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Chapter 1

Introduction

1.1 Simulation for autonomous driving

The concept of digital twin has garnered lots of attention with the advent of scalable
cloud infrastructures and IoT technologies[1]. As its name suggests, such virtual
system is designed with the capabilities of mutual improvement with its real world
counterpart, by means of continuous bidirectional exchange of information.
In the context of autonomous vehicle systems, the self-driving architecture greatly
benefits from the existence of its digital twin. As a matter of fact, all its components,
from perception, to path planning and control, can be simulated and improved in
virtual environments, although up to the level of realism offered by the employed
simulator.
However, simulation is not just a tool to achieve marginal refinements of the
self-driving architecture.
Safety and reliability of autonomous vehicles are of paramount importance, and
simulation allows to provide guarantees also in regards to such aspects. As it has
been quantitatively shown, by means of statistical analyses, in the research report
of RAND corporation[2], alternative methodologies to on-road test drives are
required to ensure such properties of the autonomous driving software: simulation
is one of the possible solutions mentioned in their research. In their work, they
provide proof that to demonstrate a given level of reliability of autonomous vehicles
with respect to the 2013 reference human driving failure rate of 1.09 fatalities
per 100 million driven miles, with a reliability threshold R = 99.9999989% and
a statistical confidence level C = 95%, 275 million failure-free miles would have
to be driven: «If one considers a fleet of 100 autonomous vehicles test-driven 24
hours a day, 365 days a year at an average speed of 25 miles per hour, this would
take about 12.5 years. [2]» In the case that the degree of precision (e.g., if we
wish to estimate the failure rate to within 20%, precision = 0.2) with which such
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failure rate of the autonomous vehicle is estimated, then the time required to run
the vehicles for the needed mileage (which under this requirement increases to 8.8
billion miles) is of 400 years[2]. This is valid in the case that precision = 0.2.
Furthermore, similar time periods are required to also verify reliability guarantees
related to the % improvement of the autonomous vehicle system with respect
to the human-driving failure rates: in the same experimental setup, with the
aforementioned autonomous fleet, 225 years of continuous driving would be required
to verify a %20 improvement over the human driving performance.
Clearly, all of these estimates are a statement on the need of simulation to address
all aspects related to the development, deployment and validation of autonomous
vehicles.
All of the mentioned issues have to be properly addressed in order to reach the
level 5 autonomy level defined in the SAE Levels of Driving Automation[3],
shown in figure 1.1.
As the SAE level from 0 to 2 defined conditions under which a human driver is
still in control of the vehicle, the aforementioned arguments become of increasing
relevance starting from the SAE level 3 to 5, under which the vehicle drives itself in
full autonomy. Excluding level 3, which categorizes all autonomous vehicles which
can still require human intervention if certain conditions are met, level 4 and 5 are
those of main interest for the development of fully autonomous vehicles.

Figure 1.1: SAE Levels of Driving Automation

Hence, from the statements shown in the RAND corporation report [2] and the
requirements for level 4 and 5 autonomy provided by the SAE standard shown in
the figure 1.1, it is possible to conclude that simulation plays a fundamental role
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for the development entirely autonomous cars.
Indeed, ever since 2016, the year in which the RAND corporation report was
published, the self driving sector has dedicated much attention to the development
of autonomous driving simulation software.
At the outset, the first self driving simulator research attempts were those of
DeepDrive[4] and OpenAI[5] which employed GTA 5 as simulation engine. Then,
research moved on to open source solutions such as CARLA[6](Car Learning to
Act) which provided a greater degree of customization of the simulation, from the
car sensor setup to the dynamics of the environment.
Numerous other solutions have been simultaneously developed, such as AirSIM [7],
GAZEBO for self-driving [8] before the industry showed its enterprise solutions.
NVIDIA has been among the pioneers of autonomous vehicle development with its
NVIDIA DRIVE sim simulation platform in 2018 [9][10], and its recent follow-up
with a synthetic data generation engine[11] NVIDIA replicator for the development
of artificial intelligence algorithms for self-driving.
Although the latter provides a perspective biased towards research, indeed also
companies directly involved in the automotive sector have acknowledge the funda-
mental role of simulation.
Tesla[12][13], NIO[14], waymo[15][16][17] and Uber[18] have all employed simulation
as a core component of their self-driving technology stack, both for the development
of deep neural networks used for scene understanding and also safety and reliability
assessment.
Hence, as the autonomous driving software comprises a wide variety of tasks under
the domains of perception, planning and control, the applicability of a digital twin
capable, by definition[1], of simultaneous improvement of its real counterpart is of
paramount importance for development of SAE level 5 autonomous cars.

1.2 Research setting and main motivations

From the broad set of perception tasks which are comprised by the autonomous
driving architectures, spanning from lane detection, object detection, semantic
segmentation, instance segmentation, multi object tracking and many more, this
work focuses on the novel panoptic segmentation task, which entails the joint in-
stance and semantic segmentation prediction of entities in the scene. The panoptic
segmentation task, defined in 2019 in the paper[19]from the FAIR research group,
presents the premises to achieve greater scene understanding capabilities compared
to previous semantic and instance segmentation methods which are traditionally
applied separately on images. Such premises are enforced by-design, as the task
imposes the joint learning of instances, semantics and their mutual relationships
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(e.g. a car is frequently seen close to roads, seldom surrounded by trees).
Many approaches in the literature have provided improvements over the origi-
nal PanopticFPN[20] model: between the most relevant ones there are Panop-
ticDeeplab[21], EfficientPS [22] and UPSnet [23]. Although enhanced segmentation
capabilities are fundamental in the context of autonomous driving perception, these
models have to be trained on datasets which are sampled from the target inference
setting, thus requiring expensive labeling of real world data.
The simplest way to overcome such issues is to employ transfer learning, by starting
from pretrained models which can then be fine-tuned on much smaller datasets,
without much overfitting or loss of performance.
However such setting does not inherently allow the integration of simulation and
synthetic data in perception models, which as has been described in the above
section, are of paramount importance to achieve highly accurate and robust per-
ception systems.
On the other hand domain adaptation and its related techniques provides the
means to develop models that are capable to bridge the gap between synthetic and
real data, while retaining the benefits of both worlds.
As such, this dissertation brings the panoptic segmentation architectures together
with the modifications required to build domain adaptive models, with the objec-
tive to develop effective panoptic segmentation models for autonomous driving
perception.
This line of work has been motivated both by the high impact that novel sim2real
methods can have, given the proven necessity of simulation to build autonomous
driving systems, as well as the lack of research on synthetic-to-real domain adapta-
tion for the panoptic segmentation task.
As a matter of fact, only one publication [24] treated domain adaptation for the
panoptic segmentation task. The latter considers self-training as a domain adapta-
tion approach, leaving open the research on adversarial based domain adaptation.
Hence, the objective of this thesis is to improve panoptic segmentation models
which are meant to perform inference unlabeled real world image data, by training
them in the setting of unsupervised adversarial domain adaption, on labeled syn-
thetic images,generated by means of simulation, simultaneously with unlabeled real
data. The performance improvement attained by the use of domain adaptation is
measured against a set of baseline models which are trained solely on synthetic
images and then tested on real world images. The upper bound to the attainable
improvement by domain adaptation is instead estimated by training and testing
the same deep learning architecture with the actual ground truths of the real world
data, which are never employed during domain adaptation.
In this way, it is possible to assess the degree by which the domain adaptive model
could improve if it were to completely fill the domain gap which distinguishes the
synthetic and the real image domains, thus achieving perfect predictions also on
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the real world.
With the aim to build a realistic sim2real model training scenario, it has been

necessary to develop the experimental setting under which large quantities of
auto-annotated synthetic data are available and can be continuously updated,
while real world data comes without annotations and in limited amounts. Thus
the research that has been carried out consists of two consecutive components.
The first is focused on the development of both the experimental scenario and
the associated datasets, while the second is centered around the creation, training
and evaluation of the domain adaptive panoptic segmentation model. Although
synthetic datasets such as SYNTHIA [25] exist and can be matched with other real
world ones such as cityscapes, the objective of this thesis is to demonstrate the real
world applicability of domain adaptation to improve perception models, by means
of continuous streams of large amounts of synthetic data generated in simulation,
paired with unlabeled real world data captured from the cameras of an autonomous
driving fleet. To this end, a synthetic data generation tools has been developed
by means of the CARLA simulator. Then, the synthetic image dataset has been
label-matched with the renowned cityscapes and bdd100k real world image datasets.
In this experimental setting, the latter are representative of the unlabeled image
data that would be captured a car’s cameras in a real world scenario. Downstream
to the label matched sim2real dataset, an adversarial domain adaptive modification
of the PanopticFPN model has been trained on with ground truth supervision
on synthetic data and self-supervision on real data, with BDD100k or cityscapes,
and the remaining real dataset of the two has been used as an out of sample
dataset to test the domain adapted model on completely out-of-sample data. The
novelty of this research stems from the fact that there is little focus on domain
adaptative models for the panoptic segmentation task. Most approaches to the
synthetic-to-real domain adaptation problem in the autonomous driving setting are
still concerned with semantic segmentation [26, 27, 28], instance segmentation[29,
30] or object detection [31, 32, 33]. Other lines of work entail domain adaptation
for the LiDAR panoptic segmentation task [34]. Domain adaptation for semantic
segmentation and object detection on point cloud data from LiDAR have also been
addressed in the recent literature[35, 36, 37], but are out of the scope of this work,
due to their use of point clouds instead of image data.

1.3 Thesis outline
With the outlined research context and experimental setting of the domain adap-
tive panoptic segmentation experiments, this dissertation presents the developed
research in seven chapters. The first is the introduction, which motivates this work
from the perspective of the scientific relevance, the need of the industry and the
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implicit future relevance of synthetic-to-real related research in the field of deep
learning, given the presented claims on the absolute need of simulation to achieve
full self driving vehicles.
The dissertation then develops in the second chapter: related works. It sets the
context of the state of the art and the novel research on autonomous driving percep-
tion. Much attention has been dedicated to the lines of work which are related to
the presented experimental setting, with focus on the available autonomous driving
datasets, the perception tasks, the building blocks of the deep learning architectures
involved in this study and the literature of domain adaptation research.
Following the presentation of all the required notions that are employed in this work,
chapter three describes the methodology that has been employed to create a multi
domain dataset that would satisfy the needs of domain adaptation experiments,
namely a source and a target domain on which to operate.
Chapter four is focused on the definition of: the components of the deep learning
architecture that has been employed in this work, the implemented modifications
needed to perform adversarial domain adaptation, the optimization objective and
the model hyperparameters. Following the description of the methodology em-
ployed in this work, chapter five presents the outcome of the domain adaptation
experiments that have been carried out, focusing on the improvement of the domain
adaptive deep learning model with respect to a set of computed baselines.
Chapter six summarizes the results and the future research possibilities that are
observed as a consequence of this work.
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Chapter 2

Related works

2.1 Autonomous driving scene understanding

Scene understanding is a field of research which entails a broad set of computer
vision related problems. As autonomous vehicles are generally equipped with a
diverse set of sensors which comprise multi short, medium and long range cameras,
LiDAR, radars and ultra sonic sensors, the research devoted to the optimal methods
to extract information from their data and fuse together the provided perspectives,
is indeed critical.Object detection, semantic and instance segmentation
and multi object tracking are some of such tasks which have been found to
be fundamental for extraction of semantic information from camera sensor setups
employed in autonomous vehicles. Further specializations of such tasks have been
employed as a means to achieve the same objectives also by means of LiDAR data,
so as to extract a diverse yet robust representation of the semantic objects in the
scene.
Such data is then processed and employed by downstream path planning and
control algorithms which provide the vehicle with its required world navigation
capabilities.
Obviously, such environment sensing capabilities are required to detect obstacles,
determine navigable road area and avoidance of zones of risk based on other the
position of other agents in the scene.
As driving entails a set of complex decisions and rules that must be respected, the
related information has to also be extracted from sensor data: traffic light, traffic
sign, intersections, lane lines are all concepts that are necessary for the decision
making of the autonomous driving robot.
All of this information is thus employed to concretely define the available moves
and the set of constraints to which these are subject to.
Clearly, it is critical for the algorithms to which such responsibilities are delegated

7
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to be perfected to their greatest extent.
Some of the aforementioned tasks have been specialized for domain specific appli-
cations, such the lanenet[38] semantic segmentation model which provides accurate
detection of lane lines as well as the available drivable area. Other methods such as
Track-RCNN[39] aim at tracking moving object instances in the scene and predict
their possible future trajectories[39].
The much simpler traffic light[40][41][42]/sign detection[43, 44] and recognition are
both addressed by means of standard object detection models such as SSD (single
shot multi-box detector) [45].
The latter tasks play only a part in the extraction of data necessary for the decision
making of an autonomous vehicle. Intersection detection is a much more semanti-
cally complex problem that the perception system has to tackle. Some approaches
employ LiDAR point cloud data to determine the presence of intersections[46].
Other methods instead leverage deep learning convolutional models to classify
whole images as intersection/not intersection[47], or detect region of interest which
contain the intersections[48] in the case of Nvidia WaitNET.
The complexity of such problem inspired also the creation of multi-modal datasets
to aid the development of intersection detection algorithms which leverage multiple
data sources as a means to robustly locate them.

Hence, scene understanding entails a large and diverse set of tasks which are
necessary to estimate the state of the environment in which the autonomous vehicle
is located.
In this work, the focus is directed to the extraction of semantic scene information
from images. To address this issue, the literature provides a set of approaches
formalized under the tasks of object detection, instance segmentation and semantic
segmentation. The objective of the former two tasks is of determining the location
in image coordinates of the objects of interest: vehicles, pedestrians, traffic lights,
traffic signs and so on.
As such, these are the set of countable objects to detect which have to be treated
each as a unique and separate instance from all others of the same category.
The literature categorizes all entities which fit such descriptions as "things"[49].
On the other hand, uncountable entities such as the sky, road, walkable areas,
vegetation and buildings are defined as "stuff" [49]. More broadly, all that can
be considered as background fits the latter description, although areas of specific
interest can still fall under the same category: an example of this is the drivable
road area, required to determine the available navigation space of a robot.
The latter problem is often tackled by means of semantic segmentation algorithms
instead.
However, such technique is not strictly limited on its own to the segmentation of the
background, as objects which fall under the semantic category of the "things" , such
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as "vehicles" or "pedestrians", can still be segmented by a semantic segmentation
model.
The key difference is that the latter is not capable by design to discern between
unique instances of "things", which are generally more useful whenever each can be
detected and treated as a separate entity than as a broader category.
Still both "things" and "stuff" are simultaneously present in any image frame, hence
their relationships can still provide a richer understanding needed for their detection
or segmentation, rather than treating each problem with separate models.
To this end, the panoptic segmentation[20] task has been developed.
The study of the two super-categories "things" and "stuff" is encouraged under a
framework which requires them to be jointly modeled.
As this task presents the potential to outperform current methods employed in the
context of autonomous vehicle perception, this work elaborates on such problem by
extending existing models through the use of simulation and domain adaptation
techniques as a means to continue novel and still unexplored research on this topic.

2.1.1 Object detection
Given a label set Y = {0,1,2, ..., N − 1} the objective of the object detection
framework is to localize in an image, all instances of such objects and possibly
assign to each of them a confidence score. This task focuses solely on the search of
the entities which are defined as countable objects (or "things")[49] in the literature.
Each category can be represented by multiple detections in the same image, and
each of the detected instances in enclosed by a bounding box generally described by
the coordinate of its top-left corner and its width and height. Different conventions
employ the top-left and bottom right points as a means to geometrically describe
the bounding box.
Although relatively simple, these specifications lay the foundations for the more
complex instance segmentation task, which poses the additional requirement to
generate fine-grained pixel-wise masks that cover the detected instance, rather than
the coarser bounding box.

