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Abstract

As cyberspace becomes more and more complex, malware authors strive to take advantage
of the growing number of vulnerabilities. This requires security researchers to invest more
effort in developing automated malware analysis tools, able to cope with the increasing pace of
suspicious binaries. The Achilles heel of automated malware analysis tools is evasive malware,
which may put countless strategies in place to impede analysis. For instance, malware trying
to detect that they are under observation in an analysis environment and, as a consequence,
conceal their malicious behavior by performing only innocuous operations. Evasive malware
can hinder analysis by either performing static code obfuscation (e.g. via packers, crypters) or
dynamic evasion (e.g. sandbox and debugger evasion).

The goal of this thesis is to explore the application of Reinforcement Learning (RL) to
dynamic analysis, to reduce the burden of exhaustive exploration of conditional paths. To
this end, we develop a model that is capable of noticing new evasive schemes via RL. State-
of-the-art approaches generally identify evasions through fingerprinting, which is not effective
in identifying slight mutations of evasion schemes. In contrast, this work employs a language
model to abstract out the syntax of binary code, while preserving its semantics. Further-
more, to improve over state-of-the-art solutions, the presented solution considers both evasion
schemes and the malicious nature of regions of code protected by evasive conditions, to better
distinguish true evasive behaviors from false positives. As a consequence, this method is easily
extended to guide the search of hidden malicious capabilities in a suspicious binary.

However, RL with function approximation, compared to supervised learning, is subject to
additional sources of instability during training since the assumption of i.i.d. samples is often
violated. In addition, as in many real-world RL applications, the analysis is complicated by
the presence of sparse rewards and non-Markov states. To take this into account, we conduct
extensive experiments devoted to attain convergence to a good policy, which includes the
comparison of three improvements over the vanilla DQN model. The results show how the
RL agents can learn good policies, while acting on multiple binaries at the same time, being
able to correctly retrieve hidden malicious capabilities with an improvement over a random
exploration policy.



Abstract

Comme le cyber espace devient de plus en plus complexe, les auteurs de logiciels malveillants
s’efforcent de tirer parti du nombre croissant de vulnérabilités. Cela oblige les chercheurs en
sécurité à investir des efforts dans le développement d’outils d’analyse automatisés des logiciels
malveillants, capables de faire face au rythme croissant des binaires suspects. Le talon d’Achille
des outils d’analyse automatisée des logiciels malveillants est un logiciel malveillant évasif, qui
peut mettre en place des stratégies innombrables pour empêcher l’analyse. Par exemple en
détectant ce qu’il est sous observation dans un environnement d’analyse et, par conséquent,
en masquant son comportement malveillant en exécutant des opérations inoffensives. Les
logiciels malveillants évasifs peuvent entraver l’analyse en effectuant soit une offuscation de code
statique (par exemple, des packers, des crypteurs) ou une évasion dynamique (par exemple,
une évasion de sandbox et de débogueur).

L’objectif de cette thèse est d’explorer l’application de l’apprentissage par renforcement
(RL) à l’analyse dynamique, visant à réduire le fardeau de l’exploration exhaustive des branche-
ments conditionnels, et à développer un modèle capable de remarquer de nouveaux schémas
d’évasion en utilisant la puissance du RL. Les approches de pointe sur l’état de l’art identifient
généralement les évasions par fingerprinting, ce qui n’est pas efficace pour identifier de légères
mutations dans les schémas d’évasion. Par contre, ce travail utilise un modèle de langage pour
faire abstraction de la syntaxe du code binaire, tout en préservant sa sémantique.

Cependant, l’usage de l’approximation de fonction sur RL, en comparant avec l’apprentissage
supervisé, est affecté par des sources supplémentaires d’instabilité pendant l’entraînement car
l’hypothèse d’échantillons i.i.d est souvent manqué. En plus, comme dans de nombreuses appli-
cations RL dans le monde réel, l’analyse est compliquée par la présence de récompenses éparses
et d’états non-Markov. Pour prendre cela en compte, nous faisons des expériences approfondies
dédiés sur la convergence vers une bonne stratégie, qui inclue trois améliorations comparées
avec le modèle DQN. Les résultats montrent comment les agents RL peuvent apprendre des
bonnes stratégies, tout en agissant sur plusieurs binaires en même temps, étant capables de
récupérer correctement les capacités malveillantes cachées avec une amélioration comparée sur
une stratégie d’exploration aléatoire.
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Chapter 1

Introduction

This work is the result of a six months internship done in the AI4Sec team of the Huawei’s
research center located in Munich. AI4Sec is a research team focused on the application of
Machine Learning (ML) methods to cyber security, with the goal of accelerating the transition
to intelligent and automated defences against cyber threats.

As the number and the complexity of modern malware samples increase, security researchers
agree on the fact that one of the most promising directions to tackle this problem is to develop
automated analysis tools capable of promptly blocking a malicious sample before it could
create any harm. In an ideal world an automatic analyzer should produce reliable results,
with low resources requirements (e.g. memory) in a short time. With state-of-the-art analysis
techniques, only one or two properties are possible at the same time, suggesting that there
is still room for improvement. Machine learning is likely the tool that will allow to perform
a further leap forward towards superior automated analysis tools. In fact, recent advantages
in this field suggest as ML models can sometimes surpass human-level performances on some
tasks, like games. Some of these algorithms have been implemented resorting to Reinforcement
Learning (RL), such as Alpha Go Zero [Sil+17], Mu Zero [Sch+20] and Agent57 [Bad+20a].
Encouraged by these promising results, AI4Sec decided to explore the application of RL to
the analysis of evasive malware, starting with this internship. The ultimate goal is to replace
as much as possible the human intervention in the tedious and expensive analysis of malware.
However, a major flaw of automated malware analysis is their susceptibility to evasive malware,
which can put countless strategies in place to hinder analysis. Evasive malware can deceive
both static and dynamic analysis techniques, but the dynamic evasions are the most difficult
to tackle. For this reason, the research presented in this thesis has been focused on finding
an effective application of RL to dynamic evasive malware, proving that an RL agent can be
successfully trained to find hidden malicious behaviors (a.k.a. capabilities) in evasive malware.
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Originally, traditional malware analysis techniques relied on analyzing the static code of
suspicious binary samples. Static analysis addresses the disassembled instructions from a
sample, representing them at different abstraction levels, such as Control-flow Graphs, which
enrich the semantics extracted by the analysis tools. Given the strong adversarial nature of
the security domain, malware authors began to adopt countermeasures to static analysis which
involve the obfuscation of static binary code, such as compression and encryption. These
procedures can be complicated at will by malware authors, blocking any attempt of static
analysis, in practice. However, the statically obfuscated code cannot be run, thus the original
binary code is restored at runtime by an ad-hoc deobfuscation routine, created by the malware
author. Once the routine has completed, the original malicious code can be executed.

Security researchers have proposed a large number of solutions to react to static obfus-
cations via dynamic analysis which, in contrast with static analysis, executes the code and
gathers behavioral information at runtime. Although static code obfuscations can be tackled
by dynamically executing the suspicious samples, dynamic analysis is not a silver bullet as it
can only access to the instructions that are executed, introducing a trade-off among explo-
ration of alternative execution paths and computational cost. In addition, malware authors
have adapted their malicious samples to counter dynamic analysis as well. Evasive malware
looks for evidence of dynamic analysis tools in the environment in which it is run, disguis-
ing its malicious behavior before it can be noticed by the analysis tools. As a consequence,
dynamic analysis introduces another trade-off, among transparency, namely how much the
analysis environment can be made similar to a victim environment, and visibility, proportional
to how much information can be extracted from the analyzed sample. More invasive analysis
approaches, such as Dynamic Binary Instrumentation (DBI), allow to extract fine-grained de-
tails on the low-level actions performed by a binary, however this introduces clear evidence of
the analysis environment, which can be recognized and exploited by evasive malware. On the
other hand, bare-metal analysis methods allow for high transparency, while being able to ac-
cess only superficially the sample under analysis (e.g. analyzing data flows during execution).
The ultimate challenge of modern malware analysis is to develop analysis techniques that are
stealthier against increasingly sophisticate evasive malware, while providing rich information
to reliably discriminate malware from goodware.

The class of malware tackled in this work is the Trigger-based evasive malware category,
which can implement numerous strategies to evade from a dynamic analysis environment,
including checking for some artifacts1 left by the analysis environment or any piece of evidence
that it is running on the predefined victim host, and not somewhere else. The information

1An artifact is an unwanted trace that testifies the presence of some analysis tool in the execution environ-
ment. For example, CPU signature and computing time overheads caused by a virtualized environment.
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acquired by the environment is then checked by a condition, which is called trigger condition.
When the trigger condition is satisfied, the hidden malicious behavior is executed, otherwise
the malware will disguise its real behavior. As a consequence, it is sufficient to explore the
conditional graph to find dormant malicious behaviors in trigger-based evasive malware. The
conditional graph is the graph which nodes are the conditions and the edges are the two possible
execution paths starting from that condition: one is executed when the condition is true and
the other when the condition is false.

Example 1.1. Trigger-based evasive malware.
The popular WannaCry ransomware checks if the domain www.ifferfsodp9ifjaposdfjhgo
surijfaewrwergwea[.]test, supposed to be inexistent, is reachable. The authors of this
malware were aware that some analysis environments are made more transparent by simu-
lating the access to the network, regardless if a domain exists or not. The authors assumed
that when that domain is reachable, there is a high chance that the sample is run in an
analysis environment, thus an evasion is performed. Often, the evasion consists in exiting
the execution or performing some innocuous operations.

When www.ifferfsodp9ifjaposdfjhgosurijfaewrwergwea[.]test was registered, it
became reachable by all the running instances of the malware, acting as a kill switch and
stopping the attack.

State-of-the-art solutions aim at identifying evasive malware by comparing their behavior
with some well-known patterns, which roughly is a rule-based approach and it can be hindered
by performing some mutations in the evasion schemes. Furthermore, also goodware programs
may sometimes perform some legitimate operations which can be confused as evasive by anal-
ysis tools, as explained by [Maf+21] and [Gal+22]. For instance, evasive malware can check
for the size of the screen, to detect whether it is run in an analysis server where no screen is
present. However, many goodware samples that use a graphical user interface may perform
the same class of checks. Analyzing the checks made by a suspicious binary is not enough, but
we should also consider the possible outcomes of a condition.

To solve the aforementioned problems, this work proposes to address binary code by repre-
senting it with an abstraction that preserves its semantics, while being robust to slight varia-
tions in the syntax of code. Furthermore, the false positive rate of the conditions identified as
evasive can be reduced by considering also the nature (i.e. goodware vs malicious) of the code
triggered by a suspicious condition, other than just checking the nature of a condition. To
this end, this work provides an alternative to current automatic dynamic analysis techniques,
based on RL, with the goal of training a RL agent to explore the conditional graph looking for
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hidden malicious capabilities. The agent is jointly trained to recognize the evasive conditions,
hijacking the execution to counter the evasion, and to learn the features of malicious capabili-
ties. In fact, the agent is provided with a positive reward whenever it forces the execution of
a protected malicious capability.

In practice, this is implemented by equipping the RL agent with a debugger. A considerable
contribution of this work consists of the implementation of a tool to allow a RL agent to interact
with a debugger to dynamically interact with the analyzed binary. The interpreter I have
developed allows to aggregate the information the debugger collects by stepping instruction-
by-instruction on the target binary. Then, the data collected by the interpreter is pre-processed
and sent to the agent as states. In addition, also the response of the agent (the action) is
handled by the interpreter, which implements it as low-level debugger step operations (e.g.
step through, step into).

The task of discovering hidden malicious capabilities has been formalized as a Markov
Decision Problem (MDP), which has been extended to the domain of function approximation
since the state space is continuous and to leverage the generalization properties offered by
function approximation methods. In fact, a key improvement over the state of the art is the
ability of the agent to learn a good policy that generalizes across different evasion schemes
and malicious behaviors. However, as many other real-world applications of RL, I had to
address different problems typical of RL approaches, including unstable off-policy learning,
non-Markov states and low credit assignment. Solving a credit assignment problem means
determining the contribution of each action to a final outcome, which becomes difficult to
solve when the reward function is sparse. In fact, a reward is given only when a capability is
found and at the end of an episode, proportionally to the number of capabilities found. This
problem can be partially solved by extending the discrete reward functions to be continuous,
providing the agent with some clue about its "distance" from a malicious capability. However,
the results section explains how this approach may be deceiving for the agent, making learning
more unstable.

The experiments have been carried out on a synthetic dataset of evasive samples, which
generation has been inspired by the structure of common evasive malware, in terms of evasive
checks and malicious behaviors put in place. Extensive experimentation has been performed
with different combinations of binary code embedding methods, including TfIdf and DO2VecC
[Che17], reward functions including discrete and continuous reward, and RL algorithms such
as DQN [Mni+13], double DQN [vHGS15], prioritized DQN [Sch+16] and DQN(λ) [DA19].
The results have been compared and an ablation study has been performed, highlighting the
contribute of each component.
The contribution of this work is threefold and can be summarized as:
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• The study of the malware analysis domain and a comparative analysis of state-of-the-art
analysis techniques, with the identification of a promising new research direction aimed
at applying RL to trigger-based evasive malware.

• The development of the first method, to the best of my knowledge, to find hidden ma-
licious capabilities in trigger-based evasive malware via RL, employing a debugger to
dynamically interact with the analyzed binary. This method proved to be effective,
making the agent able to recognize the right path to reach the hidden malicious capa-
bilities, improving over the random exploration policy. The learned state-action values
can be used to guide the exploration of unseen samples, reducing the cost of exhaustive
exploration, which is often unfeasible.

• The implementation of a Python tool that makes it possible for the RL agent to interact
with the GDB debugger, aggregating the information as states and implementing the
high-level actions taken by the agent as low-level debugger operations. Furthermore, an
additional collection of Python tools has been developed for various tasks, including the
generation of a synthetic dataset of binaries emulating evasive malware, the setup of
a simulated victim environment in which the evasive binaries are run, and the utilities
to perform code block embedding resorting to Natural Language Processing (NLP) and
training of the RL models.

This thesis is organized as the following. Chapter 2 provides an introduction to the mal-
ware analysis techniques, comparing static and dynamic analysis, underlying their benefits
and drawbacks, explaining what are the possible evasions techniques that can be put in place
by malware to disguise malicious behavior. This chapter also motivates the chosen research
direction, focused on applying RL to trigger-based evasive malware. Then, I justify why this
direction is more promising than applying RL to other malware analysis tasks, such as static
code deobfuscation, API invocation deobfuscation, and fuzzing. Chapter 3 performs a compar-
ative analysis of different block embedding methods, taken from the NLP domain, justifying
the choice of TfIdf and Doc2VecC for this domain of application. Then, this chapter delin-
eates the theory of RL, starting from the general MDP formalization until the definition of
off-policy learning with function approximation methods. Eventually, this chapter describes
the proposed formalization of the RL problem when applied to the task of identifying hidden
malicious capabilities in evasive malware, explaining which algorithms have been implemented
taking inspiration from the literature. Chapter 4 explains the experimental setting in which the
experiments have been carried out and give more details about the best hyperparamters result-
ing from extensive search. Furthermore, this chapter outlines some interesting directions for
future work, to improve the proposed solution. Chapter 5 summarizes the work and provides
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a general discussion of the method. Appendix A gives a detailed explanation of the implemen-
tation of the Python GDB debugger interpreter, which is one of the main contributions of this
work.
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Chapter 2

Evasive Malware Analysis

This chapter introduces binary analysis techniques employed by malware analysis researchers
to identify whether a suspicious sample is capable of any malicious behavior. Binary analysis
techniques mainly divide into static and dynamic approached, which have their own pros and
cons and in general there is not a clear dominance of the one on the other. Their effectiveness is
mostly task-dependent. Nevertheless, malware authors have evolved their strategies to keep up
the pace of new analysis methods, devising more and more sophisticate evasive techniques that
considerably increase the difficulty of analyzing modern malware samples. Evasive malware
is a generic definition that involves both static and dynamic analysis tools, leveraging their
weaknesses. For instance, malware performing static evasions breaks the assumptions on which
static code analyzers are based, namely that the binary code is accessible and can be analyzed
all at once.

The second part of this chapter compares different applications of Reinforcement Learning
(RL) to four analyzed cases studies of evasive malware, including static code deobfuscation,
API invocation deobfuscation, emulator evasion (e.g. virtual machine), trigger-based malware.

Eventually, I observe that tackling trigger-based evasive malware can be well defined in
an RL setting, and motivate why a debugger would be the best tool to perform this task,
by providing a comparative analysis with other binary analysis tools. In fact, trigger-based
behavior identification is are easier to be framed as a RL problem, because the states, actions
and rewards do not require advanced domain expert knowledge, giving the RL agent the
possibility to learn the best policy from data.

is the most promising direction, among the explored ones, and I provide a solution
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2.1 Analysis of Malware Analysis Domain

It is not straightforward to find a sensible application of Reinforcement Learning (RL) without
incurring in a process of trial-and-error while exploring the malware analysis domain. In
this section I will give an high-level description of different malware analysis techniques I
have studied, looking for a useful application of RL. At first, I will describe the background
of malware analysis techniques in Section 2.1.1. Then I will explain three main static binary
obfuscation techniques in Section 2.1.2, whereas in Section 2.1.3 is explained how some malware
is able to evade dynamic analysis tools, for instance by behaving innocently when an analysis
environment is detected.

The Malware Analysis Project in which I am involved, aims to explore the application of
RL to counter evasive techniques frequently employed by malware to bypass analysis tools.
This defines mainly two directions of research which include addressing static evasions (e.g.
binary code obfuscation) or dynamic evasions (e.g. sandbox / VM / debugger elusions).

2.1.1 Background on Malware Analysis Techniques

This section introduces some key concepts from the binary analysis domain. There are two
main ways of analyzing a malware: statically or dynamically. Each approach has its own
advantages and disadvantages, which are described and compared below.

Static Analysis

Static analysis does not require to execute the code and assumes to have access to the disas-
sembled binary code of a sample all at once. Two important techniques of static analysis that
I have studied are Control-flow graph (CFG) analysis and Symbolic Execution. The former
analyzes the conditional branches graph looking for some patterns typical of malware behav-
ior, while the latter represents the variables as symbols and determines which values of these
symbols causes a part of the program to execute, satisfying a set of conditions.

Control-flow Graph analysis extracts and analyses information from the structure of
the code. In particular, a CFG is a graph whose nodes represent basic blocks and its directed
edges represents jump instructions. A basic block is a continuous (straight-line) sequence of
instructions with no branches except that at the end. A basic block is delimited by jumps or
jump targets. Figure 2.1 depicts some examples of Control-flow Graphs for If-then-else CFG,
a natural loop with two exists and the CFG for a while loop. The quality of the outcome of
the analysis based on CFGs can be negatively influenced when the CFG is hard to extract
due to its complexity or when it is obfuscated. Malware authors often take advantage of these
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(a) If - then - else.
(b) Natural loop with two

exits. (c) While loop.

Figure 2.1: Three simple Control-flow Graphs.

weaknesses of CFG analysis. On the other hand, the advantage of this approach is that it does
not need the binary to be run and can collect information also for the regions of code that are
not executed.

Compared to dynamic analysis, static analysis generally requires less computational power
to extract the same amount of information from a sample (e.g. percentage of code analyzed),
however it can be easily fooled by making the malicious code hardly accessible, namely obfus-
cating it (e.g. binary code encryption / compression).

