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Abstract

In the early years of its life, the use of machine learning was limited to academic

research, where it had the opportunity to evolve. In recent years the transition to the

industrial world has taken place, and nowadays in any field especially in the largest

companies machine learning is assuming an increasingly central role. This process

comes with challenges: every technological evolution, which in some cases can also

be disruptive, involves work and organizational adaptations. Moreover, gaps and

differences demark the distance among how academic research and real-world com-

panies work.

The objective of machine learning operations (MLOps) is to shorten but also make

more reliable the major phases that characterise the deployment and maintenance

of machine learning model in production. It inherits from DevOps some of its key

practices like continuous integration, continuous deployment and delivery while in-

troducing practices unique to machine learning systems, like continuous training and

data versioning.

In this work we built a MLOps framework and practices using AWS services, that

can be used in various settings, and by different teams from different backgrounds,

which broadens the horizons of MLOps, including in the framework new innovative

strategies, such as monitoring jobs and the usage of feature store.

The MLOps pipeline is the main pillar of our work: we were able to build an highly

modular and reliable pipeline that automates the entire machine learning life-cycle,

bridging the gap between development and operation and enabling better collabora-

tion and communication between different teams who are operating in the system.

The main difficulty and the main focus in the first phase of our work was to develop

the pipeline, once it was ready we could focus on the pure machine learning experi-

mentation phase of the different projects. This allow to deliver a model to production

much faster from its conception. The two projects we present are in different setting:

a classic binary classification and a cutting edge time series forecasting, which is not

present in literature yet. In both the projects we show how the continuously train



and deliver of models in production work: the monitoring activities check at regular

intervals whether drift between the statistics of the training dataset and serving data

are present or model performances decay in terms of predefined metrics.
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Chapter 1

Introduction

Traditionally, machine learning (ML) has been approached from a perspective of

individual scientific experiments which are predominantly carried out in isolation

by data scientists. However, machine learning has evolved from purely an area of

academic research to an applied field, and it has become part of real-world solutions

and critical to business. This entails a shift of the perspective while approaching

a machine learning project, to let the process be as easily accessible, reproducible

and collaborative as possible. As shown in the Figure 1.1, only a small fraction of

a real-world ML system is composed of the ML code. The multiple surrounding

elements are required as much as the code, and generally, they set the most difficult

challenges to tackle. To develop and operate complex systems like these, that are

faced daily in a real-world ML system, we present this work, in which we apply

some DevOps principles, while introducing some practices unique to ML systems:

streamline ML projects using cutting-edge machine Learning Operations (MLOps)

practices on AWS.

The aim of this thesis is to establish a set of practices that put tools, pipelines, and

processes to build fast time-to-value machine learning development projects, but, at

the same time, to make more reliable and modular the major phases that characterise

the deployment and maintenance of machine learning model in production, using the

chosen environment (AWS).
6



Introduction

Figure 1.1: Only a small fraction of real-world ML systems is occupied by the ML code. The required
surrounding infrastructure is vast and complex. Adapted from [1]

1.1 Chapter guide

1. Chapter 1. A general introduction.

2. Chapter 2. Contains the general background. It present the context of how

machine learning works in production. It highlights the major challenges in

traditional ML systems, hence the main reasons of this work.

3. Chapter 3. The state-of-art relevant to this thesis is presented in this Chapter.

We discuss the relevant tools for this thesis.

4. Chapter 4. We introduce the key concepts that we implement in our frame-

work, along with the AWS services used.

5. Chapter 5. In this Chapter we concretely describe the methodology that con-

stitute the pillar of this thesis.

6. Chapter 6. This Chapter show the details of the implementation of two intrin-

sically different projects, that regardless share the the methodology presented

in this work.

7. Chapter 7. The final conclusions and the possible future developments.

7
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Chapter 2

Background

In this Chapter we present the background of our work, presenting the main reasons

of why MLOps is so important, and concluding by showing the objectives of MLOps,

and consequently of this thesis.

2.1 Differences between machine learning and traditional soft-
ware

The first time "machine learning" came out, was back in 1952. Since then, the history

of ML is deep and variegated, until its fundamental role in basically the majority of

sectors in the contemporary economy. Traditional software and ML share lot. But

the difference between them is basal: the former aims to answer a problem using

a predefined set of rules or logic. In contrast, machine learning seeks to construct

a model or logic for the problem by analyzing its input data and answers[15]. The

additional dimension that differentiates ML and classical software is contained in

the previous sentence, the data. It might sound self explanatory and simple but the

addition of data, usually big data, brings entirely new challenges to the development

process [11].

The nature of ML, because of the data, becomes multidisciplinary. To understand it

is enough to look at some roles involved in real world ML projects: data Scientist,
9
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Figure 2.1: Data is a new dimension in ML systems w.r.t. traditional software.

data Engineer, machine learning engineer, DevOps engineer, business owner, man-

ager are just some of the role that must collaborate in order to achieve their mandate,

even if their origins are different. It complicates the practice.

While normal software can generally be developed locally with almost instant feed-

back on how a code change affects the end-result, in ML, to see the effects of a code

change requires retraining a model.

Consider for example working with models that are trained with large datasets poses

huge infrastructure challenges as either it needs a lot of waiting time to do it locally

or cloud computing resources are needed. Let make another example to visualize

better this distinction: a developer of classic software can just save a code change

and see immediate results; while a data scientist save similar code change but then to

see result he/she must deploy the code, maybe spinning up a cluster of GPUs, maybe

transfer data and retraining a model before seeing any results.

Moreover, the introduction of data carries with it other differences in the develop-

ment process: data itself is another aspect that can change. Indeed, in classical soft-

ware development, a version of the code produces a version of the software, while in

machine learning, a version of the code and a version of the data together produce a

version of the ML model.

The fact that data can change increases the complexity drastically. To reproduce a

model, or at least its result, code and data must be reproducible. This lead to the

statement that the components (both data and code) must be versioned to ensure re-

producibility. In this work we will come back to this concept multiple times, since

has been crucial in our development. To get an idea of this concept, it is enough

to think about a machine learning system (which have different and multiple steps
10
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Figure 2.2: In classical software development, a version of the code produces a version of the software, while
in machine learning, a version of the code and a version of the data together produce a version of the ML model.

for data preparation, augmentation and generation) and how the matter of versioning

both data and code becomes increasingly complex.

We saw of data actively affect makes a difference between ML and traditional soft-

ware. Here we sum up the aspect that characterizes ML systems and that we must

consider in our work:

• Team heterogeneity: in an ML project, the team includes data scientists or ML

researchers, who focus on their job like exploratory data analysis, model devel-

opment, and experimentation. These people might not be able to deliver their

product to production, and other members are needed, able to build production-

class services.

• Project development: ML is experimental in nature. Experimentation is the

key to find what best works for the task. Trying different features, algorithms,

modeling techniques, and parameter configurations tracking them to consider

what worked what did not is a challenge.
11
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We will dig deep into all these concepts later in the work, starting from the next

section.

2.2 Major challenges in real-world traditional machine learning
systems

We carried out a study on the state and difficulties of machine learning systems in

production [2], [3], [4], [5]. The goal is to find out challenges and difficulties in

building and maintaining ML systems in a production environment, mainly study-

ing ML traditional systems. We want to remind that ML in real-world system is

completely another thing with respect to what it is in a local environment. Indeed,

whether doing academic research or anything else in local means essentially work-

ing in a straight forward single environment, usually with a single programming

language and a single software. ML in production focuses more on engineering. Not

only focus on implementing ML models but also build the whole ML-related infras-

tructure within an industry.

As a machine learning system is not the same as the traditional software system, a

set of ML-specific challenges needs to be taken into consideration. In the following

bullet list we report a non comprehensive summary of those challenges:

• Versions management and organization: developing ML models relies on sev-

eral components: data, algorithms code and/or parameters. An important phase

during development of ML models is experimentation. In this phase these com-

ponents might change overtime which leads to different versions. Different

versions will lead to different model behaviors, a certain version of data, code

and parameters generates a certain model. There should be certain strategies

to manage each version of each component. Without certain strategies to han-

dle different versions, lose control of the ML system becomes matter of time.

Creating a frozen version of the data and parameters can help us keep track of

different versions. Versioning carries its own costs and complications, for ex-

ample, maintaining multiple versions over time, in particular when the amount

of data used grow fast in time. As briefly explained in Section 2.1, traditional
12
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software systems utilize modular design to maintain the whole system, allowing

engineers to change one part without interfering with others. While compared

to traditional software systems, ML systems have no such clear boundaries be-

tween components. Keeping track of any different components version, and

build an ML pipelines able to work with data versions, algorithm code versions

and/or different parameters is one of the objective of this work, and MLOps in

general. Any change in these components mentioned before triggers new model

versions.

• Model deployment and resource management: a machine learning model can

only begin to add value to an organization when that model’s insights routinely

become available to the users for which it was built. After the experimentation

phase once the "pure" data scientists have done their job, building a model able

to reach certain metrics on the test data, the model is ready to be deployed.

Once it gets deployed to production, it starts making predictions against live

data. There are some challenges at this stage. First of all, the deployment phase

in most cases is not directly straight forward, since complex and unstructured

handover are carried on by data and machine learning engineers. Moreover,

there are other factors to take into account, such as how frequently predictions

should be generated and whether predictions should be generated for a single

instance at a time or a batch of instances (online/offline Prediction) An appro-

priate framework and appropriate resources (that can change over time to put

right costs/performances) to serve the model based on the mentioned consider-

ation should be plan, to let the workflow be as smooth and flawless as possible.

• Monitoring: models usually degrades over time in production due to various

factors like data drift, environment changes, etc. It’s essential to have the in-

formation necessary to troubleshoot and fix a problem readily available to the

teams is actively working on it. We will dig into monitoring more in this work.

• Multi model management level: in real-world ML systems usually the goal is

running and maintaining dozens or hundreds of models simultaneously, which

leads to managing challenges. For example, monitor the whole production
13
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pipeline, or simply, do an A/B test that is essential in ML [7].

Other problems can be faced. that is why is essential to have a strategy or workflow

that helps people involved in the process to tackle those challenges.

Eventually, the goal of MLOps is to reduce technical friction to get the model from

an idea into production in the shortest possible time to market with as little risk as

possible [10]

In literature, there are different level of evolution and automation. Depending of the

level, the challenges differ. In this section we presented the challenges of a system

built without the usage of MLOps practice and concepts, also known as MLOps level

0 or traditional ML.

