or an older Job is used as base for a new run. In the context of
the described page, the form should be filled in order to provide the name for the Job and
for the input and output folders; moreover, the interface provides the possibility to load
a video or a set of videos in the same page and, for each of them, the user can add new
ROIs by manually drawing polygons on the preview of the video and adding names and
colours to distinguish them. After pressing the run command and waiting for the process
to complete, a cell is added to a successful Runs list. After this condition, if the cell
corresponding to the result is selected, a modal pops up, showing the details contained in
the report of the analysis.

nginx-video container

As well as the ms-airbag container, also this section has access to the storage containing
the input, output and Job folders. As a difference with the aforementioned section, the
nginx-video container is used as a load balancer that reflects the operations of the clients,
in order to complete the loading process of new videos or get information and results
regarding the Jobs.

2.2.2 Keycloak stack

The actual application code does not include any implementation related to an authenti-
cation process. Indeed, this task is delegated to the Keycloak server, working as Identity
and Access Management solution (as reported in the official website of the service2). In
particular, the Keycloak server provides the entire login process and interface, by using
cookies technology for the token exchange with the client. The actual server is deployed
in a container and it is based on an image from DockerHub3.

The Keycloak server works by using a dedicated database service based on MySQL,
which runs in another container, based on an official DockerHub image4.

2.2.3 AirbagDetection container

Every reference to the ML-based pipeline in the description of the ms-airbag container
in Subsection 2.2.1, regards the detection process implemented in the AirbagDetection
container (that is called Detection Server from now on for simplicity). Communication
between this container and the one running the main server (ms-airbag) is made possible
through a further API layer. The Detection Server code is entirely written in Python lan-
guage, hence the RESTful compatibility is provided by a Flask service5 running a light
and custom Web-Server. The detection process consists of a pipeline of operations, in-
cluding the estimation of the airbag position (made by a Convolutional Neural Network)

2https://www.keycloak.org
3https://hub.docker.com/r/jboss/keycloak
4https://hub.docker.com/_/mysql
5https://flask.palletsprojects.com
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2.3 – Video analysis pipeline

and the actual ROI content evaluation (made by means of some thresholds in a subse-
quent algorithm). A detailed explanation of the mentioned pipeline is provided in the next
section.

2.3 Video analysis pipeline
The main aim of this Thesis work is to improve the Detection performances. Hence, since
the practical implementation of this process is entirely contained in the Detection Server,
this section provides a detailed description of the sequence of operations aimed at the
generation of the information needed for the creation of a complete report, starting from
an input video.

Video frames extraction

The first step of the pipeline is the reception of a new Job object from the Main Server
(running in the ms-airbag container and described in Subsection 2.2.1) that contains all
the information needed to perform the detection, including the position of the video (or
set of videos) in the storage. If the Detection Server is busy with other Jobs, the current
one is queued in order to be processed as soon as possible.

Each video belonging to a Job is subjected to a frame extraction phase: more specif-
ically, by means of the FFmpeg framework6, all the frames belonging to the video are
isolated, renamed by ascending order and saved to a dedicated temporal folder in order to
be used as input for the subsequent phase.

Airbag segmentation

The folder that is filled by the previous step should contain an ordered sequence of RGB
images, corresponding to the frames of the input video. With this premise, each generated
image is taken as input for an inference process made by a previously trained Deep Convo-
lutional Neural Network. The DCNN performs a binary segmentation process, meaning
that the resulting images are composed only of pixels set to one or zero and, if superim-
posed on the original frames, they should highlight the position and shape of the airbag,
if it is present. A deeper explanation of both the Network architecture and its purpose is
provided in Section 2.4.

Detection

The result of the segmentation process can be described as a set of binarized images that
is identical in number and single frames naming to the input set. This set of images is then
subjected to the actual detection phase: if the frame is included in the user-defined interval
for the detection of the content of a specific ROI, the polygonal region corresponding to
the ROI itself is extracted from the segmented image and the ratio between the active
pixels and the total amount of pixels in that region is compared to a set of empirically
defined thresholds. If the user choice is to detect the frame where the boundary of the

6https://www.ffmpeg.org
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2 – Tool description

airbag enters the ROI then it is enough that the previously calculated ratio exceeds 0
(plus a small margin for preventing noise presence); otherwise, if the choice is to select
the frame where the ROI is completely covered by the airbag surface, the ratio must be
closer to 1 to fire the detection. The described algorithm is repeated for each ROI and
for each segmented frame, if the frame is part of the interval that has been selected for
the aforementioned ROI. Also in the regards of this phase further details are presented in
another section (2.5): it is worth to dive into the details of the real algorithm since it is
part of the improvement attempts presented in the next chapters.

Report generation

At the end of each detection attempt, a tuple containing the name of the ROI and the
number of the frame that fired the detection is saved and, at the and of the overall process,
this collection of tuples is dumped into a JSON file. Moreover, for each tuple containing
ROI name and detection frame, the Detection Server generates an image containing the
two frames preceding the detection and one following it. These elements are then showed
in the UI, after being sent to the client by means of the Main Server.

2.4 Machine Learning approach
In Section 2.3 the sequence of operations that leads to the final objective of the tool was
presented, which is the detection of areas covered by airbags or containing edges of it.
The purpose of the current section is to dive into the details of the ML-based step, which
is the Airbag segmentation one, describing the data that are used to feed (and train) the
Convolutional Neural Network, the architecture of the CNN itself and its training algo-
rithm.

2.4.1 Input and training data
In the context of the explanation of the characteristics of the data, a distinction must
be made between a production situation and the training one. The training process is
supervised, meaning that, in order for the network to learn, the process must include an
input element and an ideal output one, to be compared with that predicted by the network.

Both in the production phase and in the training one, the Network accepts squared
RGB images as input. In a production case, these images are extracted from a video
loaded by the user, thus depicting the evolution of an airbag deployment, starting from
the inside of a closed bag or a steering wheel. Normally, the hooks for the test airbags
are placed on special frames with a single color background that can contain grids with
lines at various distances; in some cases, instead of the aforementioned fixed frames, the
devices can be supported by realistic reproductions of cockpits. Moreover, the lighting
characteristics, the shapes of the frames, the position of the camera and the angle of view
are not standardized in this type of videos, thus ending up having many different video
conditions.

In a training case, the network is fed with frames coming from a custom dataset. The
original dataset contains 565 frames extracted from a set of sample videos but a split has
been applied on it, taking 452 samples for the actual training and 113 for the validation
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phase. Looking at the frames it is possible to underline that every stage of the airbag de-
ployment is depicted multiple times, providing good generalization in that regards. On the
other hand, being the dataset custom made, it shows a low variety of color combinations,
backgrounds and viewing angles and this is not a good aspect in the context of training a
network that should be employed for production use with samples that can be completely
new from the previously described factors side.

For each frame in the dataset, there is its segmented counterpart that is used in the
training algorithm. These binarized versions of the frames are characterized by a single
channel where each pixel can assume either the value 0 or the value 1. For this reason, in
the context of the training algorithm they are called masks.

2.4.2 DCNN architecture

The aim of the Airbag segmentation is to obtain a binarized mask as output of the em-
ployed network. Hence, the architecture has been chosen to be compliant with the capa-
bility of obtaining a result that does not suffer from resolution loss, in order to prepare
data that is as detailed as possible for the subsequent detection phase.

The implemented approach is based on the results obtained by Romera et al. in their
ERFNet [17]. This particular approach showed an optimal trade-off between the accuracy
in the predictions and the corresponding performances in terms of inference time in the
field of Semantic Segmentation.

Semantic Segmentation application

In order to better understand how the existing approach fits the problem it is useful to
review the objective of the task that takes the name of Semantic Segmentation.

The aforementioned task is one of the steps towards the goal of the complete Scene
awareness; in this sense, as stated in [8], it is the evolution of early tasks such as clas-
sification, localization and detection, aiming at finer-grained inferences on images and
videos. Semantic Segmentation’s actual objective is to classify each pixel of an image (or
sequence of images) as belonging to the object or are of which it is part, adding important
information with respect to the simple image classification task, such as spacial location,
scale or position of the subject itself.

In the original version of the AIrbag tool, the detection phase is based on segmented
images generated by the previously mentioned DCNN, which addresses a Semantic Seg-
mentation task. This task enables the detection algorithm step to have a version of the
original image that is transformed in order to contain only useful information regarding
the airbag, thus providing its extension, spacial position, and shape.

Deep ConvNets for semantic segmentation task

At the time of the first implementation of the tool via a ML-based pipeline, in order to
pursue the goal of keeping a near real-time performance of the pipeline, the ERFNet so-
lution (by Romera et al. [17]) has been chosen. The acronym ERFNet stands for Efficient
Residual Factorized ConvNet; the project fits into the approaches for the field of the urban
perception achieved by Intelligent Vehicles.

9
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In the general context of the scene perception obtained by means of simple photo-
graphic sensors, the need for the combination of dense pixel-level details and a more
abstract and conceptual understanding of the content highlighted the capabilities of solu-
tions based on convolutional neural networks. Deep implementations of these algorithms
have already proven to outperform many traditional solutions in both simple and com-
plex classification tasks and the same observation can be made regarding the semantic
segmentation task. These performances are obtained leveraging on the capability of these
networks to learn from the conceptual combination of spatially local information, based
on spatial coordinates used as original input [13]. The depth of this network plays a fun-
damental role in the abstraction of elements coming from different patches of the input
image, in a sort of pyramidal flow.

When used for classification purpose, however, these networks usually reduce the out-
put dimensions along their depth in order to increase the density of the encoded infor-
mation and reduce computational requirements. This assertion, together with the goal of
a semantic segmentation task being the generation of an output image that equals in its
size and proportion the input one, forces the architecture of a deep convolutional neu-
ral network aimed at this purpose to include a way for upsampling the encoded version
of the input, in order to perform both end-to-end training and inference. Different ap-
proaches exist for the upsampling operation: the main goal is to bring a coarse output of
the encoder network to a segmented representation of the original input, without loss of
resolution, proportions and details.

The first and simplest solution to the aforementioned problem is upsampling via inter-
polation: this process applies fixed kernels to the output of the encoded data (or feature
extraction phase) so that the result is upsampled through the usage of the information
given by the neighbourhood for each pixel. The drawback is that the employed kernels
cannot be learnt and the output usually suffers from lack of high frequency elements and
fine details.

An interesting solution has been presented by Shubhra Aich et al. in [1]. The idea is to
regain spacial information from the final feature maps resulting from the encoding phase.
They name the described operation a depth-to-space spacial reordering and managed to
overcome the problem of computational requirements given by heavier and more complex
solutions while keeping comparable performances in binary segmentation problems.

A first step toward the solution that has been implemented in ERFNet is presented in
[13]. Long et al. introduce a method for reproducing a solution that is similar to the usage
of a simple interpolation except for the content of the kernel that can be learnt during the
end-to-end training process. The proposed architecture implements a Deconvolution layer
that, as a result, implies the upsampling operation by a factor that, in a usual convolution
operation, would have been considered as downsamplig factor (which is the stride factor).

Starting from the presentation of the aforementioned approach [13] many advances
have been made both from the point of view of the optimization of the deep convolu-
tional networks architecture and from that of deconvolutions employment as a method for
upsampling the encoded data. One of the main improvements in these fields is the intro-
duction of residual blocks in the so called ResNets [11]. The novelty in this approach lies
in what each single block is expected to learn, since in a usual stack of layers the complex
function to be approximated is an unreferenced mapping between the input and the output
of the stack itself. Instead, a residual block is expected to fit a residual function between
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the output and the input of the stack. The output vector of the block becomes:

y = F(x,{Wi})+Wsx (2.1)

where F(x,{Wi}) is the actual residual function that has to be approximated, Ws is usually
an identity mapping for the input x. This modification easily addresses the degradation of
the training performances on deep architectures while speeding up the convergence.

Leveraging on both the described residual blocks and the deconvolution ones as up-
sampling methodology in the semantic segmentation field, deeper and more elaborated
network architectures have been employed also for real-time urban scene awareness on
Intelligent Vehicles and it is in this regard that the need for a trade off between complexity
and performances comes in. Figure 2.1 shows the standard approach for the realization
of a residual block (a), as well as the bottleneck architecture (b) from Long et al., which
actually reduces the need for computational resources as the depth of the network in-
creases. The bottleneck solution, however, is demonstrated to be less efficient in taking
advantage in the increasing depth with respect to the non-bottleneck approach [19], but
with the advantage of being less resource intensive due to the lower number of parameters
involved.