2.1.2 Semantic segmentation
Before the instance segmentation task is presented, it is necessary to introduce the
semantic segmentation task.
Let the label set Y = {0,1,2, ..., N − 1} of cardinality N , be the set of categories of
the entities of interest. Given an input image, and the mentioned label set, the
semantic segmentation task requires a provided algorithm to assign to each pixel
of the input, one of the possible categories, eventually with pixel wise prediction
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confidence scores.
This task is not constrained to the search of either "things" or "stuff"[49]. Nev-
ertheless, the fact that all pixels associated with a given category are predicted
with the same label, poses this task at advantage for the search of the uncountable
entities (or "stuff"), while categorization of all "things" loses some information as
the concept of identification of unique and separate instances of the same semantic
class is not required.
This framework provides greater degrees of freedom in terms of the kind of identifi-
able entities, as it is not anymore constrained to the detection based on rectangular
regions. Of course, in such context the scope of the task broadens from the search of
single object entities to the understanding of the scene in consideration. Detection
of unique object instances is not anymore a specification, as the task focuses on
the whole scene understanding, rather than the search of objects of interest.

2.1.3 Instance segmentation
Instance segmentation combines the concepts of object detection and semantic
segmentation to tackle in a more fine-grained manner the problem of identification
of object instances in images.
This task differs from object detection solely due to the fact that object instances
have to now be labeled pixel-wise with their instance ids, so as to generate an
instance mask which represents the object.

2.1.4 Panoptic segmentation
The panoptic segmentation task combines the positive aspects of instance and
semantic segmentation under the same problem formulation. As instance segmenta-
tion provides a framework for the segmentation of object instances and assignment
of unique ids to each, besides their broader category label, such id assignment loses
its meaning if utilized to segment road area or vegetation and the sky: multiple
instances of the sky do not serve a purpose and are misleading for the model which
predicts them as separate instances. Hence, these gaps can be filled by employing
the problem formulation of the semantic segmentation task: under such context,
instances are not relevant, but the segmentation and recognition in the image are
the focus.
Hence, the panoptic segmentation framework leverages these features to define a
new task to encourage the joint study of the relevant instances ("things") and the
uncountable entities ("stuff")[20].
As such, the task is formulated as follows.
Given a set of predefined semantic categories encoded by the set Y = {0,1,2, ..., N −
1} of cardinality N , the task requires a panoptic segmentation algorithm to predict
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for each pixel i of an image, a pair (yi, zi) ∈ Y × I, where yi represents the semantic
class of pixel i and zi represents its instance id. I is the set of assignable instance
ids.
The zi’s group pixels of the same class into distinct segments. Ground truth
annotations are encoded identically. A special ground truth label can be assigned
to ambiguous or out-of-class pixels, both for the ground truths and the predictions:
no penalty is assigned to a model which wrongly predicts the class of a pixel to
which such void label has been assigned.
As previously implied, if the entire label set is Y , Y stuff is the set of label of
stuff classes, Y things is the set of thing classes, the panoptic task requires that
Y = Y stuff ∪ Y things and Y stuff ∩ Y things = ∅.
For each image pixel, a class yi and an instance id zi are assigned: the latter is
considered only in the case that the class prediction belongs to Y things, else it is
ignored.
This implies that under such framework, all pixels of stuff classes belong to the same
instance, while all pixels which belong to a unique instance must be represented by
the same tuple (yi, zi).
One final remark is that, as mentioned in [20], the selection of things and stuff
classes is a design choice left to the panoptic dataset creators.

Figure 2.1: This figure illustrates the relationships between semantic segmenta-
tion, instance segmentation(and the simpler object detection), with the panoptic
segmentation objective [50]

2.2 Scene understanding datasets
The scene understanding problem entails a wide variety of tasks .
In the literature, the MS-COCO object detection dataset[51] has been a major
point of reference for computer vision researchers since its first iteration in 2014 as
an instance segmentation dataset. After imagenet[52], it represents one of the most
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notable datasets in terms of labeling effort scale due to its 328 thousand images and
2.5 million annotated instances. Developed to further research on object detection
and instance segmentation, it provides 91 "thing" categories for which instances
have been labeled following the COCO annotation convention in JSON format [53].
Afterwards, it has been extended to also address the semantic segmentation of "stuff"
categories. The distinction of "things" and "stuff" is not a novelty of the COCO
dataset, but a renowned concept from the computer vision literature[54]. Objects
which can be identified by a closed shape, without considering possible occlusions,
and are countable, are defined as "things". On the other hand, uncountable entities,
whose extent is not reducible to a simple enclosing shape, belong to the "stuff"
category (e.g. the sky or the grass cannot be identified by a characterizing shape
as their spatial extent varies based on the visible area observed in a given image
scene).
The distinction between the two categories has been kept also in the way research
and the related datasets have been treated in the literature. As such, while the
traditional COCO dataset entails object and instance segmentation of "things",
the later developed COCO-stuff focuses only on stuff, treating the thing instances
without their unique identity and collapsing each under its representative semantic
category, alongside other classes for stuff entities.

2.2.1 Synthetic autonomous driving datasets
In the context of autonomous driving, a large and diverse set of tasks have been
developed for the purpose of holistic scene understanding. From semantic, to
instance segmentation, multi object tracking, trajectory prediction and object
detection, each requires specific ground truth annotations in order to be properly
studied.
As real world data is often scarce or of limited availability, the use of large synthetic
datasets as a means to support smaller real world datasets has become a notable
approach in the literature. Hence with the premise to aid the development of
self-driving vehicles, preliminary works on the synthetic data generation by means
of games have been proposed in the literature. Notably, the GTA5 dataset[55] has
been developed in 2016 to aid the study of object detection as well as semantic
segmentation in the context of autonomous driving. It provides 25 thousand images,
of size 1914x1052, each with its pixel-wise semantic segmentation labels that span
over 19 classes. Simultaneously to the GTA5 dataset, SYNTHIA[25] had been
developed. The latter has become widely known in the literature, as it entails two
hundred thousand 960x720 images with pixel-wise semantic segmentation labels and
depth information. It spans scenes from different seasons, weather and illumination
conditions, in order to provide great scene diversity. Furthermore it includes 13
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classes: sky, building, road, sidewalk, fence, vegetation, lane-marking, pole, car,
traffic signs, pedestrians, cyclists and miscellaneous. Follow up work on SYNTHIA,
namely SYNTHIA-Cityscapes, provides a Cityscapes label matched version of the
former, so as to perform synthetic-to-real studies. SYNTHIA-SF[56], developed in
2017, integrates depth information and semantic segmentation labels with instance
segmentation ground truths, while maintaining label compatibility with Cityscapes.
The latest version, SYNTHIA-AL instead solely focuses on the study of things, as
it provides only instance segmentation, 2D and 3D bounding boxes.
The study of synthetic datasets continued withe the increase in popularity of the
CARLA simulator[6], which by-design eases the generation of labeled synthetic
autonomous driving data, while providing a greater degree of realism when compared
to the previous alternatives such as any of the SYNTHIA variations [25] or GTA5
[55].
Hence, recent works employed CARLA to generate broad and diverse autonomous
driving centric datasets. Of these, the IDDA dataset[57] is notable as it provides
over one million images captured under different weather, environmental conditions,
city and rural areas scenarios and multiple camera views.
One major issue of such dataset is the lack of instance annotations, which are
required to study things, both from the perspective of object detection and instance
segmentation.
An alternative synthetic dataset generated by means of the CARLA simulator,
namely KITTI-CARLA[58], provides a KITTI-label[59] matched dataset with
similar sensor setup, LiDAR point clouds and object detection bounding boxes.
This however lacks semantic segmentation annotations.

2.2.2 Real world autonomous driving datasets
Autonomous driving scene understanding has been studied from the perspective
of a diverse set of tasks. To support such studies, many real world datasets have
been developed to support the research. Of these, one of the most notable in the
literature is the KITTI dataset, created in 2013 by Andreas Geiger et al.[59].
As it is a diverse driving scene dataset, which comprises synchronized multi-sensor
data of images from multiple cameras, LiDAR point clouds, IMU readings, 2D and
3D bounding box annotations, it has been one of the first to support research on
driving scene perception.
Such pioneering work on driving dataset generation spurred much of the following
research on development on the topic, with the objective to increase the richness
and diversity of such data collections.
At the same time, there has been an increase in complexity of the researched scene
understanding tasks, which evolved from object detection to the more complex
pixel-wise instance annotation and semantic segmentation. Hence, the research
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needs to expand upon such topics stimulated the development of novel datasets
that would support such novel research challenges.
The renowned Cityscapes instance, semantic segmentation and depth estimation
dataset[60], published in 2016 has ever since been a point of reference for novel
research on scene understanding. In 2020 it has also been extended so as to provide
panoptic segmentation ground truths. Scenes were captured in 50 different cities
in Germany, during different seasons and months of the year. However no diversity
in terms of weather conditions had been included, as adverse weather conditions
have been explicitly avoided.
It provides two subsets, a smaller split with fine-level annotations, and a larger one
with coarse labels.
The training-validation-test split for the former consist of 2975, 500 and 1525
images respectively.
Each is built by uniformly sampling images of cities from small to large scale,
keeping a whole city under the same split.
The coarse Cityscapes dataset of 20 thousand images, is instead provided as a
whole, with the purpose of serving as additional training data for the Cityscapes
fine-annotated split.
In total there are 30 classes for both, but their benchmark evaluation set is reduced
to 19 due to the rarity of the removed classes. To further increase the scale of
driving datasets, Mapillary vistas[61] had been developed. It entails 25 thousand
images, of which 18 thousand are for training, 2 thousand for validation and 5
thousand for testing.
Mapillary includes 66 semantic classes, of which 37 are dedicated to object in-
stances, thus increasing the diversity of the recognizable scene entities with respect
to Cityscapes.
As such, semantic and instance segmentation and object detection are considered as
the main research tasks supported by this dataset. Its further extension Mapillary
Vistas 2.0, developed in early 2021, integrated its previous version with the support
to the novel panoptic segmentation task.
Although Cityscapes and Mapillary were considered large scale datasets at the time
of their creation, there has been a push to research and develop even larger and
diverse datasets, adapted to address more diverse multi-task learning contexts.
Hence, not only with the purpose to address instance and semantic segmentation,
but also other tasks such as lane detection, drivable area segmentation, 2D and 3D
object tracking and depth estimation. Thus, to fill the gaps in the literature related
to the lack of datasets which resolve all the aforementioned issues, the BDD100k[62]
dataset has been developed in 2018. Multiple splits of the source video sequences
have been created, in order to satisfy different tasks. The largest split consists
of 100 thousand images labeled for object detection (10 provided object classes),
lane marking(9 lane type classes) and drivable area (three categories including
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background) segmentation, divided into train, validation and test subsets of 70,10
and 20 thousand images respectively.
A smaller split of 10 thousand images provides more fine-grained annotations for
semantic (19 semantic classes), instance (8 instance classes) and panoptic segmenta-
tion (40 overall categories), divided into 7 thousand images for training, 1 thousand
for validation and 2 thousand for the test set.
In the case of panoptic segmentation, the 40 semantic classes are subdivided into
two subsets dedicated respectively to things and stuff groups. Regarding thing
classes, 9 instance categories are provided, while for stuff there are 31 semantic
entities.
As an improvement over the previous datasets, the scenes have been captured
under a diverse set of weather and illumination conditions based on time of the
day, considering also diverse scene types: from cities, isolated streets, residential
areas, and highways.
As such datasets have become established points of reference for image scene un-
derstanding research, the follow-up publications focused on the instance, semantic,
panoptic segmentation and motion forecasting from the perspective of both LiDAR
and images.
Among these, there is the Argoverse dataset [63] for 3D tracking and motion fore-
casting. Similarly, NuScenes[64] provides annotations for panoptic segmentation
through LiDAR point clouds, as well as 2D and 3D object detection ground truths.
On the same line of work the Waymo open dataset provides two versions, namely
the motion and perception subsets, whose main objectives are object tracking and
trajectory forecasting for the former, while the latter treats image and LiDAR data
for object detection related tasks.

2.3 Deep learning perception

As the panoptic segmentation task has garnered the attention of the research
community, a variety of models have been developed to tackle the problem.
In this work, the PanopticFPN[65] model has been employed. It has been published
simultaneously to the panoptic task[20], both by the FAIR group (Facebook AI
Research), with the objective to develop a powerful and still efficient baseline model,
in terms of time complexity of its inference computations.
From the subsequent development to the task publication in 2019, the literature
provides two main ways to develop panoptic segmentation models: convolutional
neural network based or transformer architecture based.
Although this work focuses on the former of the two, it is worth mentioning the
most recent alternative state of the art approaches approaches.
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The convolutional models follow a widely used approach in the literature to the
design of convolutional neural network architectures: a backbone component is
dedicated to the extraction of task specific semantic features from images, then its
results are employed by one or more downstream convolutional networks to which
correspond one or more downstream tasks e.g. instance and semantic segmentation.
Such models can be further subdivided in: models which have as a by-design objec-
tive the instance segmentation/ semantic segmentation, and are complemented by
an auxiliary semantic/instance neural network branch, respectively. In both cases,
the backbone is shared, implying that its computed convolutional features must be
sufficient and general enough to address the downstream tasks.
The same holds also for a recent( mid 2021) set of methods which address both
tasks at once, through a unified deep learning architecture: it is the case of the
SPINnet [66] and Panoptic FCN [67] The former is the case of the EfficientPS[22]
and PanopticFPN[65], which extend the architecture of the Mask R-CNN [68],
an instance segmentation architecture, with an auxiliary semantic segmentation
branch. The other is instead the context of the PanopticDeeplab[21] and its ex-
tended SWideRNets[69] architectures. The Deeplab model, which these newer
architecures extend, was designed for semantic segmentation and improved to also
tackle the panoptic task.

Instead, the set of transformer-based[70] models employ convolutional networks
only as a means to generate features which are then utilized by vision-transformer[71,
72] architectures to perform the panoptic segmentation task, such as in the Panoptic
SegFormer[73].

In order to more easily perform an assessment of the impact of domain adaptation
on the panoptic segmentation task, the PanopticFPN has been selected as
the baseline architecture to which the required modifications have been
applied. This has been done also to avoid any possible complex interactions
between the domain adaptation module and any of the modifications employed in
any of the mentioned lines of research. In order to present the components of the
developed modification of the PanopticFPN architecture, this section provides a
review of the state of the art of the literature regarding the main building blocks
that constitute domain adaptive Panoptic FPN developed in this thesis.

2.3.1 Convolutional neural network structure
At their core, convolutional neural networks (abbreviated to ConvNets) can be
represented by computation graphs 2.2: directed graphs whose nodes represent
arbitrary operations applied to their inputs, represented by edges pointing a
given node, while its outputs are described by edges pointing outwards. Therefore,

16



2.3. DEEP LEARNING PERCEPTION

Figure 2.2: Example of a computation graph

each node represents an operation to be applied in the broader context of the
network: computation nodes are generally referred to as layers in the artificial
intelligence literature.
Hence in the execution of a computation graph from inputs to outputs, namely a
forward pass through the neural network, the neural architecture amounts to the
application of a composite function

F(X) = Fn ◦ Fn−1 ◦ ... ◦ F1(X)

applied to its input X.
Each of such Fi represents a layer, which can have 0 or more parameters Wi

objective of an optimization routine.
These are optimized with the aim to approximate, by means of the network,
an unknown objective function Y (X), whose samples yi are the ground truths
associated with each sample xi ∈ X in the dataset X.
Such optimization is guided by a loss function L, which based on the learning
objective e.g. classification, detection segmentation, measures the error between the
approximate mapping, from inputs X to ground truths Y , F(X, Wn, Wn−1, ..., W1)
represented by the network and the ground truth samples from the function Y

L(F , Y)

Such mathematical formalization is fundamental both to define neural networks
with modularized structures of the layers and to efficiently optimize parameters by
means of the backpropagation algorithm [74].
As this structure lends itself to the implementation of novel operation to add
to neural networks, much research has been devoted to the definition of custom
operations that would yield better models as a result of their use.
Therefore the following subsections will present with a bottom up perspective, from
the basic operations to the more complex ones at the neural network level, the
defining components of the current state of the art deep learning models.
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2.3.2 Basic mathematical operations
Each layer of a neural network entails a specific operation and a set of operation-
dependent parameters W , that from a general point of view, have to be optimized
as a means to render such operation meaningful in the context of the learning
problem at hand. This is because such parameters are initialized either by means
of arbitrary but empirically effective sub-optimal starting conditions such as the
Xavier[75] or He[76][77] initialization or from data-dependent already optimized
parameters [78] .
From this general perspective, layers of a neural network are stacked one after
the other so as to compose complex non-linear functions capable of generalizing
and learning from the most complex datasets and in a broad variety of problem
settings: classification, object detection, semantic segmentation, instance segmen-
tation, image and audio generation and so on. Given, the context of this work, for
the following subsection it is necessary to define the shape of the input data.
An image, or more in general a feature map, is represented by tensor of shape
C × H × W , in which H and W are the height and width of the image, while C
stands for the number of channels (or modalities of the input data) e.g. C = 3 for
RGB images.