Dynamic analysis

The adoption of more and more sophisticate schemes of static binary obfuscation [Uga+15],
such as packers, crypters, API invocation obfuscation and control-flow graph obfuscation has
pushed security analysts to move to the more expensive dynamic analysis approaches, which
solve some of the problems of static obfuscation. The importance of analyzing a sample at
runtime is underlined in [Com+10], where the authors argue that integrating binary code
analysis with data generated by the binary is key for a precise detection of malware behavior.
For instance, if a suspicious binary sends many packets containing SMTP keywords to port 25
it is easily identifiable as a spammer, whereas it would be far harder to conclude the same by
just analyzing its binary code.

A dynamic analysis environment is composed of two main components: a runtime envi-
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ronment and an analysis component. The runtime environment comprises the hardware and
the software that makes it possible to execute the sample under analysis, whereas the analysis
component consist of all the instrumentations used to gather and analyse information from
the sample. To integrate the analysis tools with the execution environment, dynamic anal-
ysis systems resort to some type of emulation or virtualization for the runtime environment.
This inevitably introduces some evidence of the presence of the analysis component, reducing
the transparency of the runtime environment. The less an analysis runtime environment is
distinguishable from a normal machine, the more it is said to be transparent. To make the
environment more transparent some works [KVK14; KVK11] propose to separate the analysis
instrumentation from the execution environment. However this is subject to a trade-off: visibil-
ity (how much information we can gather from the execution of the sample) versus transparency
(how well we can hide the analysis tools from the malware).

Dynamic analysis include three main approaches: black-box, debugger and Dynamic Binary
Instrumentation (DBI). The main methodologies of these approaches are summarised in the
following:

• Black-box dynamic analysis executes a binary to gather behavioral information, such as
the called APIs, system calls trace and data-flow analysis. Black-box dynamic analysis
does not inspect the content of a binary (e.g. code). A very popular black-box technique
is fuzzing, which aims to explore the input space of a program to reproduce a target
behavior.

• Debuggers are powerful tools employed by researchers and analysts to complement or
replace the analysis done with automatic methods, especially with advanced malware. A
debugger is more powerful than black-box dynamic analysis because it can access to the
disassembled binary code and can dynamically interact with the binary under analysis.

• DBI. DBI is a powerful technique that enables security analysts to perform instrumenta-
tion of a target binary with the possibility of extracting information with high granularity.
This consists in inserting hooks within the binary code to some user-defined analysis func-
tions within the binary code. When a hook is reached, the hooked function is called to
perform any sort of analysis or logging of the current state of execution. In some cases,
DBI allows analysts to collect richer information with respect to debuggers. Recently this
techinque became more popular in the research community due to its flexibility. Intel
PIN is a popular DBI tool in the research community1.

1https://www.intel.com/content/www/us/en/developer/articles/tool/
pin-a-dynamic-binary-instrumentation-tool.html
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Previous research showed that dynamic techniques have a low code coverage, namely every
time the binary is executed only the behavior of the executed code is revealed. This is a major
drawback, compared to static binary analysis techniques that provide a global perspective on
the whole binary sample. Some proposed solutions partially solve the problem by increasing
the number of paths that are dynamically explored. This is achieved by providing different
inputs to cause the execution to follow alternative paths like [Bru+08] or fuzzing [Man+19],
or by forcing alternative paths. The drawback of tools that explore multiple execution paths
suffer from the path explosion problem, as described in [Com+10].

2.1.2 Static Binary Obfuscation

The aim of this section is to present state-of-the-art static obfuscation techniques and to expose
the complexity that comes form their diversity. At first, I will present the main binary code
obfuscation strategies that hinder the comprehension of the code for a reverse engineer or a
static analysis tool, then the class of API obfuscation techniques is introduced, eventually I
describe a third class of subtle obfuscation tactics that dynamically hijack the static control-
flow graph (CFG), being able to bypass static analysis tools.

Static Obfuscation of Binary Code

The following ones are a subset of the most popular code obfuscation techniques, discussed
in [Men+21; Che+18; Van+21].

• Packing (or compression): likely the most popular category of obfuscators. The original
malware code is compressed and restored at run time by a specific unpacking routine
before being run. The process of packing and unpacking is made intentionally confusing,
to hinder the task of a reverse engineer.

• Encryption: code is encrypted and the decryption key is hidden in the binary or com-
puted at run time.

• Mixed Boolean-Arithmetic coding (MBA): increase syntactic complexity of opcode
while preserving its semantics. Informally, a given code block can be made far more
garbled while still producing the same outputs for some inputs. This considerably slows
down the work of a reverse engineer that has to spend hours to understand the code.

• Virtualization: translates a code portion into bytecode together with a custom virtual
machine. Execution of the obfuscated code can be divided in 3 steps: (1) fetch the next
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bytecode instruction to execute, (2) decode the bytecode and find the corresponding
handler, (3) and finally execute the handler. Prevents CFG2 analysis.

• Junk code: mix data and code together.

• Path-based obfuscation: takes advantage of the path explosion problem to thwart
symbolic execution, massively adding additional feasible paths through dedicated encod-
ings.

Further analysis is carried out in the works [Uga+15; RM13], explaining in more details the
ways how an obfuscator can usually be implemented.

It is quite clear that there is a little possibility to generalize across different packing schemes.
Some authors explored the possibility of designing an universal unpacker strategy, such as
[Che+18; Roy+06; KPY07; MCJ07]. Nevertheless, these strategies are based on heuristics
which are efficient but may be vulnerable to slight modifications of the obfuscation protocol.

API Invocation Obfuscation

When a binary program imports system APIs or other external functions, it dereferences
them from a lookup table called Import Address Table (IAT), which at loading time is filled
in resorting to the metadata written in a similar data structure, called Import Name Table
(INT). As malware’s APIs provide rich information about malicious behavior, one common
anti-analysis strategy is API obfuscation, which removes the metadata of imported APIs from
malware’s PE header and complicates API name resolution from API callsites. At run time,
the needed APIs are called relying on non-standard IATs that have to be reconstructed by
an ad-hoc routine, before those functions are called. API obfuscation hinders both static
analysis (by hiding IAT and INT) and dynamic analysis. In fact, a reverse engineer may
place a hook instruction3 at the beginning of each API and easily understand which API was
about to run. As the APIs’ entry point is obfuscated, there are no guarantees to hook them.
Furthermore, when the API calls are obfuscated, the binary cannot even be executed in some
scenarios, impeding dynamic analysis. The interested reader can find additional information
in the following important works which address API obfuscation [Kaw+13; KIM18; Che+21].

Static Control-flow Graph Obfuscation

Among the numerous obfuscations schemes presented in [RM13] which can be performed on
various parts of a binary (e.g. constants, function boundaries), it is important to mention the

2CFG: Control-flow Graph.
3An example of hook instruction is a break-point in a debugger.
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control-flow obfuscations.
These obfuscations play a central role as they hinder static analysis, for instance the control-

flow graph creation. This is achieved by malware creators by either adding paths that are never
executed at runtime or by dynamically hijacking the static CFG, namely inserting control-
flow transfers impossible to recognize from a static analyzer. The most popular obfuscations
presented in [RM13; Men+21] are:

• Indirect jumps (and calls): jump to an address which is computed at runtime.

• Non-returning calls: jump to a function that tampers with its return address to jump
somewhere in the code. Never return to the caller function.

• Exception-based control transfer: instantiate at runtime an exception handler and
then cause an exception (e.g. divide by zero) to jump to the handler instead of going on
with the execution.

• Opaque predicates: obfuscate control flow by creating artificial conditions in programs.
The conditions are traditionally tautologies and dynamic runs of the code will follow a
unique path.

Dynamically, these are not a problem and the true control-flow graph can be created.

2.1.3 Dynamic Evasive Malware

When security researchers started proposing dynamic analysis techniques to counter statically
obfuscated malware, due to the strong adversarial nature of the security domain, malware
authors began to adapt their samples to evade dynamic analyzers in increasingly sophisticated
ways. The recent works of [Maf+21; Gal+22] perform a longitudinal study of evasive techniques
employed by malware, providing a rich and updated taxonomy of evasions. According to the
referenced works, evasive malware can be divided in the following categories:

Anti debugger. Malware samples can put in place various techniques to hinder the
analysis performed using debuggers. Anti-debugger techniques are carried out by looking for
some hints that a debugger is attached to itself (the malicious binary), or is running on the
same system, resorting to some API calls or analyzing the memory. For instance, in Windows
the API isDebuggerPresent determines whether the calling binary is being debugged, whereas
in Linux calling ptrace on the same process returns -1 if a debugger is attached to the calling
process, achieving the same goal. As explained in [Gal+22], a debugger can be countered by
examining how some exceptions are handled. A malicious sample may raise some exceptions
and catch them using custom handlers defined for this purpose. However, a debugger will catch
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these exceptions before, preventing the custom handler from being executed. The malware
perform a form of evasion if it detects that the handler was not executed or it can hide the
malicious behavior in the handler itself.

Virtual machine checks. Emulation and virtualization are among the most popular
setups for dynamic analysis. As for any other analysis environment, these techniques are
not perfectly transparent, namely they introduce some evidence of their presence, which can
be identified and exploited by evasive malware to conceal their real behavior. Researchers
and security analysts have invested a considerable amount of time in finding these traces and
providing solutions to improve transparency. However it has been shown that it is extremely
hard to create a perfectly transparent virtual machine by [Gar+07]. Malware authors can
gather information in several ways like checking the MAC address, checking the CPU metadata,
computing time discrepancy of the execution of a block of instructions in a bare-metal machine
versus in a virtualized environment.

Anti instrumentation. Dynamic Binary Instrumentation (DBI) is a major trend in recent
analysis approached analyzing evasive malware, as shown by the works of [Pol+17; Gal+22;
Maf+21; DEl+20]. This techinque resorts to a Just In Time (JIT) compiler that injects some
analysis code in the original binary sample, including hooks to some analysis routines. When an
analysis routine is called, it collects information about the sample execution. Evasive malware
can compare the program counter between instrumented and normal execution in order to
track the presence of the analysis tool. In other words, they can detect an anomalous number
of instructions in a code block.

Timing. One approach of timing evasion is based on the knowledge that every analysis
tool employing some sort of interaction with the analyzed sample (e.g. emulation) introduces
some non-negligible time overhead, as argued in [Gar+07]. Malware authors can rely on this
precious information and compare at runtime the discrepancy between the expected execution
time and the actual one.

Another approach of timing evasion is motivated by the fact that most of automatic dynamic
analysis tools run the analysis for a certain amount of time. A recent work of [Kuc+21] shows
how most malware samples expose their entire behavior within two minutes of execution. A
malware author can take advantage by the fact that most dynamic analysis tools may run
the samples for few minutes, given the considerable cost of this analysis. Evasive malware
could stale or disguise its malicious behavior for a sufficiently long time to bypass the dynamic
analysis limited runtime budget.

Environment. There are some form of checks on the execution environment that evasive
malware can perform in order to identify the presence of instrumentation tools. The works of
[Gal+22; Coz+18] explains how some evasive malware check for the existence of file paths that
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contain suspicious keywords that may suggest the presence of an analysis tool (e.g. "vmware").
Similarly on Windows some evasive samples access keys inside the registry. Other checks can
be performed on the file system, list of running processes, installed drivers, presence of monitor
and other devices (e.g., printer, webcam, headset).

Human presence. Some malware samples counter analysis checking if they are run in an
automated dynamic analysis environment. This can be done by looking for specific evidence
of human presence such as the browsing history, the content of some filesystem locations (i.e.
music folder), mouse movements as showed in the work of [CS20].

These are the most popular evasion techniques of interest for my work. The reader is
referred to the works [Gal+22; Maf+21] and to the previous surveys of [Afi+19; BY17] for a
deeper exploration of evasive techniques in malware.

Analyzing evasive malware

Security researchers agree that evasive malware checks for the nature of the environment in
which is run relying on fingerprinting techniques, looking for some evidence left by analysis
tools [DEl+20; Pal+09; LKM11; RKK07; Mir+17; Gal+22; Maf+21]. Once the analysis envi-
ronment is discovered, evasive malware halts its execution or conceals its malicious behavior,
performing some seemingly-goodware task.

To analyze evasive malware, researchers have proposed different approaches that can be
grouped in two main classes, depending whether they are aimed at spotting evasive behavior
or contrast it.

The approaches belonging to the first class perform automatic identification of evasive
samples, for instance by comparing their behavior in different runtime environments [KVK14;
KVK11]. After a sample has been detected as potentially evasive, it is sent to a more advanced
(and expensive) analysis, often performed manually.

On the other hand, some approaches try to mitigate the evasive behaviors by making
the runtime environment more transparent, trying to hide the analysis tools, or by provid-
ing the sample with tampered information regarding the environment (e.g. force the API
isDebuggerPresent to return always 0). In a recent research trend the analysis of evasive
malware is mostly performed resorting to Dynamic Binary Instrumentation (DBI) [DEl+19;
Pol+17; DEl+20]. A main drawback of known approaches to tackle evasive samples is that
there are no guarantees that a solution can detect novel malware evasive behavior, since this
is an undecidable problem as stated by [Gal+22].

The recent work of [Gal+22] explains how the number of evasive samples has increased
over the last 10 year and how evasive techniques have shifted in this time frame. They state
that in 2010 about 70% of malware samples employed evasive techniques and their adoption
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has slightly increased in the last decade by about 12%. As expected, they observed that
techniques have adapted to the new defences put in place by security researches, proving that
malware authors are able to keep up with the advances made in the security domain. [Maf+21]
performed a large-scale investigation on more than 180K samples, noticing that more than 40%
of the samples collected in 2020 employed at least one evasive technique, while they were about
30% in 2016. Furthermore, they observed that in the last years the number of VM evasions has
decreased, probably due to the spreading of virtualized applications that malware authors want
to be able to infect. On the other hand, the number of anti-debugger evasions has increased.

Trigger-based Behavior in Malware Samples

The works of [PBM17; Bru+08] provide the definitions of trigger-based behavior and trigger
condition which are the following:

Definition 2.1. Trigger-based behavior.
A trigger-based behavior is a behavior which is triggered depending on some event that depends
on the external environment, rather than something that can be computed internally by the
binary.

Definition 2.2. Trigger condition.
A trigger condition is usually performed on some variable that was (indirectly) influenced by
some interaction with the external environment. When a trigger condition is verified, the code
containing the (hidden) trigger-based behavior is executed.

Evasive malware with trigger-based behavior will perform a malicious action only when a
set of trigger conditions are met, as shown in Listing A.2 with an example. In this example, the
malware performs four checks on the environment in which it is run and only when all of them
are satisfied the malicious action is performed. This class of malware can be considered as
subclass of evasive malware as the evasive behavior is put in place specifically after a condition
is met. On this assumption are based the works of [Bru+08; TIR+20]. In general, anti-analysis
techniques employed by evasive malware are broader and can be implemented in other ways,
for instance evading a debugger through exception handling, as explained in Section 2.1.3. The
reader is referenced to [Gal+22; Maf+21] for a more detailed explanation.

A popular example of trigger-based malware is the one implementing Command and Control
(C&C). A C&C malware infects a victim host and then waits for further instruction sent by the
malware author from a remote location, usually over the network. An example of C&C malware
are backdoors that allow the attacker to access the victim host and perform unauthorized
operations. Malware implementing this functionality typically express some malicious behavior
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char curr_time[20];
// First trigger condition
if (! is_debugger_attached()){

// Loop until the second trigger condition is met
do{

get_curr_time(curr_time);
}while(strcmp(curr_time, "11:59") != 0);
// Third trigger condition
if(strcmp(gethostname(), "CHOOKOO") == 0){

// Check last evasive condition: C4
if (are_private_files_present()){

// Perform the malicious action
steal_data();

}
}

}
else{

// A debugger is analyzing me! Evade
exit(0);

}

Listing 2.1: Example of evasive malware that checks a set of evasive conditions.

only when explicitly triggered from an external source, The malicious actions performed by a
malware implementing this functionality include: data theft (e.g. sensitive data), shutdown
or frequent reboot of the infected host to disrupt the services provided by the target host,
download other malware.

2.2 Reinforcement Learning for Anti-Evasion Solutions

In the previous section I have explained the theoretical background also including the references
to the works that addressed evasive malware with heuristics. In this section I will analyze the
possibility to apply RL to address the aforementioned issues. I will compare the existing
heuristic solutions in the state of the art with a potential RL implementation. In Section 2.2.1
and Section 2.2.2 I analyze the feasibility to tackle static binary code and API obfuscations
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with RL, respectively. Section 2.2.3 analyzes from a RL perspective the case of dynamic evasive
malware, whereas in Section 2.2.4 the promising direction of trigger-based malware behavior
is explored in details.

2.2.1 Binary Code De-obfuscation

At the beginning I devoted my time to learn how binary code obfuscators work, with the aim
of developing an unpacking algorithm based on Reinforcement Learning. However, code obfus-
cation schemes may be rather different from each other, which makes it very difficult to find
a common ground on which a machine learning model could generalize across. Obfuscators
implement subtle tactics based on small details and require to be designed by expert secu-
rity researchers. As of today, the development of code obfuscators and deobfuscators require
an expensive human-in-the-loop approach. Our goal is to design a model able to learn and
generalize, able to overcome this bottleneck.

After an intensive study of static obfuscation schemes, I attained the conclusion that it is not
easy to train a RL model on a set of obfuscated binaries, hoping it to be able to counter future
obfuscation schemes, because this may require the definition of new states, actions and rewards.
In other words, the RL agent is strictly bound to the packing schemes it sees at training time
with no guarantee of success on unseen ones. Furthermore, training an agent to solve new
obfuscation schemes intrinsically requires to update the definition of states/actions/rewards,
process which depends on domain experts supervision, which is not much different from directly
looking for an heuristic to revert the obfuscation. There is no advantage of using RL, unless
we can prove that this method is more efficient than an heuristic.

Indeed agent actions and states can be defined at a very low level, imitating debugger
step actions (e.g. step-into, step-through), and reward can be given at the end of unpacking
(success/fail), but I believe this approach shifts too much the complexity burden to the policy:
obtaining good performances may be just a features engineering exercise with little scientific
relevance. In fact, new obfuscation schemes may act on different parts of the binary files that
were never exploited by previous obfuscators. As a consequence, a generic RL deobfuscator
should consider the whole binary, which would increase the dimensionality of the problem, thus
its complexity. Given my previous considerations, I decided to keep exploring the malware
analysis literature to find another malware analysis task to solve with RL.

2.2.2 API Invocation De-obfuscation

Current literature addresses API obfuscation with various approaches. I performed an in-depth
study of two works that employ code tainting [Kaw+13; KIM18] which is a dynamic approach
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and [Che+21], an hybrid approach (static and dynamic). All these authors provide solutions
able to cope with a large amount of API obfuscations with few drawbacks.

Although in this setting it is easier to define the agent goal (i.e. positive reward when an
API is correctly identified), it may easily degenerate to a supervised learning problem that has
to identify which API call among a set of potential candidates is the real target, whereas the
others are just there to hinder the work of a reverse engineer. In the work of [Che+21] it is
proved that most API obfuscation techniques can be reverted without any need for learning
or generalization.

2.2.3 Emulator Evasion

Given its inner adversarial nature, emulator evasion could be easily framed as a RL problem
where an agent plays the role of a sandbox that aims to become more transparent to the
malware. The other agent plays the role of the malware which in turn aims at understanding
whether it is run in a simulated environment or not, hiding or not its malicious behavior. In
the work of [CS20], a visualization of this framework is provided: the sandbox’s agent has
to imitate human-like interactions (e.g. mouse movement speed, patterns, clicks), while the
malware performs a Reverse Turing Test to uncover the real nature of the environment in
which it is run.

