
POLITECNICO DI TORINO

Master Degree in Data Science and Engineering

Master Thesis

Hybrid Movie Recommender
System

Using NLP techniques for items’ features generation

Supervisor
Prof.ssa Maria Elena Baralis
Co-supervisors:
Dott.sa Ilaria Gianoli
Dott. Lorenzo Vita

Candidate
Giovanni Cioffi

April 2022



Hybrid Movie Recommender System using NLP techniques for
items’ features generation
Master Thesis. Politecnico di Torino, Turin.

© Giovanni Cioffi. All rights reserved.
April 2022.



Abstract

Recommender systems address the information overload problem in the In-
ternet by estimating users’ preferences and recommending items they might
like and interact with. For online entities and companies, these tools have
become key components of their websites or applications in order to boost
activities, enhance customer experience and facilitate users’ decision-making
through personalization. The growing availability of online information and
the advancements in the field of Deep Neural Networks have determined the
transition from traditional methods such as purely content-based or collabo-
rative filtering to hybrid models: capable of improving the recommendation
quality, capturing more complex user-item relationships and better in tack-
ling user-item cold start problem. The objective of this Master Thesis, devel-
oped during an Internship in Data Reply, is to build a hybrid recommender
engine capable of exploiting both user-item interactions and their related
metadata, working on a practical use-case. We create a movie recommender
system trained on "The Movies Dataset" from Kaggle, an open-source en-
semble of thousands movies’ metadata such as genre, language, plot, and
millions of user-item ratings collected from grouplens.org, the Social Com-
puting research lab at the University of Minnesota and The Movies DataBase
(TMDB), a community built online movie and TV database. We explore the
state-of-the art of recommender system algorithms, together with their re-
lated similarity and evaluation metrics. We train, evaluate and compare sev-
eral recommendation models: a pure content-based model whose topK rank-
ing is solely based on similarities between users’ profiling vectors and movies’
vectors, a collaborative-filtering model built using matrix-factorization over
interactions matrix and, finally, hybrid models exploiting both ratings and
user-item metadata. Main experiments were carried out with LightFM, a hy-
brid recommendation engine library provided by the fashion company Lyst.
Especially, in this thesis we investigate how natural language information
can contribute to better suggest items tailored to users’ preferences. We ex-
plore the state-of-the-art of Natural Language Processing (NLP) techniques
for textual feature engineering starting from context-free models like TF-
IDF and word2vec until transformer-based models such as BERT and GPT-
2. We investigate and implement techniques for documents’ similarity and
topic modelling in order to train a hybrid recommendation model able to
accurately suggest movies based on users’ past interactions but also taking



advantage of items’ metadata. Movies’ textual synopsis are engineered as
points in a multi-dimensional embedding space using BERT and categorized
in topics with HDBScan clustering in order to be digested by the recommen-
dation engine. Moreover, we make experiments for validating the capability
of those hybrid models to properly tackle user cold-start and item cold-start
issues: recommendation settings in which new users or items without past
interactions are introduced, also when trained in production.

ii



Contents

List of Tables iv

List of Figures v
0.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

I First part: Theory Background 3

1 Recommendation Systems 4
1.1 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 General architecture . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Similarity measures . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.1 Cosine similarity . . . . . . . . . . . . . . . . . . . . . 7
1.3.2 Euclidean distance . . . . . . . . . . . . . . . . . . . . 7

1.4 Content-based filtering . . . . . . . . . . . . . . . . . . . . . . 8
1.4.1 Limitations of content based filtering . . . . . . . . . . 8

1.5 Collaborative filtering . . . . . . . . . . . . . . . . . . . . . . . 9
1.5.1 Matrix factorization . . . . . . . . . . . . . . . . . . . 11
1.5.2 Advantages of collaborative filtering . . . . . . . . . . . 12
1.5.3 The cold-start problem . . . . . . . . . . . . . . . . . . 12

1.6 Hybrid Recommender Systems . . . . . . . . . . . . . . . . . . 13
1.6.1 LightFM . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 NLP Techniques for sentence embedding 15
2.1 TF-IDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Context-free language models, word2vec and doc2vec . . . . . 17

2.2.1 word2vec . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.2 doc2vec . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Transformers-based language models . . . . . . . . . . . . . . 20

i



2.3.1 Representing the meaning, input embeddings . . . . . . 21
2.3.2 Getting the context of the word in the sentence, posi-

tional encoders . . . . . . . . . . . . . . . . . . . . . . 22
2.3.3 Encoder block . . . . . . . . . . . . . . . . . . . . . . . 23
2.3.4 Decoder block . . . . . . . . . . . . . . . . . . . . . . . 24
2.3.5 The Multi-Head Attention networks . . . . . . . . . . . 25
2.3.6 Add Normalization layers . . . . . . . . . . . . . . . . 26

2.4 BERT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.4.1 How BERT works . . . . . . . . . . . . . . . . . . . . . 27
2.4.2 BERT pre-training phase . . . . . . . . . . . . . . . . . 28
2.4.3 BERT Fine-tuning phase . . . . . . . . . . . . . . . . . 30
2.4.4 Topic modelling with BERT embeddings . . . . . . . . 31
2.4.5 UMAP Dimensionality Reduction . . . . . . . . . . . . 32
2.4.6 HDBScan Clustering . . . . . . . . . . . . . . . . . . . 33
2.4.7 Topic interpretation using TF-IDF . . . . . . . . . . . 34

2.5 GPT-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.5.1 GPT-2 and BERT . . . . . . . . . . . . . . . . . . . . 34

II Second part: Use-case and Experiments 37

3 Implementation details 38

4 Dataset 39
4.1 The Movies Dataset . . . . . . . . . . . . . . . . . . . . . . . . 39

4.1.1 Movies metadata . . . . . . . . . . . . . . . . . . . . . 40
4.1.2 Interactions and ratings . . . . . . . . . . . . . . . . . 47

5 Data Preprocessing 53
5.1 Data cleaning . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.2 Feature selection . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.3 Data normalization . . . . . . . . . . . . . . . . . . . . . . . . 58
5.4 Feature Engineering . . . . . . . . . . . . . . . . . . . . . . . . 58

5.4.1 Movie genres . . . . . . . . . . . . . . . . . . . . . . . 58
5.4.2 Release date splitting . . . . . . . . . . . . . . . . . . . 59
5.4.3 Movie original language encoding . . . . . . . . . . . . 59
5.4.4 Vote average, popularity and runtime . . . . . . . . . . 59
5.4.5 Movie textual overviews embedding . . . . . . . . . . . 60
5.4.6 Overview clusters using HDBScan on BERT embeddings 64
5.4.7 Movie director and actors embedding with BERT . . . 66

ii



5.4.8 User synthetic features . . . . . . . . . . . . . . . . . . 68

6 Recommendation Models 70
6.1 Pure Content-based model . . . . . . . . . . . . . . . . . . . . 71

6.1.1 User Profiling Vector . . . . . . . . . . . . . . . . . . . 72
6.1.2 Content-based recommendation . . . . . . . . . . . . . 72
6.1.3 Pure weighted content-based model . . . . . . . . . . . 73

6.2 Pure collaborative filtering model . . . . . . . . . . . . . . . . 73
6.2.1 BPR and WARP losses . . . . . . . . . . . . . . . . . . 75

6.3 Hybrid model using item features . . . . . . . . . . . . . . . . 76
6.4 Hybrid model using both item and user features . . . . . . . . 77
6.5 Modelling user-item cold start . . . . . . . . . . . . . . . . . . 77

7 Experiments and results 79
7.1 Training and testing splitting . . . . . . . . . . . . . . . . . . 79
7.2 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

7.2.1 Precision@K and MAP . . . . . . . . . . . . . . . . . . 81
7.2.2 Recall@K and MAR . . . . . . . . . . . . . . . . . . . 81
7.2.3 F1-Score . . . . . . . . . . . . . . . . . . . . . . . . . . 81
7.2.4 AUC . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

7.3 Hyperparameter tuning and feature selection . . . . . . . . . . 82
7.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

7.4.1 Pure content-based . . . . . . . . . . . . . . . . . . . . 83
7.4.2 Weighted content-based . . . . . . . . . . . . . . . . . 85
7.4.3 Pure Collaborative Filtering . . . . . . . . . . . . . . . 86

7.5 Hybrid Collaborative Filtering . . . . . . . . . . . . . . . . . . 88
7.5.1 Hybrid model with item metadata . . . . . . . . . . . . 89
7.5.2 Hybrid model with user and item metadata . . . . . . 91

7.6 Cold-start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
7.6.1 Item cold-start . . . . . . . . . . . . . . . . . . . . . . 92
7.6.2 User cold-start . . . . . . . . . . . . . . . . . . . . . . 92
7.6.3 LightFM in production . . . . . . . . . . . . . . . . . . 94

8 Conclusion and further improvements 96

Bibliography 99

iii



List of Tables

2.1 Context window with C=2 for the sentence "Nel mezzo del
cammin di nostra vita". . . . . . . . . . . . . . . . . . . . . . . 17

4.1 Attribute, object type, number of non-null values and infor-
mation about movies_metadata.csv attributes. . . . . . . . . . 42

4.2 Top 10 movies per TMDB vote_count and vote_average prod-
uct. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3 Example of user review record for a movie from rating.csv or
ratings_small.csv . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.4 Most popular movies according to Grouplens number of re-
views and average rating product. . . . . . . . . . . . . . . . . 50

4.5 Most popular genres in terms of GroupLens number of reviews. 51
5.1 Justification for the exclusion of several features from the orig-

inal dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.2 Most similar movies to "Life Is Beautiful" in terms of cosine

similarity between movie overview BERT embeddings. . . . . 64
5.3 Most similar movies to "Life Is Beautiful" in terms of cosine

similarity between director and actors BERT embeddings. . . 67
7.2 Pure LightFM collaborative filtering model Mean Average Pre-

cision (MAP) and Mean Average Recall (MAR). . . . . . . . . 87
7.3 Best LightFM hyperparameters in terms of F1-Score after

cross-validation. . . . . . . . . . . . . . . . . . . . . . . . . . . 87

iv



List of Figures

1.1 Through candidate generation, scoring and re-ranking phases
the size of the corpus reduces to K [1]. . . . . . . . . . . . . . 6

1.2 Example of content-based feature matrix for apps on a store
[1]. Each row of the feature matrix represents an item (i.e. an
app on a store) and each column is a hand-engineered feature.
The user vector (i.e. last row) is represented in the same
feature space. . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Toy example of collaborative filtering approach with matrix-
factorization [1]. Embeddings are matrices on left-side and
upper-side of the picture with 2 dimensions. . . . . . . . . . . 10

1.4 Toy example of items’ representation in a 2-dimensional em-
bedding space [1]. For the sake of simplicity, in this picture
embeddings are hand-engineered. In practice, they are be
learned automatically, which is the power of collaborative fil-
tering models. . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1 CBOW (left) and Skip-gram (right) architecture . . . . . . . . 19
2.2 Architecture of a transformer illustrated [2] . . . . . . . . . . . 22
2.3 Scaled Dot-Product Attention (left), Multi-Head Attention(right). 26
2.4 How BERT generates embeddings from input words. . . . . . 28
2.5 BERT Pre-Training phase illustration [3] . . . . . . . . . . . . 29
2.6 BERT Pre-Training and Fine-Tuning phases. . . . . . . . . . . 30
2.7 A GPT-2 decoder in-dept illustration [4] during the processing

of a sentence. . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.8 Overview of GPT-2 and BERT architectures [4] . . . . . . . . 35
4.1 Number of movies per genre. . . . . . . . . . . . . . . . . . . . 43
4.2 Movie release year distribution. . . . . . . . . . . . . . . . . . 44
4.3 Distribution of the number of characters of "overview" at-

tribute, spaces included. . . . . . . . . . . . . . . . . . . . . . 45
4.4 Wordclouds for genres Science Fiction (up) and Music (down)

based on TFIDF. . . . . . . . . . . . . . . . . . . . . . . . . . 46

v



4.5 KDE plot of ratings and ratings_small distributions. . . . . . 48
4.6 Boxplots representing the distribution of the number of re-

views per user (left) and per movie (right). . . . . . . . . . . . 52
4.7 Average rating per movie genre. . . . . . . . . . . . . . . . . . 52
5.1 Pearson Correlation heatmap for numerical attributes and rat-

ing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.2 Pairwise scatter plot between couples of attributes. . . . . . . 56
5.3 Pearson Correlation heatmap for genres and rating. . . . . . . 57
5.4 Movie overview BERT average embedding per genre after ap-

plying PCA with n_components=2 . . . . . . . . . . . . . . . 62
5.5 Movie overview clusters obtained with HDBScan Clustering

on BERT embeddings. . . . . . . . . . . . . . . . . . . . . . . 65
5.6 Wordclouds depicting tokens with highest TFIDF score within

two overview clusters. . . . . . . . . . . . . . . . . . . . . . . . 66
5.7 Director and actor clusters obtained with HDBScan Clustering

on BERT embeddings. . . . . . . . . . . . . . . . . . . . . . . 68
5.8 Wordclouds depicting most relevant tokens within two director

and cast clusters. . . . . . . . . . . . . . . . . . . . . . . . . . 69
7.1 Dataset splitting analysis. Frequency barchart of cosine simi-

larities between movies’ feature vector in train-test set (left).
Relationship between similarities between movies’ feature vec-
tor and number of movies rated by users (right). . . . . . . . . 80

7.2 Content-based model Mean Average Precision (MAP) and Mean
Average Recall (MAR). . . . . . . . . . . . . . . . . . . . . . . 84

7.3 MAP (left) and MAR (right) on training and testing sets. . . 85
7.4 Pure collaborative filtering model MAP and MAR versus K. . 88
7.5 F1-score vs K (left) and AUC vs training epochs (right) on

training and testing set for LightFM pure collaborative model. 88
7.6 Pure LightFM collaborative filtering model vs Hybrid model

MAP and MAR. . . . . . . . . . . . . . . . . . . . . . . . . . 90
7.7 F1-score (left) and AUC (right) on training and testing set for

LightFM collaborative model with movies’ metadata. . . . . . 90
7.8 Bivariate KDE distribution of Precision@K and Recall@K ver-

sus the size of the user training set. . . . . . . . . . . . . . . . 91
7.9 F1-Scores for LightFM Hybrid model (green) and Pure Collab-

orative LightFM (red) trained without cold items interactions
and tested on those users that rated cold items. . . . . . . . . 93

vi



7.10 F1-Scores for LightFM Hybrid model (green) and Pure Collab-
orative LightFM (red) trained without cold users interactions
and tested on cold users. . . . . . . . . . . . . . . . . . . . . . 94

vii



0.1 Introduction
This thesis was developed during a 9 month Internship at Data Reply S.r.l.
with the supervision of Dott.ssa Ilaria Gianoli and Dott. Lorenzo Vita. Our
objective was to build a hybrid recommendation engine capable of making
user tailored suggestions by exploiting both user-item interactions and their
related metadata. Particularly, we focused on how to exploit the latest Natu-
ral Language Processing (NLP), a recent field of Machine Learning applied to
text, for incorporating textual metadata into the engines and improve their
performances. This work is divided in two main parts:

1. First part: Theory Background. In this part we cover the pre-
liminary theoretical aspects related to recommender systems and the
main NLP techniques for processing sentences. In Chapter 1 we define
recommender systems and their terminology. We describe the main fam-
ilies of engines such as content-based filtering, collaborative filtering and
hybrid models. For each recommendation method, we discuss its advan-
tages and limitations depending on the context it is used (e.g. cold-start
problem). We dive into their general architecture, similarity metrics and
functioning. In particular, we focus on LightFM, an open-source rec-
ommender system provided by Lyst fashion company, which is capable
of exploting both content and collaborative filtering for better tackling
the cold-start problem. Since we want to incorporate textual metadata
into recommendation systems, in Chapter 2 we investigate the state-of-
the-art of Natural Language Processing (NLP) techniques for sentence
encoding, similarity and categorization. The following methods were
explored:

• Traditional statistical methods such as Term Frequency – Inverse
Document Frequency (TF-IDF);

• Context-free pre-trained models such as word2vec;
• Pre-trained models such as BERT and GPT-2 with a brief introduc-

tion on Transformers.

For each of those NLP techniques, we describe their architectures and
functioning, pointing our their advantages and drawbacks.

2. Second part: Use-case and Experiments. From Chapter 3 to 8,
we explain the details of our use-case, which is the implementation of a
hybrid movie recommender system trained on "The Movies Dataset", an

1



open-source dataset containing thousands of movies’ metadata (genre,
cast, director, plot etc.) and millions of user-item ratings from 0.5 to 5.
The dataset is deeply explored and analyzed with proper visualization
in Chapter 4. We particularly focus on the analysis of the main tex-
tual features of the dataset that are incorporated into the recommender
models: overviews of the movies and details about cast and directors.
Before describing our experimental models, data had to be appropriately
pre-processed. Data cleaning, feature selection and engineering are de-
scribed in Chapter 5. Particularly, we show how to obtain sentence
embeddings from BERT and exploit them for recommendation. After
having pre-processed data, we show how our recommendation models
were implemented, trained and evaluated (in cold-start setting too) with
the proper metrics. Hyperparameter tuning and experiments’ results are
showed and compared in Chapter 7. We finally comment our outcomes
and discuss about further improvements of this work in Chapter 8.

2



Part I

First part: Theory
Background

3



Chapter 1

Recommendation Systems

According to McKinsey[5], 35 percent of what consumers purchase on Ama-
zon and 75 percent of what they watch on Netflix come from product recom-
mendations based on recommendation algorithms. Recommendation systems
are a type of intelligent information filtering that aims to extract value by
finding similarities between users and/or catalog items. They are used to
generate an ordered list of suggestions tailored to the preferences of the end
user. Nowadays, recommendation systems are widely exploited by online
entities and companies, whether the item to be recommended is a movie, a
video, music, news articles, fashion products or anything we can search on-
line. We firstly dive into the terminology of recommendation systems, their
general architecture and similarity measures. Then, we introduce the main
families of filtering algorithms:

• Content-based filtering;

• Collaborative filtering;

• Hybrid filtering.