In the following Chapters we will have the chance to discuss how different evolution

of MLOps tackle basic and more evoluted challenges. Of course higher the level of

MLOps lower the entity of the challenges faced.

2.3 State of machine learning

In 2020 and 2021, a survey on 330 data scientists, machine learning engineers and

managers in a broad range of companies that apply ML in their activities, where

asked about their focus on the following 3 months, and what major obstacles they

were facing with[11]. More than one answer could be return. The scenario given by

the survey depicts a portrait of the state of machine learning in 2020: although 20%

of respondents said they are still focusing more on the experimentation and learning

phase, half of the respondents said that they were focused on developing models for

production use and over 40% said they would be deploying models for production.

Some of the key concepts we will present in this work, that are the basics concepts

of MLOps, are still not relevant for the respondents. As shown by the chart 2.3, only

automating retraining of models and monitoring models in production are relevant

for a small percentage of them. Machine learning in production being relatively

nascent for most in 2020.

The survey was carried out again at the beginning of 2021, on the same respon-

dents. The differences are clearly visible: monitoring models in production had the
14



Background

most significant growth with respect the previous year (13% to 31%). In working

economies, when demands grows so does supply. Indeed, there are plenty of tools

within the monitoring space that rose to prominence.

Automating retraining of models had similar gains in priority and goals (doubling

from 2020), with 30% of respondents focusing on building machine learning pipelines

for the purpose.

While being by no means exhaustive, the results support that teams have made strides

towards MLOps in the past year, and implementing machine learning systems (as

opposed to projects) is top of mind. Last but not least, we can see that optimizing

models also seemed to take a significant step back in priority within the past year.

Figure 2.3: State of ML in 2020 and 2021. Adapted from [11]

2.4 The objectives of MLOps

There is a steadily rising interest in the topic MLOps, that can be easily found by

looking at the search volume and news articles related to these aspects, that are

becoming more and more relevant.

With this section we conclude this Chapter, in which we gave an overview of the

background of our work, in which we presented how production models raise new

challenges, not just for data scientists but the extended team of engineers, prod-

uct managers and compliance officers, which will need to be solved collaboratively.
15
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Figure 2.4: This chart show the interest in time of the world "MLOps", according to Google Trends

MLOps practices aims to face and resolve those challenges. As seen, in most real-

world applications, the underlying data changes constantly and thus models need to

be retrained or whole pipelines even need to be rebuilt to tackle feature drift. We

also need to take into consideration that business and regulatory requirements can

also change rapidly requiring a more frequent release cycle, and this might a huge

pain the neck if not considered. This is where MLOps comes in to combine oper-

ational know-how with machine learning and data science knowledge. MLOps are

basically a series of practices, that, if followed, bring the engineers (included us),

to build a framework that is reliable, scalable, and represent a solid starting point

of any machine learning tasks we will face in the future. This framework is mainly

composed by pipelines, that are modular and reusable, also not throw-away as you

can reuse parts when developing a model for a different purpose.

16



Chapter 3

State of the art

3.1 Differences and similarities between MLOps and DevOps

A DevOps pipeline is a set of automated processes and tools that allows both devel-

opers and operations professionals to work cohesively to build and deploy code to a

production environment. It provides benefits such as shortening the development cy-

cles, increasing deployment velocity, and dependable releases [14]. To achieve these

benefits, two key and fundamental concepts are introduces in the software system

development. In details:

• Continuous integration (CI): it is the practice where members team use a version

control system and integrate their work frequently to the same location merging

the changes to the code base to the main branch as often as possible. These

changes are validated by creating a build and then verified by running automated

tests against the build in order to detect any integration errors as quickly as

possible. If these tests don’t pass, the changes aren’t merged, and developers

avoid integration challenges that can happen.

• Continuous delivery and continuous deployment (CD): continuous Delivery

takes CI one step further, since it enables automation to deploy all the code

changes to an environment (e.g. stage, prod, etc.) after the changes have been

merged. The artifact may be built as part of CI or as part of the continuous

delivery process since the repository is reliable given your CI process. In other
17
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words, this means that there is an automated release process on top of the auto-

mated testing process and that developers can deploy their changes at any time.

Continuous deployment makes the process completely automated, releases are

always on-going.

Similar practices can be applied to help guarantee reliably built and operating ML

systems at scale. But, ML workflow is more complex as it includes several ML-

specific fields, such as collecting datasets, building models, tuning hyperparameters,

etc.

Bearing in mind also the differences between ML and traditional software delineated

in Section 2.1, we can state that ML and traditional software systems are similar in

continuous integration of source control, unit testing, integration testing, and contin-

uous delivery of the software module or the package.

However, in ML, there are also notable differences and a new essential concept:

• CI is no longer only about testing and validating code and components. Also

data, data schemas, and models must be tested and validated.

• CD is no longer about a single software package or a service, but a system (an

ML training pipeline) that should automatically trigger the deploy of another

service, the model prediction service.

• CT that stands for continuous training is a new property, unique to ML systems.

It is essential that the model, the core business value, is always as good as pos-

sible. CT components aims to retrain the models automatically and constantly

whenever needed as well as serving the models.

We can conclude this section stating that MLOps is DevOps for ML. Indeed, they

have some similarities: some DevOps practices are applied in MLOps. Also, they

both encourage and facilitate collaborations between data scientists, engineers and

operations, to sleek the entire process and serve customers in best way.
18
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3.2 Docker

One of the main pillars of our framework is the extensive use of Docker. Docker pro-

vides the ability to package and run an application in a loosely isolated environment

called a container. The isolation and security allows the user, in this case us, to run

many containers simultaneously. Containers are lightweight and contain everything

needed to run the application, so we do not need to rely on what is currently installed

on the host. The two main concepts that must be known while working with Docker,

and that we will recall throughout the work are Docker image and Docker container.

Here a synthesis of these concepts [8]:

• A Docker image is an unchangeable file that contains the source code, libraries,

dependencies, tools, and other files needed for an application to run. Due to

their read-only nature, the concept of image gain a great consistency, that is

one of the great features of Docker. It allows developers to test and experiment

software in stable, uniform conditions, without impact what is outside. An

image is a read-only template with instructions for creating a Docker container,

and it can not be started or ran. Rather, an image is a template employed as a

base to build a container.

• A Docker container is ultimately just a running image. Once a container is

created, it adds a writable layer on top of the immutable image, meaning it can

now be modified. In other words, a Docker container is a virtualized run-time

environment where it is possible to isolate applications from the underlying

system. A great feature of the container, is that they are compact, portable units

in which applications can run quickly and easily.

Docker streamlines the development life-cycle by allowing developers, in this case

us, to work in standardized environments using local containers which provide our

applications and services. Containers are great for continuous integration and con-

tinuous delivery (CI/CD) workflows, as we will show throughout the work.
19
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3.3 Cloud computing and AWS introduction

Cloud computing is the on-demand availability of IT resources over the internet,

without direct active management by the user. Unlike grid computing, clouds are ca-

pable with the scalability and flexibility metrics. Moreover, clouds provide service

centric models to meet the user necessities. [21] AWS (Amazon Web Services) is

a cloud computing platform subsidiary of Amazon.com, Inc., that includes a mix-

ture of infrastructure as a service (IaaS), platform as a service (PaaS) and packaged

software as a service (SaaS) offerings. AWS services can offer an organization tools

such as compute power, database storage and content delivery services as well as

customized application programming interfaces (API). This work has been entirely

developed on AWS, and we are going to give a brief introduction of the key concepts

used during the project implementation along with the main services used.

20



Chapter 4

Key concepts and AWS services used

In this Chapter we present the main concepts that drove our work along with the

AWS services used to carry them out.

To give a brief introduction, we can say that we implement the entirety of our work

on AWS. The motivation of this choice rely in the possibilities that it enables: a

scalable, reliable, and secure global computing infrastructure [6]. Let’s briefly scroll

these 3 words:

• scalable means that there is no limitation on computational resources. AWS but

cloud computing companies make available any kind of computational engines

that can be scaled on top of each other to reach potentially extremely powerful

machine, that would be super expensive if bought. In machine learning contexts

that could be determinant: think about deep learning algorithms that need pow-

erful GPUs to train. Buy them is over budget for most companies, especially

start-ups, but AWS introduces the concepts of pay-as-you-go: you basically

rent the resources you need, paying them only the usage time. And in ML this

could be great, since the training time on an entire dataset can represent much

less time than the entire experimentation phase, if the team is well organize

and prepared. A strategy that we used to save money in this phase is to simply

do some machine learning experimentation on a subset of the entire training

dataset, where a simple instance with low computational power were enough,

and when we were ready to train the whole dataset on a specific algorithm then
21
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we used more power (hence spending more money).

• reliable stands in the fact that AWS is the largest cloud company at the time we

write these lines, 2022. Their services are used worldwide and have been tested

by a multitude of testers internally and users externally, and we are almost sure

that these services are bug free. In most cases the documentation is exhaustive,

and an intuitive API is provided for most of the services. These statement lead

to a consideration: the amount of time spared thanks to the AWS choice is not

negligible. Moreover, on the internet are present a good number of blogs that

help you going through encountered problems.

• this work will not consider the security aspect as relevant for a main reason that

solve all the possible problems: security is always managed by AWS. We can

chose the level of security we desire, considering the security level a parameter

in our development.

The consideration we make are of our own, and we do not consider to sponsor AWS,

but, we just appreciate our choice while writing this final dissertation. From past

experiences we would like also to say that without AWS we estimate that this work

would have taken a lot more professional experience, competencies and more than

all a lot of extra time to present the results achieved.

4.1 Code/data version control and CodeCommit/S3

In software engineering, the practice of data version control is well know. It allows

you to control and revert code or even an entire project back to a previous state and

compare changes over time, see the commit that might be causing a problem, and

more. The most known open source software that allow this practice is Git, that

has been widely used on the marketplace. In machine learning, as we have already

presented, not only code but also data can change, and this increases complexity.

The same practices followed in data version control applies also with data version

control, with the exception that, depending on the type of data, in some cases a lot

more memory is needed. The tool that has made really appreciable Git is the wide
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spread of the concept of repository, that enables the practices of version control.