However, my team leader suggested me to explore alternative applications as many tech-
niques to make sandboxes transparent are already well known, the problem is their implemen-
tation cost. An interesting work that could be extended with RL is the one of [Ahm+21], which
aims at finding the smallest subset of countermeasures to reduce their cost, while making a
sandbox transparent for a specific malware. This direction is left for future work.

2.2.4 Trigger-based Behavior

The most promising direction is addressing the issue of evasive malware that put in practice
their malicious behavior only when specific conditions are met, whereas behaving as goodware
otherwise. For instance, these samples can sneakily put in place simple conditions that are
checked at runtime. If the malware is executed in a dynamic analysis engine, the condition
would drift the execution flow away from the code implementing a malicious behavior. As a
consequence, the analyzer would not be able to notice the noxious content of the analyzed
binary.

Example 2.1. Trigger-based malware example from [Bru+08]
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Let’s consider a malware worm similar to MyDoom. In this example, the ddos action will
only be activated if the call from GetLocalTime returns 10:06 11/9. Thus, the ddos action
is a trigger-based behavior which will only be triggered at this specific time.

An RL agent could act on the binary code to force the execution of alternative conditional
paths until the malicious behavior is reached and is properly recognized by an external mal-
ware detector. I could also relax the strong assumption that the examined binary is indeed a
malware, thus stopping the exploration of alternative conditional paths when a sufficient frac-
tion of the overall code has been explored, even if the malware detector never detected some
malicious behavior. The RL agent could explore the conditional graph by tampering with
the binary code instructions that control the directions taken by the execution flow. These
instructions are the Conditional Jump Instructions (CJIs) and the control flow can be hijacked
in a condition by interfering with its natural functioning. Section 2.2.4 further explains how
this can be carried out.

An alternative approach could be fuzzing, which explores the input space of a sample in
order to trigger some hidden behavior and treats the binary as a black box. It has been
implemented with RL by [BGS18]. Nevertheless, I am convinced that the former solution is
better than fuzzing, for the following reasons:

• Taking decisions by considering also the binary code may lead to better decisions, with
respect to fuzzing that treats the binary as a black box.

• The former idea can be further extended to other binary analysis tasks that involve
interaction with the binary code, that fuzzing could not address by design.

• Fuzzing is more vulnerable to time hardening (e.g. sleep(10), infinite loop), whereas an
agent that operates on code may be trained to bypass them.

Conditional Jump Instructions (CJIs)

The RL agent interacts with the debugged binary, by interfering with the execution of the
conditional jump instructions. These jump instructions are assembly instructions that have
a syntax of the form CJI <addr> to perform a jump to the address location if the logical
expression evaluated over the flags register is true. Usually these instructions are preceded by
a comparison operation among two values, which also updates the content of the flags register.
Some examples of CJIs are: je (jump if equal), jne (jump if not equal), jle (jump if lower or
equal). The Intel instruction set includes 32 CJI.
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Vulnerability
Analysis method

Static Black-box dynamic Debugger
Static CFG obfuscation (§2.1.2) X

Time hardening X
Anti-debugger/sandbox checks X X
Static code obfuscation (§2.1.2) X
Branch cardinality explosion X X
API obfuscation (§2.1.2) X X X

Table 2.1: Analysis methods vulnerabilities to malware countermeasures.

2.3 RL-Aided Evasive Malware Analysis

In this section I present the result of the analysis carried out in the previous sections that
began with the research of state-of-the-art literature of solutions to counter evasive malware
until the identification of a specific analysis technique to apply to a precise problem, namely
discovering hidden malicious behavior in a binary where an RL agent acts as a debugger in
order to identify the conditions that trigger that behavior.

Project goal. The previous analysis underlines the increasing importance of developing
new defensive solutions that should be able to cope with an increasing number of samples. A
promising research direction is to address evasive samples in an automated dynamic analysis
setting. The goal of this work is to develop an alternative dynamic analysis approach based
on machine learning, with the aim of achieving good performances in the detection of evasive
malware, while reducing the exploration burden, typical of dynamic analysis. Most state-of-the-
art solutions counter evasive malware with hard-coded heuristics, which are a double-edged
sword: they are efficient and effective until a (potentially simple) mitiga tion is discovered,
which makes them useless. The goal of my research is to find a valuable solution based on
learning, rather than heuristic, with the aim of being more robust to slight perturbations.

2.3.1 Chosen Analysis Technique

After studying which are the most popular binary analysis methods, I have summarized a
comparative analysis of their drawbacks in Table 2.1. The methods analyzed are static analysis,
black-box dynamic analysis and debuggers which have been introduced in Section 2.1.1.

With time hardening I refer to all those techniques put in place to slow down dynamic
analysis, while not affecting static analysis. For instance, a malware can set up a timer and
perform a malicious action after τ minutes of execution, which would require to keep busy a
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dynamic analyzer for at least that amount of time.
Branch cardinality explosion is a technique employed by malware creators to hinder Control-

flow graph analysis by adding numerous useless conditional paths that are never visited at
runtime. As a consequence static analysis is considerably slowed down or sometimes made
unfeasible. Since a debugger can potentially tamper with the regular execution flow in order
to explore alternative conditional paths, I consider that also debuggers, in principle, can be
affected by this technique.

To sum up, taking into account the features of static and dynamic analysis and how much
they are vulnerable to evasive malware countermeasures summarized in Table 2.1, I conclude
that debuggers are the most interesting research direction in which I to set my work. There
is an interesting work of [Pen+14] that develop a tool which puts in place a similar strategy
of exploring the execution graph by forcing alternative conditional paths. Since this dynamic
analysis tool was specifically developed for this task, it could be integrated with an RL agent
to potentially provide superior performances, compared to a general purpose debugger. This
possibility is left for future work.

Given the analysis of Section 2.2.4, I have decided to design an RL agent that acts as a
debugger, with the goal of finding hidden malicious behavior in a binary by acting on the
conditional paths. This choice is further motivated in the following section.

2.3.2 Chosen Family of Evasive Malware

The scope of my work is to address all the dynamic evasion techniques that are checked
by a condition. Of course this does not cover the whole evasions zoo, as some of them are
implemented to hinder analysis before they can be noticed, for instance the debugger evasion
through exception handling (see Section 2.1.3). However, inventing new evasions that do not
involve checking a condition requires malware creators greater research and implementation
efforts, which they may not be willing to perform. It is well known that malware authors
mostly resort to code-reuse approaches, with minor research effort, as described in [Maf+21;
Com+10]. This is also valid for evasion techniques. [Gal+22] describes how the prevalence of
an evasion techinque swiftly increases after it is discovered and published by security analysts.
Nevertheless, once it has been discovered, a mitigation is usually proposed alongside. Therefore,
in principle, the malware samples that may succeed to evade the analysis technique proposed
in this work, can be restricted to the ones implementing evasions that are both unknown by
the security community, and are implemented without checking a condition.
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Example 2.2. Different debugger evasion techniques.
As explained in [Maf+21], there are different debugger evasion techniques that can be put
in place by malware authors. In Windows there are some APIs that can be used to infer
the presence of a debugger, like IsDebuggerPresent and CheckRemoteDebuggerPresent.
They can be checked with a condition and the malware author could exit the execution
when these conditions are met.

Nevertheless, there are some more sophisticated evasive approaches like using
NtSetInformationThread with ThreadHideFromDebugger as a parameter. This hides
from the debugger a thread that may intentionally perform some malicious actions. Since
the analysis tool, in this case the debugger, is blind to this event, it cannot automatically
implement a mitigation at runtime.

State of the art study of evasive malware strongly relies on Dynamic Binary Instrumentation
(DBI), as explained in [Pol+17], [DEl+20], [Gal+22] and [Maf+21]. The most used tool is the
Intel PIN. However, for the proof-of-concept developed in this project, I use a debugger given
its reduced engineering effort, compared to DBI.

In the works of [Bru+08; PBM17] the analysis of trigger-based behavior is carried out
resorting to concolic execution, which is a mix of symbolic execution (static code analysis) and
concrete execution (dynamic approach). Symbolic execution represents variables as symbols
and when a conditional branch is encountered, symbolic execution splits in two instances:
in one instance the symbols are constrained to interval of values that satisfy the condition,
and vice versa for the other instance. The goal of symbolic execution is to associate a set of
symbols’ values to each execution path. This is achieved resorting to a solver, which solves
the path conditions and generates concrete input values for the symbols. However, symbolic
execution has some limitations including conditional paths explosion, conditions that cannot be
solved statically as they require information computed at runtime, constrained computational
resources that in some cases limit a thorough exploration of the conditional paths, and the
dependence on external code such as libraries. These limitations ca be partially addressed by
equipping a symbolic executor with a concrete execution tool, able to tackle some unsolvable
conditions and bypass the need to execute symbolically also external code.

Alternatively, the work of [Com+10] trades code coverage for reduced computational cost.
They propose a solution to avoid path explosion that consists in executing a sample in a
sandbox and collecting behavioral information that includes API calls and data-flow analysis.
The binary code responsible for a security related behavior, called genotype, is then identified
and collected in a database. Dormant behavior is then recognized in test samples in a rule-
based fashion, looking for matches in the genotypes database. This approach does not take
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into account anti-sandbox evasion techniques during the dynamic analysis phase and overlooks
the considerable percentage of samples using static code obfuscation, which would hinder the
matching of genotype code in the target sample. However it provides interesting insight on the
importance of considering data-flow analysis when learning malware behavior.

Identifying Malicious Trigger-based Behavior

In the works of [Bru+08; PBM17; TIR+20], the search for trigger-based behavior is performed
starting from some candidate locations. [Bru+08] and [TIR+20] identify some specific API
calls, system events, network events and other custom-defined events as candidates, whereas
[PBM17] more broadly defines a candidate as any input from the runtime environment. After
a candidate has been identified, mixed symbolic and concrete execution are performed to
determine whether the candidate is responsible for triggering some behavior.

As a result of my research on trigger-based evasive malware, I conclude that an trigger-based
evasive malware sample is characterized by the combination of the following factors:

1. The sample performs some suspicious operations, such as collecting specific information
on the runtime environment (e.g., isDebuggerPresent, getDateTime). This constitutes
a candidate interaction.

2. The outcome of this operation intervenes in a trigger condition.

3. The trigger condition, when satisfied, leads to a block of code that exposes malware
behavior, taking inspiration from [Com+10].

As shown in [Gal+22] and [Maf+21], there is an overlap among the information that good-
ware and evasive malware samples gather from the runtime environment. This is justified in
some cases where goodware put in place evasive techniques to protect intellectual property.
Goodware may be confused with evasive malware when solely taking into account the informa-
tion it collects form the environment in which it is run. For instance, some goodware samples
are legitimately interested in performing CPU fingerprinting, checking for human presence
(e.g. getting the mouse location), or monitoring the list of running processes. This underlines
how taking into account only candidate interactions may lead to false positives. Analyzing
also the behavior triggered by the candidate interaction would provide richer information to
better discriminate trigger-based evasive malware from goodware. To this end, my proposed
solution extends previous approaches by including additional information from the behavior of
binary code, in order to identify with more accuracy trigger conditions that conceal malicious
behavior.
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Chapter 3

Reinforcement Learning Problem
Definition

This chapter addresses the application of Reinforcement Learning (RL) to problem of finding
hidden malicious capability in evasive malware binaries. At first I explain how the prevalence
of RL solutions in the cyber security domain is rather low, suggesting a potential intrinsic
difficulty of applying this technique, However, this also opens the possibility to advance the
current state of the art.

The task of finding dormant malicious behavior is carried out by the RL agent by exploring
the conditional graph and forcing the execution to take alternative conditional paths, when
needed. To provide the agent with enough information regarding the code is it exploring,
Section 3.2 provides a description concerning how the disassembled assembly instructions can
be represented in a numerical format (i.e. embedding). This task can be achieved with different
strategies, each one with its own benefits and drawbacks. Thus, a comparative analysis of
different embedding methods is provided to justify the chosen embedding algorithm.

The RL problem is at first formalized starting from a more abstract definition, the Markov
Decision Problem (MDP), which is further extended to sample methods such as Monte Carlo
and Temporal-Differences, which allow to approximate a MDP when the environment dynamics
are not known, but can be simulated by interacting with the environment. These method can
be applied to the case of large or continuous states spaces resorting to function approximation
and learning can be improved using different heuristics available in literature, depending on the
task to solve. In the last part of this chapter I provide a definition of an RL task aimed at solving
the problem of evasive malware, which may degenerate to an hard-exploration problem. To
improve learning, I take inspiration from works in the state of the art that previously addressed
similar ill-conditioned problems.
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3.1 Reinforcement Learning for Cyber Security

In this section I will give a broad overview of current implementations of Reinforcement Learn-
ing (RL) and Deep Reinforcement Learning (DRL) in the cyber security domain. Despite the
goals of the Malware Analysis Project are focused on a specific task, researching the state-
of-the-art literature helped me to gather useful insights on how Markov Decision Processes
(MDPs) are implemented to solve cyber security tasks.

Current approaches in the malware analysis setting often employ an RL agent as an adver-
sary, training it against a specific detector. This is useful to find some blind spots of analysis
tools. However, to the best of my knowledge there is no study in literature which proves that
the improved defence systems are actually better to counter human adversaries.

The survey of [NR20] gives a broad overview of some directions that can be followed, includ-
ing DRL for cyber-physical systems, intrusion detection systems like [Xu10] and the broader
DRL-based game theory for cyber security. However, the proposed algorithms do not directly
tackle the task of malware analysis. In the works of [Fan+19; And+18; ZLC20] an agent is
trained to perform some modifications to malware samples to evade a static malware detector,
for instance MalConv of [Raf+17]. The authors argue that this approach may underline some
blind spots of malware detectors, with the goal of improving them.

The scarce literature in this field may suggest an intrinsic difficulty of developing valu-
able RL solutions, but at the same time it is a promising research direction as important
breakthroughs may be achieved.

3.2 Code block embedding

The goal of the RL agent is to find hidden malicious behavior in a suspicious binary, by
exploring alternative conditional paths at runtime. To this end, the agent is equipped with a
debugger. which collects information about the analyzed binary by stepping instruction-by-
instruction, and every time a condition is met, the agent can decide to hijack it, forcing the
execution flow to take an alternative path. The RL agent receives as state the embedding of the
current code block, delimited by the previous condition and the current one. Some additional
features can be added to the state vector, but this is out of the scope of this discussion. An
example of code block of disassembled binary instructions (opcodes) is shown in Listing A.1.

Since both opcodes and code blocks are categorical data, they have to be transformed in
some numerical representation before being fed to a machine learning model, since it can only
work with numbers. The process of transforming categorical data to numerical data can be
achieved by means of embedding, which in this case consists of finding a representation for code
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1 0x000000000000118d <main+68>: je 0x11ac <main+99>
2 0x000000000000118f <main+70>: movl $0x0,-0xc(%rbp)
3 0x0000000000001196 <main+77>: lea 0xe6d(%rip),%rdi
4 0x000000000000119d <main+84>: call 0x1050 <puts@plt>
5 0x00000000000011a2 <main+89>: addl $0x1,-0xc(%rbp)
6 0x00000000000011a6 <main+93>: cmpl $0x2,-0xc(%rbp)
7 0x00000000000011aa <main+97>: jle 0x1196 <main+77>

Listing 3.1: The current condition is at the address <main+97>. The instructions block that
constitutes the current state is defined by the range [<main+68>, <main+97>].

blocks as vectors of real numbers that preserve as much semantic information as possible about
the embedded block. Making a parallelism with natural language processing (NLP), opcodes
are equivalent to words and code blocks are equivalent to paragraphs or documents. There-
fore, code block embedding can be performed by applying document embedding algorithms
developed for NLP tasks. Finding a meaningful embedding for code blocks means finding an
embedding space, such that semantically related blocks of code share some geometric prop-
erties. For instance, embeddings of similar basic blocks should be close each others whereas
different ones should be far apart.

Subsequently, I will explain how different NLP techniques can be applied in this domain to
address the problem of code block embedding.

3.2.1 Word embedding

This section gives an overview of the most popular word embedding algorithms in the NLP
field like Word2Vec, GloVe, ELMo and BERT. This introduction lays the groundwork for
explaining the intuition behind state-of-the-art document embedding models, as most of them
rely on word embeddings. These methods are based on the distributional hypothesis, which is
derived from the semantic theory of language and states that words that occur in the same
context tend to share similar meanings. This concept can be extended to assembly opcodes
as their order defines a specific behavior, and different permutations of the same opcodes can
generate different outcomes.
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Figure 3.1: Alternatives of solving the self-supervised task of Word2Vec. The CBOW
architecture predicts a target word given its contextual words, whereas the Skip-gram model

predicts the contextual words given a target. Picture credits: [Mik+13].

Word2Vec

Wod2Vec [Mik+13] is a machine learning approach that learns an embedding space for words
by solving a self-supervised task. Self-supervised learning can be placed between unsupervised
and supervised learning, as it optimizes a supervised learning objective where the labels are
inferred by the structure of data, without requiring human labeling. The self-supervised task
solved by Word2Vec is based on finding the embedding vector that better includes the relations
among contextual words, namely the words that appear within a sliding window on the text.
In practice, this is achieved by either predicting a target word starting from the embeddings
of its neighbouring words or, vice versa, the model can be trained to predict the contextual
words given the embedding of the target word. The former is called contextual bag of words
(CBOW) model, whereas the latter is the Skip-gram method. Both methods are depicted in
Figure 3.1.

Word2Vec is implemented with an encoder-decoder structure obtained by stacking two
fully connected layers. The encoder projects the one-hot encoding of each word to a lower-
dimensional embedding space and the decoder maps the embedding vector to a vector space
of the same dimension of the one-hot encoding. Empirical evidence suggests that Skip-gram
produces better representations for rare words, whereas the CBOW method generates slightly
better embeddings for frequent words and is faster to train. An interesting (and desirable)
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feature of the embedding space generated by these methods is that contextual (≈ similar)
words are associated with embedding vectors close each others, whereas semantically unrelated
words are be embedded far apart. Word2Vec is a simple architecture which provides a valuable
baseline, even though modern NLP has shifted to more powerful approaches as explained in
the next section.

Other models

Given the broad zoo of NLP models, I thereafter mention only a sub-sample of the most
interesting ones, comparing them with Word2Vec.

GloVe [PSM14] is a direct competitor of Word2Vec as it also provides a lightweight solution
to perform word embedding. Extensive experimentation presented in many works in literature
evidence how Word2Vec and GloVe usually attain similar performances, and the dominance of
one over the other is task-dependent. The main difference of GloVe with respect to Word2Vec
is the self-supervised task it solves. In fact, Word2Vec only takes into account contextual
words, whereas GloVe generates word embeddings considering the global context of each word.
This is mathematically represented as the probability of co-occurrence of two words in the
same document.

ELMo [Pet+18] solves a major flaw of the methods presented so far, which associate each
word with the same embedding, regardless of the context. This is a sub-optimal approach,
since natural language is ambiguous and allows polysemy, namely the same word can have
different meanings depending on the context. ELMo solves this problem by generating for the
same word an ad-hoc embedding for each context. In practice this is implemented by stacking
two bi-directional recurrent neural networks (LSTM). Recurrent architectures suffer from long-
term memory degradation and require complex training procedures that slow down learning.
Nevertheless, ELMo considerably improved state-of-the-art performances on numerous NLP
tasks, with respect to its predecessors.

BERT [Dev+19] further improves the ELMo architecture by putting in place two major im-
provements inherited by transformer models introduced by [Vas+17]. First, word embeddings
are processed in parallel, rather than sequentially, how recurrent architectures do. Second,
it employs the attention mechanism, which follows the same intuition used by ELMo which
consists of generating different embeddings for a word depending on its context. BERT is
pretrained in a similar way as Word2Vec CBOW, namely predicting a subset of masked words
in a document. This language model has a considerably large amount of parameters which
vastly outnumber the parameters used by Wor2Vec or GloVe models. As a result, it requires a
large amount of training data and computational resources to produce the remarkable results
presented in its paper. Since the first version of Word2Vec in 2013, language models have
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grown in number of parameters, which made them better at solving various NLP tasks, at the
cost of requiring larger and larger training datasets, entailing more computational cost.

