
POLITECNICO DI TORINO

MASTER’s Degree in Computer Engineering

MASTER’s Degree Thesis

Designing an eBPF-based Disaggregated
Network Provider for Kubernetes

Supervisors

Prof. Fulvio RISSO

Ing. Federico PAROLA

Ing. Giuseppe OGNIBENE

Candidate

Leonardo DI GIOVANNA

April 2022

Abstract

Container orchestration plays an important role in the modern software devel-
opment. Container orchestration platforms provide a base abstraction layer for
simplifying the development, the deployment and the maintenance of the applica-
tions. Nowadays, the most famous and popular open-source container orchestrator
is Kubernetes, a solution developed by Google. Container orchestrators are de-
veloped having in mind that handling the networking is a crucial aspect, since
intrinsically distributed application components must be able to communicate to
each other regardless of whether they are hosted. The component in charge of
handling all the networking stuff is generally called network provider. Modern
networking is increasingly implemented in software on general-purpose hardware:
this allows to have much more flexibility and, at the same time, to reduce infras-
tructural costs. Components implementing in software the same behaviour of the
traditional network appliances, called virtual network functions (VNFs), must be
implemented having in mind the efficiency and the performance effectiveness. In
order to reach these goals, different technologies could be used: eBPF (Extended
Berkeley Packet Filter), that provides a way for executing sandboxed programs
directly in the Linux kernel, is one of the most suitable one. By exploiting the
above considerations, this thesis work has as its purpose that of designing and
validating an eBPF-based disaggregated network provider for Kubernetes. A base
virtual network topology architecture, composed mainly of standard virtual network
functions (like routers, bridges and NATs), is used as base for investigating a more
performant and scalable solutio; nmoreover, some improvements are considered in
order to address the Kubernetes networking model compliancy. The disaggregated
nature of the starting architecture is chosen and taken as primary objective since it
increases the observability, the scalability and the extensibility of the solution. The
development, the deployment and the interconnection of these eBPF services is
made easier by leveraging Polycube, a technology built at Politecnico di Torino. A
Kubernetes operator, capable of being receptive to the cluster changes and capable
of reflecting them on the network infrastructure, is designed and implemented.
Different performance tests are performed in order to investigate the validity of
the designed solutions and to understand its limitations for future improvements.

Table of Contents

List of Figures vi

Acronyms viii

1 Introduction 1
1.1 Goal of the thesis . 2

2 Background 3
2.1 Path towards container orchestration 3
2.2 Kubernetes history . 5
2.3 Kubernetes features . 7
2.4 Kubernetes architecture . 7

2.4.1 Control plane components 8
2.4.2 Nodes components . 10

2.5 Kubernetes objects . 11
2.5.1 Overview . 11
2.5.2 Namespaces . 12
2.5.3 Identifiers . 12
2.5.4 Status and Spec . 13
2.5.5 Pods . 13
2.5.6 ReplicaSets . 14
2.5.7 Deployments . 15
2.5.8 DaemonSets . 16
2.5.9 Nodes . 17
2.5.10 Services . 17
2.5.11 Endpoints . 18

2.6 Kubernetes operators . 18
2.7 The Kubernetes networking model 18
2.8 The CNI specification . 19
2.9 eBPF (Extended Berkeley Packet Filter) 20

2.9.1 Verifier . 20

iii

2.9.2 Helper Functions . 21
2.9.3 Maps . 21
2.9.4 Tail calls . 23
2.9.5 Program Types . 23

2.10 BCC . 26
2.11 Polycube . 26
2.12 The VxLAN technology . 28

3 Architecture 30
3.1 Base architecture virtual network topology 30

3.1.1 pcn-simplebridge . 30
3.1.2 pcn-loadbalancer-rp (pcn-lbrp) 30
3.1.3 pcn-router . 31
3.1.4 pcn-k8sdispatcher . 32

3.2 The new virtual network topology 34
3.2.1 pcn-k8slbrp . 34

3.3 The CNI plugin . 35
3.4 The overlay network . 36
3.5 The node agent . 36

4 Implementation 38
4.1 Automatic code generation . 38
4.2 pcn-k8slbrp . 39

4.2.1 Data Model . 40
4.2.2 Data plane . 43

4.3 pcn-k8sdispatcher . 43
4.3.1 Data Model . 43
4.3.2 Data plane . 46
4.3.3 Control plane . 46

4.4 The CNI plugin . 47
4.4.1 The specification requirements 47
4.4.2 The CNI configuration file 48
4.4.3 The implementation . 49

4.5 The Polykube operator . 60
4.5.1 The code structure . 61
4.5.2 Node controller . 61
4.5.3 Service controller . 64
4.5.4 Endpoints controller . 66
4.5.5 The recovery procedure . 70
4.5.6 The addresses management 70
4.5.7 Environment configuration 72

iv

4.6 Network provider deployment . 73

5 Evaluation 77
5.1 Tools . 77
5.2 Tests overview . 77
5.3 Cluster and network settings . 78
5.4 Communications on the same node 79

5.4.1 TCP . 79
5.4.2 UDP . 80

5.5 Communications on different nodes 81
5.5.1 TCP . 81
5.5.2 UDP . 83

6 Conclusions 85
6.1 Future works . 85

A Scripts and Commands 86

Bibliography 91

v

List of Figures

2.1 Evolution of the applications deployment 3
2.2 Container orchestrators usage [2] 6
2.3 Kubernetes history . 6
2.4 Architectural representation of a Kubernetes cluster 8
2.5 Shared memory architecture . 22
2.6 The XDP and tc hook points . 23
2.7 XDP program actions . 25
2.8 Polycube architecture . 27
2.9 The VxLAN packet structure . 29
2.10 A VxLAN example . 29

3.1 The base architecture virtual network topology 31
3.2 pcn-k8sdispatcher egress traffic flow chart 32
3.3 pcn-k8sdispatcher ingress traffic flow chart 33
3.4 The new architecture virtual network topology 35
3.5 Network provider architecture . 37

5.1 Same node throughput comparison for TCP traffic 79
5.2 Same node throughput comparison for TCP traffic with an increasing

number of Services/Pods . 80
5.3 Same node throughput comparison for UDP traffic 81
5.4 Same node throughput comparison for UDP traffic with an increasing

number of Services/Pods . 81
5.5 Different nodes throughput comparison for TCP traffic 82
5.6 Different nodes throughput comparison for TCP traffic with an

increasing number of Services/Pods 82
5.7 Different nodes throughput comparison for UDP traffic 83
5.8 Different nodes throughput comparison for UDP traffic with an

increasing number of Services/Pods 84

vi

Acronyms

IP
Internet Protocol

TCP
Transport Control Protocol

UDP
User Datagram Protoco

CNCF
Cloud Native Computing Foundation

CNI
Container Network Interface

VNF
Virtual Network Function

NAT
Network Address Translation

eBPF
extended Berkeley Packet Filter

XDP
eXpress Data Path

tc
traffic control

viii

VxLAN
Virtual eXtensible Local Area Network

ix

Chapter 1

Introduction

The modern software development leverages micro-services architectures in order
to let applications be more responsive to issues regarding flexibility, scalability
and faults toleration. An application built upon these principles is composed of
many services, usually deployed in different containers and connected through
some sort of base network infrastructure. The amount of containers composing
an application can be very high in real scenarios: from a logical point of view,
the application could be composed of a very high number of logical services and
each one has to be deployed using different replicas, at least in order to provide
fault toleration. Each one of the container, has to be correctly configured and
monitored during its life-cycle, and some mechanism that provides self-healing is
needed. The fluctuations of the workload that each service will manage, have to be
handled properly by scaling the amount of resources allocated to that particular
service: this can be interpreted as dynamically changing the number of containers
that backs the service or by allocating more resources to some of them. These
problems clearly highlights the necessity of an infrastructure that automatically
deploys and takes operational the containers, providing automatic configuration,
self-healing and dynamic scaling capabilities. The answer to all these problems
nowadays is given by Kubernetes, an open-source containers orchestrator developed
by Google. If Kubernetes provides an answer to the above questions, also an answer
from the network infrastructure point of view has to be given. The networking
machinery must properly handle the connection between containers, providing
an abstraction layer that independently provides connectivity for containers on
the same host and containers on different hosts. The network infrastructures,
increasingly are moving from the "hard" world to the "soft" world: this means that
physical appliances now works together with virtual network functions implemented
in software. Each virtual network function (VNF), following the trend discussed
above for the applications, can be redounded, and many of them can be composed
in different and dynamical ways. The implementation of a VNF has to be carry on

1

Introduction

having in mind that the primary goal is the efficiency: for this reason, the virtual
networking is implemented leveraging efficient and fast technologies like eBPF.
Exploiting eBPF and the pluggable nature of Kubernetes, an effort can be made
in order to design an efficient network provider for providing a virtual network
infrastructure that the orchestrator and, at the end the applications, can leverage.

1.1 Goal of the thesis
The goal of this thesis work is to design and eBPF-based disaggregated network
provider for Kubernetes. Starting from the thesis work of Ing. Hamza Rhaouati
[1], an already prototyped virtual network topology, composed mainly of standard
virtual network functions (like routers, bridges and NATs), was used as base for
investigating a more performant and scalable solution; moreover, the architecture
was extended in order to address the full Kubernetes networking model compliancy.
The disaggregated nature of the starting architecture was surely maintained and
taken as primary objective: indeed, it brings so many advantages like observability,
scalability and extensibility. The network infrastructure was built using the eBPF
technology: it allows to develop fast and efficient network functions that run
directly in the Linux kernel and for this reason it was considered a must in the
network provider infrastructure definition. The development, the deployment and
the interconnection of these eBPF services was made easier by leveraving Polycube,
a technology built at Politecnico di Torino. A communication layer, for connecting
the network abstractions provided by Kubernetes (like Services) and the network
infrastructure, was developed: in other terms, a Kubernetes operator, capable
of being receptive to the cluster changes and capable of reflecting them on the
network topology, was designed and implemented. Different performance tests
were performed in order to investigate the validity of the designed solutions and to
understand its limitations for future improvements.

2

Chapter 2

Background

This chapter provides an overview of the main components and technologies of this
thesis work. First, an overview of container orchestration platforms, with a focus
on Kubernetes, is provided. In the Kubernetes section, the focus will be on its
networking philosophy and on abstractions leveraged during the network provider
design. Then, an overview of eBPF and Polycube is provided, as they are the main
enabling technologies of this work. Finally, the VxLAN technology is presented.

2.1 Path towards container orchestration
The following is an analysis of the evolution of the applications deployment. The
main evolution steps are shown in Fig. 2.1.

Figure 2.1: Evolution of the applications deployment

At the very beginning, application were deployed on physical server follow-
ing the one-application-per-server model. In the 90’, the computing technology

3

Background

democratization process brought different companies to own a quite reasonable
number of servers for resources sharing among different groups. Each server was,
in the majority of the cases, responsible to run a single application. In this pe-
riod, companies started a process of resources centralization in order to better
manage the high number of servers; this process let the companies to understand
the under-utilization of the owned resource. The under-utilization can be saw
in terms of computing resources (most of the applications does not require an
high workload for the majority of the time and old applications were not able to
split their workload into different CPU core) or powering resources (taking up a
server introduces an higher gap in the power consumption than exploiting it at
the maximum capacity). Unfortunately, it was not possible to consolidate the
deployment of different applications on the same server due to issues in:

• performance predictability - different applications deployed on the same
server concur on resources access (CPU, RAM, network cards etc...) and this
affects the single application performance

• configuration - different application may required incompatible server con-
figurations like different kernel versions, different libraries versions etc...

The above two considerations let companies to stay with the one-application-per-
server model for a long time.

Around the 2000s, companies started to react to this problem by leveraging
virtualization. Virtualization is based on the creation of virtual hardware profiles
able to abstract the concept of physical machines. Each virtual hardware profile
can be used to run a different virtual server, called also virtual machine (VM), on
the same physical server. The virtualization introduces different advantages; some
of them are the followings:

• isolation - it is possible to ensure an almost complete logic partitioning of the
physical server resources; this is also beneficial in term of applications security

• consolidation - it is possible to deploy different applications on the same
physical server, avoiding resource under utilization and, at the same time,
maintaining performance predictability and reducing the power consumption

• flexibility and agility - different virtual servers can be created, stopped,
deleted, migrated, duplicated or substituted in a very flexible and rapid way:
this is possible as virtual servers handling is almost decoupled from the real
world

Virtualization allow to present a set of physical resources as a cluster of disposable
VMs. These virtual resources can be used directly by the companies or by the
companies customers (notably is the case of cloud providers).

4

Background

Virtualization introduces also disadvantages. The overhead introduced by the
necessity of adding a virtual hardware profile with an additional operating system
acting on that, causes applications running on VMs to be slower, even if different
efforts have been in order to reduce the gap from applications running of a physical
machine. Furthermore, VMs startup times are not negligible at all.

In order to overcome the overheads introduced by the virtualization, efforts have
been made towards the developing of containerization technologies. Containers can
be seen, at very high level, as a sort of lightweight VMs which share the operating
system of the host machine. Sharing the same operating system is not a major
problem for most of the applications: the number of applications that requires
a specific kernel version or a specific hardware profile is not so high. Containers
relax the strong isolation of VMs in face of shorter bootstrap/stopping times and
faster execution of the applications executed inside them. The majority of the
containerization technologies leverages technologies of the Linux Kernel, such as
cgroups and namespaces, in order to provide a lighter form of isolation with respect
to the one provided by VMs. Also, containers facilitate the development process,
letting developers to easily package their applications in a portable environment
containing all the needed libraries and utilities and reducing the effort the op-
erational teams have to do in order to make them runnable on the production
environment. Containers, in this sense, meet the requirements of the modern
software development.

Nowadays applications are built by leveraging (or, existing ones are migrating
towards) micro-service architecture. An application built upon these principles is
composed of many services, usually deployed in different containers. The amount
of containers composing an application can be very high in real scenarios: from a
logical point of view, the application could be composed of a very high number of
logical services and each one has to be deployed using different replicas, at least in
order to provide fault toleration. Each one of the container, has to be correctly
configured and monitored during its life-cycle, and some mechanism that provides
self-healing is needed. This arises the necessity to use a container orchestration
platform (also called container orchestrator): a container orchestrator is a system
designed to easily manage complex containerization deployments. As shown in Fig.
2.2, Kubernetes is by far the most used container orchestrator.

2.2 Kubernetes history
Kubernetes (commonly abbreviated with k8s) is an open-source container or-
chestration system platform for automating software deployment, scaling and
management. The project is actually maintained by the Cloud Computing Founda-
tion (CNCF) but it was designed by Google. Google announced for the first time

5

Background

Figure 2.2: Container orchestrators usage [2]

Kubernetes in the middle of 2014. The system was heavily influenced by Google’s
Borg, a large-scale cluster manager used internally by Google for running hundreds
of thousands of jobs. Differently from Borg, which is written entirely in C++,
Kubernetes is written in Golang. The first version of Kubernetes, the 1.0, was
released on July 21, 2015, contextually with a partnership set up by Google with the
Linux Foundation to form the Cloud Native Computing Foundation. Kubernetes
1.0 was offered to the CNCF as a seed technology and since then, Kubernetes has
significantly grown, achieving the CNCF graduated status and being adopted by
nearly every big company.

Figure 2.3: Kubernetes history

6

Background

2.3 Kubernetes features
Kubernetes provides a framework to run distributed systems resiliently. It takes
care of scaling and failover for applications, provides deployment patterns, and
more. Kubernetes provides:

• Service discovery and load balancing - Kubernetes can expose a container
using the DNS name or using their own IP address. If traffic to a container is
high, Kubernetes is able to load balance and distribute the network traffic so
that the deployment is stable.

• Storage orchestration - Kubernetes allows to automatically mount a storage
system such as local storages, public cloud providers, and more.

• Automated rollouts and rollbacks - Kubernetes can use a provided descrip-
tion of the desired state to change the actual state of the deployed containers
to the desired state at a controlled rate. For example, it is possible to auto-
mate Kubernetes to create new containers for a deployment, remove existing
containers and adopt all their resources to the new container.

• Automatic bin packing - Kubernetes is provided with a cluster of nodes
that it can use to run containerized tasks. It is possible to specify Kubernetes
how much CPU and memory (RAM) each container needs. Kubernetes can
fit containers onto the nodes to make the best use of the resources.

• Self-healing - Kubernetes restarts containers that fail, replaces containers,
kills containers that don’t respond to your user-defined health check, and
doesn’t advertise them to clients until they are ready to serve.

• Secret and configuration management - Kubernetes is able to store and
manage sensitive information, such as passwords, OAuth tokens, and SSH
keys. Secrets and application configuration can be deployed and updated
without rebuilding container images, and without exposing secrets in the stack
configuration.

• Features pluggability - Kubernetes is not monolithic, and solutions for
logging, monitoring, alerting solutions are optional and pluggable. Also
network providers and container runtimes are easily replaceable.

2.4 Kubernetes architecture
When Kubernetes is deployed a Kubernetes cluster is created. An architectural
representation of a Kubernetes cluster is provided in Fig. 2.4.

7

Background

k-proxy

kubelet

sched
sched

sched

Control Plane

Node

etcd

Kubernetes cluster

api
api

api

c-c-m
c-c-m

c-c-m

c-m
c-m

c-m

Node Node

k-proxy

kubelet kubelet

k-proxy
Control plane

Scheduler
sched

Cloud controller

manager

(optional) c-c-m

Controller

manager c-m

kubelet
kubelet

kube-proxy
k-proxy

(persistence store)
etcd

etcd

Node

API server
api

Figure 2.4: Architectural representation of a Kubernetes cluster

A k8s cluster is composed of a set of worker machines, called nodes, that run
containerized applications. Every cluster has at least one worker node. A worker
node hosts pods, that are sets of running containers in the cluster. The control
plane is the logical component representing the container orchestration layer: it
exposes the API and the interfaces to define, deploy, and manage the containers
lifecycle. The control plane manages the worker nodes and the pods of the cluster.
In production environments, it is deployed on multiple nodes in order to achieve
fault-tolerance and high availability. For the same reason, the cluster is usually
composed of multiple nodes.

In the following, a more detailed description of the control plane and nodes
components is given.

2.4.1 Control plane components

Control plane components make global decisions about the cluster: for instance,
scheduling, detecting and responding to cluster events (such as starting a new
pod when a deployment replicas field is unsatisfied) are tasks handled by these
components. Control plane components can be run on any machine in the cluster,
but usually, dedicates nodes are used for this purpose: these nodes typically are
not used for running user containers. The following sections describe each control
plane component.

8

Background

API server

The API server is a component of the Kubernetes control plane that exposes
the Kubernetes API. The main implementation of a Kubernetes API server is
kube-apiserver, that is designed to scale horizontally (scale by deploying more
instances). The Kubernetes API server validates and configures data for the API
objects which include pods, services and others. It services REST operations
and provides the frontend to the cluster’s shared state through which all other
components interact.

etcd

etcd is a strongly consistent, distributed key-value store that provides a reliable
way to store data that needs to be accessed by a distributed system or cluster of
machines. It gracefully handles leader elections during network partitions and can
tolerate machine failure, even in the leader node [3]. etcd is used by Kubernetes as
backing store for all cluster data. Only the API server can communicate with this
component.

Scheduler

In Kubernetes, scheduling refers to making sure that a pod is matched to a node.
The scheduler is the control plane component responsible of assigning the pods
to nodes. The scheduler implementation provided by Kubernetes is called kube-
scheduler. It is possible to use a custom scheduler implementation by adding it
and indicating on the pod specification to use it. The scheduler makes decision
based on singular and collective resource requirements, hardware/software/policy
constraints, affinity and anti-affinity specifications, data locality, inter-workload
interference and deadlines.

Controller manager

The controller manager is the control plane component responsible of running
controller processes. A controller is a control loop that watches the shared state of
the cluster through the API server (that in turn will read it from the etcd) and
makes changes attempting to move the current state towards the desired state.
kube-controller-manager is the default implementation provided by Kubernetes.
Logically, each controller is a separate process, but to reduce complexity, they are
all compiled into a single binary and run in a single process. The following is a list
of some types of controllers:

• Node Controller - responsible for noticing and responding when nodes go
down

9

Background

• Job Controller - watches for Job objects that represent one-off tasks, then
creates Pods to run those tasks to completion

• Endpoints Controller - populates the Endpoints object (that is, joins
Services and Pods)

• Service Account & Token Controller - create default accounts and API
access tokens for new namespaces

Cloud controller manager

The cloud controller manager is a controller plane component responsible of running
controllers that embed cloud-specific control logic. The cloud controller manager
lets link the cluster into a cloud provider’s API, and separates out the components
that interact with that cloud platform from components that only interact with
the cluster. On an on-premises Kubernetes cluster, the cloud controller manager is
not present. As in the case of the controller manager, the cloud controller manager
combines different control loops in a single binary. The following are some types of
controllers that could have cloud provider dependencies:

• Node Controller - for checking the cloud provider to determine if a node
has been deleted in the cloud after it stops responding

• Route Controller - for setting up routes in the underlying cloud infrastructure

• Service Controller - for creating, updating and deleting cloud provider load
balancers

2.4.2 Nodes components
Nodes components are components running on each node of the Kubernetes cluster.
In the following, a brief description of each component is provided.