Linear

Linear projection by means of a tensor of weights W ∈ RNin×Nout , with Ninand
Nout representing the shape of the input and the desired output shape respectively,
is the simplest operation that can be applied to a set of input samples.
In the case of images, such operation quickly becomes computationally expensive
as it entails the use of flattened versions of image tensors. As such weight tensors
are rarely sparse, its memory representation poses a major resource constraint.
This sets a major bottleneck of the operation on flattened tensor.
Hence, Linear layers are generally used downstream to convolutional neural net-
works, solely to perform final operations after the dimensionality of the data is
already greatly reduced.

Convolution

The convolution operator is the core component of convolutional neural networks.
Much of its relevance in such models is due to its capability to exploit spatial
correlation and locality of entities represented in digital signals such as audio
and images, in order to extract meaningful patterns from the data.
Convolution is a dyadic or binary operator, denoted with ∗ which when applied
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to its two inputs fand g produces one resulting output f ∗ g.
Although convolution is generalized to be applied to continuous and discrete
functions, the latter is the version which is relevant in computer vision applications.
In such field of application, discrete convolution can operate on N-Dimensional
inputs, although the most common ones for computer vision tasks are the 2-D and
3-D discrete convolution operators.
In such case of 2D convolution, the aforementioned operands f and g are defined
in the most general 2D setting :

• f is represented by n_channels input feature maps, formally is a tensor

f ∈ Rn_channels×H×W

with H and W its height and width (e.g. an RGB image is a tensor of shape
3 × H × W , as it has the R, G, and B planes, each with H × W pixels)

• g is a collection of kernels (or filters), which is convolved with the input
feature maps f , and is a tensor

g ∈ Rn_out_channels×n_in_channels×Hker×Wker

. Wker, Hker are height and width of the kernel, with Hker ≤ H and Wker ≤ W .
THe dimensionn_in_channels is determined by the number of channels
n_channels of the input feature maps with which g is convolved, such that
n_in_channels = n_channels.
The remaining dimension n_out_channels defines the desired number of
channels of the output feature maps o resulting from the convolution

o = f ∗ g

between input feature mapsf and the collection of kernels g.

Given these definitions, the 2D convolution algorithm can be described.
Firstly, the steps of the simplest setting of 2D convolution are described, to then
describe the way by which that same procedure is applied considering the afore-
mentioned general setting.
The 2D convolution of a single input feature map 1×H×W with a kernelHker×Wker,
requires the latter to slide over all valid locations of the input. Such valid loca-
tions determine the shape of the output feature map.
The kernel is centered at a valid location, and the locations of the input feature
map that are within the kernel receptive field of size Hker × Wker are multiplied
by the values of the kernel, to then be summed to produce the aggregate value
associated with the corresponding location in the output feature map.
This is repeated for all valid locations of the input feature map.
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Extension of this operation to the general 2D convolution case in which the input
has n_channels feature maps and the number of desired output feature maps is
n_out_channels, requires few additional steps to the algorithm.
For an n_channels × H × W input feature map, n_channels distinct kernels of
shape Hker × Wker are each separately convolved as described above, to produce
n_channels preliminary output feature maps, which are element-wise summed
together to produce one final output feature map. Thus, to generate the desired
n_out_channels output feature maps, the previous step is repeated n_out_channels
times with n_out_channels different collections of such kernels. This procedure is
illustrated in 2.3, in which an input feature map of shape 2×5×5 is convolved with
a 3 × 2 × 3 × 3dimensional collection of filters (dimensions follow the convention
n_out_channels × n_channels × Hker × Wker ) so as to obtain an output feature
map of shape 3 × 3 × 3 (convention used to represent the dimensions of the output
feature map is the same as that of the input feature maps).

Figure 2.3: Illustration of the 2D convolution operator, from the paper [79]

As previously mentioned, only the valid locations are considered in the compu-
tation of the convolution.
Such spatial locations are all valid zero-indexed Hc, Wc kernel center cell coordi-
nates of the input feature maps planes H × W , and all their associated channels if
valid, that allow the entire kernel receptive field to lie within the input feature map

20



2.3. DEEP LEARNING PERCEPTION

planes. Such conditions can be expressed for kernels whose Hker, Wker are both
odd(in practice even sized kernels are not used due to the pixel shift problem), as
the joint fulfillment of the following conditions:

1)0 ≤ Hc − (⌊Hker/2⌋ − 1)
2)Hc + (⌊Hker/2⌋ − 1) ≤ H

3)0 ≤ Wc − (⌊Wker/2⌋ − 1)
4)Wc + (⌊Wker/2⌋ − 1) ≤ W

5)0 ≤ Hc ≤ H

6)0 ≤ Wc ≤ W

Here, (⌊Wker/2⌋−1) and (⌊Wker/2⌋−1 represent the extent of the kernel excluding
the center location. As such, conditions 1 and 3 are lower bounds to the validity
of the extent of the receptive field of a kernel given its center location Hc, Wc.
Conditions 2 and 4 are instead upper bounds to the validity of the extent of the
receptive field of a kernel given its center location Hc, Wc. The two remaining
bounds are related to the possible locations of the kernel centers.
Each of such conditions is appropriately modified by the following set of convolu-
tion operator parameters, which define the way in which the computation is
carried out, as well as the shape of the output feature maps of the operation

• stride: determines how kernels are slid over the input feature maps. Standard
convolution sets stride to 1 so that the center of the kernel is moved by one
unit, either in width or height, while it is slid. A stride ≥ 1 implies that the
convolution skips possible center locations, by moving the kernel center of
stride units, with respect to its preceding cell location. Thus, it provides a
means to downsample the input feature maps by computing the convolution
between inputs and the kernel in a coarse manner.
It can also be interpreted as the distance between two consecutive kernel
center locations [79]

• padding: the number of zero valued cells that are added to the extent of
the input feature maps planes H × W . This effectively increases the width
and height of the input feature maps by adding a number of cells equal to
the padding parameter both before the first and after the last cell. Thus, H
becomes H + 2 ∗ padding and W becomes W + 2 ∗ padding. It is generally
set as padding = 0, a condition known as valid padding.

• dilation rate: to increase the receptive field of the kernels by employing the
atrous convolution algorithm[80]. Dilation achieves this objective by inserting
dilation_rate − 1 zeros between each element of the kernel, thus effectively
enlarging its size without requiring larger kernels. Thus, standard convolution
sets the dilation rate to 1.
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The use of any combination of these parameters affects the output feature maps
shape as follows:

Hout = ⌊Hin + 2 ∗ paddingH − dilationH · (Hker − 1) − 1
strideH

+ 1⌋

Wout = ⌊Win + 2 ∗ paddingW − dilationW · (Wker − 1) − 1
strideW

+ 1⌋

Regularization

Overfitting is a well known issue of deep neural networks. In order to limit its
impact, a variety of approaches have been proposed in the literature. Of these
the most cited and effective works include Dropout regularization layers[81] and
batch normalization [82]. Such methods are essential for training neural networks
that can generalize to test data, as they are prone to overfitting due to their large
number of parameters.
Furthermore, these methods provide solutions to co-adapation and covariate shift
problems that affect neural network models.

Co-adapation is a phenomenon that can affect multiple neurons of the neural
networks(parameters of the kernels in the case of convolutional networks), causing
them to learn highly correlated representations that are only meaningful jointly
with other neurons(which are the parameters of the same or of one or more distinct
kernels). Such behavior is undesired, as it wastes representational power. Ideally,
each of the network parameters should represent independent and fundamental
patterns extracted from the data.

As neural networks are in essence composite functions, each of which is repre-
sented by layers and its zero or more learnable parameters, the inputs of each layer
can either be the data, in the case of the first layer, or a representation dependent
on the learnable parameters of its preceding layers in all other cases.
Although the distribution of the input data does not change, the change in the
learnable parameters as a result of their optimization during training of the neural
network causes a shift in the distribution of the inputs to the intermediate network
layers, which becomes increasingly more noticeable in the layers at greater neural
network depth.
This causes instabilities during training as the reference of the optimization routine
continuously changes, resulting in failure or too slow convergence to an optimum
of the parameters[82].

Dropout regularization is a technique that prevents overfitting and co-adaptation
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by dropping, with probability p, the neurons of the network at training time. Turn-
ing off a neuron results in changing the interconnection between the neurons of the
neural network layers, thus enforcing each of the remaining units to not rely on the
values learned by other neighboring neurons.
At inference time instead, all neurons are employed but the weights associated with
outward connections are multiplied by the selected probability of dropping units, in
order to take into account for the reduced number of units employed during training.

The batch normalization algorithm limits the impact of covariate shift on
model training and regularizes the learned model[82].
By defining the computation at an arbitrary layer of a neural network as z =
g(W · u + b), in which W are the weights,b the biases, u the layer inputs and g(·)
a non-linear function, such as the sigmoid and ReLU, the batch normalization
operator BN(·) is applied to the result of x = W · u + b, before the non-linear
function is applied.
It is necessary to note that such representation is valid also for convolutional neural
networks, as convolution is implemented as matrix multiplication by the im2col
algorithm.
The batch normalization operator BN(·) applied to each sample xi of a batch B of
|B| samples with i ∈ {1, ..., |B|}, each of shape n_channels × H × W , separately
to each feature map k ∈ {1, ..., n_channels} of xi as follows:

x̂
(k)
i = x

(k)
i − µ

(k)
Bñ

σ2
B

(k) + ϵ

y
(k)
i = γ(k)x̂

(k)
i + β(k)

Here, the estimators µ
(k)
B and σ2

B
(k) are computed so as to batch-normalize each

pixel of a given input feature map, separately for each of the n_channels feature
maps. Hence, as each channel is considered separately, the mini-batch size is of |B|
samples each of size H × W .
Thus the k-th channel estimates are computed with the following estimators:

•

µ
(k)
B = 1

|B| · H × W

|B|·H×WØ
i=1

x
(k)
i

is the batch estimator of the mean of the distribution of the inputs

•

σ2
B

(k) = 1
|B| · H × W

|B|·H×WØ
i=1

(x(k)
i − B(k))2

is the biased estimator of their variance.
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The per-channel parameters γ(k), β(k) with k ∈ {1, ..., n_channels} are learned
during training.

During inference, the behavior of a batch normalized network is changed as
described below.
The population estimates of the k-th channel E{x(k)} and V ar{x(k)} are computed
from a set of accumulated training batches Bj j ∈ {1, ..., Nbatches}, each of size
|B|,each with their µ

(k)
B , σ2

B|
(k):

E{x(k)} = EB{µ
(k)
B }

V ar{x(k)} = EB{σ2(k)
B }

Then, the per-channel population statistics of the inputs x(k) are substituted to
the µ

(k)
B , σ2

B
(k) in the computation of the normalized input x̂(k) at inference time as

follows:

x̂(k) = x(k) − E{x(k)}ñ
V ar{x(k)} + ϵ

This way, y
(k)
i is the normalized feature map according to the statistics computed

at the given layer.

Pooling

The objective of the pooling operator is to apply a non-linear transformation that
generally downsamples its inputs, as a means to obtain in its outputs invariance
with respect to small translations of such inputs[79].
In the most general setting, the pooling operator acts similarly to convolution: a
window of size Hpool × Wpool is slid over the input feature maps and each value
within its receptive field is aggregated to produce a single output value, according
to a selected transformation. The most common aggregate operations are max and
average pooling.
The output feature maps resulting from the application of pooling are dependent
on:

• padding: the number of zero cells to add to both borders of the input fea-
ture maps. To further clarify, setting the horizontal and vertical padding
paddingH = paddingW = 2, implies that the input feature maps becomes of
shape (H + 2 ∗ paddingH) × (W + 2 ∗ paddingW ), with all added cells set to
zero.
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• stride: distance in number of cells, with respect to height or width without
considering diagonal sliding, between the application of two pooling operations.
Vertical and horizontal strides are generally set to Hpool and Wpool respectively,
such that pooling is applied to non-overlapping patches of the input feature
maps.

The output feature maps that result from the use of a pooling operation have the
following

Hout = ⌊Hin + 2 ∗ paddingH − 1
strideH

+ 1⌋

Wout = ⌊Win + 2 ∗ paddingW − 1
strideW

+ 1⌋

Pooling is applied separately to each input feature map, hence it has no inter-
action on the number of input and output channels, thus n_out_channels =
n_in_channels.

Activation functions

Activation functions are a fundamental component of neural networks that allows
them to learn complex non-linear patterns from the data. These are applied after
some other operation, such as projection by a weight matrix W or convolution with
a collection of kernels, has been applied to the input data.
The most common ones are:

• ReLU (rectified linear unit)[83]

ReLU(x) = max(0, x)

• LeakyReLU

LeakyReLU(x) = max(0, x) − 0.01min(0, x)

• hyperbolic tangent(tanh)

tanh(x) = expx − exp−x

expx + exp−x

• sigmoid

σ(x) = 1
1 + exp−x
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Each is applied element-wise to its inputs.
While sigmoid and hyperbolic tangent are part of the past literature, ReLU[83]
and LeakyReLU are the most relevant and largely used activation functions for
the intermediate layers of neural networks. These have been developed as a means
to keep the positive aspect of providing non-linearity of sigmoid and hyperbolic
tangent, without their downsides such as input saturation and computational
complexity.
Other activations such as softmax are generally employed after the final layer of
neural networks as a means to normalize their outputs in the range [0,1], which
allows for their interpretation as class membership probabilities. With an output
of vector v ∈ RK , the application of softmax produces:

softmax(vi) = expviqK
j=1 expvj

Transposed convolution

Transposed convolution is the inverse operation to that of convolution. It is not
a proper inverse transformation, as it only allows to recover the original shape of
the output of a convolution operation. Hence, it effectively serves the purpose of
upsampling its inputs based on a set learnable kernel parameters.
Without any of such parameters, the operation becomes a simple upsampling
operation by means of traditional nearest or alternatively bilinear upsampling
algorithms.
As is the case for convolution, the computation of its transposed version can be
influenced by a set of optimizable parameters:

• stride: stride of the associated convolution operation.

• padding: parameter to set in order to compute the required input padding
parameter, also according to the chosen dilation rate.

• input padding: computed as in_paddingH = dilationH ∗(Hker −1)−paddingH

or in_paddingW = dilationW ∗ (Wker − 1) − paddingW , defines the number of
zero cells to add to each border H and W respectively, of the input feature
maps.