ERFNet for fast and accurate segmentation

Based on the described problems regarding deep convolutional neural networks and their
application for semantic segmentation tasks, Romera et al., in their ERFNet, present a
new residual block that keeps the advantage of the basic ones in terms of the perceived
kernel size while dramatically reducing the number of parameters and, hence, the training
time: Figure 2.1c shows that the novel approach is given by the factorization of a basic
convolutional layer with squared kernels into a couple of simpler ones using a single
dimensional kernel.

Figure 2.1: Taken from [17], Representation of the basic residual block (a) and the bottle-
neck one (b) described in the work of Long et al. [13], together with the non-bottleneck-
1D version introduced by Romera et al. (c)
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ERFNet is developed for semantic segmentation purpose and this is the reason why it
has been used in the first production version of the AIrbag tool. It leverages on the proposed
non-bottleneck-1D residual block both in its Encoder branch and in the Decoder one. The
Decoder section, in particular, presents a joint use of deconvolutions and non-bottleneck-
1D blocks aiming at upsampling the output of the Encoder while returning finer details.

2.4.3 DCNN training algorithm

The original version of the network released by Romera et al. is provided with pre-
computed weights both for the Encoder only (that is pre-trained as a classifier on Im-
ageNet dataset [5]) and for the end-to-end architecture, providing near state-of-the-art
performances for the time, in terms of Intersection over Union, on the Cityscapes dataset
[4]. Although these weights can be useful as network initialization, they are not good for
the segmentation task on the custom dataset. Hence, the provided training algorithm and
the dataset loading class have been modified to fit the current case. In the description of
the following details regarding the code, the use of the framework for machine learning
Pytorch [15] will be considered implied.

Airbag dataset loading class

Even in the original implementation of the code7 provided with the paper [17], for each
employed dataset there is a dedicated class that is used for actually reading images and
their labeled versions from the storage. A similar class is made available for the custom
dataset, involving the creation of the list of names corresponding to each frame contained
either in the training section or validation one (the section can be chosen by means of a
simple argument in the dataset object allocation). The dataset objects includes a public
function that is called by the data-loader for the reading operation; each image is then
eventually transformed by means of a dedicated function. The transformation class con-
tains two paths that are diversified by the fact that one of them includes a simple data
augmentation process, in case of application on training images. The data augmentation
involves some random center crops, translations, horizontal flips, border additions and
other modification based on contrast, brightness, blur and color. All images are originally
loaded with pixels having values from 0 to 255 and another task of the transformation
function is to bring these values in the [0,1] interval, without per-channel normalization.

Weighted Loss function

The Loss function employed for the training is a Negative Log Likelihood that takes as
input the batched results of the network prediction and the targets that, in this case, are
equivalent to the masks described in Subsection 2.4.1. In particular, the results of the
prediction are first submitted to the Pytorch implementation of the LogSoftmax function
and then used as the first argument of the actual NLLLoss (Pytorch implementation for
the Negative Log Likelihood loss).

7https://github.com/Eromera/erfnet_pytorch
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The described approach is practically equivalent to the one that directly makes use of
the CrossEntropyLoss, as reported in the documentation related to the NLLLoss8.

Moreover, the loss is weighted by means of some custom weights: their values are
only estimated on the base of the first 10 loaded samples out of the total 452 training ones
and the calculation is executed at runtime. The computation of these weights involves a
small loop that precedes the beginning of the training phase, aimed at collecting the first
10 segmented masks in a tensor. Starting from the resulting tensor, the ratio between the
number of pixels respectively set to 1 and 0 is used in the calculation via the weighting
strategy introduced by Paszke et al. [14].

Training procedure

Based on the previous details, the actual training algorithm is quite straightforward. An
important element is the optimizer: the actual optimization function is based on the Py-
torch implementation of the Adam algorithm9. When instantiating the optimizer, it is
given an initial learning rate of 5−4 and a weight decay of 1−4, while the other parame-
ters are left at their default values. As in the original work by Romera et al., the provided
learning rate is not fixed and its value is subjected to a scheduler that follows a linear func-
tion with negative slope up to a number of epochs close to the final one, beyond which the
slope itself decreases with increasing epochs.

The default dataloader is set to work with a batch size of 6 samples and it involves a
shuffling operation before each training epoch. For each epoch, the algorithm keeps track
of different indexes: as usual, in a training algorithm, the per-epoch average training and
validation losses are collected, together with the overall per-epoch training and validation
time, which are used for estimating a per-image training and inference time. The main
metric that is used for evaluating the trend of the training and choosing the best epoch
between the various saved checkpoints is the Intersection over Union (IoU). This metric
is frequently used in the field of the semantic segmentation and its based on what, in
statistics, is called the Jaccard Index. As a statistical index, it is used to measure the
similarity between two finite sets, so, regarding the semantic segmentation field, it is
widely used for obtaining a percentage of the similarity between the output prediction
and the target mask. As a formula, it can be computed as follows:

IoU =
target ∩ prediction
target ∪ prediction

=⇒ T P
T P+FP+FN

(2.2)

where the intersection between the target mask and the prediction can be seen as the
amount of pixels that are correctly predicted (True Positives) and the union between the
same elements as before can be seen as the total amount of correctly predicted pixels and
the wrong ones (False Positives + False Negatives).

For each batch in a epoch, the result of the prediction includes the same number of
samples as the input one, but having, for each single predicted segmentation, 2 channels,
corresponding to the respective probability of each pixel being 0 or 1. This output is
directly given as input to the loss function, together with the target mask that only has

8https://pytorch.org/docs/stable/generated/torch.nn.NLLLoss.html
9https://pytorch.org/docs/stable/generated/torch.optim.Adam.html
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a single channel containing both zeros and ones. For the calculation of the IoU metric,
instead of using the predictions as they are generated, each segmentation is "flattened" by
means of the application of a argmax function that extracts the index of the channel with
the higher probability.

After each epoch the algorithm automatically saves the current version of the weights
in order to make possible the resuming of the training process.

In general, being the network composed of two branches, namely Encoder and De-
coder, the training process can be operated either on the entire structure at once or in a
two steps process, meaning that the Encoder can be trained as initialization phase and then
the end-to-end process is carried out, being the propagation of the error damped with in-
creasing layers. However, in the first case, the Encoder can be initialized with the weights
provided by the creators of the official ERFNet project, thanks to a training process on
ImageNet with classification aims.

2.5 Detection algorithm
As described in Section 2.3, the segmented images, resulting from the inferences of the
neural network, are subjected to a further algorithm that extracts the relevant information
from the user-defined ROIs, based on an analysis made by considering some fixed thresh-
olds. In the following, the aforementioned algorithm is described in its details, following
6 points in reference to the comments in the Algorithm 1.

1. Before the algorithm starts, it is necessary that some elements are provided: the user-
defined ROI list is needed since there are various loops involving each ROI object,
moreover, the first and the last frame indexes are used to limit the iterations. The
first steps consist in instantiating two elements: the full_rois matrix, which will be
filled during the first loop, and the detections dictionary, which is subsequently filled
with keys corresponding to the names of each ROI.

2. The first outer cycle is based on covering each frame index between the ones that
have been provided regarding a specific video. For each frame index, the corre-
sponding segmented image is loaded from the mounted volume and transformed
into a binary mask (zeros are False cells and ones are True cells). Given the binary
mask, an algorithm for removing small elements floating in the matrix is employed,
the corresponding function is given a connectivity value of 2 pixels (corresponding
to the neighbourhood evaluation of each pixel) and it is provided by the morphology
module in the Skimage library10. With the segmented frame that has been "cleaned"
from any outlier pixel, it can be merged with a mask that is created by means of a
custom function: the method involves the creation of a global mask filled with True
cells, putting the pixels that are not part of any ROI to False and then multiplying the
obtained mask with the clean segmented frame.

3. As stated in the Point 1, during the first round in the outer loop the matrix called
full_rois is filled in a similar way to how the ROI mask has been applied on the

10https://scikit-image.org/docs/stable/api/skimage.morphology.html#skimage.
morphology.remove_small_objects
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segmented frame. This time, however, the ROI application is done on a temporal
matrix that is filled with True values, meaning that this process aims at obtaining a
counterpart of the last version of the segmented frame of the previous step that has
every pixel inside the ROIs set to True.

4. Within the outer loop there are two inner ones, which are non-nested between them,
both cycling over the user-defined ROIs. The first inner loop fills a dictionary con-
taining the reference percentage thresholds that are used in the subsequent compari-
son. In particular, with reference to the number of pixels in a ROI, the threshold for
considering it as completely covered by the airbag is set to 99%, while the threshold
for the detection of a simple airbag boundary is set to 5%. Subsequently, if in the
ROI object there is no reference to the type of detection that must be made, it is
given as a default type the boundary one. Based on its type (all_area or boundary),
the ROI object is equipped with the corresponding percentage threshold value, taken
from the dictionary previously created in the current step.

5. Remaining in the body of the same loop as in the previous step, the only thing that is
left is the calculation of the threshold over which the detection is activated in terms
of number of pixels. This is done by extracting a box from the full_rois matrix that
bounds the current ROI coordinates and then by counting all the pixels that are set
to True. This number corresponds to the measure of the area of the current ROI and
it is used for calculating the number of pixels needed for the detection multiplying
it by the percentage threshold that has been set in the previous step. The described
operation is the last one in its loop.

6. After the calculation of the detection threshold in terms of number of pixels for each
ROI, another loop, involving again the various user-defined ROIs, is used for actuat-
ing the detection. In particular, a check on whether the current frame index belongs
to the interval of interest for the current ROI is done, in order to continue with the ac-
tual detection. With the aim of counting the active pixels in the current ROI, the box
that bounds it is extracted from the segmented frame and, as it has been done in the
previous step for the entire ROI area, a sum on all the pixels set to one is performed.
If the count of the active pixels in the box containing the ROI extracted from the seg-
mented image is greater than the activation threshold calculated for the same ROI,
the index of the current frame is added to the detections dictionary that is instantiated
at the beginning of the algorithm and the last inner loop body is terminated.

The described process is repeated until either all the ROIs have been analyzed for each
frame or a detection instant for every selected ROI has been detected. The first case means
that there can be ROIs for which the algorithm has not detected any relevant event.
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Algorithm 1 Detection algorithm
Require: roi_list, start_ f rame, end_ f rame ▷ (1.)

f ull_rois← NULL
detections←{}
for each roi ∈ roi_list do

detections[roi[name]]← NULL
for each t ∈ range(start_frame, end_frame) do

seg_ f rame← read_from_memory(t) ▷ (2.)
seg_ f rame← seg_ f rame > 0
seg_ f rame← remove_outliers(seg_ f rame, connectivity = 2)
seg_ f rame← apply_polygonal_mask(seg_ f rame, roi_list)
if f ull_rois is NULL then ▷ (3.)

size← seg_ f rame.shape(1)
f ull_rois← draw_rois(roi_list, size)

for each roi ∈ roi_list do
detection_thresholds[all_area]← 0.99 ▷ (4.)
detection_thresholds[boundary]← 0.5
if roi[type] is NULL then

roi[type]← ”boundary”
if roi[perc_threshold] is NULL or roi[type] = ”boundary” then

roi[perc_threshold]← detection_thresholds[boundary]
else if roi[type] = ”all_area” then

roi[perc_threshold]← detection_thresholds[all_area]
roi_area← extract_box( f ull_rois, roi[coordinates]).sum() ▷ (5.)
roi[act_threshold]← roi_area× roi[perc_threshold]

for each roi ∈ roi_list do ▷ (6.)
if roi[start_ f rame] < t < roi[end_ f rame] then Continue
active_pixels← extract_box(seg_ f rame, roi[coordinates]).sum()
if active_pixels > roi[act_threshold] then

detections[roi[name]]← t
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Chapter 3

Detection of biases and problems

Based on the stock version of the tool, the first experiment that is described in this thesis
work regards the evaluation of the performances of the ML-based approach. The main
goal of the current chapter is to focus on some types of input, feeding the employed seg-
mentation network alone both with a set of expected inputs and preprocessed images. The
aim is to compare and analyze the segmentation results, obtained by means of different
types of input. In particular, the following sections focus on:

• Expected input: the input frames are extracted from a demo video and used to
directly feed the segmentation network.