Kubelet

Kubelet is the primary node agent that runs on each node of the Kubernetes
cluster. It takes a set of PodSpecs (a PodSpec is a YAML or JSON object that
describes a pod) that are provided through various mechanisms (primarily through
the API server) and ensures that the containers described in those PodSpecs are
running and healthy. A Kubelet agent waits for the Pod to be assigned to the
node where it is deployed before starting the latter described process. Containers
that are not created inside the Kubernetes context are not managed by Kubelet.
Kubelet interacts with the container runtime in order to achieve its goal. The
communication is based on gRPC.

10

Background

kube-proxy

kube-proxy is a network proxy that runs on each node of the cluster, implementing
part of the Kubernetes Service concept. kube-proxy maintains network rules on
nodes: these network rules allow network communication to your Pods from
network sessions inside or outside of your cluster. It can be replaced by other
custom solutions.

Container runtime

The container runtime is the software that is responsible for running containers.
Kubernetes supports container runtimes which are compliant with the Kubernetes
Container Runtime Interface such as containerd and CRI-O.

Addons

Addons extend the functionality of Kubernetes. Some examples are DNS, dashboard
(a web GUI), monitoring and logging addons.

2.5 Kubernetes objects
The following is an analysis of the Kubernetes objects and related concepts with a
focus on the ones used extensively in this thesis work.

2.5.1 Overview
A Kubernetes object is a persistent entity in the Kubernetes system. Objects are
used to describe the actual and the desired state of the cluster. Once a Kubernetes
object is created, Kubernetes will work in order to ensure that the object exists.
By creating an object it is possible to tell to Kubernetes which is the shape of the
desired cluster’s workload. In order to create, read, update and delete objects, it is
necessary to interact with the API server through the exposed HTTP API: this
can be done for example by using a command line interface such as kubectl. The
exposed endpoint, used to access to an object, is called resource. The followings
operations are allowed on a resource:

• Create - used for creating a resource. Once a resource is created, Kubernetes
starts to move the cluster state towards the desired state for the new created
resource

• Read - used for retrieving a resource. The read operation has 3 variants:

– Get - used for retrieving a resource by name

11

Background

– List - used for retrieving a list of resource objects of a specific type within
a specific namespace. For this variant, it is possible to filter the results
by using a selector

– Watch - used for starting a streaming session on which results for one or
more objects are retrieved as updatings on the objects happen

• Update - used for updating a resource. This operation has 2 variants:

– Replace - used for replacing the entire object spec with the provided one
– Patch - used for applying changes to a specific field

• Delete - used for deleting a resource. Depending on the resource, child objects
are automatically deleted contextually to the parent deletion.

2.5.2 Namespaces
Namespaces provides a mechanism for isolating groups of resources within a single
cluster. By using Namespaces, it is possible to divide the cluster resources between
multiple users or teams. Namespace scoping can be enabled only for namespaced
object (e.g. Pods, Deployments, Services etc...): cluster-wide objects, like Nodes or
PersistentVolumes, cannot be scoped inside a Namespace. By default, a Kubernetes
cluster starts with four Namespaces:

• default - this Namespace is used as the default choice for namespaced objects
with no other Namespace associated

• kube-system - this Namespace is usually reserved to objects created by the
Kubernetes system or to objects linked to the cluster functioning

• kube-public - this Namespace is conceived for exposing cluster public infor-
mation: for this reason, it is accessible from all the cluster users (even the
non-authenticated ones)

• kube-node-lease - this Namespace is used for scoping Lease objects associated
to the various cluster nodes; node leases allow kubelet to send heartbeats in
order to allow the control plane to detect a node failure

2.5.3 Identifiers
Each object in the cluster is uniquely identified by a system-generated UID. An
UID is a UUID: once an UID is assigned to an object in the cluster, it will not
be reused for any future object in the entire cluster lifetime, even if the object
associated to the UID is deleted.

12

Background

Each object has also a name. Only one object of a given kind (for example
Pod) can have a given name at a time. However, differently from the UID, if the
object is deleted, it is possible to create an object of the same kind, inside the same
Namespace, using the same name.

In order to group and organize subsets of objects, labels can be used. Labels
are key-value pairs used to assign identifying attributes to objects: these attributes,
can be meaningful and relevant from the users point-of-view, but they have not a
direct semantic for the core system. Labels are directly attached to objects in the
metadata field. The key part of a label must be unique for a given object. Labels
are exploited by Label Selectors, the core grouping primitive in Kubernetes: by
using Label Selectors, labels can be used to select objects and to find collections of
objects that satisfy certain conditions.

In order to attach non-identifying information/metadata to objects, it is possible
to use Annotations. Annotations can contains small or large, structured or
unstructured metadata and are not limited in the number of characters that are
allowed, as in the case of labels.

2.5.4 Status and Spec
The majority of the Kubernetes objects includes two nested object fields: the
status and the spec. The status field contains information regarding the actual
object state. The spec field contains information regarding the desired object
state. The Kubernetes control plane continuously work in order to move the actual
objects state to the desired one. Besides these information, Kubernetes object
contains also metadata.

2.5.5 Pods
A Pod is the smallest deployable unit of computing in Kubernetes. It is composed
by one or more containers, whose descriptions are co-located in the same Pod single
object. Containers inside a single Pod share isolated storage and network resources:
this context is realized by using a set of technologies like Linux namespaces or
cgroups. Containers belonging to the same Pod are always deployed on the same
node. A Pod is assigned to a node by the scheduler. Logically, a Pod models an
application-specific "logical host": this means that application containers inside a
single Pod have to be thought as applications executed on the same physical or
virtual machine.

The listing in 2.1 is an example of a YAML manifest containing the description
of a single-container Pod.

Listing 2.1: Pod YAML manifest example [4]

13

Background

1 ap iVers ion : v1
2 kind : Pod
3 metadata :
4 name : nginx
5 spec :
6 c on t a i n e r s :
7 − name : nginx
8 image : nginx : 1 . 1 4 . 2
9 por t s :

10 − conta ine rPort : 80

2.5.6 ReplicaSets
A ReplicaSet is the most basic Kubernetes abstraction describing the concept
of a stable set of Pods running at any given time. The main fields composing a
ReplicaSet description are the followings:

• the selector field, used for identifying the Pods owned by the ReplicaSet

• the replicas field, defining the number of replicas (or Pods) the ReplicaSet
has to try to enforce by adding or deleting Pods

• the template field, containing the Pod template with the information that
have to be used in order to create new Pods for meeting the desired number
of replicas requirement.

Even if using a ReplicaSet allows to maintain a certain number of replica at any
given time for a given Pod specification and updating this number in an easy way,
very often, the higher-level Deployment concept is used in place of it.

The listing in 2.2 is an example of a YAML manifest containing the description
of a ReplicaSet used for deploying 3 php-redis replicas.

Listing 2.2: ReplicaSet YAML manifest example [5]
1 ap iVers ion : apps/v1
2 kind : Rep l i caSet
3 metadata :
4 name : f rontend
5 l a b e l s :
6 app : guestbook
7 t i e r : f rontend
8 spec :
9 r e p l i c a s : 3

10 s e l e c t o r :
11 matchLabels :
12 t i e r : f rontend
13 template :

14

Background

14 metadata :
15 l a b e l s :
16 t i e r : f rontend
17 spec :
18 c on t a i n e r s :
19 − name : php−r e d i s
20 image : gcr . i o / google_samples /gb−frontend : v3

2.5.7 Deployments

A Deployment provides a declarative way to update ReplicaSets and Pods. Once
a Deployment is created, an associated ReplicaSet is created in order to manage
the required number of Pod replicas. The Deployment Controller moves the cluster
state toward the desired Deployment state at a controlled rate: this is the reason
why most of the applications are deployed inside Deployments and not directly
using ReplicaSets. Like in the case of ReplicaSets, selector are used to identify the
associated Pods through labels.

The listing in 2.3 is an example of a YAML manifest containing the description
of a Deployment for deploying 3 nginx replicas.

Listing 2.3: Deployment YAML manifest example [6]
1 ap iVers ion : apps/v1
2 kind : Deployment
3 metadata :
4 name : nginx−deployment
5 l a b e l s :
6 app : nginx
7 spec :
8 r e p l i c a s : 3
9 s e l e c t o r :

10 matchLabels :
11 app : nginx
12 template :
13 metadata :
14 l a b e l s :
15 app : nginx
16 spec :
17 c on t a i n e r s :
18 − name : nginx
19 image : nginx : 1 . 1 4 . 2
20 por t s :
21 − conta ine rPort : 80

15

Background

2.5.8 DaemonSets

A DaemonSet is an high-level abstraction used for ensuring that all the cluster
nodes (or some of them, depending for example on taints and tolerations) runs a
copy of the Pod template specified in the DaemonSet spec. If a node is removed
from the cluster, the Pods associated to the DaemonSet are garbage collected.
DaemonSets are typically used for running node daemons for storage, logs collection
and monitoring.

The listing in 2.4 is an example of a YAML manifest containing the description
of a DaemonSet for deploying on each node of the cluster a fluentd-elasticsearch
replica.

Listing 2.4: DaemonSet YAML manifest example [7]
1 ap iVers ion : apps/v1
2 kind : DaemonSet
3 metadata :
4 name : f luentd −e l a s t i c s e a r c h
5 namespace : kube−system
6 l a b e l s :
7 k8s−app : f luentd −logg ing
8 spec :
9 s e l e c t o r :

10 matchLabels :
11 name : f luentd −e l a s t i c s e a r c h
12 template :
13 metadata :
14 l a b e l s :
15 name : f luentd −e l a s t i c s e a r c h
16 spec :
17 c on t a i n e r s :
18 − name : f luentd −e l a s t i c s e a r c h
19 image : quay . i o / f l u e n t d _ e l a s t i c s e a r c h / f l u en td : v2 . 5 . 2
20 volumeMounts :
21 − name : var l og
22 mountPath : / var / log
23 − name : v a r l i b d o c k e r c o n t a i n e r s
24 mountPath : / var / l i b / docker / c o n t a i n e r s
25 readOnly : t rue
26 volumes :
27 − name : var log
28 hostPath :
29 path : / var / log
30 − name : v a r l i b d o c k e r c o n t a i n e r s
31 hostPath :
32 path : / var / l i b / docker / co n ta i n e r s

16

Background

2.5.9 Nodes
A Node object is a Kubernetes logical representation of a cluster node. A Node
object can be manually created by a user or by a kubelet on the associated node
which self-registers to the control plane. Regardless the way in which a Node object
is created, after the creation, the control plane is responsible for checking if it is
valid: for example, the reachability and the healthiness of the node are checked
(and also periodically re-verified). The object contains useful regarding the node
configuration and its status; notable examples are:

• the podCIDR field in the spec, determining the addresses range from which
the node Pods addresses must be extracted

• the addresses list contained in the status field, containing the hostname
and addresses associated to the node interfaces

2.5.10 Services
A Service is an abstract way to expose an application running on a set of Pods as a
network service. Pods are ephemeral by nature, and they can created or destroyed
in any moment: for example, a Deployment can create or destroy Pods to meet
the requirement on the desired number of replica. As the number of backend Pods
exposing a particular network service may change during time, a mechanism for
reaching the service from a frontend client has to be provided by the infrastructure:
the Service abstraction is provided to solve this problem. Pods are associated
to a Service through the label-selector mechanism. Different types of Service are
available:

• ClusterIP - the Service is only accessible from within the cluster; it is
suitable for the Pod-to-Service internal communications through the Service’s
associated virtual IP (called ClusterIP); this is the default type

• NodePort - besides a ClusterIP assigned for internal Pod-to-Service com-
munications, a static port is assigned for enabling Service reachability from
outside the cluster by contacting <NodeIP>:<NodePort>

• LoadBalancer - the Service is exposed using a cloud provider’s load balancer;
the external load balancer will route the traffic to associated NodePort and
ClusterIP services, contextually created with the LoadBalancer Service

• ExternalName - the Service is mapped to an external one so that local apps
can access it

17

Background

The Service objects contains a list of one or more ports, each one representing a
port exposed by the Service. If there is more than one port, it is mandatory to
specify a name.

The listing in 2.5 is an example of a YAML manifest containing the description
of a ClusterIP service which redirects requests coming from the port 80 to port
9376 of any Pod with the app=MyApp label.

Listing 2.5: Service YAML manifest example [8]
1 ap iVers ion : v1
2 kind : S e rv i c e
3 metadata :
4 name : my−s e r v i c e
5 spec :
6 por t s :
7 − pro toco l : TCP
8 port : 80
9 ta rge tPor t : 9376

2.5.11 Endpoints
An Endpoints object is automatically created after the creation of a Service object
on which a selector is specified. This object represents a collection of endpoints that
implement the actual service. The object contains a list of EndpointsSubsets:
each of them retains information about a set of addresses that share a common set
of ports. The object contains also information about the readiness of the service
backends.

2.6 Kubernetes operators
Operators are application-specific controllers that enable the extension of the
Kubernetes automation infrastructure addressing application-specific problems.
Operators exploit two core concept of Kubernetes: controllers and resources.
Custom resources can be defined, and custom controllers can handle these resources
by using the same mechanisms offered for the Kubernetes built-in resources.

2.7 The Kubernetes networking model
Kubernetes dictates some fundamental requirements that must be followed by any
networking implementation. The basic assumption is that every Pod gets its own
IP address: this creates a backwards-compatible model where Pods can be treated
much like VMs or physical hosts from the perspectives of port allocation, naming,

18

Background

service discovery, load balancing, application configuration, and migration [9]. This
allocation strategy is called IP-per-Pod model. The requirements imposed to any
networking implementation are the followings:

• Pods on a node can communicate with all Pods on all nodes without NAT

• agents on a node (e.g. system daemons, kubelet) can communicate with all
Pods on that node

For those platforms that support Pods running in the host network, the following
additional requirements is given:

• Pods in the host network of a node can communicate with all pods on all
nodes without NAT

Container inside the same Pod are always co-located on the same node and
shares the same network namespace: this allows containers of the same Pod to
communicate through localhost. Of course, this implies that processes inside the
same Pod must coordinate the port usage. Kubernetes networking allows Pods
to request to forward traffic reaching a specific host port to the Pods itself: this
feature is not so much used.

The above considerations must be taken into account by each networking imple-
mentation during the handling of the following supported types of communications:

• Highly-coupled container-to-container communications - as already
discussed, container belonging to the same Pods can communicate through
the loopback interface of the network namespace to which they belong

• Pod-to-Pod communications - this involves both Pods running on the
same node and Pods running on different nodes

• Pod-to-Service communications

• External-to-Service communications

The last two types of communication are highly related with the concept of
Kubernetes Service.

2.8 The CNI specification
CNI (Container Network Interface), is a Cloud Native Computing Foundation
project, consisting of a specification and libraries for writing plugins to configure
network interfaces in Linux containers, along with a number of supported plugins.
CNI concerns itself only with network connectivity of containers and removing

19

Background

allocated resources when the container is deleted. Because of this focus, CNI has a
wide range of support and the specification is simple to implement [10]. Kubernetes
network plugins must adhere to the CNI specification: this choice is made in order
to guarantee interoperability among all the network solutions. Once a Pod is created
with an own network namespace, Kubernetes calls the CNI plugin in order to create
the proper network interface in the network namespace and configure the networking
for allowing incoming and outcoming communications. The container runtime is
responsible of passing a set of arguments through environment variable and through
the standard input to the CNI plugin, as prescribed by the specification.

2.9 eBPF (Extended Berkeley Packet Filter)
Extended Berkeley Packet Filter (eBPF) [11] represents the enhanced version
of the Berkeley Packet Filter (BPF). It was proposed by Alexei Staravoitov in 2013
and it was introduced in version 3.18 of the Linux Kernel, making the original
version, which is being referred to as “classic” BPF (cBPF) these days mostly
obsolete. eBPF is a recent technology that enables flexible data processing thanks
to the capability to inject new code in the Linux kernel at run-time, which is
triggered each time a given event occurs. cBPF was born in 1992 and was a
very simple VM used to perform in-kernel packet filtering (a famous example of
application is tcpdump).

eBPF is very promising due to some characteristics that can hardly be found
all together, such as the capability to execute code directly in the vanilla Linux
kernel (hence without the necessity to install any additional kernel module), the
possibility to compile and inject dynamically the code, the capability to support
arbitrary service chains and the integration with the Linux eXpress Data Path
(XDP) for early (and efficient) access to incoming network packets. At the same
time, eBPF is known for some limitations such as limited program size, limited
support for loops, and more, which may impair its capacity to create powerful
networking programs.

In the following pages, some important features of eBPF are discussed.

2.9.1 Verifier
A very important concept of eBPF is safety. Since an eBPF program can be loaded
at runtime in the kernel, it is checked by the verifier, which ensures that the given
program cannot harm the system. The following is a list of constraints imposed by
the verifier to the eBPF programs:

• the program must not have infinite loops

20

Background

• the program must not use uninitialized variables or access out-of-bounds
memory

• the program must be of a certain size that meets the system requirements

• the program must have a finite complexity. The verifier will evaluate all
possible execution paths and must be able to complete the analysis within
appropriate limits

2.9.2 Helper Functions
Technically, creating code that does complex operations with eBPF could be critical,
since the C of the eBPF is limited. The solution that comes to the aid of developers
are helpers. Helpers are native software functions in the Linux kernel that can
be called within an eBPF program. While the eBPF code can be injected on
demand, the helpers must be compiled apriori into the Linux kernel: this means
that it is possible to use the helpers already listed in the Linux kernel. In case the
already provided helpers are not enough, it is possible to define new ones and add
them to the kernel. In brief, helper functions allow eBPF programs to consult a
kernel-defined set of function calls to retrieve and send data to and from the kernel.
The support functions available may differ for each type of BPF program.

2.9.3 Maps
Traditional BPF was stateless: eBPF overcomes this problem by providing mech-
anisms to save the state within a memory. The main purpose is to export data
from the kernel to userspace, push data from userspace to the kernel or share data
between different eBPF programs. The problem with having shared memory is
concurrency: eBPF found a solution to this problem by defining a non-generic typed
memory data structure called map. A map can assume a particular form (vector,
hashmap, table etc...) and it is possible to have more than one simultaneously. If
maps are used, the concurrency is directly managed by the system and programmers
do not have to take care of it. Maps can also be nested, i.e. it is possible to have
maps of various types of maps. In brief, maps are efficient key/value stores that
reside in kernel space.

Maps can be accessed from a BPF program in order to keep state among multiple
BPF program invocations. They can also be accessed through file descriptors from
user space and can be arbitrarily shared with other BPF programs. BPF programs
which share maps are not required to be of the same program type. The sharing
mechanism is shown in Fig. 2.5.

There are different types of maps, which have behaviors and structures that
distinguish them. The following is a list of generic maps:

21

Background

User space

Kernel space

MAPs MAPs
MAPs

MAPs

User Application 1 User Application 2

eBPF program 1
eBPF program 2

Figure 2.5: Shared memory architecture

• BPF_MAP_TYPE_HASH

• BPF_MAP_TYPE_ARRAY

• BPF_MAP_TYPE_PERCPU_HASH

• BPF_MAP_TYPE_PERCPU_ARRAY

There are also non-generic maps, some of which are:

• BPF_MAP_TYPE_PROG_ARRAY

• BPF_MAP_TYPE_PERF_EVENT_ARRAY

• BPF_MAP_TYPE_PERF_EVENT_ARRAY

• BPF_MAP_TYPE_STACK_TRACE

Some maps also have a PERCPU version that allows to have different instances of the
same table for each CPU core. The PERCPU versions are intended for performance
improvement. No synchronization mechanism is needed and maps can also be
cached for a further increase in access speed.

22

Background

2.9.4 Tail calls
The concept of tail call can be used to overcome the size limit of an eBPF program.
In practice, thanks to tail calls, an eBPF program can call another without going
back to the old program: this is different from what happens usually with a normal
function call, on which the program control returns to the caller after the function
ending. A tail call has a minimal overhead and it is implemented as a long jump,
reusing the same stack frame.