3.2.2 Document embedding

Finding a proper embedding vector for a word is a well-defined task, regardless if that vec-
tor is independent from the context (Word2Vec, GloVe) or not (ELMo and BERT). In fact,
all the word embedding approaches presented in the previous section are trained by solving
a self-supervised task that depends on either the ordering of words (Word2Vec, ELMo) or
their co-occurrence in a document (GloVe, BERT), which is a sensible formulation under the
distributional hypothesis. Nevertheless, the concepts of context and ordering are not easily
transferable to documents. A document is a sorted collection of words and changing their
ordering would alter its meaning. Not the same is true for a corpus, namely a collection of
documents.

Tf-Idf is a popular baseline for non-parametric document embedding. It associates each
document with a vector having size equal to the number of unique words in the corpus of
documents. For instance, if there are 100K unique words, each document will be represented
with a 100K-dimensional vector. Each component represents a word and its value is is the sum
of two quantities: the term frequency (Tf) and the inverse document frequency (Idf). The term
frequency is bounded in [0, 1] and represents the proportion of the occurrences of a word in a
document, thus it is higher for frequent terms within a document. The Idf term is inversely
proportional to the prevalence of a word across the documents of the corpus. The more a
word appears in different documents, the lower is its inverse document frequency. For short,
Tf-Idf gives larger weight to words that are common in a document, while being rare in the
corpus, because these are the ones which more likely represent the meaning of the document.
A major drawback of Tf-Idf is the large dimensionality the embedding vectors it produces,
which grows with the vocabulary size. However, this problem can be solved by resorting to
some unsupervised dimensionality approach like Principal Component Analysis (PCA), which
finds a linear transformation to a lower-dimensional vector space by minimizing the L2 norm
of the reconstruction error.

Doc2Vec [LM14] is a technique developed by the authors of Word2Vec which represents
documents with one-hot encoded vectors and learns a meaningful vector representation for
them. However, this strategy implies that at test time a new representation has to be learned
for unseen documents, worsening its inference time. In addition, the number of parameters
of the model depends on the dataset size. An interesting improvement of this early work is
Doc2VecC [Che17], which improves Doc2Vec in two ways. First, it trains a model similar
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Figure 3.2: Doc2VecC architecture where two input streams contribute to the prediction of
the target word: one comes from the embeddings of words sampled in the local context of the
target word, whereas the other is the average of a subset of words sampled from the whole

document (global context). Credits: [Che17].

to Word2Vec CBOW in which a second input stream is added besides the one dedicated to
contextual words. Doc2VecC predicts a target word using the embeddings of some words
sampled from its local context, and the average of the embeddings of other words sampled
from the global context of the target word. The global context is the whole document. Second,
it introduces a data-dependent regularization by defining a corruption model. The authors
argue that downsampling a portion of terms from the documents favors rare or informative
words, while reducing the importance of common uninformative terms. Furthermore, this
improves training performances. As a result, the word embeddings produces by this model
can be used to represent a document as the average of the embedding vectors of the words
that compose that document, while still preserving its semantics. The structure of Doc2VecC
model is shown in Figure 3.2.

Other approaches propose to generate an document embedding vector starting from the
word embeddings of the terms belonging to that document. This approach involves dealing
with an input size that depends on the number of terms in a document. Most machine learning
models struggle to handle input data of variable size. The simplest approach would be sum-
ming or averaging the word embeddings obtained with some method presented in the previous
section, however some works like [ALM17] proposed a way to learn the coefficients of a lin-
ear combination of word embeddings to preserve as much semantics as possible. Other works
propose to use recurrent architectures, such as RNN and LSTM, which have the drawback
of long-term memory degradation and slow training procedures. Furthermore, the authors
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of Doc2VecC compare it to some recurrent architectures, proving its superior performances.
Transformer-based models like BERT, produce document embeddings that can be used by
downstream machine learning tasks and are currently the state of the art for NLP tasks.

3.2.3 Chosen techniques

In this work, NLP methods for document embedding are applied to sequences of opcodes
instructions extracted from dynamically disassembled binary code. Opcode instructions (e.g.
mov, add, jle, push, ret) are treated as words and the blocks in which they are arranged
can be considered as documents.

Given the real-time application and the small-sized dataset available, employing a large
model (i.e. with many trainable parameters) would introduce a non-negligible time overhead
every time a new code block has to be converted to its embedding and it would be subject
to the risk of overfitting. Furthermore, this work is mostly dedicated to delivering a proof of
concept to test whether an RL agent may be capable of successfully finding hidden malicious
capabilities on some simplistic evasive samples. Assembly language is far less ambiguous than
natural language, preventing phenomena like polysemy, which considerably reduces the need of
complex language models to represent opcodes. Therefore, I exclude large models like BERT
or ELMo, which application is left for future work.

Tf-Idf has no learnable parameters and if used together with a dimensionality reduction
like PCA, the number of learnable parameters is less than the ones used by Word2Vec or
GloVe methods. The assembly instruction set has a cardinality of few thousands instructions,
which is considerably less than the vocabulary size of a natural language (e.g. English has
hundreds of thousands words). This reduces the dimension of document embeddings produced
by Tf-Idf methods applied to opcodes, compared to the NLP domain. However few thousands
of dimensions require the embeddings vectors to be projected to a lower dimensional subspace
to prevent the curse of dimensionality. This is obtained by resorting to PCA which consists of
multiplying the document vector x ∈ RF produced by Tf-Idf of size F by a projection matrix
W ∈ RF×E of size F × E (F � E) obtaining e = W Tx ∈ RE, with a computational cost of
O(FE).

Doc2VecC is an embedding model capable of generating meaningful document embeddings,
while requiring a low computational cost, which translates in low inference time. These two
features make this model the most preferable for this real-time task, compared to the other
solutions presented above. In fact, it generates regularized word embeddings that can be
safely averaged while preserving the semantics of a document. Moreover, the computational
cost required to generate document embeddings, starting from pretrained word embeddings,
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is reduced.
Since Tf-Idf is a classic and reliable baseline for NLP tasks, and Doc2VecC has some nice

features, as presented above, both embedding methods will be compared in the task of code
block embedding in the experiments.

3.3 Reinforcement Learning research

This section presents the theoretical formulation of the Markov Decision Problem, followed
by its extensions to real-world domains where the environment dynamics are not known an-
alytically, but can be simulated by interacting with the environment. These methods can be
further extended with function approximation in the case of large or continuous states spaces,
while learning speed can be improved by learning from a model of the environment, when
available. Eventually, the notions previously introduced are applied to the task of revealing
dormant malicious behavior in malware samples, taking into account the pitfalls of this domain
of application and relating them with available solutions in the state-of-the-art literature.

3.3.1 Markov Decision Problem

The goal of this work is to train an RL agent to find hidden malicious behavior in evasive
malware, by exploring the conditional path of a suspicious binary. This task is formalized
taking inspiration from the Markov Decision Process (MDP), which is defined by the tuple
(S,A,R, p(s′, r|s, a)), which represents respectively the sets of states, actions, rewards and the
environment dynamics p : S × S × A ×R −→ [0, 1]. At each time step, the agent receives the
current state of the environment s ∈ S and takes an action a ∈ A according to a policy π(a|s).
As a result, the environment performs a transition to state s′ ∈ S, which generates a reward
r ∈ R. An MDP is finite if the sets S,A,R have a finite number of elements. The environment
dynamics are enough to fully describe the environment and are defined as

p(s′, r | s, a) =̇ P(St = s′, Rt = r | St−1 = s, At−1 = a)

where St, Rt, St−1, At−1 are capitalized because they represent random variables.
In the ideal case, the environment dynamics are known and can be used to analytically

describe the environment. For instance, it is possible to derive the state-transition probability

p(s′ | s, a) =̇ P(St = s′ | St−1 = s, At−1 = a) =
∑
r∈R

p(s′, r | s, a) (3.1)

A set of subsequent transitions defines a trajectory :

S0, A0, R1, S1, A1, R2, S2, A2, R3 . . . ST

37



Matteo Bunino Chapter 3. Reinforcement Learning Problem Definition

where ST is the terminal state and if it exists and can be always reached with a finite set of
transitions, the RL task is said to be episodic. In an episodic task, each episode is independent
form the others. An example of episodic tasks are the games like Chess and Go, where each
player will eventually either win or lose and at the board will be reset at the beginning of each
new game. Conversely, if a terminal state is never reached, the RL problem is a continuing
task. An example is a thermostat that controls the heating system of a house, in order to keep
the temperature stable in a fixed range.

Equation 3.1 implicitly states that only the immediately preceding state St−1 and action
At−1 are needed to fully characterize the transition probability to state St. In other words, St
is said to be conditional independent to the history preceding St−1 and At−1, given St−1 and
At−1:

P(St | St−1, At−1) = P(St | S0, A0, S1, A1, . . . St−1, At−1)

Therefore, in MDP the states are assumed to satisfy the Markov property, which means that
each state stores enough information about all the past interactions of the agent with the
environment.

The goal of the agent is to find a policy π(a|s) : S ×A −→ [0, 1], defining the probability of
taking action a when in state s, with the goal of maximizing the return. The return represents
the total future reward starting from state s and taking action a and is defined as:

Gt=̇Rt+1 + γRt+2 + · · ·+ γT−1RT (3.2)

=
T∑

k=t+1

γk−t−1Rk (3.3)

= Rt+1 + γGt+1 (recursive definition) (3.4)

where γ ∈ [0, 1] is the discount factor and has a double interpretation. From a mathematical
point of view, it guarantees that the sum in Equation 3.2 is always finite, even in case of a
continuing task where T =∞. If γ ∈ [0, 1):

∞∑
k=0

γkRk ≤
∞∑
k=0

γkRmax = Rmax

∞∑
k=0

γk = Rmax
1

1− γ
<∞

On the other hand, the discount factor gives an exponentially decaying weight to future re-
wards. As γ −→ 0, the learned policy will privilege short-term rather than long-term rewards,
which in some applications may produce a short-sighted agent.

The expected return starting from state s under a policy π is defined by the state value
function:

vπ(s) = Eπ [Gt | St = s] = Eπ

[
T∑

k=t+1

γk−t−1Rk | St = s

]
,∀ s ∈ S (3.5)
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A similar formulation is given for the state-action value function, which defines the expected
return under a policy π, starting from state s and taking action a:

qπ(s, a) = Eπ [Gt | St = s, At = a] = Eπ

[
T∑

k=t+1

γk−t−1Rk | St = s, At = a

]
,∀ s ∈ S, a ∈ A

(3.6)
When the environment dynamics p(s′, r | s, a) are known, the above functions can be

extended to derive the Bellman equations for vπ(s) and qπ(s, a):

vπ(s) = Ea∼π(a|s)

[∑
s′,r

p(s′, r | s, a) [r + γvπ(s
′)]

]
,∀ s ∈ S (3.7)

=
∑
a

π(a|s)
∑
s′,r

p(s′, r | s, a) [r + γvπ(s
′)] (3.8)

qπ(s, a) =
∑
s′,r

p(s′, r | s, a)

[
r + γ

∑
a′

π(a′|s)qπ(s′, a′)

]
,∀ s ∈ S, a ∈ A (3.9)

=
∑
s′,r

p(s′, r | s, a) [r + γvπ(s
′)] (3.10)

According to these equations, the value of a state (or state-action couple) can be recursively
obtained by the value of the next states. Value functions define a partial ordering among
policies, such that π ≥ π′ if and only if vπ(s) ≥ vπ′(s) ∀ s ∈ S. Thus, for the optimal policy
π∗ we have that vπ∗(s) ≥ vπ(s) ∀ π. To simplify the notation, from now on vπ∗(s) = v∗(s).

The form of the optimal value function under the optimal policy is defined by the Bellman
optimality equation, which substitutes the expectation with the max operator

v∗(s)=̇max
π

vπ (3.11)

= max
a

∑
s′,r

p(s′, r | s, a) [r + γv∗(s
′)] , ∀ s ∈ S (3.12)

which again has a recursive formulation. When the MPD is finite and the environment dynam-
ics are known, this equation defines a linear system of |S| equations in |S| unknowns. Once
v∗(s) is known, the optimal policy π∗(a|s) can be easily obtained by attributing non-zero prob-
ability to the actions that maximize the Bellman optimality condition, for each state s ∈ S. If
all the probability mass is always given to an action, the policy is deterministic and is said to
be greedy. A greedy optimal policy always exists.

Similarly, the optimality equation can be defined also for the state-action value function:

q∗(s, a) =
∑
s′,r

p(s′, r | s, a)
[
r + γmax

a′
q∗(s

′, a′)
]
,∀ s ∈ S, a ∈ A (3.13)
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In this case, obtaining the optimal greedy policy is even easier with respect to the case of v∗(s):

π∗(s) = argmax
a
q∗(s, a) (3.14)

This approach trades computational complexity for memory usage. In fact, determining the
optimal action for each state just needs a sweep of the action values for that state, thus
requiring to store a value for each state-action pair.

The Bellman optimality equation can be solved iteratively, resorting to dynamic program-
ming. This approach includes two alternatives: policy iteration and value iteration. The first
alternates steps of policy evaluation and policy improvement, whereas the latter directly solves
the Bellman optimality equation for state values. However, dynamic programming applications
are restricted to finite MDP problems (with a limited number of states) where the environment
dynamics p(s′, r | s, a) are known. Since this is out of the scope of this work, the reader is
referred to [SB18] for a detailed explanation of these methods.

3.3.2 Extension of MDP

In real-world applications, it is rather uncommon to know the environment dynamics, which
makes impossible to solve analytically the Bellman optimality equation and compute the op-
timal policy. However, the value functions can be learned simulating the dynamics by directly
interacting with the environment.

Monte Carlo Methods

Monte Carlo (MC) methods approximate the value function, which represents the expected
return, by taking the average of the returns produced by many trajectories starting from
each state or state-action pair. Given a trajectory, the return for each state or state-action
pair is obtained by unrolling the trajectory from the terminal state, backward propagating the
discounted cumulative reward. Given a policy π, the corresponding value function is computed
as shown in Algorithm 1.
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Algorithm 1 MC for estimating V ≈ vπ

Require: Policy π
Returns(s)←− an empty list for all s ∈ S
loop for each episode

Generate episode trajectory under π: S0, A0, R1, S1, A1, R2, S2, A2, R3 . . . ST−1, AT−1, RT

G←− 0

for t = T − 1, T − 2, . . . 0 do . Unrolling the trajectory from the end.
G←− Rt+1 + γG

Append G to Returns(St)
V (St)←− average(Returns(St))

However, if π is a greedy policy, namely a policy that always chooses the same action in
each state, the trajectories generated by π will cover only a subset of state-action pairs, causing
a poor estimate of the value function. Therefore, it is important to maintain exploration. This
can be achieved for instance with exploring starts, which initializes each episode from a state-
action couple sampled uniformly among all the possible pairs, or with ε-greedy policies. An
ε-greedy policy is defined as:

πε(a|St) =

1− ε+ ε/|A|, if a = A∗

ε/|A|, otherwise

where A∗ is the greedy action and ε ∈ [0, 1]. The larger ε, the grater the entropy of π, thus
the more π has an exploratory tendency. Since π is used to interact with the environment
by generating a trajectory, ε introduces a trade-off among exploitation, namely taking the
action that is expected to maximize the return, and exploration, which allows to collect more
information on the environment and produce a better estimate of the overall value function.

Algorithm 1 can be extended to approximate the state-action value function Q(s, a) ≈
qπ(s, a). This brings a key advantage: as shown by Equation 3.14, the current policy π can
be improved by taking the greedy action that maximizes the value function, without the
need of knowing the environment dynamics p(s′, r|s, a). This process can be repeated until
π approximates the optimal policy π∗. The process of improving the current policy is called
control. The MC control to improve an ε-greedy policy is shown in Algorithm 2.
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Algorithm 2 MC control to estimate π ≈ π∗ with ε-greedy policies
Require: ε-greedy policy π
Returns(s, a)←− an empty list for all s ∈ S, a ∈ A
loop for each episode

Generate episode trajectory under π: S0, A0, R1, S1, A1, R2, S2, A2, R3 . . . ST−1, AT−1, RT

G←− 0

for t = T − 1, T − 2, . . . 0 do . Unrolling the trajectory from the end.
G←− Rt+1 + γG

Append G to Returns(St, At)
Q(St, At)←− average(Returns(St, At))
A∗ ←− argmaxaQ(St, a) . Improve if possible.
for all a ∈ A(St) do

π(a|St) =

1− ε+ ε/|A(St)|, if a = A∗

ε/|A(St)|, otherwise

Although ε-greedy polices allow to better estimate the value function, compared to greedy
policies, approximating the optimal policy π∗ with an ε-greedy policy may lead to a sub-optimal
estimate, as π∗ is not guaranteed to have such form, for any ε. There is however a way to get
the best from exploration and exploitation by using two different policies: a behavior policy
(which can be totally random) is used to generate the episodes trajectories, guaranteeing a
good degree of exploration; whereas the action values are learned for a target policy, without
constraints on its form, to better approximate the optimal policy. The method of using a policy
to interact with the environment and another to learn the state-action value function (Q(s, a)
for instance) is called off-policy learning, which is different from the the on-policy case, where
the same policy is used for both tasks, as it is done in Algorithm 2.

MC estimation of value functions has three main defects: (1) it is an offline method, because
the value functions are updated only at the end of an episode, requiring many simulations to
reach reliable estimates; (2) it is subject to relatively high variance compared to other methods,
since it estimates the expected return as the (weighted) sum of the rewards obtained in future
steps, which are random variables; (3) its offline nature makes it impossible to apply it to
continuing tasks, namely the ones that never reach a terminal state.

Temporal-Difference Methods

An alternative to MC method is Temporal-Difference (TD) learning, which takes inspiration
from Bellman equations in order to obtain sample methods, like MC, based on the interaction
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with the environment, while providing the advantages of online learning. TD(0) methods define
the return with bootstrapping, namely approximating future rewards with the value function
estimate of the successor state:

Gt =
T∑

k=t+1

γk−t−1Rk (Monte Carlo) (3.15)

= Rt+1 + γV (St+1) (Temporal-Difference) (3.16)

This formulation allows to obtain a class of methods that learn online, because the return
at time t is known as soon as Rt+1 is available, thus the value function can be updated at
each interaction with the environment. This allows TD(0) methods to be applicable also to
continuing tasks. TD(0) estimates of the value function suffer from a lower variance with
respect to MC, due to the truncated chain of rewards needed to compute the return, but this
comes to the cost of higher bias. In fact, at the beginning of training, the estimate of V (St+1

is highly inaccurate. However, the estimates are statistically consistent and the bias vanishes
upon convergence. Given a trajectory of transitions, the value function for state St under a
policy π is iteratively approximated with the following update rule

Vk+1(St) = (1− αk)Vk(St) + αkGt (3.17)

= Vk(St) + αk [Gt − Vk(St)] (3.18)

= Vk(St) + αk [Rt+1 + γVk(St+1)− Vk(St)] (3.19)

= Vk(St) + αk δt (3.20)

where αk is the step-size of the update. TD convergence is guaranteed for any decreasing
step-size αk that satisfies the Robbins-Monro conditions:

∞∑
n=0

an =∞ and
∞∑
n=0

a2n <∞ (3.21)

δt is called TD error. The TD error represents the difference between the previous value of
V (St) and the new estimate of the return Gt.