1.1 Terminology
Before describing the background of recommender systems, we look at the
terminology that we are going to use throughout this thesis when referring to
those algorithms. Recommender systems recommend items given a query
relying on an appropriate embedding representation of items and users,
let’s briefly explain those terms:

4



1 – Recommendation Systems

• Item: items are entities that the recommender system tries to recom-
mend to users, whether they are a product or a service. For instance, for
Youtube recommendation engines items are videos, for Amazon market-
place they are every object you can buy on the marketplace. The whole
set of items is called corpus, the size of the corpus is the number of
unique items of the dataset;

• Query: the information given as input to the recommendation engine
and that it used to provide a topK ranking. Queries can be a combination
of user information (for instance the id of the users), they can be items
that users previously interacted with together with additional context
(time of day, the user’s device) or preferences;

• Embedding: a mapping from a discrete set, which is represented by
the set of queries, or the set of items to recommend, to a vector space
called the embedding space E = Rd, where d represents its dimensional-
ity. Many recommendation systems, such as matrix factorization-based
recommenders, rely on learning an appropriate embedding representa-
tion of queries and items. Both content-based and collaborative filtering
map each item and each query to an embedding vector in a common
multi-dimensional embedding space. Typically, the embedding space
has lower dimensions compared to the size of the interaction matrix. In
other words, d is much smaller than the size of the corpus. This space
captures some latent structure of the item or query set. Similar things
in the embedding space, such as YouTube videos watched by the same
user, end up close together. A similarity measure, such as the cosine
similarity score, defines the concept of "closeness," which we will explore
in further in the following paragraphs.

1.2 General architecture
Although there exist several typologies of recommender systems in literature,
they all share similar architecture and established procedures for the gener-
ation of candidates from the corpus of items, the selection of the topK and
the re-ranking adjustments.

• Candidate Generation: the system builds a collection of probable
relevant candidates from all conceivable objects based on a query. In
this first phase, the algorithm starts with a potentially vast corpus and
develops a much smaller subset of options. The candidate generator on

5



1 – Recommendation Systems

YouTube, for example, reduces a corpus of billions of videos to hundreds
or thousands of candidates. The model must evaluate queries quickly
due to the enormous size of the corpus. A single model may produce
many candidate generators, each of which nominates a different subset
of candidates.

• Scoring: following that, the recommendation system rates and ranks
the candidates in order to choose a collection of K items (on the order
of ten) to show the user. The system can utilize a more accurate model
based on additional queries because this model only analyzes a limited
selection of items.

• Re-ranking: finally, for the user’s final ranking, the recommender must
take into account additional constraints. For example, the system re-
moves items that the user has already seen or has expressed an explicit
dislike for. In user-item cold start settings, it can also improve the score
of fresher content by boosting it in some way. Re-ranking can also help
ensure diversity, freshness, and fairness.

Figure 1.1. Through candidate generation, scoring and re-ranking phases
the size of the corpus reduces to K [1].

1.3 Similarity measures
In the embedding space exploited by recommendation systems similar items
end up close together. The notion of "closeness" is defined by a similarity

6



1 – Recommendation Systems

measure [6] such as cosine similarity and euclidean distance.

1.3.1 Cosine similarity
In the realm of information retrieval, cosine similarity is one of the most
commonly used methods for rating the similarity of documents in a vector
space model. It calculates the cosine of the angle formed by two vectors
projected in a multi-dimensional space. The inner product of the vectors
divided by the product of their norms is the cosine similarity formula. The
Euclidean Dot Product formula can be used to obtain:

⟨a, b⟩ = ∥a∥ ∥b∥ cos θ (1.1)

Given two vectors of attributes, a and b, the cosine similarity, cos θ, is rep-
resented using a dot product and magnitude as

cos θ = ⟨a, b⟩
∥a∥ ∥b∥

=

nq
i=1

aibió
nq

i=1
ai

2
ó

nq
i=1

bi
2

(1.2)

For instance, the cosine similarity of two vectors with the same orientation
is 1, the similarity of two vectors oriented at right angles to each other is
0, and the similarity of two vectors diametrically opposed is -1. In positive
space, where the result is nicely limited in [0,1], the cosine similarity is very
useful. The name comes from the phrase "direction cosine": unit vectors are
maximum "similar" if they are parallel, and maximally "dissimilar" if they are
orthogonal in this case (perpendicular). The cosine, which is unity (highest
value) when the segments subtend a zero angle and zero (uncorrelated) when
the segments are perpendicular, is equivalent to this. The cosine similarity
is most typically utilized in high-dimensional positive spaces, and these con-
straints apply for any number of dimensions. In information retrieval and
text mining, for example, each term is given a separate dimension, and a
document is represented by a vector, with the value in each dimension corre-
sponding to the number of times the term appears in the document. Cosine
similarity is a useful metric for determining how similar two documents are
in terms of topic matter.

1.3.2 Euclidean distance
Euclidean distance is another possible metric of similarity for comparing users
or items in recommendation systems. Given a and b, two n-dimensional

7



1 – Recommendation Systems

vectors, their euclidean distance is computed with the following formula:

d(a, b) =
ñ

(a1 − b1)2 + (a2 − b2)2 + · · · + (ai − bi)2 + · · · + (an − bn)2

(1.3)
A smaller distance between two vectors means higher similarity. We not
much interested in the distance itself, but in comparing distances. It has to
be noticed that when the embeddings are normalized, the squared Euclidean
distance coincides with dot-product (and cosine) up to a constant.

1.4 Content-based filtering
Content-based filtering is the most traditional recommendation system method.
It uses similarity between items to recommend items similar to what the
user likes, without taking into account information about other users. For
instance, if user A watches two cartoon movies related to animals, then
the system can recommend cartoon-movies with dogs and cats to that user.
Content-based systems suggest goods that are the most similar to those with
which the user has already interacted. The basic premise behind these rec-
ommendation engines is that if a person enjoyed something in the past, he or
she will like something similar in the future. This system exploits item meta-
data features, such as genre, director, plot description, cast, etc. for movies,
to make these recommendations. Since those items’ attributes are hand-
engineered, a content-based system requires some sort of domain knowledge
to properly extract them. For a given user, a content-based system com-
putes its user profiling vector, representing the feature values of the items it
has interacted with in the past. This vector is compared with all the other
items of the corpus with a similarity measure in order to provide a topK
recommendation.

1.4.1 Limitations of content based filtering
Since the suggestions are exclusive to a person, a content-based approach
does not require any data about other users’ interactions with any item.
This allows scaling the recommendation system to a greater number of users
easily. Furthermore, the model may be able to recognize a user’s individual
preferences and make recommendations for niche items that only a few other
users are interested in. However, due to a number of drawbacks, the usage of
content-based filtering has been limited in real applications. This approach

8



1 – Recommendation Systems

Figure 1.2. Example of content-based feature matrix for apps on a store [1].
Each row of the feature matrix represents an item (i.e. an app on a store)
and each column is a hand-engineered feature. The user vector (i.e. last row)
is represented in the same feature space.

necessitates a great deal of domain expertise because the feature representa-
tion of the objects is hand-engineered to some extent. As a result, the model
can only be as good as the characteristics that were hand-engineered. It can
only provide recommendations based on the user’s previous interests, or "user
bobble." In other words, the model’s potential to expand on users’ existing
interests is limited, and it will be difficult to achieve proper performances.

1.5 Collaborative filtering
Collaborative filtering is based on the idea that people who have previously
agreed on preferences will continue to agree in the future, and that they
will enjoy comparable items. This type of recommender system makes rec-
ommendations based on similarities between queries and items at the same
time. The collaborative filtering strategy has the advantage of not relying
on machine analyzable content, which allows it to accurately propose items
such as movies without requiring "knowledge" of the item. If user A is sim-
ilar to user B, and user B likes movie 1, then the system can recommend
movie 1 to user A (even if user A has not seen any movie similar to video

9



1 – Recommendation Systems

1). Using the user interaction data, explicit or implicit, we do not have to
generate the features. The features are extracted autonomously from pat-
terns in the data, which are user-item interactions. To address some of the
limitations of content-based filtering, collaborative filtering uses similarities
between users and items simultaneously to provide recommendations. This
allows for serendipitous recommendations, which means unplanned discover-
ies for users. In other words, collaborative filtering models can recommend
an item to user A based on the interests of a similar user B. Thus, the em-
beddings can be learned automatically, without relying on hand-engineering
of features. The prediction of the model for a given (user, item) pair is the
dot product of the corresponding embeddings.

Figure 1.3. Toy example of collaborative filtering approach with matrix-fac-
torization [1]. Embeddings are matrices on left-side and upper-side of the
picture with 2 dimensions.

We represent both items and users in the same embedding space. This
may seem surprising since users and items are two different entities. However,
we can think of the embedding space as an abstract representation common
to both items and users, in which we can measure similarity or relevance
using a similarity metric. Consequently, embeddings of users with similar
preferences will be close together and embeddings of movies liked by similar

10



1 – Recommendation Systems

users will be close in the embedding space.

Figure 1.4. Toy example of items’ representation in a 2-dimensional embed-
ding space [1]. For the sake of simplicity, in this picture embeddings are
hand-engineered. In practice, they are be learned automatically, which is the
power of collaborative filtering models.

1.5.1 Matrix factorization
Matrix-factorization [7] is an embedding model that decomposes the inter-
action matrix into two matrices (i.e. user and item matrices) with lower
dimensions, such that when you multiply them you retain the original inter-
action matrix. We call A the interaction matrix A ∈ Rmxn, where m is the
number of users and n is the number of items. The model learns:

• A user embedding matrix U ∈ Rmxd where row i is the embedding for
user i.

• An item embedding matrix V ∈ Rnxd, where row j is the embedding
for item j.

d is the number of dimensions. The embeddings are learned such that the
product UV T is a good approximation of the feedback matrix A. The (i, j)
entry of U.V T is simply the dot product ⟨Ui, Vj⟩ of the embeddings of user
i and item j which we want to be close to Aij. One advantage of using
this approach is that instead of having a high dimensional matrix containing

11



1 – Recommendation Systems

abundant number of missing values we will be dealing with a much smaller
matrix in lower-dimensional space.

1.5.2 Advantages of collaborative filtering
There are several advantages with this approach. It handles the sparsity
of the original matrix better than memory-based ones and comparing sim-
ilarity on the resulting matrix is much more scalable especially in dealing
with large sparse datasets. Matrix factorization produces a more compact
representation than memorizing the entire matrix. The complete matrix has
O(nm) entries, whereas the embedding matrices U ,V have O((n + m))d en-
tries, with d often being much less than m and n. As a result, assuming
that observations are near to a low-dimensional subspace, matrix factoriza-
tion uncovers latent structure in the data. It can be much more compact
in real-world recommendation systems than learning the entire matrix. No
domain knowledge is necessary with this approach because the embeddings
are automatically learned, simply using the interaction matrix. In practise,
the system doesn’t need contextual features. Another characteristic of these
systems is serendipity of recommendation: collaborative filtering solves the
problem of “only safe recommendations” and “user bubbles”, since it can
help users discover new interests. In isolation, the system may not know the
user is interested in a given item, but the model might still recommend it
because similar users are interested in that item.

1.5.3 The cold-start problem
Even without items or users metadata available, collaborative filtering models
tend to be really powerful, granted that we have many data about their
interactions with users. But in the case of new items or new users in which
there are only a few transactions, those models tend to perform poorly. Those
typical settings in real application of recommendation system algorithms are
known as user-cold start and item-cold start. Let’s describe a situation of
item cold-start. For recommender systems using matrix factorization, the
prediction of the model for a given (user, item) pair is the dot product of the
corresponding embeddings. Thus, when an item is not seen during training,
the system cannot create an embedding for it and cannot query the model
with this item. The recommender is required to make recommendations from
a pool of items for which no collaborative information has been gathered, and
only content metadata are available. Hybrid recommender models come in

12



1 – Recommendation Systems

help in those situations.

1.6 Hybrid Recommender Systems
Hybrid recommender systems combine content-based and collaborative filter-
ing strategies in different ways to benefit from their complementary advan-
tages. Netflix is an excellent example of how hybrid recommender systems
may be used. The website provides recommendations by comparing com-
parable users’ viewing and searching behaviors (collaborative filtering), as
well as by suggesting films that share qualities with films that a user has
rated highly (content-based filtering)[8]. These engines can improve predic-
tion performances and are capable of overcoming the limitations of native
approaches such as sparsity and loss of information. Hybrid recommender
systems exploit both interactions data between users and items (e.g. rat-
ings from users in movie recommendation systems), item features and user
features, which we call items metadata and users metadata. Furthermore,
hybrid models are better suited to tackle cold-start problem. When no in-
teraction data is available, we can rely on the intrinsic information provided
by metadata. For the purpose of this work we exploited LightFM models to
investigate performances of a hybrid recommender system on our use-case
dataset.

1.6.1 LightFM
LightFM is a recent open-source recommendation model provided by the
fashion company Lyst. It is a hybrid recommendation system method, a
special typology of recommender algorithm that uses both collaborative and
content-based filtering for making recommendations. For this reason, LightFM
was proven not to suffer from the cold-start problem [9], both for items and
users if high-quality metadata is provided. Users and items are represented
as latent vectors or embeddings in a multi-dimensional space in LightFM,
within a collaborative filtering paradigm. These are wholly described by
functions (in this case, linear combinations) of embeddings of the content
attributes that describe each item or user, exactly as they are in a content-
based model. If the movie ’Wizard of Oz’ is described by the features ’musical
fantasy, ’Judy Garland,’ and ’Wizard of Oz,’ then the total of these features’
latent representations will be its latent representation. Instead of immedi-
ately identifying latent representations of movies and users (as in normal

13



1 – Recommendation Systems

collaborative filtering models), we receive the latent representation of each
feature for each movie and user in the case of LightFM. According to this
theory, a movie’s latent representation is simply the sum of the latent rep-
resentations of its features. Similarly, to obtain a latent representation for
a customer, we simply add the latent representations of the customer’s fea-
tures. The cosine similarity of the latent representations of the movie and
the user determines the score for a movie-user pair. The sum of a user’s
features’ latent vectors is the user’s latent representation:

qu =
Ø

j∈fu

eU
j (1.4)

The same holds for item i:
pi =

Ø
j∈fi

eI
j (1.5)

The bias term for user u is given by the sum of the features’ biases:

bu =
Ø

j∈fu

bU
j (1.6)

The same holds for item i:
bi =

Ø
j∈fi

bI
j (1.7)

The model’s prediction r̂ui for user u and item i is then given by the dot
product of user and item representations, adjusted by user and item feature
biases:

r̂ui = f(⟨qu, pi⟩ + bu + bi) (1.8)

In order to express user preferences over items, the model learns embed-
dings (or latent representations in a high-dimensional space) for users and
items. These representations are multiplied together to provide scores for
each item and for each user; items with high scores are more likely to be
attractive to the user and contribute to its topK suggestions. LightFM em-
beddings are trained using stochastic gradient descent algorithms that min-
imize a loss, such as WARP or BPR, which we will look at in the following
chapter.

14



Chapter 2

NLP Techniques for
sentence embedding

In this Chapter we are going to describe the Natural Language Processing
(NLP) techniques for sentence embedding taken into account in this thesis.
The objective is to vectorize (i.e. encode) our movies’ plots and make them
comparable and digestible by our recommendation systems. We will start
from TF-IDF, a numerical statistic that is intended to reflect how relevant
a word is to a document in a collection or corpus. Then, we will discuss
context-free language models such as word2vec and doc2vec. Finally, after
a brief introduction to transformers, we will deeply dive into the state of
the art of NLP sentence embedding, transformers-based language models,
particularly BERT and GPT-2.

2.1 TF-IDF

TF-IDF is one of the most popular weighting schemes that stands for “Term
Frequency - Inverse Document Frequency”, widely used in recommender sys-
tems employing textual features [10]. Given a term t, a document d and the
corpus the document belongs to D, the TF-IDF is computed as the product
of term frequency (TF) and inverse document frequency (IDF) as follows:

tfidf(t, d, D) = tf(t, d) ∗ idf(d, D) (2.1)

15



2 – NLP Techniques for sentence embedding

tf(t, d) simply represents the number of times a word appears within a doc-
ument, i.e its frequency,

tf(t, d) = ft,dq
t′∈d

ft′,d
(2.2)

where the numerator indicates the raw count of terms in a document and
the denominator simply represents the overall number of terms in document
d (counting each occurrence of the same term separately). idf(d, D) is the
inverse fraction of documents that contain the word, which is calculated by
dividing the total number of documents by the number of documents that
contains the term and then calculating the logarithm of that quotient.

idf(t, D) = log N

|{d ∈ D : t ∈ d}|
(2.3)

idf diminishes the weight of terms that occur very frequently in the document
set and increases the weight of terms that occur rarely. The tf–idf value
rises in proportion to the number of times a word appears in a document
and is offset by the number of documents in the corpus that contain the
term, which helps to compensate for the fact that some words appear more
frequently than others. A phrase with a high frequency in a document but
a low frequency in the corpus has a high TF-IDF score. Although TF-IDF
can provide a good comprehension of the importance of words, it has the
disadvantage of not providing linguistic information about the words, such
as semantic meaning, linguistic relationship and similarity with other words,
and so on. For the purpose of this thesis, TF-IDF will be used in the context
of BERT Topic Modelling in order to extract meaning from several clusters.
After BERT embeddings are extracted from our sentences and clusterized
(clusterization process is described in detain in the next section), we will
concatenate together documents (i.e. movie plots) belonging to the same
cluster with the aim of understanding their semantic meaning and evaluating
the quality of the clustering. For this purpose, we apply TF-IDF on each of
the concatenated clusters’ documents and extract their most relevant words.
Some of those experiments with topic modelling using TF-IDF are showed
in the Data Preprocessing Chapter.

16



2 – NLP Techniques for sentence embedding

2.2 Context-free language models, word2vec
and doc2vec

Context-free models such as word2vec generate a single word embedding
representation for each word in the vocabulary. They represent words in a
way that captures meaning-related relationships. The term context-free in-
dicates that words embeddings do not take into account the context in which
they are inserted within sentences. For instance, with word2vec the word
“bank” would have the same context-free representation in “bank account”
and “bank of the river"[11]. In word2vec, different senses of the word, if they
exist are combined into one single vector.

2.2.1 word2vec

Word2vec [12] is an artificial neural network for natural language processing.
Using this model we get to properly represent words in a way that captures
semantic relationships: the ability to tell if words are similar, or opposites,
or that a pair of words like “Stockholm” and “Sweden” have the same rela-
tionship between them as “Cairo” and “Egypt” have between them, as well
as syntactic, or grammar-based, relationships (e.g. the relationship between
“had” and “has” is the same as that between “was” and “is”) [13]. The
method takes a corpus as input and outputs a set of vectors that indicate
the semantic distribution of words in a text. A vector is built for each word
in the corpus to represent it as a point in the newly created multidimensional
space. Words will be closer together in this region if they are recognized as se-
mantically similar. Understanding the CBOW and Skip-Gram architectures
is required to comprehend how word2vec can produce word embedding.

Current token Context window
nel (nel,mezzo) (nel,del)
mezzo (nel, mezzo) (mezzo,del) (mezzo,cammin)
cammin (mezzo, cammin)(del,cammin)(cammin,di)(cammin,nostra)
di (del,di)(cammin,di)(di,nostra)(di,vita)
nostra (cammin,nostra)(di,nostra)(nostra,vita)
vita (di,vita)(nostra,vita)

Table 2.1: Context window with C=2 for the sen-
tence "Nel mezzo del cammin di nostra vita".