2.9.5 Program Types
There are different types of eBPF programs. The type of the eBPF program is
defined by the specific type of events on which the program has to be triggered.
Each type of event defines an Hook Point, which can be interpreted as a point of
which an eBPF program can be attached. The number of available Hook Points
is quite high. Hook Points are located at different levels in the Linux networking
stack: an event can be captured as soon as it exits the card network, as soon as the
Operating System comes into play, in sockets or at the RAW level (traditional BPF).
The metadata associated with packets and the allowed actions change according to
the hook used. For networking purposes, program execution starts when a packet
arrives. Two of the main types for networking are eXpress Data Path (XDP)
and traffic control (tc). A visualization of the XDP and tc Hook Points is shown
in Fig. 2.6.

Figure 2.6: The XDP and tc hook points

23

Background

XDP (eXpress Data Path)

XDP [12] provides a mechanism to run an eBPF program at the lowest possible
level in the Linux networking stack. An eBPF program attached to the XDP
Hook Point is triggered immediately after the reception of a packet. No expensive
operations are performed at this level of the network stack: indeed, the program is
triggered before any allocation of kernel metadata structures such as skb, spending
fewer CPU cycles for packet processing than conventional stack delivery. On the
other hand, the information provided to the program at this level are poor.

XDP has three operating modes:

• Driver (or Native) mode - the network card driver must support this model.
Notice that, a device that runs in XDP Driver can redirect a packet only to
another device running XDP Driver

• Offloaded mode - the BPF program is offloaded directly into the NIC
instead of running on the host CPU. This is usually implemented in so-called
SmartNICs

• Generic (or SKB) mode - in this case, XDP can also be used with drivers
that do not offer native support. Note that, a device that runs in XDP Generic
can redirect a packet to all the devices that run in XDP Generic

Possible use cases are: early packet discarding (for example for DDoS mitigation),
firewalling, load balancing and forwarding. After the XDP program has been
executed, an appropriate value must be returned:

• XDP_DROP - the packet is dropped directly at the driver level, without wasting
any other resources

• XDP_PASS - the packet can keep going up the network stack. In this case, the
CPU that is processing the packet allocates an skb, populates it and passes it
forward to the GRO (Generic Receive Offloload) engine

• XDP_TX - the packet just received is modified and/or checked and then is sent
back to the same NIC it came from. This type of action is used for example
to make load balancer

• XDP_REDIRECT - the packet is redirected to another NIC

• XDP_ABORTED - indicates an exception; in this case the behavior is the same as
XDP_DROP except that XDP_ABORTED passes trace_xdp_exception tracepoint
which can be further monitored to detect incorrect behavior

A graphical representation of the possible XDP program actions is shown in Fig.
2.7.

24

Background

Figure 2.7: XDP program actions

Obviously, XDP has not only advantages; some limitations are the followings:

• with XDP it is possible to use only a limited number of helpers (compared for
example to those that can be called with tc)

• XDP Driver mode limitations - nowadays, most XDP-enabled drivers use a
specific memory model (e.g., one packet per page) to support XDP on their
devices. Among the different actions allowed in XDP, there is the possibility
to redirect the packet to another physical interface (XDP_REDIRECT). While
this action is currently possible within the same driver, in our understanding,
it is not possible between interfaces of different drivers

• Generic XDP limitations - in case XDP is used without driver support, the
XDP program is executed immediately after the skb allocation and therefore
in practice loses the advantages that come from the Driver mode. Although it
must be said that it continues to perform better than tc

tc (traffic control)

tc programs intercept data when it reaches the traffic control function of the
kernel, in RX or TX mode. Compared to XDP, a tc program has the following
characteristics [11]:

25

Background

• the BPF input context is a sk_buff, not a xdp_buff. When the kernel
networking stack receives a packet, after the XDP layer, it allocates a buffer
and parses the packet to store metadata about the packet: this representation
is known as the sk_buff

• tc BPF programs can be triggered out of ingress and also egress points in
the networking data path; XDP program can only be triggered on the ingress
points

• tc BPF programs do not require any driver changes since they are run at Hook
Points in generic layers in the networking stack: this means that they can be
attached to any type of networking device

2.10 BCC
BCC is a toolkit for creating efficient kernel tracing and manipulation programs,
and includes several useful tools and examples. Thanks to BCC it is possible
to write eBPF programs in a much easier way: this is made possible thanks to
the kernel instrumentation in C (which includes a C wrapper around LLVM) and
frontends in Python and Lua. It is suitable for many tasks, including performance
analysis and network traffic control.

2.11 Polycube
Polycube [13] is an open-source software framework, based on eBPF, that enables
the creation of arbitrary and complex network function chains. A powerful in-
kernel data plane and a versatile user-space control plane with strong isolation,
persistence and composability characteristics can be used in every function. In
addition, a common model for each network function control and management
strategy simplifies the manageability and speeds up the implementation of new
network services.

Polycube architecture main points are:
• Polycubed is a service independent daemon that allows to control the entire

polycube service, starting from startup, through configuration and stopping
all available network functions, i.e. services. This module mainly acts as a
proxy, that is, it receives a request from its REST interface, forwards it to the
appropriate service instance and responds to the user. Polycube supports both
local services which are implemented as shared libraries, which are installed
on the same server as polycubed and whose interaction occurs through direct
calls, but also remote services which are implemented as remote daemons even
running on a different machine, which communicate with polycubed via gRPC

26

Background

Figure 2.8: Polycube architecture

• A Polycube service can be seen as a plug-in that can be installed and started at
runtime. Each service must implement a specific interface to be recognized and
controlled by the polycubed daemon. Each network function is implemented
as a separate module and multiple versions of the same function can coexist,
this is because there may be cases where a simple and fast version is needed
and therefore a reduced set of functions may suffice, but, there may be cases
where the full but slower version is needed. Each implementation of the service
includes the datapath (Data Plane), i.e. the eBPF code to be injected into
the kernel, the control/management plane, which defines the primitives that
allow you to configure the behavior of the service, and the slow path, which
manages packets that cannot be fully processed in the kernel

• Polycubectl represents the command line interface (CLI) which is independent
of the service and which allows to control the entire system, such as start-
ing/stopping services, creating service instances and configuring/querying the
extension of each individual service. This module cannot know a priori which
service it will have to control and therefore its internal architecture is service-
agnostic, i.e. it is able to interact with any service through a well-defined
control/management interface that must be implemented by each service. To
facilitate the programmer life in the creation of Polycube services, there is a
set of tools for automatic code generation, capable of creating the skeleton
of the control/management interface starting from the YANG (Yet Another
Next Generation) model of the service itself

27

Background

2.12 The VxLAN technology

Virtual Extensible LAN (VxLAN) is a network virtualization technology that
attempts to address the scalability problems associated with large cloud computing
deployments. It uses a VLAN-like encapsulation technique to encapsulate OSI
layer 2 Ethernet frames within layer 4 UDP datagrams, using 4789 as the default
IANA-assigned destination UDP port number. VxLAN endpoints, which terminate
VxLAN tunnels and may be either virtual or physical switch ports, are known as
VxLAN tunnel endpoints (VTEPs) [14]. VxLAN is an overlay network to carry
Ethernet traffic over an existing (highly available and scalable) IP network while
accommodating a very large number of tenants. It is defined in RFC7348 [15]. The
structure of a VxLAN packet is shown in Fig. 2.9. With a 24-bit segment ID, aka
VxLAN Network Identifier (VNI), VxLAN allows up to 224 (16,777,216) virtual
LANs, which is 4,096 times the VLAN capacity. The full Ethernet Frame (with
the exception of the Frame Check Sequence: FCS) is carried as the payload of a
UDP packet. VxLAN tunnel endpoints has two logical interfaces: an uplink and
a downlink. The uplink is responsible for receiving VxLAN frames and acts as a
tunnel endpoint with an IP address used for routing VxLAN encapsulated frames.
These IP addresses are infrastructure addresses and are separated from the tenant
IP addressing for the nodes using the VxLAN fabric. VxLAN frames are sent to
the IP address assigned to the destination VTEP; this IP is placed in the Outer IP
Destination Address. The IP of the VTEP sending the frame resides in the Outer
IP Source Address. Packets received on the uplink are mapped from the VxLAN
ID to a VLAN and the Ethernet frame payload is sent as an 802.1Q Ethernet frame
on the downlink. During this process the inner MAC Source Address and VXLAN
ID is learned in a local table. Packets received on the downlink are mapped to a
VXLAN ID using the VLAN of the frame. A lookup is then performed within the
VTEP L2 table using the VXLAN ID and destination MAC; this lookup provides
the IP address of the destination VTEP. The frame is then encapsulated and sent
out the uplink interface.

The diagram shown in 2.10 is used as a reference for illustrating the following
example. A frame entering the downlink on VLAN 100 with a destination MAC of
11:11:11:11:11:11 will be encapsulated in a VxLAN packet with an outer destination
address of 10.1.1.1. The outer source address will be the IP of this VTEP (not
shown) and the VxLAN ID will be 1001. In a traditional L2 switch a behavior
known as flood and learn is used for unknown destinations (i.e. a MAC not stored
in the MAC table). This means that if there is a miss when looking up the MAC
the frame is flooded out all ports except the one on which it was received. When
a response is sent the MAC is then learned and written to the table. The next
frame for the same MAC will not incur a miss because the table will reflect the
port it exists on. VxLAN preserves this behavior over an IP network using IP

28

Background

Figure 2.9: The VxLAN packet structure

multicast groups. Each VxLAN ID has an assigned IP multicast group to use
for traffic flooding (the same multicast group can be shared across VXLAN IDs).
When a frame is received on the downlink bound for an unknown destination, it is
encapsulated using the IP of the assigned multicast group as the Outer DA; it’s
then sent out the uplink. Any VTEP with nodes on that VxLAN ID will have
joined the multicast group and therefore receive the frame. This maintains the
traditional Ethernet flood and learn behavior.

Figure 2.10: A VxLAN example

29

Chapter 3

Architecture

This chapter contains an in-depth explanation of the architecture of the network
provider. First, a description of the base architecture virtual network topology
proposed in [1] is given: each topology component is investigated and some changes
are proposed in order to overcome some efficiency and scalability problems or to
add new features. Lastly, a description of the CNI plugin, the overlay networking
and the node agent is provided.

3.1 Base architecture virtual network topology
The base architecture virtual network topology is shown in 3.1. It exploits three
standard Polycube services (pcn-simplebridge, pcn-router and pcn-lbrp) and
one custom Polycube service (the pcn-k8sdispatcher) that is built on purpose
for the work. In the following a description of each of these services is provided.

3.1.1 pcn-simplebridge
The pcn-simplebridge service implements a fast and simple Ethernet bridge. It
is used in order to allow communication between the Pods on the same node and
in order to give them access to their default gateway.

3.1.2 pcn-loadbalancer-rp (pcn-lbrp)
The pcn-loadbalancer-rp service (or simply pcn-lbrp) implements a Reverse
Proxy Load Balancer. Its design is inspired by Maglev, the Google Load Balancer
[16]. The number of exported network interfaces is limited to 2: a frontend port and
a backend port. The frontend port is facing towards the client that want to contact
a virtual service, whereas the backend port is facing towards the virtual service

30

Architecture

Figure 3.1: The base architecture virtual network topology

backends. If a packet is directed to a virtual service, it is hashed to determine which
is the correct backend; the hashing function guarantees that all packets belonging
to the same TCP/UDP session will always be terminated to the same backend
server. A single load balancer is placed between the router and the k8sdispatcher
in order to allow external clients to reach NodePort Services. Furthermore, a load
balancer is placed between each Pod and the simplebridge: this is done in order to
allow Pods to reach Service’s backends Pods through the Service’s Cluster IP.

3.1.3 pcn-router
The pcn-router service implements an eBPF router and so, it is responsible of
performing routing and forwarding of packets. It only supports IPv4 and static
routing. The router connects to other elements with a set of ports, each one
identified by a name and configured with a primary IP address, a list of secondary
IP addresses and a MAC address. The static routing table can be configured with
a set of routes, specifying destination network CIDR (address and prefix length),
next hop and path cost. This service can be attached also to physical or virtual
interfaces. If the port is connected to a network interface of the host, MAC and IP
addresses of the router port has to be the same of the host interface. The router is
the default gateway for Pods in the same node: it connects Pods to the external
world and to other Pods, enabling Pod to Pod communication across nodes thanks

31

Architecture

to VxLAN [15] tunnel.

3.1.4 pcn-k8sdispatcher
The pcn-k8sdispatcher service was originally conceived and developed in the
work [1]. The service provides an eBPF implementation of a custom NAT: it
performs different actions depending on the type and on the direction of the traffic.

For Egress Traffic, the flow chart in 3.2 can be used to explain the functioning
of the service.

Figure 3.2: pcn-k8sdispatcher egress traffic flow chart

The Egress Traffic is the traffic generated by Pods and directed to the external
world. This traffic can be generated by an internal Pod that want to contact the
external world or as a response to an external world request. For this traffic, the
service maintains an egress session table containing information about the active
egress sessions. If a Pod want to contact the external world, no active egress session
will be present in the table: in this scenario, the service performs SNAT, replacing
the address of the Pod with the address of the node, and adds an entry to the
egress session table. If the outgoing traffic is generated as a response to an external
request, an egress session table hit will happen: in case of traffic generated as a
response for a request to a NodePort Service, DNAT is performed; otherwise SNAT
is performed. In both the latter two cases, NAT is performed using the information
retrieved from the egress session table.

32

Architecture

For Ingress Traffic, the flow chart in 3.3 can be used to explain the functioning
of the service.

Figure 3.3: pcn-k8sdispatcher ingress traffic flow chart

The Ingress Traffic can be differentiated in traffic directed to the host (either
directly or because it needs VxLAN processing) and traffic directed to Pods. The
traffic directed to Pods can be the traffic generated by an external host trying
to contact a NodePort service or the return traffic generated by an external host
in order to provide a response to an internal Pod request. The service uses an
ingress session table containing all the active ingress sessions. If a session table
hit happens, the service performs DNAT by replacing <NodeIP>:<Port> of the
packet with <PodIP>:<PodPort> extracted from the ingress session table entry.
If no session table are associated with the incoming packet, the service try to
determine if a NodePort rule matches the packet characteristics. In case of no
NodePort rule matching, the packet is sent to the Linux stack for further processing.
In case of NodePort rule matching, different actions are applied according to the
ExternalTrafficPolicy of the Kubernetes NodePort Service associated to the
rule. If the policy is LOCAL, the traffic is allowed to reach only backend Pods
located on the current node: in this case the packet can proceed towards the Pod
without modifications. In case the policy is CLUSTER, the packet can also reach
backend Pods located on other nodes: since later in the chain the packet will be

33

Architecture

processed by a load balancer and the return packet will have to transit through
the same load balancer, SNAT is applied by replacing the source IP address with
a specific reserved address belonging to the Pod CIDR of the node on which the
k8sdispatcher is deployed. In this way the two nodes (the one that receives the
request and the one running the selected backend Pod) will exchange the packets
of the flow over the VxLAN interconnect. In this case, a corresponding session
entry is stored into the ingress sessions table.

3.2 The new virtual network topology
The base architecture virtual network topology allows a network provider built on
top of it to be partially compliant to the Kubernetes networking dictates: indeed,
the architecture does not handle the communication between an host process and
a Pod deployed on the same node. Moreover, the architecture suffers of efficiency
and scalability problems due to the following two reasons:

• a new load balancer must be created for each Pod and each time the relative
eBPF code must be loaded in the Linux kernel

• each Kubernetes Service or related Endpoints variations must be reflected
upon each load balancer

In order to deal with the above problems, the new topology shown on Fig. 3.4
has been conceived. First, a new port on the router is created and connected to a
virtual Ethernet pair for enabling communication between Pods and host processes
running on the same node: this will be called polykube veth pair in the following
discussions. Finally, the simplebridge and the per-Pod load balancers are removed
and substituted by the instance of a new custom service, called pcn-k8slbrp: this
new component overcomes the interfaces number limitation of the pcn-lbrp service.
In the following, a description of the pcn-k8slbrp service is provided.

3.2.1 pcn-k8slbrp
The pcn-k8slbrp service is developed specifically for this project. It provides an
implementation of a Reverse Proxy Load Balancer. It is inspired by the functioning
of the already existing pcn-lbrp service but extends its architecture in order to
increase the number of supported ports. The purpose of this service is to perform
the necessary translation of the Kubernetes Service’s associated IP and port with
the ones of a real Service’s backend Pod, according to the load balancing logic. A
k8slbrp port can be a FRONTEND or a BACKEND port. Depending of the port mode,
the k8slbrp can support one or more frontend ports. Two port modes are supported:
SINGLE and MULTI. In SINGLE port mode, the load balancer supports only a single

34

Architecture

Figure 3.4: The new architecture virtual network topology

FRONTEND port; in MULTI port mode, multiple FRONTEND ports are supported. In
both cases, only a BACKEND port is supported. Regardless the port mode, if a
packet coming from a FRONTEND port is directed to a Service, DNAT is performed
on it; the corresponding SNAT is performed for packets coming from backends and
on the way back to clients. Like in the case of the pcn-lbrp service, packet are
hashed to determine which is the correct backend; all packets belonging to the
same TCP/UDP session will always be terminated to the same backend server.
The translation performed is from <vip>:<vport> to <realip>:<realport>.

The topology is made up 2 different pcn-k8slbrp cubes: the internal k8slbrp
and the external k8slbrp. The internal k8slbrp cube is configured in MULTI port
mode and is placed between the Pods and the router: it allows to connect Pods to
the network topology and enables Kubernetes ClusterIP Services communications.
The external k8slbrp is configured in SINGLE port mode and is placed between
the router and the k8sdispatcher: like the lbrp present in the base architecture, it
enables external client to reach NodePort Services exposed by internal backend
Pods.

3.3 The CNI plugin
In order to handle the attachment of the Pods to the network topology, a CNI plugin
has to be conceived. The CNI plugin is invoked by the container runtime each time

35

Architecture

a Pod is created, destroyed or checked against connectivity reachability. Each time
a Pod is created, the CNI plugin must create a virtual Ethernet pair connecting the
Pod to the internal k8slbrp and configure the Pod’s network namespace in order to
allow processes running inside the Pod to reach the Pods Default Gateway. Each
time a Pod is destroyed, the corresponding network interfaces and the connection
to the internal k8slbrp must be destroyed as well. The convention used by the
CNI has to be carefully evaluated, since they could be exploited by other network
provider components.

3.4 The overlay network
For communications involving different nodes, an overlay networking solution is
chosen: this allows to implement the virtual networking without relying on a specific
network technology which may not be given for a specific cluster deployment. The
VxLAN encapsulation protocol is used without requiring multicast support or the
needing of physical switches that actively partecipate in IGMP snooping: this
independence is achieved by configuring in a proper way the Linux bridge forwarding
database.

3.5 The node agent
The network provider must handle all the tasks related to the networking of the
cluster. Since the virtual network topology of each node has to be deployed and
kept in sync with the cluster status, an agent on each node is needed.

The agent is responsible of ensuring the network topology on the node on which
is deployed and ensuring the intra- and the inter-node connectivity: this means
creating, connecting and checking the configuration of each Polycube cube and
creating and checking the VxLAN inter-node connectivity. The agent must ensure
the connectivity between host processes and Pods running on the same node: this
means ensuring the presence and the configuration of the virtual Ethernet pair on
the node and the right configuration on the host routing table for allowing host
processes to contact Pods; moreover, also the topology router routing table must
be correctly configured for allowing Pods to contact host processes on the same
node.

The agent need to be able to recover from failure of various kind: this involves
failure in the network topology or failure in the VxLAN interconnection. The agent
has to receipt the changes on the Kubernetes networking infrastructure through
the Kubernetes control plane (specifically, from the API server), such as new node
added to the cluster or new created services, and propagate them on the network
topology. The following is a description of the resources that must be watched:

36

Architecture

• nodes - each time a Node object is created, the agent must configure the
topology router and the host Linux bridge forwarding database for enabling
inter-node communications through the VxLAN interface

• services - each time a Service object is created, the internal and the external
k8slbrp and also the k8sdispatcher has to be configured properly according to
the Service type

• endpoints - the information contained in the Endpoints object associated
to a Service object are useful to determine the backends Pods associated to
the Service; these information are used for configuring the internal and the
external k8slbrp for enabling service resolution

The agent running on each node communicates with the Kubernetes API server
through its exposed REST API. In order to handle the network topology, the agent
interact with the Polycube daemon through the REST API: this daemon, like the
agent, must be present on each node of the cluster. The communication between
the agent and the Polycube daemon is realized through the loopback interface of
the node. The image in 3.5 shows the final representation of the architecture of
the network provider.