• Pre-processed images: the expected samples are pre-processed in the following
ways before being used to feed the segmentation network:

– Decolorization: the images are modified in order to remove contrasts and colours.

– Motion detection: on a sequence of images belonging to the same video, each
frame is transformed in order to highlight only the pixels that have different
values with respect to the previous frame.

– Background removal: on a sequence of images belonging to the same video,
the common background is removed.

3.1 Expected input
As described in Section 2.4.1, the expected input for the ERFNet that is employed in the
stock version of the tool accepts RGB squared images. In this section the algorithm is
tested with frames extracted from a sample video1 depicting the deployment of an airbag.
The video, while not portraying a perfectly professional test context, is still acceptable for
the purpose of this experiment, being recorded using a professional high speed pco.dimax2

camera at 4500 frames/s, made by the company Excelitas PCO.
The frame extraction is performed by means of the FFmpeg framework which is the

same method that is used in production mode, as reported in Section 2.3. The results are

1https://www.youtube.com/watch?v=TuHK3mNNMLk&ab_channel=ExcelitasPCO
2https://www.pco.de/highspeed-cameras/

17

https://www.youtube.com/watch?v=TuHK3mNNMLk&ab_channel=ExcelitasPCO
https://www.pco.de/highspeed-cameras/


3 – Detection of biases and problems

then analyzed, looking for any element that could represent a consequence of a bias that
affects the prediction.

Both when integrated in the tool and in a stand-alone condition, the segmentation al-
gorithm does not involve any transformation or normalization, since they are not applied
even during the training process. The only operation that is performed to each single
frame is resizing it to the resolution of 768× 768 pixels, this being the one used during
the training. After the actual call to the forward method of the segmentation network, the
resulting binarized images are multiplied by 255 in order to return an image that can be
distinguished by a human when saved in the segmentation folder.

With the aim of having an idea of the characteristics of the predictions on all the phases
of the video, Figure 3.1a shows three stock frames.

(a) Expected input.

(b) Segmentation based on expected input.

Figure 3.1: Sample frames extracted from a video of an airbag deployment, recorded with
a high speed camera (a), together with the segmented images obtained by means of the
default model (b).

In Figure 3.1a, the first frame depicts an initial situation, before the deployment of
the airbag and, hence, without any section to recognize as containing interesting pixels.
The second frame contains the airbag during its deployment phase: in this situation the
airbag is characterized by many shaded areas due to the unfolding of its surface during
the inflation. In the third image the airbag looks completely deployed: its surface is quite
smooth and the predominant color is the white of the fabric, with some light reflections
due to the lighting.

In Figure 3.1b, the results of the segmentation are showed by following the same order
as the input frames. According to the description of the first input frame, the correspond-
ing segmentation mask should be completely black, without showing any white pixel.
However, the result is quite different with respect to the ideal one: the first segmented
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image presents several positively labeled areas in locations that correspond to reflections
and high-contrast elements in the original frame. In particular, in the exact center of the
first binarized frame it is possible to recognize a circular shape that corresponds to the
logo in the same position of the steering wheel, if looking at the original version. In addi-
tion to the central logo, also some other reflections on the steering wheel rim mislead the
prediction.

Looking at the second prediction, despite the fact that the starting image is objectively
complicated due to the high number of folds both at the edges and on the foreground
surface of the airbag, the result is quite confusing. In particular, the same reflections that
fooled the segmentation in the first frame influence also the second prediction, with the
addition of some other artifacts due to the fact that the airbag joins some areas of the fixed
frame where the color of the frame itself is similar to the airbag one. Moreover, the inner
part of the predicted section should be homogeneous and should not contain any holes but
this is not the case, since, in addition to the jagged edges, there are also some inner areas
that are predicted as belonging to the background.

For what concerns the third prediction, the result is quite convincing but, between all
the possible situations, the one corresponding to a fully inflated airbag with good light
condition is the easiest possible for the segmentation model to work. The result does not
contain any relevant hole or jagged edge and there is no other positively labeled section
except for the airbag one, if comparing it with the original frame.

(a) Logo area. (b) Shaded areas.

Figure 3.2: Focus on the false positive predictions around the logo area (a) and on the
false negative ones corresponding to some shaded airbag sections (b).

From the described attempt it is possible to extract the reason for one of the experi-
ments that are described in the following section. The common factor in all the predictions
presenting errors and artifact is the fact that these errors derive from some particular color
combinations and high contrast areas. Figure 3.2a focuses on an example supporting this
hypothesis: the high contrast value of the reflection generated by the logo in the center of
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the steering wheel and its central position induce the model to consider it as a part of the
airbag. The complementary problem can be recognized for the shaded edges of the bag
in Figure 3.2b. Another factor that enforces the color combination and contrast problem
is given by the tendency of the network to blend together correctly classified pixels and
neighboring areas that have similar colors to the surface of the airbag.

This being highlighted, in the next section an attempt to bypass the yet described prob-
lems is presented without retraining the network, in order to enforce the reported conclu-
sion.

3.2 Preprocessed input
In the following, three pre-processing approaches are described. They are meant to test
both the generalization capacity of the network and some approaches for isolating the sub-
ject of the detection in the input frame. Moreover, in order to keep track of any changes,
the analyzed frames are coherent with the ones showed in the previous section.

3.2.1 Decolorization
The first experiment involves a per-frame pre-processing, meaning that each frame can be
transformed without using any other frame from the same video as base or reference. The
idea of the Decolorization process comes from the transformation introduced by Benjamin
Graham in [10]. Graham’s aim was to normalize lighting and color aberration variations
within the employed dataset by removing the local average color in the neighbourhood
for each pixel. Despite the need for this kind of normalization, the dataset involved3 is
quite coherent in the depicted objects, since it contains a set of retina images with less
varying characteristics with respect to the ones that can be detected in the custom dataset
employed in this thesis work, according to an empirical analysis. For this reason, the aim
of the operation is not shared with its original application, although it is possible that,
in training conditions, the process could benefit also from the point of view of a further
dataset normalization. As reported in [10], the operation involves the convolution of the
original image with a Gaussian filter (in order to obtain a blurred version of each frame)
and the subtraction of the result from the original image. The Gaussian Blur step enables
the calculation of the actual local average color for each pixel, where the locality is given
by the kernel size and the standard deviation used in the convolution with the Gaussian
function. The subtraction of the local average color from each pixel is based on a weighted
sum, plus a value that increases by 128 the average pixel values.

In the following, two attempts are described, involving different kernel sizes and stan-
dard deviation values.

The first case, showed in Figure 3.3a, uses a low standard deviation value, meaning
that the local average for each pixel is very similar to the value of the pixel itself and
the output depicts a version of the original frame that is deprived of most of its original
contrasts and color combinations.

The output predictions in Figure 3.4a result in a definitely worse quality with respect
to the ones obtained by means of the expected type of input. In the first prediction it is

3https://www.kaggle.com/c/diabetic-retinopathy-detection/data
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(a) Heavy decolorization.

(b) Light decolorization.

Figure 3.3: Collection of three sample frames after a heavy decolorization process (a) and
a lighter one (b).

evident the model completely misunderstands the content in the image, wrongly returning
positively labeled pixels where, in ideal conditions, there would be a completely expanded
air chamber. In the second prediction the number of false positive labeled pixels decreases
but the quality of the prediction itself does not seem to get acceptable. In the third image
the positively labeled area increases again but, this time, as a reaction to the actual airbag
inflation.

Figure 3.3b shows a lighter decolorization, meaning that the blurred version of the
image to be subtracted from the real one is obtained through a higher standard deviation
with respect to the first decolorization attempt. The effect of using an higher standard
deviation, and therefore also a larger kernel size, is that, for each pixel in the original
image, the subtracted value derives from an average on a wider area compared to the
previous case. This means that the resulting image presents less accentuated colors on
some surfaces but still visible contrasts in correspondence with the contours of the objects.

Regarding the results based on the input just described, showed in Figure 3.4b, a
slightly improved first prediction can be noticed. Specifically, being the colours closer to
the ones in the corresponding original image, the segmented version presents a decreased
false positive area with respect to the previous case. In the second and third prediction,
however, there is no visible improvement if compared to the havier decolorization case.

The analysis that is described in this section seems to reinforce what has been high-
lighted in Section 3.1, regarding the poor generalization performances of the employed
model in relation to contrasts and color combinations.
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(a) Segmentation based on heavy decolorization.

(b) Segmentation based on light decolorization.

Figure 3.4: Segmented predictions corresponding to a set of decolorized frames by means
of both the heavy approach (a) and the light one (b).

3.2.2 Motion detection

The experiment described in this section is based on a different pre-processing method-
ology for the input images. Although the resulting input images can be similar to the
previous attempt, the main aim, in this case, is to isolate the actual moving pixels in each
frame of the video, with respect to the previous one. The pre-processing step is quite
simple: for each frame, the previous one is subtracted through the same type of weighted
sum as the previous experiment. The only difference with respect to the weighted sum
employed in Subsection 3.2.1 is that the the result of the sum itself is not increased by
128, since, in the images that contain many moving pixels, the shapes are more visible
than in the previous test. In addition to that, the aim of the current test also lays in under-
standing how the model behaves with completely black images, as in the case of the first
frame in Figure 3.5a.

The result of the pre-processing step actually removes the most of the elements that
do not coincide with the airbag itself, highlighting the edges and the folds on the air
chamber surface. A drawback of the described methodology is that, in frames that do
not contain many moving pixels with respect to the previous one, the result is an image
with hardly recognizable and low-contrast content, like in the last frame of Figure 3.5a.
Moreover, since the support frame is not completely rigid and immovable, some modified
images present noise in terms of pixels detected as having different value compared to the
previous sample.

Figure 3.5b shows the effects that the presented pre-processing methodology has on the
model output and, in these regards, the result seems worse than the previous case, with
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(a) Frames with motion detection.

(b) Segmentation based on frames generated with motion detection.

Figure 3.5: Sample frames generated by means of motion detection pre-processing, to-
gether with the resulting segmented images from the default model.

whom it shares some elements. Specifically, the first output is completely misunderstood,
since the false positive pixels are spread as if in the original image there was an airbag
during the inflation phase, but this is not the case. In the rest of the output predictions, the
positively labeled pixels are not compactly spread in the airbag area, neither during the
airbag deployment or in the condition of complete extension. In general, it seems that the
completely black (or empty) image case is not covered by the model capabilities, while
images that contain sets of moving pixels with the appearance of an airbag are not enough
for a good prediction, if they are not supported by the inner color of the generated shape.

Also in the case of the experiment described in this section, the model seems not to
generalize enough for a correct detection of the airbag bounds, even if they are isolated
from the most of the background elements.

3.2.3 Background removal

The analysis carried out in this section merges the attempt of isolating the airbag from
the background with the need for an easier representation of the airbag itself in terms of
colors and contrasts. The latter goal derives from the inability of the model to recognize
the air chamber if deprived of its characteristic colors and contrasts. Hence, the overall
objective of this experiment is to test the behaviour of the employed network with input
images that are deprived of the sections depicting the background.

The background removal algorithm is based on the weighted sum employed in Sub-
section 3.2.2, meaning that black pixels are not mapped to grey; specifically, in this case
the subtracted frame coincide with the first one in the sequence that is extracted from the
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video. By doing so, the frame that is subtracted contains every fixed element in the image
and, after the operation, deletes the constant fixed elements from each subsequent frame.
However, the first frame includes also the container of the air chamber (that could be ei-
ther a steering wheel or another bag) when it is closed, before the deployment starts. This
implies that, when the initial frame is removed from a subsequent one containing the de-
ployed (completely or not) air chamber, the white surface of the airbag presents shadows
which can be traced back to the negative version of the removed frame.

(a) Frames with removed background.

(b) Segmentation based on frames with removed background.

Figure 3.6: Sample frames generated by means of background removal pre-processing
(a), together with the resulting segmented images from the default model (b).

As Figure 3.6a shows, the first frame is completely black, since the removed frame
is almost identical to the considered one. In the center of the second frame, however,
the negative of the steering wheel logo can be recognized; in the same way, some other
visual artifacts in the place of the steering wheel support are due to its movement after the
explosion. The third frame in Figure 3.6a presents shadows corresponding to the surface
of the support in the peripheral areas of the airbag surface, in addition to the logo.