CodeCommit is the source code storage and version-control service of AWS that

contains all the code written for this project. Regarding the data, AWS is really

appreciate for its storage service, S3, that, among other functions, allows data version

control. The main takeaway from this section is that thanks to the structure of both

CodeCommit and S3 we can easily implement triggers on the way. If we want,

whenever a new version of the data is uploaded or a new commit of the code is

pushed in our repositories the triggers will manage the subsequent actions: either

kick off the pipelines or send alerts.

4.2 Sagemaker

The main service we used is AWS Sagemaker, the service specifically though to be

mainly involved and central in machine learning using AWS. To be more precise,

amazon Sagemaker is the cloud machine-learning platform of AWS that support

users in building, training, tuning and deploying machine learning models in a pro-

duction ready hosted environment. Sagemaker contains lot of functionalities within

itself, that are still called services, in this Chapter we will explain those mainly used

for our task.

4.3 ML development environment and Sagemaker Studio

Any project involved in machine learning needs its IDE to perform various task, like

in a local environment. Amazon Sagemaker Studio is in not only an IDE that where

classic machine learning tasks can be carried out, it also allow users to efficiently

deploy jobs and resources to monitor models. It is basically a single unified visual

interface where we perform the following tasks:

• Write and execute code, like in local Jupyter notebooks.

• Build and train machine learning models.

• Deploy the models and monitor the performance of their predictions.
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• Carry out and track experiments.

4.4 CT ML Pipelines and Sagemaker Pipelines

One of the strength of MLOps is the reusability of the pipeline, the orderly method-

ology and agile modularity. To meet this conditions, the usage of pipelines in nec-

essary in any step of the process, as we will see. To introduce the concept, let’s

think about the training of a model, even in a local academic system: the steps that

must be always present in a ML project to do things correctly are: preprocess, model

training on the train set, model evaluation on the validation set, and finally test the

performances on the test set with precise metrics. The process is iterative until we

find a setting of the preprocess, model and hyperparameters that satisfy the prede-

fined conditions that our model must meet. Since we know the no free lunch theorem

[16], we know that experimentation must be done, and in real work environment it

is better to have modular components instead of a monolithic one, especially when

experimentation is part of the process. Moreover, we desire that each step has its

own configuration, because each step can have different requirements (for example a

preprocessing step might be computationally expensive while a condition checking

step needs less computational power. Taking the previous consideration, now we

want to introduce a service that we used in the first part of the MLOps pipeline in-

frastructure we built for this work, namely the model build pipeline, see subsection

5.2. This service is called Sagemaker Pipelines, and it uses a Python SDK to build

machine learning pipelines. With it, we can define a JSON pipeline definition and

construct pipelines as a series of interconnected steps described by the JSON. This

JSON pipeline definition encodes a pipeline using a directed acyclic graph (DAG),

that gives information on the technical requirements for and relationships between

each step of the pipeline. The structure of a pipeline’s DAG is determined by the data

dependencies between steps. These data dependencies are created when the proper-

ties of a step’s output are passed as the input to another step [23], and the steps are

executed in their dependencies order: when a step finish the following/followings are

triggered. Moreover, Sagemaker Pipelines is a fully managed tool, which means that
24



Key concepts and AWS services used

it creates and manages resources automatically. Its utility rely in the orchestration of

the steps provided by us, handling the step creations and management. Furthermore,

it is possible to implement a lineage tracking logic, that lets us analyzing the data

history, the insights of the pipeline as well as the various versions of the ML models

we generate using the pipeline.

Just as a reminder, in MLOps, the pipelines are the real value.

4.5 Model registry and Sagemaker Model Registry

When a ML Pipelines correctly terminate it returns a trained model. To keep track of

all the model’s information, model versions, as well as the model itself we introduce

the concept of model registry. In particular, a model registry is a centralized which

stores the model metadata, such as training and validation metrics and data lineage,

manages model versions and the approval status of the model. Sagemaker offers

Model Registry that is integrated in Sagemaker Studio, hence pretty straight forward

to use. Each project can have multiple model contemporary serving in production.

Each model has a dedicated model registry. A crucial pro point is that it allows to

automate model deployment with CI/CD.

4.6 CI/CD deployment pipelines and Codepipeline

Once model is ready to be deployed, it must have an infrastructure that make possible

for customers to get prediction from it, in the fast and smooth possible way. We make

use of serverless applications provided by AWS to construct a CI/CD pipeline for

deploying a machine learning model as an endpoint. The reasons of this choice are

simple: CI and CD are key points of MLOps, we know their fundamental utility. The

main service that allow use to reach our goal is CodePipeline, a continuous delivery

service used to automate all the steps required to release continuously a software

whenever needed [24], in our case a ML one. Again, we are making use o pipeline:

modularization is essential. Let’s disclose the high level usage we make in this work

thank to this service; this pipeline reads all code from an ad-hoc repository and
25



ET AL.

triggers CodeBuild (a service we will explain later). This CodeBuild uses serverless

framework to deploy the code in the repository to a serverless function which will

be directly used to make prediction by the customers. The goal is to trigger the

execution of this pipeline, hence to update the endpoint whenever desired. We will

our implementation and the steps chosen in Section 5.3 and explain how we set our

trigger in each project in Chapter 6.

4.7 Feature Store and Sagemaker FeatureStore

Managing the feature lifetime, getting features to production is particularly hard.

ML models require a consistent view of features across training and serving. The

definitions of features used to train a model must exactly match the features pro-

vided in online serving. When they don’t match, training-serving skew is introduced

which can cause hard-to-debug model performance problems [9]. As an example,

just imagine a situation where you have built your model using spark, but during

serving you receive data as pandas object. It would be a catastrophic event to main-

tain. Traditionally, data scientists pass their feature transformations to data engineers

to re-implement the feature pipelines with production-hardened code, significantly

slowing down the process. These are the principal reasons why the concept and

implementation of feature store has born and started to grow in the latest years. Fea-

ture store is a centralized store for features and associated metadata. It serves as the

single source of truth to store, retrieve, remove, track, share, discover, and control

access to features [12]. Doing so, it makes easy to create, share, and manage features

for machine learning development. It accelerates this process by reducing repetitive

data processing and curation work required to convert raw data into features that

are subsequently used for both training and inference, reducing the training-serving

skew. AWS provide Sagemaker FeatureStore, that has the capability to ingest data

via a high TPS API and data consumption via the online and offline stores. The on-

line store is used for low latency real-time inference use cases, and the offline store

is used for training and batch inference.
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4.8 Monitoring and Sagemaker Model Monitor

Once the model has been deployment and is serving it must be monitor under dif-

ferent perspective to assure the expected performance [13]. It is important to remind

that any disruption to model performance directly translates to actual business loss.

Let first introduce the concept of data capture: it is the practice of saving the data

received during inference, when possible by the legislation. Doing so, we have the

data our model is predicting stored in our memory, that can be eventually used in

various useful ways (e.g. continuous training).

Here we show a comprehensive list of the most important things to monitor:

• Data monitor: data used while training are usually curated and can differ from

the data that the model receives while in production. If the statistical nature of

the data received while in production drifts away from the data the model was

trained on, the model begins to lose accuracy in its predictions[22].

• Model quality monitor: when a model is deployed and serving, it is expected

to perform as it does on the test set, according to chosen metrics, depending

on the type of the problem (e.g. classification, regression, etc.). If it does not

happen, something is changed and some action must be taken. Model quality

monitor is a practice to monitor the performance of a model by comparing the

predictions that the model makes with the actual ground truth labels that the

model attempts to predict. To do this, model quality monitoring merges data

that is captured from real-time inference with actual labels that are stored, and

then compares the predictions with the actual labels. The practice that retrieves

the actual labels is very often a tedious process, that sometimes is not possible

without manual labor.

• Monitor bias drift: bias monitoring is the practice of looking for monitor

predictions with bias. Bias can be introduced or exacerbated in deployed ML

models when the training data differs from the data that the model sees during

deployment. These kinds of changes are usually temporary, due to some short-

lived events. But in any case it might be important to detect these changes.
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• Monitor computational performance and traffic: monitoring the usage and

computational performances of a model in production is essential to always

visualize how our service is behaving with our clients and the cost-effective

cloud cost of the service. To do so, we collect system usage metrics like GPU

memory allocation, network traffic, and disk usage.

We will present our choices about the implementation set up to tackle the first three

bullets, namely data quality, model quality and bias drift in Section 5.4. To end this

section we want to discuss about the last remaining bullet. Thanks to AWS this is

a lot more straight forward with respect to a normal on-premises cluster, because

AWS has a native service that allows to monitor computational traffic with a lot of

charts and accurate metrics, this service is called CloudWatch and serves as an hub

to collect various logs and metrics of the general AWS services currently in use and

used in the past. Moreover, AWS Auto Scaling monitors running applications and

automatically adjusts capacity to maintain steady, predictable performance at the

lowest possible cost impact. Eventually we would like to state that the choosing of

cloud computing platform such as AWS (but also the other main companies provide

similar services) could reduce the implementation work in certain areas, such as in

this case.

4.9 Logs, trigger and Cloudwatch, EventBridge

In this work we used, of course, massive amount of code to implement all the needed

resources and infrastructure by the concept of IaaS presented at the beginning of this

Chapter. When writing and managing code and infrastructure logs have the purpose

tracking error and report them along with related data, if possible in a centralized

way. We also need to know of our resources are being used, to track the activity

on our servers and the number of income requests that our model in production is

receiving. AWS Cloudwatch is the service that helps us to achieve these needs by

collecting data, logs and actionable insights to monitor running applications, and in

practice helped us to debug errors encountered.

Here we also introduce a key concept, the triggers: they are used to automatically
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launch some steps of our pipeline to enable the continuous training concept ex-

plained in Chapter 3. When there is an event, a malfunction, or violations of the

constrains in the monitoring job, it must be taken some actions automatically, to

further render the framework agile. EventBridge is an AWS service that can be

event-driven, and it is used in this project to trigger actions whenever needed.

4.10 Other services used

Presenting all the services used and their details of why and how we use them is

practically impossible, because they are many and it is not the objective of this work.

Here we mention other services along with a short description that we use to reach

our objective: build reliable and reusable pipelines that can be rapidly used in any

context. These services are:

• CodeBuild, that allows us to build and test code with continuous scaling.

• Cloudformation lets us to model, provision, and manage resources by treating

infrastructure as code.

• ECR, where we create and store some ad-hoc containers.

• API Gateway, used to connect the AWS environment with the outside world.