Similarly to MC methods, TD learning defines control methods to find an approximation
of the optimal policy, which can be obtained with either on-policy or off-policy learning. On-
policy control for TD(0) methods is achieved with the Sarsa algorithm, whereas it’s off-policy
version is the popular Q-learning algorithm. In both methods, for each state an action can be
sampled following an ε-greedy strategy:

At =

argmaxaQ(St, a), with probability 1− ε

a ∈ A(St) with probability ε/|A(St)|
(3.22)
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Sarsa update rule is:

Qk+1(St, At) = Qk(St, At) + αk [Rt+1 + γQk(St+1, At+1)−Qk(St, At)]

whereas the update rule for Q-learning is:

Qk+1(St, At) = Qk(St, At) + αk

[
Rt+1 + γmax

a
Qk(St+1, a)−Qk(St, At)

]
the optimal greedy policy can be obtained by applying Equation 3.14 upon convergence of the
method.

Although TD(0) methods solve the problem of (slow) offline learning typical of Monte Carlo
methods, they also introduce some new problems that did not affect MC methods. First they
are more susceptible to the violation of the Markov property (non-Markov states). Second they
may suffer from the problem of slow credit assignment whenever the rewards are sparse in an
episode’s trajectory, namely when most of the rewards are zero and only some of them give
the agent some useful feedback on how to improve the current policy. Both these problems are
caused by the fact that TD(0) methods update their value estimates depending only on the
value estimates of next state.

The credit assignment problem (CAP) consists of determining the contribute of each action
to a given outcome. In RL, the term credit is a synonym of value. In fact, an RL agent tries
to solve the CAP by associating the right expected return to each state or state-action pair,
in order to improve the expected cumulative reward in the long run.

To reduce the impact of the aforementioned problems, it is possible to extend TD(0) meth-
ods by updating the value estimates considering the next n rewards, before bootstrapping to
correct the estimate. This approach creates a bridge between MC and TD(0) methods and
allows to define two new classes of TD methods: TD(n) and TD(λ). TD(n) defines the return
from state St as:

Gt:t+n=̇Rt+1 + γRt+2 + · · ·+ γn−1Rt+n + γnVk+n−1(St+n) (3.23)

and the resulting update rule for the estimated value function becomes:

Vk+n(St) = Vk+n−1(St) + αk [Gt:t+n − Vk+n−1(St)] , 0 ≤ t < T (3.24)

where T is the length of the episode. The value function is updated T times as with TD(0)
and this method allows for online learning, however, the first update is made after the first
n transitions have been performed. TD(n) benefits from the error reduction property which
defines the following upper bound on the worst case estimation error:

max
s

∣∣∣Eπ[Gt:t+n | St = s]− vπ(s)
∣∣∣ ≤ γnmax

s

∣∣∣Vk+n−1(St)− vπ(s)∣∣∣ (3.25)
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for any n ≥ 1. This upper bound is controlled by n. The larger n, the smaller the estimation
error. Another advantage of TD(n) methods is their ability to better propagate sparse rewards
backward in time, to the preceding states in the trajectory.

Function Approximation

The methods exposed so far are called tabular, because they assume a finite MDP, thus the
value functions can be stored as vectors or matrices. Despite being effective for small prob-
lems, tabular methods do not scale to problems with a large number (millions) of states and
are not applicable in the case of continuous states or actions space. Furthermore, the value
functions are learned independently for each state (state-action pair), without generalization
across similar states (state-action pairs).

Function approximation shifts the task of learning the values for each state or state-action
pair to learning a parametrized version of the value functions that minimizes a given objective.
The parametric state value function is v̂(s;w) with parameter w. Analogously, for state-
action values q̂(s, a;w). The objective to minimize is the Mean Squared Error (MSE) in the
approximation of vπ(s) by v̂(s;w):

V E(w) =̇
∑
s

µ(s)
[
vπ(s)− v̂(s;w)

]2
(3.26)

where µ(s) is the proportion of times state s was visited.
The objective of Equation 3.26 can be optimized resorting to Stochastic Gradient Descent

(SGD) method to iteratively update the parameters w in the direction of steepest decrease of
V E(w). The resulting SGD update rule is:

wk+1 =̇wk −
1

2
αk∇w

[
vπ(s)− v̂(s;w)

]2
(3.27)

= wk + αk

[
vπ(s)− v̂(s;w)

]
∇wv̂(s;w) (3.28)

if αk decreases over time and respects the conditions of Equation 3.21, SGD is guaranteed to
converge to a local minimum of V E(w). Since vπ(s) is not known in practice, it is substituted
with an unbiased estimator of it, Ut, such that E[Ut|St = s] = vπ(s). Under this assumption,
the following update rule converges with the same guarantees of 3.28:

wk+1 = wk + αk

[
Ut − v̂(s;w)

]
∇wv̂(s;w) (3.29)

Function approximation can be applied to Monte Carlo methods by setting Ut = Gt, which
is an unbiased estimate of vπ(s). On the other hand, TD methods require an additional
discussion because their extension with function approximation is not as straightforward as for
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MC methods. TD methods compute Gt by considering the sequence of successive rewards up
to step n, approximating the next ones with bootstrapping:

Gt:t+n=̇Rt+1 + γRt+2 + · · ·+ γn−1Rt+n + γnVk+n−1(St+n)

for any n ≥ 1. Due to bootstrapping, Gt:t+n is no more an unbiased estimate of vπ(s) because
also the target Ut of Equation 3.29 depends on the current value of the parameters w. The
step form Equation 3.27 to Equation 3.28 relied on the fact that Ut does not depend on
the learnable parameters w. As a consequence, when substituting Ut with the TD target in
Equation 3.29, the update rule is called semi-gradient method, since it is not using the real
gradient information.

The above equations can be easily extended to the case of learning the parameters of
q̂(s, a;w). This allows to find the approximate optimal policy by solving a control task with
the state-action value function.

Function approximation methods are often preferable over tabular methods even for low
dimensional MDP problems, given their ability to generalize across similar states or state-
action values. In fact, function approximation methods learn a parametric function that will
associate similar states to similar values, without the typical tendency of tabular methods to
estimate the value of each state independently.

TD(λ) methods

As previously explained, TD(0) methods can be extended to TD(n) to take the best from both
TD and Monte Carlo worlds. However TD(n) has two drawbacks: learning delay and memory
requirements, which both grow with n. In fact, the value function is updated only after the
first n rewards have been observed and throughout exploration a memory of the last n rewards
is needed.

TD(λ) methods solve these problems by updating the value function at each step, while
propagating the information (reward) of future transitions to previous states. Each method is
characterized by the way it defines the expected return and TD(λ) provides a new formulation
defining the return as an exponentially decaying weighted average of TD(n) return for different
n, which is called λ-return:

Gλ
t =̇ (1− λ)

∞∑
n=1

λn−1Gt:t+n (3.30)

= (1− λ)
T−t−1∑
n=1

λn−1Gt:t+n + λT−t−1Gt (Episodic case) (3.31)

46



Matteo Bunino Chapter 3. Reinforcement Learning Problem Definition

where λ ∈ [0, 1] allows to continuously interpolate among Monte Carlo formulation of the
return (λ = 1) and the return defined by one-step TD (when λ = 0). Gt:t+n is the same
quantity defined in Equation 3.23.

TD(λ) methods are used jointly with function approximation and the update rule for the
parameters results from substituting Ut in Equation 3.29 with Gλ

t :

wk+1 = wk + αk

[
Gλ
t − v̂(s;w)

]
∇wv̂(s;w) (3.32)

However, this formulation is not enough to tackle the problems of TD(n), namely delayed
learning and memory requirements proportional to n. In fact, Gλ

t depends on TD(n) returns.
Equation 3.32 defines the offline λ-return algorithm, which in practice can be truncated up to
some n� T , while usually performing better than TD(n), fixed n.

TD(λ) achieves online learning and constant memory requirements by employing eligibility
traces, which work as a short-term memory on the updates of the value function. Eligibility
traces allow to improve the estimate of the value function in previous states by propagating
backwards the information (reward) encountered in successor states. Differently from the λ-
return, which is said to have a forward view because the value of a state can be computed only
after the future rewards have been observed, eligibility traces have a backward view because
they refine the values of past states with future steps. TD(λ) update with eligibility trace z is:

zk+1 = γλzk +∇wv̂(St;w) (3.33)

wk+1 = wk + αk δk zk+1 (3.34)

where δk is the TD error Rt+1+γv̂k(St+1;w)−v̂k(St;w) already introduced in Equation 3.20 for
TD(0) methods. As explained in the book of [SB18], for small step sizes αk TD(λ) approximates
well the offline λ-return method. TD(λ) can be applied to any parametrization of v̂(St;w).
Nevertheless, when using linear function approximation this method can be further improved
to achieve performances at least as good as λ-return algorithm, while preserving its desirable
online properties. This improvement is called true online TD(λ) and the interested reader can
find its derivation in the book of [SB18].

Planning

In some situations the interaction with the environment entails some sort of delay that would
drastically reduce the speed of learning in terms of time. Moreover, it makes sense to re-use past
knowledge acquired by interacting with the environment to further improve the estimated value
function. Planning introduces a way to exploit previous transitions information to improve
the values estimates in a sort of offline fashion, between two agent-environment interactions.
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If the environment is slow to respond, planning introduces just a slight overhead, since it can
be performed while waiting for the environment response.

Planning relies on a model of the environment, which is generated processing the past
transitions, and it is different from learning in that it updates the values estimates depending
on a model of the environment, rather than relying on the environment itself as model-free RL
methods do. When the model represents faithfully the environment, planning can considerably
speed-up convergence. Usually planning and learning are employed in tandem: the outcome
of interactions with the environment are used to improve the values estimates (learning) and
the model, whereas the model further refines the values estimates before another interaction
with the environment is performed.

Dyna-Q is an example of interleaved learning and planning. The planning is based on
a deterministic model of the environment that stores a buffer of past transitions (St, At) −→
(St+1, Rt+1). Dyna-Q implements Q-learning for both planning and learning. If the envi-
ronment is not static, the same state-action pair can generate a different transition, without
affecting the method. Dyna-Q can be extended to Dyna-Q+ to foster exploration of states
that the agent has not explored since a long time. Dyna-Q+ adds to the reward of a transition
stored by the model, an intrinsic reward, proportional to the time elapsed since the last time
that transition was performed in the environment. The full Dyna-Q+ method is shown in
Algorithm 3.

Algorithm 3 Tabular Dyna-Q+
Require: Q(s, a) and Model(s, a)

loop forever
St ←− current state.
At ←− ε-greedy(Q,S) . Sample action.
(St+1, Rt+1)←− Environment(St, At) . Agent-environment interaction.
Qk+1(St, At) = Qk(St, At) + αk [Rt+1 + γmaxaQk(St+1, a)−Qk(St, At)]

Model(St, At)←− (St+1, Rt+1, t) . Update model.
loopN times . Perform n planning steps.

(S,A)←− sample uniformly from model
(S ′, R)←−Model(S,A) . Get transition from model.
R←− R + k

√
τ . Intrinsic reward for small k.

(τ is the time since this transition was previously performed in the environment).
Q(S,A) = Q(S,A) + α [R + γmaxaQ(S

′, a)−Q(S,A)] . Plannig.

Dyna-Q+ can be further improved by noticing that during planning each (S,A) pair is
sampled uniformly from the model. This can be improved by providing each transition with
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a priority proportional to its TD error. When sampling from the model during planning, the
priority would privilege updates to the values estimates that are likely less accurate. This
approach is called prioritized sweeping.

Experience Replay (ER) was initially introduced by [Lin92] and consists of maintaining
a buffer that stores transitions resulted from past agent-environment interactions. ER is not
properly a model-based approach, but it mimics its intuition (e.g. Dyna). This method became
popular with the work of [Mni+13] as it brings two main advantages when applied with Deep
Reinforcement Learning (DRL) for function approximation: it improves sample efficiency and
decorrelates the samples, reducing the bias of SGD gradients. Between two interactions with
the environment, a batch of transitions is uniformly sampled from the replay memory and the
parameters w of q̂(s, a;w) are updated to reduce the approximation error for qπ(s, a). Since
every transition stored in the replay memory can be reused multiple times, ER improves sample
efficiency of DRL methods.

3.3.3 Revealing Dormant Malicious Behavior Through Reinforcement
Learning

The solution propose in this work to tackle trigger-based evasive malware is a Reinforcement
Learning-based approach that employs a debugger to explore a binary sample under analysis.
Since I assume the trigger-based behavior to be triggered by a condition, the Reinforcement
Learning (RL) agent is trained to explore the conditional paths forcing some branches to be
executed, when necessary. The goal of this framework is to find all the quiescent malicious
capabilities in the analyzed binary, if present. Malware capabilities can be considered as the
building blocks of the whole behavior of a malware, performing some simpler tasks (e.g.,
sending spam, encode data using XOR, create process). The output of the RL agent is the list
of all conditions in which to hijack the natural execution flow, in order to reveal all the hidden
malicious capabilities. After a binary is patched following the instructions produced by the
RL tool it can be sent to a malware analysis engine, in order to be further analyzed. The goal
of the solution proposed in this work is to identify and mitigate all the trigger-based evasion
attempts a malware sample may put in place, improving the information that a downstream
malware analysis task can extract.

Markov Decision Process Formalization

The RL problem is formalized according to the Markov Decision Process (MDP). This entails
the definition of environment, actions space, states space and reward function. These aspects,
together with a description of the agent goals, are presented in this section.
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This scenario violates the Markov property for states, like in most of the real-world problems
that are solved with RL, because a code block does not bring enough information to characterize
all the preceding code blocks. As a result, the couple (St−1, At−1) is not enough to fully
characterize previous history. In other words,

P(St | St−1, At−1) 6= P(St | S0, A0, S1, A1, . . . St−1, At−1)

To solve this problem the theory allows to reformulate the MDP as a Partially Observable
Markov Decision Problem (POMDP), where at each time step the environment transitions to
state St ∼ S, but the agent receives an observation Ot ∼ O(St) of it, rather than the complete
information describing the state. POMDP and MDP can be unified by introducing the approx-
imate state Ŝt = f(O0, . . . Ot), where f performs an arbitrary transformation of the previous
history. In practice, usually just a subset of the past history is sufficient. Furthermore, to
reduce the impact of the violation of the Markov property, additional information about the
history of actions taken is included in the observation returned by the environment.

Environment
When interacting with the environment, composed of the malware sample and the debugger,
I make the following assumptions:

• The Control-flow Graph (CFG) is not known a priori as it may be obfuscated or hard to
compute (e.g., indirect jumps/calls). It is built dynamically, while debugging the code.

• When in a code block, the RL-based debugger executes its code and creates a feature
representation for that code block. The feature representation has to convey as much
information as possible about the potential malicious nature of the block (e.g., static
features, behavioral features).

• The feature representation constitutes part of the state fed to the agent and is generated
as φ(CB), where CB stands for code block and φ is a function that maps a code block
to the features space.

Agent’s Goal
The agent acts only on Conditional Jump Instructions (CJIs). Tampering with these in-
structions enables a debugger (the agent) to force the execution flow to follow an alternative
conditional path. The goals of the agent are the following:

• Edit the CJIs to force the binary to reveal its malicious behavior.

• Be conservative: edit as little code as possible to reveal the hidden behavior.
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Episodic Formulation
Debugging can be framed as a game episode which terminates when one of these mutually
exclusive conditions is met:

• The debugged binary reaches the exit() instruction.

• The agent explicitly terminates debugging.

• The debugging crashes.

• The debugging budget is reached (total number of actions taken). We have to take into
account the Turing halting problem: the execution of a binary is never guaranteed to
come to an end. Therefore, the agent has a limited budget of actions before the debugging
process is killed.

Actions
For each step of the interaction with the debugger, the agent is in a condition (e.g. If-Then-Else)
and it has to decide whether to hijack the control-flow in that condition or not. Metaphorically,
the interaction of the agent with the debugger binary can be seen as the agent walking in a
maze and looking for some hidden malicious capabilities before exiting from it. A malicious
capability can be considered as a flag in a capture the flag competition. From now on, the
terms "flag" and "capability" will be used interchangeably. The actions that I have designed
to enable the agent to explore the binary’s control-flow graph are:

• Hijack the control-flow in the current condition. CJI <addr> checks some logical ex-
pressions concerning the bits of the flags register. When the expression is true, the jump
will be performed. When the agent aims to hijack the control flow, it will tamper with
the flags register in order to reverse the outcome of the logical expression checked by the
CJI.

• Jump back in the code block before the previous condition.

• Terminate debugging. This action enables the agent to quit the exploration as soon
as all the flags have been encountered, without using further computational power.

• Do nothing. Let the current condition follow its natural control-flow.

Figure 3.3 represents the steps the agent can take. Going right means taking the true branch,
whereas left the false branch. The true branch is taken either if the condition autonomously
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Figure 3.3: For each encountered condition, the agent can take one among three directions.

took that branch or the agent hijacked the control-flow to force that direction. A similar rea-
soning holds for the false branch.

States
Each observation returned by the environment includes the following elements: an embedding
of the current code block instructions obtained resorting to NLP strategies adapted to disas-
sembled binary code (opcodes); a binary scalar ∈ {0, 1} that indicates whether the current
condition is going to perform a jump (1) or not (0); the total number of iterations (steps)
performed so far, normalized with respect to the actions budget in order to bound it in the
interval [0, 1]; the proportion of hijack and jump back actions in two additional components,
both normalized with respect to the budget of total actions.

I deem important to include in each observation the proportion of actions taken, to help the
agent to better infer the reward function. In fact, a small negative reward is given when some
"expensive" actions are taken, like jump back, which requires a non-negligible computational
overhead. Furthermore, I want the agent to find hidden capabilities with the least number
of interactions and hijacks. Also in this case, including these quantities in the observation
provides the agent with more information about the "rules of the game", as it was done for
TD-Gammon and other popular game-playing RL algorithms.

Eventually, according to the POMDP framework that extends MDP to settings with non-
Markov states, a state is obtained as the concatenation of the last n observations. For instance,
Alpha Go (Zero) uses the last n = 8 configurations of the board.
Rewards
Consistently with the analysis performed in Section 2.3.2, to accurately distinguish legitimate
from malicious trigger-based behavior, each state includes features that carry behavior infor-
mation. The goal is to make the agent learn to recognize hints of malicious behavior, deciding
which conditional paths to explore accordingly. The ultimate goal of the RL agent is to find
the quickest path on the conditional graph to executes all the hidden malicious capabilities.

To speed up convergence and encourage the agent to look for malicious content when
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exploring the binary, I give the agent a reward every time it steps in a region of code containing
malicious capabilities. The presence of a capability that may suggest malware behavior is
detected by an oracle. A good candidate for an oracle is the recent work of [Dow+21], which
proposes a model for malicious capability recognition called DeepReflect.

At the end of a trainig episode a larger final reward is given consistently to the proportion
of malicious capabilities found throughout the episode, with respect to the total number of
malware capabilities hidden in the sample. The final reward is formalized as:

RF = β

(
# Found capabilities− 1

2
# Total capabilities

)
(3.35)

therefore, when all the flags are found, the final reward is β
2
, when no flag is found it is −β

2
. If

some rewards are found, the terminal reward lays in the [−β
2
, β
2
] interval.

The total number of capabilities is known because the dataset samples are synthetically
generated by a script that I implemented. In general, when working with real binary samples,
I assume that they have been previously analyzed by security experts that were able to find
the great majority of hidden capabilities.