Figure 3.5: Network provider architecture

37

Chapter 4

Implementation

This chapter explains how concepts shown in the Chap. 3 have been implemented
in details, which programming languages and which workarounds have been used
in order to solve the problems encountered. The pcn-router is a standard ser-
vice, already available in the Polycube framework. The pcn-k8slbrp service is
built specifically for the project. The pcn-k8sdispatcher service code has been
cleaned up and optimized in order to efficiently work in couple with the agent.
A custom CNI plugin has been implemented as well as an operator for watching
Kubernetes resources and reflecting their changes on the network topology. C++
has been used for implementing the pcn-k8slbrp control plane and revising the
pcn-k8sdispatcher one. C has been used for working with the services data
plane implementations. The YANG data modelling is used to describe the services
structure. The CNI plugin and the operator have been implemented using Golang.

4.1 Automatic code generation
Polycube provides an automatic code generation utility, called polycube-codegen,
that can be used to generate a stub from a YANG datamodel. It is composed
by pyang and swagger-codegen: pyang parses the YANG datamodel and creates
an intermediate JSON that is compliant with the OpenAPI specifications [17];
swagger-codegen starts from the JSON file produced by pyang and creates a
C++ code skeleton that actually implements the service. Among the services
that are automatically provided, the C++ skeleton handles the case in which a
complex object is requested, such as the entire configuration of the service, which
is returned by disaggregating the big request into a set of smaller requests for
each leaf object. Hence, this leaves to the programmer only the responsibility to
implement the interaction with leaf objects. The following is a description of the
structure generated by polycube-codegen:

38

Implementation

• src/base/{resource-name}Base.[h,cpp] - one base class is generated for
every resource defined in the data-model (including the service itself), this
classes define the interface that must be implemented to be compliant with
the management API

• src/api/{service-name}Api.[h,cpp] and
src/api/{service-name}ApiImpl.[h,cpp] - implements the shared library
entry points to handle the different request for the rest API endpoints. The
developers does not have to modify it

• src/serializer/ - this folder contains one JSON object class for each object
used in the control API. These classes are used to performs the marshalling/un-
marshalling operations

• src/{resource-name}.[h,cpp] - these classes implement the corresponding
interface of the base directory, they provide a standard implementation for
some of the methods, while others must be written by the programmer to
define the actual behaviour of the service

• src/{service-name}-lib.c - this is used to compile the service as shared
library

• src/{service-name}_dp.c - this contains the fast path code for the service

• .swagger-codegen-ignore - this file is used to prevent files from being
overwritten by the generator if a re-generation is performed

Each Polycube service must follow a specific convention for generating the REST
APIs: this is needed in order to interact with them by using polycubectl or other
REST clients specifically built for the purpose. This convention is exploited by
polycube-codegen, which supports the generation of client stubs in different
programming languages. Since both the CNI plugin and the operator need to
interact with the services control plane, this features is used in order to generate
client libraries for the pcn-router, the pcn-k8slbrp and the pcn-k8sdispatcher.

4.2 pcn-k8slbrp
The pcn-k8slbrp service is designed in order overcome the limitations of the stan-
dard pcn-loadbalancer-rp service, already provided in the Polycube framework.
Specifically, this standard load balancer implementation only supports two ports: a
frontend and backend port. First, starting from the pcn-loadbalancer-rp imple-
mentation, an effort has been made in order to support the creation of more than
one frontend port. Once the multiple frontend ports feature has been implemented,

39

Implementation

the port mode concept has been introduced: this allow to fallback to the default
pcn-loadbalancer-rp implementation in case no more than one frontend port is
needed (like in the case of the external load balancer): this lets understand that
the port mode feature has been introduced only for optimization reasons.

4.2.1 Data Model
Traffic coming from the unique backend port must be redirected to the proper
frontend port. In order to select the right port, it is enough to associate to each
frontend port the IP address of the connected Pod: in this way, the packet can be
redirected to the port whose associated IP is the destination IP of the packet. The
IP address is associated during the port creation. The pcn-k8slbrp data model
snippet in 4.1 reflects this choice.

Listing 4.1: pcn-k8slbrp data model - ports definition
1 uses " polycube−standard−base : standard−base−yang−module " {
2 augment por t s {
3 l e a f type {
4 type enumeration {
5 enum FRONTEND { d e s c r i p t i o n " Port connected to the c l i e n t s

" ; }
6 enum BACKEND { d e s c r i p t i o n " Port connected to the backend

s e r v e r s " ; }
7 }
8 mandatory true ;
9 d e s c r i p t i o n " Type o f the LB port (e . g . FRONTEND or BACKEND) " ;

10 }
11 l e a f ip {
12 type i n e t : ipv4−address ;
13 d e s c r i p t i o n " IP address o f the c l i e n t i n t e r f a c e (only f o r

FRONTEND port) " ;
14 polycube−base : c l i −example " 1 0 . 1 0 . 1 . 1 " ;
15 }
16 }
17 }

The port mode is simple to implement. If the pcn-k8slbrp cube is created in
SINGLE port mode, an IP address is not needed on the single allowed frontend port.
The port mode is introduced in the data model in the way shown in 4.2.

Listing 4.2: pcn-k8slbrp data model - port mode definition
1 l e a f port_mode {
2 type enumeration {
3 enum SINGLE;
4 enum MULTI;
5 }

40

Implementation

6 d e f a u l t MULTI;
7 d e s c r i p t i o n " K8s lbrp mode o f opera t i on . ’MULTI’ a l l ows to manage

mul t ip l e FRONTEND port . ’SINGLE’ i s opt imized f o r working with a
s i n g l e FRONTEND port " ;

8 }

The YANG data model, as shown in 4.3 presents two other important concepts:
services and backends.

Listing 4.3: pcn-k8slbrp data model - services and backends definition
1 l i s t s e r v i c e {
2 key " vip vport proto " ;
3 d e s c r i p t i o n " S e r v i c e s (i . e . , v i r t u a l ip : p ro to co l : port) exported

to the c l i e n t " ;
4 l e a f name {
5 type s t r i n g ;
6 d e s c r i p t i o n " Se rv i c e name r e l a t e d to the backend s e r v e r o f the

pool i s connected to " ;
7 polycube−base : c l i −example " Serv i ce −nigx " ;
8 }
9

10 l e a f v ip {
11 type i n e t : ipv4−address ;
12 d e s c r i p t i o n " V i r tua l IP (vip) o f the s e r v i c e where c l i e n t s

connect to " ;
13 polycube−base : c l i −example " 1 3 0 . 1 9 2 . 1 0 0 . 1 2 " ;
14 }
15

16 l e a f vport {
17 type i n e t : port−number ;
18 d e s c r i p t i o n " Port o f the v i r t u a l s e r v e r where c l i e n t s connect

to (t h i s va lue i s ignored in case o f ICMP) " ;
19 polycube−base : c l i −example " 8 0 " ;
20 }
21

22 l e a f proto {
23 type enumeration {
24 enum ICMP;
25 enum TCP;
26 enum UDP;
27 enum ALL;
28 }
29 mandatory true ;
30 d e s c r i p t i o n " Upper−l a y e r p ro to co l a s s o c i a t e d with a

loadba lanc ing s e r v i c e i n s t anc e . ’ALL’ c r e a t e s an entry f o r a l l the
supported p r o t o c o l s " ;

31 }
32

33 l i s t backend {

41

Implementation

34 key " ip " ;
35 d e s c r i p t i o n " Pool o f backend s e r v e r s that a c t u a l l y s e rve

r eque s t s " ;
36 l e a f name {
37 type s t r i n g ;
38 d e s c r i p t i o n "name " ;
39 polycube−base : c l i −example " backend1 " ;
40 }
41

42 l e a f ip {
43 type i n e t : ipv4−address ;
44 d e s c r i p t i o n " IP address o f the backend s e r v e r o f the pool " ;
45 polycube−base : c l i −example " 1 0 . 2 4 4 . 1 . 2 3 " ;
46 }
47

48 l e a f port {
49 type i n e t : port−number ;
50 d e s c r i p t i o n " Port where the s e r v e r l i s t e n to (t h i s va lue i s

ignored in case o f ICMP) " ;
51 mandatory true ;
52 polycube−base : c l i −example " 8 0 " ;
53 }
54

55 l e a f weight {
56 type uint16 ;
57 d e s c r i p t i o n " Weight o f the backend in the pool " ;
58 polycube−base : c l i −example " 1 " ;
59 }
60 }
61 }

A service is identified by the triple <vip>:<vport>:<proto>. Each service
represents a virtual service exposed by a certain number of backends Pod. The
supported protocol types are TCP, UDP and ICMP. The ALL protocol type is a
shortcut for the latter three types. It is possible to associate to each service also a
name: this doesn’t need to be unique among services, and so can be used to easily
group them (more details will be given in later sections).

Each service have a list of backends. Given a service, a backend is identified
by its IP. The port number is mandatory. The backend name doesn’t need to be
unique among the service backends and can be used to perform backends grouping.
Lastly, a weight can be associated to each backend: its purpose is to determine
how the traffic has to be splitted among the service backends. The default weight
value is 1.

42

Implementation

4.2.2 Data plane
Traffic coming from a backend port is only allowed to go to a frontend port. If the
load balancer is configured in MULTI port mode, the proper frontend port is chosen
by using the destination IP of the packet as a key of an eBPF hash map called
ip_to_frontend_port: if an entry is found in the map, the obtained frontend
port number is used to forward the packet; if an entry is not found, the packet is
dropped.

Traffic coming from a frontend port is only allowed to go to the backend port.
This solution simplifies the implementation but introduces the following problem:
if a Pod want to reach another Pod inside the same Pod CIDR, it will try to
obtain its MAC address through an ARP request; since the internal load balancer
is conceived to be connected through its backend port to the router, each of these
ARP request will be received by the router and will be discarded. The solution to
the problem requires to configure a /32 address on each Pod: in this way, for all
the traffic types, each Pod will try to reach all the other destinations through its
default gateway.

If the packet is not an IPv4 packet and comes from a backend port, this is
flooded to all the frontend port. If the packet comes from a frontend port and is
an ARP reply, the original ARP reply is sent to the backend port and a second
ARP reply, using the virtual source IP associated to the src IP rewriting feature of
the load balancer, will be sent as well to the backend port. This latter feature is
inherited by the pcn-loadbalancer-rp implementation.

4.3 pcn-k8sdispatcher
The pcn-k8sdispatcher is a service developed in order to allow the internal virtual
topology to communicate with the external world: for example, it is responsible
to perform NAT during Pod to Internet communications. The service, already
designed in [1] and implemented in [18], has been cleaned up and optimized for
working together with the operator.

4.3.1 Data Model
Kubernetes associates to the NodePort Services a port range: this is used in order
to discriminate packets directed to the network stack of the node from packets
directed to the services. This port range is customizable and the k8sdispatcher
must be aware of it in the datapath. Also, the k8sdispatcher must be aware of the
IP address configured on the physical interface connected to the node: this is the
IP address associated to the Kubernetes node and together with the port range
allows to identify a packet eligible to be checked against the registered NodePort

43

Implementation

services. This two information (the NodePort range and the IP address associated
to the frontend port) are defined in the data model as shown in 4.4.

Listing 4.4: pcn-k8sdispatcher data model - ports and NodePort range definition
1 uses " polycube−standard−base : standard−base−yang−module " {
2 augment por t s {
3 l e a f type {
4 type enumeration {
5 enum BACKEND { d e s c r i p t i o n " Port connected to cn i

topo logy " ; }
6 enum FRONTEND { d e s c r i p t i o n " Port connected to

NIC " ; }
7 }
8 mandatory true ;
9 d e s c r i p t i o n " Type o f the k8 sd i spa t che r port (e . g .

BACKEND or FRONTEND) " ;
10 }
11 l e a f ip {
12 type i n e t : ipv4−address ;
13 d e s c r i p t i o n " IP address o f the node i n t e r f a c e (only

f o r FRONTEND port) " ;
14 polycube−base : c l i −example " 1 0 . 1 0 . 1 . 1 " ;
15 }
16 }
17 }
18

19 l e a f nodeport−range {
20 type s t r i n g ;
21 d e s c r i p t i o n " Port range used f o r NodePort s e r v i c e s " ;
22 d e f a u l t "30000 −32767";
23 polycube−base : c l i −example "30000 −32767";
24 }

It is not enough for an incoming packet to have destination address equal to
the one configured on the external interface and destination port in the NodePort
range: in order to not be sent to the host stack, the packet must match one of the
NodePort rules registered on the pcn-k8sdispatcher instance. A NodePort rule
is identified by a port and a protocol type, as shown in 4.5.

Listing 4.5: pcn-k8sdispatcher data model - NodePort rule
1 l i s t nodeport−r u l e {
2 key " nodeport−port proto " ;
3

4 l e a f nodeport−name {
5 type s t r i n g ;
6 d e s c r i p t i o n "An opt i ona l name f o r the NodePort r u l e " ;
7 }
8 l e a f nodeport−port {

44

Implementation

9 type i n e t : port−number ;
10 d e s c r i p t i o n " Des t ina t i on L4 port number " ;
11 }
12 l e a f proto {
13 type s t r i n g ;
14 d e s c r i p t i o n "L4 pro to co l " ;
15 }
16 l e a f s e r v i c e −type {
17 type enumeration {
18 enum CLUSTER { d e s c r i p t i o n " Clus te r wide s e r v i c e " ; }
19 enum LOCAL { d e s c r i p t i o n " Local s e r v i c e " ; }
20 }
21 mandatory true ;
22 d e s c r i p t i o n " Denotes i f t h i s S e rv i c e d e s i r e s to route

e x t e r n a l t r a f f i c to node−l o c a l or c l u s t e r −wide endpoint " ;
23 }
24 }

A NodePort rule is associated one-to-one with a NodePort Service’s ServicePort
configured on the cluster. In order to easily identify all the NodePort rules associated
to a NodePort Service, a name can be configured on it. The service-type stores
the information of the externalTrafficPolicy of the NodePort service: if it is
set to CLUSTER, then SNAT is performed before sending the packets to the next
cube. The internal-src-ip address, whose definition is shown in 4.6, is used to
perform the aforementioned NAT operation.

Listing 4.6: pcn-k8sdispatcher data model - Internal Source IP
1 l e a f i n t e r n a l −src−ip {
2 type i n e t : ipv4−address ;
3 d e s c r i p t i o n " I n t e r n a l s r c ip used f o r s e r v i c e s with

e x t e r n a l T r a f f i c P o l i c y=CLUSTER" ;
4 polycube−base : c l i −example " 1 0 . 1 0 . 1 . 1 " ;
5 mandatory true ;
6 }

In order to store the information about the ingress and the egress sessions, the
concept of Natting rule is defined in the data model. A Natting rule is identified
by the quintuple (IPSrc, IPDst, PortSrc, PortDst, Proto). The data model snippet
is shown in 4.7.

Listing 4.7: pcn-k8sdispatcher data model - Natting rule
1 l i s t natt ing −r u l e {
2 key " i n t e r n a l −s r c i n t e r n a l −dst i n t e r n a l −spor t i n t e rn a l −dport

proto " ;
3

4 l e a f i n t e r n a l −s r c {
5 type i n e t : ipv4−address ;

45

Implementation

6 d e s c r i p t i o n " Source IP address " ;
7 }
8 l e a f i n t e r n a l −dst {
9 type i n e t : ipv4−address ;

10 d e s c r i p t i o n " Des t ina t i on IP address " ;
11 }
12 l e a f i n t e r n a l −spor t {
13 type i n e t : port−number ;
14 d e s c r i p t i o n " Source L4 port number " ;
15 }
16 l e a f i n t e r n a l −dport {
17 type i n e t : port−number ;
18 d e s c r i p t i o n " Des t ina t i on L4 port number " ;
19 }
20 l e a f proto {
21 type s t r i n g ;
22 d e s c r i p t i o n "L4 pro to co l " ;
23 }
24 l e a f exte rna l −ip {
25 type i n e t : ipv4−address ;
26 d e s c r i p t i o n " Trans lated IP address " ;
27 }
28 l e a f exte rna l −port {
29 type i n e t : port−number ;
30 d e s c r i p t i o n " Trans lated L4 port number " ;
31 }
32 }

4.3.2 Data plane
The service dataplane has been cleaned up from the already existing implementation.
Moreover, a better ARP handling has been implemented. If a packet coming from
the backend port is an ARP request, it is allowed to go to the frontend port: this
is needed in order to allow the Polycube router to send ARP request packets for
inferring the cluster nodes and the cluster Default gateway MAC addresses. ARP
packets coming from the backend port other than requests are dropped. If a packet
coming from the frontend port is an ARP reply, it is duplicated: a copy is sent
to the Linux host network stack and a copy is sent to the next cube. If a packet
coming from the frontend port is an ARP request, it is sent to the stack. ARP
packets coming from the frontend port other than requests or reply are dropped.

4.3.3 Control plane
NodePort rules can be created, updated or destroyed by performing specific REST
calls to the Polycube daemon; Natting rules instead, can be only retrieved for

46

Implementation

debugging purposes since only the data plane code can add them.

4.4 The CNI plugin
Network plugins in Kubernetes come in a few flavors: CNI plugins and the
Kubenet plugin. CNI plugins must adhere to the Container Network Interface
(CNI) specification, a specification of the Cloud Native Computing Foundation
(CNCF). The kubelet has a single default network plugin, and a default network
common to the entire cluster. It probes for plugins when it starts up, remembers
what it finds, and executes the selected plugin at appropriate times in the Pod
lifecycle (this is only true for Docker, as CRI manages its own CNI plugins).

In order to instruct Kubernetes to use a CNI plugin, it is possible to pass to
the kubelet the --network-plugin=cni command-line option. Kubelet reads a file
from --cni-conf-dir (default /etc/cni/net.d) and uses the CNI configuration
from that file to set up each Pod’s network. If there are multiple CNI configuration
files in the directory, the kubelet uses the configuration file that comes first by name
in lexicographic order. A CNI configuration file must match the CNI specification,
and any required CNI plugins referenced by the configuration must be present in
--cni-bin-dir (default /opt/cni/bin). In addition to the CNI plugin specified by
the configuration file, Kubernetes requires the standard CNI lo plugin, at minimum
version 0.2.0. Kubernetes follows the v0.4.0 release of the CNI specification. For
this project, also the host-local IPAM plugin is required in order to manage the
assignment of the IPv4 addresses to the Pods deployed on a specific node.

4.4.1 The specification requirements
The CNI specification prescribes the CNI plugin to implement the following opera-
tions for the following purposes:

• ADD - add a container to network or apply modifications; if the plugin is
invoked requiring an ADD operation, the plugin should either create the specified
interface inside the specified container namespace or adjust its configuration

• DELETE - remove a container from network or un-apply modifications; if the
plugin is invoked requiring a DELETE operation, the plugin should either delete
the specified interface inside the specified container namespace or undo any
modifications applied in the plugin’s ADD functionality

• CHECK - check that the container networking is as expected; by invoking the
CNI plugin requiring the CHECK operation, the runtime is able to probe the
status of an existing container networking

47

Implementation

• VERSION - show the CNI plugin version

Each operation must be able to handle the following list of environment parameters.
Depending on the operation, some of them are required and other are optional:

• CNI_COMMAND - indicates the desired operation (ADD, DEL, CHECK or VERSION)

• CNI_CONTAINERID - a unique plaintext identifier for a container, allocated
by the runtime; in Kubernetes, most of the times this is the container ID
associated to the pause container of the Pod

• CNI_NETNS - indicates the isolation domain of the container; if network names-
paces are used as isolation domains, this is the path to the network namespace
(e.g. /run/netns/[nsname])

• CNI_IFNAME - indicates the name of the target interface inside the container;
in case of an ADD operation, this is the name of the interface that has to be
created inside the container

• CNI_ARGS - alphanumeric key-value pairs separated by semicolons representing
extra arguments that has to be passed to the plugin

• CNI_PATH - list of paths other than the default one to search for CNI plugins

Besides the environment parameters, a plugin configuration, inferred from the
CNI configuration file, is passed to the CNI plugin in a JSON format through the
standard input. This configuration may contain a prevResult field, describing the
output of previous invocations of the plugin (the presence of this field is linked to
the specific operation). It is possible to insert custom fields in the CNI configuration
file, and these will be passed as they are to the CNI plugin: this can be exploit to
customize the behaviour of the plugin.