• Lambda, a serverless service that allows us to run code at inference time.

• Athena, that allow us to correctly use the feature store by creating feature

groups, but also to query data in S3.

To learn more, we recommend the AWS website, in which further details are pro-

vided.
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Chapter 5

Methodology

5.1 The repositories

Independently on the project, the code used is always stored in two different repos-

itory that serves as central hubs. The model build and model deploy pipelines, that

form the basic structure of our work have two different dedicated repo, that contains

their code.

5.2 Pipeline I: model build

We already gave a motivation about the choice of working with pipelines, that be-

came the core of our work in each phase, including the first one in which a ML model

is built, see Section 4.4.

In this section we want to explain each steps of our pipeline, the reasons, technical

details and its integration in the whole framework and its importance.

The first repository (see Section 5.1) is the repository in which we store the code

to manage our multi-step model building pipeline. This pipeline must be agile and

modular given the fact that in a preproduction phase we want to have rapid exper-

iments, and modular components that can be reusable and composable. While in

production, a key challenge of MLOps is continuos training (CT): the model is auto-

matically trained every time there is a trigger. Keep in mind that CT enable to have

continuous delivery of models.
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The backbone of this phase are the Sagemaker Pipelines, that meet these require-

ments, allowing resilience and reproducibility of the ML workflows. We define the

following ordered steps in our model build pipeline:

1. Preprocessing step: the first step in our workflow is the process of input data.

Within this step, we create a processing job for data processing. This job works

as following: it copies the data from a location in S3 (the location is given

as input of the step) and a python script that contains the code of the aimed

preprocess. Afterword the job pulls a processing container, which contains a

chosen image (see Chapter 6 to get more details about the chosen images in

our implementation). Once the job completes, the outputs, namely the different

datasets (train, validation and test set), are stored in S3, in a specified location,

and the cluster resources provisioned for the duration of the job are shut down.

2. Model training: next comes the training of a model. This step creates a train-

ing job, that receives the information regarding the location of the outputs of

the previous step (the preprocess datasets), the computational instances needed,

and the S3 location where we want to store the output of the job. Of course,

an algorithm is required. To provide it to the job we also pass the Elastic Con-

tainer Registry path where the training code is store. Elastic Container Registry

is the AWS Docker registry. Hence, a container is needed. This container must

contain the information needed to use both in train and serve mode, since in the

training job the model must be trained, while elsewhere it must predict the input

data. This information can be encoded in the script provided to the container.

This script will have the methods train and model_fn, that will be invoked

in the two different respective phases of the job.

During the training phase, once this job is triggered, it launches the ML com-

pute instances and uses the training code and the dataset to train the model. It

saves the resulting model artifacts and other output metadata in the specified

locations.

3. Model evaluation: the trained model must be evaluated on the test set. Like

in the preprocessing step we make use of a processing job. This job works
32



Methodology

similarly to the mentioned. It copies the test set from S3 (the location in this

case is automatically provided, since it is an output of a previous job) and the

code to evaluate the model. Using this code, this processing job is able to

retrieve the trained model and do prediction on the test set, and save the results

(in our case the metrics).

4. Condition check : the results of the previous step must be compared with

thresholds set apriori. We construct a conditional step, that support conditional

branching. This way we assess whether our model satisfy predefined condi-

tions, and, if so, we proceed to the following step. Otherwise the pipeline stops.

5. Model registration: once we are happy with the trained model, we can finally

register the model in the model registry. We do that by creating a model ver-

sion that belongs to a specific model group (every different task has its model

registry). A model version must include both the model artifacts (the trained

weights of a model) and the inference code for the model.

Figure 5.1: Model build graphs: the left one is a representation of the pipeline as a DAG, while it is executing,
the right one once the execution is finished. Each step start only when its input step has correctly executed.
The green color means that the steps run correctly. As a result the trained model has been added to its model
registry

Once a version just trained of the model is added to its model registry, we decided
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that, we, as "human", must always monitor what is going on, so the approval of the

first pipeline is manual, and this step is managed through Sagemaker Studio, in the

model registry tab. Only once we give our approval the second pipeline is triggered

and the model deployment process begins.

The main take away of this section is the importance of the two components that im-

prove the operational resilience and reproducibility of the ML workflows: pipelines

and model registry. These workflow automation components enable to easily scale

the ability to build, train, test, and deploy models in production, iterate faster, reduce

errors due to manual orchestration, and build repeatable mechanisms.

5.3 Pipeline II: model deploy

Once the model is manually approved in the first pipeline, it is ready to be de-

ployed to an endpoint. A good practice in real world systems is to have more

than one environment. The advantages are many, like more security, faster prod-

uct delivery and easier testing of innovative products. In our work we decided to

set up the pipeline that will deploy the model to two different endpoints, one called

endpoing-staging and the other called endpoint-production, to simu-

late the two different environment desired.

Our cutting edge solution implements a CI/CD pipeline using as a main service

CodePipeline: we construct a pipeline able to retrieve the last version of the model

just registered in its own model registry, getting all the resources information re-

quired from our second repository, and deploy the model. Let’s explain the details

going through the steps of this pipeline:

1. Source step: the first step of a pipeline must be a step that retrieves where the

information (e.g. the code) of the actions that the pipeline have to perform is

stored, in our case a repository. We decide to give the description of some of the

artifacts that belongs to this repository here, to make easier the comprehension

of the next steps:

• build.py: this python file is invoked from the build stage; it contains code
34



Methodology

to get the latest approve package arn and exports staging and configuration

files.

• buildspec.yml: this file is used by the build stage to build a CloudFormation

template, it contains everything needed such as commands and installation

requirements.

• endpoint-config-template.yml : this file is built and deployed by the infras-

tructure pipeline in the required environment. It specifies the resources that

need to be created, like the endpoint’s.

• staging-config.json/prod-config.json: these configuration files are used to

customize staging/prod stage in the pipeline. Through them we configure

the instance type and number of instances desired.

• test_buildspec.yml: this file is used by the CodePipeline’s staging stage to

run the test code of the following python file.

• test_test.py: this python file contains code to describe and invoke the stag-

ing endpoint. We can write the code to perform all the desired tests on our

model as an endpoint before deploying to production.

2. Build step: this step is the core of this pipeline, it packages the endpoint infras-

tructure as code defined in endpoint-config-template.yml by using CloudFor-

mation, running a build using codeBuild. to retrieve the right model to deploy

we pass to this step the build.py, that specified a model registry is able to re-

trieve the latest version. Once this process is done we are close to the end of

our pipeline. Indeed, now we got a container ready to be deployed and ready to

make predictions.

3. Deploy staging: in this step we includes three steps:

• Deploy staging resources: this is the step that launches the endpoint in the

staging environment, retrieving from staging-config.json the configuration

we require.

• Test staging: we now want to test our endpoint in a safe environment to

find all the flaws, and in general the behaviour of our endpoint. Also in
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this step we use CodeBuild, so we need a buildspec.yml also here in which

we specify the commands to be executed to build the correct Docker image

and also the script python containing the code that can test our endpoint.

• Manual approval: once we are happy with our test we can finally deploy

it to production. Finally our model can bring value to our company, doing

its job. Perfect! But again, as in the final step of the first pipeline, we set a

manual approval to do so. Again, we always monitoring what is going on,

a crucial aspect of our work.

4. Deploy production: this step does exactly the same work as the deploy staging

resources; it deploys the endpoint but this time to production, the infrastructure

that support the endpoint is specified in the pointed JSON.

Eventually we reach the conclusion of our entire pipeline, getting a model ready to

serve to production. Depending on the real-world way of working, the possibilities to

send request to the production endpoint are many. We simulate two typical situation,

the main difference between them relies in the origin of the request:

• internal AWS request: in this case the request comes directly from AWS, and it

is pretty straight forward as a solution. The endpoint lives in Sagemaker and it

is possible to invoke it from the services in which is useful to contact an end-

point, for example Sagemaker itself or a simple lambda function (a serverless

function).

• external request: now the solution becomes more complicated, but it simulates

the used solution. It is the case where we want yo make our endpoint invoked by

a website for example, for customers usage. Given the securities and operation

policies of AWS, we must set up an intermediate layer which is knows as a

gateway. The API Gateway AWS service comes in help. We specifically present

the details of the tool in Section 5.3.1. Here, we specify that we construct a

lambda function able to invoke the endpoint. This function accepts as parameter

the name of the endpoint, the body of the request (the data we want to predict)

and return the model’s prediction. We connect this lambda function to API
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Gateway to be able to send request from an external service, such as Postman,

using a POST method.

Figure 5.2: Model pipeline graph

We conclude this section where we explained the backbone structure of our work.

We remark that the pipeline we built (both the model build and model deploy) are

reusable and highly modular, so when a new ML project shows off we have a solid

MLOps pipeline that can helps us to reach the market in the fastest time, giving to

the future developers the opportunity to focus more on the experimentation part of

the pipeline.

Moreover, this pipeline enables the fundamental CI/CD/CT: we are able to state that

the entire workflow, even if highly modular behaves as a whole, being the compo-

nents entirely connected. Whenever needed (for example when a commit is done to

the central repository) the pipeline can be automatically triggered, like we do, and it

executes again this time using the new code/data version.

5.3.1 API

The endpoint in production must be reached in some way by the external world, to

allow users to effectively be served by the created endpoint. APIs act as the "front

door" to access our endpoint from the outside. Specifically, we created a web API

with an HTTP endpoint for a Lambda function that manage the incoming requests,

by using Amazon API Gateway. Hence, this tool allow us to create a web APIs that

route HTTP requests to the Lambda function. Once the Lambda is called, it process

the incoming request and invoke the endpoint in production, to get the predictions of

the model. The prediction does the reverse way to the user, that receive the feedback

of the model for the data he/she provides.
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5.4 Monitoring

One of the main pillars of this work is the monitor phase. The two pipelines just

presented (model build and model deploy) run and an endpoint is correctly serving

in production. We show in this section how to correctly set up monitoring activities

to monitor the quality of our predictions. These pipelines we present here can launch

triggers to alert us whether our predictions do not satisfy certain requirements, both

under statistical and quantitative perspective. The explanations about motivation of

these pipeline are presented in Section 4.8, here we present our implementation of

them. We use the plural since we implement two different pipelines:

• data monitor pipeline: it will generate triggers and alerts every time the statis-

tical nature of the data in the training will differ significantly from the statis-

tical data of the data received in production. The first ingredient that must be

present to make the monitor possible is the data capture. To make this ingre-

dient available we configured our real-time inference endpoint to capture data

from requests and store the captured data in S3. After that we follow these

steps:

1. Create a baseline. We need reference statistics that will be used as baseline

to confront incoming data to monitor if data drift and other data quality is-

sues can be detected. There are different techniques to do so, but the main

idea is the following: analyzing the training dataset to build baseline and

constrains for each feature in the dataset. This is done because first of all

the training dataset data schema and the inference dataset schema should

exactly match, but also the statistics of each feature calculated during train-

ing should correspond to the statistics calculated on the same feature using

batch of data captured during inference. So after this step we got two files:

baseline and constrains, that contains all the information needed for the

next steps. The logic to construct these two files change depending on the

needs, as we will see in our different projects.