• output padding: additional zero-padding to add to each border of the width
and height dimensions of the input, separately. It is generally set to zero

• dilation: distance added between between each element of the transposed
convolution kernels
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The output shape of the tensor resulting from the transposed convolution
computation is:

Hout = (Hin − 1) × strideH − 2 ∗ in_paddingH+
dilationH × (Hker − 1) + out_paddingH + 1

Wout = (Win − 1) × strideW − 2 ∗ in_paddingW +
dilationW × (Wker − 1) + out_paddingW + 1

2.3.3 Backbone architectures
Deep learning models have become a staple technique in the computer vision
literature. Ever since the Alexnet deep architecture[84] has outperformed traditional
computer vision methods in the Imagenet recognition challenge[52] in 2012, deep
learning models have become a staple technique of the computer vision research.
Nevertheless, pioneering works and the early proofs of the potential of neural
networks date back to the 1986 with the invention of the backpropagation [74]
algorithm that allows the deep networks to learn. At the time, the

This subsection provides a literature review on the deep learning architectures
that are employed as feature extractors for a broad variety of learning problems.
Since the pioneer work of Hinton in 1986 and LeCun in 1998 about backpropaga-
tion[74] and handwritten digit recognition convolutional networks[85] respectively,
the main design philosophy to the development of neural networks has been to im-
plement them following a layer-like structure. Each layer is generally represented by
a set of mathematical operations and optionally a set of parameters to be optimized.
As layers are stacked on top of each other, the order in which their operations
are performed is inherently defined. Such order of computation is mathematically
represented by a computation graph that also provides a logic representation of
all dependencies between computations. Hence, given a set of inputs X and their
associated ground truths T , the network is built to output a prediction Y based on
its optimized set of parameters. Such optimization is carried out so as to minimize
a loss functionL (characteristic of the chosen learning problem) that provides a
measure of the error between ground truths and the predictions of the network.
Ever since, In this general setting, neural networks have found application in a
wide variety of fields, with the research on sequence[86, 87, 70], convolutional and
graph[88] based neural models, but at the core they still share the same layer-like
structure.
As a matter of fact, such structure has been at the center of the research on
deep computer vision models since the early works on convolutional networks for
handwritten digit recognition[85], LeNet invented by Yann Lecunn in 1989 [89, 90].
In LeNet-5 convolutional layers are alternated to subsampling layers. After each
pair a hyperbolic tangent function is employed to squash their output values in a
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range [−A, A], in which A is a scaling coefficient that regulates the amplitude of
the hyperbolic tangent. The predictions are the results of fully connected layers
attached to the last subsampling layer, as seen in 2.4.

Figure 2.4: LeNet-5 architecture[85]

The repetition of the convolution-subsampling-activation pattern as a block
multiple times in neural network architecture has since then become a design
pattern which has also been used in the following works.

Figure 2.5: AlexNet architecture[84]. Each block represents a convolutional
layer, while subsampling layers are denoted by the written captions. The terminal
fully connected layers are instead denoted in the image as dense, an alternative
nomenclature to the layer type

The AlexNet architecture2.5 by Krizhevsky et al. [84] followed similar design
principles, although the network follows a custom design in the way layers are
stacked one after the other. It is composed of five convolutional layers, of which
only the first,second and fifth are followed by subsampling with max-pooling. The
first and second max pooling layer are also followed by a novel local response
normalization layer. All convolutional layers and fully connected ones are followed
by ReLU non-linearity, a modification with respect to LeNet-5 which employed the
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hyperbolic tangent function.
The former of the two has been found, as noted in [84] to help the learning proce-
dure, as no saturation of the inputs can happen with ReLU which is unbounded,
while the hyperbolic tangent can lead to loss of information if its inputs become to
large, as its range of values is bounded between [−A, A].
Contemporaneously to AlexNet, the paper from Zeiler et al. in 2013 [91] provided
novel insights on the inner workings of neural networks. Such knowledge has been
fundamental for the following work on state of the art deep learning architecture
research.
As the research showed that convolutional layers, from the inputs to the outputs,
learn increasingly more complex visual patterns from the dataset on which the
network is trained. Such knowledge is represented within the learned parameters
of the filters in each convolutional layer. As noted in both works, stacking convolu-
tional filters on top of each other has the effect of obtaining a larger receptive field
in filters which are convolved with outputs of preceding convolutional layers.
As such, the research from Zeiler et al.[91] implied that increasing the depth of
deep models would allow to learn even more complex visual patterns, thus
resulting in possibly greater classification performance. Here depth is intended as
the number of layers of the convolutional network.
As expected, the following top performing model VGG-16 and VGG-19 [92] were
built by focusing on the idea of increasing neural network depth to achieve greater
classification accuracy. A further improvement of this model over AlexNet is the
use of 3x3 convolutional filters at most, in order to achieve the greater network
depth as well as a large reduction in the number of trainable parameters of the
network: alexnet employed a larger variety of convolutional filters of size 11x11,5x5
and 3x3.
With the increase in depth, the problems of vanishing/exploding gradient and net-
work degradation had become the focus of the following research. As network depth
increases, backpropagation of errors during training results in greater probability
of the backpropagated gradients to reduce to zero due to numerical underflow or
explode to infinity due to the large number of multiplications that gradients go
through in networks with many stacked layers.
Furthermore, it was found that hundred layers deep architectures show the degraded
performance phenomenon, that instead does not appear in their shallower, yet deep
counterparts[93].

With the paradigm shift brought by the residual learning framework pub-
lished by He et al.[93]in 2015, many of the aforementioned problems have been
solved.
In essence, the residual framework shifts the learning problem of groups of convolu-
tional layers from the approximation of a generic function H(X) of its inputs X ,
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to the learning of a residual function F(X) = H(X) − X.
Thus, learning is facilitated, as each subnetwork of convolutional layers learns
representations which are referenced to its inputs, instead of arbitrarily complex
patterns which can emerge at high network depth.
Indeed, for this reason the use of residual learning allowed for much deeper net-
works compared to the preceding works. From the VGG-16 and VGG-19, ResNet
showcased stable and marginally increasing performance even when implemented
with 200 layers, although with largely increased computational costs.
As a means to modularize and reduce the computational complexity of the ResNet
architecture, the work of He [93] also showcases the novel BottleNeck block, shown
in figure 2.6.

Figure 2.6: Bottleneck block proposed in [93]. Credits [93]

It implements residual learning within such block that reduces the channel
dimensionality of its inputs by means of 1x1 convolutions before the application of
computationally more expensive 3x3 filters. Then these are expanded again to the
original channel dimension before the block outputs are computed.
Hence, as input and output channel-dimension compatibility are solved, this struc-
ture lends itself to the modularization of deep learning models by serial or parallel
stacking of bottleneck blocks.

This represents the major paradigm shift in the way neural networks are designed.
The focus has ever since shifted from the careful engineering of each of the stacked
layers of neural networks to the development of modular blocks which can be
stacked on top of each other thanks to their modularity in terms of compatible
input and output tensor shapes.
This allowed to center the attention of the research on network level configuration
parameters such as its width, depth, resolution and cardinality of the
bottleneck blocks, as well as on the design of novel modular computation blocks,
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following the principles of the residual blocks.
Width is defined in terms of the number of channels of each convolutional layer.
Depth regards the number of layers of the network in consideration. Resolution is
related to the size, in terms of height H and width W of the input images(tensors of
shape n_channels × H × W , in which n_channels = 3 for RGB images) accepted
by the networks. Cardinality is a notion introduced in [94], to denote th number
of residual functions employed in the bottleneck blocks of the Resnets, set to one
in the original ResNet paper [93]. Width has been one of the first changes brought
to ResNets by [95], which showed that the power of ResNet resided in the residual
learning rather than their achievable depth, as their Wide Resnet showed greater
representation capabilities with increased width and reduced depth to 16
layers.
Contemporaneously to WideResnets[95], the line of work of ResNext[94] brought
to the attention of researchers the cardinality dimension of neural networks
which proved to be of equal importance to those of width and depth of deep
architectures.
Xie et al 2017 [94] modified the bottleneck layers to allow the network to learn
an arbitrary number of residual functions Fi at each bottleneck block. As a
consequence, the bottleneck of a ResNext architecture computes the function
F(X) = qC

i=1 Fi(X) in place of the original resnet residual function. Thus the
bottleneck output is expressed as

Y = X +
CØ

i=1
Fi(X)

, in which X represents the standard identity mapping employed in the residual
bottleneck blocks and C represents the aforementioned cardinality(the number
of F⟩ functions in each bottlneck), to be set at a network level hyperparameter of
ResNext architectures.
With such modifications in place, the ResNext bottlenecks are represented by the
computation graph shown in the figure 2.7
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Figure 2.7: Side by side comparison between the bottleneck block of the ResNet
architecture on the left and the ResNext bottleneck with cardinality C = 32. Image
from [94]

As scaling of depth, width and cardinality have been explored, the resolution
dimension had been developed as yet another line of work in Squeeze-and-Excitation
networks[96].
The latter provided another means of separately scaling neural network capabilities
by addressing novel network level properties.
Although not explored in this work, a notable mention has to be given to the novel
works on the EfficientNet[97] architecture which provided the means to simultane-
ously scale depth, width and resolution at once.
Such problem that previously had been addressed purely by neural network engi-
neering, is by means of the EfficientNet architecture bypassed through its compound
scaling method.
Given a user defined parameter ϕ that regulates the available resources, either in
terms of computation latency or FLOPS (floating point operations per second),
α, β, γ found by grid search the scaling coefficients of depth, width and resolution,
d, w, r respectively, can be determined:

depth : d = αϕ

width : w = βϕ

resolution : r = γϕ

s.t.α · β2 · γ2 ≈ 2
α ≥ 1, β ≥ 1, γ ≥ 1

From the determined scaling coefficient and a baseline architecture determined
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based on resource constraints by neural architecture search, the objective architec-
ture is found with the defined specifications satisfied by construction.

2.3.4 Feature pyramid network architectures
The concept image pyramids dates back to early computer vision methods for
feature extraction at multiple scales from a single image. Pioneering works of
such techniques are the pyramid methods for image processing[98] and the SIFT
algorithm [99] for extraction of semantic features. The latter showcases one of the
first examples of generation of feature maps from image pyramids, as one of the
first steps of such algorithm is to produce at multiple scales of the input image,
feature maps that result from the difference of two copies of the input image at
the same scale, but each convolved with Gaussian filters with different standard
deviations[100].
It had since been known that the image pyramid data structure generated from
a single input allowed to find distinct patterns that improve the performance of
digital image processing and analysis techniques [98].

As such, the same concepts have also been transposed to deep learning models
for computer vision.
SPPnet[101] proposed by He et al. in 2014, is one of the first architectures to
employ pyramids of image features extracted by convolutional layers to tackle
classification and detection problems by harnessing multi-scale representations.
Similar approaches have soon after been implemented for semantic segmentation,
with the fully convolutional network FCN architecture [102], shown in 2.8.

Figure 2.8: FCN architecture. Image from [102]

At the core, its novelty on the semantic segmentation performance is represented
by its capability to progressively merge feature maps computed at different neural
network depths, starting from the deepest layer, into new intermediate feature maps
that are themselves merged with their immediate predecessor at lower network
depth. Such procedure is repeated until the predecessor at network_depth = 3
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is used. The result of the last computation represent a semantically rich output
feature map that is used to predict the semantic segmentation mask, thus using
multi scale feature information to enhance the quality of its predictions.
A staple of semantic segmentation, namely the U-Net[103] architecture employed
the same design principle of FCN to generate semantic segmentation outputs by
means of a novel multilayer encoder-decoder fully convolutional network.

Figure 2.9: U-Net architecture. Image from [103]

As can be seen from 2.9, U-Net is similar to FCN due to its feature merging
mechanism which joins upsampled feature maps at different levels of the decoder,
with the feature map of the encoder at the same level in terms of encoder-decoder
network depth.
Its distinctive feature from FCN is the capability to be trained with a relatively
limited number of samples, as the U-Net is designed to be applied on small
biomedical image datasets.

Afterwards, the concept of pyramids of feature maps had been employed also
for object detection models. Multi scale object detection approaches such as MS-
CNN[104], proposed ways to employ feature pyramids for detection, in contrast to
previous methods that either used only the deepest and simultaneously semantically
rich output layer of convolutional networks or upsampled the input image and
performed detection on copies of different scale of the same image[105][106]. The
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need to use multi-scale representation, by means of any of such methods, appeared
from the fact such methods were ineffective to detect small to mid scale objects, due
to the sole use of the deepest convolutional layers that have a too large receptive
field[91], or by the fact that computing the detections over multiple copies at
different scales of the same input image was computationally inefficient.
Still, no feature fusion mechanism such as the one of the FCN had yet been devel-
oped.
One further step ahead to solve the computational inefficiency of convolutional
detectors, as well as the poor performance on detection of objects at all scales, has
been achieved by the Single-Shot multibox Detector SSD[45] architecture. Its main
advancement has been the one-stage object detection by means of the multi-scale
feature maps of its VGG16 backbone feature extractor[92].

The major advancement in deep learning object detection models had been
achieved by the feature pyramid networks FPN developed by Lin et al. [107].
With the objective to develop a neural architecture capable of robust multi-scale
object detection, the FPN architecture is built with a set of design principles that
reflect those of the FCN[102] shown in 2.8, and the U-net [103] model. It is defined
by two main components: a bottom-up pathway and a top-down pathway.
As the bottom-up pathway generates output feature maps at multiple scales, from
high resolution generic details to low resolution but object-level patterns, the
top-down pathway merges them so as to create semantically rich features at all
levels of the original feature pyramid.
The bottom-up pathway consists of the selected output feature maps of a backbone
architecture of choice (e.g. ResNet50-101, ResNext, EfficientNet without its fully
connected layers), while the innovative top-down feature hierarchy is designed
based on the choice of bottom-up feature maps.
To implement the network of feature pyramids, as suggested by its name, lateral
connections between the two pathways and top-down connections between neigh-
boring levels of the top-down pathway are designed and employed as shown in
figure 2.10

Figure 2.10: FPN architecture. Image from [107]
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Figure 2.11: U-Net(top-left), FPN(top-right) and FCN(bottom) architectures.
Respective credits[103] [107] and [102]

As is shown in figure 2.11, at an architecture level, U-Net, FCN and FPN adopt
the same feature merging mechanism, starting from the output feature maps of the
deepest layer of their respective backbone architecture and progressively merging
those rich image-level semantic features with the fine-detail level features of the
layers closer to the network inputs[91].
The stark difference between the three, from a model architecture perspective, is in
the way the lateral and in-between merged feature map connections are designed.
U-Net simply crops feature maps coming from lateral connection in order to match
width and height of the feature maps with which it is merged by simple channel-wise
concatenation. The merged result is then forwarded to two convolutional layers,
each with 3x3 filters followed by ReLU non-linearity. Such output is then upsampled
by a factor of 2 by bilinear interpolation and then passed to a convolutional layer
with 2x2 filters that halve the number of input channels. The procedure is repeated
at each level of the decoder part(the right side of the U-shaped architecture).
On the other hand, FCN upsamples by a factor of 2 the feature maps by means of
deconvolutional layers [108] and then performs element-wise summation with the
feature map of the backbone architecture with the same dimensionality.
Similarly, FPN model upsamples top-down feature maps by a factor of 2 and then
convolves with 3x3 filters, to then element-wise sum it with the same level feature
map of the bottom-up pathway. The latter is prior to the sum, convolved with 1x1
filters in order to match the number of channels of the features with which it is
element-wise summed.
The promising results shown by feature pyramid networks[107] motivated further
research developments on such models.
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A fundamental extension of the bottom-up to top-down FPN architecture, is the
PANet[109] which develop a further bottom-up pathway which is however built
from the preceding top-down pathway so as to generate even richer merged feature
maps.
Hence, as seen in comparison figure between FPN and PANet 2.12, which represents
the backbone features of bottom-up pathway with the leftmost circles, these are
merged as in the standard FPN model on the left, by the same top-down pathway.
The novelty of the PANet architecture can be observed on the rightmost bottom-
up pathway, marked with red bottom-up connections, which further merges the
combined features obtained by the top-down pathway in the middle of the PANet
architecture.

Figure 2.12: Side by side comparison of FPN on the left and PANet on the right.
Image from [110]

With proper construction of the top-down into bottom-up pathway implemented
in the PANet architecture, this novel block which comprised the two pathways
lends itself well to the repeated use of such structure.
Indeed, the follow-up model NAS-FPN[111] shown in figure 2.13 considers such
construction as a new type of deep neural network layer, which is attached to the
selected feature maps of the initial bottom-up pathway p2 to p7. As can be seen,
the novel layer can be repeated multiple times by simple connection of repeated
top-down into bottom-up layers to the right side of the preceding its preceding
merged feature maps.
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Figure 2.13: NAS-FPN architecture. Image from [110]

Furthermore, NAS-FPN utilizes neural architecture search to determine the
optimal set of connections between the repeated top-down and bottom-up pathways,
so as to find the optimal problem specific architecture.
However, as the NAS-FPN is built by means of the neural architecture search,
Tan and Pang [110] argue that such model, although powerful is often impractical
due to the large number of parameters it contains, hence it is impractical in any
resource constrained environment.
As such, they develop the bidirectional FPN architecture BiFPN [110] shown in
figure 2.14, as a modular and simplified detection model, with respect to NAS-FPN.

