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    Thesis goal
Analyze and evaluate the main optimization and compression 
methods of deep models,  
with the purpose of perform inference of object detections 
algorithms efficiently on devices with limited hardware 
resources.

● improve inference speed
● reduce model size
● low accuracy trade-off
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   Inference at the edge: Motivations

Energy Consumption

Reduce load in datacenters 
and less cost and 
environmental impact.

Low Latency

Unlock the way for 
Real-Time 
Applications.

Privacy

Does not exchange 
sensitive data over 
network.

3

Cloud AIEdge AI 
Two ways:

Edge AI Motivations
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    EDGE AI Application Segments
AUTOMOTIVE

Autonomous Driving

Driving Assistance

Driver Monitor

INDUSTRY 4.0

Predictive Maintenance

Anomaly detection

DRONES

Autonomous Flying

Obstacle Avoidance

And many more: Smart Home, Smart Farming, Wearable, Smartphone, Healthcare, ..,
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    Object Detection
Given an image, object detection models 
perform two main computer vision tasks
● Object Recognition
● Image Classification

Two Stage 
● FasterRCNN ~100M params

Single Stage 
● SSD    ~ 4.2M params
● Yolo v5   2M up to 40M  params

Output
● Bounding Boxes with detected classes 

and confidence

Matrix Reloaded (2003)
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    NXP iMX8mp

• Quad-Core 1.8 Ghz arm based Cortex-A53 CPU

• NPU (Neural processing unit) 

• Dual image signal processors (ISP) and two 
camera inputs

• H.265 Encode/Decode

• Linux OS based on Yocto Project

Evaluation Board
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    Optimizations: Quantization (Post Training)
After the training of a deep model, its weights are usually represented as 32 bit 
floating-point values.
Quantization consists in compressing a deep model, by mapping its weights to a lower 
precision value,   e.g FP32->INT8

Scale factor:  

● Weights -> static clipping range calculation ( weights are fixed after training)
● Activations -> static (with calibration data) or dynamic ( online clipping range calculation 

during inference)

(Clipping Range)

Clipping range  calculation:
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    Optimizations: Knowledge Distillation

Feature basedOutput based

Transfer the knowledge from a larger (trained) model to a smaller one.
The goal is to improve student accuracy performance by replicating teacher behaviors 
during training phase.

The student's training will only be affected by the 
output of the last layer of the teacher network.

The student will be influenced also by the 
behavior of the intermediate layers of the 
teacher.
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    Model Compression Box



Ivan Murabito

    Yolo v5s Quantization Results 

- 17% - 2% - 61% 

● 430ms faster

● From 27 to 11 MB

● <0.01 mAP 
degradation

Results on target board (cpu) 

Onnx post training dynamic quantization

mAP evaluated on coco dataset

FP32 Baseline

UINT8 Quantized
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    FasterRCNN Quantization Results 

● 5s faster

● 110MB Lighter

● <0.001 mAP 
degradation

- 25% - 1% - 75% 

Results on target board (cpu) 

Onnx post training dynamic quantization

mAP evaluated on coco dataset

FP32 Baseline

UINT8 Quantized
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    Knowledge Distillation Experiments

● Yolo v5 N (nano)

Student Network

● Yolo v5 L (large)
● Yolo v5 M (medium)

Teacher Networks

● Output Based
● Feature Based

Knowledge Distillation types

● Train student from scratch with 
knowledge distillation (80 epochs) of 
different combinations of networks and 
params

● Transfer Learning (pre-trained student 
with freezed backbone) and then small 
training with knowledge distillation 

Approaches:

● COCO (>200k images,80 
classes)

Dataset
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    Knowledge Distillation Results 
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Quantization:
● Easy to deploy, no need to retrain
● Model unaware, plug and play 

optimization
● OOB Excellent Results,  low accuracy 

trade-off

Knowledge Distillation:
● can improve student accuracy 

performance, but not too much, it is a 
extreme optimization .

● need effort to find optimal parameters
● need to re-train the network 

    Final Consideration 

Future Works:
● Test Quantization-Aware-Training
● Test other combinations of teacher-student architectures,parameters and more 

epochs
● Test together knowledge distillation and quantization
● Test other embedded devices



Thanks!
Any questions?