Given the described images, it is interesting to understand how the model performs
having the important object as isolated and similar to the original as possible by means of
a fast pre-processing. In Figure 3.6b, the first prediction (deriving from a black image) is
quite perfect, showing only a minimal amount of noise in the form of some false positive
pixels. This case seems to be in contrast with the corresponding prediction in Subsection
3.2.2, since both predictions have a black image as input. However, the difference lays
in the fact that the current black input image is the result of the subtraction of the first
frame of the sequence, while the previous case involved the removal of the preceding
frame, resulting in a lower number of "moving" pixels that generate an "unreal" condition.
The second segmented image is still quite acceptable, but the prediction suffers from the
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3.2 – Preprocessed input

influence of some negative elements of the original frame, such as the logo in the center
and some shadows at the ends of the airbag surface. The third prediction confirms, in
a more explicit way, the observation made for the previous sample: the output presents
some negatively labeled areas that correspond to the wider shadows characterizing the
third input frame.

The described experiment shows how well the original model performs if provided
with known colors and contrasts, with respect to conditions which only provide shapes
and highlighted edges. Despite some predictions are heavily affected by shadows and
visual artifacts deriving from the provided input, the results are still interesting, since the
model performances improve with the removal of disturbing elements belonging to the
background.
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Chapter 4

First approach: data
pre-processing and
decolorization

Chapter 3 highlights how dependent the default model is on color combinations and re-
curring contrasts in the recognition of the segmentation subject. Similar patterns and
combinations to the ones that characterize the presence of an airbag in a specific area can
mislead the model into recognizing certain areas as falsely positive or falsely negative, in
terms of whether the pixels belong to the actual air chamber or not. Moreover the default
training process is not binary, in the sense that the model is also set to learn a background
class in addition to the airbag one. By means of the empirical tests carried out in the pre-
vious chapter, it is clear that learning a background class could lead to a wrong prediction
in case the actual submitted background is not known from the training process.

The aim of the approach presented in this chapter is to improve the current model per-
formances by keeping its overall architecture and concept. In particular, the changes are
made in order to introduce a better generalization and normalization in terms of color
combinations and contrasts expressed in the input images. This being said, the only
modification on the actual model architecture is the reduction of the number of output
channels in the last convolutional layer: indeed, the default model presents 2 output chan-
nels, meaning 2 classes respectively used for the background and the airbag, while the
approach described in this section learns how to distinguish only the class corresponding
to the airbag with respect to anything else.

Table 4.1a shows the integration of the pre-existing ERFNet architecture with the
modification previously described. As the table reports, the resolution corresponds to
a squared image and this characteristic has not been modified with respect to the default
solution. Moreover, Table 4.1b describes the blocks introduced by Romera et al. in [17],
both for the upsampling operation and for the substitution of the usual non-bottleneck and
bottleneck residual blocks.
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Modified ERFNet
Arm Output size Architecture

Encoder

384×384 Downsampler block, 16

192×192
Downsampler block, 64

5× Non-BT-1D, 64

96×96
Downsampler block, 128

8× Non-BT-1D, 128

Decoder

192×192
Upsampler block, 64
2× Non-BT-1D, 64

384×384
Upsampler block, 16
2× Non-BT-1D, 16

768×768 Upsampler block, 1

(a) Representation of the Encoder-Decoder ERFNet architecture, adapted for the prediction of a
single class and for an input resolution of 768×768 pixels.

Blocks explained
Block name Type Architecture

Downsampler Block, x Convolution 3×3, x

Non-BT-1D, x Convolution

⎡⎢⎢⎣
3×1, x
1×3, x
3×1, x
1×3, x

⎤⎥⎥⎦
Upsampler Block, x Deconvolution 3×3, x

(b) Explanation of the notation employed in the ERFNet architecture for what concerns the Down-
sampler block, the Non-Bottleneck-1D block and the Upsampler block.

Table 4.1: Representation of the modified ERFNet architecture (a), with the addition of
an exploded view of the blocks used (b).

4.1 Training algorithm

The training process was performed on hardware belonging to an AWS EC2 (Elastic Com-
pute Cloud) instance1. The CPU model was a Intel Xeon E5-2686 v4, supported by a
32GB RAM. The GPU was a NVIDIA Quadro M4000 instance, with a 8GB dedicated
RAM. Both the underlying system and the container one were running Ubuntu 18.04 LTS
as a Linux distribution.

1https://aws.amazon.com/ec2/features/
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4.1 – Training algorithm

4.1.1 Pre-processing technique

The main change introduced in the proposed approach lays in how the data are pre-
processed before entering the actual training algorithm. Indeed, as exposed in Section
3.2, it seems that the current version of the segmentation model suffers from a category
of biases that is linked to the lack of variety of color combinations and light conditions in
the training dataset. For this reason, the current proposal leverages on the same principle
as the base of the experiment in Subsection 3.2.1, which involves a per-image color pro-
cessing aimed at the normalization of the aforementioned light conditions and contrasts.
However, while the Decolorization experiment in Subsection 3.2.1 comprehends both a
heavy version and a lighter one, the current pre-processing operation only consists in the
"lighter" approach. The reason is mainly empirical: approaches with low standard de-
viation values for the removed blurred versions of the frames return output images that
present a heavy lack of color informations, meaning that the training of the deep model
should force the weights to learn features which derive only from shapes and raw patterns,
without any explicit color and contrast information. For this reason, even if the proposed
heavy version could potentially bring to a very robust model, the training convergence,
by keeping the model architecture constant, is too slow. A trade-off is represented by
the lighter decolorization version, which, by the way, is closer to the goal for which the
methodology was introduced in [10] since it works like a per-image color and light nor-
malization.

The actual decolorization process is actuated for each loaded image in the dataset class,
by means of the transformation function, provided by a dedicated class. The decoloriza-
tion is performed at the end of the stack of augmentations included in the aforementioned
function, introduced in Subsection 2.4.3.

4.1.2 Training procedure

The actual training algorithm is similar to the default one, described in Subsection 2.4.3
in terms of how the model is fed. There are some differences deriving from the fact that
the modified proposal outputs a single channel image, since the only learned class is the
airbag one.

The first different element lays in the employed Loss function. In the default approach,
the unnormalized predictions (or logits) are given as input to a LogSoftmax activation
function and the obtained results are used for the actual calculation of the loss value, by
means of a weighted NLLLoss. In this case, however, the output of the model corresponds
to a single 2-dimensional vector containing the resulting logits, representing the raw prob-
ability prediction that each mapped pixel belongs to an airbag or not. The described out-
put is then directly given to the Pytorch implementation of a Binary CrossEntropy Loss,
called BCEWithLogitsLoss2, which introduces some peculiarities. First of all, there is no
need for a further manual step through an activation function, since the introduced Loss
implementation provides an integrated and optimized way for applying a Sigmoid activa-
tion function to the generated logits. The described approach is usually employed in the

2https://pytorch.org/docs/stable/generated/torch.nn.BCEWithLogitsLoss.html
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case of binary classification, since it corresponds to the application of a Softmax activa-
tion in a single label situation [2]. Secondly, the provided interface accepts a rescaling
parameter, meaning that, if the positive and negative occurrences of the analysed class are
unbalanced, it is possible to obtain a weighted version of the loss by simply computing
the ratio between the background pixels and the ones belonging to the airbag. In this case,
the reweighting strategy is as simple as counting the positive and negative pixels and then
computing their ratio, which is in contrast with the more complex algorithm employed in
the default approach, due to its multi-class nature.

As in Subsection 2.4.3, in order to evaluate the best performing update during the
training phase, the Validation epochs are based on a single pass over the Validation set
and the computed loss and IoU values are collected in order to determine the goodness of
the updates. For what concerns the IoU metric, it is still computed by considering both
the background and the airbag class in order to be comparable with the values obtained
for the default approach.

4.2 Comparison

In order to compare the performances of the default segmentation model and the one
whose training phase and terminal layer are modified, two proofs are reported. Firstly,
a merely empirical experiment shows a comparison between the results obtained by the
two versions of the model through the segmentation process applied on expected input.
On the other hand, a script performs multiple validation epochs, while calculating the
IoU metric in the same way as it is done during the validation phase within the training
process. In particular, the data analysed in the second experiment is more aggressively
augmented with respect to the validation phases in the training processes of both the
models. A specific focus is applied on the color augmentation section: in fact, colors
are not only saturated or desaturated as in the normal validation phase, but some hues are
also inverted. This is done with the aim of comparing the generalization capabilities of
the models.

4.2.1 Visual comparison

The first test regards a visual comparison between three segmented images, respectively
returned by the default model and the updated one. Three frames, belonging to the same
video as the one used in Chapter 3, are used, in order to represent all the main states of
the airbag deployment.

Figure 4.1a represents the actual input frames to the compared models and, as stated
before, the first frame do not contain any airbag trace, the second image contains the air
chamber during the deployment phase and the last image shows a fully deployed airbag.

Figure 4.1b represents the result of the segmentation process performed by the default
model. As highlighted in Section 3.1, the model is quite sensitive to the light contrasts
that are generated by the reflections on the logo of the steering wheel in the first frame.
In the subsequent predictions performed by the default model, the main problems regard
the airbag during the deployment phase, in fact the second segmentation is jagged and
lacks of true positive predicted pixels in some areas that correspond to shaded surfaces.
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(a) Expected input.

(b) Segmentation based on expected input with default model.

(c) Segmentation based on expected input with updated model.

Figure 4.1: Comparison between the predicted segmented images obtained by means of
the default model (b) and the ones obtained by means of the updated one (c).

The third segmentation generated by the first version is almost perfect, since it covers the
majority of the airbag area.

Figure 4.1c shows the corresponding predictions resulted from the model with the in-
troduced modifications. A first improvement can be recognized in the initial prediction:
in fact, it is evident a drastic reduction of the number of false positive pixels in the neigh-
bourhood of the steering wheel logo. In the second prediction the number of true positive
pixels seems higher with respect to the previous counterpart, while the third prediction
is not as accurate as the corresponding one in Figure 4.1b, since it contains a hole in the
rightmost end of the prediction surface.

In general, except for the third prediction, the updated model seems improved with
respect to the default one, reinforcing the thesis that, by normalizing the dataset in terms
of colors and contrasts, the final model can benefit from it in accuracy.
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4.2.2 IoU comparison
The second test is based on the evaluation of the same metric that is employed in the
validation phase of each training epoch, which is the IoU value. The computation of the
metric is carried out in the same way as during the training, by means of the same class
and related functions. Specifically, for each batch, the total number of true positive, false
positive and false negative pixels is computed and summed with their corresponding class
counters. At the end of the epochs, for each model, the aforementioned counters are used
as in Equation 2.2.

IoU comparison
Model IoU (%)

Default model 95.37
Modified model 98.64

Table 4.2: Comparison between the values of the Intersection over Union values computed
by means of multiple iterations of a segmentation process over an aggressively augmented
validation set.

Table 4.2 highlights the performance improvement obtained in terms of IoU calculated
on both the airbag class and the background class, even if the updated model is trained to
recognize only the airbag class.

The obtained results confirm the overall improvement in the segmentation perfor-
mances, meaning that the updated model can be integrated in the Detection pipeline of
the analyzed tool, aiming at translating these advances into a better final detection quality.
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Chapter 5

Second approach: classifier with
forced attention

As described in Section 2.3, for each frame, the current detection pipeline is based on
different steps: a pre-processing based on a Machine-Learning algorithm, the application
of each defined ROI on the segmented image generated by the Machine-Learning model,
and the actual detection, performed by means of some thresholds measuring positively
labeled pixels with respect to the entire ROI area. Chapter 4, is focused on evaluating a
method for improving the generalization of the Machine-Learning step whose main task is
to semantically segment each given input image. The success of the detection operation,
however, is also strongly dependent on the steps following the one that has been analyzed:
for this reason, improving the ML model does not necessarily mean improving the overall
detection performance as well.