Figure 2.14: BiFPN architecture. Image from [110]

Furthermore, they use such baseline template to develop a family of FPN models,
EfficientDet (figure 2.15), which can be scaled according to the available resource in
which it is employed, through a compound scaling coefficient. As such, they re-use
the same principles of the EfficientNet family of feature extractor to overcome
issues that hindered previous FPN based detection models.
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Figure 2.15: EfficientDet architecture. Image from [110]

2.3.5 Multi-task learning
The premise of a unified deep learning model that is capable of tackling a diverse
set of tasks with high effectiveness through its jointly learned representations, has
attracted the interest of much of the recent research.
As it allows to greatly reduce model complexity inference time by employing one
model instead of multiple architectures, each specific for a single task, it is also of
major interest for resource-constrained real world applications.
A staple of multi-task learning are the object detection deep models.
The widely renowned object detection models Fast R-CNN[106] and its improved
version Faster R-CNN[112] showed that simultaneous learning of classification,
bounding box regression and objectness classification (in the case of Faster R-CNN,
for object or background binary classification of proposed regions of interest), is
feasible and allows the unified model to achieve remarkable detection quality.
Although such tasks are by-design required to generate detections, the multi-task
learning problem has been more broadly studied also in the case of joint learning
of less strictly bound, multi-task contexts.
The most widely addressed multi task setting is that of joint object detection and
semantic segmentation[113, 114, 115, 116, 117, 118], as these methods observe that
a joint learning approach simultaneously improves the detection and segmentation
metrics. Such empirical findings are also supported by the fact that context sur-
rounding objects aids in detecting them by means of contextual reasoning [49] e.g.
a car is seen most commonly surrounded in the lower part by road-like features
and much less commonly surrounded by vegetation, or pedestrians are generally
observed closer to each other and in the sidewalks of the scene.
The typical convolutional architecture followed by such methods is to employ only
the fully convolutional parts of feature extractor models (such template is also
named backbone) such as ResNet and to attach separate re-engineered task-specific
sub-networks (also named branches) to either its intermediate convolutional layers
or to its terminal end.[113, 114, 115, 116, 117, 118]
Each of such branches is dedicated to its assigned task and learns task-specific
patterns, but the shares the same upstream common backbone component with
other tasks.
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However the decision of attaching a branch to a given layer remains arbitrary in
such models. Instead, it has been shown by Srivastava and Misra[119], that such
selection should be task dependent and is crucial to improve the performance of
multitask models.
Their Cross-Stitch network architecture aimed at addressing such neural network
engineering issue, as the proposed model learns end-to-end the optimal multi-task
architecture, by determining through learned weights the optimal way to separate
task specific from task agnostic features.
From an architectural point of view, the Cross-Stitch network provides multiple
insights on the multi-task learning problem.
However this improvement does not address a fundamental issue about training
multi-task neural networks: how should each task-specific loss be weighted when
added to the joint loss?
Indeed, it can happen that one or more of the errors computed between prediction-
ground truth pairs, represented by the task-specific loss, can overwhelm with its
contribution those of the other tasks in multi-task loss.
This point has been addressed by Kendall in 2018 [117], who developed a task-
uncertainty based loss-reweighting mechanism to rescale task-specific losses so as
to obtain separate contributions at the same scale in the total loss.
Although such approach provides a promising mechanism to avoid the manual
assignment of weights to each component of the loss, much of the following literature
has still employed grid search-like approaches to find the optimal weighting of each
loss component.
Such approach is also followed by much of the literature developed afterwards.
Examples of such statement from the literature that are related to the work in this
dissertation, are PanopticFPN [65], Panoptic Deeplab[21] and the EfficientPS [22]
models, which respectively tune by grid-search the weights or assign equal weights
to each of the components of the total loss.

2.3.6 Instance segmentation models
While semantic segmentation is a comprehensive approach to holistic scene un-
derstanding, one its major limitation to this end is the inherent lack of ways to
differentiate between entities whose more appropriate representation is that of
separate and distinct objects.
As such, semantic segmentation is effective to segment the background or other
uncountable entities, known as stuff, which are well represented by amorphous
regions e.g. the sky, the road and the vegetation.
On the other hand objects with well defined shapes, categorized in literature as
things [49], benefit from object detection and recognition.
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However the latter provides only coarse annotations without the fine-granularity
provided by segmentation-based algorithms.
For these reasons, the line of work on instance segmentation garnered much atten-
tion in scene understanding research.
As the task requires to discriminate between instances belonging to the same seman-
tic category, a variety of methods exist in the literature to address the complexity
of instance segmentation. The main subdivision can be done over the methodology
that is employed to generate instance proposals and the associated semantic class:
two-stage and one-stage methods.
The two-stage models are the most widely researched and the ones which provided
the highest performance among all.
Two-stage methods can be further categorized based on the segmentation pipeline:

• object-detection based: in which a detector determines object bounding
boxes and the class of the object within it, followed by instance segmentation
of the area of the input image within the associated bounding box

• segmentation based: a model generates instance segmentation proposals
and per-instance category labels are assigned based on pixel-wise classifica-
tion(semantic segmentation) of the whole scene.

Object detection based methods employ a first stage which generates candidate
box proposals, most commonly by means of the region proposal network RPN [112]
of the Faster R-CNN architecture, which are then used to create image crops that
are fed to a downstream instance segmentation network.
Such component is responsible for the generation of object proposal for each pixel
of its input feature maps, each of which is assigned a set of rectangular anchors(in
essence, location independent bounding boxes) of multiple scale and size. After the
assignment anchors become localized with respect to the assigned feature map pixel.
Then for each of such preliminary assignments, the RPN predicts an objectness
probability and bounding box coordinates. The former allows to determine whether
an object is within the proposed region, while the box coordinates are used to
refine the anchor location with respect to the associated ground truth.
The RPN-based approach has been followed to build the fully convolutional instance
segmentation network FCIS[120], which utilizes the position sensitive score map
approach first seen in the instance proposal model InstanceFCN[121], to assemble
instance segmentation starting from the object proposals obtained by the RPN.
Following the same philosophy, Mask R-CNN[68] has become a top performing
instance segmentation architecture still for the modern standards, by adopting
the default Faster R-CNN[112]. Its ROI pooling layer is replaced by a novel ROI
align layer to finely localize the predicted instance masks on the input image and
an instance segmentation branch is added in parallel to the Faster R-CNN box
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regression and classification branches.
As has been mentioned, Mask RCNN employs the same upstream RPN module
of Faster R-CNN to generate the candidate object proposals, which are then used
to jointly perform instance segmentation, bounding box regression and classification.

On the same line of work another notable method is Hypercolumn[122], which
employs object and instance proposals generated by multiscale combinatorial group-
ing [123] that are then passed to R-CNN[105]. Its filtered bounding box predictions,
by means of non-maximum suppression, become the hypercolumn inputs that are
required to predict the instance mask.
Both instances proposals and the respective bounding box are considered to gen-
erate the image crop which is fed to a downstream convolutional architecture for
segmentation.
A feature vector called in fact hypercolumn is created from the convolutional feature
maps of the chosen convolutional architecture, all rescaled to a common size so as
to obtain the required hypercolumn vector.
Such data structure provides multi scale feature representations which are fed
to multiple classifiers, whose outputs are aggregated to then generate the final
instance segmentation. However such method assumes that the upstream detector
can also provide the category associated with the segmented instance.

As Mask R-CNN has become a staple of instance segmentation, research efforts
have also been dedicated to alternative methods with premise to possibly obtain
comparable results. Deep watershed transform DWT[124] is one of such methods.
All object instances are considered as energy basins, which the DWT two-stage deep
model separates by means of a per-basin predicted direction of descent of the energy,
by means of its direction network DN. As the heatmap of the energy distribution
is obtained through the second stage represented by the Watershed Transform
Network WTN, a thresholding procedure based on the watershed algorithm is
applied in order to finally separate all found instances.
A category is assigned to each of the instances by means of a preliminarily computed
semantic segmentation mask which allows to filter out all image regions unrelated
to the categories of interest from the input to the DWT network.
SSAP[125] adopts a similar procedure, but the semantic segmentation branch and
the affinity pyramid used to compute preliminary per-pixel affinities share the same
upstream convolutional feature maps.
Both semantic and per-pixel affinities are merged by a cascaded graph partition
module which formulates the instance mask generation as an graph partition
optimization problem.

Another novel line of work is that of dense sliding-window instance segmentation
models.
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Firstly initiated by the DeepMask[126] instance proposal model, TensorMask[127]
is the first instance segmentation model which simultaneously predicts instance
masks and the associated category without any additional semantic segmentation
pipeline or upstream object detector.
It achieves this by means of a 4D tensor representation of shape V × U × H × W
that allows to model both the spatial location of instances on the H × W image
planes, simultaneously to the relative instance mask positions on the V × U planes.
Such model represents a notable innovation as it achieves comparable results to
Mask R-CNN with a novel approach to instance segmentation, thus opening possible
avenues for improvements over the current state of the art detection-based models.

2.3.7 Semantic segmentation models
With the objective to assign pixel-wise semantic labels to all pixels of the input
image, the state of the art approaches in literature employ fully convolutional
neural networks[102](FCN ) as a means to learn the mapping from input pixels
to output pixel categories.
The prevalent approach to the implementation of FCN semantic segmentation
network is based on the principles of the Autoencoder model[128]: an input is
compressed to a latent embedding representation by means of the learned pa-
rameters of an encoder network, to then be decompressed to the original input
size through a decoder network.
The decoder output is generally task-dependent, whether it is for the purpose of
denoising inputs [129], extraction of the compressed embeddings obtained between
the encoder and the decoder[130, 131, 132] or semantic segmentation[103, 102, 133,
21].
For the purpose of image semantic segmentation, segmentation models output
tensors of shape H × W × n_classes, in which H and W are the height and width
of the input image grid, and n_classes pixel-wise class logits which are utilized to
determine the semantic label of each pixel.
In practice, this procedure can also be described as pixel-wise classification.

In the literature, it is widely understood that to achieve optimal segmentation
performance, deep networks are required to present great localization capabilities
of semantic entities[134]. To achieve this, ParseNet[135] adopts a modified FCN
[102] in which its features that are utilized to perform pixel-wise classification are
merged with global context ones(those of the terminal pooling layer) by means of
a contextual module, before they are employed for segmentation.
Thus, the local features are combined with global context to generate intermediate
multi-scale features that allow for better segmentation outputs.
Following the same principles, the DeepLab architecture[134] has been developed.
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It consists of a fully convolutional segmentation architecture and a downstream
fully connected conditional random field (CRF), that allows the refinement of the
segmentation outputs of the network by considering global context of the predicted
pixel classes. The fully connected CRF achieves such functionalities by considering
the degree of correlation between all possible pairs of pixels. Hence it solves conflicts
in the predictions by considering color intensities of the pixels and the associated
predicted labels, building an energy function which is to be minimized so as to
eliminate discrepancies in the predictions. This way, boundaries of entities in the
scene are refined and improved.
Furthermore, DeepLab extends such implementation by considering also multi-
scale feature aggregation, naming such model DeepLab-MSc, by providing to the
pixel-wise classification layer a concatenated set of features obtained at multiple
depths of the convolutional backbone.
With the aim to jointly consider local and global context, DeepLab has also been
extended to the use of atrous convolution, DeepLab-LargeFOV as a means to
consider broader receptive field of the convolutional filters used in the network,
without compromising its computational complexity.
As the most promising results have been obtained by the use of atrous(also named
dilated) convolutions, DeepLab has been further extended with a novel atrous
spatial pyramid (ASPP)[133] pooling which allows to generate multi-scale features
from the same input, by employing multiple filters with different dilation rates.
Thus, the receptive field of the employed filters is artificially enlarged so as to cover
broader areas of the input, without requiring additional parameters. This is due
to the fact that atrous convolution pads filters with zeros in-between the original
filter elements, until the desired filter size is obtained.

One critical distinction between the atrous convolution-based models, such as
the family of DeepLab architectures, and encoder-decoder based segmentation
deep models is in the way predictions are computed. The DeepLab-based models
generate segmentation predictions at a subsampled scale of the inputs at training
time, while during inference the output of the semantic segmentation is bilinearly
upsampled. As described in [134], such operation does hinder the model perfor-
mance.
However, another line of work on segmentation models employs a more intuitive
approach to segmentation, by means of encoder-decoder architectures.
In such context, inputs are progressively downsampled as they are passed through
the encoder part, to then be upsampled by learned deconvolution[102, 136] or bi-
linear upsampling[137, 135, 103] until the original image shape is recovered. Then,
the resulting output of the decoder is used to perform pixel-wise classification.
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2.3.8 Panoptic Segmentation models

Panoptic segmentation models push the envelope of holistic scene understanding by
inheriting the components of previously separately studied semantic and instance
segmentation architectures.
Although interest in such line of work has recently been revived by the research of
Kirillov et al. [20, 65], pioneering work on panoptic segmentation dates back to
2005 with the study of Tu and Chen [138] on Bayesian methods to unify semantic
segmentation, detection and recognition.
However only with the demonstrated breakthrough performance of deep learning
architectures for computer vision, the panoptic segmentation task garnered much
research attention.
With such promising premises, researchers quickly developed novel approaches to
the task.
As the task involves the joint understanding of objects and their surrounding
background, instance and semantic segmentation research has been utilized to build
unified multi-task models capable of simultaneous detection of instances, with their
associated category, and segmentation of the background scene.
One of the first approaches to the problem has been the PanopticFPN model[65],
which consists of a modified state of the art instance segmentation architecture,
Mask R-CNN, to which a semantic segmentation branch has been added. With
the joint prediction of instances and of the semantic segmentation, respectively by
means of the Mask R-CNN and the newly added segmentation branch, a down-
stream post-processing algorithm merges the two separate sets of prediction into a
final panoptic mask, solving any possible overlaps between them.
After such early work, the literature has quickly been enriched by a variety of
panoptic segmentation models which improved upon this baseline architecture.
Two main lines of work have developed as a consequence, proposal-based(or
top-down) and proposal free models(or bottom-up)[21]. The distinction stems
from the methodology that is employed to detect instances in the scene.
Proposal-based models employ the Mask R-CNN [68] pipeline. In essence, it
consists in the detection objects, to which a 2D bounding box is assigned, and
the image region enclosed in such rectangular area is segmented downstream by a
convolutional network to produce the respective instance segmentation.
The naming originates from the fact that Mask R-CNN bases its detection method-
ology on the proposal of a large number of bounding boxes which are then ranked,
filtered and refined before they are finalized as model predictions.
Under this category, there are UPSNet[23], EfficientPS[22] and the previously
described PanopticFPN[65].
UPSNet and EfficientPS improve upon the latter by implementing a parameter
free end-to-end module that allows the in-network generation of the panoptic
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segmentation prediction.
It achieves such objective by merging the instance mask logits with those that
match the respective bounding box on the semantic segmentation mask, to then
concatenate the merged instance logits with the semantic segmentation logits and
generate the final prediction by selection of the highest confidence score class from
the mentioned concatenated logits tensor.
While UPSNet merges the instance and its semantic segmentation logits by simple
element wise sum over the spatial locations of the respective masks, the EfficientPS
adopts a more complex consensus mechanism based on accordance between mask
and semantic predictions.
Another model, CVRN[24] employs a proposal-based approach by modifying the
PanopticFPN architecture to address the domain adaptation problem.
On the other hand, proposal-free models bypass the use of the Mask R-CNN
pipeline by employing alternative methods to predict instance segmentations.