17



2 – NLP Techniques for sentence embedding

CBOW and Skip-Gram

Word2vec uses one of two architecture models to generate word embedding:
continuous bag-of-words (CBOW) or Skip-Gram. To train the models, a large
corpus of textual content is necessary. From this corpus, we will be able to
extract a vocabulary of independent terms (i.e. tokens). Each distinct token
is then represented using one-hot encoding. By examining other tokens in
the vicinity, the two models analyze the token context. The following are
the main differences between the CBOW and Skip-Gram designs: the former
design attempts to predict the current (output) token from a set of context
(input) words, whereas the latter aims to predict context words (output)
from the current token (input). C parameter represents the size of the context
window: included in the context are C tokens immediately preceding/next to
the current token are included in the context. Both models are implemented
using a three-layer artificial neural network: an input layer, a hidden layer,
and an output layer. The input varies depending on the model’s design and
the type of projected output. In fact, the current token and context window
will be the model’s input or output, depending on the architecture. The word
embedding representations of the V vocabulary tokens will be contained in
the weight matrix W following model training via backpropagation, where N
is the size of the word embedding; in the example above, the size of V is 7.
In other words, the row [w(i,1), w(i,2), ..., w(i,N−1), w(i,N)] of the matrix W will
contain the word embedding representation of the token V_i. The softmax
function is applied in the last layer of the neural network.

Below we describe the characteristics of the two models:

• The CBOW [14] architecture aims to predict the current token (output,
e.g., "nel") from a window of context words (input, es. "mezzo" e "del").
Thus, the input consists of the one-hot encoding representation of C ∗ 2
context tokens. The matrix W is the same as described in the general
architecture, but, in this case, the hidden layer is the average of the
vectors W_i corresponding to the input context words. By doing so,
the hidden layer loses the information of the position in the text of the
tokens that are part of the context window as well as in the bag of words
representation.

• The Skip-Gram architecture aims to predict context words (output,
e.g., "nel", "del", and "cammin") from the current token (input, e.g.,
"mezzo"). The input thus consists of the one-hot encoding representation
of the current token. The hidden layer then corresponds to the word

18



2 – NLP Techniques for sentence embedding

Figure 2.1. CBOW (left) and Skip-gram (right) architecture

embedding representation of the current token. The model will generate
an output vector for each context token. Consequently, there will be as
many error vectors of size Vx1. In order to start the backpropagation,
C ∗2 error vectors are added together to obtain a single Vx1 vector. The
weights of the hidden layer will then be updated based on this cumulative
error vector. Also in the skip-gram architecture the position in the text
of the context tokens is therefore not taken into account.

The skip-gram architecture prioritizes close context words over far away con-
text words. CBOW is faster, while Skip-Gram is better for terms that occur
infrequently. Two key hyperparameters in the word2vec training process are
the size of the context window C and the number of negative samples.

2.2.2 doc2vec
Doc2vec[15] is a model that represents each document as a vector, it can be
considered as a generalization of word2vec for sentences. It usually outper-
forms simple-averaging of word2Vec vectors within a sentence. There are two
implementations of doc2vec:

• Paragraph Vector - Distributed Memory (PV-DM) is a word2vec
CBOW-like algorithm. The doc-vectors are obtained by training a neural

19



2 – NLP Techniques for sentence embedding

network on the synthetic task of predicting a center word based on an
average of both context word-vectors and the doc-vector of the entire
document.

• Paragraph Vector - Distributed Bag of Words (PV-DBOW)
is similar to Word2Vec Skip-Gram. The doc-vectors are obtained by
training a neural network on a synthetic task of predicting a target word
only based on the doc-vector of the entire document. It’s also typical to
combine this with skip-gram testing, which predicts a single target word
using both the doc-vector and neighboring word-vectors, but only one
at a time.

Limitations of context-free models

Word2vec generates distributed representations of words, or word types,
which means that each word in a vocabulary has its own unique word vector
independently of the context in which the token is inserted. A further
drawback of this method is that the size of the vector representing the cor-
pus is determined by the vocabulary size, which may be rather enormous.
This huge data usage could manifest itself in the curse of dimensionality.
The model would also have to be re-trained from beginning if tokens were
added or deleted from the word embeddings. Furthermore, this method of
word representation ignores polysemy, or the presence of several alternative
interpretations for a single word or phrase. The context of a word type deter-
mines its meaning, which is reflected by the words that surround it. We can
apply the same arguments to doc2vec because it is a generalized extension
of word2vec.

2.3 Transformers-based language models
In this section we analyze transformers-based models, the state-of-the art
techniques for language modelling in Natural Language Processing. Particu-
larly, we are going to focus on BERT and GPT-2. Transformers were intro-
duced in 2017, they employ an encoder-decoder architecture that allows for
passing sequences of data in parallel. A transformer is a deep learning model
that adopts the mechanism of self-attention [2], differentially weighting the
significance of each part of the input data. Transformers were introduced for
solving language translation tasks. They have largely replaced LSTM neural
networks for sequence to vector, sequence to sequence and vector to sequence

20



2 – NLP Techniques for sentence embedding

tasks. Their encoder-decoder architecture has the advantage of being faster
to train, since it allows for computation in parallel with textual content:
words can be processed simultaneously. Moreover, transformers are better
at capturing contextual meaning throughout sentences, since they can learn
it from both directions simultaneously, i.e. they are deeply bi-directional. If
we imagine to train a transformer for English to French translation, it would
be composed of two main blocks:

• An encoder that learns the context, it takes words of a sentence simul-
taneously, e.g. the English words, and generates embeddings for every
word. These embeddings are vectors that encapsulate the meaning of
each word and are generated simultaneously: there is no concept of time
step for the input. Similar words have similar embeddings;

• A decoder that learns how to map input to output. e.g. English words
to French words. It takes the output embeddings from the encoder and
the outputs of the previously generated output, e.g. French words, and
it uses them to generate the next output.

Both the encoder and the decoder, even separately, have some underlying
understanding of language. Therefore, we can pick apart this transformer
architecture and build systems that understand language. For instance, we
can extract the decoders and get the GPT architecture. Conversely, if we
stack just the encoders we get BERT.

2.3.1 Representing the meaning, input embeddings

Machines do not get words, they get numbers, vectors and matrices. Thus,
we want to map every word to a point in space where similar words with
similar meanings are physically close to each other. The space in which
they are present is called an embedding space. Embedding spaces are usually
used pre-trained to save time (e.g. GloVe [16]), they map a word to a vector,
but the same word in different sentences may have different meaning (e.g.
the word dog in “AJ’s dog is a cutie” and “AJ looks like a dog”). For this
reason positional encoders are used.

21



2 – NLP Techniques for sentence embedding

Figure 2.2. Architecture of a transformer illustrated [2]

2.3.2 Getting the context of the word in the sentence,
positional encoders

Positional encoders are vectors that give context and information about the
position of words in a sentence.

PE(pos,2i) = sin( pos

10000
2i

dmodel

) (2.4)

PE(pos,2i+1) = cos( pos

10000
2i

dmodel

) (2.5)

22



2 – NLP Techniques for sentence embedding

where “pos” refers to the position of the word in the sequence and i refers
to each individual dimension of the embedding. In the original paper [2], a
sine and cosine function is exploited to generate this vector, but it could be
any other reasonable function. Let’s consider an English to French machine
translation. After passing the English sentence through the input embedding
and applying the positional encoding we get word a vector that has positional
information that is the context.

2.3.3 Encoder block
The output of the positional encoders is passed through the encoder block.
It is composed of a Multi-Head attention layer and a feed-forward layer.

• Attention mechanism tries to answer the following question: “What
part of the input should we focus on?”. Self-attention means attention
with respect to one-self. For instance, given an English input sequence
to be translated in French, for each word we have an attention vector
that answers the question: “How relevant is the i-th word in the English
sentence with respect to other words in the same English sentence?”.
Therefore, i-th attention vectors are computed in the attention block.
For every word we can have an attention vector generated which cap-
tures contextual relationships between words in the input sentence. The
attention vector for each word may not be too strong. For every word,
its attention vector will tend to weight higher the related word with re-
spect to the other, focusing too much on itself. This reasonable but quite
useless since we are usually interested in the interactions and relation-
ships with different words in the sentence. For this reason we may want
to compute several attention vectors per word. Attention mechanism
is called Multi-Head attention when multiple attention vectors are
computed per each word and then those attention vectors are averaged
in a weighted manner in order to compute the final attention vector for
every word.

• Feed-forward net: it is a simple feed-forward neural net that is applied
to any of the attention vectors previously described, one vector at a
time. Attention vectors are passed to the feed-forward net in order to
be transformed in a form that is more digestible by the next encoder or
decoder block. Each one of the attention nets are independent of each
other, so we can use parallelization. This allows to pass all the words

23



2 – NLP Techniques for sentence embedding

of the sentence at the same time into the encoder block and the output
would be a set of encoded vectors for every word.

2.3.4 Decoder block
During the training phase from English to French, we feed the output French
sentence to the decoder, which is processed using input embeddings to get
the vector form of each word of the sentence, as already explained above,
for getting the meaning of each word. A positional vector is computed here
too, in order to get the notion of context of the word in the sentence. This
vector is finally passed into the decoder block that has the following main
components.

• The Self-Attention Block generates attention vectors for every word in
the output French sentence to represent how much each word is related to
every word in the same sentence. The original paper calls this Masked
Multi-Head Attention because generating the next French word, we
can use all the words from the English sentence, but only the previous
words of the French sentence. If we are going to use all the words from
the French sentence then there would be no learning, it would just speed
out the next word. Thus, while performing parallelization with matrices
operations, we make sure that the matrix will mask the words appearing
later by transforming them into zeros, so the attention network can’t use
them.

• These attention vectors and the vectors from the encoder, which contain
one vector for every word from the English and French sentences, are
passed to another attention block, the Encoder-Decoder Attention
block. This block will determine how related each word vector is with
respect to each other. This is where the main English-French word
mapping happens. The output of this block is attention vectors for
every word in the English and French sentence, each vector representing
the relationships with other words in both the languages.

• Each attention vector is then passed to a Feed-Forward Unit for mak-
ing the output vector more digestible by either the next decoder block
or a linear layer.

• The Linear Layer is another feed-forward fully connected linear layer
used to expand the dimensions in the number of words existent in the

24



2 – NLP Techniques for sentence embedding

French language, thus the number of neurons of the feed-forward layer
would be equal to the number of words in French language.

• The Softmax Layer is used to transform the output of the linear layer
into a probability distribution which is human interpretable. The final
word (the predicted next French in the sentence) word would be the one
with the highest probability in the softmax output. Overall, the decoder
has predicted the next word and this process is executed over multiple
timesteps until the end of the sentence tokens is generated.

2.3.5 The Multi-Head Attention networks
We now describe how Multi-Head Attention blocks look. Each attention
block looks like in the figure below (right-side). We have:

• Q, the Query is a representation of the current word used to score against
all the other words (using their keys). We only care about the query of
the token we’re currently processing.

• K, Key vectors are like labels for all the words in the segment. They’re
what we match against in our search for relevant words.

• V, Value vectors are actual word representations, once we have scored
how relevant each word is, these are the values we add up to represent
the current word.

vectors for every single word. Those abstract vectors extract different com-
ponents of an input word. We use those vectors for computing the attention
vector for each word with the following formula [17]:

Z = softmaxk(Q KT
√

dk
) V (2.6)

where Z represents the attention given Q, K, V.
For Multi-Head Attention we have multiple weight matrices related to V,

K and Q: W Q, W K and W V . Thus, we will have multiple attention vectors Z
for every word. However, the neural network is only expecting one attention
vector per word. Thus, we use another weighted matrix W Z to make sure that
the output is still an attention vector per input word making the following
operation:

Z = [Z1, Z2, Z3].W Z (2.7)

25



2 – NLP Techniques for sentence embedding

Figure 2.3. Scaled Dot-Product Attention (left), Multi-Head Attention(right).

2.3.6 Add Normalization layers

Additionally, after every layer some form of normalization is applied. Typi-
cally, we would apply a Batch Normalization, this smoothes out the loss sur-
face making it easier to optimize while using larger learning rates. Another
form of normalisation is the Layer Normalization, making the normalization
across each feature instead of each sample, it is better for stabilization.

2.4 BERT

As we have just discussed above, the encoder block of a transformer takes the
input words and generates embeddings for every world simultaneously. These
embeddings are vectors that encapsulate the meaning of the word: similar
words have closer numbers in their vectors. Therefore, the encoder of a trans-
former learns the input words and what is context from them. Because of this
underlying understanding of knowledge, we can pick apart the trasformers’
architecture and build systems capable of understanding language. In the
case of BERT, we extract the encoders and get a Bideractional Encoder
Representation from Transformers indeed.

BERT [18] was introduced in 2018 by researchers at Google AI Language.

26



2 – NLP Techniques for sentence embedding

It reached state-of-the-art results for various tasks in Natural Language Pro-
cessing, including Question Answering (SQuAD v1.1), Natural Language In-
ference (MNLI). Unlike previous models, BERT is a deeply bidirectional,
unsupervised language representation, pre-trained using only a plain text
corpus. Context-free models such as word2vec or GloVe generate a single
word embedding representation for each word in the vocabulary, whereas
BERT takes into account the context for each occurrence of a given word.
For instance, whereas the vector for "running" will have the same word2vec
vector representation for both of its occurrences in the sentences

"He is running a company" and "He is running a marathon"

BERT provides contextualized embeddings for each word that will be differ-
ent according to the sentence. As opposed to directional models, which read
the text input sequentially (left-to-right or right-to-left), the Transformer
encoder reads the entire sequence of words simultaneously. Therefore, it
is considered bi-directional [19], though it would be more accurate to say
that it’s non-directional. This characteristic allows the model to learn the
context of a word based on all of its surroundings (left and right of the word).

BERT can be used in many tasks that require the understanding of language
such as neural machine translation, question answering, sentiment analysis,
text summarization. It is pre-trained in order to get an understanding of
language and then fine-tuned depending on the task to be solved.

2.4.1 How BERT works
Here is how BERT language model works in summary. We pre-train BERT
with Masked Language Modelling (MLM) and Next Sentence Prediction
(NSP). For every word in input (in red), we get the Token Embedding (in
yellow) from the pre-trained WordPiece embeddings. Then we add the Po-
sition Embeddings (in grey) and Segment Embeddings (in green) to account
for the ordering of the inputs. These are then passed into BERT, which
is a stack of transformer encoders and it outputs several word vectors for
MLM and a binary value for NSP. The word vectors are then converted into
a distribution to train using cross-entropy loss. Once training is complete,
the BERT model has some knowledge about the language. The next step
is the fine-tuning phase, where we perform a supervised training depending
on the task we want to solve. Performance of course depend on how big we

27



2 – NLP Techniques for sentence embedding

want BERT to be. The BERT large model, for instance, has 340M parame-
ters can achieve higher performances than the BERT base model with 110M
parameters.

Figure 2.4. How BERT generates embeddings from input words.

BERT can be trained to understand language and context (what we are
going to do for this thesis), and then fine-tuned depending on the task. This
process can be divided in two steps: pre-training phase and fine-tuning phase.

2.4.2 BERT pre-training phase
The goal of the pre-training phase is to make BERT learn what is language
and what is context. BERT learns language by training on two unsupervised
tasks simultaneously:

• Masked Language Modelling (MLM). BERT takes in a sentence
with random words filled with “[MASK1]” tokens such as

“The [MASK1] brown fox [MASK2] over the lazy dog”.

where [MASK1] = "quick" and [MASK2] = "jumped".
The goal is to output these mask tokens in a process that tries to fill in
the blanks. This helps BERT understand bidirectional context within a
sentence.

• Next Sentence Prediction (NSP). BERT takes in two sentences and
it determines if the second sentence actually follows the first, in a binary
classification problem setting. Let’s say we have

sentence A: "Ajay is a cool dude."

28



2 – NLP Techniques for sentence embedding

sentence B: "He lives in Ohio"

We train the language model to understand that sentence B follows sen-
tence A. This helps BERT understand context across different sentences
themselves.

The input of the pre-training phase is a set of two unlabeled sentences,
sentence A and sentence B with some of the words being masked. Each
token Tok_i is a word that is converted to embeddings using pre-trained
embeddings. This provides a good starting point for BERT to work with.
On the output side we have:

• C is the binary output for the Next Sentence Prediction. Therefore, it
would output 1 if sentence B follows sentence A in context, 0 otherwise.

• T_n are word vectors that correspond to the outputs for the Masked
Language Modelling problem.

• E_i are word embeddings corresponding to our input tokens.

The number of word vectors in input is the same as the number of words
in output. Using both MLM and NSP together, BERT gets a good under-
standing of language.

Figure 2.5. BERT Pre-Training phase illustration [3]

29



2 – NLP Techniques for sentence embedding

2.4.3 BERT Fine-tuning phase
In this phase BERT is further trained on a specific NLP task. In a Ques-
tion Answering task, for instance, this is usually done by replacing the fully
connected output layers of the network with a new set of output layers that
can basically output the answer to the question we want. Then, supervised
training is performed with a specific dataset on Question Answering. Only
the output layers parameters are learned from scratch, the rest of the model
parameters are just slightly fine-tuned. As a result, training would be fast.
This process of replacing the output layers and then train with a specific
dataset can be repeated for several NLP tasks. In a Question Answer task,
the model would be trained by modifying the inputs and the output layer.
Sentence A and Sentence B would be substituted with a Question and An-
swer pair. The question is passed followed by a passage containing the answer
as inputs. In the output layer we would output the start and the end words
that encapsulate the answer, assuming that the answer is within the same
span of text.

Figure 2.6. BERT Pre-Training and Fine-Tuning phases.

Now let’s discuss the input side: how BERT generates initial embeddings
from input words. Embeddings E_n are generated from the word token
inputs from three vectors:

1. Token Embeddings E_token: they are the pre-trained embeddings.
The main paper uses “WordPieces” embeddings, a 30K vocabulary as
Token Emdeddings;

2. Segments Embeddings E_sentence: the sentence number that is

30



2 – NLP Techniques for sentence embedding

encoded into a vector;

3. Position Embeddings E_n: is the position of a word within that
sentence that is encoded into a vector.

Addings this three vectors together we get an embedding vector that is
exploited as input to BERT. The Segment + Position embeddings are re-
quired for temporal ordering since all these vectors are fed in simultaneously
into BERT and language models need this ordering preserved.