2. Schedule data monitoring job. With this step the concept of "continuously"
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really comes to light. We continuously monitor what is going on by kick-

ing off processing jobs at a specified frequency to analyze the data collected

during a given period. In other words we group the data collected in each

period and make the same passages used in the previous step to compute

the baseline file. We then compares the dataset for the current analysis with

the baseline statistics, constraints provided and if violation are present we

generate a report. If the violation file is created we immediately generate a

trigger that will send us this file but we can also trigger the execution of the

main pipeline, starting from the model build pipeline, and the process start

again. Here comes the core of CT. Under the hood we enable Sagemaker

to launch resources, when needed (for example if we schedule the job once

a day, once a day the needed resources will be launched), and use a con-

tainer to do the passages explained. Once the comparison is carried out the

resources are shutted down.

• model monitor pipeline: this time we want to monitor the prediction perfor-

mances of our model in production. To do this we need to know how our model

behaved during training. For example if a model get a 50% accuracy on the test

set but only a 30% during serving, an alert must be triggered. The logic imple-

mented in the data monitor pipeline is emulated in the model monitor pipeline

with some changes. The steps are the following:

1. Create a baseline. In this case we launch a baseline job that takes the model

predictions and compares them versus ground truth labels. It calculates

metrics for the model and suggests statistical rules and constraints to use to

monitor model quality drift by defining thresholds against which the model

performance is evaluated, and store these information in a baseline file.

2. Schedule model quality jobs. This passage is very similar to the one pre-

sented in the data quality pipeline. A processing job is kicked off at a given

frequency to group the model prediction of a given period. The difference

this time is that to carry out the monitoring analysis we need the ground
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truth of the serving data. The strategy to label incoming data changes de-

pending by the context we are working in, but in general is one of the main

tedious process we can face in machine learning. Not in few cases human

work is required to address this task that can be costly and time consuming.

Once we got the labels of the prediction our model made, the same logic

can again be carried out on the training dataset, and the comparison will

bring out eventual flaws in the predictions alert will be triggered and the

training pipeline will be kicked off.

Generally speaking, monitoring jobs are one of the most useful tool presented in

this works, because they contribute to the correctly meet the needs’ projects we

are working on, and consequently to bring values to our company without massive

human intervention.

5.5 Feature store management

We decided to present the work we have done regarding the feature store following

our approach, that is detached from the pipelines. In both our projects we followed

the same path, among the various that exists to build a feature store. The reason of

this choice relies in the following: one of the main utilities of a feature store is to

have a shared feature orchestrator among the organization we are working in. Hence,

this concept might come in help in our context, MLOps, but it is not the only context

where it is used.

In this section we want to give an overview of the main procedures to build feature

stores, that are shared among projects, by a more theoretical point of view and later

also by a concrete example. First, we introduce some terminology that will help the

readers to understand all the passages: a FeatureGroup is the resource that contains

the metadata for all the data stored in the feature store. Mainly, it contains a list of

FeatureDefinitions. A FeatureDefinition consists of a name and a data type. Under

the hood in the FeatureGroup is encrypted an OnlineStoreConfig and an Offline-

StoreConfig to control where the data is stored, that will be used whether the feature

store is used in batch (offline) or online mode.
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Now we can start to explain the process. First we need to deeply inspect the start-

ing dataset (we can think about the training dataset, they are often the same) and its

features, and decide how we want to manipulate our feature in order to have them

shared and usable in the various phase of the project. Once we know how to manip-

ulate them we can concretely do this step locally, in our notebook. At this point we

have the raw starting dataset and the processed one. Now we can define and instanti-

ate the FeatureGroup and the FeatureDefinitions. The latter will be nothing else than

the formal definition of the resulting features after the manipulation phase. Once a

FeatureGroup is created, data can be added as records. Records can be thought of as

a row in a table. Each record will have a unique identifier along with values for all

the FeatureDefinitions, that are the result of the processing phase of the raw dataset.

In order to be clearer, with an abuse of terminology, we can imagine that once the

process is complete the feature store will contain a dataset composed by unique com-

binations of processed features ready to be quickly retrieved in any process of the

entire framework.

Let’s make an example. Imagine in our dataset we have a text feature that encodes

different categories. We can have problems on why and how we can use the feature

store: some algorithms may have problems when dealing with this kind of feature, to

prevent them we can for example use some kind of preprocessing techniques, such

as the one-hot encoding. The number of the created columns using the mentioned

techniques is unique, because it is the number of categories we have, but their order

it is not unique, it may vary in different phases. To avoid this problem we can order

the created columns. One may think that the problems are resolved. But what if a

new category appears? This may cause a problem if this preprocessing techniques is

repeated in various stages of the framework, because in different phases some cate-

gories might not appear. But also, the biggest problem comes to the surface when we

have combination of categorical features that may not appear in the starting dataset,

see Figure 5.3 to have a clear insight. To avoid any kind of problem we rely on the

concept of feature store, where we carry out the preprocess phase just once and to

obtain a central shared feature repository ready to be used in the entire organization.

41



ET AL.

Figure 5.3: In the raw dataset we have repeated rows and not all the combination of the categorical features
appear (the combination car, dog is missing). In the feature store there will be unique rows where all the
possible combinations are present and identified by a unique identifier, that can also be a string containing the
combination(e.g. "car,dog").

The feature store can be used in online and offline mode.

• In online mode, features are read with low latency reads and used for high

throughput predictions. To retrieve them, we must call the defined feature group

of interest from the service we are using (for example a Lambda function) and

provide to it the unique keys of the defined group. It return the related features.

This mode is usually employed during serving time through an endpoint.

• In offline mode, large streams of data are available through the offline store.

Using this configuration, to retrieve them we must provide the unique keys of

interest, but this though Athena. Indeed, the offline configuration works in

conjunction with S3, where the data of the feature group of interest are stored.

It can return a table object. This mode can be used training time or at and batch

inference.

5.6 Infrastructure

We conclude this Chapter by showing how we link all the pieces together, in Figure

5.4.
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Figure 5.4: The main infrastructure
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Chapter 6

Projects implementation

The objective of this work is to show how MLOps practices effectively work and

how we can benefit from them.

In this Chapter we present how the entire workflow behave in practice through two

different projects, that have different characteristics. This way we can appreciate

even further the benefits of implementing MLOps best practices: our framework

can be easily and quickly adapted in different contexts that don’t have much in com-

mon, such as binary classification and time series analysis and forecasting using deep

learning models. We expose here the technical details that characterize each project,

and how our implementation help us to streamline their delivery to production, help-

ing our company to have real-value benefits using machine learning without having

to wait the time needed using a "standard" machine learning framework (e.g. with-

out implementing MLOps practices).

We will present the projects in the order we followed, step by step. Even if there is

not a fixed pattern to follow that is universally the best, we can state that a following

our steps order can be a good practice.

We highlight here that the data used have been retrieved from public dataset or syn-

thetically modified to avoid any data property related problems.
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6.1 Binary classification

The first case we present is one of the "easier" setting to deal with among the total

machine learning methods. Still, in a true production environment the challenges to

update a binary classification algorithm can be a lot and it can requires years to keep

up the model with business requirements and/or world changes (that are reflects in

data changes). We present how our framework helps to streamline the workflow.

6.1.1 Data exploration

First, we show the dataset, and its main characteristics, to be able to understand our

task and possible problems we can face. The starting dataset in question is a bank

dataset [17], that has been slightly modified for achieve our purposed in a better

way. For completeness, we cite that, as the name suggests, this dataset was created

for a bank marketing campaign. Each row represents a possible client along with

its information, like for example age, job and marital status. The desired target is to

predict whether the client will adhere to some campaign.

Since our framework can adapt to different settings and different tasks, we decided

to chose a dataset that can be helpful for our purpose, that is showing how MLOps

work and how much can help streamline the workflow to deliver ML models in

production, so we will not dig too much in the data exploration part, just showing

the essentials and what matters for this thesis. Hence, we chose this dataset for its

characteristics, indeed, it is composed by both numerical and categorical features,

and the combination of them can be interested for our showing purposes. The total

number of features is 14 plus the outcome variable, the y, while the total number of

rows is 40689. Since we are not really interested in the real meaning of this features,

and what they represents, we The characteristics of these 14 variables are divided as

follow :

• categorical features: features that can only take a limited number of possi-

ble values. We list them here in the format name_of_the_column: [possi-

ble_values_it_can_take]
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– job : type of job: [blue-collar, management, technician, admin., services,

retired, self-employed, entrepreneur, unemployed, housemaid, student, un-

known]

– marital : [married, single, divorced]

– education:[secondary, tertiary, primary, unknown]

– default: [no, yes]

– housing: [no, yes]

– loan: [no,yes]

– contact: [cellular, telephone, unknown]

– month: [jan, feb, mar, ..., nov, dec]

We print the head of this subset in Figure 6.1.

Also, we would like to highlight a concept here. The combination of all these

feature is possible, and must be taken into account for the next steps, even the

number of possible combinations (41472) is higher than the actual number of

sample presents in the training dataset.

Figure 6.1: Head of Pandas DataFrame containing only categorical features

• numerical features: feature that can take a numeric value.

– age

– balance

– day

– duration
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– campaign

– previous

We print the head of this subset in Figure 6.2

Figure 6.2: Head of Pandas DataFrame containing only numerical features

6.1.2 Creation of the Feature Store

In the previous Chapters we explained why the concept of feature store can be cru-

cial, and how to use it depending on the step. Indeed, we first need to instantiate the

feature store, create the needed feature groups, fill them, and once it contains all the

records we desired it can be ready to used at training time (using the offline mode)

and at serving time (using online mode in this case).