Proposal free methods instead recur to novel techniques to tackle the instance
segmentation sub-task of the panoptic segmentation problem.
The most notable methods employ the concept of instance center of mass to detect
object instances and obtain their respective segmentation.
DeeperLab[139] is the first to use such concept, by framing instance segmentation
as a keypoint prediction problem. In such case, the model consists of a semantic
segmentation branch and four keypoint-prediction related branches. Each of the
four is used to predict a type of relationship between each pixel and the keypoints
of the associated instance. By means of these prediction heads, a class agnostic
instance is generated. Its semantic label is obtained by majority vote through the
semantic segmentation prediction obtained by the parallel segmentation head.
A similar approach named PanopticDeeplab [21], which consists of a common
backbone architecture to model commonalities between instance and semantic
segmentation, with two separate instance and semantic branches that learn task-
specific representations, employs the same concept of instance center of mass
prediction.
Instance centers are predicted as an image level heatmap based on a 2D gaussian
encoded ground truth heatmap. Redundancies are then suppressed by keypoint-
Non-maximum suppression. The remaining centers are then utilized to perform
regression of the offset of each pixel to the nearest instance center. The result-
ing class agnostic instances are then given a semantic label through a majority
vote(same as [139]) which associates the most common category of the semantic
segmentation branch prediction, considering only the pixel-wise semantic labels
that are within the predicted instance mask pixels. Thus, the panoptic prediction
is determined.
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In the same context of proposal-free methods, SSAP[125], treats instance segmen-
tation as graph partition optimization problem, aiming at separating pixels which
belong to different instances by means of its develop concept of pixel-wise affinity
pyramid.

2.4 Self-supervised Domain Adaptation
Deep Learning-oriented approaches are notoriously data hungry, which translates to
the need for a considerable amount of training data even for trivial tasks. Collecting
data for training more complex tasks can become unfeasible in practice, as suggested
in the work of [2]. The authors prove that it is required to collect for more than 600
years of driving hours, to attain acceptable performances with self-driving vehicles.
A natural fallback is simulation, which in turn, entails a difference between the
samples generated in the simulation environment and the ones collected in reality.
Samples synthetically generated through simulation are said to belong to a domain
which is shifted from the domain of real data. Domain Adaptation (DA) techniques
offer a set of strategies to correct this unwanted discrepancy, with the goal of
learning a feature representation which is meaningful for the main machine learning
task, while being invariant from the domains samples come from.

More in general, domain adaptation is a powerful framework which can be
applied to any scenario in which there is a shift between a source domain, namely
the training set, and the target domain, commonly identified with the test set. We
assume that the model is trained on points sampled from a dataset x ∼ X ⊆ Rn

with corresponding discrete labels y ∈ Y , belonging to a finite set Y = {1, 2, . . . , L}.
We identify two distributions for the source domain and the target domain, S(x, y)
and T (x, y) on X × Y , and their difference is addressed as domain shift.

The ultimate goal of the domain adaptation task is to exploit the information
retained in the examples belonging to the source domain in order to make prediction
on the target domain. To this end, self.supervised domain adaptation techniques
introduce an auxiliary task which is solved in tandem with the main machine
learning one. The auxiliary (or pretext) task introduces an additional term in
the overall loss which does not depend on the labels set Y , and has the goal of
indirectly forcing for a reduction of the domain shift, during training. As a result,
the auxiliary task allows to reformulate the optimization problem with the goal
of learning features which are discriminative and domain-invariant at the same
time. Self-supervised domain adaptation defines a pretext task which can be solved
without the need of costly human labeling. In fact, the objective function to
minimize can be designed to be deducible from the structure of data. An example
is training a classifier to discriminate from samples belonging to either source or
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target domains, as proposed by [140].

2.4.1 Domain adaptation methods
The methods to implement self-supervised domain adaptation can be divided into
three broad classes. A first class aims to reduce the divergence between the source
and the target domains in some feature space. To achieve that, we optimize for
some measurement of distributional discrepancy. One example of measurement is
the maximum mean discrepancy (MMD). It is defined by a feature map ϕ : X −→ H,
where H is called a reproducing Hilbert’s space. MMD represents the discrepancy
between two distributions as the distance between the mean of the embeddings of
the samples belonging to source and target domains

MMD(S, T ) = ||Ex∼S [ϕ(x)] − Ex∼T [ϕ(x)] ||H

In the case of deep learning, the MMD objective is computed on some latent space
resulting from the transformations applied by the layers of an Artificial Neural
Network to the input feature space, before the classification layer. This term is
added to the loss an minimized during the overall training task. Some authors
employing this technique in their works are [141, 142, 143, 144].

Another approach of achieving self-supervised domain adaptation involves re-
sorting to adversarial methods, taking inspiration from the idea initially introduced
by Generative Adversarial Networks (GANs). In fact, domain adaptation can be
achieved by training a domain discriminator and a generator (features extractor)
in an adversarial fashion, with the result that the generator produces indistinguish-
able features representations for source and target samples, achieving the task of
learning domain-independent representations for samples. This is also the approach
implemented n this work, following the intuition of [140].

The third class of domain adaptation techniques relies on solving one or more
pretext tasks, besides the main machine learning task, involving both source
and target samples. The key intuition behind these methods is that solving the
auxiliary tasks for samples belonging to both domains entails learning robust
domain-independent features. For instance, the work of [145] propose to identify
the rotation of source and target images. The work of [146] extends this idea by
solving K pretext tasks at the same time, obtaining a stronger domain-invariant
features representation, at an higher computational cost during training. The
authors of this work include in their method the usage of MMD in the process of
hyperparameters tuning, which makes this method a bridge between two classes of
approaches to address the task of domain adaptation.
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Chapter 3

Synthetic-to-Real dataset
creation methodology

3.1 Generation of a label-matched simulated and
real world image dataset

As the panoptic segmentation task requires instance and semantic segmentation
ground truth formats, it has been necessary to define a synthetic-to-real autonomous
driving scene dataset with built in capabilities to perform panoptic segmentation
by design.
Furthermore, domain adaptation sets the need of multiple datasets originated
necessarily from different sources, but which share a common underlying scene
context.
On top of these requirements, all semantic categories of all ground truths of the
different datasets have to be matched, such that each class is represented by the
same numerical identifier across the different datasets.
As the problem of interest of this work entails the use of domain adaptation to mit-
igate the distributional shift between synthetic and real data on the panoptic
segmentation task, the source dataset has to be generated in simula-
tion.To this end, the CARLA simulator has been employed as a means to capture
the most diverse set of driving scenarios from different camera perspectives. Such
dataset consists of an order of magnitude more images than the chosen real world
datasets from the literature, Cityscapes and BDD100k(its 10k samples variant), in
order to assess whether the diversity provided by simulation can indeed provide
benefits to a domain adapted deep learning model.
Nevertheless, such diversity is only presented in terms of storage, as during train-
ing of the deep learning model, the per-batch of samples synthetic to
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real ratio is kept 1:1, to avoid over-representation of the synthetic data
and consequent loss of relevant information from the real world images.
The target domain is the real world data, as is mentioned above.
Hence, the latter has to either be manually gathered from a real driver perspective
and then be labeled, or belong to already labeled real world datasets presented in
the computer vision literature.
For ease of implementation, two renowned multi task learning driving datasets from
the literature, Cityscapes[60] and BDD100k[62] have been utilized to create the
customized real world datasets of this experimental setting.

3.2 Synthetic dataset creation

3.2.1 The CARLA simulator

The CARLA[6] simulator provides a broad set of tools and capabilities to perform
simulation regarding a wide variety of autonomous driving task.
As it is by-design integrated with the Unreal4 game engine, it has the capabilities
to render high quality simulated scenes, with an high degree of realism3.1.

Figure 3.1: A diverse set of scenes can be captured as images by the CARLA
simulator: weather and daylight conditions, sun glares, road reflectance of light
and traffic density are only a few of the features that can be simulated (source[6]).
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By means of its modular design, it is possible to configure:

• simulation sampling frequency (at least 10 Hz)

• the map design employed during a given simulation, by selection of any of the
already provided maps or custom designed ones.

• traffic density

• pedestrian density

• type of the simulated vehicles

• weather condition

• daylight condition

• randomness of the behavior of driving agents and pedestrians

• texture variability of objects in the scenes, while maintaining semantic coher-
ence

As CARLA is designed to support the simulation of autonomous driving related
tasks, the simulator comes with the capabilities to capture data from the following
sensors :

• RGB camera

• depth camera

• LiDAR sensor

• GNSS sensor

• IMU sensor

• Radar sensor

• Event camera

Furthermore, the simulator allows to automatically generate a ground truth anno-
tation associated to the raw data captured from each of the mentioned sensors. To
this end, CARLA provides the following annotation tools:

• image semantic segmentation annotator (RGB,depth,Event camera annota-
tions)

• image instance segmentation annotator (RGB,depth,Event camera annota-
tions)
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• LiDAR point cloud semantic annotator (LiDAR)

• Optical flow annotator (for RGB,depth,Event camera annotations)

Hence, the RGB camera and the relative semantic and instance segmentation
annotator have been used for data collection purposes. Due to the fact that the
camera is simulated, its intrinsic properties are manually selected prior to the
simulation. The pinhole camera model[147] is employed to define the necessary
camera intrinsic parameters matrix. The extrinsic parameters do not have
to be estimated, as each camera has been manually placed at set locations on the
chassis of the simulated vehicle.
As such, the following camera parameters are considered for the definition of the
sensor setup:

• width: Image width in pixels.

• height: Image height in pixels.

• FOVx: Horizontal field of view in degrees.

Hence, the intrinsics camera calibration matrix can be directly computed from the
aforementioned user-defined values:

K =

fx 0 cx

0 fy cy

0 0 1


Where, cx,cy, fx and fy are respectively the camera optical centers ,expressed in
pixel coordinates, and the camera focal lengths.
These are computed by the relationships with the aforementioned user-defined
camera parameters:

fx = width/(2.0 ∗ tan(FOVx/2 ∗ 2 ∗ π/360.0))
fy = height/(2.0 ∗ tan(FOVy/2 ∗ 2 ∗ π/360.0))
cx = width/2
cy = height/2

FOVy = 2 ∗ arctan(tan(FOVx/2) ∗ width/height)

For increased realism of the camera output images, the CARLA simulator
provides the following set of options to add noise or distortions:

• Vignette: darkens the border of the screen.

• Grain jitter: adds some noise to the render.
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• Bloom: intense lights burn the area around them.

• Auto exposure: modifies the image gamma to simulate the eye adaptation to
darker or brighter areas.

• Lens flares: simulates the reflection of bright objects on the lens.

• Depth of field: blurs objects near or very far away of the camera.

All of these options are turned off in this experimental setting, to avoid any con-
founding effect due to such selection on the deep learning model performance during
the synthetic-to-real domain adaptation.
Although noise would allow the deep model to learn more robust features from the
data, it could also hinder the training process, hence these are turned off.

3.2.2 Synthetic driving scenarios
The CARLA simulator provides a set of already built maps of plausible real world
scenarios.
The available selection entails:

• Town01, A basic town layout consisting of "T junctions".

• Town02, A smaller version of the Town01 map.

• Town03, The most complex town: a city-like environment with a 5-lane
junction, a roundabout, multiple road levels, a tunnel and an urban periphery.

• Town04, A rural town with country roads, an highway and a small town.

• Town05, A Squared-grid town with cross junctions and a bridge. It has
multiple lanes per direction. Useful to study lane change scenarios.

• Town06, Long highways with many highway entrances and exits.

• Town07, A rural environment with narrow roads, barns and hardly any traffic
lights.

• Town10, A city environment with different landscapes such as an avenue, a
promenade, a city hall, a train station and a sea scenery.

For the purpose of generating a wide variety of scenarios, in this study Town03
and Town10 have been selected as base environments for the simulations, mainly
due to their inherent complexity.
In a preliminary version Town04 had also been included, in order to add rural

53



3.2. SYNTHETIC DATASET CREATION

areas to the variety of scenes, but the simulator produced broken instance and
semantic annotation for terrain at distance greater than 1km. Rendering only
semantic classes within 1km radius from the camera.

Considering the selected Town03 and Town10 driving scenarios, diversity in the
captured data has been achieved from the perspective of actors in the scene by
simulating a wide variety of classes of vehicles, from trucks to motorbikes, bikes
and passenger cars. Furthermore a variety of pedestrian models have been also
simulated: from adults to elders and children.
Regarding these, a subset of all vehicles and pedestrian have been automatically
sampled by the simulator and added to the scenario, based on the selection of the
number of desired actors:

• Town03, 50 vehicles and 34 pedestrians

• Town10, 45 vehicles and 40 pedestrians

To attain diversity also in terms of driving scenes, the simulation has been set
up in order to capture with equal probability scenes of overcast, thunderstorms,
wind, fog or clear weather conditions at all hours of the day: from dawn, to sunset
and night-time.
The weather conditions have also been simulated considering different levels of
impact on the driving scenario.
To simulate different weather and illumination conditions, the following modifiable
parameters have been utilized (description taken from the [6] documentation):

• cloudiness: values range from 0 to 100, being 0 a clear sky and 100 one
completely covered with clouds.

• precipitation: rain intensity values range from 0 to 100, being 0 none at all
and 100 a heavy rain.

• precipitation deposits: determines the creation of puddles. Values range from
0 to 100, being 0 none at all and 100 a road completely capped with water.
Puddles are created with static noise, meaning that they will always appear
at the same locations.

• wind intensity: controls the strength of the wind with values from 0, no wind
at all, to 100, a strong wind. The wind does affect rain direction and leaves
from trees, so this value is restricted to avoid animation issues.

• fog density: fog concentration or thickness. Values range from 0 to 100.

• wetness: road wetness intensity. Values range from 0 to 100.
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• sun azimuth angle: values range from 0 to 360. Zero is an origin point in a
sphere determined by Unreal Engine.

• sun altitude angle: values range from -90 to 90 corresponding to midnight and
midday each.

All such conditions have been simultaneously implemented in the simulation
of the Town03 and Town10 scenarios.

3.2.3 Sensor setup
The simulator adopts a left-handed coordinate system, with:

• x: forward

• y: left

• z: up

Based on such definition, the sensor setup has been attached to a Tesla model3
template vehicle provided by the simulator.
Such sensor setup for the purpose of the creation of a dataset is also inspired by the
way in which camera images have been gathered in the renowned KITTI dataset
[59] and the more recent Waymo perception dataset [148].
The sensor setup follows the standard camera setup of a Tesla vehicle, shown in
figure 3.2.

Figure 3.2: Multi camera sensor setup employed in Tesla vehicles
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Hence, the implemented sensor setup that has been used to gather simulated
data is an approximated version of the one employed by Tesla [149] shown in figure
3.2.
It has been chosen because it provides a wide variety of different perspectives on
the driving scene, with overlapping camera fields of view.
Fixed image width W = 960 and height H = 540 have been set for all camera
sensors.
The horizontal FOV of each camera is instead configured following the setup shown
in figure ??.
All coordinates of the sensors are given in the left-handed coordinate system de-
scribed above, in vehicle coordinates with respect to its ground-level center point,
so as to be on the outer surface of the vehicle chassis.
To each camera has been associated an automatic instance and semantic segmenta-
tion annotator provided by the simulator.
Thus, each frame capture by each sensor comes directly with its set of labels.
As such, the following cameras have been attached to the Tesla model 3 simulated
vehicle:

• front camera

– FOVx = 90
– placement: (x=-0.325, z=1.65, y=-0.06)

• long range front camera

– FOVx = 50
– placement: ( x=-0.325, z=1.65, y=-0.06)

• front left side camera

– FOVx = 90
– placement: ( x=-0.36, z=1.12, y=-1.1,yaw=-23.62)

• front right side camera

– FOVx = 90
– placement: (x=-0.36, z=1.12, y=1.1,yaw=23.62)

• rear left side camera

– FOVx = 75
– placement: (x=1.29, z=1., y=-1.1,yaw=-(180-70.2))

• rear right side camera
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– FOVx = 75
– placement: ( x=1.29, z=1., y=1.1,yaw=(180-70.2))

• rear camera

– FOVx = 133
– placement: (x=-2.4, z=1.,yaw=180 )

The vehicle has been set in autopilot mode, selecting the deterministic behavior
provided by the CARLA simulator.
This mode utilizes Unreal engine to determine the position of obstacles, road
landmarks and the optimal way to move around in the environment.
The simulation for each scenario has been run capturing synchronized frames from
all cameras every 0.02 seconds.
CARLA 0.9.13 has been used to run the simulation.
An example of the multi view camera images captured by the setup is shown in
figure 3.3

Figure 3.3: Multi-view camera frame: front-left (top-left), front (top-center),
front-right(top-right), rear-left (mid-left), rear (center), rear-right (mid-right), long
range(bottom)

3.2.4 Synthetic images and ground truth formats
The synthetic images generated by the camera setup previously described are
formatted according to the RGB convention (an alternative is BGR).
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The semantic segmentation masks are encoded within RGB H × W images, by
encoding at each pixel of the R channel of spatial size H ×W the semantic class asso-
ciated with each pixel. The G and B channels are unused and set to the pixel value 0.