In this section, another pipeline approach is presented. The conception of the following
sequence of operations is directly driven by the main aim of the pre-existing pipeline,
which is the actual detection of a condition between the airbag and a pre-defined area. In
this context, by changing the view of the problem statement, detecting the time in which
the airbag enters the ROI or completely covers it is the same as classifying each ROI (by
tracking the time) as containing a piece of air chamber or being completely covered by it.
This being said, the ML approach described in this section completely changes and covers
most of the sequence of operations previously performed in different steps. Indeed, in
terms of pipeline phases, the modification regards the airbag segmentation and detection;
according to a deeper view, however, the detection phase includes the per-frame isolation
of each ROI and its evaluation through the predefined thresholds (as described in Section
2.5), which can be considered as two well defined sub-phases due to their belonging to
two different inner loops within the outer loop.

In order to make a comparison with the three highlighted stages, the proposed approach
incorporates them all in the form of a unique ML-based step. The employed model takes
two parallel elements as input: the usual extracted frame and a binary mask which rep-
resents the coordinates of a ROI. The output is a class label that represents either the ab-
sence, the presence or the invasion of a ROI by an airbag section. Depending on the type
of ROI that the user defined, either the second or the third label fires the actual detection
of the time when the condition has been met for that specific ROI.

In the following, different aspects regarding the proposed approach are described:
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• the first analysis regards the choice of the architecture and the reason that has driven
to its proposition;

• a particular focus is necessary on describing how the data are employed in inference
condition and how the original dataset is transformed to be adapted to the new model
architecture and task;

• as for the previous models, the training algorithm is a fundamental point for linking
the performances obtained with the way the model itself works.

5.1 Architecture choice
Instead of just presenting an improvement attempt for the existing model, this thesis work
also focuses on the realization of an alternative algorithm for satisfying the problem state-
ment expressed in Section 1.3. Mainly driven by the need for a better time performance,
the first filter between the various approaches gives as result a classifier architecture. In-
deed, keeping as goal the aforementioned modified view for the problem, a simple classi-
fier model can help to improve at least the performances in terms of inference time. This
is due to the lack of a second arm used for upsampling the result of the encoder. Using
a classifier, in fact, can be viewed like using only the encoder section of the architecture
employed for the segmentation task and, therefore, this reduces the inference time.

The main problem regarding the classifier architecture is how to use both the informa-
tion deriving from the input image and the one linked to the user-defined ROI while the
usual classification task involves the analysis of a single input image.

The usual objective for a classification-oriented model is to determine the type (or
class) of an object contained in the input image. Starting from the proposition of the first
CNN approach for image classification [12], the logic and precision applied to this task
evolved with the introduction of the region proposal algorithms. These algorithms were
usually built on shallower concatenated models or similarity based recursive process such
as Selective Search. RCNN [9] is the turning point for the aforementioned models based
on region proposal algorithms: in fact, many improvements arose from it, such as Faster
R-CNN [16] which dramatically boosts inference and training performances by employing
a single Fully Convolutional backbone aiming both at extracting region proposals and at
evaluating them by means of a further classification section.

The common point in the referenced models is the fact that the region proposal process
itself is learned too, since, most of the times, the objective is to classify the main object in
the input image. The context of this thesis work requires the classification to be forcibly
bounded with a set of user defined ROIs and this point makes the previously mentioned
models incompatible with the goal itself. The aforementioned bound is obtained by using
both the informations as input for the model: indeed, the next reasoning regards how to
get the optimal combination of these input elements.

A practical survey over the different methodologies for manually forcing the attention
in models aimed at classification has been carried on by Sagi Eppel in [7]. Eppel evalu-
ates two main categories of attention induction methods, namely hard attention and soft
attention. The hard attention approach involves merging the input image and the ROI be-
fore entering any convolutional model, by zeroing all the pixels in the image that are not
included in the ROI: this means multiplying the input image by a binary mask containing

34



5.2 – Input and training data

ones within the ROI and zeros outside of it. The soft attention method involves merg-
ing the two input elements along with the feature extraction process within the employed
deep convolutional network. [7] highlights how inducing attention within the convolu-
tional backbone outperforms any hard attention method in classification tasks.

In a previous work, Eppel introduces the so-called Valve filters [6]: this approach in-
volves the deep convolutional backbone to be prepared to accept both the image and the
ROI based binary mask in parallel. The image is given as input to the first convolutional
block of the backbone, while the binary mask is resized to be compatible with the output
of the aforementioned convolutional block and then passed through another convolutional
layer whose goal is to extract the same number of feature maps as the ones in the main
branch. The reason why these feature maps are called Valve filters is that their aim is to
regulate the expression of the different features extracted by the first block in the main
branch, focusing the attention of the subsequent feature extraction operations to the area
belonging to the ROI. The strength of this approach lays in the fact that regulating the
expression of some extracted features is far from the logic of zeroing every background
glimpse of the input image. This means that keeping elements from the background of the
main input helps the rest of the convolutional architecture to exploit information coming
from the context and the environment around the ROI, dramatically improving the perfor-
mances of the model with respect to hard attention methods which completely delete any
background element.

Based on the presented analysis, the classifier is equipped with a deep convolutional
backbone, whose input is given by the merged outputs of two input convolutional layers,
extracting the same number of feature maps from the actual input frame and the ROI.
The merging operation involves the addition of the Valve filters to the first feature maps
extracted from the image. Multiplication was also tried but, confirming what was asserted
in [6], the the training convergence is a bit slower. The first convolutional layer encoun-
tered by the input image and the one that is added for the parallel ROI input are part of
the first block of a modified Resnet50, which works as backbone of the model. Table 5.1
summarizes the overall classifier architecture in inference mode.

5.2 Input and training data
The default approach is based on a single path, which is characterized by a single input
source and a single output end. The input is represented either by an image in a simple
inference condition or by a batch of images during the training phase. The approach
presented in this chapter introduces a second input branch, which is parallel to the main
one until the conjunction point. The main branch still takes as input the same images
as the default approach, meaning that each extracted frame is either used as input for
inferences or collected for the training process. The second branch is fed with a binary
mask that, in a inference condition, is derived from a user input; in this context, the way
the user defined coordinates are translated into a binary mask is similar to the sequence of
operations presented in the Algorithm 1.

The main changes are applied on how the data is used for training purpose. Indeed,
the original dataset is not compatible with how the current model should be fed during
the training phase, since it does not include neither a collection of binary maps or class
indexes as labels. What is needed by the current approach is more complicated with
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Classifier with forced attention
Layer name Output size Architecture

block 1 192×192 7×7, 64, stride 2 3×3, 64, stride 1

block 2 96×96

3×3 max pool, stride 2⎡⎣ 1×1, 64
3×3, 64

1×1, 256

⎤⎦×3

block 3 48×48

⎡⎣ 1×1, 128
3×3, 128
1×1, 512

⎤⎦×4

block 4 24×24

⎡⎣ 1×1, 256
3×3, 256

1×1, 1024

⎤⎦×6

block 5 12×12

⎡⎣ 1×1, 512
3×3, 512

1×1, 2048

⎤⎦×3

1×2 Average pool, 2-d fc

Table 5.1: Representation of the architecture of the introduced Classifier with forced at-
tention, based on a Resnet50 with the addition of a second input convolutional layer for
the ROI mask and the modification of the last linear layer which generates an array with
length 2, instead of the previous version having length 1000, used for ImageNet classifi-
cation.

respect to the standard approach: the input samples should be made by tuples of frames
and binary masks, while the needed labels are actually class indexes, instead of reference
segmentations.

In the following, the description of how the original dataset has been adapted is re-
ported: specifically, the focus of the analysis is on the fact that the entire adaptation
process is carried on at runtime, during the training process and for each single batch of
images coming from the original dataset. This means that there is not a fixed transformed
version of the dataset and the training samples change for every epoch, since the ROI
sampling is randomized in every loop.

The reported translation module introduces some peculiarities and improvements to
the training process.

• The lack of a fixed training dataset induces a considerable gain in the data augmen-
tation process. Indeed, the original dataset is quite limited in terms of number of
samples and the standard augmentation is bounded with the frequent patterns and
backgrounds which are distributed over the entire collection. In the proposed ap-
proach, the introduction of the ROI input forced the development of the Translation
module to include a ROI proposition method and that is a powerful source for a better
generalization.

• The standard dataloader, employed in the default version of the detection backend,
is not aware of the class imbalance that is obtained by simply loading every image in
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the dataset: for this reason the default loss function is provided with class weights,
which are calculated as described in Section 2.4.3. Being the Translation module
implemented as a dataloader, it is made to provide balanced samples in terms of
reference class labels. Specifically, the presented module loops over the loaded batch
until a balanced combination of samples is collected, then returning the results as a
usual dataloader does.

• The random ROI proposal actuated for the training samples depends on the provided
batch, which, in turn, depends on the data shuffling operation: for this reason it
is possible for some batches not to include enough positively labeled regions for
the class balancing operation. In this regards, the Translation module saves a backup
batch that is reloaded in case the current set of images does not provide useful labeled
regions.

A detailed description of the translation module is reported in the following. The
algorithm also shows some sections referring at the multi-task mode, which is described
in Section 5.3.

1. As initial conditions, it is necessary that some elements are defined: in particular,
the given objects are the number of ROIs (called patches) per batch, the number of
class labels (3 is the default value), a boolean variable indicating whether the loaded
data are validation data or training ones, another boolean variable pointing at the
multi-task mode, the batch size, the batch itself and the resolution to be used for the
returned elements. The first step of the actual algorithm regards the initialization of
the backup batch, that is subsequently used when a future batch is not balanced for
what concerns class labels.

2. When the translation module is used in the context of a validation phase, the corre-
sponding function is employed: the only difference with respect to the reported al-
gorithm lays in the fact that, after the first validation epoch, the sequence of patches
is fixed for the subsequent iterations in order to have a coherent comparison within
the different epochs results.

3. If the Translation module regards a training batch, the first sequence of operations
involves the initialization of the data structures that are returned at the end of the
algorithm. In particular, the index that is used to point to the free cells in the struc-
tures is set to zero and the maximum possible number of patches per class that can
be obtained by using the provided total upper limit number of patches is calculated.
Subsequently, the array that contains the per-class counters is initialized and then
filled with values corresponding to the previously computed number of patches per-
class. Afterwards, the frames and the masks arrays are initialized, respectively with
3 channels for the RGB frames and 1 channel for the binarized masks. The last ini-
tializations correspond to the labels array and, if the multi-task mode is active, to the
coverages array. The latter element contains the calculated airbag coverage levels in
each ROI.

4. Before starting the actual patches search process, the initial timestamp is saved in or-
der to be used for checking whether the elapsed time justifies the use of the backup
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batch. At this point, the actual patches search starts and the stop conditions corre-
spond to the reset of the class labels counter. The first operation in the search loop
corresponds to the timestamp check: if the elapsed time is greater than 60 seconds,
then the backup batch is employed, otherwise, if there is no backup batch, the entire
training process is stopped. This case can happen only for the first batch of the first
epoch, since, if it completes without any problem, there will always be a backup
batch along the entire training process.

5. The main operation in the patch search process involves looping on the entire batch,
which is very likely to occur more than once due to the randomness of the coor-
dinates sampling. For each round over the batch, the frame and the corresponding
segmentation mask are extracted; then there is the actual random sampling, which
is based on the bounding box of the provided frame, meaning that there is no possi-
bility for the sampled coordinates not to be within the image limits. The subsequent
operation is the ROI isolation from the provided binarized mask (by means of the
same function used in the Algorithm 1), aiming at getting the base for the label
computation. The latter operation regards the extraction of the class index that is
compared with the predicted one in the training phase and it is carried out by mea-
suring the ratio between the active pixels and the total number of pixels in the ROI
that is applied on the segmentation mask. Together with the extracted label, also the
aforementioned ratio is returned, corresponding to the coverage that is used for the
multi-task mode.

6. If the counter that tracks the extracted label did not reach zero during the previous
loops, the selected frame is used to extract the original size for the ROI coordinates
projection, then it is resized by using the provided resolution and it is added to the
corresponding data structure. The ROI mask is created by using the sampled coor-
dinates and the original size, then it is resized and added to its collection too. In
the same way, also the labels and the coverage value (if needed) are added to the
respective arrays. After the collection of each element, the counter corresponding to
the found label is decreased, while the index of the empty cell in the data structures
is increased. If all the label counters have reached the zero value, then the entire
translation step is arrested and the collected elements are returned to the training
process.

7. If the employed batch provided a set of balanced labels and the backup batch has not
yet been saved, then the current batch is used for this aim. When the patches search
is over, the data structures are returned to the main process, both if the multi-task
mode is active and if it is not.