In this section we present why the feature store is needed in this specific project and

how we use it. We have just seen that our raw dataset has 8 different categorical

features. The combination of the values that these features if higher than the actual

number of rows in the whole dataset. It means for sure that not all the possible com-

bination are present. If we would be in "local" framework (e.g. carried out with a

simple personal computer) a part of the preprocess phase would be to simply split the

entire dataset in train, validation and test set and fit and transform the subset of the

train set with the one-hot encoding techniques. In this way we process these 8 cat-

egorical features obtaining a processed train dataset that has more columns, namely

the sum of the possible values of all the categorical features (in our case 40). After

that we can transform the validation and the test set according to the fit on the train
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set. Even if really basic, this techniques can avoid a lot of problems when deal-

ing with categorical features, in particular when the categorical features are strings.

Indeed some models, like XGBoost, can not deal with strings. Furthermore, some

models can benefit thanks to this practice, and so better results can be obtained.

In a real-world example, this is not that straight forward, because of some reasons:

first of all the two fit/transform (the train set) and transform (data to predict) are not

one after the other but basically at the beginning and at the end of the workflow. So

the fit/transform job should be in some way fitted at the beginning and applied at

the end. It is doable, but with some pain in the neck and lot of problems may arise.

Just think that every time there is a slight change all the process must be manually

done again. Another problem of this approach is the following: it can happen that

the categorical values of a feature that appear in the train set are not all the possible

values the feature can assume. Again, all the process must be one from scratch, with

a lot of time wasting.

To overcome these challenges we create a feature store to store the one hot encoding

of our categorical features. This feature store must contain all the possible combi-

nation of these categorical features, even if they do not appear in the entire dataset.

To do that we take all the possible combinations of the categorical features and fit

the one hot encoding transformation on this resulting dataset. Also, this dataset must

contain a column that identify any row, e.g. the unique key. We decided that this

unique key is a string that contains the concatenation of the text values of the combi-

nation. Once we have this dataset (the head of this dataset is shown in Figure 6.4) we

are ready to followed the steps described in Section 5.5: first we define and create

the feature group, second we instantiate the feature definition (meaning that we in-

dicate the column that contains the unique keys, and the data type of each column in

the desired feature group we are creating. Now we are ready to ingest the processed

dataset. Once the ingestion is terminated without errors we obtain our feature store

ready to be used in offline and online mode. Since we have our beautiful feature

store, we can exploit it as much as possible. Indeed, among our trials, we used the

offline mode, in particular in the training phase, but also, since we chose to imple-

ment a real-time inference setting, we will use the online mode during inference. We

49



ET AL.

Figure 6.3: The categorical processed dataset ready to be fed into the feature store. The column "combinazioni"
is the column that contains the unique keys.

will comment the next phases in the following sections.

The creation of the feature store is automatic, that means for whatever reasons the

notebook that contains the code to create the feature store can be executed automat-

ically. The results will be to have another adjourned feature group. The following

steps of the whole framework we present are implemented to retrieve the data from

the latest creation of the feature group for a given dataset (e.g. in our case project).

In this way the process is always coordinated and up to date. Still, the deletion of an

old feature group that can be useless must be done manually, to always check if the

process is working as expected, avoiding no come back actions.

6.1.3 Model build pipeline

In this section we present the project’s implementation of the pipeline presented in

Section 5.2, that contains general insights and technical and theoretical details. The

aim will be to have a trained model on adjourned data that, if the chosen conditions

are met, will be registered in the appropriate model registry and ready to be deployed

in staging, and eventually in production.

This pipeline manage to retrieve from a specific location in S3 the training data at a

certain time. The data on S3 can be updated whenever needed in this location, so if

we obtain a new adjourned dataset that will be uploaded in this location EventBridge

will trigger the execution of the entire process that eventually can update the model

in production, if all the automatic and manual conditions are met

Another trigger that can execute the process is a push to the central model build

repository, that contains all the code that manages this pipeline.

The triggers work simply by executing the lines of code of the update model build
50



Projects implementation

repository.

Once we have the training dataset the execution of the pipeline is managed by a

central python file that contains all the useful information of the steps we want to ex-

ecute, including resources information and estimators type and location, and where

to retrieve the code needed stored in the rest of the repository.

We highlight the usage of Sagemaker Pipelines, that allow us to have modular steps

that in most cases are handled by class provided by AWS. Indeed, as already men-

tion, AWS provides a lot of functionality that in some cases can be just executed and

that integrate in their environment. In this specific binary classification projects the

steps that characterize the model build pipeline are the following:

• Preprocessing step: this step takes as input the entire training dataset, the code

that will be run to materially carry out the preprocess and the resources detail

chosen that will be used to initialize an instance that will be used to execute this

step. Moreover we pass as input the output paths that will contain the output

artifacts of this step, that will be used as input of the next step. The resources

we chose are pretty standard, called ml.m4.xlarge.

We can now focus on the true preprocessing part, analyzing our code. Since

we decided to use XGBoost, we need the one-hot encoded features, that are

already created in the feature store. To retrieve them, we call the feature group.

In the offline mode, the data of interested can be selected in a SQL style through

Athena (since they are in S3). Now we got the processed subset of the categor-

ical features, so we can concatenate for each sample the raw numerical features

and the processed categorical ones. Since we have a dataset having much more

columns than before, in the experimentation phase of the project we tried dif-

ferent approaches, such as PCA, but to apply it in production we should deepen

some concept, as we will see in the next step.

Of course, the goal of this thesis is not to find out the best preprocessing

pipeline, or the best model that fit the data, but to show how the practices we

present streamline the flow. Now we have a numerical dataset that can be carved

in a countless ways, just experimenting, and then figuring out how to avoid any

training-serving skew problem either using the feature store or another agile
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method, such as the usage of Docker containers.

The last lines of code of the script ingested by the preprocessing step is to split

the resulting dataset in training validation and test set. They will be the output

of this step, and will be used as the input of the next ones.

• Training step: the aim of this step is to generate a model artifact. This step

takes as input the training and the validation set generated from the previous

step, and the estimator with the related resources desired along with a Docker

image. The image is the crucial part of this step: it contains the ML algorithm

to be used in this project. We tried out different images. These images can be

divided in categories:

– Prebuilt Docker images: AWS provides containers for its built-in algo-

rithms but also prebuilt Docker images for some of the most common ma-

chine learning frameworks and algorithms. XGBoost is included in them.

– Ad-hoc Docker images: for several reasons, we may want to use an ad-hoc

image that can perfectly fits our task. We can either extend the prebuild

container provided by AWS or create a container from scratch.

In the first attempt, to familiarize with the tool, we used a prebuilt image having

as framework XGBoost. This way, when executed, this step returns a model

artifact without any further effort. This way life may seems simple. But in

real-case example it is not. Hence, we carried out different experiments also

providing ad-hoc images.

Of course, the image must be created. In AWS there are lot of ways to do that,

also in Sagemaker. We briefly explain our implementation strategy: we create

a notebook, that is of course separate from the entire MLOps workflow, where

we create it. If we want to extend a prebuild container here are the requirements

needed from AWS: we need a text file and a python script. The text file contains

the EMR specification of the image to extend and some other configuration

specification. The python script contains the code of interest, which,among

the others, must have two functions that specifies the training and the predict

logic, respectively. In the preprocessing step we cite that, since we have a lot
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of numerical columns, a processing technique such as the principal component

analysis (PCA) can enhance the overall performance of the model. The PCA

must be fit on the trained dataset and later applied on the test/serving data.

Again, these two phases can not be done sequentially in a simple environment

(e.g. like a notebook in a local personal computer), and a strategy must be

thought. Our strategy can be carried out simply extending a prebuilt image, and

it is the following: we extend the XGBoost image with a script that instead of

just train XGBoost’s algorithm train a SkLearn pipeline with two steps in it:

1. Fit and transform of the training dataset with PCA.

2. XGBoost model training.

This way, in the serving phase, through the predict function we call the SkLearn

pipeline predict method, and the game is done. Again, any training-serving

skew problem is avoided observing this strategy.

Independently on the type of chosen image, the output of this step is a model

artifact, that is stored in a specific location in S3 in a tar.gz format.

• Evaluation step: this step receive as input the model artifact generated in the

previous step, the test set and of course resource and infrastructure information

to let the flow be as smooth as possible. As in the preprocess step, a python

script is required. Indeed, in this step we want to evaluate the artifact on data

never seen before by the model, the test set. In the evaluation script we load

the model and the test data and we call the predict function of the model. We

compare the prediction values with the ground truth, calculating the accuracy.

Moreover, within this step we create an evaluation report. It is nothing more

than a python dictionary that will be saved in a specific S3 path. This dictionary

contains the accuracy just calculated, and it is stored for lineage purposes, since

it can be useful in the future, but, most importantly, this dictionary is the output

of this step that will be used in the next one.

• Condition check step: this step reads the output of the previous step, the dic-

tionary containing the model accuracy and compare it to a threshold we define
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apriori. In our case we chose to set a threshold that would be easily met every

time this pipeline is executed, since we do not care about the actual perfor-

mance, but only on the pipeline itself. This step accepts two hyperparameters,

respectively "if_step" and "else_step": it means that if the condition is met, the

specified argument in the "if_step" (e.g. another step) is executed, otherwise

the "else_step". In the former step we specified the registration step, while in

the else step we do not specify nothing, since the if step is always met in our

setting.

• Registration step: this step loads the artifact in the appropriate model registry. If

the model registry does not exists it will be created. The model registry assigns

the version number to the artifact that is being registered. Of course, the first

artifact has the version number 1, the second the version number 2 and so on.

We specify in this step that a manual approval is required to release the selected

version to flow through the next pipeline, the model deploy pipeline.

Once all these steps have been executed, the manual approval is required to trig-

ger the following model deploy pipeline. The DAG that represent the model build

pipeline in this project can be seen at Figure 6.4.

We mention here another step that has been tried out, even if we decide to not in-

clude it in the final version of this thesis, that is the processing step where we tune

the hyperparameters of the chosen model, XGBoost. This step can be easily inte-

grated in our workflow. Doing so our pipeline will become more deep, having one

more step, and since it is unnecessary for our purpose to have an highly tuned model

we decide to try it out to study how it works but not exploit it too much to spare time

and money. Using the steps provided by AWS is not the only way to carry out the

hyperparameter tuning phase. Indeed, it can be also carried out inside the container

image, or in a separate location (not within the pipeline), because it can require a lot

of time. It is basically the core of the experimentation phase.