The instance segmentation masks are encoded within RGB H × W images, by
encoding at each pixel of the R channel of spatial size H × W the semantic class
associated with each pixel. The G and B channels are utilized to encode the
instance id.

An image sample with its associated ground truth instance and segmentation
masks is shown in the figure 3.4

Figure 3.4: Left camera frame: image (left), instance mask(center), semantic
mask(right), panoptic mask (bottom)

3.3 Synthetic-to-Real dataset
With the obtained instance masks by means of the described simulations, it has
been necessary define a procedure to match the default semantic classes provided by
the CARLA simulator to those of the selected real world datasets: Cityscapes[60]
and BDD100k[62].
A common subset does not exist, however one can be generated by aggregating
together the most closely matching semantic classes, separately for each dataset.
Hence a common subset of labels for thing and stuff semantic classes has been
defined.
Then, Cityscapes, BDD100K and the generated synthetic datasets have been re-
labeled according to such defined subset.
To achieve this, an automated script simply modifies the semantic id of each ground
truth of each dataset to the associated one that is within the common label subset.
The results are saved and defined as label-matched datasets.
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However, the DA-PanopticFPN deep learning model that is described in the Model
design chapter requires a specific label format in order to be trained.
Firstly, all instances and semantic classes have to be represented in COCO-Detection
and COCO-stuff format[53], respectively. In essence, this requires to transform
the instance and semantic segmentation masks to a JSON file that contains the
COCO-Detection representation for a given dataset:

• its set of images, each associated with a unique id and its file path

• the set of semantic categories considered in the dataset, with the metadata
for each

• the mask annotations, each with:

– the associated image id
– the annotation id
– the semantic category
– area covered by the mask
– the segmentation represented by RLE encoding or by its bounding polygon
– bounding box (valid also for stuff categories)
– the iscrowd boolean flag that can only be true for thing classes, if the

considered instance is deemed to be unrecognizable due to too much
overlap with other elements in the scenes, or it is too occluded

• the semantic categories considered in the dataset

After this procedure is completed, for all datasets, the panoptic masks can be
generated according to the COCO-Panoptic format[20, 53].
Once again, this convention requires the generation of a JSON file which contains
the details of the COCO-Panoptic datasets.
However, besides the images associated to the panoptic masks, this format expects
also the creation of panoptic masks in image format, hence the RLE encoding is
not sufficient anymore.
The COCO-Panoptic protocol requires a JSON file containing:

• the set of images, each associated with a unique id and its file path

• the segment annotations(an abstraction that is used represent a mask by its
semantic category or its instance id), each with:

– the associated image id
– the panoptic mask annotation file path
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– segment information, one for each entity in the scene, regardless of thing
or stuff class:

∗ segment id, required to retrieve the entity within the panoptic mask
image file (.png masks are required to avoid lossy compression of other
image formats)

∗ the semantic category
∗ area covered by the mask
∗ bounding box (valid also for stuff categories)
∗ the iscrowd boolean flag that can only be true for thing classes, if the

considered instance is deemed to be unrecognizable due to too much
overlap with other elements in the scenes, or it is too occluded

• the set of semantic categories considered in the dataset, with the metadata
for each

Furthermore, an additional conversion is required to move from the COCO-Panoptic
format to one that is usable by the PanopticFPN model.
It entails the conversion as described in the code provided at the github repository
of the Detectron2 framework[150].
In practice, it takes the COCO-Panoptic annotations and separates them again into
an instance segmentation COCO-Detection JSON and a semantic segmentation
dataset, in which all things categories are marked with the semantic category= 0.
The stuff semantic categories are instead re-labeled with labels sem_category ≥ 1.
A special label 255 is associated to pixels that can be ignored during training and
evaluation.

To implement this conversion pipeline for the synthetic dataset, customized
implementations of the following scripts have been utilized:

1. CARLA label re-assignment to the label-matched subset

2. conversion from instance mask (for both things and stuff) images to COCO-
Detection format, in order to obtain a result in the aforementioned COCO-
Detection convention

3. COCO-Detection → COCO-Panoptic, with a customized implementation of
[151] that allows to obtain a dataset in the presented panoptic format.

4. COCO-Panoptic to customized PanopticFPN datasets in COCO-Instance and
COCO-stuff format[150]

A similar conversion pipeline has been used to convert Cityscapes from its
standard format to the PanopticFPN specific dataset format:

60



3.3. SYNTHETIC-TO-REAL DATASET

1. Cityscapes label re-assignment to the label-matched subset

2. conversion from instance mask (for both things and stuff) images to COCO-
Detection format

3. COCO-Detection → COCO-Panoptic, with a customized implementation of
the conversion script provided by the authors of Cityscapes[152]t.

4. COCO-Panoptic to customized PanopticFPN datasets in COCO-Instance and
COCO-stuff format[150]

Finally, the conversion pipeline is applied also to BDD100k, in order to convert
it to the PanopticFPN specific dataset format:

1. BDD100k label re-assignment to the label-matched subset

2. conversion from instance mask (for both things and stuff) images to COCO-
Detection format

3. COCO-Detection → COCO-Panoptic, with a customized implementation of
the conversion script provided by the authors of BDD100k [153].

4. COCO-Panoptic to customized PanopticFPN datasets in COCO-Instance and
COCO-stuff format[150]
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3.3.1 Multi dataset label matching

Following, the label conversion from dataset specific to label-matched version is
presented, for each of the datasets considered in this dissertation.
Before proceeding the label-matched subset is presented: The thing classes
that are considered are:

• car

• pedestrian

The stuff classes that are considered are:

• road

• sidewalk

• building

• wall

• fence

• pole

• traffic light

• traffic sign

• vegetation

• terrain

• sky

Synthetic CARLA

The mapping in table ?? is utilized to move from dataset specific, shown in the
column original labels to the label-matched version (column label matched ),
note that these are not these labels are the ones used before each is converted to
the PanopticFPN specific format.
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Class Original Label matched
road 7 0
roadline 6 0
sidewalk 8 1
building 1 2
wall 11 3
fence 2 4
pole 5 5
traffic light 18 6
traffic sign 12 7
vegetation 9 8
terrain 22 9
sky 13 10
person 4 11
car 10 13
unlabeled 0 255
other 3 255
ground 14 255
bridge 15 255
rail track 16 255
guard rail 17 255
static 19 255
dynamic 20 255
water 21 255

Table 3.1: Synthetic dataset mapping from default labels to label-matched version

Figure 3.5: Synthetic dataset sample with its label-matched panoptic mask

Cityscapes

The mapping in table ?? is utilized to move from dataset specific, shown in the
column original labels to the label-matched version (column label matched ),
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note that these are not these labels are the ones used before each is converted to
the PanopticFPN specific format.
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Class Original Label matched
license plate -1 -1
road 7 0
sidewalk 8 1
building 11 2
wall 12 3
fence 13 4
pole 17 5
traffic light 19 6
traffic sign 20 7
vegetation 21 8
terrain 22 9
sky 23 10
person 24 11
rider 25 11
car 26 13
truck 27 13
bus 28 13
caravan 29 13
train 31 13
motorcycle 32 13
bicycle 33 13
unlabeled 0 255
ego vehicle 1 255
rectification border 2 255
out of roi 3 255
static 4 255
dynamic 5 255
ground 6 255
parking 9 255
rail track 10 255
guard rail 14 255
bridge 15 255
tunnel 16 255
polegroup 18 255
trailer 30 255

Table 3.2: Cityscapes mapping from default labels to label-matched version
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Figure 3.6: Cityscapes sample with its label-matched panoptic mask

BDD100k

The mapping in table ?? is utilized to move from dataset specific, shown in the
column original labels to the label-matched version (column label matched ),
note that these are not these labels are the ones used before each is converted to
the PanopticFPN specific format.
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Class Original Label matched
road 7 0
sidewalk 8 1
building 10 2
wall 15 3
fence 11 4
pole 20 5
traffic light 25 6
traffic sign 26 7
vegetation 29 8
terrain 28 9
sky 30 10
person 31 11
rider 32 11
car 35 13
bicycle 33 13
bus 34 13
caravan 36 13
motorcycle 37 13
train 39 13
truck 40 13
unlabeled 0 255
dynamic 1 255
ego vehicle 2 255
ground 3 255
static 4 255
parking 5 255
rail track 6 255
bridge 9 255
garage 12 255
guard rail 13 255
tunnel 14 255
banner 16 255
billboard 17 255
lane divider 18 255
parking sign 19 255
polegroup 21 255
street light 22 255
traffic cone 23 255
traffic device 24 255
traffic sign frame 27 255
trailer 38 255

Table 3.3: BDD100k mapping from default labels to label-matched version
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Figure 3.7: BDD100k sample with its label-matched panoptic mask
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Chapter 4

Model design

4.1 Introduction

This introductory section serves the purpose of providing a formal description of
the design of the Domain Adaptive PanopticFPN neural network architecture, a
modification built in this work from the template PanopticFPN model[65].
The objective of this work is the evaluate the improvement in panoptic segmentation
performance that a domain adaptive model obtains compared to a baseline trained
on synthetic driving data and tested on real world driving data.
Hence, considering as baseline the PanopticFPN[65] architecture, a modified ver-
sion named DA-PanopticFPN which employs an adversarial self-supervised domain
adaptation module has been developed in this dissertation.
The former has been selected as it adopts the minimal set of changes to develop a
panoptic segmentation model, favoring a simplistic and minimal design as noted
by the authors[65].
It adopts a Mask R-CNN[68] instance segmentation architecture, which consists
of an FPN[107] backbone created from a ResNet50[93], and a parallel semantic
segmentation branch which is attached to the termination of the FPN backbone.
As such, the effectiveness of domain adaptation can be easily evaluated by avoiding
possibly unintended complex interactions that can appear in the case of more
convoluted architectures such as PanopticDeepLab[21] or EfficientPS[22].
Extensions to domain adaptive versions of the above architecture is of interest for
future work.
The details that are specific to such model will be presented shortly after, the
following formalization.

At its core, a neural network can be understood as a set of functions Fi(·)i ∈
{1, ..., N} each parameterized by zero or more optimizable parameters, which if
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present are denoted as weights Wi ∈ Rdi−1×di and biases bi ∈ Rdi−1×di , and non-
optimizable ones, the hyperparameters.
The ordering with which such functions are applied to the inputs X ∈ Rd0×d1

implicitly defines a composite function
F(·) = Fn ◦ Fn−1 ◦ ... ◦ F1(·)

which represents the network.
Hence the composite function Fθ, which depends on the parameter set θ =
{W1, ..., WN , b1, ..., bN}, maps inputs X to outputs Y as:

FW1,...,WN ,b1,...,bN
: Rd0 → Rdn

The objective of such complexly built non-linear composite function, is to approxi-
mate by means of its optimizable parameters, the mapping between inputs X and the
ground truths Y , which are sampled as M tuples (xm, ym)m ∈ {1, ..., n_samples}
from the non-directly observable data distribution P (X, Y ) .

The design of neural networks follows the common guiding principle to employ
one or more backbone feature extractors(the latter in the case of multi-modal
data or of an ensemble of models), to automatically learn relevant patterns from
the input data, and one or more task-specific branches which are attached in an
arbitrary manner to the backbone/s outputs.
In the setting of multi-task learning, it is common practice to define a common
backbone feature extractor which is tasked to automatically learn by backpropa-
gation the representations which are desirable for all the selected tasks, while the
task-specific network heads (also called branches) learn specialized representations
that are only useful on their own end.
In such case, the previously mentioned composite function representation of the
neural network can be updated to accomodate this general setting.
Let the following definition be given:

• θF be the learnable parameters of the backbone

• θGi
be the learnable parameters of the i-th task-specific branch

Furthermore let:
• F(·; θF) be the backbone model

• Gi(·; θGi
) i ∈ {1, ..., n_tasks} be the task-specific heads

The neural network outputs can be defined, with the associated dependencies
between computations:

Z = F(X; θF)
Yi = Gi(F(X; θF); θGi

)
i ∈ {1, ..., n_tasks}
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In which Z is the intermediate output of the shared backbone model, which is fed
to each of the Gi task-specific heads to generate the related predictions.

4.2 Backbone
As the backbone of the DA-PanopticFPN architecture is an FPN model, the latter
requires the definition of its own feature extractor which is employed to build its
main components: a bottom-up pathway and a top-down pathway.
The former is defined by a selection of the output feature maps generated by the
chosen FPN feature extractor. The top-down pathway instead is built according to
the way the bottom-up pathway is defined.

4.2.1 ResNet feature extractor
ResNet is a family of deep learning models of varying depth, which are designed
following the principles of the [residual learning] framework.
In this work, the ResNet50 variant has been employed, for which the suffix number
stands for the depth of the network, in terms of layers.
The layers which define the ResNet are grouped into 5 stages named conv1_x, conv2_x, conv3_x, conv4_x, conv5_x,
each of varying number of layers.
ResNets with varying network depth maintain the same stage-based structure, and
add more layers to each of the aforementioned stages to reach the desired depth.
Although such models are distinguished by their depth, their basic building blocks
are the bottlenecks, which are represented by groups of convolutional layers.
Each of the bottleneck blocks is implemented following the residual learning design
principles, of which the details are provided shortly.

The basic building block of the ResNet architecture residual learning is the
residual block.
It allows to shift the learning problem tackled by one or more subsets of inner
convolutional layers from approximating a generic function H(X) of its inputs X , to
the learning, by each convolutional layer, of a residual function F(X) = H(X)−X.
Such formulation reduces the complexity of the learning problem at each network
component which adopts the residual learning paradigm, as the function to be
learned F is now the residual mapping with respect to the layer’s inputs and not an
arbitrarily complex function. Thus the operation performed by the convolutional
layers becomes H(X) = F(X) + X[93]. Such modified function H represents the
operation which is computed in a residual block [93], with F representing the
residual function learned by one ore more layers in the residual block, while X is
the identity reference mapping which is summed to F . In practice, the residual
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block which represents H(X) = F(X) + X[93] is implemented as is seen in figure
4.1.

Figure 4.1: Residual function of a Resnet architecture, implemented as a neural
network computation graph [93]

Hence, the residual block implemented as the element-wise summation of the
identity mapping and a (convolution→ batch normalization → activation) repeated
twice becomes the base component of the ResNet architecture.
In practice to reduce computational complexity of the 50 to 200 layers deep ResNets,
the bottleneck module[93] shown in figure ?? has been designed.
As can be seen in figure 4.2, The fundamental difference between the residual
blocks and the bottleneck version, is on the use by the latter, of 1x1 convolutions
as a dimensionality reduction technique, to reduce the number of convolutional fil-
ters, before the 3x3 expensive convolutions are applied. The result is then rescaled
to the original dimension after the expensive operations have been computed,
by another downstream 1x1 convolution layer, attached before the element-wise
summation. Each of such convolution operations is always followed by batch
normalization and ReLU activation.
Each bottleneck follows the same structure, except the ones used at the start
of the conv2_x, conv3_x, conv4_x, conv5_x groups shown in the table 4.3that
displays the resnet architecture variations.
As each bottleneck is fundamentally composed by a set of convolutional layers
and a parallel identity mapping, these bottlenecks have to handle the increase in
dimensionality of such convolutional layers,in terms of number of channels of its
convolutional filters, by passing the identity mappings to a 1x1 convolutional layer
with stride of 2, followed by batch normalization in order to obtain matching tensor
dimensionalities for the following element-wise summation4.2.
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Figure 4.2: Side by side comparison of the residual learning block and its more
efficient Bottleneck version [93].

As such, the bottleneck design has been employed in the original paper by He
et al. [93], to build ResNet18,ResNet34,ResNet50,ResNet101 and ResNet152.

As the ResNet architectures are a fundamental building block of the overall
neural network architecture employed in this work, their structure is reported in
the table 4.3.
The subdivision of all bottleneck blocks within the ResNet in five groups of
operations, is shown in the table with their associated names: conv1, conv2_x,
conv3_x, conv4_x, conv5_x. As can be seen, depending on the network depth,
each of the groups contains a varying number of bottleneck blocks.