A reward, together with a new state, is given to the agent as the result of its interaction
with the environment. The reward function is designed to encourage the agent to find the
hidden flags with the least number of hijackings. A default negative small reward is given to
the agent to prevent it from being trapped in loops, speeding up convergence to the path that
leads to the next flag. The agent receives a large negative reward when it is not able to find
any hidden flag and the debugged binary’s execution terminated or crashed.

The definition of the reward function is an highly sensitive step as it can drastically influ-
ence the outcome of training. The easiest form of reward function is one that defines some
scenarios and gives a reward when some condition is satisfied. This format of rewards is well
understandable by humans but it also slows learning because it is hard for the agent to gen-
eralize. When a reward is given only for few specific transitions, it results sparse overall. This
formulation causes a slow credit assignment, namely a slow propagation of the reward signal
to previous transitions in a trajectory. Moreover, sparse and deceptive rewards make the task
become an hard-exploration problem, which is one of the hardest class of tasks to be solved
with RL. An example of discrete reward function is the following

• 0 for not hijacking (default reward).
• -1 when hijacking or jumping back.
• +1 for finding a malicious capability.
• -10 if the agent terminated debugging but no flag was found.
• +10 for finding all the flags.
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• -10 for crash during debugging
• -10 for budget quota exceeded (maxiter reached).
• β = 20 for the final reward.

A better alternative to discrete reward function is a continuous one. In my experiments I
employ the following continuous reward function:

ψ(si, ai) = ξ(si; γ) + αT (si) + αH(si;h) + αB(si; b) + ρ(si) (3.36)

where:

• ξ(si; γ) = max {exp(−γ ||ε(si)− f1||22), . . . , exp(−γ ||ε(si)− fN ||22)}
where ε(si) extracts the code block embedding of the last observation, and f1, . . . fN are
the embeddings of the malicious blocks. This functions gives the agent a clue about
the location of malicious blocks in the block embedding subspace. As γ −→ ∞, the
contribute of this term to the overall reward becomes similar to a sum of Dirac’s deltas
ξ(si; γ) −→

∑
i δfi(sj), approximating the discrete reward.

• αT (si), αH(si;h), αB(si; b) give a negative reward proportional to the total number of
performed actions, hijacks and jumps back respectively. They all have the same form,
for instance αH(si;h) = − 1

h
# hijack
# actions . h is a weighting term to control the reward.

• ρ(si) ∝ 1/τ is an intrinsic reward term that fosters exploration of rarely-visited states.
This quantity is bounded in the interval (0, 1], whereas τ is the time elapsed since the
last visit of state si. Intrinsic reward provide a more sensible exploration incentive with
respect to ε-geedy approaches, as the exploration encouragement is given only where it
is necessary, namely in the rarely-encountered states where the agent should invest more
time exploring.

Furthermore, at the end of each episode an additional reward is given proportionally to the
number of malicious capabilities found as described in Equation 3.35.

Planned experiments

In the last part of my internship I will perform a set of experiments of different RL algorithms
trained on the synthetic dataset of evasive binaries I have generated. As a result of a literature
research about modern RL approaches to solve real-world problems, I am planning to use the
following models: vanilla DQN plus some improvements of it and DQN(λ), which implements
TD(λ) methods.
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DQN is an architecture trained with semi-gradient Q-Learning, employing a deep artificial
neural network (ANN) for nonlinear function approximation. It was initially introduced in the
work of [Mni+13] to solve 49 different Atari games without modifying the architecture, the
hyperparameters values, or employing specific features for different tasks. The network was
reset before being trained on a different task, learning a different policy for each game.

To improve the stability of the method, DQN employs Experience Replay (ER) to improve
sample efficiency, to compensate for the need of large dataset to train deep learning models.
Since training is carried out also on old interactions with the environment, is mandatory to use
an off-policy method like Q-learning, treating old transitions as generated by a behavior policy.
ER also has the benefit of decorrelating the samples when sampling a batch of transitions from
the memory, which reduced the bias that correlated examples introduce in SGD gradients.

The second strategy to improve stability consists of using an auxiliary network, called
target network, to compute the term γmaxa q̃(St+1, a;wk) of the TD error δk = Rt+1 +

γmaxa q̃(St+1, a;wk) − q̂(St, At;wk). The TD error is used in the update rule of Equation
3.29. The target network is identical to the primary one, and the up-to-date parameters of the
primary are copied in the target network every K training iterations.

The last trick used by the authors to guarantee stability is to clip the TD error δk in the
interval [−1, 1].

DQN proved that an RL agent can attain human-level capabilities in playing some video
games without much prior knowledge. However it also achieved poor performances on other
games, underlying how this architecture was only an early work. In particular, DQN pro-
duced scarce results for games like Montezuma’s Revenge which belongs to the class of Hard-
exploration problems, because they requires the agent to learn complex strategies with sparse
or deceptive feedback (rewards).

Some remarkable improvements of DQN are Double DQN (DDQN) [vHGS15], which
extends DQN with double Q-learning algorithm, known for its ability to counter the maxi-
mization bias typical of methods that use the max operator, such as Q-learning. Another
improvement to DQN is Prioritized DQN (PDQN) that samples transitions from the re-
lay buffer with a probability proportional to their TD error, since they are likely contribute
more to the learning of the parametrized value function. A further improvement was Dueling
DQN, introduced by [Wan+16] that improves the training efficiency of DQN as its vanilla
version, only updates the weights that contribute to the value of the action that has been
taken, whereas Dueling DQN learns at the same time the value v̂(s;w) of a state and the
advantage for each action â(s, a;w) = q̂(s, a;w)− v̂(s;w). More recent works like Never Give
Up [Bad+20b] and Agent57 [Bad+20a] further improve the original DQN architecture with
more advanced strategies.
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DQN(λ) is an alternative improvement of DQN explored by [DA19], who propose to shift
from the TD(0) one-step (bootstrapped) return Gt = Rt+1+ γmaxaQ(St+1, a) to the λ-return
of Equation 3.31. As previously explained, this would require the method to learn offline as
the λ-return can only be computed at the end of the episode. The authors of DQN(λ) propose
a recursive formulation for the λ-return that makes it possible to compute the return for
each state by looking only at the return of the successor state. A key passage of the proposed
architecture relied on refreshing the λ-returns of preceding states every time the value function
is updated for a state. This would not be scalable on a large replay memory, so the authors
restrict the cost by refreshing only a subset of transitions’ returns contained in a cache (a
subset of the replay memory). The network parameters are then trained with minibatches of
transitions sampled from the cache.

DQN(λ) employs a prioritized memory and proves of being capable of achieving better
performances than vanilla DQN on the Atari benchmark dataset. As discussed before, the
λ-return improves the problem of slow credit assignment, facilitating the propagation of the
reward signal.
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Chapter 4

Experimental Setting

In this chapter is presented in details the experimental setting, starting form the description
of the method used to generate a synthetic dataset of evasive binary samples. This dataset is
composed of binaries made of independent building blocks, which are randomly sampled and
connected in different ways to produce diverse samples, starting from the same fundamental
blocks. Then, this chapter gives a detailed explanation of the methods used in the experiments,
including code block embeddings and variations to the original DQN model [Mni+13]. DQN
implements Q-learning with function approximation, where a Deep Neural Network is used
to approximate a non-linear state-action values function. Eventually, this chapter shows the
results obtained by the RL algorithms chosen to address the task of finding hidden malicious
capabilities in evasive malware. An evaluation of the best model on unseen samples and an
ablation study are carried out to complete the analysis.

4.1 Synthetic Dataset Creation

There are two main reasons that led to the creation of a synthetic dataset to train the RL agents
to find hidden malicious capabilities in binary samples. The first one is the intrinsic difficulty
in the security setting to access datasets due to reduced availability, non-disclosure due to
strategic interest of security companies, potential misuse of malware samples by unauthorized
people that may release malware (intentionally or not), and creating security issues.

The second reason is due to a methodological choice of exploring this new research direction
step-by-step, testing the assumptions and the algorithms in an easier setting at first, in order
to collect useful information to improve the RL models and refine the training pipeline. The
knowledge gathered by training a proof of concept on a simpler dataset can pave the way for
future work aimed at addressing real-world binary samples.
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The synthetic dataset I have generated is composed of evasive binary samples, each one
organized as a graph of building blocks. There are three classes of building blocks: common,
evasive and flag.

• Evasive blocks gather some information from the environment and subsequently check
a trigger condition. If the condition is not satisfied, the sample will perform some sort of
evasion including exiting the execution or performing some trivial operation to disguise
the malicious behavior.

• Common blocks implement trivial operations such as data structures operations.

• Flag blocks are the ones implementing some malware capability. In practice they do not
put in place a real malicious behavior, but they just emulate it, being safe to be execute
in any environment.

In addition to the synthetic dataset I have implemented a script to setup a simulated victim
environment, including file system, configuration files and network. The file system includes
a tree of directories, a location containing private documents and other files containing fake
content. The configuration location emulates the /etc Linux directory, which is the equivalent
for the Windows registry. In this location there are some simulated configuration files with
textual fields, the passwd file, which in Linux is used to store users’ passwords, and other files
emulating the artifacts created by security products installed on the system. The network
environment is emulated by running an HTTP server in a directory containing some HTML
page samples, and an FTP server in another location. Both servers are accessed by the samples
using network protocols to simulate real network traffic with remote locations. The FTP server
emulates a remote filesystem to which malware can upload private files or from which download
malicious files.

I have developed a Python script to generate a dataset of evasive binary samples that
receives as input the following parameters:

• Dataset size: number of samples to produce.

• Samples length: number of building blocks composing each sample.

• Number of hidden flags.

• Proportion of evasive blocks with respect to the total number of blocks.

• Graph structure: tree or cyclic graph.

• Probability of creating loops in the graph, if it is a cyclic graph.
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• Blocks sampling method: whether to sample the building blocks with replacement or not
from the blocks pool.

At first a graph of building blocks is randomly generated for each sample. The graph is checked
against some quality measures and discarded if it does not respect them. In fact, I consider
a graph to be well-formed, when at least one flag block have to be present and the number
of evasive blocks has to be within a tolerance interval centered on the value of the argument
passed to the script. The graph can be a tree or a cyclic graph, which is obtained by adding
some backward edges to an existing tree. A backward edge connects a node with an ancestor,
creating a loop in the graph. The number of backward edges is controlled by an argument
passed to the script that defined the probability of creating a backward edge between two
nodes. For the loop to be implemented in source code, one of the node has to be the ancestor
of the other. In other words, to create a backward edge between two nodes a path must exist
between the two on the original tree. An example of backward edges is shown in Figure 4.1,

B

Figure 4.1: Example of a backward edge (in bold). However, not any edge can be added. For
instance the dashed edge is not allowed.

An example of tree- and graph-structured blocks organization is given in Figure 4.2. In
each graph of blocks exists a hidden path, which is the conditional path that makes it possible
to execute all the malicious capabilities (flags). The edges that do not belong to the hidden
path represent conditional branches executed as the result of some evasion. Some examples of
hidden path and evasive edges are showed in Figure 4.2.
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Malware capability:

Evasive block:

Common block:

Hidden path:

Evasive path:

F
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Exit:

Condi�on:
- False: evade
- True: take hidden path

(a) Tree-shaped blocks graph.

TF

F

F

F
T

T

T

(b) Cyclic block graph obtained by adding
backward edges.

Figure 4.2: Example of tree- and graph-shaped block graphs representing the highest level of
abstraction of the generated evasive samples.
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The blocks graph of each sample is then converted to C source code arranging the source
of each building block according to the conditions graph. The blocks graph can be a tree of
nested if-then-else constructs or a cyclic graph containing also do-while and while-do loops.
The next step involves the compilation of each sample’s source with GCC compiler in a Linux
environment. Eventually, each sample is automatically executed by a diagnosis script that
checks for runtime errors. The binary samples resulting from this operation can be used to
train and evaluate the RL agents.

4.1.1 Building Blocks Implementation

The binary samples are intended to run in a Linux environment, therefore the evasive blocks
emulate the evasions performed by Linux malware, for instance looking for artifacts left by
analysis tool in a simulated Linux environment. Below there is a list of all the building blocks
I have implemented in C source code that will be randomly arranged to compose the binary
samples of my synthetic dataset. Before implementing the blocks, I have collected information
form different sources of knowledge on the security domain coming from both my colleagues,
which are security researchers, and on the web. I have taken inspiration from popular malwares,
such as WannaCry and Ryuk ransomware. The rational behind my design choice is to represent,
to the best of my ability, real-world evasive malware, producing a valuable proof-of-work. If
successful, this work could be improved and implemented in a security product. However,
due to the time constrains of this internship, I had to restrict the set of blocks I planned to
implement, keeping only the most meaningful for a proof-of-concept.
Evasive blocks

• Check for network. Some analysis systems may prevent a sample under analysis to
connect to the network. The evasive condition checks if the HTTP server is reachable.

• Check for the existence of a specific web page on the Web (HTTP) server. This block
is inspired to C&C approaches. For instance the WEBC21 malware family retrieves
commands from web pages created by the malware author and performs malicious actions
accordingly.

• Try to reach an domain that does not exists. If success, evade. Some analysis systems
make the analyzed samples believe that the network is reachable by returning success
every time the sample tries to connect to a domain. To counter this, the popular Wan-
naCry ransomware checked the DNS for a domain that did not exist. Receiving a positive

1https://otx.alienvault.com/pulse/56aa595e4637f23551f3c21d/related
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response means being run in a simulated environment, therefore the malware terminated
its execution.

• Compare the hostname with the victim’s hostname.

• Check if a debugger is attached to the running process. Anti-debug evasion.

• Check if a user is registered in the victim host, analyzing the passwd file.

• Check for active user name.

• Verify if a security product is installed in the machine, looking for specific keywords in
file paths.

• Access the field of a configuration file in /etc location. This is equivalent to check for a
registry key in Windows systems.

• Get current date and time. This is common for logic bomb malware.

Flag blocks emulate malware capabilities.

• Download from the network, through FTP protocol, N files with malicious content.

• Steal files: upload M private files to the FTP server.

• Modify the passwd file.

• Multiple calls to hashing functions (e.g. SHA-265), which is common in cryptominer
malware [RŠL21].

• Read a file, encrypt its content and write it to another file, delete the cleartext file. This
is a common pattern that ransomware (e.g. WannaCry, Ryuk) perform a large number
of times to encrypt most of the content in the filesystem of a victim host.

• Open a large number of connections with a domain. This is typical of (distributed)
Denial of Service (DoS) attacks.

Common blocks perform trivial operations to emulate any sort of behavior that should not
be deemed as a malicious capability such as reading files, preforming data structure operations
like sorting a list, looking of an element in an array.
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4.2 Experiments

This section gives a detailed explanation of the experiments performed, the hyperparameters
used and the Deep Neural Network architecture used to implement Deep Reinforcement Learn-
ing algorithms. Eventually, the results are presented, comparing algorithms and methods on
the task of finding hidden malicious capabilities in evasive samples. The methods are then
compared with an ablation study.

Code Block Embedding

As explained in the previous chapter, the code block embedding task is inspired by NLP
methods and has the goal of producing a numerical representation for categorical data, the
opcodes instructions, while preserving most of its semantics. In the experiments I have used two
embedding approaches: TfIdf with dimensionality reduction and Doc2VecC, both trained on
the code blocks extracted from the binaries of the synthetic dataset. These methods have been
chosen because they have a small number of trainable parameters, which reduces the risk of
overfitting on the relatively small dataset I generated, while having a small inference time. The
downside of these embedding approaches, compare to more powerful ones like BERT, is their
limited capacity of capturing complex semantic relations in text. However, assembly language
is less complex and ambiguous with respect to the natural language. Since the embedding
method produce vectors of real numbers, the RL algorithms have to deal with a continuous
state space, which is addressed by using function approximation. The best dimension for
Doc2VecC opcode embeddings has been found to be 31, whereas the vectors produced by the
TfIdf vectorizer have been reduced to the first 18 principal components of the PCA method.
The number of principal components has been chosen to preserve 85% of the explained variance.

In Figure 4.3, the embedding space produced by Doc2VecC for the opcodes has been pro-
jected to a two-dimensional space using the t-SNE method for non-linear dimensionality reduc-
tion. It is interesting to notice how the embedding space preserves the semantic information
carried by opcodes and function calls. In fact, it is possible to isolate some clusters of well-
known operations, including network communication, file and directory operations, evasive
and malicious behaviors, exit operations (typical in case of error), and the Conditional Jump
Instructions (CJIs). The regularization used by Doc2VecC produces embeddings with lower
norm for frequent terms. In fact, the CJIs are embedded in the central cluster, consistently
with the expectations.
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Malicious & Evasive
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File & Dir
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Exit and Close

Figure 4.3: Embedding space produced by Doc2VecC method, projected on a 2D space with
t-SNE. The embedding method preserves the semantics of opcodes and function calls, making

it possible to identify some clusters.

Static vs. Dynamic Training

In this work, I have developed an interpreter to allow the RL agent to interact with the GDB
debugger, analyzing the content of a binary sample and hijacking the execution flow in the
conditions, at runtime. However, the dynamic interaction with the debugger entails a consid-
erable time overhead, which makes training extremely slow. To get around of this problem,
the training has been performed on a static graph representation of the binary samples, which
produced a speedup of more than 200 times. The trained models can still be deployed in a
dynamic environment, interacting with a debugger, using the developed interpreter. Further-
more, to simplify the adaptation of the static representation of a binary to its dynamic version,
the action space has been reduced to the following actions: jump, which goes to the code block
executed when the condition is true, and don’t jump, which goes to the alternative block of
code. This also simplified the analysis.

Vanilla DQN

The experiments involving the search for the best RL method have started from the popular
DQN [Mni+13], which provides a good baseline. It implements Q-learning, using a Deep
Neural Network (DNN) as a function approximator. As stated in the Chapter 11 of the book
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[SB18], the jointly usage of bootstrapping, off-policy learning and function approximation can
generate a considerable source of instability, hindering learning. The authors of DQN propose
three methods to stabilize learning: experience replay, clamping the TD error (the loss) between
-1 and 1, and the utilization of an auxiliary network called target network, used to decorrelate
the computation of the training target. The main network is the policy network q̂(·, ·;w),
which is used to select the greedy action when interacting with the environment, from which
the name "policy". The parameters of this network, w, are learned online. In contrast, the
target network has parameters w−, which are periodically replaced with the parameters of the
policy network. The DQN computes the learning target as:

Rt+1 + γmax
a
q̂(St+1, a;w

−)

A first improvement over DQN is Double DQN, initially proposed by [vHGS15], which
brings the idea of Double Q-learning to the domain of Deep Q-learning. Double Q-learning
aims at mitigating the maximization bias introduced by the max operator, which arises at the
beginning of training. Although the maximization bias often vanishes throughout training, it
slows learning since it leads the agent to overestimate the value of some state-action values,
due to sampling error. Double DQN ameliorates the formulation of the target, to counter the
maximization bias. The target if rewritten as:

Rt+1 + γq̂(St+1, argmax
a
q̂(St+1, a;w);w−)

To solve the problem of dealing with states that violate the Markov property, namely

P(St | St−1, At−1) 6= P(St | S0, A0, S1, A1, . . . St−1, At−1)

the Markov Decision Problem (MDP) has been extended to the Partially Observable MDP,
where a state is approximated as a set of the previous k observations. The ideal case requires
k to be equal to the current length of a transition, but a remarkable improvement has already
been observed when setting k = 4. In Alpha Go Zero [Sil+17], the authors propose to use k = 8.
However, this requires additional trainable parameters, which proved to cause overfitting in
this setting, where the dataset size and samples variety are reduced. As a result, a state is
the result of stacking the last 4 observations, which are sent to a 1D Convolutional Neural
Network (CNN). The observations are stacked and not concatenated for two reasons: first, the
dimension o of an observation is variable, depending on the embedding method used, second,
convolutional layers have less trainable parameters due to parameter sharing. Stacking allows
to apply a CNN. The architecture of the CNN is showed in details in Table 4.1. The output
size of the last layer is equal to the size of the discrete actions space a, whereas h is a tunable
parameter and controls the size of the linear layer.
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Layer Output size Details
Input 4× o -

1D Conv, ReLU, Batchnorm 8× · kernel 4, stride 1
1D AvgPool, ReLU, Batchnorm 8× · kernel 2, stride 2
1D Conv, ReLU, Batchnorm 16× · kernel 4, stride 1

AvgAdaptPool, ReLU, Batchnorm h adaptive kernel
Linear (output) a h× a

Table 4.1: CNN architecture used for the experiments.