Now, we analyze the output side of BERT. The output is composed of a
binary output C (NSP) and of several word vectors T_i (MLM). During
training a Cross-Entropy Loss is minimized. All T_i have the same size
and they are generated simultaneously. Each word vector T_i is passed into
a fully connected layered output with the number of neurons equal to the
number of tokens of the vocabulary. Therefore, in the case of the Question
Answering Task, it would be an output layer corresponding to 30.000 neu-
rons, i.e. the size of “WordPieces” vocabulary. A softmax activation would
be applied for converting a word vector into a distribution and the label
of this distribution would be a one-hot encoded vector for the actual tar-
get word. We would compare two distributions and train the network using
Cross-Entropy loss beween:

• The predicted word, represented by a softmax layer with 30.000 neurons;

• The one-hot encoded vector of 30.000 elements corresponding to the
actual word.

Since BERT is giving as output all the words even though inputs were not
masked, we can point our that the loss receives contribution only from the
masked words, ignoring all the other words that are output by the network.
This is done to ensure that more focus is given to predicting this masked
values correctly and increasing context awareness.

2.4.4 Topic modelling with BERT embeddings
For the purpose of exploiting also item-metadata for hybrid recommenta-
tion, we are going to represent and clusterize textual metadata as points in
a multidimensional embedding space using Topic modelling with BERT [20]
technique. We want to make sure that movies with comparable plots are
grouped together so that the topics inside these clusters may be found. We

31



2 – NLP Techniques for sentence embedding

use classes and methods of SentenceTransformers, a Python framework for
state-of-the-art sentence, text and image embeddings [21] based on SBert
work. Sentence-BERT [22] (SBert) is a slight modification of the pre-trained
original BERT network that uses siamese and triplet network structures to
faster derive semantically meaningful sentence embeddings comparable using
cosine-similarity. We extract sentence embeddings and contextual knowledge
from movies’ plots, cast and directors. Once embeddings are obtained from
sentences, the objective is to make the textual feature, i.e. the plot of the
movie, digestible to LightFM models that require categorical features. Cat-
egorization is carried out with HDBScan clustering on top of BERT contex-
tualized embeddings after applying UMAP dimensionality reduction. Clus-
terization of BERT embeddings is equivalent to a topic modelling operation,
where we want similar plots to be inserted in the same cluster. Textual
features are embedded in the same embedding space using BERT and topic
modelling is applied in order to assign each movie a cluster for each of those
features. Topics within each cluster are derived with TF-IDF.

2.4.5 UMAP Dimensionality Reduction
Since clustering algorithms handle high dimensionality poorly, we need to
lower it. Uniform Manifold Approximation and Projection for Dimension Re-
duction [23] UMAP is a non-linear dimensionality reduction technique that
is particularly useful for displaying clusters or groupings of data points as
well as their relative distances. It can give a balance between focusing on lo-
cal versus global structure. We reduce the dimensionality of the embeddings
before using HDBScan clustering on BERT embeddings derived from textual
movie characteristics, as clustering algorithms struggle with high dimension-
ality. We use UMAP dimensionality reduction on document embeddings for
this purpose since it maintains a large percentage of the high-dimensional
local structure in reduced dimensionality. UMAP feature reduction most
important parameters are:

• n_neighbors, low values of this parameter force UMAP to concentrate
on very local structure, while large values will push UMAP to look at
larger neighborhoods of each point when estimating the manifold struc-
ture of the data, losing fine detail structure for the sake of getting the
broader of the data.

• n_components, the dimensionality of the reduced dimension space we
will be embedding the data into.

32



2 – NLP Techniques for sentence embedding

• metric, it controls how distance is computed in the space of the input
data.

• min_dist, provides the minimum distance apart that points are allowed
to be in the low dimensional representation. It controls how tightly
UMAP is allowed to pack points together. Lower values mean the points
will be clustered closely and vice versa. Better set low for clustering.

2.4.6 HDBScan Clustering
After reducing the dimensionality of the sentence embeddings, we can cate-
gorize the documents using HDBScan clustering. HDBScan [24] is a density-
based algorithm that works quite well with UMAP since it maintains local
structure even in lower-dimensional space. Moreover, HDBScan does not
force data points to clusters as it can consider some of them as outliers, i.e.
it could not assign points to any cluster as it considers them outliers. We
cluster similar sentences together. Each cluster should be expression of a
certain topic. Most important HDBScan clustering parameters [25] are:

• min_samples, the higher the number of min_samples, the more con-
servative the clustering — more points will be designated as noise, and
clusters will be limited to increasingly dense areas. The grouping will
get increasingly conservative when min_samples is increased.

• min_cluster_size, the smallest size grouping you want to count as a
cluster.

• cluster_selection_epsilon, We may want to set a minimal min_cluster_
size in some circumstances since even little groups of points may be of
interest to us. This parameter choice, however, can result in a huge num-
ber of micro-clusters if our data set also contains partitions with high
concentrations of objects. Clusters in these locations can be merged by
setting cluster_selection_epsilon to a value. In other words, it ensures
that clusters that fall below a certain threshold are not further divided.
For example, if we don’t want to separate clusters that are fewer than
0.5 units apart, we can set the value to 0.5.

• metric, distance metric such as euclidean.

• cluster_selection_method, establish how the cluster tree structure
is used to select flat clusters ’eom’ stands for Excess of Mass and is the
default approach.

33



2 – NLP Techniques for sentence embedding

2.4.7 Topic interpretation using TF-IDF
Once the clusters of sentences are created, each movie will be assigned an
"overview cluster". We can find interpretable topic of each cluster by find-
ing the most relevant tokens with the highest TF-IDF values. In other
words, documents belonging to the same clusters are concatenated in the
same string, TF-IDF is applied for each cluster and tokens with the highest
TF-IDF should give an idea of the topic of that cluster.

2.5 GPT-2
Generative Pre-trained Transformer 2 [26] (GPT-2) is general purpose lan-
guage model created by OpenAI in February 2019. It was trained on a
massive 40GB dataset of textual records called WebText crawled from the
Internet. Its architecture implements an unsupervised and undirectional
transformer model, which uses attention in place of previous recurrence and
convolution-based architectures. Attention mechanisms allow the model to
selectively focus on segments of input text it predicts to be the most rel-
evant. This model allows for greatly increased parallelization, and outper-
forms previous benchmarks for RNN, CNN and LSTM-based models. GPT-2
is trained with a simple objective: predict the next word, given all of the pre-
vious words within some text. The diversity of the dataset causes this simple
goal to contain naturally occurring demonstrations of many tasks across di-
verse domains. GPT-2 is a direct scale-up of GPT, with more than 10X the
parameters and trained on more than 10X the amount of data.

2.5.1 GPT-2 and BERT
GPT-2 and BERT are both pre-trained transformers, thus they allow to ex-
tract text embeddings in similar ways. However, they have profound differ-
ences in terms of nature, architecture, objectives. First of all, the GPT-2 built
using transformer decoder blocks whereas BERT uses transformer encoder
blocks. BERT is trained as an Auto-Encoder, it uses the entire surrounding
context all-at-once. It is self-attention, where each token in an input sentence
looks at the bidirectional context, i.e. other tokens on left and right of the
considered token. On contrast, GPT is trained for next-sentence prediction
as Auto-regressive model, because it outputs one token at a time and that
token is added to the sequence of inputs. Thus, GTP-2 generative model is

34



2 – NLP Techniques for sentence embedding

Figure 2.7. A GPT-2 decoder in-dept illustration [4] during the
processing of a sentence.

Figure 2.8. Overview of GPT-2 and BERT architectures [4]

35



2 – NLP Techniques for sentence embedding

looking at only the past or left side context. The decoder is only permit-
ted to extract information from the earlier words in the sentence through
obfuscation masking of the remaining word positions.

36



Part II

Second part: Use-case and
Experiments

37



Chapter 3

Implementation details

Our experiments where carried out in cloud using the free version of Google
Colaboratory notebooks in Python language. Google Colab provides vir-
tual machines with 12GB of RAM and Tesla K80 Graphical Processing Unit
(GPU) or Tensor Processing Units (TPU) as hardware accelerators depend-
ing on the availability of those machines.

38



Chapter 4

Dataset

In this section we go through a general exploration of The Movies Dataset
from Kaggle [27], a dataset containing movies’ metadata and user-item inter-
actions. It was used in this thesis as basement for carrying out experiments
on various families of recommendation systems and Natural Language Pro-
cessing tecnhiques for sentence encoding, similarty and topic-modelling.

4.1 The Movies Dataset
Movielens is a web-based recommender system from GroupLens [28], a re-
search lab at the University of Minnesota in the United States. It recom-
mends its users movies to watch based on their film preferences, using collab-
orative filtering of members’ movie ratings and movie reviews. "The Movies
Dataset" from Kaggle [27], the dataset we are using for this work, contains
metadata for all 45,000 movies listed in the Full MovieLens Dataset and 26
million ratings on a scale of 0.5-5 from 270.000 users to around 45.000 movies
gathered. This dataset is an ensemble of data collected from GroupLens and
TMDB [29], acronym of The Movie Database, which is a community built
movie and TV database:

• the movie Details, Credits and Keywords are gathered from the
TMDB Open API,

• the movie Links and Ratings are obtained from the Official GroupLens
website.

In this dataset one can also gather IMDb movies ids: IMDb [30] is an abbrevi-
ation of Internet Movie Database, an online database owned by Amazon that

39



4 – Dataset

contains information related to films and other multimedia content. "The
Movies Dataset" from Kaggle is composed of the following comma separated
values (csv) files:

• movies_metadata.csv, the file where movies’ metadata such as genre,
language, budget and revenue, release dates, production companies and
countries are stored;

• keywords.csv, which contains textual movie plot keywords for Movie-
Lens movies.

• credits.csv, which consists of cast and crew information for all movies;

• links.csv, which contains links between the TMDB and IMDb ids of all
the movies featured in the Full MovieLens dataset;

• links_small.csv, contains links between the TMDB and IMDb ids of
a small subset of around 9.000 movies of the Full Dataset;

• ratings.csv, which contains around 26 million ratings from over 270.000
users;

• rating_small.csv, a subset of around 100.000 ratings from 671 users
on 9.066 movies.

4.1.1 Movies metadata
The Movies Dataset contains metadata information about 45,466 movies fea-
tured in the Full MovieLens dataset in movies_metadata.csv file. Each movie
has got 24 attributes that are listed in the table below together with their
object type, number of non-null values and some deeper description.

Attribute Object Type Non-null
values Description

adult stringified
JSON Object 45466 whether the movie

is for adults or not

belongs_to
_collection

stringified
JSON Object 4494

movie collection info,
nan if the movie
does not belong to
any collection

40



4 – Dataset

Attribute Object Type Non-null
values Description

budget string 45466
budget for the
movie production
in USD

genres stringified
JSON Object 45466

id and name
of the movies’
genres

homepage string 7782 URL of the movie’s
site homepage

id string 45466 tmdbId from
The Movie DataBase

imdb_id string 45449
imdbId from
the Internet Movie
Database

original_
language string 45455 original language

of the movie
original_
title string 45466 title of the movie

in its original language

overview string 44512 textual plot
of the movie

popularity float 45461
metric of popularity
of the movie
from TMDB

poster_path string 45080 path of the
movie’s poster

production_
companies

stringified
JSON Object 45463

name and id
of the movie’s
production company

production_
countries

stringified
JSON Object 45463

ISO name and id of
the movie’s
production countries

41



4 – Dataset

Attribute Object Type Non-null
values Description

release_date string 45379
release date of the
movie in
yyyy-mm-dd format

revenue float 45460 revenue generated
by the movie in USD

runtime float 45203 duration of the
movie in minutes

spoken_
languages

stringified
JSON Object 45460

info about
all languages
spoken in the movie

status string 45379
whether the movie is
released, planned,
rumored etc.

tagline string 20412 short textual slogan
of the movie

title string 45460 title of the movie
in English language

video string 45460 whether the movie
has video available

vote_average float 45460 metric from
TMDB dataset

vote_count float 45460 metric from
TMDB dataset

Table 4.1: Attribute, object type, number of non-null
values and information about movies_metadata.csv
attributes.

Looking at the attributes, each movie has got two different ids: “id” and
“imdb_id”, corresponding to tmdbId from The Movie DataBase (TMDB)
and imdbId from the Internet Movie Database (IMDb) respectively. Movies
can belong to the following 20 genres:

42



4 – Dataset

Animation, Comedy, Family, Adventure, Fantasy, Romance, Drama, Action,
Crime, Thriller, Horror, History, Science Fiction, Mystery, War, Foreign,
Music, Documentary, Western, TV Movie.

Each movie can take up more than one genre. In fact, most of the movies
belong to 1 to 3 genres. Not all genres are "equally represented" in the
dataset: Drama and Comedy movies are the most present above with 12.500
records against less than 1.250 Western and TV Movies films. One can also
notice that summing up all the frequencies, we do not get the total number
of movies in the dataset, since each movie can belong to more than 1 genre.
In the plot below we show the number of movies per genre.

Figure 4.1. Number of movies per genre.

Production Company and Country

Each movie has its own Production Company and Country, there are more
than 23.000 unique companies and 160 distinct Production Countries. Most
common Production Companies are Warner Bros, Metro-Goldwyn-Mayer
and Paramount Pictures whereas most common countries where movies were
produced are the United States, United Kingdom and France.

43



4 – Dataset

Language and release date

Every movie has its original spoken language, most common are English,
French, Italian and Japanese. Each movie has a release date, from year
1874 to 2020. Every release date is a string in the format "yyyy-mm-dd".
As depicted in the barchart below, the dataset contains records from last
decades of 1800 century until 2020, but most of the films have been released
between 2000 and 2010. In the plot below we can see the distribution of
release years of the movies of out dataset.

Figure 4.2. Movie release year distribution.

Movie duration

The attribute runtime refers to the duration of the movie in minutes. The
average duration for movies is about 94 minutes. By inspecting the average
duration by movie genre, we find out that History and War films are the
longest, while the shortest are Animation, Family and Documentaries.

Textual plot or "overview"

Overview is a textual attribute (i.e. a string) representing the plot of the
movie, written in English language. All plots have an average length of
around 317 characters, including spaces. Here is an example of textual
overview for the Italian movie "Life Is Beautiful":

44



4 – Dataset

"A touching story of an Italian book seller of Jewish ancestry who lives in
his own little fairy tale. His creative and happy life would come to an abrupt
halt when his entire family is deported to a concentration camp during World
War II. While locked up he tries to convince his son that the whole thing is
just a game.".

For the sake of visualization, we depict wordclouds for movies belonging
to Science Fiction and Music genres based on the magnitude of the Term
Frequency Inverse Document Frequency (TFIDF). Tokens with the highest
values of TFIDF such as "earth", "world", "planet", "scientist" for Science Fic-
tion and "music", "band", "rock", "concert" for Music are representative of the
respective genre. Furthermore, in the plot below we show the Kernel Density
Estimate (KDE) distribution of the overview length in terms of number of
characters.

Figure 4.3. Distribution of the number of characters of "overview"
attribute, spaces included.

Popularity, Vote Average, Vote Count from TMDB

The vote_average and vote_count attributes are movie-related scores refer-
ring to TMDB dataset and they should not be confused with actual vote
average and count that will be obtained grouping movie reviews from our
ratings.csv or ratings_small.csv from GroupLens. Popularity [31] is a daily

45



4 – Dataset

Figure 4.4. Wordclouds for genres Science Fiction (up) and Music
(down) based on TFIDF.

metric that ranges between 0,00 and 547,49, computed by TMBD with re-
spect to several factors such as number views, favourites, whatchlist, votes
for the day, release date, number of total votes and previous days score. The
vote_average is another score in the interval from 0,0 to 10,0 that records the
average rating for that movie. vote_count takes values from 0,0 to 14.070,0
and records the total number of ratings received by that movie. In the table
below we show the 10 movies with the highest product between vote aver-
age and vote count (in order to not highlight those movies having few high
ratings), together with their average rating and rating count.

46



4 – Dataset

TMDB
Ranking

Movie
Title

TMDB
vote_count

TMDB
vote_average

1 Inception 14.075 8,1
2 The Dark Night 12.269 8,3
3 Interstellar 11.187 8,1
4 The Avengers 12.000 7,4
5 Avatar 12.114 7,2
6 Deadpool 11.444 7,4
7 Fight Club 9.678 7,2
8 Django Unchained 10.297 7,4
9 Guardian of the Galaxy 10.014 8,3
10 Pulp Fiction 8.670 7,8

Table 4.2: Top 10 movies per TMDB vote_count
and vote_average product.

Directors and actors

In credits.csv file we are given Cast and Crew information for all our movies.
These records are available in the form of stringified JSON Object. Each
record of this dataset represents a movie, linked with other metadata through
its id, which is the same id of the movies_metadata.csv dataset. Cast con-
tains information about the actors that acted in the movie in order of de-
creasing importance: the main characters are the first ones to be written
in the JSON strings with their character’s name, real name, gender id and
profile path. Most popular actors with number of performed movies are John
Wayne 106, Jackie Chan 89, Robert De Niro 86, Michael Caine 86, Gérard
Depardieu 84, Christopher Lee 75. Crew contains records about the director
of each movie but also people from other departments related to the movie
such as Production, Writing, Photography, Sound, Editing Visual Effect,
Art. The dataset contains movies directed by 17.573 unique directors, most
popular ones are John Ford 66, Michael Curtiz 65, Werner Herzog 54, Alfred
Hitchcock 53, Georges Méliès 51 movies directed.

4.1.2 Interactions and ratings
ratings.csv and ratings_small.csv files contain records about interactions
gathered from Grouplens between users and movies included in the movies
metadata file. Each row of those datasets tells that a certain user, described

47



4 – Dataset

by its userId, has watched a certain movie identified by its movieId at a cer-
tain timestamp. This user has reviewed it with a certain rating from 0,5 to 5
with steps of 0,5 or. In other terms, r ∈ [0.5, 1, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0].
ratings.csv contains 26.024.289 rows with 45.115 unique movie ids and 270.896
unique users. An example of rating’s record is shown below.

userId movieId rating timestamp
1 147 4,5 1425941529

Table 4.3: Example of user review record for a movie
from rating.csv or ratings_small.csv

Due to our limited computational resources available on Google Colab
we made use of ratings_small.csv dataset, which is a smaller subset of the
greater ratings dataset. This choice can be justified by assuming that rat-
ings_small.csv reviews distribution can be a good approximation of rat-
ings.csv. In order to make this statement reasonable and meaningful, we
have to ensure that the ratings’ distributions of the two dataset are similar.

Figure 4.5. KDE plot of ratings and ratings_small distributions.