4.4.2 The CNI configuration file
The CNI specification requires the presence of a configuration file in /etc/cni/net.d.
In 4.8, an example of a possible configuration file, designed to work properly with
the current CNI plugin implementation, is provided. As discussed in more details in
the following sections, the CNI configuration is not placed in a static file before the
network provider bootstrap, but is generated dynamically the first time the network
topology is created (using information extracted from it); during the topology
recovery procedures, some information, previously extracted for populating the
configuration, are re-enforced on the cubes configuration.

48

Implementation

Listing 4.8: CNI configuration file example
1 {
2 " cn iVer s i on " : " 0 . 4 . 0 " ,
3 "name " : " mynet " ,
4 " type " : " polykube−cni−plug in " ,
5 "mtu " : 1450 ,
6 " intK8sLbrp " : " i k l 0 " ,
7 " gateway " : {
8 " ip " : " 1 9 2 . 1 7 8 . 1 . 2 5 4 " ,
9 "mac " : "6 a : 5 e : 5 6 : e1 : 6 9 : 9 a "

10 } ,
11 " ipam " : {
12 " type " : " host−l o c a l " ,
13 " ranges " : [
14 [
15 {
16 " subnet " : " 1 9 2 . 1 7 8 . 1 . 0 / 2 4 " ,
17 " rangeStar t " : " 1 9 2 . 1 7 8 . 1 . 2 " ,
18 " rangeEnd " : " 1 9 2 . 1 7 8 . 1 . 2 5 3 " ,
19 " gateway " : " 1 9 2 . 1 7 8 . 1 . 2 5 4 "
20 }
21]
22] ,
23 " dataDir " : "/ var / l i b / cn i / networks /mynet " ,
24 " r e so lvConf " : "/ e t c / r e s o l v . conf "
25 }
26 }

As it is possible to see from the configuration file, the Pod’s default gateway
IPv4 and the MAC addresses are provided to the CNI plugin. The file specifies also
the name of the internal k8slbrp and the MTU that has to be configured on the
veth: this latter value is chosen in order to avoid possible packets fragmentation
due to the encapsulation technology used during the path towards the destination.
The host-local IPAM plugin is invoked by the CNI plugin in order to retrieve an
IP configuration, so parameters for instructing the host-local IPAM plugin are
specified as well. The reason why the ranges of available IPv4 addresses go from .2
to .253 will be explained in the following sections.

4.4.3 The implementation
At high level, the CNI plugin must be able to handle the connection of the Pod
with the k8slbrp and handle its network namespace routing and forwarding. The
executable of the plugin is placed in the /opt/cni/bin folder by the operator.
The following subsections provide an overview of the main steps followed during
the execution of each operations. The code snippets are shrinked and readapted

49

Implementation

starting from the real implementation, in order to not overload too much the
visualization; examples are the omitted logging lines.

The ADD operation

The ADD operation is responsible of:

• creating a veth pair, assigning the required CNI_IFNAME name to the container
end

• pushing the container end inside the Pod network namespace

• configuring the routing table of the network namespace with the Pod’s default
gateway IPv4 address

• configuring the ARP cache of the network namespace with the Pod’s default
gateway MAC address

• creating a frontend port on the internal k8slbrp, assigning to it the IPv4
address allocated by the IPAM module and connecting it to the veth pair host
end

The code in 4.9 is an extract of the main operations carried out by the plugin when
it is invoked with CNI_COMMAND environment variable set to ADD.

Listing 4.9: CNI plugin ADD operation main function
1 func cmdAdd(args ∗ s k e l . CmdArgs) e r r o r {
2 // par s ing c o n f i g u r a t i o n
3 conf , e r r := loadNetConf (args . StdinData)
4 i f e r r != n i l {
5 re turn fmt . Er ro r f (" f a i l e d to parse netcon f : %v " , e r r)
6 }
7

8 // par s ing prevResult , i f p re s ent
9 var prevResult ∗ cur rent . Result

10 i f conf . PrevResult != n i l {
11 i f prevResult , e r r = current . NewResultFromResult (conf .

PrevResult) ; e r r != n i l {
12 re turn fmt . Er ro r f (" f a i l e d to convert prevResult i n to

cur rent ve r s i on : %v " , e r r)
13 }
14 }
15

16 // g e t t i n g netns handle
17 netns , e r r := ns . GetNS(args . Netns)
18 i f e r r != n i l {
19 re turn fmt . Er ro r f (" f a i l e d to open %q netns : %v " , args . Netns ,

e r r)

50

Implementation

20 }
21 d e f e r netns . Close ()
22

23 // check ing i f the s p e c i f i e d i f a c e a l r eady e x i s t s in the
s p e c i f i e d netns

24

25 // . . . //
26

27 // g e t t i n g IP from ipam plug in . Even i f the returned IPv4 has a
/24 p r e f i x length , even tua l l y a /32 w i l l

28 // be con f i gu r ed on the conta ine r i n t e r f a c e
29 addr , e r r := a l l o c I P (conf .IPAM. Type , args . StdinData)
30 i f e r r != n i l {
31 re turn fmt . Er ro r f (" f a i l e d to get ip through ipam plug in : %v " ,

e r r)
32 }
33

34 // s e t t i n g up the veth pa i r
35 contIfaceName := args . IfName
36 ipHexStr := hex . EncodeToString (addr . IP)
37 hostIfaceName := u t i l s . GetHostIfaceName (contIfaceName , ipHexStr)
38

39 hos t I f a c e , cont I f a ce , e r r := setupVeth (netns , contIfaceName ,
hostIfaceName , conf .MTU)

40 i f e r r != n i l {
41 re turn fmt . Er ro r f (" f a i l e d to setup veth pa i r : %v " , e r r)
42 }
43

44 // c o n f i g u r i n g netns
45 i f e r r := con f igureNetns (netns , contIfaceName , addr , &conf .Gw) ;

e r r != n i l {
46 re turn fmt . Er ro r f (" f a i l e d to c o n f i g u r e the %q netns : %v " ,

args . Netns , e r r)
47 }
48

49 // c r e a t i n g k8s lbrp port and connect ing i t to h o s t I n t e r f a c e
50 k8sLbrpName := conf . K8sLbrpName
51 k8sLbrpPortName := ipHexStr
52 port := k8s lbrp . Ports {
53 Name : k8sLbrpPortName ,
54 Type_ : " f rontend " ,
55 Ip_ : addr . IP . S t r ing () ,
56 Peer : hostIfaceName ,
57 }
58

59 i f resp , e r r := k8sLbrpAPI . CreateK8sLbrpPortsByID (context .TODO() ,
k8sLbrpName , k8sLbrpPortName , port) ; e r r != n i l {

60 re turn fmt . Er ro r f (

51

Implementation

61 " f a i l e d to c r e a t e and connect %q i n t e r n a l k8s lbrp %q
port : %v " , k8sLbrpName , k8sLbrpPortName , err ,

62)
63 }
64

65 // s e t t i n g up the p lug in r e s u l t
66 r e s u l t := ¤t . Result {}
67 i f prevResult != n i l {
68 r e s u l t = prevResult
69 }
70 // The c o n t I f a c e w i l l be p laced at index l en (r e s u l t . I n t e r f a c e s) ,
71 // so the h o s t I f a c e w i l l be p laced at index l en (r e s u l t . I n t e r f a c e s

) + 1
72 contIp := ¤t . IPConfig {
73 I n t e r f a c e : cur rent . Int (l en (r e s u l t . I n t e r f a c e s)) , // 0 i f the

p lug in s i s unchained
74 Address : ∗addr ,
75 Gateway : conf .Gw. IP ,
76 }
77 contRoute := &types . Route{
78 Dst : net . IPNet{
79 IP : net . IPv4zero ,
80 Mask : net . IPv4Mask (0 , 0 , 0 , 0) ,
81 } ,
82 GW: conf .Gw. IP ,
83 }
84 // The order i s important ! The c o n t I f a c e must precede the

ho s t I f a c e ,
85 // s i n c e t h i s w i l l be e x p l o i t e d in the DEL and CHECK opera t i on s
86 r e s u l t . I n t e r f a c e s = append (r e s u l t . I n t e r f a c e s , cont I f a ce ,

h o s t I f a c e)
87 r e s u l t . IPs = append (r e s u l t . IPs , contIp)
88 r e s u l t . Routes = append (r e s u l t . Routes , contRoute)
89

90 re turn types . Pr intResu l t (r e s u l t , conf . CNIVersion)
91 }

The container interface name is constraint by the CNI_IFNAME environment
variable value. The name of the host end of the veth pair is chosen by taking into
account the fact that the operator must be able to infer it starting from the infor-
mation extracted from the Pod. The utils.GetHostIfaceName function is used to
produce a suitable name for the interface, starting from container interface name and
from the hexadecimal representation of the IPv4 address retrieved from the IPAM
module. The obtained name is in the form trunc(<contIface>)_<ipHexStr>,
where trunc(<contIface>) is the container interface name possibly truncated if
the length of <contIface>_<ipHexStr> is higher than 15 character: this takes
into account the constraint on the Linux interfaces name length.

52

Implementation

The setupVeth function is responsible of creating the veth pair and pushing
the container side inside the network namespace. The code is shown in 4.10.

Listing 4.10: setupVeth function used in the ADD operation
1 // setupVeth c r e a t e s a veth pa i r us ing the provided ends names and

puts the conta ine r end i n s i d e the provided netns . I t
2 // r e tu rn s a couple conta in ing the conta ine r i n t e r f a c e and the host

i n t e r f a c e i n f o .
3 func setupVeth (netns ns . NetNS , contIfName , hostIfName s t r i ng , mtu i n t

) (∗ cur rent . I n t e r f a c e , ∗ cur rent . I n t e r f a c e , e r r o r) {
4 c o n t I f a c e := ¤t . I n t e r f a c e {}
5 h o s t I f a c e := ¤t . I n t e r f a c e {}
6

7 e r r := netns .Do(func (hostNS ns . NetNS) e r r o r {
8 // c r e a t i n g the veth pa i r in the conta ine r and moving host

end in to host netns
9 hostVeth , contVeth , e r r := ip . SetupVethWithName (contIfName ,

hostIfName , mtu , " " , hostNS)
10 i f e r r != n i l {
11 re turn e r r
12 }
13 c o n t I f a c e .Name = contVeth .Name
14 c o n t I f a c e . Mac = contVeth . HardwareAddr . S t r ing ()
15 c o n t I f a c e . Sandbox = netns . Path ()
16 h o s t I f a c e .Name = hostVeth .Name
17 re turn n i l
18 })
19 i f e r r != n i l {
20 re turn n i l , n i l , e r r
21 }
22

23 // need to lookup hostVeth again as i t s index has changed during
ns move

24 hostVeth , e r r := n e t l i n k . LinkByName(h o s t I f a c e .Name)
25 i f e r r != n i l {
26 re turn n i l , n i l , fmt . Er ro r f (" f a i l e d %q lookup : %v " , h o s t I f a c e

.Name, e r r)
27 }
28 h o s t I f a c e . Mac = hostVeth . Attrs () . HardwareAddr . S t r ing ()
29

30 re turn hos t I f a c e , cont I f a c e , n i l
31 }

The k8slbrp frontend port is created following similar considerations to the
ones made for the host interface. The name of the port is set to the hexadecimal
representation of the IPv4 address associated to the container interface. The IP
attribute of the port is set to the IPv4 address value.

The last notably thing is the positions of the container and the host interface in

53

Implementation

produced plugin result. The container interface precedes the host one because this
assumption will be used in the DEL and in the CHECK operations code.

The DEL operation

The DEL operation is responsible of:

• calling the IPAM module in order to release the IPv4 address assigned to the
Pod

• deleting the k8slbrp frontend port associated with the Pod

• deleting the veth pair previously created for the Pod

• cleaning up the routing table and the ARP cache of the Pod’s network
namespace

The code in 4.11 is an extract of the main operations carried out by the plugin
when it is invoked with CNI_COMMAND environment variable set to DEL.

Listing 4.11: CNI plugin DEL operation main function
1 func cmdDel (args ∗ s k e l . CmdArgs) e r r o r {
2 // par s ing c o n f i g u r a t i o n
3 conf , e r r := loadNetConf (args . StdinData)
4 i f e r r != n i l {
5 re turn e r r
6 }
7

8 // par s ing prevResult
9 i f conf . PrevResult == n i l {

10 re turn e r r o r s .New(" miss ing c o n f i g u r a t i o n : prevResult must be
s p e c i f i e d ")

11 }
12 prevResult , e r r := cur rent . NewResultFromResult (conf . PrevResult)
13 i f e r r != n i l {
14 re turn fmt . Er ro r f (" f a i l e d to convert prevResult i n to cur rent

ve r s i on : %v " , e r r)
15 }
16

17 // e x t r a c t i n g the conta ine r i n t e r f a c e with i t s own ip
c o n f i g u r a t i o n s

18 contI faceConf , _, e r r := ge t I f a c eCon f s (prevResult , a rgs . IfName ,
args . Netns)

19 i f e r r != n i l {
20 re turn fmt . Er ro r f (" unexpected prevResult : %v " , e r r)
21 }
22 contIP := cont I faceConf . IPConf . Address . IP
23

54

Implementation

24 // r e l e a s i n g IP address
25 i f e r r := ipam . ExecDel (conf .IPAM. Type , args . StdinData) ; e r r !=

n i l {
26 re turn fmt . Er ro r f ("DEL operat i on f a i l e d on ipam plug in : %v " ,

e r r)
27 }
28

29 // d e l e t i n g k8s lbrp port
30 k8sLbrpName := conf . K8sLbrpName
31 k8sLbrpPortName := hex . EncodeToString (contIP)
32 i f resp , e r r := k8sLbrpAPI . DeleteK8sLbrpPortsByID (
33 context .TODO() , k8sLbrpName , k8sLbrpPortName ,
34) ; e r r != n i l && resp . StatusCode != 409 {
35 re turn fmt . Er ro r f (
36 " f a i l e d to d e l e t e %q port on %q i n t e r n a l k8s lbrp : −

e r r o r : %s , re sponse : %+v " ,
37 k8sLbrpPortName , k8sLbrpName , err , resp ,
38)
39 }
40

41 // d e l e t i n g netns i f a c e and r e l a t e d s t u f f (routes , arpentry , e t c
. . .)

42 i f a rgs . Netns != " " {
43 // There i s a netns so t ry to c l ean up . Delete can be c a l l e d

mul t ip l e t imes
44 // so don ’ t re turn an e r r o r i f the dev i c e i s a l r eady removed .
45 i f e r r := ns . WithNetNSPath (args . Netns , func (_ ns . NetNS) e r r o r

{
46 i f e r r = ip . DelLinkByName (args . IfName) ; e r r != n i l && e r r

!= ip . ErrLinkNotFound {
47 // i f the re i s an e r r o r d i f f e r e n t from ip .

ErrLinkNotFound , r e tu rn s e r r o r
48 re turn e r r
49 }
50 re turn n i l
51 }) ; e r r != n i l {
52 // i f netns i s not found , cont inue anyway .
53 i f _, notFound := e r r . (ns . NSPathNotExistErr) ; ! notFound {
54 re turn fmt . Er ro r f (" f a i l e d to d e l e t e i f a c e %q in to

netns %q : %v " , args . IfName , args . Netns , e r r)
55 }
56 }
57 }
58

59 re turn n i l
60 }

In order to complete its job, the DEL operation need to have access to the
IPv4 address configured on the container veth pair end. This information need to

55

Implementation

be extracted from the prevResult provided by the runtime: the getIfaceConfs
function is used for this purpose. The code of the getIfaceConfs function is
provided in 4.12.
Listing 4.12: getIfaceConfs function used in the DEL and CHECK operations

1 // ge t I f a c eCon f s scans the prevResult . I n t e r f a c e s in order to f i n d the
expected conta ine r and host i n t e r f a c e c rea ted

2 // during the ADD operat i on . I f the two i n t e r f a c e s are found , they
are returned in a s s o c i a t i o n with t h e i r IPConf

3 func ge t I f a c eCon f s (prevResult ∗ cur rent . Result , contIfName , netnsName
s t r i n g) (∗ IFaceConf , ∗ IFaceConf , e r r o r) {

4 var contI faceConf , hos t I f aceCon f ∗ IFaceConf
5 // scanning a l l prevResult i n t e r f a c e s
6 f o r i , i f a c e := range prevResult . I n t e r f a c e s {
7 // i s t h i s the conta ine r i n t e r f a c e ?
8 i f i f a c e .Name == contIfName && (netnsName == " " | | netnsName

== i f a c e . Sandbox) {
9 cont I faceConf = &IFaceConf {

10 ResultIndex : i ,
11 I n t e r f a c e : i f a c e ,
12 }
13 // the host i n t e r f a c e i s p laced immediately a f t e r the

conta ine r i n t e r f a c e
14 hos t I f aceCon f = &IFaceConf {
15 ResultIndex : i + 1 ,
16 I n t e r f a c e : prevResult . I n t e r f a c e s [i +1] ,
17 }
18 break
19 }
20 }
21 // i f the two i n t e r f a c e s were not found return an e r r o r
22 i f cont I faceConf == n i l {
23 re turn n i l , n i l , e r r o r s .New(" unexpected i n t e r f a c e s : wrong or

miss ing ")
24 }
25 // scanning prevResult . IPs in order to a s s o c i a t e the conta ine r

i n t e r f a c e to i t s ip c o n f i g u r a t i o n
26 f o r _, ipConf := range prevResult . IPs {
27 i f ∗ ipConf . I n t e r f a c e == host I f aceCon f . Result Index {
28 ipConf . Address . IP = ipConf . Address . IP . To4 ()
29 i f ipConf . Address . IP == n i l {
30 re turn n i l , n i l , e r r o r s .New(" unexpected non IPv4

address con f i gu r ed on i n t e r f a c e ")
31 }
32 hos t I f aceCon f . IPConf = ipConf
33 }
34 i f ∗ ipConf . I n t e r f a c e == cont I faceConf . Result Index {
35 ipConf . Address . IP = ipConf . Address . IP . To4 ()
36 i f ipConf . Address . IP == n i l {

56

Implementation

37 re turn n i l , n i l , e r r o r s .New(" unexpected non IPv4
address con f i gu r ed on i n t e r f a c e ")

38 }
39 cont I faceConf . IPConf = ipConf
40 }
41 }
42 // check ing that an ip c o n f i g u r a t i o n f o r the conta ine r i n t e r f a c e

and no c o n f i g u r a t i o n
43 // f o r the host i n t e r f a c e were found
44 i f cont I faceConf . IPConf == n i l | | ho s t I f aceCon f . IPConf != n i l {
45 re turn n i l , n i l , e r r o r s .New(" unexpected ip c o n f i g u r a t i o n s :

wrong or miss ing ")
46 }
47 re turn contI faceConf , host I faceConf , n i l
48 }

Thee getIfaceConfs function is written taking into account that the runtime
could not provide the CNI_NETNS environment parameter in the DEL operation.
The objective is to extract the container and the host interface information from
the prevResult and store them in a structure, together with their configured IPs.
The insertion order of the interfaces used during the ADD operation is exploited:
the host interface is assumed to be immediately after the container interface. The
function verifies that an IPv4 configuration is provided for the container interface
and no IPv4 configuration is provide for the host interface.

The CHECK operation

The CHECK operation is responsible of:

• calling the IPAM module in order to check the IPv4 address assigned to the
Pod

• checking the presence and the IPv4 configuration of the container veth pair
end in the Pod’s network namespace

• checking the networking configuration of the Pod’s network namespace

• checking the presence of the host veth pair end in the root network namespace

• checking the presence and the configuration of the k8slbrp port associated to
the Pod

The code in 4.13 is an extract of the main operations carried out by the plugin
when it is invoked with CNI_COMMAND environment variable set to CHECK.

