
Deep Learning at the Edge:
Optimizations of object detection models

for embedded devices

Candidate:

Ivan Murabito

Supervisors:

Prof. Andrea Calimera

Dott. Antonio Defina

Ivan Murabito

 Thesis goal
Analyze and evaluate the main optimization and compression
methods of deep models,
with the purpose of perform inference of object detections
algorithms efficiently on devices with limited hardware
resources.

● improve inference speed
● reduce model size
● low accuracy trade-off

Ivan Murabito

 Inference at the edge: Motivations

Energy Consumption

Reduce load in datacenters
and less cost and
environmental impact.

Low Latency

Unlock the way for
Real-Time
Applications.

Privacy

Does not exchange
sensitive data over
network.

3

Cloud AIEdge AI
Two ways:

Edge AI Motivations

Ivan Murabito

 EDGE AI Application Segments
AUTOMOTIVE

Autonomous Driving

Driving Assistance

Driver Monitor

INDUSTRY 4.0

Predictive Maintenance

Anomaly detection

DRONES

Autonomous Flying

Obstacle Avoidance

And many more: Smart Home, Smart Farming, Wearable, Smartphone, Healthcare, ..,

Ivan Murabito

 Object Detection
Given an image, object detection models
perform two main computer vision tasks
● Object Recognition
● Image Classification

Two Stage
● FasterRCNN ~100M params

Single Stage
● SSD ~ 4.2M params
● Yolo v5 2M up to 40M params

Output
● Bounding Boxes with detected classes

and confidence

Matrix Reloaded (2003)

Ivan Murabito

 NXP iMX8mp

• Quad-Core 1.8 Ghz arm based Cortex-A53 CPU

• NPU (Neural processing unit)

• Dual image signal processors (ISP) and two
camera inputs

• H.265 Encode/Decode

• Linux OS based on Yocto Project

Evaluation Board

Ivan Murabito

 Optimizations: Quantization (Post Training)
After the training of a deep model, its weights are usually represented as 32 bit
floating-point values.
Quantization consists in compressing a deep model, by mapping its weights to a lower
precision value, e.g FP32->INT8

Scale factor:

● Weights -> static clipping range calculation (weights are fixed after training)
● Activations -> static (with calibration data) or dynamic (online clipping range calculation

during inference)

(Clipping Range)

Clipping range calculation:

Ivan Murabito

 Optimizations: Knowledge Distillation

Feature basedOutput based

Transfer the knowledge from a larger (trained) model to a smaller one.
The goal is to improve student accuracy performance by replicating teacher behaviors
during training phase.

The student's training will only be affected by the
output of the last layer of the teacher network.

The student will be influenced also by the
behavior of the intermediate layers of the
teacher.

Ivan Murabito

 Model Compression Box

Ivan Murabito

 Yolo v5s Quantization Results

- 17% - 2% - 61%

● 430ms faster

● From 27 to 11 MB

● <0.01 mAP
degradation

Results on target board (cpu)

Onnx post training dynamic quantization

mAP evaluated on coco dataset

FP32 Baseline

UINT8 Quantized

Ivan Murabito

 FasterRCNN Quantization Results

● 5s faster

● 110MB Lighter

● <0.001 mAP
degradation

- 25% - 1% - 75%

Results on target board (cpu)

Onnx post training dynamic quantization

mAP evaluated on coco dataset

FP32 Baseline

UINT8 Quantized

Ivan Murabito

 Knowledge Distillation Experiments

● Yolo v5 N (nano)

Student Network

● Yolo v5 L (large)
● Yolo v5 M (medium)

Teacher Networks

● Output Based
● Feature Based

Knowledge Distillation types

● Train student from scratch with
knowledge distillation (80 epochs) of
different combinations of networks and
params

● Transfer Learning (pre-trained student
with freezed backbone) and then small
training with knowledge distillation

Approaches:

● COCO (>200k images,80
classes)

Dataset

Ivan Murabito

 Knowledge Distillation Results

Ivan Murabito

Quantization:
● Easy to deploy, no need to retrain
● Model unaware, plug and play

optimization
● OOB Excellent Results, low accuracy

trade-off

Knowledge Distillation:
● can improve student accuracy

performance, but not too much, it is a
extreme optimization .

● need effort to find optimal parameters
● need to re-train the network

 Final Consideration

Future Works:
● Test Quantization-Aware-Training
● Test other combinations of teacher-student architectures,parameters and more

epochs
● Test together knowledge distillation and quantization
● Test other embedded devices

Thanks!
Any questions?