In order to inspect this similarity, we applied Kernel Density Estimate
(KDE) method for visualizing the distribution of observations. KDE repre-
sents the data using a continuous probability density curve in one or more

48



4 – Dataset

dimensions. Looking at the plot, we can see that reviews have very sim-
ilar distributions, thus the records in the smaller dataset can be a good
approximation of the larger one. Thus, from now on we will always refer
to ratings_small.csv dataset which contains 100.004 ratings of 671 unique
userId that reviewed 9.066 unique movies. Users have seen and rated 140
movies on average.

The purpose of link.csv file is to link all the files we have mentioned above.
It contains the linkage between TMDB and IMDd ids of all the movies fea-
tured in the Full MovieLens dataset and ratings.csv or ratings_small.csv. In
fact, ids in movies_metadata.csv are not directly associated with ids in the
reviews files ratings.csv or ratings_small.csv. Using links.csv or links_small.csv
we can obtain the right correspondences. The "movieId" in ratings.csv or rat-
ings_small.csv corresponds to the "movieId" in links.csv or links_small.csv,
in which the "imdbId” and "tmdb_id" correspond to the "imdb_id" and "id"
respectively in movies_metadata.csv. In short:

• tmdbId in links.csv coincides with id in movies_metadata.csv

• imdbId in links.csv coincides with id imdb_id in movies_metadata.csv

• userId in links.csv coincides with id userId in ratings.csv/ratings_small.csv

We merge movies’ ratings dataset with movies metadata using the id of the
movies as key of the join in order to extract useful information. On average,
each user has reviewed around 148 movies whereas each movie has got on
average 11 reviews. The distribution of the number of movies reviewed per
user and per movies is showed below with boxplots.

The user with the lowest number of reviews has rated 19 movies. This
aspect will be interesting when splitting the dataset for training. There
exist some outlier user that has seen more than 300 movies, they are repre-
sented as individual points beyond the whiskers on the box-plot. Another
important information is that 9.013 out of the more than 45.000 movies
from movies_metadata have been reviewed, by considering the subset of
rating records in ratings_small.csv. The 10 movies in terms of higher prod-
uct (sorted decreasingly) between Grouplens vote average and vote count are
shown in the table below together with their average rating and rating count.

Grouplens
Ranking Movie Title # reviews Avg. Rating

1 The Shawshank Redemption 311 4.49

49



4 – Dataset

Grouplens
Ranking Movie Title # reviews Avg. Rating

2 Forrest Gump 341 4.05
2 Pulp Fiction 324 4.26
4 The Silence of the Lambs 304 4.14
5 Star Wars 291 4.22
6 The Matrix 259 4.18
7 Schindler’s List 244 4.30
8 Jurassic Park 274 3.70
9 The Empire Strikes Back 234 4,23
10 Toy Story 247 3.87

Table 4.4: Most popular movies according to Grou-
plens number of reviews and average rating product.

We can consider popular those movies with a high number of reviews but
also a high average rating. By comparing this ranking with the top10 movies
with the highest TMDB "popularity" (explored in the previous table), we
can confirm that Grouplens records and TMDB scores are different, either
using the full reviews’ dataset or the smaller one. As showed in the following
table, the top 5 genres reviewed by users, in terms of number of review’s
records, are Drama, Comedy, Thriller, Romance, Action in decreasing order
of ratings.

Ranking Movie genre # reviews
1 Drama 47021
2 Comedy 35864
3 Action 25650
4 Thriller 25556
5 Adventure 21882
6 Romance 18834
7 Crime 17472
8 Science Fiction 15150
9 Fantasy 12515
10 Family 11865
11 Mystery 8803
12 Horror 6139
13 Animation 6119

50



4 – Dataset

Ranking Movie genre # reviews
14 History 3968
15 Music 3914
16 War 3776
17 Western 1610
18 Documentary 1453
19 Foreign 199
20 TV Movie 58

Table 4.5: Most popular genres in terms of Grou-
pLens number of reviews.

For each genre, we can also show its average rating. It is to be noticed
that the on average movies are always rated more than 3. This aspect will
be mentioned when discussing about the metrics used for evaluating the
performances of our models.

51



4 – Dataset

Figure 4.6. Boxplots representing the distribution of the number of reviews
per user (left) and per movie (right).

Figure 4.7. Average rating per movie genre.

52



Chapter 5

Data Preprocessing

In this section we dive into the main operations that were carried out on the
original data before feeding them to recommendation models. We explore
all the data processing steps from data cleaning to feature selection and
engineering. The processing of some feature has been different depending
of whether they were thought to be used by content-based and collabora-
tive models. Thus, for each informative attribute retained from the native
dataset, we explain which preprocessing was made depending on the rec-
ommendation model. We are going to particularly focus on textual-features
encoding with NLP techniques. The main work on the data were conducted
using numpy arrays and Pandas DataFrames data structures.

5.1 Data cleaning
Many values of the dataset attributes, such as genre, actors and directors
were availabe in the form of strings representing JSON objects. Here an ex-
ample for a movie genre:

"[’id’: 16, ’name’: ’Animation’, ’id’: 35, ’name’: ’Comedy’, ’id’: 10751,
’name’: ’Family’]".

Stringfied JSON objects were treated using literal_eval function from ast
Python module in order to easily extract key and values of the stringfied
JSON dictionary. As showed in previous Dataset chapter, some movies meta-
data attributes present some null or nan value. Outlier rows in movies_metadata.csv
having dates instead of movie ids, numbers instead of language of the movie
or other irregularities were removed. Moreover, some duplicated rows or

53



5 – Data Preprocessing

containing too many nan values were found and deleted. In the previous
chapter we also discussed about the presence of two different movie ids for a
given film record: TMDB and IMDb ids. Since imdbId attribute has some
outliers, tmdbId was preferred and used to link the several csv files of the
dataset. After applying those data cleaning operations, from the original
45.466 movie records, we end up having 44.405 of them. When merging then
ratings_small.csv with movies_metadata the resulting number of movies re-
duces to 9.013, since those file is a subset of the original reviews’ dataset.
Moreover, movie ids where transformed in order to become consecutive from
0 to the total 9013. Rating datasets are instead discretely clean: there are
neither empty or nan values or duplicated rows, no user has reviewed a movie
more than once. By removing some outlier movies, the total number of re-
views in the dataset passed from 100.004 to 99.796. Timestamp attribute
values were converted into datetime objects.

5.2 Feature selection
Not all the attributes from The Movies Dataset were preserved. Some fea-
tures were removed for not being informative or for having too many outliers
or missing values, others were deleted because of pairwise high correlation.
After merging movies metadata records with rating ones, we conducted a
correlation analysis in order to inspect pairwise correlation between couples
of numerical attributes, since they may have negatively affected recommen-
dation models. For this purpose, we exloited Pearson correlation coefficient
(or linear correlation) between two statistical variable X and Y, which is
the covariance of the two variables cov(X,Y) divided by the product of their
standard deviations σX and σY . The formula for a sample, obtained by
substituting estimates of the covariances and variances, is shown below:

rxy =

nq
i=1

(xi − x̄)(yi − ȳ)ó
nq

i=1
(xi − x̄)2

ó
nq

i=1
(yi − ȳ)2

(5.1)

We built correlation heatmaps between the following attributes: rating,
release_year, revenue, vote_average, vote_count, runtime, popularity, bud-
get.

The attribute vote_count resulted to be highly and positively correlated
with budget and popularity. Revenue’s attribute was highly and positively

54



5 – Data Preprocessing

Figure 5.1. Pearson Correlation heatmap for numerical attributes and rating.

correlated with budget, popularity and vote_count. Moreover, the rating
is positively correlated with vote_average, showing that the TMDB score
is probably coherent with our dataset reviews. For the sake of visualiza-
tion, we also show positive and negative correlation using pairwise scat-
ter plots between couples of the following attributes: budget, vote_count,
popularity, revenue. On the diagonal we can see can also see the KDE
distributions for those attributes divided by rating_type, a custom cate-
gorical attribute which is assigned to each record. Given the rating r ∈
[0.5, 1, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0], the attribute is generated as follows:

• Low rating, when r ≤ 2

• Medium rating, when 2 < r < 4

• High rating, when r ≥ 4

55



5 – Data Preprocessing

More positively correlated features tend to have scatters that follow the di-
rection of the bisector, which means direct proportionality: the higher one
attribute the higher the other. This is the case for attributes budget, rev-
enue, vote_count, popularity, since many of them show high positive corre-
lation. The diagonal KDE plot do not show attributes’ strong capability of
distinguish between rating types, given that KDE distributions are almost
overlapping.

Figure 5.2. Pairwise scatter plot between couples of attributes.

Therefore, given those high positive correlations, we decided to keep in
the dataset only the following features: popularity, runtime, release_year,
vote_average. After applying one-hot encoding to the list of genres per
movie, we also plotted correlation heatmap for genres.

Most of the genres show Pearson correlation score close to zero, but it
is interesting to notice how Family and Animation, Action and Adventure,

56



5 – Data Preprocessing

Figure 5.3. Pearson Correlation heatmap for genres and rating.

History and War, Comedy and Thriller are correlated, the last couple with
negative correlation coefficient. This means that a Family movie tends to be
also an Animation movie or, by contrary, a Thriller movie will unlikely be
a Thriller. Finally, those shown in the table below were the attributes kept
out of the original dataset and the reason for exclusion.

Reason for exclusion Attribute

Not intrinsically informative video, poster_path, spoken_languages,
adult, status

Too many nan values homepage, belongs_to_collection,
tagline, keywords

57



5 – Data Preprocessing

Reason for exclusion Attribute

Too many unique values production_companies,
production_countries

High correlation with
other attributes

budget, revenue, vote_count,
popularity

Redundant imdbId, original_title
Table 5.1: Justification for the exclusion of several
features from the original dataset.

5.3 Data normalization
For content-based models, numerical features were standardized, since they
were differently scaled. In fact, popularity is floating score from 0.00 to
547.49, runtime an integer expressing the duration of a movie in minutes, re-
lease_year is a year, vote_average is a number from 0,00 to 10.00, vote_count
takes values from 0,0 to 14.070,0. StandardScaler class methods from sklearn
library were used. It standardizes features by removing the mean of the at-
tribute and scaling to unit variance as follows:

z = x − µ

σ
(5.2)

where µ is the mean and σ the standard deviation of all the occurrences xi

of the attribute-vector x. Regarding BERT embeddings obtained with Sen-
tenceTransformer, each of them is already zero-mean-centered with standard
deviation 0.05.

5.4 Feature Engineering

5.4.1 Movie genres
Movie genres were treated differently between content-based and collabo-
rative filtering models using LightFM. Given that each movie can take up
several genres, in content-based models genres were encoded using a One-Hot
Encoding. In other words, we obtain for each genre a vector of boolean values
from a list of genres. In practise, each of the 20 genres becomes an attribute
of the dataset and every movie record has its own genres represented by a
vector of shape 20: xm the one-hot vector of the movie record m. Given a

58



5 – Data Preprocessing

genre g such as "Comedy" or "Science Fiction", the one-hot vector xm can
take values:

xm
g =

1 if the movie m belongs to genre g
0 otherwise

with g ∈ [Animation, Comedy, Family, Adventure, Fantasy, Romance, Drama,
Action, Crime, Thriller, Horror, History, Science Fiction, Mystery, War,
Foreign, Music, Documentary, Western, TV Movie] and m ∈ [0, 9013]

Given that each movie can take up more than 1 genre, each one-hot vec-
tor can have multiple ones. In all collaborative models where item features
were used, instead, genres were provided as strings were all the genre were
concatenated, since LightFM requires categorical attributes. For instance,
for our collaborative filtering models, the movie ToyStory has got genre "An-
imation, Comedy, Family". Different combinations (in terms of position of
the genres in the string) of the same set of genres are all ordered in the same
way, in order to make them appear equal to LightFM models.

5.4.2 Release date splitting
Only the year was kept from the release date of each movie, since it was
considered a sufficiently informative attribute within the data. For instance,
we kept only "2020" from a string "2020-12-16" by simply splitting it.

5.4.3 Movie original language encoding
The original language of the movie was also one-hot encoded. Among the
89 unique languages, only the 7 most frequent were kept. All remaining lan-
guages having lower number of records were represented as a generic feature
"other". The following are the languages that were kept: English (en), Span-
ish (es), French (fr), Italian (it), Japanese (ja), German (de), Russian (du)
and "other", representing all the other languages.

5.4.4 Vote average, popularity and runtime
As described in the Dataset section, vote_average, popularity and runtime
are numerical features having totally different scales. For content-based
models, each one of those features was standardized removing mean and
dividing by the standard deviation. For collaborative filtering models using

59



5 – Data Preprocessing

item metadata, they needed to be categorized in order to be digestible to
LightFM. Categorization was carried out exploiting qcut quantile labels with
a quantile-based discretization function from Pandas, which discretize vari-
able into equal-sized buckets based on rank or based on sample quantiles.
Used quantiles are [0, 0.25, 0.75, 1]. Therefore, each movie has its vote av-
erage, popularity and runtime quartile in the range [0-25Q, 25-75Q, 50-75Q,
75-100Q].

5.4.5 Movie textual overviews embedding
Overviews of the movies were converted into vectors for all of the models
that used item metadata. They were, in other words, stored as dense vector
representations. In contrast to sparse vectors, the word "dense" alludes to the
fact that every member inside the vector contains a value. As a result, movie
textual plots were embedded in a vector space with comparable embeddings
close together. These embeddings may then be compared to locate phrases
with comparable meanings, for example using cosine-similarity. BERT (Bidi-
rectional Encoder Representations from Transformers) is the state-of-the-art
language model for making dense vectors with context. Each of its encoder
layers produces a set of dense vectors, the size of which is determined by the
BERT model utilized, which is commonly 384 or 768. We utilized them as
contextual word embeddings since they are numerical representations of a
single token. Then, using clustering approaches, word embeddings from the
same phrase were handled together in order to obtain a semantic represen-
tation of the text and identify important topics. Two main methods were
explored for sentence embedding:

• Using BERT pre-trained transformer models from HuggingFace
[32], by extracting the last hidden layers and making mean pooling op-
erations. bert-base-uncased pre-trained model was used for this purpose,
it is a model pretrained on BookCorpus, a dataset consisting of 11.038
unpublished books and English Wikipedia. Before passing sentences to
the model, the encode method from BertTokenizer class is exploited for
getting the list of input IDs with the appropriate special tokens of the
sentence. Those IDs are token indices, numerical representations of to-
kens building the sequences that will be used as input by the model.
Since there is one vector representing each token (output by each en-
coder), we are actually looking at a vector of size K by the number of
tokens, where K is usually equal to 384 or 768. We can transform those
vectors to create semantic representations of the input sequence. The

60



5 – Data Preprocessing

simplest and most commonly extracted tensor is the last_hidden_state
tensor which is conveniently given in output by the BERT model and it
represents the sequence of hidden-states at the output of the last layer
of the model. We need to convert the last_hidden_states tensor to a
vector of K dimensions using a mean pooling operation. Each of the to-
kens has respective K values. The pooling operation will take the mean
of all token embeddings and compress them into a single 384/768 vector
space creating a sentence vector.

• Using SentenceTransformer [21] library models, in particular all-
MiniLM-L6-v2 model, trained on a large and diverse dataset of over 1
billion training pairs. It maps sentences and paragraphs to a 384 dimen-
sional dense vector space and can be used for tasks like clustering or
semantic search. SentenceTransformer models take care of tokenization
and encoding too. A list of sentences (our movie textual overviews) long
as the number of movies of the dataset is passed to the model encoder,
which then outputs an embedding matrix of dimensions (M, 384), where
M is the number of movies rated in the dataset. Under the scenes, what
this model does is to first pass the input through the transformer model,
then to apply the right mean pooling-operation on-top of the contextu-
alized word embeddings. We can generate a fixed-size representation for
input phrases of various lengths using the pooling layer. The authors
of SBert paper tested with several pooling algorithms, including MEAN
and MAX pooling, as well as using the CLS token that BERT creates by
default. Max length of sentences was increased from the default value
of 256 characters to the maximum length overview in the dataset.

The second option, those with pretrained SentenceTransformers models,
was preferred since it ended up to be the most easy to implement and ef-
ficient, given our available computational resources. In the scatter plot be-
low, we show the average overview embedding per genre after PCA. Each
2-dimensional record representing a genre is obtained by averaging all the
BERT embeddings of movies belonging to that genre. For each genre we
obtained a vector of 384 entries. Principal Component Analyisis (PCA) was
applied here with the purpose of reducing dimensions of the date for illus-
tration purposes. This technique linearly transforms data by simultaneously
mapping them into a new space whose dimensionality is smaller and tries to
keep most of the information of the original data. What PCA does is finding
the ”directions” of the data that explain most of the information present in
them.

61



5 – Data Preprocessing

Figure 5.4. Movie overview BERT average embedding per genre after ap-
plying PCA with n_components=2

The plot clearly shows how BERT encoding is capable of representing
semantic meaning and context from sentences. Although we are making an
average of several embeddings and we are restricting the entire space from
384 to 2 dimensions, we can still see how overviews belonging to similar
genres end up to be closer in the embedding space. For instance, History
is reasonably close to War, Crime is close to Thriller and Mistery, Science
Fiction is close to Adventure. Once movie overview embedding are obtained
using BERT, we can compare them and find the most similar ones, that will
be the closest ones in that embedding space. For instance, in the table below
we show most similar overview to that of "Life Is Beautiful", an Italian movie
about the story of a Jewish family during World War II.

62



5 – Data Preprocessing

Movie Title Cosine
Similarity Overview

Life Is Beautiful 1.0000

A touching story of an Italian book seller
of Jewish ancestry who lives in his own
little fairy tale. His creative and happy
life would come to an abrupt halt when
his entire family is deported to a
concentration camp during World War II.
While locked up he tries to convince his
son that the whole thing is just a game.

Europa Europa 0.6015

A Jewish boy separated from his family
in the early days of WWII poses as a
German orphan and is taken into the
heart of the Nazi world as a ’war hero’
and eventually becomes a Hitler Youth.
Although improbabilities and
happenstance are cornerstones of the film,
it is based upon a true story.

August Rush 0.5523
A drama with fairy tale elements, where
an orphaned musical prodigy uses his
gift as a clue to finding his birth parents.

The Book Thief 0.5457

While subjected to the horrors of WWII
Germany, young Liesel finds solace by
stealing books and sharing them with
others. Under the stairs in her home,
a Jewish refuge is being sheltered
by her adoptive parents.

Schindler’s List 0.5379

The true story of how businessman
Oskar Schindler saved over a thousand
Jewish lives from the Nazis while they
worked as slaves in his factory during
World War II.

63



5 – Data Preprocessing

Movie Title Cosine
Similarity Overview

Captain Corelli’s
Mandolin 0.5343

When a Greek fisherman leaves to fight
with the Greek army during WWII, his
fiancee falls in love with the local Italian
commander. The film is based on a novel
about an Italian soldier’s experiences
during the Italian occupation of the Greek
island of Cephalonia (Kefalonia).