5.3 Training algorithm
Regardless of the chosen deep convolutional backbone, the training process can be set
with two modes. The traditional training only regards the predicted class labels and the
reference class labels; on the other hand, the multi-task mode makes use of a double-
headed convolutional backbone, aiming at predicting both a class label and the airbag
coverage percentage for each ROI in a frame.
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Algorithm 2 Translation step
Require: max_patches, num_classes, is_validation, is_multi_task, batch_size, batch,

height ▷ (1.)
backup_batch← NULL
if is_validation then ▷ (2.)

validation_call(batch)
else

k← 0 ▷ (3.)
n_patches← ad just_n_patch(num_classes, max_patches)
label_counter← zeros(num_classes)
for each i ∈ range(num_classes) do

label_counter[i]← n_patches
f rames← zeros(n_patches, 3, height,height)
masks← zeros(n_patches, 1, height, height)
labels← zeros(n_patches)
if is_multi_task then

coverage← zeros(n_patches)
time_0← time() ▷ (4.)
while sum(label_counter) /= 0 do

if time()− time_0 > 60 and backup_batch is not NULL then
batch← backup_batch

else if time()− time_0 > 60 and backup_batch is NULL then Error
for each ( f rame, segmentation) ∈ batch do ▷ (5.)

box← sample_box( f rame)
seg_crop← extract_box(segmentation, box)
lab, cov← compute_label(seg_crop)
if label_counter[lab] /= 0 then ▷ (6.)

original_size← f rame.shape(1)
f rame← resize( f rame, height)
mask← draw_rois(bbox, original_size)
mask← resize(mask, height)
f rames[k]← f rame
masks[k]← mask
labels[k]← lab
if is_multi_task then

coverage[k]← cov
label_counter[lab]← label_counter[lab]−1
k← k+1
if sum(label_counter) = 0 then Break

if backup_batch is NULL then ▷ (7.)
backup_batch← batch

if is_multi_task then
return[ f rames, masks, labels, coverage]

return[ f rames, masks, labels]
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The training process was performed on the same hardware as in Section 4.1.

Standard training

Specifically, the traditional approach only trains the model for classification aims, with
reference to the number of classes defined before starting the process. The chosen number
of classes is 3, since the main objective is to recognize whether the ROI simply contains
a flap of an airbag that does not completely cover the region itself or whether the entire
surface of the ROI is covered by the fabric of the airbag. The third class is related to the
case the airbag is not detected at all. The specific class order is: 0 if no airbag is detected,
1 if only a section of the airbag is detected within the ROI, 2 if the ROI is completely
covered by the airbag surface. Said labels do not correspond to the ones directly predicted
in the training phase, since, as explained in the following, the learned classes correspond
to the "partial coverage" and the "complete coverage" ones in order not to bias the model
towards the knowledge of a subsection of the possible range of backgrounds.

In the context of the standard training process, the loss is a Multi Label Binary Cross
Entropy Loss, implemented by Pytorch1; the employed function is the same as the one
used in the case of the first approach in Section 4.1 with a different number of classes. A
Binary CrossEntropy loss is computed considering each detected class, by using as input
both the logits (which are passed through a Sigmoid activation function) and the one-hot-
encoded labels, meaning that the original 1-dimensional label array is transformed into a
2-dimensional array. The original label array is the one that derives from the Translation
module in Section 5.2. In this regards, there is no need for a class weighting strategy,
since the aforementioned module provides a balanced set of training data. The choice of
the Binary CrossEntropy loss with Sigmoid activation function instead of a more standard
approach like the combination of the usual CrossEntropy loss with Softmax activation
function, was driven by the same principle as the one introduced for the first approach:
the possibility to have an independent evaluation of the error for each class enables to
focus only on learning the "partial coverage" class and the "complete coverage" one,
linking the "absence" class to a low probability value corresponding to the highest one in
the predicted tuple. Said methodology involves a further fine-tuning process related to the
selection of the best probability threshold below which the final label corresponds to the
"absence" class; the aforementioned analysis is performed by means of a cross validation
in a subsequent step with respect to the training one.

As for the training process related to the default approach, the optimizer is based on
the Pytorch implementation of the Adam function, with a learning rate scheduler that is
quite different with respect to the default one. Indeed, the trend is cyclic, with a fixed
maximum and minimum values of the learning rate within which the actual value varies
multiple times.

At the end of each epoch, in order to save the best performing update of the model, a
control over the prediction accuracy and loss is performed: the best epoch is the one that
shows the best combination in terms of minimum value of the loss and maximum value
for the accuracy in the validation phase.

1https://pytorch.org/docs/stable/generated/torch.nn.BCEWithLogitsLoss.html
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Multi-task training

The second training mode involves the addition of a second head to the deep convolu-
tional backbone while the first output is still given by a linear layer with three generated
features, corresponding to the previously mentioned class labels. The second output is the
new one and the goal is to predict the coverage of the airbag surface in the ROI. The idea
behind the introduced mode is to combine a sort of linear regression task with the main
task, aiming at improving the awareness and the understanding of the model in terms of
what should be evaluated in order to perform the right prediction by means of the classi-
fier head. The actual prediction corresponds to a number that, potentially, can range from
−∞ to +∞. For training purpose the raw output is used in the loss, together with the cal-
culated coverage; in the validation phase, instead, the raw output is passed through a Hard
Tanh activation function, which linearly isolates the values in [0,1]. The aforementioned
activation function is implemented by means of the Pytorch framework2, in a translated
and scaled version, so that the output value is bounded in the previously reported interval,
as showed in Figure 5.1b, with respect to the default version which is limited in [−1,1].

(a) Default HardTanh (b) Scaled HardTanh

Figure 5.1: Representation of the Hard Tanh activation function: the default version (a)
on the left saturates in [−1,1], the scaled version (b) on the right spans in the range [0,1]

Since the multi-task mode involves the model to be trained for both the tasks, the loss
function is adapted to the described case by simply summing the previously mentioned
Multi Label Binary Cross Entropy version (employed for the classification task) and the
Mean Squared Error, which is used as baseline loss function for Linear Regression tasks.
The value of the loss that is computed through the described sum is only used for the
training phase, indeed, the choice for the best performing update of the model in terms
of validation accuracy and loss is still based on the Cross Entropy loss taken alone. This
means that the multi-task mode only works as support for the actual learning process,
without influencing the final prediction.

2https://pytorch.org/docs/stable/generated/torch.nn.Hardtanh.html
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5.4 Detection Pipeline integration
The approach presented in this chapter provides an end-to-end path from each frame-ROI
tuple to the detection of the airbag in the specified region. For this reason, the integration
of the described model in the Airbag Detection backend involves a substantial change in
the Detection Pipeline. The new pipeline does not include the segmentation step, which
was a time and resource consuming process to be carried out. Instead, after the frames
extraction, the presented model is directly fed with the extracted frames and the user-
defined ROIs.

The pipeline described in the following introduces a new detection methodology based
on two control modes. The instant control mode bases the detection on the label predicted
by the classifier by feeding it with the selected frame and ROI mask: if the predicted label
corresponds to the one that should be met depending on the ROI type, then said frame
is intended as firing the detection. However, this methodology is subjected to the possi-
bility that the classifier wrongly predicts the first frame in the defined range for that ROI
as the one that causes the detection, inhibiting the analysis of the following frames. For
this reason the memory control mode can be activated in case the previous methodology
is considered unreliable for the described reason: the memory control methodology com-
pares each predicted probability corresponding to the selected class with the first one in
the sequence generated by the frames range of the ROI. By doing so, the detection is not
fired with a single "absolute" prediction which is only based on the higher probability
value between the two predicted ones, instead, it takes into consideration the trend of
the probabilities themselves, providing a slightly less accurate but more robust approach.
This double control paradigm is based on the assumption that the user selects a range of
frames of interest for a certain type of detection that is wide enough to also contain frames
prior to the actual occurrence of the ideal detection, in order to support the idea that, if
the instant control mode generates an unexpectedly early prediction, in can be considered
unreliable. In the following, Algorithm 3 is described in steps.

1. As well as in the previous version of the detection phase, also the updated version
needs some initial conditions. In addition to the list of user-defined ROIs and the
indexes of the initial and final frames, there is one parameter more: the height vari-
able is used as reference size for the resizing operation carried out in the subsequent
steps. The first operation is the initialization of the detection dictionary, in the same
way as the previous version in Algorithm 1. Then, the first frame of the selected
sequence is loaded from memory, in order to extract the original resolution, before it
is resized.

2. The first loop regards the list of ROIs and the detection dictionary: the latter is filled
with NULL values in order to be checked when a detection occurs. For each ROI in
the list, a mask is created and added to the corresponding dictionary, in order to avoid
the repetition of this phase for each image when the algorithm loops over the frames
sequence. Subsequently, the classifier model is instantiated and the pre-computed
weights are loaded.

3. Before entering the main outer loop (over the extracted frames), two service struc-
tures are created, in order to enable the switch from the instant control mode to the
memory control one. In particular rois_start is set to have the same length as the
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ROI list and two cells per position that will contain the first predicted probabilities
for each ROI and class, which are used during the analysis as a comparison for the
subsequent predicted probabilities. The second instantiated structure, namely i_ctrl,
is meant to contain the actual boolean switch between the two aforementioned con-
trol modes. When the outer loop starts, the first check regards whether the frame
index corresponds to the first one in the sequence: if the condition is satisfied there
is no need for reloading the first image, since it was used to extract its initial reso-
lution in the first step. Otherwise, any subsequent frame is loaded from the storage,
normalized and resized based on the given resolution.

4. After the selection of the current image, the only inner loop over the ROIs starts;
the first condition checks whether the ROI on duty comprehends the current image
index in its user-defined observation interval. If the condition is met, the classifier is
fed with the current frame and ROI mask couple in order to obtain both the 2 class
probabilities and their transformation into the corresponding 3 labels. Afterwards,
another check is done on whether the frame index corresponds to the first one in the
specific ROI range: if so, the predicted probabilities are assigned to the correspond-
ing slot in the rois_start, representing the term of comparison in case the memory
control mode is selected.

5. The subsequent condition checks the type of ROI and assigns the corresponding ref-
erence label; in particular, if the type is not declared then the default one is boundary,
while the all_area type must be explicitly specified according to the first version of
the detection algorithm. If the ROI type is boundary, a check is made on whether
the instant control mode is active or not. If the condition is met a variable contain-
ing the reference label to be compared with the predicted one is set to 1 and the
instant to be assigned to the corresponding slot in the detection dictionary is set to
the subsequent value with respect to the current one, due to the high sensitivity of the
classifier to this particular class. If the instant control mode is switched off, a further
control statement checks whether the current predicted probability corresponding to
the boundary class is significantly higher than the one saved in the rois_start data
structure: if so, the current instant is added in the corresponding detection dictio-
nary. For what concerns the procedure for the all_area ROI type, the path is the
same as the one described in the previous case, with the only difference laying in
the fact that, if the instant control mode is active, the instant that is assigned to the
detection dictionary in case the predicted label and the reference one correspond, is
not increased by 1.