Eventually, if dealing with big datasets, we recommend to experiment a bit on a sub-

set of the entire dataset in a separate location (we did it in a Sagemaker notebook),

just to get insights of the data. Then the usage of MLOps practices can enforce the
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tidiness of the workflow, and help to keep track of all the experimentation carried

out. The modularity of the steps would help to always arrange a better setting that

working "randomly" on a local notebook.

Figure 6.4: Graph containing the steps of the model build pipeline for the binary classification project

6.1.4 Model deploy pipeline

In this section we explain the usage of this pipeline in this first binary classification

project along with its peculiarities. The aim of this second pipeline is to deploy and

endpoint from which is it possible to predict incoming data through a POST request.

Before going into the details we can state that this pipeline is quite solid, and the

innovations it bring can be easily adapted on the project we are working on, with-

out much effort. Anyway, we look at the its singular implementation in this project.

The code that will be execute one this pipeline is triggered is in the model pipeline

repository. As shown in Section 5.3 the repository contains some crucial files that

manage the pipeline flow. This repository is really reusable thanks to its parametriza-

tion. This way, the yml scrips contained in the repository are ready-to-use without

having to change them, except for some parameters such as the name of the model
55



ET AL.

registry of interest. Depending on the project, we also need to specify the resources

desired as usual when working in the cloud. For this project we chose really stan-

dard engines, such as ml.m4.xlarge and ml.t3.medium, since our dataset is

not too large and the service load would clearly be not demanding, since we are

doing a thesis demonstration. In particular, both in staging and production we use

a single ml.t3.medium instance for the respective endpoint. Whereas regarding

the python file, we have two main python file: build.py and test.py. As explained

in Section 5.3 the former is more similar to a configuration script, and it is highly

parametrized as well, while the latter is used to test the endpoint in staging. Hence,

we can exploit all its use-fullness in this project. We can carry out different tests,

that belong to three main categories:

• Performance testing: this type of testing examines responsiveness, stability,

scalability, reliability, speed and resource usage of the infrastructure.

• Load testing: it measures how the system handle heavy load volumes.

• Stress testing: it is a type of performance test that checks the upper limits of our

system by testing it under extreme loads. Stress tests examine how the system

behaves under intense loads and how it recovers when going back to normal

usage.

In the test.py script we check whether the endpoint is reliable, meaning that the

expected type of response depending on some particular requests is satisfied. Hence,

performance testing. Regarding the reliability of the system, that must always ensure

responsiveness to an incoming request we are supported by AWS. Of course we must

chose an instance that is proportional with the expected load. Nonetheless, AWS

provides a lot of option to adopt a scalable systems always ready to scale depending

on the incoming traffic. We will not deepen this topic.

Once we are sure that the endpoint in the staging environment works as expected we

can finally deploy the endpoint in production. From now on our work can generate

true value for our company.
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API

To serve incoming requests, we must use an API to allow users access the predictions

of our model, given input data. We linked to our API a serverless function (Lambda

function), that receive input data and process them to avoid any train-serving skew

problem. Indeed, here is where the feature store plays a central role. Once receiving

the data, we call the online store of the feature group, and retrieve the correspondent

data for the categorical features. Now we invoke the endpoint in production, and the

user can finally see the prediction of our model for its data.

6.1.5 Monitoring

Once we are out in production we must be sure that the model behave as expected, to

always deliver an high quality service. To do so we employ monitoring activities that

will be able to automatically check whether everything is working as expected, and

possibly trigger the execution of the entire process in case some violations are de-

tected. In this section we show the implementation of these pipeline in this specific

project, moreover we simulate with the usage of toy data some situation in which we

expect these pipeline to report the violations and consequently we expect the process

to restart again, from the model build pipeline. In Section 4.8 we gave the concept

overview and the reasons why we implement these pipeline, while in Section 5.4

we present technical details. Here we adapt them in this binary classification con-

text. Like the model deploy pipeline, these pipelines are highly reusable in various

project. The major difference in the implementation of these pipelines among dif-

ferent projects are the baseline dataset used. Let see in details both the data monitor

and model monitor pipelines for this project, following the structure of Section 5.4:

• data monitor pipeline:

1. We create the baseline starting from the training dataset after the preprocess

step, that can be retrieved from S3. The two file that have to be created as

baseline, the constrains a statistics json, are created using the Deequ library:

Deequ is a library built on top of Apache Spark for defining "unit tests for

data", which measure data quality in large datasets.
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2. Once we have this two files we can can set the monitoring schedule as

desired. We set it to run every hour. So every hour we monitor whether

incoming data are changing in their statistics as explained in Section 5.4.

• model monitor pipeline:

1. Again, the baseline is created starting from the training dataset. The way

we create this file is pretty simple, indeed it contains basics statistics such

as the class balance (e.g. the relative percentage of the classes) and the type

of prediction (either 0 or 1 since we are in a binary setting). If the model

will drift in its predictions towards a class, then alerts will be triggered.

2. Regarding this pipeline, every time the monitor quality job run there should

be the ground truth of the incoming data already collected in S3. In the

following subsections we will explain how we carried out some tests, to

give better insights about the process. Nevertheless we schedule the job to

run every hour. When new ground truth data are not present in the given

path, the job will simply return an alert that no file have been found.

Data monitor pipeline tests

The objective of this paragraph is to present how we check whether data monitor

pipeline works as expected. When we want to carry out these tests, we must have

an endpoint ready to serve our requests, with the data capture enabled. We create

synthetic samples to complete this task. We carried out two different type of tests:

• Check whether the data type do not differ from the data type of the baseline: we

fed to the endpoint data with the same number of attributes, but with different

data types.

• Monitor data drift: To check whether the data monitoring job works prop-

erly, we create a fake dataset with manually modify attributes. As an ex-

ample, in one of our tests we took 100 samples of the test set and we ran-

domly change it by adding values to the "age" column, by the formula agei =
agei +random.randint(0, 50). Afterwards we are going to request predictions
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for this 100 sample through our endpoint. Doing so, when the monitoring job

computes the statistics for the column age, it should detected a data drift.

This pipeline behave as expected, and once violations are reported, it triggers the

execution of the model build pipeline to deploy a model that can be trained on new

data (if the ground truth is available for the serving data).

Model monitor pipeline tests

In this pipeline we explain how we check whether the model monitor pipeline works

as expected. Again, while carrying out these tests, we have an endpoint ready to

predict incoming data. We report in this thesis one of the tests we carried out: we

fed 100 samples to the endpoint, that has the data capture enabled. Each sample

will have a unique when captured, and the predicted values will be associated and

saved along with its features. Now we have to associate to each sample that has

been predicted its ground truth through the needed key. This time, to trigger the

violations of the monitor pipeline, we generate fake ground truths that do not match

the predicted values. Again when the job run, it correctly generates a violation report,

and consequently the execution of the model build pipeline starts.

6.2 Time series forecasting

The real value of the entire work is the framework, not the specific use case. Our

main objective is to show is reliability and re-usability, independently on the specific

settings, either binary classification or something else. To show this, we present a

second project implementation, that as nearly nothing in common with the previous

one in its basic ML concepts, like time series analysis and forecasting, applying ma-

chine learning models.

Hence, since our objective is not to build the best machine learning model for this

specific task, we do not intend to dig deep into the "data science" part of the project,

but more to highlight and appreciate the goodness of the framework presented. Fur-

thermore, we remark here that the time series analysis and forecasting is in general

more difficult and require more attention than a simple binary classification context,
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so the parts of the next section that uniquely belongs to this context and the chosen

dataset can be surely studied more deep, and it is a part of the future studies of this

thesis. Also, we use this project as an opportunity to study deep learning models in

the context of time series, but also to learn how to use external data sources to enrich

the starting dataset, as we will show in Section 6.2.2.

6.2.1 Data exploration

The dataset we used for this project is a synthetic dataset, that we created in order

to avoid any possible problem. Still, it retraces a true dataset that inspired us to

implement this project. Let’s think that we collaborate with a chain company that

wants to predict its income by analysing its data. This chain has several stores, that

sell several products. Each product belongs to a category, and has a unit price that can

change over time. In particular, we have 6 stores that can sell 17 different products,

hence, we can have 102 different time series that model the selling quantity rate of

each available product in each store. To add more complexity, but also to reproduce

faithfully the reality, we built 98 different times series. Indeed, in the real world

it can happen that different stores sell different products, even if they belong the

the same chain company. The time span is two years. This company provides us a

typical dataset that chain store collect. In particular, the dataset has the following

columns:

• date.

• store key, that is a unique key for the respective store.

• item key, that is the unique identifier of an item

• unit price, the price of the item for the respective date in the respective store.

• item category, each item belongs to a category.

• quantity sold, the quantity of items sold in store for the given date, that, is our

target.
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Figure 6.5: Head of Pandas DataFrame

The main flaw of this dataset is the presence of missing data. Depending on the

location, and on the week days, some shops are closed while others are not. So data

are not homogeneous under this point of view, and in this context that may arise big

problems in the machine learning model development. We will show how we tackle

this problem in the model build pipeline subsection.

Moreover, we know the geographical location for each store, having the longitude

and latitude. We will show how we use this information in the feature store in Section

6.2.2.

6.2.2 OSM and creation of the Feature Store

This dataset is pretty basic in its features, and can be enriched to have a better in-

sights on the numbers.

Since we have the geographical coordination we can exploit them. Intuitively, the

location of a shop can be related to the quantity sold of certain items respect to oth-

ers (for example a shop located in a city center can sell more items related to the

tourism). Among the many ways to extract locations information from the internet,

we make use of OpenStreetMap (OSM).

OpenStreetMap is a free, editable map of the world, created and maintained by vol-

unteers and available for use under an open license. Anyone can use OSM to provide

maps, directions, and geographic context to users around the world [18]. We will not

explain the details, but we manage to retrieve through Athena the OSM informations
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about the location of our stores in a 1500 meters range. It means that for every store,

we got the OSM specifics in a 1.5 kilometers radius. Through an ad-hoc preprocess-

ing, we retrieve the number of point of interests (POI) in each area. In particular,

for our purpose we obtained the number of amenities and tourists POI only. The

Processing job along with the script used in this phase can be automated as well, in

order to run this process every time is needed without human intervention, but, but,

since we can safely think that the location of the stores will not change. If new stores

will be launched or we want to check if OSM data changed than human intervention

could be even useful. Once we have the dataset processed, we can follow the exact

same steps explained in the previous project. We want to stress out that the only

differences among the creation of the feature stores in the two presented projects is

the specific data manipulation, that is of course specific for each different dataset.