Table 5.2: Most similar movies to "Life Is Beautiful"
in terms of cosine similarity between movie overview
BERT embeddings.

We can see how the most similar overviews in terms of cosine similarity,
using sklearn, are all movies in which the themes World War II, Jewish
deportation, father-son relationship.

5.4.6 Overview clusters using HDBScan on BERT em-
beddings

When making recommendations with the use collaborative LightFM mod-
els, movie overview embeddings had to be categorized in order to let the
model digest them. For this purpose, we exploit Topic Modelling with BERT
embedding technique explained in Chapter 2 (which consists in UMAP di-
mensionality reduction plus HDBScan clustering), applied to movie overview
embedding with the aim of extracting clusters of textual plots.

HDBScan clustering does not receive any number of clusters as input (as
other clusters techniques such as KMeans), but it finds them autonomously
depending on the hyperparameters set and leaving one cluster out for unas-
signed data points. Therefore, in order to derive a reasonable final number
of clusters, we assume that each cluster we want to output from HDBScan
should represent a plot theme within a set of movie genres. The hypothesis
made here was to extract a number of clusters from movie overviews that
should have been indicatively a reasonable multiple of the total number of
genres. A way for inspecting the goodness of the clustering for a given set of
hyperparameters is to depics a 2D illustration of the clusters, after applying
UMAP dimensionality reduction.

Coloured points represent movies assigned to one of the 38 found clusters.

64



5 – Data Preprocessing

Figure 5.5. Movie overview clusters obtained with HDBScan Cluster-
ing on BERT embeddings.

4.158 grey points, the majority of the movies, are not assigned to any cluster,
or better they are assigned to -1 cluster. All other clusters have an average
size of 131 movies. Being a density base algorithm, HDBScan clustering is
capable of detecting high density areas. Groups of closer points tend to be
depicted with same colour, which means that they are clustered together.
HDBScan clustering hyperparameters were set as follows:

• min_cluster_size = 40,

• metric = ’euclidean’,

• min_samples = 1,

• cluster_selection_method = ’eom’

The most influencial parameter for this clustering was min_cluster_size,
the smallest size grouping we wish to consider a cluster. It was coherently set
close to the minimum number of movies belonging to a genre, explored in the
previous chapter. Another method for ensuring the quality of the clusters
found is by inspecting the most relevant tokens per clusters, which is done
using TF-IDF topic extraction after overview concatenation, as described
in Chapter 2. Below, we show two examples of movie overview clusters.
Wordcloud on the left shows that main topic of that cluster could be martial

65



5 – Data Preprocessing

Figure 5.6. Wordclouds depicting tokens with highest TFIDF score
within two overview clusters.

arts and oriental culture, given the words kung, fu, china, martial, arts, fight.
In fact, some of movies belonging to this clusters are Kung Fu Panda, The
Karate Kid, Street Fighter. Wordcloud on the right side contains words
like war, nazi, vietnam, soldiers, germany, army, jewish let us think about
a clusters in which main topics have to do II World War or Vietnam War
related stories and battles. In fact, in this cluster we found movies like: Anne
Frank Remembered, Blind Spot: Hitler’s Secretary, Nuremberg or Shinder’s
List.

5.4.7 Movie director and actors embedding with BERT
The director and main actors of the movie were considered informative for
the recommendation: a user could be enthusiast of films made by the same
director or be a fan of some actors and like their movies. One movie has
only one director whereas more than one actors acted for it. Since actors
are recorded in order of importance, as explained in the Dataset chapter,
we decided to keep 3 most relevant actors for each movie. The encoding of
the movie director attribute and main actors was made using BERT in the
following way: for each movie the director surname was extracted from the
crew attribute and the actors’ surnames from the attribute cast of credits.csv.
Each movie will be assigned a string with director, first main actor, second

66



5 – Data Preprocessing

main actor, third main actor concatenated using spaces. For instance, the
movie "Edward Scissorhands" directed by Tim Burton and acted by Johnny
Depp, Winona Ryder and Dianne Wiest will be assigned this string: "Burton
Depp Ryder Wiest". Each of those strings is passed through BERT language
model using all-MiniLM-L6-v2 from SentenceTransformer, embeddings are
obtained and used for finding movies with similar director and cast using co-
sine similariy. We can see an example of the most similar movies to "Edward
Scissorhands" for director and cast feature in the table below.

Movie Title Cosine
Similarity Director & Cast

Edward
Scissorhands 1.0000 Tim Burton, Johnny Depp

Winona Ryder, Dianne Wiest

Beetlejuice 0.7235 Tim Burton, Geena Davis,
Alec Baldwin, Winona Ryder

Corpse Bride 0.6702 Tim Burton, Johnny Depp,
Freddie Highmore, David Kelly

Ed Wood 0.6642 Tim Burton, Johnny Depp,
Helena Bonham, Carter Emily Watson

Dark Shadows 0.6533 Tim Burton, Johnny Depp,
Helena Bonham, Carter Alan Rickman

Sweeney Todd:
The Demon
Barber of
Fleet Street

0.6481
Tim Burton, Johnny Depp,
Michelle Pfeiffer, Helena
Bonham Carter

Table 5.3: Most similar movies to "Life Is Beautiful"
in terms of cosine similarity between director and
actors BERT embeddings.

Movies in which Tim Burton worked together with other actors, particu-
larly Johnny Depp, tend to have cosine similar director and cast embeddings.

Director and actor clusters using HDBScan on BERT embeddings

For LightFM collaborative filtering models, director and actors embedding
need too be categorized too. The same procedure described for overview
BERT embedding is applied here by adapting UMAP dimensionality reduc-
tion and HDBScan clustering hyperparameters. The resulting clusters, after
a dimensionality reduction, are shown in the 2D plot below.

67



5 – Data Preprocessing

Figure 5.7. Director and actor clusters obtained with HDBScan Clus-
tering on BERT embeddings.

Director and actors clusters tend to arrange in a more dense way with
respect to those of overviews. Looking at the 2D plot, we can see many
small groups of movie data points. Final resulting number of clusters is 313,
with 4.220 movies not assigned to any cluster. By inspecting most relevant
tokens in those clusters, we can see how HDBScan over BERT embeddings
is capable of put together movies with similar directors or actors as we show
in the following wordclouds for some of the largest clusters found. In those
cases, clusters group together directors and actors that worked frequently
together and consequently belonging to the same country: Italy on the left
and France on the right.

5.4.8 User synthetic features
The Movies Dataset does not provide user intrinsic metadata such as sex,
job, income of the people watching and reviewing their movies. Thus, for
the collaborative model exploiting user features, the only way to get users’
metadata was to infer them from the movies metadata the user has seen and
rated. This procedure introduces an issue when it comes to user cold start,
we will discuss it in the dedicated paragraph. Apart from the user id, the
user features extracted by movies metadata were:

• Preferred genres, top3 genres seen by that user;

68



5 – Data Preprocessing

Figure 5.8. Wordclouds depicting most relevant tokens within two
director and cast clusters.

• Top cast string, top3 actors performing in movies seen by that user,
always ordered in the same way in order to be categorical;

• Top directors string, top3 directors making movies seen by that user,
always ordered in the same way in order to be categorical;

• Top overview clusters, top3 overview clusters whom the movies that
user saw belonged to;

• Top directors and cast clusters, top3 director and cast clusters whom
the movies that user saw belonged to;

• User average rating, average rating assigned by that user to the
movies it has seen;

• User rating count, number of reviews of that user.

69



Chapter 6

Recommendation Models

In this section we describe the rationale and the functioning of each method
that was used for our experiments on recommendation systems on The Movies
Dataset. We mainly built and tested four typologies of models:

• Custom pure content-based model, it uses only the item metadata
of movies the users have interacted with in order to provide them topK
recommendations;

• Pure LightFM collaborative filtering model, a simple matrix fac-
torization model which exploits only users-items interactions or ratings
in order to make topK recommendations;

• LightFM Hybrid model with item metadata, a matrix factor-
ization collaborative model that exploits users-items interactions and
movies’ features too;

• LightFM Hybrid model using both item and user metadata, a
matrix factorization collaborative model that exploits users-items inter-
actions but also users and movies features.

We will also describe how user cold-start and item cold-start problems were
simulated and evaluated. In Chapter 7 related to the Experiments, we will
discuss more in details which were the metrics used for evaluation and we
will show the results obtained. Those will be commented in the Chapter 8.

70



6 – Recommendation Models

6.1 Pure Content-based model
As introduced above, we primarly built a pure content-based filtering model
which for each users exploited only movies’ metadata he has seen for provid-
ing him a recommendation. User’s suggestions are made by only looking at
its past tastes and preferences. The main steps of this model are for each
user:

1. The generation of the user profiling vector with weighted average by
rating of the its watched movies’ vectors,

2. The comparison between this vector and other movies in the corpus,

3. Finally, the scoring of the topK recommended movies.

Among all attributes of "The Movies Dataset", discussed in the Pre-processing
chapter, the followings are the attributes that were used by the.pure content-
based model:

• One-hot encoded vector of the movies genres;

• One-hot encoded vector of Top 8 languages;

• Movie Overview BERT embeddings;

• Director and Cast BERT embeddings;

• Movie Runtime standardized;

• Movie Release year standardized;

• TMDB Movie Popularity standardized;

• TMDB Movie Vote average standardized.

Elements of those attributes’ vectors are stacked together in the same vector
for obtaining movie vectors. Every movie is represented by a vector and
every user’s representation depends on the movies’ representations of items
he has seen and rated in the past. This user representation will be called
user profiling vector.

71



6 – Recommendation Models

6.1.1 User Profiling Vector
The user profiling vector is the vector that represents a certain user’s prefer-
ences, based on its previous interactions with items in the dataset. For the
purpose of this thesis, we are going to use weighted average over ratings
in order to compute the user profiling vectors from movies’ vectors. For each
couple of user-movie, we are interested in the magnitude of the interaction,
which is the rating from 0.5 to 5 that the user has given to that movie. The
rationale behind the usage of the weighted average instead of a simple av-
erage is to discriminate between positive and negative interactions based on
a weight: we give more importance to movies that have been rated higher
with respect to those that the user has reviewed with a low rating. For each
user we compute its user profiling vector, which will be then compared with
all the movies of the corpus to find the topK most similar items with the
highest cosine similarity.

6.1.2 Content-based recommendation
For each user, identified by its user id, we compute its user profiling vector
p with the only contribution of metadata of the movies it has interacted
with (those within the training set). Thus, with content-based model we
completely do not take into account ratings of other users of the dataset.
The user profiling vector has shape number of stacked features and it should
represent a combination of all pre-processed metadata related to the movies
watched by that user, as we discussed in the Data Preprocessing chapter.
Given a user, it is represented by movie vectors of each movie he has in-
teracted with or, in other words by a matrix U of shape (m, f), where m
represents the number of movies the user has seen and rated and f is the
total number of stacked features. The user’s ratings for those movies are
stored in vector r, where ri is the rating for movie m. For each user, we
compute a weighted average for each column vector u of the matrix U using
ratings ri as weights. We obtain user profiling vector p, its f elements are
computed as follows:

pi =

mq
i=1

riui

mq
i=1

ri

(6.1)

In this manner, movie metadata of the items the user liked most will give
a proper contribution to the average. Each movie of the corpus, except for
those the user has already seen and rated is then compared with the user

72



6 – Recommendation Models

profiling vector. This way we compute similarities between movies’ vector
and p, using cosine similarity between vectors of the same shape. Movies are
then sorted with decreasing values of the cosine similarity score. The topK
movies are selected as recommendation for that user.

6.1.3 Pure weighted content-based model
We also explored a possible variation of the content-based model described
above, which can provide more customised recommendations. Let’s say the
owner of a recommendation system wants to emphasize some movie metadata
features with respect to the others when computing similarities between user
profiling vector and the corpus. For instance, one could want to give more
emphasis to the director and cast feature and recommend movies to some
user mainly because it has previously watched movies performed by certain
actors and directors. Or, in the same way, one could want to recommend
movies to a certain user only because they treat same topic (with similar
synopsis). This can be applied to all attributes of the final dataset and it
is achievable by providing the model a set of weights, one weight for each
feature. Thus, instead of concatenating all features together in the same one
dimensional vector before computing p, we keep each attribute separated
and we will obtain several cosine similarities scores (times the number of
chosen movies’ attributes) between user profiling vector and movies’ vectors:
one plot-related similarty, another genre-related similarity and so on. The
resulting similarity would be a weighted average of all scores, with weights
set arbitrarily by the recommendation system owner for giving emphasis to
some features with respect to others.

6.2 Pure collaborative filtering model
The second model experimented in this thesis is a LightFM simple collabora-
tive filtering model without the use of item or user feature, which is equivalent
to a matrix factorization model that learns users and items embedding by
minimizing a loss through Stochastic Gradient Descent, as described in the
Recommendation System Chapter. Such model’s training only needs to be
fed with records containing minimal information about user and item inter-
actions:

• User id;

• Movie id;

73



6 – Recommendation Models

• Rating given from the user to the movie.

When the LightFM model object is created, some relevant hyperparameters
have to be set:

• no_components, the dimensionality of the feature latent embeddings
learnt by matrix factorization;

• learning_rate, initial learning rate for the adagrad learning schedule;

• learning_schedule, adagrad [33] (adaptive gradient algorithm) or adadelta[34],
an extension of that adapts learning rates based on a moving window of
gradient updates;

• loss, the typology of loss function to be minimized during training.

The LightFM model is trained on the training set by calling the fit method
on user-item interactions, which is a COOrdinate format sparse matrix of
dimensions (number of users, number of items) where each entry is the rating
of a user to a movie. This matrix is extracted as attribute of a previously
created instance of DatasetHelper. Moreover, the model is provided the same
matrix as sample_weight, expressing weights of individual interactions from
the interactions matrix. In fact, our interactions data does not only provide
either positive or negative interactions, but we are given a magnitude of every
interaction, which is the user rating for a movie. The LightFM.fit() method
takes as most relevant inputs:

• interactions, the user-item interaction matrix;

• user_features, only the user ids for this model;

• item_features, only the item ids for this model;

• sample_weight, the user-item interaction matrix;

• epochs, the number of training epochs.

What the model does is learning embeddings for users and items of size
no_components that should approximate the original feedback matrix through
Stochastic Gradient Descent, is an iterative method for optimizing an objec-
tive function, the loss function. Embeddings are latent representations in a
high-dimensional space such that they encode user preferences over items.
Those users’ and items’ latent representations are expressed in terms of their

74



6 – Recommendation Models

features’ representations. For this model, no feature matrices are provided to
the LightFM.fit() or LightFM.predict() methods. Thus, they are implicitly
assumed to be identity matrices: that is, each user and item are characterised
by one feature that is unique to that user (or item). These indicator features
are simply the users and items ids. In this case, LightFM reduces to a tradi-
tional collaborative filtering matrix-factorization method. When multiplied
together, users’ and items’ embeddings produce scores for every item for a
given user. The evaluation of these model works as follows: for each K, that
is the number of items to be recommended to users and for each user id we
call LightFM.predict() for obtaining recommendation scores for each movie
in the corpus, with the exception of those movies already seen by that user.
This method takes as input:

• user_ids, user ids for the user-item pairs for which a prediction has to
be computed;

• item_ids, item ids for the user-item pairs for which a prediction is to
be computed;

• user_features, not set for this model;

• item_features not set for this model.

Movie ids are associated with their own scores and sorted afterwards with
decreasing order. The top K movies in the ranking are selected, those repre-
sent the recommendation for that user. At this point, we can compute recall
and precision for that user with respect to the test set, that is the set of
movies that he has seen and rated for real. At the end of the K loop, mean
average precision and mean average recall are computed.

6.2.1 BPR and WARP losses
LightFM can use several types of losses, such as logistic, BPR and WARP. In
this thesis we have taken into account Weighted Approximate-Rank Pairwise
(WARP) [35] loss, which maximises the rank of positive examples by repeat-
edly sampling negative examples until rank violating one is found. Similarly
to the the BPR loss [36], WARP deals with (user, positive item, negative
item) triplets. Unlike BPR, the negative items in the triplet are not cho-
sen by random sampling: they are taken among those negative items which
would violate the desired item ranking given the state of the model. This
approximates a form of active learning where the model selects those triplets

75



6 – Recommendation Models

that it cannot currently rank correctly. This procedure yields roughly the
following algorithm [37]:

1. Pick a negative item at random from all the available items for a given
(user, positive item combination). Calculate predictions for both items;
if the negative item’s prediction is greater than the positive item’s plus
a margin, apply a gradient update to raise the positive item and lower
the negative item. If there isn’t a rank violation, keep sampling negative
item until one is discovered.

2. If you find a violating negative example on the first try, do a big gradient
update: this suggests that, given the present state of the model, a huge
number of negative items are rated higher than positive ones, and the
model has to be updated by a substantial amount. If finding a violating
example requires a lot of sampling, do a minor update: the model is
probably near to the optimum and should be updated at a low pace.

6.3 Hybrid model using item features
LighFM greatest power is the possibility to allow item features to be in-
corporated into classic matrix factorization algorithms [9]. The rationale
behind this is to feed the model movie metadata acquired from our use-case
dataset in order to improve recommendation accuracy and quality. Each
item in LightFM is represented as the sum of the latent representations of its
features, allowing recommendations to be generalized to new movies based
on item features. The presented feature matrix has got rectangular shape
(number of items, number of features). Afterwards, an embedding will be
estimated for each feature, resulting in a large number of feature embeddings.
The model will look up the i-th row of the feature matrix to locate the fea-
tures with non-zero weights in that row, then add the embeddings for these
features to produce the item representation. For example, if a particular
item has weight 1 in the 5th column of the item feature matrix and weight 3
in the 20th column, the item’s representation will be determined by adding
the embedding for the 5th and 20th features and multiplying the latter by 3.
After feature’ selection, the chosen item-features to be fed to LightFM were
the following:

• Movie Release year;

• Movie Runtime quantile label;

76



6 – Recommendation Models

• Movie Popularity quantile label;

• Movie Overview cluster;

• Movie Director and Cast cluster.

Item features are provided to the model through DatasetHelper [38] class
methods by passing them a Pandas dataframe whose records are item meta-
data, those just listed above, for each movie id. For this model, as users’
metadata we simply provide user ids.