6. For each ROI, if the instant control mode is still active, if the predicted label corre-
sponds to the reference one and if there is no time value that has already been set
for that ROI in the detection dictionary, a further check controls whether the current
instant is the initial one in the range that corresponds to the analyzed ROI. If the con-
dition is met, likely the classifier failed to generate a reliable probability difference
between classes, meaning that the instant control mode would have predicted the
first frame in the range as the cause of the detection and said mode is switched off in
order to base the subsequent analysis on the memory control mode. If the frame that
caused the detection based on the instant control mode is not the first one, then the
instant saved as in Point 5 is inserted in the detection dictionary.
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Regardless of the approach in terms of model, it is evident that the presented detection
phase is cheaper (in regards of resource allocation) and faster with respect to the previous
version. Indeed, even without considering the time performance boost introduced by the
classifier, the new algorithm presents only one inner cycle per frame and speculatively
generates masks before they are actually used, as it is described in the second step of
Algorithm 3. Moreover, the presented detection phase replaces both its counterpart in
the default approach and the segmentation phase, dramatically simplifying the overall
pipeline and reducing the video analysis time. Another point in favour of the presented
detection process is that it provides a backup control mode which can be activated in case
the default one makes unexpected predictions.
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Algorithm 3 Detection algorithm with classifier
Require: roi_list, start_ f rame, end_ f rame, height ▷ (1.)

detections←{}
f irst_ f rame← read_from_memory(start_ f rame)
original_size← f irst_ f rame.shape(1)
for each roi ∈ roi_list do ▷ (2.)

detections[roi[name]]← NULL
roi_mask← draw_rois(roi, original_size)
roi[mask]← resize(roi_mask,height)

classi f ier← load_model_and_weigths()
rois_start← zeros(len(roi_list), 2) ▷ (3.)
i_ctrl← ones_bool(len(roi_list))
for each t ∈ range(start_frame, end_frame) do

if t = start_ f rame then
f rame← f irst_ f rame

else
f rame← read_from_memory(t)

f rame← normalize( f rame, [0.3005,0.2984,0.3007], [0.2593,0.2479,0.2682])
f rame← resize( f rame, height)
for each roi ∈ roi_list do ▷ (4.)

if roi[start_ f rame] < t < roi[end_ f rame] then Continue
label, probs← classifier( f rame, roi[mask])
if roi[start_ f rame] = t then

rois_start[i, :]← probs
if roi[type] is NULL or roi[type] = ”boundary” then ▷ (5.)

if i_ctrl[i] then
re f _label← 1
instant← t + 1

else if probs[0] = min(2× rois_start[i, 0], 0.96) then
detections[roi[name]]← t

else if roi[type] = ”all_area” then
if i_ctrl[i] then

re f _label← 2
instant← t

else if probs[1] = min(2× rois_start[i, 1], 0.96) then
detections[roi[name]]← t

if i_ctrl[i] then ▷ (6.)
if re f _label = label and detections[roi[name]] is not NULL then

if roi[start_ f rame] = t then
i_ctrl[i]← False

else
detections[roi[name]]← instant
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Chapter 6

Test Suite and comparison

The presented modified approaches are quite different from each other in terms of how the
problem is tackled. The first proposal aims at improving only some of the characteristics
of the default methodology, such as generalization and the focus of the model capacity.
By simply modifying the training process and the output shape, the rest of the detection
pipeline the segmentation model is part of is almost kept unchanged, meaning that, for
each frame, the aim is still checking whether a ROI condition is satisfied.

On the other hand, the proposed classifier needs several changes in how the frame is
analyzed: in fact the number of steps in its detection pipeline decreases, together with the
number of nested loops over the frames and the ROI set.

Given the diversities between the two presented proposals, the goal of this chapter is to
compare them from different points of view. Since the problem statement mainly focused
on the robustness of the model and the time performance, three tests are presented. The
common idea in these experiments is that all of the described algorithms have the purpose
of defining whether, in an ROI applied to an image, the described area does not contain an
airbag, partially contains it or is completely covered by it. This common aim brings to the
definition of a "challenge" statement that can be used to compare the different approaches
performances. Regardless of how the goal is pursued, all of the presented algorithms are
capable of predicting one of the three aforementioned states for a ROI, meaning that they
can be compared in a classification challenge. Obviously, while the classifier approach
is naturally predisposed for the challenge objective, the default model and its modified
version need to be equipped with a procedure that ensures their compatibility. This proce-
dure, however, is already given in a great portion by the subsequent steps of the pipeline of
which the semantic segmentation models are part. Indeed, by only modifying the section
of code that regards the output of the overall pipeline, it is possible to obtain a class label
prediction, which is based on the semantic segmentation of the airbag in each image.

In order to perform the aforementioned three tests, a dedicated test suite has been de-
veloped in the form of a Python Notebook which uses the files for the various models and
a support file containing various useful functions. In addition to the tests provided with
said test suite, a further section shows three empirical experiments by directly employing
the UI of the AIrbagAIrbagAIrbag tool: the results are presented in the form of the images embedded in
the generated report, depicting the polygonal ROIs and a sequence of frames around the
detection point.

In the following description of the performed tests a nomenclature has been used to
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indicate the various approaches in a more direct way: Classifier stands for the approach
based on the Classifier with forced attention, Dec. Detector indicates the modified algo-
rithm based on the semantic segmentation phase which is characterized by the introduc-
tion of the Decolorization in its training process, Detector stands for the default algorithm.

The experiments carried out by means of the test suite are not representative in terms
of realistic absolute time performances, since they are carried out on a different hardware
with respect to the training processes presented in Chapter 4 and 5. In particular the
employed hardware belongs to a simple Notebook PC equipped with Windows 10 OS
and characterized by a Intel Core i7-10510U processor, supported by a 16GB RAM and a
NVIDIA GeForce MX250 with 2GB of dedicated memory.

6.1 Classification with augmented dataset test
The first experiment is directly based on the same concept as the Translation step em-
ployed for the training phase of the Classifier approach in Section 5.2. In particular, for
each sampled batch, the aforementioned process is used to create a balanced set of class
labels, corresponding to a set of frame-ROI couples. The batches are sampled from the
same Validation Set as the one that has been used for the training processes of the two in-
troduced approaches, in order not to exploit any prior knowledge of images coming from
the training phase.

The aim of this test is to compare the two introduced approaches and the default one by
using the respective resolutions employed for the training samples. Indeed, the classifier
model is trained with a lower resolution with respect to the segmentation approaches and
this contributes to the time performance boost that the methodology provides, as described
in Chapter 5.

For each batch, the three models are fed with the exact same sequence of input frames
with some differences that regard the resolution and the way the ROI is provided to the
algorithms. Moreover, the entire validation set is augmented in a way that ensures the
same augmentation process for each parallel input, where "parallel" indicates the fact that
the same image, with different resolutions, is used as input for the three algorithms in the
same loop body. For what concerns how the ROIs are provided to the different algorithms,
the idea is to emulate what happens in the respective production pipelines, in order to be
as faithful as possible to the real performance of the different approaches once integrated
in their production workflows. This means that, while the classifier directly takes as sec-
ond input a binary mask representing the ROI, the algorithms based on the segmentation
process need the same information in the form of a set of coordinates, which are then
applied on each segmented image. In this regards the random ROI sampling presented
in the Translation step described in Algorithm 2, when used for the segmentation based
algorithms, also returns the coordinates which generated the created masks.

The test is repeated for a total of 30 epochs for each model, in order to collect stable and
reliable information. The results are reported in the form of the classification accuracy, its
standard deviation values across the epochs and total processing time in Table 6.1. The
choice of reporting the total processing time instead of the average inference time is due
to the fact that overhead in the adaptation of the masks or ROIs coordinates would affect
too much such a small time value.

As Table 6.1 shows, both the presented methodologies introduce an improvement in
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Random patches with fixed resolution test
Algorithm Accuracy (%) Standard dev. (%) Resolution (px) Time (s)
Classifier 98.63 0.7 384×384 402

Dec. Detector 98.74 0.9 768×768 1858
Detector 83.80 1.5 768×768 1731

Table 6.1: Comparison between the Classifier algorithm, the introduced Detector with
decoloration and the default Detector approach, in terms of Classification accuracy, Stan-
dard deviation, Working resolution and total processing time. The data are the result of
30 passes over a Validation Set with ROIs generated by an automated ROI proposal algo-
rithm.

the classification performance with respect to the default approach. In particular, it is
evident how the Classifier manages to reach comparable accuracy value with the one
showed by the Dec. Detector, while working with lower resolution images and taking
more than 4 times less time with respect to both the other approaches, supporting what
is described in Chapter 5. Moreover, the lower standard deviation corresponding to the
Classifier represents a more coherent behaviour along the test, with respect both to the
Dec. Detector and the default one, which is the worst performing solution according to
this metric.

6.2 Classification with varying resolution test
The second test is strictly linked to the first one in terms of how the ROIs are computed
and provided to the three approaches. The aim, however, is symmetric to the previous
one: the presented experiment shows the trend of the Classification accuracies with a
working resolution that spans in a predefined interval. Indeed, in this case the Validation
set is explored only once for each value of the resolution, since the goal is not to obtain a
stable and average value of the accuracies but to analyze the behaviour of the models with
varying image resolution and, therefore, with different resource allocations levels.

In order to keep the comparison as fair as possible, even with varying resolutions,
with subsequent epochs, the Validation set augmentation is limited to random flips and
rotations and it is kept frozen after the first epoch, with the aim of obtaining consistent
comparisons along the resolution axis.

Figure 6.1 shows how the Classifier performs well with a wider range of working
resolutions with respect to the Dec. Detector and the default Detector. This is due both
to the lower training resolution and to the greater depth of the classifier’s convolutional
backbone. Indeed, both the Dec. Detector and the default Detector are trained with a
higher working resolution, since they need the maximum possible pixel level precision in
the segmentations in order to provide an affordable pixel mapping for the computation of
the coverage in each ROI, as explained in Section 2.5.

Table 6.2 reports informations regarding the best accuracy achieved for each algorithm
(even if the value itself is not fundamental) and the corresponding working resolution. The
main thing to notice is that, while the Classifier’s best accuracy is achieved with a working
resolution that is not exactly the one used for the training phase, both the Detector models
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Figure 6.1: Representation of the trend of the Classification accuracy when it depends on
the working resolution. The image describes the three models’ outputs trend.

Fixed patches with varying resolution test
Algorithm Best Accuracy (%) Best Resolution (px)
Classifier 98.99 392×392

Dec. Detector 97.98 768×768
Detector 95.96 768×768

Table 6.2: Comparison between the Classifier algorithm, the introduced Detector with
decoloration and the default Detector approach, in terms of best Classification accuracy
value achieved while varying the working resolution.

are strongly linked with the original training resolution, as it is evident by comparing this
information with the classification accuracy peak in Figure 6.1.

6.3 Video simulation test with realistic ROIs
The presented experiment aims at simulating a real use case of the tool, meaning that
a sequence of frames belonging to the same video is used as validation set. Even if it
is not fundamental that all the frames belong to the exact same video, it is a practical
way for experimenting the algorithms performances with the same label distribution as
in a realistic situation. Indeed, in real airbag deployment videos, it is frequent that a
significant part of the initial frames do not contain any section of an air chamber, since the
explosion does not necessarily happen instantaneously. This means that real application
performances could be far from the ones in perfectly balanced environments.

In this case, there is a meaningful difference in terms of how the ROI masks are pro-
vided to the algorithms: in fact, the ROIs are defined by a human, by introducing for the
first time the idea of user awareness regarding the position of the ROIs themselves and
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their shape. Moreover, for the first time in the entire training and testing phases, polyg-
onal (and not only rectangular) ROIs are employed: indeed, the ROI proposal process
(employed in previous tests in Sections 6.1 and 6.2) introduced in the Translation step
(Algorithm 2), generates only rectangular ROIs with the aim of speeding up the gener-
ation process itself. With these premises, the current test is an interesting benchmark
for different reasons: understanding the behavior of the Dec. Detector and the Classifier
when fed with realistic input frames and testing the knowledge transfer capabilities of the
Classifier when the proposed ROIs have polygonal and not only rectangular shapes.

In order to perform an automated accuracy evaluation process by exploiting the code
implemented for the Translation step, the frames are extracted from the original dataset,
together with their manually segmented counterpart. Since it is highly possible that some
of the frames have been used in the training phase for some of the models, before using
these images as input for the algorithms under test they are subjected to a heavy augmen-
tation process, involving transformations which are similar to the ones that have been used
in Section 4.2 for comparison purpose. The test performs 10 epochs on the set of images,
by randomizing the augmentation process not only for each pass but also for each single
input image.

Video simulation test
Algorithm Accuracy (%) Standard dev. (%) Resolution (px) Time (s)
Classifier 97.15 0.3 384×384 322

Dec. Detector 98.22 0.4 768×768 1395
Detector 81.01 1.1 768×768 1318

Table 6.3: Comparison between the Classifier algorithm, the introduced Detector with
decoloration and the default Detector approach, in terms of Classification accuracy, Stan-
dard deviation, Working resolution and total processing time. The results are obtained
through 10 epochs of simulation of a real use case, with ROIs defined by a human and
frames belonging to the same video.

Table 6.3 summarizes the informations collected through multiple iteration of the de-
scribed test over the extracted frames. It is evident that the heavy preprocessing performed
during the training of both the Classifier and the Dec. Detector has defined a higher ro-
bustness, also in the case of realistic use cases. In particular, the Dec. Detector demon-
strates an impressive improvement with respect to its default counterpart, with the only
drawback of a slightly longer computation time. Both the Dec. Detector and the default
one, however, confirm that they are extremely slower with respect to the Classifier time
performance, which shows only a few percentage points less, in terms of Classification
accuracy, than the best value. Moreover, Table 6.3 confirms the observation made in Sec-
tion 6.1 regarding the standard deviation, which reaches its lower value with the Classifier
results.