We can see in Figure 6.6 the processed dataset. We did not remove the longitude and

latitude features, even if they are not relevant in a machine learning context, because

in a real-world case, they can be useful to other team of people.

Figure 6.6: The dataset ready to be fed into the feature store. For each store we will have the features latitude
longitude and the count of amenity and tourism POI places nearby

6.2.3 Model build pipeline

At this point, we already know the theoretical points this pipeline address. As said

in the introduction of this section, this projects has been also chosen to experiment

and study how machine and deep learning models tackle the problem of time series

forecasting.

Before going into the details of our final implementation, we want to make a little
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digression about the models tried, and our final choice. The research in this field has

gone really fast in the latest times, and the state-of-the-art in the context of forecast-

ing time series is now carried out with deep learning models. Among the trials, we

report here two models that have attracted our focus:

• DeepAR: the authors of this work propose a methodology for producing accu-

rate probabilistic forecasts, based on training an auto-regressive recurrent net-

work model on a large number of related time series. They demonstrate how by

applying deep learning techniques to forecasting, one can overcome many of

the challenges faced by widely-used classical approaches to the problem [19].

• Temporal Fusion Transformers: the authors of this work exploit cutting-edge

methods to build a powerful and interpretable deep learning model. In partic-

ular, the temporal fusion transformer (TFT) is an attentionbased architecture

which combines high-performance multi-horizon forecasting with interpretable

insights into temporal dynamics. To learn temporal relationships at different

scales, TFT uses recurrent layers for local processing and interpretable self-

attention layers for long-term dependencies [20].

Even if the scope of this work is not to find the best model for the specific chosen

dataset, we carried out some experiments using both models. They are the state-of-

the-art in this context, and we had some excited moments tried them. At the end, we

decided to go with the former, DeepAR, since it is implemented in the gluonts

library, that better integrates in our framework, but more importantly because it bet-

ter models the relations between input time series given. Indeed, we have for each

combination of item and store a different time series, that of course are related.

Once chosen the algorithm we explain the details of the steps of this pipeline. We

highlight that for a demonstrative purpose the steps chosen do not change with re-

spect to the first project presented, regardless of the context.

Without repeating the generics, the steps in details of this pipeline are the following:

• Preprocessing step: this step takes as input the entire training dataset, the pre-

processing code, and infrastructure details.

A dataset can be usually enriched, we already built a feature group to integrate
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geographical information to reach better performances. Another feature that

might be useful in our context is a simple binary column that indicates whether

a day is an holiday. For the majority of shops, holidays correspond income in-

crease. We can manage to add this feature in the preprocessing step, even if we

could create an apposite feature group, but since standard libraries provide this

information, we avoid to waste time and resources. Now, we process our dataset

to be easily ingested by DeepAR, implemented by the library gluonts. In-

deed, this model requires to have separate time series for each available feature.

First of all we manipulate data to have, for each feature, on the row the unique

combination of item and product (because they represent a unique time series)

and on the columns the date. The unique key, is though to be easily retrieved

also during the serving phase, and it is the combination of the item key and

the store key. Also the target feature, the quantity sold, is preprocessed in the

same way. Afterwords we split the dataset in two different subset, training and

test set. The test set will contain the last 30 days, to confront it with prediction

values.

• Training step: the aim of this step is to generate a model artifact. This step

takes as input the training set generated from the previous step, and the desired

estimator, in this case DeepARestimator. This estimator accepts missing data,

and this is the reason why we did not manage them in the preprocessing step.

Figure 6.7: Pandas DataFrame containing the target feature, the quantity sold, in the format presented. On the
columns we have the date while on the rows we have the unique key in the format store_item. All the other
features, used to train the model, are processed to obtain the same format.
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• Evaluation step: this step receive as input the model artifact generated in the

previous step, the test set and the resource and infrastructure information, along

with a python script that contains instruction to evaluate the model artifact gen-

erated in the previous step. In this step we forecast the 30 days of the test set.

We calculate the performance of our model with three metrics: mean square

error, absolute error, mean absolute percentage error. Within this step we create

an evaluation report containing the values of these three metrics, in the form of

a python dictionary, and save it to S3.

• Condition check step: this step reads the output of the previous step, and com-

pare it to a threshold we define apriori. Also in this project we chose to set a

threshold that would be easily met every time this pipeline is executed, since

we do not care about the actual performance. This step accepts two hyperpa-

rameters, respectively "if_step" and "else_step": it means that if the condition

is met, the specified argument in the "if_step" (e.g. another step) is executed,

otherwise the "else_step". In the former step we specified the registration step,

while in the else step we do not specify nothing, since the if step is always met

in our setting.

• Registration step: this step loads the artifact in the appropriate model registry.

If the model registry does not exists it will be created. As explained in the

first project, the model registry assigns the version number to the artifact that

is being registered. Of course, the first artifact has the version number 1, the

second the version number 2 and so on.

Once an artifact is registered in its model registry a manual step is required to trigger

the execution of the model deploy pipeline.

6.2.4 Model deploy pipeline

The strength of our work rely also in its reusability. This pipeline indeed is exactly

the same used in the first project. The only differences are the test.py script, that

is tailored for each different project to test the endpoint produced, and the resources

specified, that are simply parameters to fill. To not repeat ourselves we do not explain
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what already said in Section 6.1.4, because, again, we would only explain the same

process twice.

Moreover, we specify that the resources employed corresponds to the ones used in

the first project, since we do not need a lot of computational power.

API

Again, the logic is the same with respect to the previous project also for the gateway

to let users employ the model. The lambda function that manages the raw data to

be processed, uses the online store of the feature group created during serving time

to retrieve geographical information, and process the data to be concordant with the

training data. The user has to provide the time series he/she wants to predict (e.g.

the store and item) along with all the features for each date he/she wants to get

predicted. We configured the lambda to return the median value of the predictions

of the correspondents number of input days. It means that the endpoint will return

precise predictions, without confidence intervals. This can be improved, since in this

context can be really helpful to visualize results with dashboards. We will talk about

it later in Section 7.1.

6.2.5 Monitoring

Regarding the monitoring context, there are some changes with respect to the binary

classification project. First of all, the features of the data are all static features, ex-

cept for the price. It means that there can not be data drift for all the features except

for the price (we assume that the category of an item will not change over time, if

it changes it is only because the user make a mistake while fed data to the model).

Moreover, data to be predicted are usually data "thought" by the user, because they

are guesses on the future’s price. Let’s make an example. We deploy a model to

production trained on the time series having as last date today. If a user wants to

employ the model to make predictions, the data he/she will provide to the model are

his/her guesses to the price, and it is very likely that the user will employ the model

to make several forecasting while changing the price, to take business decision with
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the support of the model. Hence, we conclude that the data monitoring in this spe-

cific context does not make sense to be implemented.

Whereas, the model monitor pipeline make a lot of sense, because we want to mon-

itor whether our pipeline is supporting business decision in the correct way. This is

a very difficult task to achieve, because there is no ground truth baseline. We only

have the time series trends. The only thing that we were able to correctly implement

is to daily check whether model predictions respects some chosen threshold when

compared to the real value of the day considered. It is similar to the condition check

step of the model build pipeline.

Still, we also believe that in this context, the concept of CT is required and it is more

that in any other context, because the factors that affect the sales trend can change

daily. That is also why we believe that in the TS context enriching the raw dataset is

the key to succeed, and MLOps can really help to achieve both requirements.

Without adding a paragraph to explain the tests and their results, we only mention

that they behave as expected, also for this project.
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Chapter 7

Discussion and conclusion

This Chapter aims to recap the main findings discussed through the thesis, possible

further developments, and conclude the work. The first part of this study focused

on the differences that characterize ML systems with respect to traditional ones, and

the main challenges that real-world ML systems face when bringing ML models to

production. In particular we study the ML-specific challenges that needs to be taken

into consideration when planning the practices to implement which can overcome

them. We show the state of machine learning in production, and how the focus of

major companies is flowing into the concepts related to our work. We make use of

some tools that, in conjunction with the concepts presented in Chapter 4 allowed us

to present a framework that overcome the challenges that ML architectures without

MLOps practices implemented encounter. The tools and technologies used within

this MLOps architecture are all based on AWS. This choice avoid us to do additional

work when dealing with infrastructural settings, and speed up our implementation

process. Our framework can be easily employed in different projects without much

effort, since it is developed with the objective of being task unrelated. The main

characteristics of this framework are: reliability, modularity and fastness. Indeed,

the infrastructural backbone introduces CI/CD/CT pipelines, that speed up the de-

ployment process with high automation, but at the same time we allow modular

steps to meet different projects need. Among the various concepts, in this discussion

we highlight the usage of the feature store and monitoring jobs that push our work

to be really competitive in the MLOps framework market.
69



ET AL.

7.1 Future developments

The presented framework represents a reliable structure, although it can be enriched.

The first improvement we will implement is the usage of dashboards, to visualize

results. For example, in the second project presented (Section 6.2), we consider

more appropriate to provide users with a dashboard to visualize the predictions, and

it will be implemented when future customers will use our product.

There are some other competitive tools to emulate what we presented. We made our

infrastructural choices based on the team’s experience and requirements, but another

possible development would be to use other platforms, maybe open source. Indeed,

it is also possible to integrate open source tools in our work, and we are already

considering that as a future development, to make our product more accessible.

7.2 Conclusion

At the start of this thesis, we set ourselves the objective of streamlining machine

learning to production with an innovative framework that can be make the machine

learning development process more reliable, scalable, secure and traceable. We pro-

posed a framework and a workflow strategy that fulfilled our objective, using cutting-

edge MLOps practices using one of the best platform such as AWS. A standard ML

life-cycle has been established. Now we have an MLOps architecture and workflow

strategy that will help us to manage our ML development and deployment process

in future projects, regardless of the specific task. Data, ML artefacts life-cycle, and

ML experiment details can be tracked and saved, no more than necessary manual

handover is needed when deploying models into production.
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