6.4 Hybrid model using both item and user
features

After having extracted user features, as described in the Pre-processing chap-
ter, we can exploit them for enriching the quality of our embeddings. This
second hybrid model is based on the same reasonings of the last one we have
just discussed. In addiction to item features, here we provide the model users’
features too. Again, to obtain the representation for user i, the model will
look up the i-th row of the feature matrix to find the features with non-zero
weights in that row; the embeddings for these features will then be added
together to arrive at the user representation. Selected item features after
features’ selection were the following:

• Preferred movie genres;

• Top Cast string;

• Top Director string;

• Top Overview clusters;

6.5 Modelling user-item cold start
User and item cold start are common situations in recommender systems
that can be described as follows:

• User cold start, we want to make a recommendation to user that has
no past interactions with any movie, e.g. a new user that has not seen
and rated any movie within the dataset;

77



6 – Recommendation Models

• Item cold start, we want to recommend items that have no related
interactions with users such as newly released movies that no user has
seen.

Modelling the user cold-start means simulating a setting in which a selected
portion of users’ interactions is excluded from the training set. A model with-
out those users’ interactions is trained with LightFM, in order to simulate
cold-start. Those users will be called called "cold users". Afterwards, we want
to test what how our model is capable of recommending items to those users
in two cases: we can have no information at all about that user, i.e. we only
have its user id, or we have some user metadata collected for instance during
sign-up process with a survey. In fact, one can think of asking users to fill
out a form and to provide some preference during the registration process,
such as preferred genres, actors, directors. In order to simulate item cold
start we used a similar approach: cold movies’ interactions where kept out
of the training dataset. A model without those movies’ interactions (users’
ratings for those movies) was trained and tested on users that had reviewed
those cold movies. Moreover, we inspected whether the model was capable,
in the item cold-start setting, to recommend those cold items that is how
much capable was to score them properly in the topK.

78



Chapter 7

Experiments and results

In this chapter we are going to dive into the details of our experiments with
recommendation models described in Chapter 6: content-based, collaborative
filtering and, finally, hybrid recommendation with user and item metadata.
We will describe how The Movies Dataset was split in training and testing
set, how feature selection and cross-validation were made and which metrics
we took into account. For each recommendation system we provide results in
terms of Mean Average Precision and Recall. Also AUC will be considered.
Moreover, we will compare LightFM models with each other and examine
how they are able to tackle the problems of user and item cold start.

7.1 Training and testing splitting
After the pre-processing steps, final dataset containing user-item interac-
tions and metadata is split in training and testing sets with proportion 7:3.
The splitting is made with shuffling and stratification per user_id using
train_test_split method from sklearn, that ensures a better distribution of
the users ratings between training and testing sets. Stratification is intended
to avoid that some users, those with fewer ratings discussed in the Dataset
section, could end up not being represented in the test set. On average, each
user has got around 100 movies in the training set and around 49 in the
test set. In order to inspect the goodness of the splitting, we looked at the
average distance, in terms of cosine similarity, between users’ feature vectors
in the training and in the testing set after the splitting. This analysis showed
that the splitting is discretely able to preserve the preferences of each user,
given that the average cosine similarities are always above 0.6. Another con-
sideration to be done is that, as shown in the scatter plot below, users that

79



7 – Experiments and results

reviewed a larger set of movies reasonably show higher similarities between
training and testing feature vectors.

Figure 7.1. Dataset splitting analysis. Frequency barchart of cosine sim-
ilarities between movies’ feature vector in train-test set (left). Relation-
ship between similarities between movies’ feature vector and number of
movies rated by users (right).

7.2 Metrics
In order describe the details of the metrics for evaluating and comparing
results of the experiments with our models, we need to explain the concept
of "relevance" of a movie for a user. A movie is considered relevant for a user
if the user has seen and reviewed it with a rating over a certain threshold.
This threshold can be obtained with two different methods:

1. set to an arbitrary fixed value,

2. be derived dynamically from our data.

In the latter case, we can set a custom dynamic threshold for each movie,
which is the average rating for that movie in the whole dataset. As already
discussed in Chapter 2, the average rating for movies in our dataset is always
above 3. Since it is hard to set a reasonable fixed treshold, we opted for the
dynamic threshold. Thus, each movie is mapped with its average rating. If
a user rates that movie with a rating higher or equal to its average rating,
we can consider that movie relevant for him. Moreover, when making a
recommendation to a user, movies that it has already seen are not taken
into account since they would negatively affect the results. Each user will be

80



7 – Experiments and results

recommended K items, those will be compared with items the user has seen
and rated for real, movies in the testing set.

7.2.1 Precision@K and MAP
In information theory, precision is defined as the fraction of relevant items
among the retrieved items and it is also called Positive Predictive value. For
the purpose of this thesis, we define precision as follows:

p = # relevant recommendations
# recommended items (7.1)

where the denominator will be simply called K. Precision tells us how the
model is good at recommending relevant items among its topK recommen-
dations. As such, Precision@K is very focused on the ranking quality at the
top of the list: it doesn’t matter how good or bad the rest of the ranking
is as long as the first K items are mostly positive. This is an appropriate
metric when showing users the very top of the list. The Mean Average Preci-
sion (MAP), which we will use to evaluate our models, is simply the average
precision across all users of the dataset for a given value of K.

7.2.2 Recall@K and MAR
Recall, also known as sensitivity, is generally defined as the fraction of the
relevant items that are successfully retrieved. For movies’ recommendation
systems, it is derived as follows:

r = # relevant recommendation
# relevant items (7.2)

It can be viewed as the probability that a relevant document is retrieved by
the query. In our setting, the denominator of the equation below represents
the number of items inside the testing set for that user. The Mean Average
Recall (MAR) is simply the average recall across all users of the dataset for
a given value of K.

7.2.3 F1-Score
Recall and precision alone are not completely informative, they need to be
evaluated in pair. Alos, when evaluating cross-validated models for hyperpa-
rameters’ tuning, we needed a metric that could take into account both recall

81



7 – Experiments and results

and precision. F1-Score ensures equal contribution of those two metrics. It
can be interpreted as a harmonic mean of the precision and recall. This met-
rics reaches its best value at 1 and worst score at 0, whereas precision and
recall maximum values depend on the size of the testing set.

F1 = 2 p r

p + r
(7.3)

7.2.4 AUC

AUC is the probability that a randomly chosen positive example has a higher
score than a randomly chosen negative example. By "positive" example, we
mean a film that has been viewed and rated by a user. The maximum possible
AUC value is 1.0, which means that no negative item is ranked higher than
any positive one. The AUC is used to assess the overall ranking’s quality.
An AUC near to 1.0 indicates that, on the whole, the ranking is right, even
if none of the first K items are positives. In truth, it does not take into
account the expected order-rank of movies. A high AUC score indicates that
the ranking is of excellent quality all the way through. However, given that
AUC considers either positive or negative items, we have to consider that
AUC ignores information on the magnitude of positiveness of items.

7.3 Hyperparameter tuning and feature se-
lection

Every model was cross-validated using StratifiedKFold from sklearn, a class
which provides train and test indices to split data in train and test sets.
Cross-validation was intended to choose the best hyperparameters and to
evaluate their robustness with respect to randomness of the splits. In other
words, we wanted ensure that performances on the test set would not be
affected by the type of split. With LightFM models, for each fold, we applied
random search over sets of hyperparameters. The best ones were chosen in
terms of better F1-Score in order to give contribution to both precision and
recall metrics. For hybrid models, there was the need of choosing the most
informative items’ and users’ metadata. Given the limited number of possible
handcrafted attributes, in those cases we applied an exhaustive search over
possible combinations, always choosing those one proving the best F1-Score.

82



7 – Experiments and results

7.4 Results
In this section we are going to show and compare results of our experiments
with recommendation systems models described in the previous chapter. Us-
ing several values of K ∈ (3,5,7,9,11,13,15,17,19,21), with K being the num-
ber of recommendations for users, each model is evaluated on the training
and testing set, using the same split. Most relevant metrics will be Mean
Average Precision and Recall with a custom threshold for each movie as
described above, F1-Score and AUC.

7.4.1 Pure content-based
As explained in the previous chapter, pure content recommendation model
bases recommendations on item metadata and uses users’ ratings for com-
puting user profiling vectors. For each K and user id, we compute the user
profiling vector using weighted average with user ratings as weights. This
vector is then compared with all movies in the corpus: the total number of
movies except for those ones already seen by the user, i.e. movies in the
training set for that user. Then, from the whole ranking the model provides
a topK recommendation. Given this set of recommended movies we compute
MAP and MAR across users.

K MAP MAR F1-Score
3 0.2960 0.0491 0.0362
5 0.2718 0.0734 0.0522
7 0.2522 0.0942 0.0585
9 0.2415 0.1116 0.0647
11 0.2327 0.1305 0.0671
13 0.2224 0.1442 0.0704
15 0.2136 0.1566 0.0728
17 0.2076 0.1704 0.0740
19 0.2003 0.1828 0.0765
21 0.1946 0.1941 0.0774

Experimenting content-based model we observed a reasonable behaviour
of MAP and MAR: they tend to get closer to each other as K increases,
as showed in the results reported in the table and displayed in the lineplot
figure blow. Precision@K is inversely proportional to K: as the value of K
gets higher, Precision@K tends to decrease because it becomes harder to

83



7 – Experiments and results

Figure 7.2. Content-based model Mean Average Precision (MAP) and
Mean Average Recall (MAR).

successfully recommend more and more items to users, i.e. the denominator
increases more rapidly than the numerator, which is the number of recom-
mended movies that the user has seen and rated as relevant. Recall@K,
instead, tends to be directly proportional to K. In fact, as the number of rec-
ommended movies increases, we have more chances to recall relevant items
within all the movies that user has viewed and rated as relevant. This be-
haviour of MAP and MAR will be recurrent in all our experiments: as K
increases Precision@K decreases and Recall@K increases. Thus, the maxi-
mum value of MAP will be always reached with the lowest K, the maximum
value of MAR will be reached with the highest K, and viceversa. By ana-
lyzing the results, we can see how item metadata alone are not sufficient to
provide a reliable recommendation that should be "precise" and "sensible".
On average, around 1 over 10 movies recommended where really seen by the
users and the model is not able to recall more that 7% of the movies belong-
ing to the testing sets. The same model was also evaluated on the training
set, i.e. the user profiling vector was also compared with those movies that
were taken into account for its computation. From the lineplots we can see
how the model is discretely fitting the training set, expecially in terms of
MAP, but it hardly replicates those results on the testing set.

84



7 – Experiments and results

Figure 7.3. MAP (left) and MAR (right) on training and testing sets.

7.4.2 Weighted content-based
As described in the previous section, this additional model is intended to
provide a customized recommendation, by giving more importance to some
features with respect to others. We experimented the performances in terms
of average F1-score using StratifiedKFold cross-validation with several sets of
weighs summing up to 1, one weight for each of the features:

• overview embeddings,

• director and cast embeddings,

• genre and language one-hot vectors,

• numerical features such as vote average, release year, popularity, dura-
tion.

Resulting performances are worse than the pure-content based model: pre-
cision never overcome 7% and recall is always below 3%. However, this
recommendation method is more able to focus the topK recommendation on
certain attributes: when a higher weight is given to "genre" attribute, it tend
to recommend movies of same genres or when a higher weight is given to pop-
ularity, it tends to recommend more popular movies. The same reasoning is
valid for all attributes when their cosine similarity scores are "boosted" by ar-
bitrary weights. This system can be useful when the recommendation system
owner wants to provide users recommendations tailored on their preferences
related to specific hand-crafted features. Best results give higher weights to
popularity, overview embeddings and genre.

85



7 – Experiments and results

7.4.3 Pure Collaborative Filtering
As explained in the previous Chapter, collaborative filtering system exploits
matrix factorization algorithm for movie recommendation. It uses the power
of the interactions’ data: records reporting user id, movie id and rating. User
and item representations are learned from the training interaction matrix
and exploited to provide topK recommendation. Those recommendations
are then evaluated in terms of Precision@K and MAP, Recall@K and MAR.
User embeddings have size (671, no_components), the item representation
is a matrix (9013, no_components). LightFM also takes into account the
magnitude of the interactions through sample_weight parameter, which is
the matrix with entries expressing weights of individual interactions from the
interactions matrix, i.e. the users-movies interactions matrix. Its row and
columns arrays are the same as those of the interactions matrix. LightFM
hyperparameters were tuned with a random search over several splits of the
original dataset. For each dataset splitting, a random search is performed
sampling hyperameters in this manner:

• no_components was randomly drawn from interval (15,100) without
replacement;

• learning_schedule was randomly chosen between "adagrad" and "adadelta";

• loss was randomly chosen between "warp" and "warp-kos";

• learning_rate was drawn from an exponential distribution with β =
0.05 scale parameter, inverse of the rate parameter;

• num_epochs was randomly sampled from interval (10,50) without re-
placement.

The best found hyperparameters, shown in terms of highest average F1-
Score, are those ones showed in the table below.

K MAP MAR F1-Score
3 0.2960 0.0491 0.0842
5 0.2718 0.0734 0.1155
7 0.2522 0.0942 0.1371
9 0.2415 0.1116 0.1526
11 0.2327 0.1305 0.1672
13 0.2224 0.1442 0.1749

86



7 – Experiments and results

K MAP MAR F1-Score
15 0.2136 0.1566 0.1807
17 0.2076 0.1704 0.1871
19 0.2003 0.1828 0.1911
21 0.1946 0.1941 0.1943

Table 7.2: Pure LightFM collaborative filtering
model Mean Average Precision (MAP) and Mean Av-
erage Recall (MAR).

LightFM
parameter Value

no_components 88
loss ’warp’
learning_schedule ’adagrad’
learning_rate 0.03
epochs 24

Table 7.3: Best LightFM hyperparameters in terms
of F1-Score after cross-validation.

LightFM collaborative model outperformed content-based model, reaching
almost 1 out of 3 correct recommendations on average (30% of Mean Average
Precision) and 20% Mean Average Recall, meaning that 1 out of 5 movies
are correctly recalled from the testing set.

In order to analyze whether the model is correctly fitting training records,
we show and compare F1-Scores on training and testing set versus K and
AUC score versus the number of epochs. In LightFM, the AUC routine
returns an array of metric scores: one for every user in your test data. We
averaged AUC metrics for each user and depicted them versus the number of
epochs for training and testing sets. As the size of the topK ranking increases,
the range between training and testing F1-Score enlarges, meaning that the
model is loses capability of generalization as K increases. Similar outcome
comes out from AUC versus epoch plot: as training goes on the model starts
overfitting on training interactions.

87



7 – Experiments and results

Figure 7.4. Pure collaborative filtering model MAP and MAR versus K.

Figure 7.5. F1-score vs K (left) and AUC vs training epochs (right) on
training and testing set for LightFM pure collaborative model.

7.5 Hybrid Collaborative Filtering

LightFM library makes possible to incorporate item and user metadata into
the collaborative matrix factorization models. In this section we show the
result of those experiments with movies’ attributes and users’ handcrafted
metadata as discussed in the Data Preprocessing chapter.

88



7 – Experiments and results

7.5.1 Hybrid model with item metadata
The Movies Dataset, deeply explored in Chapter 4, provides a rich set of
items metadata that can be useful for improving quality of recommendation.
A Pandas dataframe size (9013, num_item_features) is provided to LightFM
model through the use of DatasetHelper library. Chosen movies’ features af-
ter feature selection were: genres, original language, release year, runtime,
popularity, overview, director and cast. LightFM requires categorical values
for the items’s attributes, the related feature engineering was already dis-
cussed in the Data Preprocessing chapter. LightFM fit() method is provided
a matrix where each row contains that item’s weights over features one-hot
encoded. Those weights, or in other words each row, should sum up to 1.
The best hyperparameters for LightFM model, in terms of average F1-Score
after random search are those described in the following table.

LightFM
parameter Value

no_components 72
loss ’warp’
learning_schedule ’adagrad’
learning_rate 0.05
epochs 25

K MAP MAR
3 0.3341 0.0541
5 0.2925 0.0801
7 0.2827 0.9889
9 0.2653 0.1332
11 0.2501 0.1451
13 0.2483 0.1579
15 0.2344 0.1678
17 0.2289 0.1802
19 0.2209 0.2001
21 0.2175 0.2198

The pure collaborative model was outperformed by LightFM Hybrid model
with item metadata, especially in terms of precision. We show this evidence
with the lineplot that compares their Mean Average Precision and Recall
versus K. Again, we analyzed the capability of generalization of the model.

89



7 – Experiments and results

Figure 7.6. Pure LightFM collaborative filtering model vs Hybrid
model MAP and MAR.

Figure 7.7. F1-score (left) and AUC (right) on training and testing set for
LightFM collaborative model with movies’ metadata.

The hybrid model turned out to be less prone to overfit on the training data:
both F1-Score and AUC improved with respect to LightFM pure collabora-
tive and the range between training and testing performances lower. The
only drawback of incorporating item metadata into LightFM model was the
increase of training and predicting time.

We also inspected how performances on the test set of our model were
influenced by the size of the training set, the number of movies rated by our

90



7 – Experiments and results

Figure 7.8. Bivariate KDE distribution of Precision@K and Recall@K versus
the size of the user training set.

users. Precision@K tends to show direct proportionality with the size of the
training set: the more movies a user has seen and rated, the better the model
is capable of providing an accurate recommendation. The same statement
cannot be totally confirmed with recall, the size of the training set seemed
not directly affect the sensitivity of the model, i.e. its capability to recall
relevant items from the testing set.

7.5.2 Hybrid model with user and item metadata

The Movies Dataset does not provide intrinsic user metadata. However, we
experimented a Hybrid movie recommender system feeding LightFM also
users’ handcrafted metadata, pre-processed and engineered as explain in
Chapter 5. Therefore, this time LightFM fit() method is also provided a
matrix where each row contains that users’s weights over features one-hot
encoded item features’. Feeding the model with also user handcrafted meta-
data did not bring to any significant improvement in terms of Mean Average
Precision and Recall. Performances of this model remain better than Pure
Collaborative, but did not overcome the Hybrid model with only items’ meta-
data.

91



7 – Experiments and results

7.6 Cold-start

7.6.1 Item cold-start
Item cold-start is the setting in which new movies that no users have seen are
integrated into our model. We will refer to items that were not seen by any
user as "cold items". We can think to item cold-start as a situation in which
the recommender system owner would like to add new users to the corpus
that no one has seen and rated. We imagine that those movies are added to
the corpus with not only their id information, but also some related features
that are able to describe them: genre, language, plot etc. Our experiments
with item-cold start using LightFM Hybrid model followed the steps below:

1. Randomly splitting training e testing set with user_id stratification;

2. Removing interactions from 25% of movies randomly chosen with no
replacement from the training set in order to simulate item cold-start;

3. Training the Hybrid LightFM model on all users of the training set but
excluding interactions (i.e. ratings) related to cold movies;

4. Evaluating the model in terms of F1-Score on the testing set for users
which have had interactions with cold movies.

The same procedure was applied using a Pure Collaborative LightFM
models and results were compared with Hybrid LightFM in terms of F1-
Score on the testing set for those users that interacted with cold movies.
Results show that Hybrid LightFM clearly outperform Pure Collaborative
LightFM in a item cold-start setting. However, cold movies hardly appear
in the topK recommendations for out set of K. From our experiments we
observed that, on average, cold movies are recommended only with values of
K above 100, and the hybrid model is more capable of scoring them higher
thanks to items features. Thus, although the Hybrid model is more precise
and capable of recalling right movies to users, it needs some external boosting
to recommend cold items.