Listing 4.13: CNI plugin CHECK operation main function

57

Implementation

1 func cmdCheck (args ∗ s k e l . CmdArgs) e r r o r {
2 // par s ing c o n f i g u r a t i o n
3 conf , e r r := loadNetConf (args . StdinData)
4 i f e r r != n i l {
5 re turn e r r
6 }
7

8 // check ing the presence o f prevResult (i t s pre sence i s made
mandatory by the CNI s p e c i f i c a t i o n and par s ing i t

9 // in order to check the conta ine r networking)
10 i f conf . PrevResult == n i l {
11 re turn e r r o r s .New(" miss ing c o n f i g u r a t i o n : prevResult must be

s p e c i f i e d ")
12 }
13 prevResult , e r r := cur rent . NewResultFromResult (conf . PrevResult)
14 i f e r r != n i l {
15 re turn fmt . Er ro r f (" f a i l e d to convert prevResult i n to cur rent

ve r s i on : %v " , e r r)
16 }
17

18 // CHECK on ipam plug in
19 e r r = ipam . ExecCheck (conf .IPAM. Type , args . StdinData)
20 i f e r r != n i l {
21 re turn fmt . Er ro r f ("CHECK operat i on f a i l e d on ipam plug in : %v "

, e r r)
22 }
23

24 // g e t t i n g netns handle
25 netns , e r r := ns . GetNS(args . Netns)
26 i f e r r != n i l {
27 re turn fmt . Er ro r f (" f a i l e d to open %q netns : %v " , args . Netns ,

e r r)
28 }
29 d e f e r netns . Close ()
30

31 // e x t r a c t i n g the conta ine r i n t e r f a c e and the host i n t e r f a c e with
t h e i r own IP c o n f i g u r a t i o n s

32 contI faceConf , host I faceConf , e r r := ge t I f a c eCon f s (prevResult ,
a rgs . IfName , args . Netns)

33 i f e r r != n i l {
34 re turn fmt . Er ro r f (" unexpected prevResult : %v " , e r r)
35 }
36

37 // check ing args . Netns netns i n t e r f a c e and route s
38 i f e r r := netns .Do(func (_ ns . NetNS) e r r o r {
39 i f e r r := check I f a c e (nlog , args . Netns , cont I faceConf) ; e r r !=

n i l {
40 re turn e r r
41 }

58

Implementation

42

43 // check ing that route s are c o r r e c t l y con f i gu r ed
44 i f e r r := ip . ValidateExpectedRoute (prevResult . Routes) ; e r r !=

n i l {
45 re turn fmt . Er ro r f (" f a i l e d %q netns route s check ing : %v " ,

args . Netns , e r r)
46 }
47 re turn n i l
48 }) ; e r r != n i l {
49 re turn e r r
50 }
51

52 // check ing root netns i n t e r f a c e
53 i f e r r := check I f a c e (nlog , " root " , hos t I f aceCon f) ; e r r != n i l {
54 re turn e r r
55 }
56

57 // check ing k8s lbrp port connect ion
58 k8sLbrpName := conf . K8sLbrpName
59 contIP := cont I faceConf . IPConf . Address . IP
60 k8sLbrpPortName := hex . EncodeToString (contIP)
61 k8sLbrpPortPeer := hos t I f aceCon f . I n t e r f a c e .Name
62 i f e r r := checkK8sLbrpPort (k8sLbrpName , k8sLbrpPortName ,

k8sLbrpPortPeer , contIP . S t r ing ()) ; e r r != n i l {
63 re turn fmt . Er ro r f (" f a i l e d %q k8s lbrp port check ing : %v " ,

k8sLbrpName , e r r)
64 }
65 re turn n i l
66 }

Also in this case, the getIfaceConfs function is used to retrieve the relevant
interfaces information.

The checkIface function is used for checking the interface existence and their
IPv4 configuration. The function code is provided in 4.14.

Listing 4.14: checkIface function used in the CHECK operation
1 // che ck I f a c e v e r i f i e s that the provided i n t e r f a c e i s c o r r e c t l y

con f i gu r ed .
2 func che ck I f a c e (. . . , netnsName s t r i ng , i f a c e ∗ IFaceConf) e r r o r {
3 i faceName := i f a c e . I n t e r f a c e .Name
4

5 // obta in ing i n t e r f a c e cor re spond ing l i n k
6 l i nk , e r r := n e t l i n k . LinkByName(ifaceName)
7 i f e r r != n i l {
8 i f _, notFound := e r r . (n e t l i n k . LinkNotFoundError) ; notFound {
9 re turn fmt . Er ro r f ("%q i f a c e doesn ’ t e x i s t i n to %q netns :

%v " , ifaceName , netnsName , e r r)
10 }

59

Implementation

11 re turn fmt . Er ro r f (" f a i l e d %q i f a c e lookup in to %q netns : %v " ,
ifaceName , netnsName , e r r)

12 }
13

14 // i f no ip c o n f i g u r a t i o n are expected to be con f i gu r ed on l ink ,
s imply return

15 i f i f a c e . IPConf == n i l {
16 re turn n i l
17 }
18

19 // obta in ing addre s s e s con f i gu r ed on l i n k
20 addrs , e r r := n e t l i n k . AddrList (l ink , n e t l i n k .FAMILY_V4)
21 i f e r r != n i l {
22 re turn fmt . Er ro r f (" f a i l e d %q i f a c e addre s s e s lookup in to %q

netns : %v " , ifaceName , netnsName , e r r)
23 }
24

25 // check ing i f the ip addre s s e s are c o r r e c t l y con f i gu r ed on l i n k
26 f o r _, addr := range addrs {
27 i f addr . IPNet . S t r ing () == i f a c e . IPConf . Address . S t r ing () {
28 re turn n i l
29 }
30 }
31 re turn fmt . Er ro r f ("%q i f a c e ip mi s con f i gu ra t i on in to %q netns : %v

" , ifaceName , netnsName , e r r)
32 }

4.5 The Polykube operator

As discussed in the previous chapter, an agent is needed to create the proper
network infrastructure on each node of the cluster. Besides the tasks related
to setting up the virtual network topology and the proper interfaces, the agent
must react to the Kubernetes cluster changes: so the agent must be a Kubernetes
operator. In order to easily develop the operator, the Operator SDK has been used.
The Operator SDK provides the tools to build, test, and package Operators [19]
written in Golang. It leverages the facilities offered by the controller-runtime
library to handle resources watching, caching, events rescheduling and all the tasks
related to operator building. The operator must starts a set of controller: each
one of them is associated with a primary resource, but could also be associated to
other secondary resources. In the following sections an in-depth overview of the
implementation details of the operator is given. The Polykube operator project is
available in [20].

60

Implementation

4.5.1 The code structure
The Polykube operator code is organized in the following packages:

• cni - containing the code related to the CNI plugin implementation as well as
the scripts needed to install/uninstall it from the node

• controllers - containing the code related to the controllers implementation

• node - containing all the code related to manage the specific node; specifically,
it contains the code for retrieving environment information and information
related to the Kubernetes node (e.g: Pod CIDR or node external interface and
node default gateway) as well as the code for managing the VxLAN interface
and the polykube veth pair

• polycube - containing all the code related to manage the network virtual
topology; specifically, it contains the generated client libraries for interact-
ing with the polycubed REST APIs, the code for ensuring that the proper
Polycube cubes exist and are connected and the code for managing the cubes
configuration in reaction to the cluster events

• types - containing the definition of the Golang structures that do not concep-
tually belong to any of the other packages

• utils - containing some utility function used by the other packages

4.5.2 Node controller
The Node controller code reconciliation loop is implemented by the Reconcile
function of the NodeReconciler struct. Before a node event can trigger the
execution of the Reconcile function, it is examined by the opportune predicate
returned by the nodeControllerPredicate function. Whatever is the type of the
event (creation, updating of deletion), node events can trigger the reconciliation
loop only if they regard a node different from the one on which the operator instance
is deployed. The creation or the deletion of a control plane node doesn’t trigger
the reconciliation loop if the deployment of the network provider is not allowed in
control plane nodes. Updating events trigger a reconciliation if a not ready node
becomes ready or vice versa. Also, updating events pass the predicate if a normal
node becomes a control plane one or a control plane one becomes a normal one.

The NodeDetailMap map is created is order to store the information regarding
the nodes. For each node correctly retrieved by the API server, a NodeDetail
struct is built: it contains the IPv4 address of the node physical interface connected
to the Kubernetes cluster, its Pod CIDR and its Vtep IPv4 address and prefix

61

Implementation

length. The NodeDetailMap is indexed by the NamespacedName extracted from the
request object.

At high level, the actions performed by the Node controller are the following:

• if the node has been deleted, is not ready or it is become a control plane
node, the route towards its Pod CIDR through the VxLAN interface must be
deleted (if present) from the Polycube router, and the Linux bridge forwarding
database entry related to it must be removed (if present); in case the node
has been deleted, the information needed in order to perform the described
cleanup are taken from the NodeDetailMap

• in all the other cases, the controller has to enforce the route towards the Pod
CIDR through the VxLAN interface in the Polycube router and the Linux
bridge forwarding database entry; before trying to enforce these configurations,
a check is performed in order to verify if they are already enforced

The Renconcile function of the NodeReconciler is shown in 4.15.

Listing 4.15: the Node controller reconciliation loop
1 func (r ∗ NodeReconci ler) Reconc i l e (ctx context . Context , req c t r l .

Request) (c t r l . Result , e r r o r) {
2 nId := req . NamespacedName . S t r ing ()
3

4 n := &corev1 . Node{}
5 i f e r r := r . Get (ctx , req . NamespacedName , n) ; e r r != n i l {
6 // i f the e r r o r i s d i f f e r e n t from not found re tu rn s e r r o r . . .
7 i f ! a p i e r r o r s . IsNotFound (e r r) {
8 re turn c t r l . Result {} , e r r
9 }

10 nodeDetai l , found := NodeDetailMap [nId]
11 i f ! found {
12 re turn c t r l . Result {} , n i l
13 }
14 // the node ob j e c t was de le ted , so i t has to be removed from

the i n f r a s t r u c t u r e
15 i f e r r := polycube . DeleteRouterRoute (nodeDeta i l . PodCIDR,

nodeDeta i l . VtepIPNet . IP) ; e r r != n i l {
16 re turn c t r l . Result {} , e r r
17 }
18 i f e r r := node . DeleteFdbEntry (nodeDeta i l . IP) ; e r r != n i l {
19 re turn c t r l . Result {} , e r r
20 }
21 d e l e t e (NodeDetailMap , nId)
22 re turn c t r l . Result {} , n i l
23 }
24

25 nodeDetai l , e r r := bui ldNodeDeta i l (n)

62

Implementation

26 i f e r r != n i l {
27 re turn c t r l . Result {} , e r r
28 }
29

30 _, isControlPlaneNode := n . Labels [cont ro lP laneLabe l]
31 i f (i sControlPlaneNode && ! node . Env . IsCPNodesDeployAllowed) | | !

node . IsReady (n) {
32 i f e r r := polycube . DeleteRouterRoute (nodeDeta i l . PodCIDR,

nodeDeta i l . VtepIPNet . IP) ; e r r != n i l {
33 re turn c t r l . Result {} , e r r
34 }
35 i f e r r := node . DeleteFdbEntry (nodeDeta i l . IP) ; e r r != n i l {
36 re turn c t r l . Result {} , e r r
37 }
38 re turn c t r l . Result {} , n i l
39 }
40

41 // the f o l l o w i n g w i l l c r e a t e or update the entry r e l a t e d to the
node i n s i d e the map : t h i s

42 // i s needed in order to handle a p o s s i b l e f u tu r e node d e l e t i o n
43 NodeDetailMap [nId] = nodeDeta i l
44

45 routeExi s t , e r r := polycube . CheckRouterRouteExistence (nodeDeta i l .
PodCIDR, nodeDeta i l . VtepIPNet . IP)

46 i f e r r != n i l {
47 re turn c t r l . Result {} , e r r
48 }
49 i f ! r ou teEx i s t {
50 i f e r r := polycube . CreateRouterRoute (nodeDeta i l . PodCIDR,

nodeDeta i l . VtepIPNet . IP) ; e r r != n i l {
51 re turn c t r l . Result {} , e r r
52 }
53 }
54

55 entryExist , e r r := node . CheckFdbEntryExistence (nodeDeta i l . IP)
56 i f e r r != n i l {
57 re turn c t r l . Result {} , e r r
58 }
59 i f ! en t ryEx i s t {
60 i f e r r := node . CreateFdbEntry (nodeDeta i l . IP) ; e r r != n i l {
61 re turn c t r l . Result {} , e r r
62 }
63 }
64

65 re turn c t r l . Result {} , n i l
66 }

63

Implementation

4.5.3 Service controller
The Service controller is implemented through the ServiceReconciler and
its Reconcile function. All the events regarding Services must trigger the rec-
onciliation loop and, for this reason, no predicate are implemented for filtering
events.

The ServiceDetail struct is built in order to store in an efficient way the
information extracted from a Kubernetes Service Object. This struct is generic
and can store information for both the two supported types of Kubernetes Services:
ClusterIP Services and NodePort Services. The structure is built upon the concept
of FrontendSet: a FrontendSet represents a set of Frontend; a Frontend is a
struct representing a network service in the form <VirtualIP>:<VirtualPort>:
<ProtocolType>. In 4.16, the definition of these latter concepts is shown. In order
to easily work with the FrontendSet struct, some utility functions are built for
adding elements to it or for checking if it contains a particular Frontend.

Listing 4.16: the ServiceDetail and the FrontendSet definitions
1 type Frontend s t r u c t {
2 Vip s t r i n g
3 Vport in t32
4 Proto s t r i n g
5 }
6

7 type FrontendsSet map [Frontend] s t r u c t {}
8

9 type S e r v i c e D e t a i l s t r u c t {
10 Se rv i c e Id s t r i n g
11 NodePortFrontendsSet FrontendsSet
12 ClusterIPFrontendsSet FrontendsSet
13 E x t e r n a l T r a f f i c P o l i c y s t r i n g
14 I n t e r n a l T r a f f i c P o l i c y s t r i n g
15 }

Besides the FrontendSets for the NodePort Services and the ClusterIP Services,
the ServiceDetail struct contains also the information on the internal and the
external traffic policies.

Throughout the Service reconciliation loop, each Service is identified by the
NamespacedName extracted from the related request object: this identifier will be
denoted by name serviceId during the following discussion. At high level, the
actions performed by the Service controller are the followings:

• if the Service is of a type different from ClusterIP or NodePort, no action are
performed

• if the Service has been deleted, a different cleanup action is performed depend-
ing on the Service type: if the Service is of type ClusterIP, all the internal

64

Implementation

k8slbrp services having names equal to the serviceId are deleted; if the
Service is of type NodePort, all the internal k8slbrp services, all the external
k8slbrp services and all the NodePort rules having names equal to serviceId,
are deleted

• in all the other cases, the controller has to enforce the proper services on
the internal and external k8slbrp and the proper NodePort rules on the
k8sdispatcher: like in the previous case, services or rules are enforced on the
proper components depending on the Service type

The Renconcile function of the ServiceReconciler is shown in 4.17.

Listing 4.17: the Service controller reconciliation loop
1 func (r ∗ S e r v i c e R e c o n c i l e r) Reconc i l e (ctx context . Context , req c t r l .

Request) (c t r l . Result , e r r o r) {
2 s Id := req . NamespacedName . S t r ing ()
3

4 s := &corev1 . S e rv i c e {}
5 i f e r r := r . Get (ctx , req . NamespacedName , s) ; e r r != n i l {
6 // i f the e r r o r i s d i f f e r e n t from not found re tu rn s e r r o r . . .
7 i f ! e r r o r s . IsNotFound (e r r) {
8 re turn c t r l . Result {} , e r r
9 }

10 // the f o l l o w i n g work f o r both the i n t e r n a l and the e x t e r n a l
load ba lance r s .

11 // In case o s e r v i c e s other than Cluster IP and NodePort ones ,
the f o l l o w i n g

12 // w i l l not d e l e t e anything
13 i f e r r := polycube . CleanupK8sLbrpsServicesById (s Id) ; e r r !=

n i l {
14 re turn c t r l . Result {} , e r r
15 }
16 i f e r r := polycube . CleanupK8sDispatcherNodePortRulesById (s Id)

; e r r != n i l {
17 re turn c t r l . Result {} , e r r
18 }
19 re turn c t r l . Result {} , n i l
20 }
21

22 s t := s . Spec . Type
23 // not ab le to handle s e r v i c e s other than Cluster IP and NodePort

ones
24 i f s t != corev1 . Serv iceTypeCluster IP && st != corev1 .

ServiceTypeNodePort {
25 re turn c t r l . Result {} , n i l
26 }
27

28 nodeIP := node . Conf . Ext I face . IPNet . IP

65

Implementation

29 sd := b u i l d S e r v i c e D e t a i l (s , sId , nodeIP)
30

31 i f e r r := polycube . SyncK8sLbrpServices (sd) ; e r r != n i l {
32 re turn c t r l . Result {} , e r r
33 }
34

35 i f e r r := polycube . SyncK8sDispatcherNodePortRules (sd , nodeIP) ;
e r r != n i l {

36 re turn c t r l . Result {} , e r r
37 }
38

39 re turn c t r l . Result {} , n i l
40 }

The function responsible of building the ServiceDetail struct associated to the
Service object is buildServiceDetail. This function creates a Frontend struct
for each possible couple (ServicePort, ClusterIP) extracted from the Service object.
The obtained Frontends are stored in the ClusterIPFrontendsSet field of the
ServiceDetail struct. If the Service is of type NodePort, a Frontend struct is
created for the NodePort field of each ServicePort of the Service object: these
NodePort ports are associated to the IP address configured on the physical interface
of the node. The obtained Frontends are stored in the NodePortFrontendsSet
field of the ServiceDetail struct.

4.5.4 Endpoints controller
The Endpoints controller is implemented through the EndpointsReconciler
and its Reconcile function. Besides watching for events regarding Endpoints, the
Endpoints controller watches also the events regarding Services in order to take
into account the changes made upon their traffic policies: this is done in order to
clearly separate in two different controllers the handling of the topology services
and the handling of the related backends.

Before an Endpoints or a Service event can trigger the execution of the Reconcile
function, the event is examined by the opportune predicate returned by the
endpointsControllerPredicate function. Whatever is the type of object to
which the event is referring, if it is a deletion event, it does not trigger the reconcil-
iation loop: this is done because the deletion of a Service is already handled by
the Service controller, and the deletion of an Endpoints object is always linked to
the deletion of the corresponding Service object (and so it is also handled by the
Service controller). The creation events are handled only if they refer to Endpoints
object. An updating event can trigger the reconciliation loop only if the event is
referred to an Endpoints object or some changes were made on the Service object
traffic policies.

66

Implementation

The EndpointsDetail struct is built in order to store in an efficient way the
information extracted from a Kubernetes Endpoints Object. The snippet in 4.18
shows how this struct ,together with related types and functionatilies, are defined.

Listing 4.18: the EndpointsDetail, the ServiceToBackends and the BackendsSet
definitions

1 type Backend s t r u c t {
2 Ip s t r i n g
3 Port in t32
4 Weight in t32
5 }
6 type BackendsSet map [Backend] s t r u c t {}
7

8 func (bs BackendsSet) Contains (b Backend) bool {
9 _, ok := bs [b]

10 re turn ok
11 }
12 func (bs BackendsSet) Add(b Backend) {
13 bs [b] = s t r u c t {}{}
14 }
15

16 type ServiceToBackends map [s t r i n g] BackendsSet
17

18 func (stb ServiceToBackends) Add(s s t r i ng , b Backend) {
19 i f s tb [s] == n i l {
20 stb [s] = make(BackendsSet)
21 }
22 stb [s] [b] = s t r u c t {}{}
23 }
24

25 func (stb ServiceToBackends) GetBackendsSet (s s t r i n g) BackendsSet {
26 re turn stb [s]
27 }
28

29 type EndpointsDeta i l s t r u c t {
30 EndpointsId s t r i n g
31 ClusterIPServiceToBackends ServiceToBackends
32 NodePortServiceToBackends ServiceToBackends
33 }

The EndpointsDetail struct is generic and can store information regarding the
endpoints of a ClusterIP Service as well as the endpoints of a NodePort Service. If
the Service is of type ClusterIP, only the ClusterIPServiceToBackends field will
be populated (if any backend is present). If the Service is of type NodePort, both
the ClusterIPServiceToBackends and the NodePortServiceToBackends fields
will be populated (if any backend is present). The EndpointsDetail struct is built
in two steps:

67

Implementation

• in the first step, a ServiceToBackends struct is built by using the
buildServiceToBackends function

• in the second step, the EndpointsDetail struct is built by combining the
information extracted from the Endpoints related Service object and the in-
formation organized inside the already built ServiceToBackends; this second
step is achieved by using the buildEndpointsDetail function

The buildServiceToBackends function creates a BackendsSet struct for each
EndpointPort contained in the EndpointSubset list of Endpoints object. An
EndpointPort is associated with a unique ServicePort: this association will
be exploited by the buildEndpointsDetail function. An EndpointPort must
be identified by a name if more than one port is present; if only one port is
present, then the name is optional. By using the convention of identifying the
single unnamed EndpointPort with an hyphen, the ServiceToBackends maps an
EndpointPort name with the related set of Backends. A Backend struct contains
also the information related to the weight of the backend in the load balancing
logic. The convention used is to prefer backends Pods deployed on the same node,
so 3 is assigned as a weight to them and 1 to Pods deployed on other nodes.