The CNN architecture presented in Table 4.1, trained with Double Q-learning constitutes
the baseline to be compared with the other models and strategies I have explored. For this
reason, it is referred as Vanilla DQN and the other models explored in this work improve over
this baseline. Similarly to DQN, the training is supported by a replay memory from which
batches of transitions are sampled randomly, during training. The TD error, which constitutes
the objective function to minimize is

δ = Target− q̂(St, At;w)

= Rt+1 + γq̂(St+1, argmax
a
q̂(St+1, a;w);w−)− q̂(St, At;w)

and as in the original paper, it is clamped in the interval [−1, 1], before computing the gradients.
In addition, clamping the gradients in the same interval proved to be an effective strategy to
prevent diverging behaviors during learning. A small batch size has the advantage of reducing
the chances of getting trapped in local minima, however it also produces noisier estimates of
the gradients, which in this case hindered convergence. Setting the batch size to 32 improved
stability. The optimizer is Adam with initial learning rate of 1e-3. The loss criterion is the L1
smooth loss, also known as Huber loss, when delta = beta = 1, as in this case. The advantage
of this loss, over the classic Mean squared Error (MSE) loss, is that the outliers falling outside
the [−1, 1] interval, have a smaller impact, with the effect of stabilizing learning. For the
Vanilla DQN training procedure, the TD errors are clamped in the [−1, 1] interval, so the
Huber loss is the same as the MSE. However, in further experiments with different models, the
TD error is clamped in a wider interval. The size of the replay buffer has been set to 100K
transition. The RL task is framed with an episodic formulation and the discount factor has
been set to γ = 0.999. The optimal value for the hidden dimension of the CNN, h, has been
found to be 48.

66



Matteo Bunino Chapter 4. Experimental Setting

DQN with Prioritized Replay Memory

I the work of [Sch+16] is shown how the sampling procedure from the replay memory, typical
of experience replay methods, can be improved by increasing the probability of sampling the
transitions with the highest TD error, as they are the ones with more learning potential. There
are two strategies of attributing uneven sampling probabilities among the transitions in the
replay buffer. The first, called Proportional priority, gives to each transition a priority equal
to the absolute value of its TD error pi = |δi| + ε, where ε is a small positive constant that
ensures that no transition has null priority. However, this is subject to outliers, with the risk
of sampling always from the same subset of transitions. Another strategy consists of giving a
priority proportional to the rank of a transition, pi = 1

rank(i)
, where the rank is the order in

the list of transitions, sorted by deceasing TD error. This approach is less subject to outliers.
The rank based prioritization can be ameliorated by attributing a different rank to B clusters
of transitions, grouped by similar TD error. B can be chosen to be equal to the batch size, so
that each batch is the result of a stratified sampling, where a transition is sampled uniformly
form each cluster. This ensures that each batch contains at least one transition for different
intervals of TD errors.

The probability of sampling a transition from the replay buffer, given its priority pi is
computed as:

P (i) =
pαi∑N
j p

α
j

where N is the number of transitions in the replay buffer. When α = 0, the transitions are
sampled uniformly. To counterbalance the bias introduced by uneven probabilities, the authors
propose to use the Importance Sampling (IS) weight that has to be multiplied for the TD error,
before computing the loss. The IS weights are computed as:

wi = (NP (i))−β

When β −→ 1, the IS correction becomes more aggressive. Thus, at the beginning of training
β ←− β0 and then it is linearly incremented to attain 1 at the end of training.

In my experiments, the proportionally prioritized experience replay model is called PrDQN,
whereas the rank-based with stratified sampling is RnDQN. For the first, I have chosen the
values of α = 0.7 and β0 = 0.5, whereas for the latter I have used α = 0.6 and β0 = 0.4. Fur-
thermore, the training hyperparameters are the same as for Vanilla DQN. The only difference
from the baseline model is that the TD errors have been clamped in the [−10, 10] interval.
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DQN(λ)

The work of [DA19] extends DQN to utilize the λ-return as a target, as presented in Equation
3.30. This methods improves over deep Q-learning by reducing the instability introduced by
bootstrapping. Furthermore, λ-return better propagates the reward information to previous
state-action pairs, improving the credit assignment problem and producing better estimates
for the state-action values overall. However, this comes at an higher computational cost, with
respect to Q-learning. The authors propose a recursive formulation of the return, that reduces
the complexity of its computation

Gλ
t = Rt+1 + γλ

[
Gλ
t+1 −max

a
q̂(St+1, a;w)

]
that depends only one the return of the next transition, which is 0 if the next state is a terminal
state. A trajectory is pushed to the replay buffer after it has reached the terminal state and
the λ-returns is computed backwards. To make the Gλ

t of past transitions a good training
target, its value has to be periodically refreshed throughout training, which entails a sweep
over the whole memory. In my experiments, I set the capacity of the replay buffer to be 5K,
which proved to be enough to reach good results, while keeping low the burden of the refresh
operation. Again, the TD error have been clamped in the [−10, 10] interval, as for prioritized
replay buffer methods. After some coarse-grained tuning, I found the best value of λ to be
λ = 0.7.

Continuous Reward

To tackle the problem of sparse rewards, which are given only when a capability is found and
at the end of the episode, I have implemented a continuous reward function, with the goal of
giving some additional hint to the agent to better understand when it is "close" to a malicious
block. In addition, the continuous reward contains a negative term, proportional to the number
of actions taken, which increases as the budget of remaining actions lowers. Eventually, an
intrinsic reward term has been added, inversely proportional to the number of visits of a state,
with the goal of fostering exploration or rarely traversed states. The continuous reward received
by the agent, after taking action ai and transitioning to state si is:

ψt(si, ai) = max
j

{
e−γR ||ε(si)−fj ||

2
2

}
− t

T
+

σ

N(si)2

where the first term is directly proportional to the distance, in the embedding space, of si
from the blocks fj containing a flag. The optimal value found for γR is 5. The second term
increases in magnitude as the number of actions performed during an episode t attains the
actions budget T . Eventually the intrinsic reward term is weighted by σ = 0.5 and N(si) is
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the number of times state si has been visited during an episode. This function is the result of
extensive experimentation, guided by an informal trial-and-error procedure.

4.2.1 Results

This sections reports the results achieved by the models during both training and evaluation
on unseen binaries. In fact, the dataset has been split into a train set (of 10 samples) and a
test set (of 5 samples). No validation set has been used and the tuning of the hyperparameters,
or the choice of the best model has been carried out taking into account the performances on
the train set. The training has been performed by simultaneously processing all the samples
in the training set, in a multi-agent RL fashion, using one agent per training sample. At each
time step, each agent takes an action on the binary it has been assigned to, and the resulting
transitions are collected in the replay buffer. This allows to learn sample-invariant features.

The chosen evaluation measure is the evolution of the reward throughout training. There
are two types of reward: the terminal reward is given at the end of an episode and is only
proportional to the number of flags found in a binary sample. Thus, it is a good measure of the
effectiveness of a RL method in finding hidden malicious capabilities. On the other hand, the
cumulative reward, includes the terminal reward and adds to it all the other rewards received
throughout an episode. The cumulative reward curves showed in the plots below, are the result
of the average of the cumulative rewards accumulated by each agent throughout an episode.
A similar reasoning holds for the terminal reward. Each reward curve reported in this section
has been obtained as the average of 5 re-runs of the same method with a different random
seed initialization. This allowed to compute 95% confidence intervals, which are omitted for
the reward curves, to improve readability.

Training

The results obtained during training can be clustered in two main groups, differentiating the
ones using a continuous reward function from the ones using a discrete reward function. Com-
paring the rewards evolution for discrete versus continuous reward, in Figure 4.4 and Figure
4.5, it is possible to notice how, at the beginning of training, the methods using continuous re-
ward receive a higher cumulative reward since the beginning of training. However, the reward
function is hard to tune and can easily introduce some unwanted noise, which makes training
more unstable. Overall, the methods employing discrete reward perform better and this may
be attributed to the deceiving effect of intrinsic reward and, more in general, to the difficulty of
defining a good continuous reward function. The ideal continuous reward improves the credit
assignment process, while introducing a low bias.

69



Matteo Bunino Chapter 4. Experimental Setting

It is interesting to notice that Tf-Idf embedding performs better than Doc2VecC, on average,
for most methods. This can be justified because the vocabulary has a reduced size, easing the
task of PCA dimensionality reduction, while not exploiting the potential of Doc2VeC.

The models employing prioritized experience replay achieved good performances, com-
parable to the more expensive DQN(λ) model, which is the one achieving the overall best
performances. This is reasonable, as it employs a training target which is more stable than
the use used by TD(0) methods, and is more precise.

Figure 4.4: Reward evolution over training episodes. Discrete reward.

Also the losses of the methods employing continuous reward, in Figure 4.7, provide ad-
ditional evidence supporting that this reward function introduces some source of instability.
In fact, the loss curves of the methods using a discrete reward function are smoother and
well-behaved, as depicted in Figure 4.6.
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Figure 4.5: Reward evolution over training episodes. Continuous reward.

Figure 4.6: Loss evolution over training episodes. Discrete reward. The shaded areas are the
95% confidence intervals.
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Figure 4.7: Loss evolution over training episodes. Continuous reward. The shaded areas are
the 95% confidence intervals.

Evaluation

The evaluation task consists of comparing the performances attained on unseen samples by
the best model, with respect to a random policy, which selects a action with equal probability
at each step. The best model configuration, DQN(λ) with Tf-Idf embedding, is applied with
decreasing ε, which is the probability of taking a random action instead of the greedy action.
The goal is to show the evolution of the reward curves when the policy becomes more and
more greedy.

As Figure 4.8 depicts, when the policy applied to the samples becomes closer and closer to
the greedy policy, the reward increase, highlighting how the learned action values generalize
well across different binaries. It is important to mention that the binaries belonging to this
synthetic dataset are composed of the same building blocks, randomly selected in different
order. Therefore, the performances shown on the test set may be too optimistic, compared
to real-world scenarios. Still, this results underlines that this research direction is promising,
which was the main goal of this work.
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Figure 4.8: Performances on unseen samples. Best model versus greedy policy.

Ablation study

In this section, an ablation study is performed on the two best models, to analyze the contribu-
tion of each component, including the embedding method and the reward function. For DQN
with prioritized experience replay, in Figure 4.9, employing a continuous reward function (CR)
show a better cumulative reward, when compared to discrete reward (DR) models, which may
be deceiving. In fact, this trend is flipped when analyzing the terminal reward, which is the
most important one, being proportional to the number of hidden malicious capabilities found
in a binary. The terminal reward is independent from the reward function used and offers,
therefore, is a reliable measure to compare different approaches. Again, it is possible to see
how models using Tf-Idf embedding often perform better than the ones utilizing Doc2VecC
embedding.

A similar phenomenon is noticeable in Figure 4.10 for the DQN(λ) model. However, in
this case the cumulative rewards are less correlated to different reward schemes, whereas the
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terminal reward is highly influenced by them. This may suggest that the longest horizon used to
compute the lambda return is considerably affected by the continuous reward function, while
being more prone to propagate the information coming form sparse rewards of the discrete
reward function.

Figure 4.9: Comparison of different configurations of embedding method and reward function
for the DQN model with proportionally prioritized experience replay. CR: continuous reward,

DR: discrete reward.
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Figure 4.10: Comparison of different configurations of embedding method and reward
function for the DQN(λ) model. CR: continuous reward, DR: discrete reward.

4.2.2 Discussion

The results achieved by PrDQN and DQN(λ) algorithms, on both training and evaluation tasks,
show that it is indeed possible to train RL models on the task of finding hidden malicious
capabilities in evasive binary samples. Although this work is a proof of concept, and the
experimental setting cannot be directly compared with the ones employed by state-of-the-art
works, it proves that this research direction is promising and deserves further work. Interesting
research directions for future work include a deeper investigation of language models to be
applied to the task of code block embedding. A larger language model, such as BERT [Dev+19],
could be pretrained on a corpus of code blocks extracted from a large dataset of binaries, and
fine-tuned on the RL task. The self-supervised trainig of the language model could include
techniques from the domain adaptation field, learning the same embedding for code blocks
with different syntax implementing the same behavior, following the intuition of [Com+10].
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On the RL side, further work could explore alternative approaches, taking inspiration form the
more advanced Alpha Go Zero [Sil+17], Agent 57 [Bad+20a] and Mu Zero [Sch+20].
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Conclusions

This work has been carried out in the framework of a research internship in the AI4Sec research
team of Huawei’s Munich Research Center. This team focuses its research on the application of
machine learning methods to the challenging field of cyber security, with the goal of developing
intelligent solutions able to cope with increasingly complex malware. Currently, one of the most
promising trends in Machine Learning field is Reinforcement Learning (RL), which proved to
be capable of solving relatively complex tasks, outperforming humans in some tasks. Some
examples are Alpha Zero and Alpha Go, which beat Chess and Go word champions respectively.
Some experts argue that RL is the form of machine learning methods closer to how humans
learn, which in principle, makes it one of the most favourable candidates when aiming at
Artificial General Intelligence. Malware analysis is a challenging topic which nowadays requires
security analysts to perform most of the tedious and time-consuming work, when analyzing
suspicious binaries.

The goal of this research internship has been to analyze the malware analysis domain,
looking for a suitable application of RL, which may pave the way for future research. At
present, the literature addressing RL applications to cyber security is scarce, which made this
research hard and rewarding at the same time. In fact, the lack of literature, may reveal
an appealing unexplored research niche, while at the same time it may be a symptom of an
intrinsic difficulty of applying RL to this domain. This work proves that there is indeed some
space for improvement over the state of the art, while acknowledging that the engineering effort
required in this domain is considerably high, compared to other machine learning applications.

This thesis performs a comparative analysis of malware analysis techniques, following their
temporal evolution, starting from static analysis until state-of-the-art dynamic analysis tech-
niques. Before identifying a promising direction, I have explored the application of RL to static
binary code deobfuscation, static API invocation deobfuscation, fuzzing and trigger-based eva-
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sive malware. To tackle trigger-based evasive malware I have decided to equip an RL agent
with a debugger to dynamically interact with the malicious binary. The agent hijacks the
conditions to explore the conditional graph, looking for hidden malicious behavior protected
by evasive conditions. As discussed in the previous chapter, the training of RL methods is
not free from pitfalls and the experimenter has to deal at the same time with multiple sources
of instability. However, the proof of concept developed during my internship has achieved
its main goal, namely proving that the chosen research direction is promising and deserves
further research. The experiments carried out in this work highlight that RL methods can
be successfully applied to the task of finding hidden malicious capability in evasive malware
samples. The proposed model, supported by the achieved results, performs an additional step
towards a solution to tackle dynamically evasive malware.
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Implementation

This appendix describes the implementation of the RL environment. Section A.1 gives a broad
overview of the developed modules’ architecture. The first step has been the choice of the
debugger, as explained in Section A.2. In Section A.2.1 are explained the semantics of a state,
how a state is defined at low-level and how the hijacking action is implemented in the debugger.
In Section A.2.2 I motivate why a jump back action is needed, I give a formal definition of
it and I explain how it is implemented at a lower level. In Section A.2.3 is introduced a
main data structure used by the debugger interpreter, the conditions chain, which keeps track
of the exploration history. Eventually, Section A.3 describes the design of an high-level RL
environment class, which will be used in the training notebook.

A.1 Architecture Overview

The architecture is composed of three main modules, as presented in Figure A.1: the debugger
module, the debugger interpreter and the training notebook where the RL algorithms are
implemented. The debugger runs the target binary and simulates the memory, the stack and
the processor registers. It provides the tools to interact at low-level with the binary (e.g.,
stepping instruction-by-instruction, setting breakpoints and tampering with the memory of
the debugged binary).

The debugger process is run as a sub-process of a Python process that operates with low-
level debugger commands to extract information and aggregates it as states, after a feature
engineering has been performed. The inverse operation is also performed in this stage, namely
implementing the high-level actions performed by the agent as fine granularity operations on
the debugged binary. Another key task of this module is to perform some backend operations
to manage the data structures used to support the translation of high-level actions of the agent
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Cumulative reward over training episodes

Notebook (.ipynb) GDB inpterpreter (.py)
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Figure A.1: The RL environment is defined in a notebook that executes the debugger
interpreter module as a sub-process and communicates with it through piped stdin and
stdout. In turn, the interpreter launches the debugger as a sub-process and employs a

similar communication scheme.

in low-level debugger commands and vice versa. The main idea behind this interpreter is to
perform features engineering and hide the low-level complexity so that the agent can perform
higher level atomic actions, with just a command. It can be considered as a gateway used
by the agent to access the environment. The importance of this interpreter is crucial since
it is prohibitive to provide the RL agent with a raw binary as a state. Even splitting the
binary in smaller blocks would entail a large dimensionality of the state space, making training
unfeasible. The description of the implementation of this module is the main topic of this
monthly report.

The RL training and evaluation process is carried out from a notebook where the debugger
interpreter is launched as a sub-process. Here the agent receives states and performs actions.
These are communicated with the interpreter sub-process through two pipelines on the sub-
process’ stdin and stdout.

A.2 Interaction With the Debugger

Currently, to the best of our knowledge, no tools are available for the task of interacting with a
GDB via a RL agent. Therefore this required me to develop it, starting from an already existing
debugger. I have explored available solutions and assessed their fit to this task depending on
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the following criteria:

• Developer API support.

• Documentation availability and clarity.

• Community support.

• Cross-platform support (e.g. Windows and Linux binaries).

• Previous personal experience.

I have compared the following debuggers: Immunity Debugger, OllyDbg, Radare’s debugger
and GDB. In the end, I have chosen GDB since it provides Python APIs, its documentation
is complete and clear, the community is active and many examples or support can be found
online. Furthermore, I have some experience on how to use it.

A key feature of GDB is its possibility to provide a machine-oriented interface for information-
rich low-level interaction, using a format easily parsed by software. This is called GDB/MI
interface. This feature made it possible to switch from using the internal Python APIs, which
employ an outdated version of Python, to the pygdbmi Python library that launches the debug-
ger as a sub-process and parses GDB machine interface string output, returning structured data
types (Python dicts) that are JSON serializable. This library performs a bi-directional com-
munication with the debugger sub-process, redirecting its stdin and stdout to two pipelines.

This Python library provides a reliable way of communicating with the debugger using
structured Python dictionaries. Another advantage of relying on GDB/MI comes from the
real-time asynchronous events notification. For instance, every time a new dynamic library is
imported (loaded in memory or linked to the process memory), this machine interface returns a
structured notification. Other examples can be: hit a break-point, termination of the executed
binary.