Figure 6.2 gives a visual representation of the analysis previously carried out. From a
visual point of view is easier to understand how faster is the classification approach, with
respect to the algorithms based on semantic segmentation. Moreover, the figure highlights
the drop in the accuracy value of the default Detector if compared to the other algorithms.
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Figure 6.2: Visual comparison of the performances of the Classifier, the Dec. Detector
and the default Detector in terms of Classification accuracy, together with the respective
computation times after testing their behavior in a realistic use case, given by the dataset
being composed by frames belonging to a single video and the polygonal ROIs being
defined by a human.

6.4 Empirical tool test

In order to dive into the details of how the obtained results and performances can be
translated into an actual use case, in this section the results of 3 tests by means of the
Tool User Interface are presented, each one describing the output of the detection pipeline
when integrated with the default Machine Learning model, its modified and retrained
version (Chapter 4) and the Classifier with forced attention (Chapter 5). In particular,
the experiment shows the real behaviour of the described detection pipelines in terms of
detection accuracy when fed with polygonal ROIs. Again, it is worth to mention that
the employed version of the Classifier with focused attention has not been trained with
polygonal ROIs but with rectangular ones, preferring a greater variability of augmentation
applied to frames, according to the usage limits imposed by AWS. For this reason, the
performances presented in the following test and in the previous one rely on the Transfer
Learning properties of the model.

First test The first experiment is performed with the combination of ROIs depicted in
Figure 6.3, mainly focusing the analysis on two known problems: the upper ROI addresses
the weakness regarding the combination of several colors close to each other, while the
central ROI bounds high contrast areas and often misunderstood shapes. Both the ROIs
are set to the boundary type, meaning that the detection should be fired as soon as the
airbag enters the selected region. The bottom-right ROI is meaningless for the current
analysis, since it is necessary for logging purpose in some production samples, containing
the timestamp for each frame.
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Figure 6.3: Starting image for the first empirical test: in overlay it is possible to see the
polygonal ROIs drawn by the user through the UI. The first one covers a section of the
support structure of the airbag while the second one is in the steering wheel logo area.

Figure 6.4 returns the same images as the ones that are presented in the report gen-
erated by the UI of the tool. From this sample on, the detection instant corresponds to
the third frame in each sequence, since 2 prior and 1 following frames are also depicted.
The comparison shows how the different solutions behave diversely in the same condi-
tion. Specifically, for what concerns the upper ROI, the default approach fails to reach
an acceptable result, firing the detection some instants before the airbag even gets close
to the ROI. However, for the aforementioned ROI, both the modified version of said ap-
proach and the one based on the classifier result in an acceptable detection instant, with
the classifier output being the most precise in recognizing the exact frame that depicts the
airbag touching the upper ROI boundary.

Figure 6.4 also enables a comparison on the boundary ROI located on the steering
wheel logo. In this case both the segmentation based methodologies fail to detect the
correct instant of invasion of the ROI by the airbag. Since the specified ROI is objectively
complex to analyze due to the misleading high contrast areas, the correct prediction of
the pipeline based on the classifier is due to the implementation of the "backup" control
layer discussed in Section 5.4, which substitutes the simple label prediction and provides
a detection based on the comparison of the probability prediction series corresponding to
the ROI frames range.

Second test The second experiment is performed by specifying the ROIs as in Figure
6.5. In this case both the regions bound sections that are characterized by shadows that
alternate with the less dark color of the support frame and small sections of the steering
wheel rim. The peculiarity of the choice lays in how the airbag flows in those areas,
presenting poorly illuminated sections of the expanding air chamber in the lower ROI and
high contrast effects in the side one. The lower ROI type is set to all_area, in order to
focus the analysis on the sensitivity of each solution to low contrasts between the bag and
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(a) Detection performed with the default approach.

(b) Detection performed with the modified approach.

(c) Detection performed with the Classifier with focused attention.

Figure 6.4: First comparison between the detection performed by means of the three
solutions on the user-defined ROIs, as in Figure 6.3

the background while the ROI on the side keeps the boundary type.
The output of the detection process in Figure 6.6 offers an interesting picture of the

general difference in the behavior of the two types of approach, in terms of addressed
Machine Learning task. Indeed, far what concerns the side ROI (which is the vertical one
in the aforementioned figure), the default solution misses the actual detection instant by
a considerable margin, driven by the known misleading background color and lighting
condition. Instead, both the Dec. Detector and the Classifier perfectly succeed in the goal
of firing the detection with the correct frame.

The most interesting results, however, are given by the lower ROI detections in Fig-
ure 6.6: in this case the correct firing instant must be the one that corresponds to a full
coverage of the ROI by the airbag. The default Detector and the Dec. Detector output
the same instant, while the pipeline based on the Classifier detect the full coverage in the
subsequent frame. By making a close analysis, the ideal prediction is the one resulted by
the Classifier, since there is no empty pixel with the ROI boundary but there is a reason
for the Detectors to share the same selected instant. Both the default solution and the
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Figure 6.5: Starting image for the second empirical test. The first drawn ROI is on the
right side of the steering wheel rim, characterized by a better light condition with respect
to the second ROI, which is in the lower part of the steering wheel.

modified one include in their detection algorithm the usage of some pre-defined detec-
tion thresholds, which are set to fire the detection with almost the entire ROI covered by
the airbag, while the classifier is trained to detect either full or partial coverage. Since
said thresholds can be modified, the highlighted difference is not a problem due to the
Machine Learning model but it can result in wrong detection in case the Segmentation
process generates noisy binarized masks.

Third test The third and last experiment is based on the ROIs showed in Figure 6.7:
both of them cross different section of the image, including the steering wheel and the
support frame. They are placed in a symmetrical way with respect to the center of the
steering wheel itself, represented by the logo, in order to address two different lighting
conditions: in the upper left section the airbag is directly hit by the light, so the expanding
end is clear and easily recognizable, while in the bottom right region the airbag is poorly
illuminated, making it more difficult to recognize its edges. Specifically, the upper left
ROI has type boundary, while the bottom right one has all_area.

As in the previous experiments, the resulting detection frames are collected in a report
delivered through the UI and said frames are showed in Figure 6.8. For what concerns the
results corresponding to the first ROI, the default Detector still fails to reach an acceptable
range of detection instants, probably due to the false positive areas generated by the de-
fault model based to the brightness of some surfaces. On the other hand, both the updated
solution and the one based on the classifier return a reasonable range of frames, with the
first solution firing the detection in the previous frame compared to the second approach.

A similar analysis can be carried out regarding the second ROI results: in this case,
the coupling between the type of ROI and worse light conditions compared to the previ-
ous ROI, represent a reason for a variety of scene interpretations. Again, the first solu-
tion seems not to perfectly recognize the bounds of the airbag due to the shadows on its
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(a) Detection performed with the default approach.

(b) Detection performed with the modified approach.

(c) Detection performed with the Classifier with focused attention.

Figure 6.6: Second comparison between the detection performed by means of the three
solutions on the user-defined ROIs, as in Figure 6.5
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Figure 6.7: Starting image for the third empirical test. The ROIs are both positioned on
the steering wheel rim, symmetrically with respect to the logo. The difference lays in how
the light hits the airbag in those places as it is directed from the upper left to the lower
right corner.

edges, definitely exceeding in terms of detection time if compared to the other approaches.
Indeed, as for the previous ROI, the introduced solutions deviate for a single frame in
their detection instants, which is probably due to the previously mentioned thresholds
employed in the pipeline of the Detectors methodologies.
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(a) Detection performed with the default approach.

(b) Detection performed with the modified approach.

(c) Detection performed with the Classifier with focused attention.

Figure 6.8: Third comparison between the detection performed by means of the three
solutions on the user-defined ROIs, as in Figure 6.7
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Chapter 7

Conclusion and Future Works

7.1 Conclusion
The premise of this Thesis work corresponds to the will of improving two aspects of the
the current production version of the AIrbagAIrbagAIrbag tool, specifically regarding the robustness of
the predictions and the performances in terms of inference time, as explained in Section
1.3. The tool is built in order to leverage on a Machine Learning backend, which repre-
sents the perimeter of the analysis and of the changes made in the presented work.

The default solution employs a Deep Convolutional Neural Network with two branches,
namely Encoder and Decoder, aiming at generating a binarized version of the input image,
which presents active pixels only for the ones that correspond to the airbag in the original
image, following a Semantic Segmentation paradigm.

Given the limited cardinality of the original training dataset, the default model suffers
from a lack of generalization, since it is applied with a wider range of light conditions and
color combinations with respect to the ones known through the dataset.

The first improvement attempt regards the pre-existing model and presents a pre-
processing operation that extends the augmentation phase, removing color aberrations and
differences given by the variety of light conditions. Moreover, the model is modified in
order to perform a real binary segmentation task: instead of learning both a background
class and the airbag one, the updated version learns only the airbag class, reducing the
dispersion of the learning capacity and the possibility to learn biases linked to known
background conditions. The introduced innovations bring an improvement according to
both an empirical segmentation analysis and to a repeated test based on the IoU metric.

The second proposal is completely detached from the existing solution, introducing
a drastic difference in the working paradigm, since the entire pipeline is changed and
optimized to work with a classifier, instead of including a segmentation phase. In order to
support the training of this specific model, a translation module from the original dataset
to a compatible version with the classifier has been presented. The classification is based
on both an image extracted from an input video and a user-defined ROI, which are merged
inside the model in order to get a class label that defines the absence, the presence or the
complete coverage of the airbag inside the ROI. This solution introduces a relevant boost
in terms of time performances, while showing good generalization capabilities.

When compared in the same classification task challenge, both the proposed solutions
perform better than the original one. In particular, the optimized model based on the

59



7 – Conclusion and Future Works

original solution is the best one in terms of classification accuracy, when applied on an
augmented validation dataset with randomly proposed patches, while slightly increasing
the inference time with respect to the default solution. The classifier proposal represents
a good trade-off between classification accuracy and time performances, being the fastest
algorithm when integrated in a production pipeline and providing an increased robustness
level thank to the double prediction mode introduced in its detection process.

7.2 Future Works
Both the proposed approaches can be further studied from an optimization point of view,
since the presented solutions are strictly bounded with the physical limitations of the
project such as the time availability and the hardware employed for the training processes.

For what concerns the first proposal, the concept of a semantic segmentation task as the
paradigm for the specified goal is still an effective idea, since it paves the way for a lot of
additional features, such as the analysis of the maximum extension of the airbag. Given
that, the training phase, together with the runtime data augmentation, is a challenging
operation when combined with the availability and power of the used hardware and it
required an intensive optimization work. By using a better hardware, it would be possible
to study the behavior of more advanced and elaborated Deep Neural Models having the
same goal as the employed ERFNet.
Moreover, another fundamental limitation to the work of improving the performances is
the availability of significant data. The proposed study focuses on augmenting the current
dataset and trying to make the model robust to the change of some patterns that, instead,
are recurring in the dataset, such as background colors and light conditions. However, in
the case much more data were available, the ideal procedure would be the one of training a
specific version of the model for each environment in which it has to perform predictions,
in order to specialize the model for each individual condition.

On the other hand, the Classifier with forced attention proposed in Chapter 5 depends
on some innovations introduced in the training context, such as the Translation module
and the Valve filters. The Translation module implies a random sampling operation of the
ROIs’ coordinates, meaning that this specific step represents the bottleneck of the entire
training process. As in the previous proposal, the ideal solution would be performing the
entire training process on ad-hoc datasets, characterized by the architecture described in
5.2 and dropping the actual translation step.
Furthermore, being the classifier solution studied and trained on the same hardware as the
modified segmentation model, even in this regards the limitations given by the hardware
prevent to employ more efficient and sophisticated CNN backbones, which could bring an
improvement in the classification accuracy. Besides the architectural and data issues, the
training process can potentially be improved by using multiple parallel tasks, introducing
unsupervised algorithms such as solving Jigsaw Puzzles on input images [3] with the aim
of improving the retention of information coming from the background even while forcing
the attention in a specific ROI.
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