The ServiceToBackends struct is provided to the buildEndpointsDetail func-
tion, together with the Service object related to the Endpoints object.

For each couple (ClusterIP, ServicePort) extracted from the Service object,
a triple <vip>:<vport>:<proto> is created. For each triple, a BackendsSet is
created: this is populated with the Backends of the EndpointsPort associated with
the ServicePort. The association between triples and BackendsSet are stored in
the ClusterIPServiceToBackends field of the EndpointsDetail.

If the Service is of type NodePort, also the NodePortServiceToBackends field
is populated: for each ServicePort, the triple <nodeip>:<nodeport>:<proto> is
created; for each triple, a BackendsSet is created and populated in a way similar
to the one described above.

In both cases, buildEndpointsDetail function inserts a backends in the set
of a particular service only if it is policy-compliant: for example, if a backend
is deployed on a node different from the local node and the Service object has
internalTrafficPolicy=LOCAL, then the backend will not be considered as it is
not possible for a Pod to reach a backend of the Service in another node.

Throughout the Endpoints reconciliation loop, each Endpoints is identified by
the NamespacedName extracted from the related request object: this identifier will
be denoted with epsId during the following discussion. At high level, the actions
performed by the Endpoints controller are the followings (notice that this are the
actions performed only if the event passes the predicate):

1. the Endpoints object is retrieved

68

Implementation

2. the Service object related to the Endpoints object is retrieved

3. if the Service object type if different from ClusterIP and NodePort no action
are performed

4. an EndpointsDetail struct is built

5. the load balancers services backends are synced in order to reflect the backends
list described in the Endpoints object

The Renconcile function of the EndpointsReconciler is shown in 4.19.

Listing 4.19: the Endpoints controller reconciliation loop
1 func (r ∗ Endpo intsReconc i l e r) Reconc i l e (ctx context . Context , req c t r l

. Request) (c t r l . Result , e r r o r) {
2 epsId := req . NamespacedName . S t r ing ()
3

4 eps := &corev1 . Endpoints {}
5 i f e r r := r . Get (ctx , req . NamespacedName , eps) ; e r r != n i l {
6 // i f the endpoints r e s ou r c e i s not found , i t means that the

a s s o c i a t e d
7 // s e r v i c e was de l e t ed : in t h i s case , l e t the s e r v i c e

c o n t r o l l e r handle
8 // the cleanup
9 re turn c t r l . Result {} , c l i e n t . IgnoreNotFound (e r r)

10 }
11

12 s := &corev1 . S e rv i c e {}
13 i f e r r := r . Get (ctx , req . NamespacedName , s) ; e r r != n i l {
14 // i f the s e r v i c e r e s ou r c e i s not found , the s e r v i c e

c o n t r o l l e r w i l l handle
15 // the cleanup
16 re turn c t r l . Result {} , c l i e n t . IgnoreNotFound (e r r)
17 }
18

19 s t := s . Spec . Type
20 // not ab le to handle s e r v i c e s other than Cluster IP and NodePort

ones
21 i f s t != corev1 . Serv iceTypeCluster IP && st != corev1 .

ServiceTypeNodePort {
22 re turn c t r l . Result {} , n i l
23 }
24

25 serviceToBackends := bui ldServiceToBackends (eps)
26 endpo in t sDeta i l := bu i ldEndpo int sDeta i l (s , epsId ,

serviceToBackends)
27

28 needResync , e r r := polycube . SyncK8sLbrpsServicesBackends (
endpo in t sDeta i l)

69

Implementation

29 i f e r r != n i l {
30 re turn c t r l . Result {} , e r r
31 }
32 i f needResync {
33 re turn c t r l . Result {Requeue : t rue } , n i l
34 }
35

36 re turn c t r l . Result {} , n i l
37 }

4.5.5 The recovery procedure
Two types of failure can occur during the network provider life cycle: a crash of
the polycubed daemon (and a consequent crash of the topology) or a crash of the
polykube-operator. The polykube-operator detects that the Polycube daemon
is unreachable through a polling procedure: it performs an HTTP request each
10 seconds and, if the request fails, it start the recovery procedure. On the other
hand, if the operator crashes, it is able to restart and analyze the status of the
node in order to recover the operating status. Both the recovery procedure are
handled by the ensureDeployment function: indeed this function is called each
time the operator starts its execution and also each time the polling procedure
detect a failure in the Polycube daemon. The main steps followed by the function
are the followings:

1. ensuring the connection to the polycubed by setting up a polling procedure
with an exponential backoff delay between one request and another

2. ensuring that all the cubes composing the topology are up and runnning

3. ensuring that all the cubes are connected to each other and to the networking
interfaces in the proper way

4. ensuring the presence of the CNI configuration file and the compliance of
its information with the one extracted from the topology; specifically, if
ensureDeployment is called again after the operator initialization, the poly-
cube router MAC address is set to be equal to previously retrieved one

5. ensuring that previously deployed Pods are connected to the topology; this is
made possible by exploiting the naming conventions used by the CNI plugin

4.5.6 The addresses management
The agent is responsible of evaluating, starting from the information extracted
from the environment (the API server, the cluster node on which is deployed or

70

Implementation

the environment variables), the IPv4 configurations that must be enforced during
the network provider deployment.

The node address

The main node physical interface connecting the node to the Kubernetes cluster
can be retrieved from the API server. This address is used to define a Polycube
router route for allowing Pods to contact, through the polycube veth pair, host
processes listening on the node physical interface address.

Pods default gateway

Starting from the Pod CIDR assigned to the node (retrieved from the API server),
the agent evaluates the IPv4 address that must be assigned to the Polycube router
port corresponding to the Pods default gateway. The used convention is to assign
the last address other than the broadcast one: for example, if the Pod CIDR is
192.178.1.0/24, than the chosen address will be 192.178.1.254/24.

The virtual Pod address

An IPv4 address must be reserved for allowing the k8sdispatcher to handle prop-
erly requests for NodePort Services with externalTrafficPolicy=CLUSTER. This
address is called "the virtual Pod address", even if it is not assigned to any Pod,
but only configured during the k8sdispatcher creation. The convention is to assign
the first address of the Pod CIDR other than the network ID: for example, if the
Pod CIDR is 192.178.1.0/24, than the chosen address will be 192.178.1.1.

The Vtep address

The IPv4 address that must be configured on the VxLAN tunnel endpoint is the most
complex to evaluate. The complexity is due to the fact that, for designing choices, it
was preferred to not conceive a distributed IPAM system. The address is calculated
using 3 CIDRs: the Cluster CIDR, the Pod CIDR and the Vtep CIDR. The Cluster
CIDR is the CIDR from which the Pod CIDRs of all the nodes are extracted. The
Cluster CIDR must be provided from the user during the configuration of the
network provider manifests, since it cannot be inferred easily from the cluster APIs.
The Vtep CIDR is chosen by the user and has to be provided in the configuration
manifests by the user as well. During the following explanation, for a visualization
purpose, the following setting can be assumed: ClusterCIDR=192.178.0.0/16,
PodCIDR=192.178.1.0/24, VtepCIDR=10.18.0.0/16. The procedure is the follow-
ing:

71

Implementation

1. the portion p of the Pod CIDR that specifically identifies the node is extracted:
in the previous example it is composed by the bits of the second least significant
byte (the .1. portion)

2. the length of p is verified in order to check if it is not greater than the length
of the host identifier portion of the Vtep CIDR; in the example the length
of p is 8 and it is not greater than 16, the length of the host identifier of
10.18.0.0/16

3. the Vtep IPv4 address is calculated by placing p at the end of the Vtep CIDR;
in the previous example, the obtained Vtep address is 10.18.0.1/16

The described procedure allows each node to have a different IPv4 address for the
VxLAN tunnel endpoint, without the necessity to store information regarding the
already allocated addresses.

4.5.7 Environment configuration
In order to give the operator access to the information that cannot be retrieved
by contacting the API server or inferred from the node configuration, or in order
to customize the behaviour of the network provider, configuration information
must be provided. The configuration information are provided through envi-
ronment variables to the polykube-operator container: the majority of these
environment variables are extracted by the platform from a specifically deployed
ConfigMap. The ConfigMap must be called polykube-cfg and must be deployed
in the kube-system namespace: a possible example is shown in 4.20.

Listing 4.20: The network provider config map
1 kind : ConfigMap
2 ap iVers ion : v1
3 metadata :
4 name : polykube−c fg
5 namespace : kube−system
6 data :
7 vxlanIfaceName : " vxlan0 "
8 polykubeVethPairNamePrefix : " polykube "
9 vtepCidr : " 1 0 . 1 8 . 0 . 0 / 1 6 "

10 polykubeVethPairCidr : " 1 7 2 . 1 8 . 0 . 0 / 3 0 "
11 c l u s t e r C i d r : " 1 9 2 . 1 7 8 . 0 . 0 / 1 6 "
12 nodePortRange : "30000 −32767"
13 cn iConfFi lePath : "/ host / e t c / cn i / net . d/00−polykube . j son "
14 mtu : "1450"
15 intK8sLbrpName : " i k l 0 "
16 routerName : " r0 "
17 extK8sLbrpName : " ek l0 "

72

Implementation

18 k8sDispName : " k0 "
19 cubesLogLevel : "INFO"
20 # i f the f o l l o w i n g i s s e t to true , the f o l l o w i n g t o l e r a t i o n has to

be
21 # added to the daemonset t o l e r a t i o n s :
22 # − e f f e c t : NoSchedule
23 # key : node−r o l e . kubernetes . i o / master
24 isCPNodesDeployAllowed : " t rue "

The operator is able to default the majority of the configuration information, but
some of them are required. An example of required information is the clusterCidr
field. The ConfigMap allows to customize different aspects of the polycube topology,
such as the cubes name and the cubes log level. The isCPNodesDeployAllowed
flag allows to specify if the network provider has to be deployed also on control
plane nodes.

Other environment variables, such as the Operator Pod name or the Node name,
are directly extracted from the DaemonSet object used for deploying the network
provider.

4.6 Network provider deployment
As already discussed, an instance of the Polykube Operator and an instance of
the Polycube image must be deployed on each node. By exploiting the concept of
DaemonSet, it is possible to realize this setting in an declarative way. A stripped
version of the DaemonSet manifest is shown in 4.21.

Listing 4.21: The network provider DaemonSet manifest
1 ap iVers ion : apps/v1
2 kind : DaemonSet
3 metadata :
4 name : polykube
5 namespace : kube−system
6 spec :
7 s e l e c t o r :
8 matchLabels :
9 k8s−app : polykube

10 template :
11 metadata :
12 l a b e l s :
13 k8s−app : polykube
14 spec :
15 pr ior i tyClassName : system−node−c r i t i c a l
16 serviceAccountName : polykube−c t r l −mgr−sa
17 hostNetwork : t rue
18 c on t a i n e r s :

73

Implementation

19 − name : polycubed
20 image : ekoops / polycube : l a t e s t
21 s ecur i tyContext :
22 p r i v i l e g e d : t rue
23 command : [" polycubed " ,
24 "−− l o g l e v e l=INFO" ,
25 "−−addr = 0 . 0 . 0 . 0 " ,
26 "−− l o g f i l e =/host / var / log / polycubed . polykube . l og "]
27 volumeMounts :
28 # . . .
29 − name : polykube−operator
30 image : ekoops /polykube−operator : l a t e s t
31 s ecur i tyContext :
32 p r i v i l e g e d : t rue
33 command : [" / polykube "]
34 l i f e c y c l e :
35 pos tS ta r t :
36 exec :
37 command :
38 − "/ cni−i n s t a l l . sh "
39 preStop :
40 exec :
41 command :
42 − "/ cni−u n i n s t a l l . sh "
43 env :
44 − name : POD_NAME
45 valueFrom :
46 f i e l d R e f :
47 f i e l d P a t h : metadata . name
48 − name : NODE_K8S_NAME
49 valueFrom :
50 f i e l d R e f :
51 f i e l d P a t h : spec . nodeName
52 − name : VXLAN_IFACE_NAME
53 valueFrom :
54 configMapKeyRef :
55 name : polykube−c fg
56 key : vxlanIfaceName
57 # . . .
58 volumeMounts :
59 # . . .
60 volumes :
61 # . . .
62 t o l e r a t i o n s :
63 − e f f e c t : NoSchedule
64 key : node . kubernetes . i o /not−ready
65 # Uncomment/Comment the f o l l o w i n g t o l e r a t i o n in order to

a l low / d i s a l l o w deployment on master node
66 − e f f e c t : NoSchedule

74

Implementation

67 key : node−r o l e . kubernetes . i o / master
68 − e f f e c t : NoSchedule
69 key : node . c l oudprov ide r . kubernetes . i o / u n i n i t i a l i z e d
70 value : " t rue "
71 − key : Crit ica lAddonsOnly
72 operator : " Ex i s t s "

As it is possible to see, the concept of privileged Pod is used in order to allow
containers to access the host interfaces and the host root network namespace.
Among other things, tolerations are used for deploying the network provider also
on the master node. The Pod is also associated with a specific ServiceAccount:
this is done for enabling access to the required information through the API server.
The ServiceAccount links the Pod with the Role shown in 4.22.

Listing 4.22: The Role manifest
1 ap iVers ion : rbac . au tho r i z a t i on . k8s . i o /v1
2 kind : ClusterRole
3 metadata :
4 creationTimestamp : n u l l
5 name : polykube−c t r l −mgr−r o l e
6 r u l e s :
7 − apiGroups :
8 − " "
9 r e s o u r c e s :

10 − nodes
11 verbs :
12 − get
13 − l i s t
14 − watch
15 − update
16 − apiGroups :
17 − " "
18 r e s o u r c e s :
19 − nodes / f i n a l i z e r s
20 verbs :
21 − update
22 − apiGroups :
23 − " "
24 r e s o u r c e s :
25 − nodes / s t a tu s
26 verbs :
27 − get
28 − l i s t
29 − apiGroups :
30 − " "
31 r e s o u r c e s :
32 − s e r v i c e s
33 verbs :

75

Implementation

34 − get
35 − l i s t
36 − watch
37 − apiGroups :
38 − " "
39 r e s o u r c e s :
40 − s e r v i c e s / s t a tu s
41 verbs :
42 − get
43 − apiGroups :
44 − " "
45 r e s o u r c e s :
46 − endpoints
47 verbs :
48 − get
49 − l i s t
50 − watch
51 − apiGroups :
52 − " "
53 r e s o u r c e s :
54 − endpoints / s t a tu s
55 verbs :
56 − get
57 − apiGroups :
58 − " "
59 r e s o u r c e s :
60 − pods
61 verbs :
62 − l i s t

76

Chapter 5

Evaluation

This chapter analyzes the network performance of the proposed network provider.
To assess the overhead of the disaggregated approach, the throughput provided by
the network provider under different circumstances has been measured.

5.1 Tools
The tests have been run using the iPerf3 tool. iPerf3 is a tool for active measure-
ments of the maximum achievable bandwidth on IP networks [21]. Tests have been
conducted by using the default parameters and instructing iPerf3 to use zero-copy
methods for sending data. A zero-copy method allows to reach higher throughput
values with less CPU usage: this is useful to see better the performance differences.
In order to use the zero-copy approach, the -Z flag is passed to the iPerf3 client
instance.

5.2 Tests overview
The client and the server instances have always been executed inside Pods. Both
TCP and UDP communications have been tested. Tests have been performed both
for communication involving entities on the same node and on different nodes. The
following communication scenarios have been considered:

• Container-to-Container (localhost) - both client and server run within
the same Pod and use the loopback interface to communicate; this represents
a baseline of the throughput that can be achieved between two Pods, since no
additional networking is required

• Pod-to-Pod - a client in a Pod accesses the server through the Pod’s IP,
showing the performance of the base networking without load balancing

77

Evaluation

• Pod-to-Service - the client accesses the server using a ClusterIP service, to
evaluate the performance of the load balancer as well as the L3 routing

The Pod-to-Pod and Pod-to-Service tests have been performed with Pods
running both on the same machine and on different nodes, with the latter adding
the overhead of the VxLAN encapsulation and of the physical network (link speed,
PCI bus). The Container-to-Container tests cannot be performed for container
running on different nodes, since containers belonging to the same Pod are always
scheduled on the same node, inside the same network namespace.

To have a comparison with another eBPF solutions, the Cilium and the Calico
providers have been tested and the results have been compared with the ones
obtained by the proposed solution. Cilium has been deployed using its eBPF
kube-proxy replacement: this enables the provider to leverage all the benefits
of eBPF without being penalized by the overhead introduced by kube-proxy in
services management. The XDP acceleration has been disabled in order to enable
a fair comparison, since the proposed network provider doesn’t make use of XDP.
Similar consideration can be done for Calico: the eBPF dataplane has been enabled
in order to completely replace kube-proxy.

In order to compare the approach used by the proposed solution with the
one proposed by traditional solutions that do not use eBPF, also Flannel has
been tested. Flannel leverages kube-proxy for providing full Kubernetes cluster
connectivity.

The throughput performances of the tested solutions can be negatively influenced
by the number of Services/Pod currently deployed on the cluster when tests are
performed. In order to evaluate how strong can be this influence, Pod-to-Service
tests have been conducted in scenarios with 0, 10 or 100 additional Kubernetes Ser-
vices. Each additional Kubernetes Service is deployed together with an associated
backend Pod.

Each setting has been tested 10 times and from the obtained samples, the mean
and the standard deviation has been evaluated in order to realize significant plots.

5.3 Cluster and network settings
A cluster composed by two physical nodes has been deployed for testing: this is
needed for testing both communications involving entities on a single node and
communications involving entities deployed on different nodes. The two nodes will
be called nodeA and nodeB in the following discussion. nodeA and nodeB are
installed in the same sub-network and are connected through a 40G Switch: this
is needed in order to avoid performances to be penalized by the physical network.
Both nodeA and nodeB are equipped with:

• CPU - Intel(R) Xeon(R) CPU E3-1245 v5 @ 3.50GHz

78

Evaluation

• Memory - 64 GB DDR4 2400 MT/s

• NIC - 40000Mb/s port

• OS - Ubuntu 18.04

• Kernel version - 5.4.0-96-generic

The control plane is deployed on nodeA. Tests involving a single node are
conducted by deploying the iPerf3 client and server on the nodeB: this is done to
avoid performance penalties induced by the execution of the control plane. Tests
involving different nodes are conducted by placing the client on nodeA and the
server on nodeB.

5.4 Communications on the same node
5.4.1 TCP
Results for TCP communications involving a client and a server deployed on the
same node are shown in Fig. 5.1.

Figure 5.1: Same node throughput comparison for TCP traffic

As expected, the baseline performances, represented by the communications of
a client and a server deployed on the same Pod, are the highest. They are quite
similar among them. Performances reached in the Pod-to-Service communications
are lower than performances reached in the Pod-to-Pod communications: this is
an expected trend, since some form of translation must be performed for packets
directed to a virtual IP, before reaching the real backend Pod (this is also true for the

79

Evaluation

reverse path). An exception to the previous consideration is represented by Cilium:
the Pod-to-Service communications seem to reach similar throughput values. The
proposed solution reaches the highest performances in both the Pod-to-Pod and
the Pod-to-Service cases.

The results in 5.2 show how the providers handle an increasing number of
Kubernetes Services (and relative backend Pods) in the already discussed scenario.

Figure 5.2: Same node throughput comparison for TCP traffic with an increasing
number of Services/Pods

As the plot shows, increasing the number of Services does not influence too
much the performances of the tested providers.

5.4.2 UDP
The results for UDP communications involving a client and a server deployed on
the same node are shown in Fig. 5.3.

This scenario is similar to the previous one: also in this case, the proposed
solution reaches the highest performances, even if the throughput differences are
much lower than the ones shown in the TCP scenario.

Following the same approach used for TCP communications, the results in 5.4
show how the providers handle an increasing number of Kubernetes Services (and
relative backends Pods) in UDP communications involving entities deployed on the
same node.

As the plot shows, increasing the number of Services does not influence too
much the performances of the tested providers: only a negligible performances drop
can be point out for Cilium in case of 100 additional Services/Pods.

80

Evaluation

Figure 5.3: Same node throughput comparison for UDP traffic

Figure 5.4: Same node throughput comparison for UDP traffic with an increasing
number of Services/Pods

5.5 Communications on different nodes

5.5.1 TCP
Results for TCP communications involving a client and a server deployed on
different nodes are shown in Fig. 5.5.