7.6.2 User cold-start
LightFM, like any other recommender algorithm, cannot make predictions
about entirely new users if it is not given additional information about those
users. When trying to make recommendations for new users we want to

92



7 – Experiments and results

Figure 7.9. F1-Scores for LightFM Hybrid model (green) and Pure Collab-
orative LightFM (red) trained without cold items interactions and tested on
those users that rated cold items.

describe them in terms of the features that the algorithm has seen during
training. An overview of the modelling of user-cold start was given in Chapter
6. We will refer to users that have had no interactions with any movies "cold
users". Those are the details of the main steps of our experiments:

1. Randomly splitting training e testing set with user_id stratification;

2. Removing interactions from 25% of users randomly chosen with no re-
placement from the training set in order to simulate user cold-start;

3. Training a Hybrid LightFM model on the training set using only inter-
actions from not cold users. Both users’ and items’ metadata from all
users, cold and not cold, were fed to the model;

4. Evaluating the model on the testing set with average F1-Score only for
those cold users interactions;

The results were again compared to those ones of a Pure Collaborative
Model in the same user cold-start setting. This time we cannot notice any
relevant improvement due to Hybrid Model and its users’ features. Except
for the lowest values of K, F1-Score are very similar. This performances let
us think that users’ features are not enough for improving performances on

93



7 – Experiments and results

Figure 7.10. F1-Scores for LightFM Hybrid model (green) and Pure
Collaborative LightFM (red) trained without cold users interactions
and tested on cold users.

new users, since they do not provide any additional information with respect
to the user-movie interaction matrix. Inspecting the typology of recommen-
dations, we can notice that both models tend to recommend popular items,
i.e. items seen and rated frequently. Thus, the Hybrid Model in this case is
not really capable to provide cold users a topK recommendation, tailored on
their features.

7.6.3 LightFM in production
In real use-cases, we generally do not have any cold users’ and items’ informa-
tion available in advance. Thus, the model has to be trained several times in
production. When new users and items are available with or without mete-
data, the model has to be re-fitted on those new data. We made experiments
to make it possible to train LightFM in a real item-user cold-start setting. In
order to train LightFM in production the fit_partial method was used. As
explained in the Pre-preprocessing Chapter, we used DatasetHelper for easily
feeding the models our Pandas dataframes. In order to continue using the
DatasetHelper class methods and make them compatible with training in pro-
duction, we needed to make a little modification to the source code. In fact,
when creating a DatasetHelper object, the Dataset class from LightFM is

94



7 – Experiments and results

called. user_identity_features and item_identity_features parameters make
the model create a unique feature for every user/item in addition to other
features. The default setting of those parameter of Dataset class has to be
manually set to False in order to preserve the dimensionality of the features’
space when re-training the model on cold users-items.

95



Chapter 8

Conclusion and further
improvements

The aim of this thesis was to investigate families of Recommender Systems
and to build a Hybrid Movie Recommender engine capable of exploiting
both user-item interactions and items’ metadata gathered from "The Movies
Dataset". We also aimed to inspect how textual natural language informa-
tion could be exploited to improve the quality of the suggestions and better
tackle the cold-start problem.

First of all, we compared pure content-based models with LightFM simple
collaborative filtering. Results pointed out the importance of the use of in-
teractions’ data between users and items for high quality recommendations.
In addition to being faster to train and evaluate, all models based on matrix-
factorization outperformed our content-based models. The pure LightFM
model doubled the performances of content-based in terms of average F1-
Score, which reflected its capability of both accurately recommend items
within topK ranking and recalling real interactions. In Chapter 5 we deeply
investigated our item-metadata, by focusing on the usage of NLP for embed-
ding textual information such as movie synopsis, cast and crew as points in a
multidimensional embedding space where similar items lie close to each other.
Surely, having high quality item attributes makes it easier for content-based
recommenders to scale to larger number of users, without the need of many
data about other users’ interaction. When those attributes properly interpret
similarity between items, content-based models can capture specific interests
of a user based on its preferred genres, plot, actors, directors etc. and can
recommend niche items that very few users are interested in. However, even

96



8 – Conclusion and further improvements

the model the best quality hand-engineered features will never be able to con-
sider the diversity of users’ tastes, since recommendations would be limited
to the existing interests, i.e. the user-bobble. Those findings pointed out the
limitations of content-based approach: need of human domain knowledge for
feature engineering, poor training and evaluation efficiency, lack of serendip-
ity. The pure LightFM collaborative approach was more straightforward and
accurate, since only the feedback matrix was needed for the embeddings to be
automatically learned by matrix-factorization. Thus, this model needed poor
human domain knowledge and resulted to provide diversity in recommenda-
tions. It might recommend movies different from users’ history, helping them
to discover new interests.

LightFM library gave us the opportunity to experience the advantages of
hybrid recommendation system models. Our experiments showed that feed-
ing LightFM matrix-factorization model with items’ metadata, in addition to
ratings, can improve the quality of recommendations, especially in terms of
Precision@K. Despite a longer training and testing time, hybrid models were
less prone to overfitting and more capable of generalize. Those improvements
can be also interpreted as proof of the quality of our sentence-embeddings,
which demonstrated to provide information to the models. Differently from
context-free models, BERT confirmed to supply the best contextualized em-
beddings for sentence similarity and topic modelling. word2vec provided
context independent embeddings, GTP-2 was able to only handle past or left
side context. BERT, instead, was better in learning the context based on
tokens surroundings, thanks to self-attention mechanism. We surely believe
that even better results could be achieved with heavier versions of the trans-
former model.

"The Movies Dataset" does not come with users’ intrinsic metadata such
as users’ demographics. Thus, we manually extracted them from their inter-
actions with movies (e.g. users preferred genre). Feeding also synthetic users’
metadata to hybrid models did not improve performances. We believe that
the availability of users’ metadata in the dataset such as sex, age, income
etc. could help further improving the quality of recommendations.

The low amount of information provided by users’ metadata was pointed out
by the results in user cold-start setting. When new users are introduced in
the engine without past interactions but personal preferences (e.g. provided

97



8 – Conclusion and further improvements

within a registration online form) the hybrid engine is not capable of bet-
ter interpreting their input preferences. In fact, the simple LightFM model
performances compared to the hybrid ones are similar: both models tend
to recommended cold users popular items within the dataset, without being
able to interpret their input preferences. We would expect improvements of
performances in user cold-start with proper users’ demographic metadata.

In the item cold-start setting, our hybrid models brought slight improve-
ments with respect to pure collaborative filtering. When new items, without
past interactions, are added into the system together with their genre, textual
plot, cast, etc., our hybrid engine is better than a simple matrix-factorization
model in recommending them. In fact, the hybrid system is capable of de-
scribing new items in terms of the features that the algorithm has seen during
training. However, as explained in Chapter 6, even the hybrid model needs
a lot of attempts before recommending cold items, since they are suggested
only with high values of K. This is a common situation in item-cold start
setting: new items are hard to recommend, therefore they need to be boosted
with respect to those items already having past interaction history.

98



Bibliography

[1] “Recommendation systems - google developer.” https://developers.
google.com/machine-learning/recommendation/. Accessed: 2022-
03-01.

[2] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” 2017.

[3] CodeEmporium, “How to get meaning from text with language
model bert | ai explained.” https://www.youtube.com/watch?v=
xI0HHN5XKDo. Accessed: 2022-03-01.

[4] J. Alammar, “Illustrated gpt-2.” https://jalammar.github.io/
illustrated-gpt2/. Accessed: 2022-03-01.

[5] “How retailers can keep up with consumers.” https:
//www.mckinsey.com/industries/retail/our-insights/
how-retailers-can-keep-up-with-consumers. Accessed: 2022-
03-01.

[6] F. Fkih, “Similarity measures for collaborative filtering-based recom-
mender systems: Review and experimental comparison,” Journal of King
Saud University - Computer and Information Sciences, 2021.

[7] Y. Koren, R. Bell, and C. Volinsky, “Matrix factorization techniques for
recommender systems,” Computer, vol. 42, p. 30–37, aug 2009.

[8] C. A. Gomez-Uribe and N. Hunt, “The netflix recommender system:
Algorithms, business value, and innovation,” ACM Trans. Manage. Inf.
Syst., vol. 6, dec 2016.

[9] M. Kula, “Metadata embeddings for user and item cold-start recom-
mendations,” in Proceedings of the 2nd Workshop on New Trends on
Content-Based Recommender Systems co-located with 9th ACM Confer-
ence on Recommender Systems (RecSys 2015), Vienna, Austria, Septem-
ber 16-20, 2015. (T. Bogers and M. Koolen, eds.), vol. 1448 of CEUR
Workshop Proceedings, pp. 14–21, CEUR-WS.org, 2015.

99

https://developers.google.com/machine-learning/recommendation/
https://developers.google.com/machine-learning/recommendation/
https://www.youtube.com/watch?v=xI0HHN5XKDo
https://www.youtube.com/watch?v=xI0HHN5XKDo
https://jalammar.github.io/illustrated-gpt2/
https://jalammar.github.io/illustrated-gpt2/
https://www.mckinsey.com/industries/retail/our-insights/how-retailers-can-keep-up-with-consumers
https://www.mckinsey.com/industries/retail/our-insights/how-retailers-can-keep-up-with-consumers
https://www.mckinsey.com/industries/retail/our-insights/how-retailers-can-keep-up-with-consumers


Bibliography

[10] J. Beel, B. Gipp, S. Langer, and C. Breitinger, “Research-paper recom-
mender systems: A literature survey,” International Journal on Digital
Libraries, pp. 1–34, 07 2015.

[11] Mohdsanadzakirizvi@gmail.com, “Demystifying bert: A
comprehensive guide to the groundbreaking nlp frame-
work.” https://www.analyticsvidhya.com/blog/2019/09/
demystifying-bert-groundbreaking-nlp-framework/, 2019. Ac-
cessed: 2022-03-01.

[12] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” 2013.

[13] J. Alammar, “The illustrated bert, elmo, and co. (how nlp
cracked transfer learning).” https://jalammar.github.io/
illustrated-word2vec/, 2021. Accessed: 2022-03-01.

[14] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation
of word representations in vector space,” Proceedings of Workshop at
ICLR, vol. 2013, 01 2013.

[15] A. M. Dai, C. Olah, and Q. V. Le, “Document embedding with para-
graph vectors,” 2015.

[16] C. D. M. Jeffrey Pennington, Richard Socher, “Glove: Global vectors for
word representation.” https://nlp.stanford.edu/projects/glove/.
Accessed: 2022-03-01.

[17] TensorFlow, “Transformer model for language understanding.” https://
www.tensorflow.org/text/tutorials/transformer. Accessed: 2022-
03-01.

[18] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” 2019.

[19] J. Devlin and G. A. L. Ming-Wei Chang, Research Scien-
tists, “Open sourcing bert: State-of-the-art pre-training for nat-
ural language processing.” https://ai.googleblog.com/2018/11/
open-sourcing-bert-state-of-art-pre.html, 2018. Accessed:
2022-03-01.

[20] “Topic modelling with bert.” https://towardsdatascience.com/
topic-modeling-with-bert-779f7db187e6. Accessed: 2022-03-01.

[21] “Sentencetransformers documentation.” https://www.sbert.net/
docs. Accessed: 2022-03-01.

[22] N. Reimers and I. Gurevych, “Sentence-bert: Sentence embeddings using
siamese bert-networks,” in Proceedings of the 2019 Conference on Em-
pirical Methods in Natural Language Processing, Association for Com-
putational Linguistics, 11 2019.

100

https://www.analyticsvidhya.com/blog/2019/09/demystifying-bert-groundbreaking-nlp-framework/
https://www.analyticsvidhya.com/blog/2019/09/demystifying-bert-groundbreaking-nlp-framework/
https://jalammar.github.io/illustrated-word2vec/
https://jalammar.github.io/illustrated-word2vec/
https://nlp.stanford.edu/projects/glove/
https://www.tensorflow.org/text/tutorials/transformer
https://www.tensorflow.org/text/tutorials/transformer
https://ai.googleblog.com/2018/11/open-sourcing-bert-state-of-art-pre.html
https://ai.googleblog.com/2018/11/open-sourcing-bert-state-of-art-pre.html
https://towardsdatascience.com/topic-modeling-with-bert-779f7db187e6
https://towardsdatascience.com/topic-modeling-with-bert-779f7db187e6
https://www.sbert.net/docs
https://www.sbert.net/docs


Bibliography

[23] L. McInnes, J. Healy, and J. Melville, “Umap: Uniform manifold ap-
proximation and projection for dimension reduction,” 2020.

[24] R. J. G. B. Campello, D. Moulavi, and J. Sander, “Density-based clus-
tering based on hierarchical density estimates.,” in PAKDD (2) (J. Pei,
V. S. Tseng, L. Cao, H. Motoda, and G. Xu, eds.), vol. 7819 of Lecture
Notes in Computer Science, pp. 160–172, Springer, 2013.

[25] “Hdbscan documentation.” https://hdbscan.readthedocs.io/en/
latest/. Accessed: 2022-03-01.

[26] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever,
“Language models are unsupervised multitask learners,” 2019.

[27] R. Banik, “The movies dataset - kaggle.” https://www.kaggle.com/
rounakbanik/the-movies-dataset. Accessed: 2022-03-01.

[28] “Grouplens, social computing research at the university of minnesota.”
https://grouplens.org. Accessed: 2022-03-01.

[29] “The movie database api.” https://developers.themoviedb.org/3/
getting-started/popularity. Accessed: 2022-03-01.

[30] “Imdb.” https://www.imdb.com. Accessed: 2022-03-01.
[31] “The movie database api - popularity.” https://developers.

themoviedb.org/3/getting-started/popularity. Accessed: 2022-
03-01.

[32] “Bert documentation from huggingface.” https://huggingface.co/
docs/transformers/model_doc/bert. Accessed: 2022-03-01.

[33] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods
for online learning and stochastic optimization,” J. Mach. Learn. Res.,
vol. 12, p. 2121–2159, jul 2011.

[34] M. D. Zeiler, “Adadelta: An adaptive learning rate method,” 2012.
[35] J. Weston, H. Yee, and R. J. Weiss, “Learning to rank recommendations

with the k-order statistic loss,” in Proceedings of the 7th ACM Con-
ference on Recommender Systems, RecSys ’13, (New York, NY, USA),
p. 245–248, Association for Computing Machinery, 2013.

[36] S. Rendle and C. Freudenthaler, “Improving pairwise learning for item
recommendation from implicit feedback,” in Proceedings of the 7th ACM
International Conference on Web Search and Data Mining, WSDM ’14,
(New York, NY, USA), p. 273–282, Association for Computing Machin-
ery, 2014.

[37] P. Rais, “Learning-to-rank using the warp loss.” https://notebook.
community/paoloRais/lightfm/examples/movielens/warp_loss.
Accessed: 2022-03-01.

[38] M. E. Omari, “Lighfm dataset helper.” https://

101

https://hdbscan.readthedocs.io/en/latest/
https://hdbscan.readthedocs.io/en/latest/
https://www.kaggle.com/rounakbanik/the-movies-dataset
https://www.kaggle.com/rounakbanik/the-movies-dataset
https://grouplens.org
https://developers.themoviedb.org/3/getting-started/popularity
https://developers.themoviedb.org/3/getting-started/popularity
https://www.imdb.com
https://developers.themoviedb.org/3/getting-started/popularity
https://developers.themoviedb.org/3/getting-started/popularity
https://huggingface.co/docs/transformers/model_doc/bert
https://huggingface.co/docs/transformers/model_doc/bert
https://notebook.community/paoloRais/lightfm/examples/movielens/warp_loss
https://notebook.community/paoloRais/lightfm/examples/movielens/warp_loss
https://lightfm-dataset-helper.readthedocs.io/
https://lightfm-dataset-helper.readthedocs.io/


Bibliography

lightfm-dataset-helper.readthedocs.io/. Accessed: 2022-03-
01.

102

https://lightfm-dataset-helper.readthedocs.io/
https://lightfm-dataset-helper.readthedocs.io/
https://lightfm-dataset-helper.readthedocs.io/

	List of Tables
	List of Figures
	Introduction

	I First part: Theory Background
	Recommendation Systems
	Terminology
	General architecture
	Similarity measures
	Cosine similarity
	Euclidean distance

	Content-based filtering
	Limitations of content based filtering

	Collaborative filtering
	Matrix factorization
	Advantages of collaborative filtering
	The cold-start problem

	Hybrid Recommender Systems
	LightFM


	NLP Techniques for sentence embedding
	TF-IDF
	Context-free language models, word2vec and doc2vec
	word2vec
	doc2vec

	Transformers-based language models
	Representing the meaning, input embeddings
	Getting the context of the word in the sentence, positional encoders
	Encoder block
	Decoder block
	The Multi-Head Attention networks
	Add Normalization layers

	BERT
	How BERT works
	BERT pre-training phase
	BERT Fine-tuning phase
	Topic modelling with BERT embeddings
	UMAP Dimensionality Reduction
	HDBScan Clustering
	Topic interpretation using TF-IDF

	GPT-2
	GPT-2 and BERT



	II Second part: Use-case and Experiments
	Implementation details
	Dataset
	The Movies Dataset
	Movies metadata
	Interactions and ratings


	Data Preprocessing
	Data cleaning
	Feature selection
	Data normalization
	Feature Engineering
	Movie genres
	Release date splitting
	Movie original language encoding
	Vote average, popularity and runtime
	Movie textual overviews embedding
	Overview clusters using HDBScan on BERT embeddings
	Movie director and actors embedding with BERT
	User synthetic features


	Recommendation Models
	Pure Content-based model
	User Profiling Vector
	Content-based recommendation
	Pure weighted content-based model

	Pure collaborative filtering model
	BPR and WARP losses

	Hybrid model using item features
	Hybrid model using both item and user features
	Modelling user-item cold start

	Experiments and results
	Training and testing splitting
	Metrics
	Precision@K and MAP
	Recall@K and MAR
	F1-Score
	AUC

	Hyperparameter tuning and feature selection
	Results
	Pure content-based
	Weighted content-based
	Pure Collaborative Filtering

	Hybrid Collaborative Filtering
	Hybrid model with item metadata
	Hybrid model with user and item metadata

	Cold-start
	Item cold-start
	User cold-start
	LightFM in production


	Conclusion and further improvements
	Bibliography