A.2.1 Conditions

The task of the RL agent is mainly devoted to hijacking the control flow, namely tampering
with the expected behavior of the conditional jump instructions (CJIs), until a termination
condition is met. Therefore, each RL environment state has to be associated with a different
conditional jump instruction (CJI). To provide the RL agent with more context information
about the CJI, both the features of a conditional jump and the preceding instructions, back to
the previous conditional jump instruction, are given to the agent as a state. This enables the
agent to gather additional semantic information about the code block that contains the CJI.
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Algorithm 4 describes the logic behind the GDB interpreter package. In particular, the
algorithm explains how the instructions, disassembled step-by-step (line 4), are analyzed and
aggregated to build the next state, how the states and the actions are communicated on the
sub-process pipelines (lines 16 and 17) and how the received actions are implemented.

Every time a CJI is encountered, the features collected up to this point are organized
as a state and sent to the agent. A state contains also φCJI , the details of the currently
encountered CJI, which include a bit which is set to 1 if the CJI is going to jump, 0 otherwise.
While the agent is stepping instruction-by-instruction, a function call may be encountered or
an asynchronous event may happen. In this stage, any usual asynchronous event (e.g., loading
of dynamic library or termination of the program) is properly handled.

When a call instruction is encountered, the call target is analyzed: it may be an API or
a user-defined function within the examined binary. Depending of the type of call target, the
debugger interpreter can perform two actions:

• Step-over the function code. The debugger executes the function in background and
waits for it to finish. This command tells the debugger to treat a function as a single
instruction. This is the preferred behavior when encountering a known library function,
since its content and its semantics are familiar. An example of functions that do not
need to be analyzed by the agent, stepping-into them, are APIs and system calls.

• Step-into the function code. The debugger jumps to the first instruction of the function
and enables the agent to analyze it instruction-by-instruction. This is favourable when
the binary is calling an unknown function that may hide some malicious behavior: since
its content is unknown, this kind of function is always explored.

The experimenter decides which are the call targets that the agent has to explore, stepping-
into them. Algorithm 4 also introduces the Jump Back action: when the agent performs this
action it returns to the previously visited state, which is the previous condition. Section §A.2.2
explains in more detail how this action is performed.

Hijacking the CJI

CJIs perform a jump to an address location depending on the outcome of a logic operation
performed on the flags register. The action performed by the agent by hijacking the control-
flow is equivalent to tampering with the flags register’s bits to revert the outcome of this
logical expression. As shown in Algorithm 4, the first step consists of identifying whether the
CJI performs a jump, then a proper tampering is performed to either invalidate or not the
conditional expression checked by the CJI.
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Algorithm 4 Generic interaction loop
Input: π = Entry point . Initialize the program counter

1: while Execution not finished do
2: φ← {} . Initialize state’s features representation
3: while True do
4: I ← disassembleNextInstruction(π) . Step instruction-by-instruction
5: φ← φ+ genericFeatures(I) . Generic features engineering of current instruction
6: π ← π+ len(I) . Increment the program counter: point to next instruction
7: if I is call then . If the instruction is a calling a function
8: φ← φ+ analyzeCallTarget(I) . Add called function information to features
9: end if
10: if I is CJI then
11: φCJI ← analyzeCji(I) . Compute CJI features.
12: φ← φ+ φCJI . Add CJI information to features
13: break . Halt the step-by-step disassembling. A new state is ready
14: end if
15: end while
16: sendState(φ, stdout) . Send current state to agent (stdout pipeline)
17: α← receiveAction(stdin) . Receive action from agent (stdin pipeline)
18: switch α do
19: case Hijack
20: if isJumping(I) then . Check if the CJI is going to jump
21: preventJump(φCJI) . Tamper with flags register to prevent jump
22: else
23: forceJump(φCJI) . Tamper with flags register to force jump
24: end if
25: case Jump back
26: π ← jumpBack(π) . Set program counter to previous condition

27: case Quit
28: quit() . Terminate the execution of debugged binary and debugger

29: end while=0
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Example A.1 includes a conditional jump instruction and identifies the flags to be updated
to force or prevent a jump.

Example A.1. Conditional Jump Instruction: jle.
Jump if: ZF = 1 or SF != OF
To prevent the jump (invalidate the expression): set ZF = SF = OF = 0
To force the jump: set ZF = 1.

Instruction Blocks as States

A state is defined as the instructions block that begins after a CJI and terminates with the
active1 CJI. A state is associated with the active CJI since the agent has to take an action to
influence that CJI. Without loss of information, to simplify the implementation, this definition
has been relaxed by including the previous CJI in the instructions block as well. Thus in this
early stage of experiments, a state is defined as the following.

Definition A.1. State.
A state is a block of assembly instructions, such that the fist instruction of the block is the
previously encountered CJI whereas the last instruction is the last encountered CJI, which is
also the active instruction (the one currently referenced by the program counter). The other
instructions composing the state are the ones encountered executing the binary instruction-
by-instruction, from one CJI to the other. A state can be enriched by adding an additional
bit, that represents whether the active CJI instruction is going to jump (1) or not (0).

An example of (GDB’s disassembled) code arranged as a block, associated with a condition,
to define a state is shown in Listing A.1.

It is important to underline that the binary is executed instruction-by-instruction and each
state is put together one instruction at a time, without resorting to static code analysis to gather
information from the next instructions or code blocks that have not been executed yet. This is
because some static analysis evasions may be present, such as Control-flow Graph obfuscations
or hijackings. Some examples are non-returning calls, call stack tampering, exception-based
control-flow hijack. The reader is referred to [RM13] for a detailed explanation. I assume that
the debugger is immune to static obfuscations, being a dynamic analysis tool.

In the first version of the RL environment, which perform a naïve features engineering,
a state is represented as a categorical value defined as the hash of the tuple (previous CJI
address, current CJI address, current CJI jump intention).

1The active CJI is the CJI currently referenced by the program counter.
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1 0x000000000000118d <main+68>: je 0x11ac <main+99>
2 0x000000000000118f <main+70>: movl $0x0,-0xc(%rbp)
3 0x0000000000001196 <main+77>: lea 0xe6d(%rip),%rdi
4 0x000000000000119d <main+84>: call 0x1050 <puts@plt>
5 0x00000000000011a2 <main+89>: addl $0x1,-0xc(%rbp)
6 0x00000000000011a6 <main+93>: cmpl $0x2,-0xc(%rbp)
7 0x00000000000011aa <main+97>: jle 0x1196 <main+77>

Listing A.1: The current CJI is at the address <main+97> and the instructions that make its
context are the ones in range [<main+70>, <main+93>]. The instructions block that

constitutes the current state is defined by the range [<main+68>, <main+97>].

Example A.2. State features engineering.
Following the example in Listing A.1:
Si = hash((<main+68>, <main+97>, True))

A.2.2 Jump Back Action

Throughout the exploration of the binary, the agent may discover that it had undertaken a
wrong path that may likely lead to nothing interesting. Therefore, the agent is equipped with
the ability of jumping back to the explored conditions’ path at any moment. This capability is
motivated by both the necessity of reducing the exploration cost and the desire of giving the
agent a sufficient flexibility of exploring the binary control-flow, looking for the hidden target
flag. This prevents the need of restarting a debugging episode from scratch every time a wrong
path is taken. Jumping back may reduce the burden of path exploration when the agent can
infer from the states’ features that going further is no more interesting and an alternative path
should have been taken in previous steps.

Definition A.2. Valid jump back.
A jump back operation is valid when it restores the program counter2 to a previously-executed
condition and can be reverted by a single action: either hijacking it or not.

The jump back operation should ensure that, when resuming the previous condition, the
simulated memory, stack and registers are fully restored, reflecting the same internal state when

2The program counter, also called instruction pointer, is the register that stores the address of the currently
executed instruction.
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that condition was encountered the first time. This is not trivial to ensure because it would
require to dump the whole GDB simulated memory and reload it when needed. To address
this issue in a more elegant way I have resorted to GDB’s built-in checkpointing functionality.

GDB Checkpoints

At a low-level, GDB performs the checkpoint of the debugged process memory by invoking
on it the fork() system call. This will spawn a new child process that will be kept hanging
until the checkpoint is resumed. Performing a fork() for each encountered condition becomes
infeasible as the number of conditions in the binary grows requiring more memory, making it
hard in practice to work with real-world binaries. To overcome this issue I have introduced a
tunable hyperparameter that defines the frequency of checkpointing every time a condition is
met, leaving some conditions un-checkpointed. When one of these has to be resumed because
of a jump back action, the closest checkpointed condition among the previous ones is resumed
and the binary is executed in background, without any features collection, until the desired
condition’s code block is met. Reducing the number of checkpoints lowers the memory needs
for the RL environment execution, but it has the drawback of increasing the latency when
jumping back to an un-checkpointed condition, due to the overhead of executing some code
in background before reaching the desired condition. Every time a checkpoint is resumed a
new one is created for future resuming, whereas its parent process is killed (unless it is the
debugger process), to free memory space. When a jump back is performed, the last condition
and its active checkpoints are freed from memory. Algorithm 5 contains the pseudo-code for
the resumption procedure of a checkpoint.

As checkpoints are not available on the Windows’ GDB version, I will use the Linux envi-
ronment to run any future experiment.

Algorithm 5 resumeCheckpoint(): Resuming a checkpointed condition
Input: CID . Receive the checkpoint ID to resume

π ← runCheckpoint(CID) . Restart checkpoint
PID ← activeCheckpoint() . Get parent process ID. Can be a checkpoint
if PID 6= getDebuggerPID() then . If the parent process is not the debugger process

kill(PID) . Kill the parent checkpoint process
end if
setActiveCheckpoint(CID) . Broadcast the new parent process ID
CID ← createCheckpoint() . Create a new checkpoint

Output: CID, π . Return the new checkpoint ID and the program counter
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A.2.3 Conditions Chain Exploration

The main data structure that supports the exploration of the dynamic Control-flow Graph,
while keeping track of the visited conditions, is the conditions chain. This is a list of conditions
that records the whole exploration history, enabling the agent to jump back to the previously
visited conditions.

The conditions chain maintains general statistics about the set of visited conditions. Every
time a new condition is encountered, it is appended to the tail of this chain and every time
a jump back is performed, the tail condition is removed and the execution is resumed at the
previous condition. The agent can jump back any number of times in a row: if the agent tries
to jump back from the head of the conditions chain, no jump back will be performed and it
will remain in the same state.

To reduce the memory needs of this RL environment only one condition every k is check-
pointed. When the agent jumps back to a condition that was not checkpointed, the checkpoint
of the closest checkpointed condition among the previous ones is resumed. Subsequently, the
debugger runs the binary until the condition that precedes the target one is encountered. From
this point on, the default behavior is restored: the debugger steps instruction-by-instruction
and collects features regarding the encountered assembly instructions. The operation of step-
ping one instruction at a time will halt when the target CJI is encountered. At this point,
the information gathered stepping instruction-by-instruction is returned as a state, following
the procedure presented in Algorithm 4. Example A.3 shows how a jump back to an un-
checkpointed condition is performed in the conditions chain. In this example, not all the
conditions have a checkpoint.

Example A.3. Jump back to un-checkpointed condition.
Conditions chain: (C1, C1, C2, C3,C4, C5, C6, C7)

Checkpoint frequency: k = 4. The checkpointed conditions are in bold.
Active condition: C7. It is the one currently referenced by the program counter.
The jump back operation will (1) remove C7 from the conditions chain; then (2) resume the
closest checkpointed condition, C4; subsequently (3) run in background the instructions
between C4 and C5 and eventually (4) step instruction-by-instruction between C5 and C6

arranging the collected information as a code block. The resulting block is returned as the
state associated with the condition C6, according to Definition A.1.

The integrity of jump back, according to Definition A.2, has to be guaranteed even in pres-
ence of loops, namely when the same condition is encountered multiple times before jumping
to a new unexplored code block. The algorithm appends a condition address to the conditions
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chain every time a condition is met. However, in a loop the same condition is met a number of
times equal to the number of iterations, resulting in appending multiple times the same condi-
tion to chain. When a jump back is performed, the execution is resumed from the penultimate
condition in the chain, which in this case would bring the agent to the same condition. This
would violate Definition A.2. A visual example of this is presented in Example A.4.

Example A.4. Repeated append of the same condition in the chain.
Consider the listing below:

char curr_time[20];

// First evasive condition: C1
if (! is_debugger_attached()){

// Loop until the second evasive condition, C2, is met
do{

get_curr_time(curr_time);
}while(strcmp(curr_time, "11:59") != 0);

// Third evasive condition: C3
if(strcmp(gethostname(), "CHOOKOO") == 0){

// Check last evasive condition: C4
if (are_private_files_present()){

// Perform the malicious action
steal_data();

}
}

}
else{

// A debugger is analyzing me! Evade
exit(0);

}

Listing A.2: Example of evasive malware that checks an evasive condition in a loop.
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If a condition is appended to the conditions chain every time it is met, after n iterations
of the do-while loop in Listing A.2, the conditions chain would be (C1, C

′
2, ..., C

n
2 ). At this

point, the program counter references the address of C2 and preforming a jump back would
resume the execution from the second-last condition, which is still C2, violating Definition
A.2.
If we prevent a condition from being repeated multiple times in a row in the conditions

chain, the integrity of the jump back is not guaranteed as well. In fact, when resuming a
condition Cn after a loop, when the previous checkpointed condition Cn−j is before the loop,
the repetition of the execution history between Cn−j and Cn will perform exactly j steps,
getting trapped in the loop from some of them. As a consequence, the jump back will bring
the agent to a condition farther than expected, back in the execution history. This jump
back will not be reverted by any single action, violating Definition A.2. An example of this is
explained in Example A.5.

Example A.5. Naïve jump back in presence of loops.
This example is based on the the behavior described in Listing A.2. If a condition is
never appended twice in the conditions chain, when the agent reaches the fourth evasive
condition, the conditions chain is: (C1, C2, C3, C4). Assuming C1 is the only checkpointed
condition, jumping back from C4 to C3 involves the resumption of the checkpoint of C1

and the execution in background of the instructions between C1 and C3. When executing
the instructions in background starting from C1, the algorithms computes the length of the
conditions chain and expects to reach the desired condition after 2 conditions are met: C2

and C3. However, C2, which is checked in the while loop, is encountered n times in a row.
As a consequence, the execution in background will get trapped in the loop and the jump
back will likely resume the execution from C2 rather than C3. This violates Definition A.2.

This requires the introduction of a further sophistication of the jump back mechanism. To
tackle the loops problem, each condition is equipped with a memory that keeps track of all the
times that condition had been met in a row and the actions the agent took accordingly. This
prevents the repetition of the same condition in the conditions chain and when the execution
history between two conditions is repeated, a condition is replicated a number of times equal
to the number of records in its memory. This enables to always correctly resume the execution
history between to non-contiguous conditions on the condition chain, even in presence of loops,
guaranteeing that the jump back operation is always satisfying Definition A.2. Algorithm 6
summarizes in a structured way the behavior of the jump back action explained above. Example
A.6 shows a use case of the implementation of the jump back action on a simple Control-flow
Graph containing a loop.
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Example A.6. Jump back in presence of loops (with memory).
Consider the conditions graph depicted in the figure below, which represents the behavior
of the binary when the conditions C1, C2, C3 and C4 are encountered. This is a way
to represent in a more abstract way the code presented in Listing A.2. The condition
C2 is checked in a loop that performs 3 iterations, whereas the dashed arrows represent
the conditional paths not visited. The condition C1 is the only one with a checkpoint.
The program counter (PC) is pointing to the tail of the conditions chain, namely the last
encountered condition, C4.

C1 C2 C3 C4

×3
PC

The corresponding conditions chain with memory is:((
C1, (h1,1)

)
,
(
C2, (h2,1, h2,2, h2,3)

)
,
(
C3, (h3,1)

)
,
(
C4, (h4,1)

))
where hi,j stores the j-th interaction of the agent with condition Ci.
When jumping back from C4 to C3, the checkpoint in C1 is resumed and the following
interactions are replayed in background:(

(C1, h1,1), (C2, h2,1), (C2, h2,2), (C2, h2,3)
)

whereas the code between the last occurrence of C2 and C3 is executed instruction-by-
instruction, as explained in Algorithm 4, generating a state for the condition C3. Jumping
back from C2 to C1 in one step is possible since the condition C2 is not replicated in the
conditions chain. When jumping back from C3 to C2 two scenarios are possible: resuming
C2 at the first iteration of the loop or at the last iteration. In the first case, the conditions
chain would be: ((

C1, (h1,1)
)
,
(
C2, (h2,1)

))
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whereas in the second case it would look like:((
C1, (h1,1)

)
,
(
C2, (h2,1, h2,2, h2,3)

))
In principle, there is not a preferable option among the two. Since the agent has the ability
to break a loop in any moment, we want the agent to take the shortest path to the hidden
flag. Hence, we deem preferable the first option. The action of clearing the memory of a
condition entry, leaving just the first record, is referred in Algorithm 6 as memory reset.

When jumping back to a loop condition that has in its memory n interaction records,
the condition’s memory is cleared keeping only the first record. This operation, is defined as
memory reset in Algorithm 6, brings the agent back to the first iteration of the loop. This
is a preferable approach since we want the agent to find the shortest path to the hidden flag.
Resuming the previous loop condition from the first iteration gives the agent the chance to
break the loop soon, if needed.

There are two scenarios where a jump back operation has to be suited to: with a linear
conditions sequence and in presence of a loop. A linear sequence of conditions is the result of a
sequence of nested if-then-else constructs: their CFG is a tree with no backward edges (loops).
As a consequence, the conditions chain is simple and the jump back operation is trivial. In
presence of a loop, the target condition’s memory has to be reset and a special attention has to
be devoted to the replay of the execution history among two non-contiguous conditions, in the
conditions chain. It is important to prevent the execution in background from being trapped
in loops. Figure A.2 shows the visualizations of these two scenarios.
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Figure A.2: Jump back scenarios. The box above a condition in the conditions chain
represents the disassembled instructions between the previous condition and the current one.
S is the state that is sent to the agent after a proper features engineering, according to §A.2.1,

whereas PC is the program counter. Different colors for different contiguous conditions.
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Algorithm 6 jumpBack()
Input: CC, π . Conditions chain (CC) and program counter (π)

free(CC[−1]) . Free last condition in the chain
C ← lastCheckpointedCondition(CC) . Get last checkpointed condition
π ← resumeCheckpoint(C.id()) . Resume last checkpointed condition’s checkpoint
resetMemory(CC[−1]) . Reset memory of the tail condition
while C ! = CC[−1] do . While current condition is not the tail

π, I ← runUntil(C) . Execute until the condition’s address is reached
while hijackedMemory(C).length ! = 0 do . Until there is memory for condition C

Hijacked ← hijackedMemory(C).pop(0) . Pop next action from memory
if Hijacked then . If the memorized action was an hijack

φCJI ← analyzeCji(I) . Get CJI features
if isJumping(I) then . Check if the CJI is going to jump

preventJump(φCJI) . Tamper with flags register to prevent jump
else

forceJump(φCJI) . Tamper with flags register to force jump
end if

end if
end while
C ← getNext(CC, C) . Get next condition in the chain after C

end while

Output: CC, π . Updated chain and program counter
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A.3 Reinforcement Learning Environment

Following the structure of OpenAI’s gym Python library, I have developed an environment
class that implements the reward function according to the MDP formalization in Section
3.3.3. Each state is built according to the definition provided in the same section.

The environment class hides the details of the communication with the debugger interpreter.
It sends the actions to the debugger interpreter, receives the resulting states and computes the
reward according to a reward function. This class enables the agent to interact with the
environment by means of two methods: reset() and step(action). The first one resets
the environment restarting the debugger interpreter, the debugger and the debugged binary
sub-processes, which are also depicted in Figure A.1. This method will return the initial
state of the binary. The step(action) method receives an action and forwards it to the
debugger interpreter, waiting for the next state. This method returns the next state features
representation, a reward, a flag that indicates whether the state is terminal and a dictionary
object for additional information that may be used for secondary tasks.
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