The results are different with respect to the one seen for the communications
inside the same node. The performances of the proposed solution and the ones

81

Evaluation

Figure 5.5: Different nodes throughput comparison for TCP traffic

reached by Cilium are the highest. Cilium reaches higher throughput values than
the proposed solution on the Pod-to-Service communications, but lower values
on the Pod-to-Pod ones. However, the high standard deviations suggest that the
performances are not so different between the two.

The results in 5.6 show how the providers handle an increasing number of
Kubernetes Services (and relative backend Pods) in the already discussed scenario.

Figure 5.6: Different nodes throughput comparison for TCP traffic with an
increasing number of Services/Pods

The bars plot confirm that the performances reached by both the proposed

82

Evaluation

solution and Cilium are the highest. The two providers performances are not so
different: indeed, even if the average throughput value is lower in the scenario
with 0 additional Services/Pods for the proposed solution, it tends to be higher in
the scenarios with 10 or 100 additional Services/Pods; moreover, notice that the
standard deviation is lower in these latter two cases. It is interesting to notice how
Flannel performances decrease with 100 additional Services/Pods.

5.5.2 UDP
The results for UDP communications involving a client and a server deployed on
different nodes are shown in Fig. 5.7.

Figure 5.7: Different nodes throughput comparison for UDP traffic

This scenario is similar to the one involving UDP communications between
entities on the same node. Also in this case, the proposed solution reaches the
highest performances, followed by Cilium, Calico and Flannel.

The latter plot shown in 5.8 analyzes how the providers handle an increasing num-
ber of Kubernetes Services (and relative backends Pods) in UDP communications
involving entities deployed on different nodes.

As expected, increasing the number of Services does not influence too much the
performances of the tested providers.

83

Evaluation

Figure 5.8: Different nodes throughput comparison for UDP traffic with an
increasing number of Services/Pods

84

Chapter 6

Conclusions

The purpose of this thesis work is to present an high performance Kubernetes
network provider built upon the eBPF technology by exploiting the Polycube frame-
work. All the tasks regarding the deployment, the connection, the healing and the
configuration of the virtual network topology have been demanded to an operator,
deployed on each node of the Kubernetes cluster, specifically built for this project.
The proposed virtual network topology architecture is made up three Polycube
services: pcn-k8slbrp, pcn-router and pcn-k8sdispatcher. The enhancements
proposed on the base virtual network topology solve the efficiency and scalability
problems of the base architecture; moreover, they allow the communication between
host processes and Pods deployed on the same node. The modular feature of the
project allows to update existing services or insert new network functions to get
more features such as security, network policies and/or observability.

6.1 Future works
The choice of Open Source components, their modularity and their ease of integra-
tion, leave wide space for future work, both from an implementation and research
point of view. Some of the future works that can be based on this thesis work can be
the following. The support for Kubernetes Network Policies can be introduced by
specifically building a Polycube service able to understand and enforce them on the
traffic. The actual inter-node communication is based on the VxLAN technology:
one interesting improvement could be introducing the support for Direct Routing.
Other features could go in the direction of extending the observability and the
security exploiting also the XDP hook points. Finally, conformance tests could be
conducted in order to ensure that, by using the proposed solution, the Kubernetes
cluster is properly configured and that its behavior conforms to official Kubernetes
specifications.

85

Appendix A

Scripts and Commands

In order to perform the evaluation discussed in 5, a specific folder structure and
a file naming convention have been defined: each JSON file output by iPerf3, in
order to be correctly processed, must have a name following this convention and
reside in a path compliant to this structure. The defined convention is the follow-
ing: {scope}_{proto}/{provider}/{mode}/{mode}_{proto}_{#}.json. In this
template:

• {scope} can assume the value same_node or diff_nodes

• {proto} can assume the value tcp or udp

• {provider} can assume the value

– localhost, pod2pod, pod2service if scope=same_node

– pod2pod, pod2service if scope=diff_nodes

• {#} can assume values from 0 to 9 (it represent the specific measurement
instance, since the measurement is repeated 10 times for each setting)

In the specific case of mode=pod2service, the convention is different:
{scope}_{proto}/{provider}/{mode}/{n}/{mode}_{proto}_{#}.json
Here, {n} can assume value 0, 10 or 100: it represents the number of additional
Kubernetes Services/Pods considered during the specific test.

The scripts shown in A.1, A.2, A.3 are used to produce the results that follow
the described structure.

Listing A.1: localhost.sh
1 #! / bin /bash
2

3 PROV=$1

86

Scripts and Commands

4

5 i p e r f 3 −s l o c a l h o s t &
6 pid=$!
7

8 f unc t i on cleanup {
9 s e t +e

10 k i l l $pid
11 }
12 trap cleanup EXIT
13 s e t −x
14 s e t −e
15

16 TCP_FOLDER=same_node_tcp/$PROV/ l o c a l h o s t
17 UDP_FOLDER=same_node_udp/$PROV/ l o c a l h o s t
18

19 # LOCALHOST
20 mkdir −p $TCP_FOLDER
21 mkdir −p $UDP_FOLDER
22 f o r i in { 0 . . 9 } ; do
23 ## TCP
24 i p e r f 3 −c l o c a l h o s t −t 10 −Z −J > $TCP_FOLDER/ localhost_tcp_$ { i } .

j son
25 s l e e p 5
26 ## UDP
27 i p e r f 3 −c l o c a l h o s t −u −b 0 −t 10 −Z −J > $UDP_FOLDER/

localhost_udp_$ { i } . j son
28 s l e e p 5
29 done

Listing A.2: pod2pod.sh
1 #! / bin /bash
2 s e t −x
3 s e t −e
4

5 SERVER_IP=$1
6 PREFIX=$2
7 PROV=$3
8

9 TCP_FOLDER=${PREFIX}_tcp/$PROV/pod2pod
10 UDP_FOLDER=${PREFIX}_udp/$PROV/pod2pod
11

12 # Pod to pod
13 mkdir −p $TCP_FOLDER
14 mkdir −p $UDP_FOLDER
15

16 f o r i in { 0 . . 9 } ; do
17 ## TCP

87

Scripts and Commands

18 i p e r f 3 −c $SERVER_IP −t 10 −Z −J > $TCP_FOLDER/pod2pod_tcp_${
i } . j son

19 s l e e p 5
20 ## UDP
21 i p e r f 3 −c $SERVER_IP −u −b 0 −t 10 −Z −J > $UDP_FOLDER/

pod2pod_udp_${ i } . j son
22 s l e e p 5
23 done

Listing A.3: pod2service.sh
1 #! / bin /bash
2 s e t −x
3 s e t −e
4

5 CLUSTER_IP=$1
6 PREFIX=$2
7 PROV=$3
8 SVC_NUM=$4
9

10 TCP_FOLDER=${PREFIX}_tcp/$PROV/ pod2se rv i c e /$SVC_NUM
11 UDP_FOLDER=${PREFIX}_udp/$PROV/ pod2se rv i c e /$SVC_NUM
12

13 # Pod to s e r v i c e
14 mkdir −p $TCP_FOLDER
15 mkdir −p $UDP_FOLDER
16

17 f o r i in { 0 . . 9 } ; do
18 ## TCP
19 i p e r f 3 −c $CLUSTER_IP −t 10 −Z −J > $TCP_FOLDER/ pod2service_tcp_$

{ i } . j son
20 s l e e p 5
21 ## UDP
22 i p e r f 3 −c $CLUSTER_IP −u −b 0 −t 10 −Z −J > $UDP_FOLDER/

pod2service_udp_${ i } . j son
23 s l e e p 5
24 done

The Python script in A.4 contains the definition of the functions and some call
example for generating the bars plots in a Jupyter Notebook environment

Listing A.4: Bars plots script
1 import numpy as np
2 import matp lo t l i b . pyplot as p l t
3 import re
4 import j son
5 import os
6 import sys
7 import pandas as pd

88

Scripts and Commands

8

9 path=" . / t e s t _ f o l d e r "
10 path=os . path . abspath (path)
11

12 prov ide r s = [" polykube " , " c i l i um " , " c a l i c o " , " f l a n n e l "]
13

14 de f get_per_mode_data (path , scope , proto) :
15 data = {}
16 f o l d e r = f " { scope }_{ proto } "
17 modes = [" pod2pod " , " pod2se rv i c e "] i f scope == " di f f_nodes " e l s e

[" l o c a l h o s t " , " pod2pod " , " pod2se rv i c e "]
18

19 f o r prov ide r in p rov ide r s :
20 data [p rov ide r] = { " means " : [] , " s td s " : [] }
21 f o r mode in modes :
22 bandwidths = []
23 f o r i in range (10) :
24 f i l ename = f " {mode}_{ proto }_{ i } . j son "
25 i f mode != " pod2se rv i c e " and mode != " ex t2 i n t " :
26 f i l e_path = os . path . j o i n (path , f o l d e r , provider ,

mode , f i l ename)
27 e l s e :
28 f i l e_path = os . path . j o i n (path , f o l d e r , provider ,

mode , " 0 " , f i l ename)
29 with open (f i l e_path , " rb ") as f :
30 decodedjson = json . load (f)
31 key = " sum_received " i f proto == " tcp " e l s e "sum"
32 bandwidths . append (decodedjson [" end "] [key] ["

bits_per_second "] /1 e9)
33 data [p rov ide r] [" means "] . append (np . mean(bandwidths))
34 data [p rov ide r] [" s td s "] . append (np . std (bandwidths))
35 re turn data , modes
36

37 de f get_per_load_data (path , scope , proto , mode) :
38 data = {}
39 f o l d e r = f " { scope }_{ proto } "
40 l oads = [" 0 " , " 10 " , " 100 "]
41

42 f o r prov ide r in p rov ide r s :
43 data [p rov ide r] = { " means " : [] , " s td s " : [] }
44 f o r load in loads :
45 bandwidths = []
46 f o r i in range (10) :
47 f i l ename = f " {mode}_{ proto }_{ i } . j son "
48 f i l e_path = os . path . j o i n (path , f o l d e r , provider , mode

, load , f i l ename)
49 with open (f i l e_path , " rb ") as f :
50 decodedjson = json . load (f)
51 key = " sum_received " i f proto == " tcp " e l s e "sum"

89

Scripts and Commands

52 bandwidths . append (decodedjson [" end "] [key] ["
bits_per_second "] /1 e9)

53 data [p rov ide r] [" means "] . append (np . mean(bandwidths))
54 data [p rov ide r] [" s td s "] . append (np . std (bandwidths))
55 re turn data , l oads
56

57 de f plot_data (data , index , c o l o r=" black ") :
58 means = {}
59 s td s = {}
60 f o r prov ide r in p rov ide r s :
61 means [prov ide r] = data [p rov ide r] [" means "]
62 s td s [p rov ide r] = data [prov ide r] [" s td s "]
63 df = pd . DataFrame (means , index=index)
64 ax = df . p l o t . bar (ro t =0, ye r r=stds , f i g s i z e =(10 , 5))
65 ax . tick_params (c o l o r s=co lo r , which=’ both ’)
66 ax . s e t_y labe l (" Bandwidth (Gbps) ")
67 ax . yax i s . l a b e l . s e t_co lo r (c o l o r)
68

69 # example 1
70 scope = " same_node "
71 proto = " tcp "
72 per_mode_data , modes = get_per_mode_data (path , scope , proto)
73 plot_data (per_mode_data , modes , " b lack ")
74

75 # example 2
76 scope = " d i f f_nodes "
77 proto = " udp "
78 mode = " pod2se rv i c e "
79 per_load_data , l oads = get_per_load_data (path , scope , proto , mode)
80 plot_data (per_load_data , loads , " b lack ")

The get_per_mode_data was used to extract the data needed for producing
plots collecting together the various mode tests. The get_per_load_data was
used to extract the data needed for producing plots collecting together the various
pod2service tests varying the number of additional Kubernetes Services/Pods.

90

Bibliography

[1] Hamza Rhaouati. «Prototyping a Network Provider for Kubernetes through
Disaggregated eBPF Services». Luglio 2021. url: http://webthesis.bibli
o.polito.it/19112/ (cit. on pp. 2, 30, 32, 43).

[2] Eric Carter. Sysdig 2019 Container Usage Report: New Kubernetes and se-
curity insights. Oct. 2019. url: https://sysdig.com/blog/sysdig-2019-
container-usage-report/ (cit. on p. 6).

[3] etcd Authors. etcd - Homepage. url: https://etcd.io/ (cit. on p. 9).
[4] The Kubernetes Authors. Pods | Kubernetes. url: https://kubernetes.io/

docs/concepts/workloads/pods/ (cit. on p. 13).
[5] The Kubernetes Authors. ReplicaSet | Kubernetes. url: https://kubernetes.

io/docs/concepts/workloads/controllers/replicaset/ (cit. on p. 14).
[6] The Kubernetes Authors. Deployments | Kubernetes. url: https://kuber

netes.io/docs/concepts/workloads/controllers/deployment/ (cit. on
p. 15).

[7] The Kubernetes Authors. DaemonSet | Kubernetes. url: https://kuber
netes.io/docs/concepts/workloads/controllers/daemonset/ (cit. on
p. 16).

[8] The Kubernetes Authors. Service | Kubernetes. url: https://kubernetes.
io/docs/concepts/services-networking/service/ (cit. on p. 18).

[9] The Kubernetes Authors. Services, Load Balancing, and Networking | Kuber-
netes. url: https://kubernetes.io/docs/concepts/services-networki
ng/ (cit. on p. 19).

[10] containernetworking. CNI - the Container Network Interface. url: https:
//github.com/containernetworking/cni (cit. on p. 20).

[11] The Cilium Authors. BPF and XDP Reference Guide. url: https://docs.
cilium.io/en/v1.11/bpf/ (cit. on pp. 20, 25).

91

http://webthesis.biblio.polito.it/19112/
http://webthesis.biblio.polito.it/19112/
https://sysdig.com/blog/sysdig-2019-container-usage-report/
https://sysdig.com/blog/sysdig-2019-container-usage-report/
https://etcd.io/
https://kubernetes.io/docs/concepts/workloads/pods/
https://kubernetes.io/docs/concepts/workloads/pods/
https://kubernetes.io/docs/concepts/workloads/controllers/replicaset/
https://kubernetes.io/docs/concepts/workloads/controllers/replicaset/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/
https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/services-networking/
https://kubernetes.io/docs/concepts/services-networking/
https://github.com/containernetworking/cni
https://github.com/containernetworking/cni
https://docs.cilium.io/en/v1.11/bpf/
https://docs.cilium.io/en/v1.11/bpf/

BIBLIOGRAPHY

[12] Sebastiano Miano, Matteo Bertrone, Fulvio Risso, Massimo Tumolo, and
Mauricio Vásquez Bernal. «Creating complex network services with ebpf:
Experience and lessons learned». In: 2018 IEEE 19th International Conference
on High Performance Switching and Routing (HPSR). IEEE. 2018, pp. 1–8
(cit. on p. 24).

[13] Sebastiano Miano, Matteo Bertrone, Fulvio Risso, Mauricio Vásquez Bernal,
Yunsong Lu, Jianwen Pi, and Aasif Shaikh. «A Service-Agnostic Software
Framework for Fast and Efficient in-Kernel Network Services». In: 2019
ACM/IEEE Symposium on Architectures for Networking and Communications
Systems (ANCS). IEEE. 2019, pp. 1–9 (cit. on p. 26).

[14] Virtual Extensible LAN. url: https://en.wikipedia.org/wiki/Virtual_
Extensible_LAN (cit. on p. 28).

[15] Mallik Mahalingam, Dinesh Dutt, Kenneth Duda, Puneet Agarwal, Larry
Kreeger, T. Sridhar, Mike Bursell, and Chris Wright. Virtual eXtensible Local
Area Network (VXLAN): A Framework for Overlaying Virtualized Layer 2
Networks over Layer 3 Networks. RFC 7348. Aug. 2014. doi: 10.17487/
RFC7348. url: https://www.rfc- editor.org/info/rfc7348 (cit. on
pp. 28, 32).

[16] Daniel E. Eisenbud et al. «Maglev: A Fast and Reliable Software Network
Load Balancer». In: Proceedings of the 13th Usenix Conference on Networked
Systems Design and Implementation. NSDI’16. Santa Clara, CA: USENIX
Association, 2016, pp. 523–535. isbn: 9781931971294 (cit. on p. 30).

[17] Swagger Authors. OpenAPI Specification. url: https://swagger.io/speci
fication/ (cit. on p. 38).

[18] Hamza Rhaouati. pcn-k8sdispatcher implementation. url: https://github.
com/ReddaHawk/polycube/tree/hmz/k8s-operator/src/services/pcn-
k8sdispatcher (cit. on p. 43).

[19] OperatorSDK Authors. Operator SDK. url: https://sdk.operatorframew
ork.io/ (cit. on p. 60).

[20] Leonardo Di Giovanna. Polykube Operator implementation. url: https :
//github.com/ekoops/polykube-operator (cit. on p. 60).

[21] iPerf Authors. iPerf - The TCP, UDP and SCTP network bandwidth mea-
surement tool. url: https://iperf.fr/ (cit. on p. 77).

92

https://en.wikipedia.org/wiki/Virtual_Extensible_LAN
https://en.wikipedia.org/wiki/Virtual_Extensible_LAN
https://doi.org/10.17487/RFC7348
https://doi.org/10.17487/RFC7348
https://www.rfc-editor.org/info/rfc7348
https://swagger.io/specification/
https://swagger.io/specification/
https://github.com/ReddaHawk/polycube/tree/hmz/k8s-operator/src/services/pcn-k8sdispatcher
https://github.com/ReddaHawk/polycube/tree/hmz/k8s-operator/src/services/pcn-k8sdispatcher
https://github.com/ReddaHawk/polycube/tree/hmz/k8s-operator/src/services/pcn-k8sdispatcher
https://sdk.operatorframework.io/
https://sdk.operatorframework.io/
https://github.com/ekoops/polykube-operator
https://github.com/ekoops/polykube-operator
https://iperf.fr/

Acknowledgements

At the end of such a long path, I can find a moment to dedicate entirely to the
people who supported, accompanied or even only observed it for a while.

To Professor Fulvio Risso, who fueled my passion for networking during the
Cloud Computing course. His passion and ability to explain complex concepts in
such a simple way have rekindled in me the love of knowledge that, perhaps with
the passage of time, had been replaced by the desire to finish university as soon as
possible.

To Giuseppe Ognibene and Federico Parola, who endured my outbursts and
offered their expertise to help me finish this thesis work. To my colleagues/friends
Giuseppe, Andrea, Riccardo, Valerio, Gianmarco and Vincenzo, who shared with
me the anxieties and joys of the university world.

To my friends Gaetano, Fabio, Domenico, Domenico, Giuseppe, Baldo and
Salvatore, who have always supported me emotionally and have always believed in
my abilities.

Last but not least, my best thanks go to my family. To my parents, that always
supported my passion and did everything they could to allow me to pursue my
dreams. To my gradparents, that together with my parents taught me the value of
love and goodness of mind.

Leonardo Di Giovanna

93

	List of Figures
	Acronyms
	Introduction
	Goal of the thesis

	Background
	Path towards container orchestration
	Kubernetes history
	Kubernetes features
	Kubernetes architecture
	Control plane components
	Nodes components

	Kubernetes objects
	Overview
	Namespaces
	Identifiers
	Status and Spec
	Pods
	ReplicaSets
	Deployments
	DaemonSets
	Nodes
	Services
	Endpoints

	Kubernetes operators
	The Kubernetes networking model
	The CNI specification
	eBPF (Extended Berkeley Packet Filter)
	Verifier
	Helper Functions
	Maps
	Tail calls
	Program Types

	BCC
	Polycube
	The VxLAN technology

	Architecture
	Base architecture virtual network topology
	pcn-simplebridge
	pcn-loadbalancer-rp (pcn-lbrp)
	pcn-router
	pcn-k8sdispatcher

	The new virtual network topology
	pcn-k8slbrp

	The CNI plugin
	The overlay network
	The node agent

	Implementation
	Automatic code generation
	pcn-k8slbrp
	Data Model
	Data plane

	pcn-k8sdispatcher
	Data Model
	Data plane
	Control plane

	The CNI plugin
	The specification requirements
	The CNI configuration file
	The implementation

	The Polykube operator
	The code structure
	Node controller
	Service controller
	Endpoints controller
	The recovery procedure
	The addresses management
	Environment configuration

	Network provider deployment

	Evaluation
	Tools
	Tests overview
	Cluster and network settings
	Communications on the same node
	TCP
	UDP

	Communications on different nodes
	TCP
	UDP

	Conclusions
	Future works

	Scripts and Commands
	Bibliography