Figure 4.3: Side by side comparison of the bottleneck based resnet models:
ResNet18,ResNet34,ResNet50,ResNet101, ResNet152 [93].

73



4.2. BACKBONE

4.2.2 FPN
The FPN architecture is constituted by four main components: lateral connec-
tions, top-down connections, a bottom-up and a top-down pathway.
The bottom-up pathway consists of a backbone architecture such as ResNet,
ResNext or EfficientNet whose objective is the extraction of features from images,
without its final fully connected layer of the standard template model so as to
obtain a fully convolutional backbone.
Input images are forwarded in such model, as it is drawn, from the bottom which
represents the input layer, to the top, which represents the last layer of the network,
hence the naming of bottom-up pathway.
Of all feature maps generated a forward pass of the input images by the backbone
layers, a subset is selected to develop the rest of the FPN architecture. As is
cited in [107], a natural choice is to select the semantically strong output features
with the most different feature semantics and scales, so as to maintain the
largest variety of learned multi-scale features: from the high resolution
features near the input layers, to the coarse object-level features(located at the
deepest network layers).
As is common to employ ResNet backbones for FPN models, each of the drawn
levels of the bottom-up pathway, would represent in such case the network stage
output features of the conv3_x, conv4_x, conv5_x4.3, with the extension to addi-
tional stages being the straightforward repetition of the drawn model.
As mentioned above, such choice is convenient because each of these feature outputs
are separated by many convolutional layers, hence they provide the strongest feature
representation at each of the selected network stages, while also being uncorrelated
due to the distance that separates them, in terms of number of in-between layers.

As the output feature levels of the bottom-up pathway are defined, the top-
down pathway can be shaped based on the specifications of the FPN model.
Accordingly, to each of the selected output feature maps of the bottom-up pathway
e.g. conv3_x, conv4_x, conv5_x for a ResNet, it is associated a corresponding
merged feature map e.g. p3, p4, p5 respectively, in the top-down pathway.
In order to generate such merged maps, the FPN architecture utilizes:

• top-down connections: prepares the top-down input required to generate
the merged feature map pi, by upsampling the coarser merged feature map at
level pi+1 by a factor of 2. Then the result is convolved with 3x3 filters. The
output of the top-down connection operation is already set with the predefined
number of channels d = 256.

• lateral connections: 1x1 convolution to reduce channel dimension to a
common number of channels d = 256
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The use of lateral and top-down connections generates two tensor outputs of equal
shapes, that are element-wise summed to create the top-down merged feature
maps depicted in the right side of the FPN model shown in the figure ??. The
only exception is for the top-down feature map at the coarsest level e.g. p5 in
this example, which is the result of a single lateral connection starting at the
corresponding level conv5_x of the bottom-up pathway.
A further level in the top-down feature pyramid is p6, which is the result of stride
2 subsampling of the p5 top-down feature maps.

To summarize, FPN does not explicitly require a specific feature extractor e.g.
ResNet50,ResNet101, EfficientNet-B0.
Based on its backbone, a set of bottom-up feature maps that it generates are
selected and named as Cii ∈ {1, ..., N}.
Given the selected bottom-up feature maps, a corresponding number of top-down
merged features are generated with names Pii ∈ {1, ..., N}.
Based on the level i at which they are generated, they represent the semantically
richer version of the feature map of the bottom-up pathway at the same level i.
As an example, if the top-down feature map P2 is the merged feature map which
contains multi-scale rich semantics from P3 and C2, P2 represents a semantically
rich version of C2, which only captures high details semantics, without object-level
ones [91].

The standard FPN model imposes only two architectural constraints, based on
the chosen bottom-up feature maps :

• the merged feature maps generated at the i-th level of the top-down pathway,
of shape n_channelsi × Hi × Wi must all have the same number of channels,
while the spatial shape Hi × Wi are adjusted by in-model upsampling.

• the feature maps of the bottom-up pathway must be each downscaled by a
factor of 2 with respect to its preceding bottom-up level feature map.
Thus, if the selected bottom-up feature maps are {C2, C3, C4, C5}, the subscript
number indicates both the scale factor of the spatial shape Hi × Wi of the
feature maps at that level, respectively {1

4 , 1
8 , 1

16 , 1
32} of the input size, as well

as the level at which the bottom-up feature map is located in the bottom-up
feature hierarchy.
Hence, C4 are feature maps whose spatial shape is H

16 × W
16 , with respect to

the H × W input image
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4.3 Semantic segmentation head
As panoptic segmentation requires both instance and semantic segmentation, the
minimal design of the PanopticFPN architecture[65] implements the latter func-
tionality by designing a task-specific branch.
Their proposed design is implemented in the DA-PanopticFPN model exactly as
described in the original PanopticFPN architecture.
The neural network that represents the semantic segmentation branch is shown in
figure 4.4.

Figure 4.4: Semantic segmentation branch

Such branch takes in as inputs the top-down feature maps {P5, P4, P3, P2} (listed
in top-down order), and applies a block of operations to each, in order to obtain
feature maps of equal number of channels and same 1

4 spatial scale with respect to
the input shape.
This is done in order to compute the element-wise sum, which is then bilinearly
upsampled by a factor of 4 to obtain an output feature map n_categories×H ×W
that matches the original input spatial size H × W . Softmax is applied to such
output in order to obtain the pixel-wise classification of each element of the original
image.
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The basic block which connects the feature maps of the FPN top-down pathway
to the feature maps of the semantic segmentation branch consists of the following
operations applied in order: 3x3 convolution, group normalization[154] (the principle
is the same as batch normalization, but channels are separated as groups in order
to compute more robust statistics even with smaller batch size), ReLU, bilinear
upsampling by a factor of 2.
This block is applied repeatedly in the case of P5 and P4 in order to obtain at all
levels outputs of matching size. More specifically, in the case of P5 and P4, it is
repeated respectively three and two times.
Only one block is used for the outward connection of P3.
The outward connection from P2 is stripped of the 2× bilinear upsampling as it is
already of the desired spatial dimension.

4.4 Mask R-CNN head
The instance segmentation pipeline is implemented exactly as described in the
original Mask R-CNN[68] implementation, in the case of an FPN backbone.
The Mask-RCNN pipeline consists of four main stages, attached in series in the
provided order:

1. backbone feature extractor: the feature pyramid network in this case

2. region proposal network (RPN) module, whose objective is to generate object
proposals

3. ROI align module

4. parallel instance segmentation, bounding box regression and object classifica-
tion on each ROI provided by the ROI align module

In order to generate the bounding-box, object classification and instance mask
predictions, the Mask R-CNN architecture requires object proposals which are
generated by means of its RPN module.
Following this brief description, the RPN and the parallel branches of the Mask
R-CNN are described.

4.4.1 Region Proposal Network
As the Mask R-CNN operates in an end-to-end manner, the object proposal are
generated within the architecture, by means of the RPN module.
As the objective of the RPN is to propose possible bounding boxes, it achieves
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this end-to-end by employing the concept of anchors. Anchors are defined as
the set of location-independent bounding boxes obtained by computing all pos-
sible combinations of a chosen set of object_scales = {0.512} and aspect_ratios =
{32, 64, 128, 256, 512}, resulting in num_anchors = card(object_scales)×card(aspect_ratios)
anchors.
These are computed without any prior information on the content of the images,
resulting in the translation invariance property[112] of such anchors.
RPN associates such anchor set of all possible combinations of scales and aspect
ratios to each possible super-pixel of the feature maps which are fed as its input.
This implies that if a feature map is of size H×W , the RPN considers num_anchors×
H × W anchors.
All such anchors become localized with respect to their associated feature map
location.
As such, the RPN adopts two parallel branches for objectness score and box regres-
sion coordinates prediction, for each of such anchors.
The former predicts whether a region of interest contains a foreground object or
is background, while the latter predicts a 4-tuple whose elements represent the
bounding box in transformed coordinates, that allows to refine the coordinates of
the given anchor to those of its associated ground truth box: (tx, ty, tw, th)[105].
These values are defined as follows, with x, y defined as the box’s center coordinates
and w, h its width and height[106, 112]:

tx = (x − xa)
wa

ty = (y − ya)
ha

tw = log( w

wa

th = log( h

ha

)

The variables x, xa, x∗ follow the convention that defines them as predicted box
coordinate, anchor box coordinate and ground truth coordinate respectively. This
also holds for y, w, h.
By inverting the transformations, these regression targets are used to obtain the
bounding boxes in image coordinates.
. Hence, this also implies that anchors which become associated to spatial locations
in the feature map, can be tracked back to the input image.
Hence, with the above definitions, it can be noticed that the outputs of the RPN
are:

• the objectness score tensor of shape n_anchors×2 to represent the probability
of object/non object as binary classification
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• the bounding box regression tensor of shape n_anchors × 4, which allows the
translation of anchors to the predicted object location

Thus, the RPN can defined by:

1. a convolutional layer with filters of shape 3x3, stride 1 and padding 1. The
number of input channels is equal to the number of output channels, which is
set to 256

2. a objectness prediction branch, attached to 1). It consists of a convolutional
layer with 1x1 filters, stride 1, 0 padding. Its output is of shape n_anchors×2
for object/non-object classification.

3. a bounding-box regression branch, attached to 1). It consists of a convolutional
layer with 1x1 filters, stride 1, 0 padding. Its output is of shape n_anchors×4
for anchor to ground truth bounding box regression.

One final remark is necessary regarding the number of object proposals that are
generated by the RPN.
As it predicts object proposals for feature maps from all levels Pk ∈ {2, ..., 6} of
the top-down pathway of the FPN backbone, the number of proposals can become
exceedingly large e.g. for an input image of shape H = 768, W = 1152, the RPN
predicts 220968 proposals.
Thus, non-maximum suppression is used to filter out too small proposals, the
ones with low confidence scores or the ones with too high overlap. Each of these
boundaries can be manually tuned by pre-defined thresholds.

4.4.2 ROI align
As object proposal obtained by the RPN module entail a wide variety of scales and
aspect ratios, the ROI align layer allows to overcome such issues for the downstream
tensor computations.
It considers the object proposal bounding box shape (of variable spatial size
Hb × Wb), had been obtained by the RPN, to output a bilinearly interpolated
feature map of an a priori selected fixed spatial shape.
The interpolation is obtained from a feature map at the k-th level of the FPN
top-down pathway, whose scale matches the object proposal shape according to
the formula[107]:

k = floor(k0 + log2

√
Hb × Wb

224
In which k0 = 4[107].
As the FPN feature map selection is based on the architecture definition, the scales
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are known a priori.
As in this work the FPN output feature maps are {P2, P3, P4, P5, P6}, the respective
scales are known to be {1

4 , 1
8 , 1

16 , 1
32 , 1

64} of the original input shape.
Thus, ROI align can properly be employed to obtain fixed size feature maps
downstream of the varying size object proposals obtained by the RPN module.
In the DA-PanopticFPN, ROI align has been set to generate:

• 7 × 7 feature maps that are fed to the bounding box and object classification
branch

• 14 × 14 feature maps that are fed to the instance segmentation branch

4.4.3 Bounding Box regression and Object classification
branch

Apart for the novel instance segmentation branch and the ROI align layer, the
Mask R-CNN architecture adopts the same RPN, bounding box regression and
object classification branches as those of the Faster R-CNN model[112].
As such, the only variation consists in the fact that upstream to the two aforemen-
tioned branches there is a ROI align layer which generates output feature maps of
fixed spatial shape 256 × 7 × 7 from the variable size object proposals.
Hence, starting from such ROI align output feature maps, a subnetwork common
to the two branches receives as inputs those as flattened tensors, whose shape then
becomes 256 · 7 · 7 = 12544. It consists of:

1. linear layer 12544 × 1024, as input and output shape respectively

2. ReLU activation

3. linear layer 1024 × 1024, as input and output shape respectively

4. ReLU activation

The last layer activation outputs are then fed to the two parallel branches, which
are implemented as follows:

• classification layer, with input shape 1024 and output of size num_classes + 1
to account for the background category.

• bounding box proposal regression layer, with input shape is 1024 and the
output shape is n_classes · 4.
This is because to achieve the parallel branch design, a (tx, ty, tw, th)4-tuple
refinement of the coordinates of each proposal is predicted for the n_classes,
excluding the background one [106].
Then, only the one associated with the predicted class is considered.
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Furthermore, downstream to the bounding box detections, a non-maximum sup-
pression procedure is employed to filter out overlapping boxes, too small regions or
the ones for which objects have been predicted with low confidence score by the
classification branch.

On a final note, it is necessary to remark that although the RPN already
performs object/non-object classification and bounding box regression to obtain
object proposals, these two layers are required in order to refine such proposals
with respect to the predicted object classes, as the RPN proposal represent only
rough estimates of the object locations.
The two-stage implementation of the object detector allows it to obtain remarkable
detection performance, although at the cost of more computational resources.
One-stage detectors[45] avoid such complexity but partially sacrifice quality of the
detections. However, implementation of the latter is out of the scope of this work.

4.4.4 Instance segmentation branch
The instance segmentation branch follows the design proposed in Mask R-CNN.
Downstream to the ROI align which outputs in this case fixed shape 256 × 14 × 14
feature maps, the branch is implemented with:

1. 4 blocks attached in series, each implemented by means of a convolutional
layer with kernels of shape 3 × 3, in_channels = 256, out_channels = 256,
with stride 1 and padding 1 (in order to maintain the same spatial shape
across the 4 blocks), followed by a ReLU activation

2. Transposed convolution, with in_channels = 256, out_channels = 256,
filters of shape 2 × 2 and stride 2

3. ReLU activation

4. convolutional layer with in_channels = 256, out_channels = n_classes,
filters of shape 1×1 as a means to reduce the channel dimension to the desired
number of classes.

It is necessary to note that the mask predictions are generated without competition
among the classes e.g. given the input feature maps associated with an input
sample to the network, n_classes masks are generated.
Then, the mask associated with the predicted class for the given ROI is selected as
final prediction of the instance segmentation branch.
The output mask predictions are each of spatial shape 28 × 28. At inference time,
these are resized to the shape of the associated bounding box prediction obtained
from the parallel bounding box regression branch.
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4.5 Domain Adaptation branches

4.5.1 Adversarial Self-supervised Domain Adaptation

The work of [140] is the first to introduce the adversarial methods to tackle the
problem of domain shift between source and target samples. It is based on the
assumption that at training time a large amount of unlabeled target data is available.
The adversarial pretext task consists in a discriminator trained to predict whether
the feature representation produced by the feature extractor is associated with a
source or a target example. To this end, they introduce a label called domain label.
When a point has been sampled from the source distribution di = 0, otherwise
di = 1 when it has been sampled from the target distribution.
When a sample x is fed to the deep architecture, depicted in Figure 4.5, the feature
extractor network produces a lower-dimensional embedding f = Gf(x, θf). Then,
the resulting embedding is sent simultaneously to two tasks: the main classification
task Gy(·, θy), which predicts the class of the input element, and the domain
adversarial pretext task Gd(·, θd), which determines whether the sample belongs to
the source or target domain.
The objective to minimize is composed by the contribution of both tasks, which
are trained at the same time, ensuring that the learned features f retain their
discriminative potential useful for the classification task, while being domain
invariant. In other words, we want the distributions S(f = {Gf (x, θf )|x ∼ S(x)})
and T (f = {Gf (x, θf )|x ∼ T (x)}) to be as similar as possible.

Figure 4.5: Self-supervised adversarial domain adaptation through gradient
reversal. Credits: [140]

More formally, the authors define the optimization model starting from the
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following functional:
E(θf , θy, θd) =

Ø
i∈{1,..N}di=0

Ly(Gy(Gf (xi, θf )); yi) − λ
Ø

i∈{1,..N}
Ld(Gd(Gf (xi, θf )); di)

(4.1)
where Ly is the loss for class label prediction, Ld is the loss for domain label

prediction,i ∈ {1, ..., n_samples}, yi is the class label ground truth and di is the
domain label of the i-th sample. This allows to define the following minimization
problem

(θ̂y, θ̂f ) = arg min
θy ,θf

E(θf , θy, θ̂d) (4.2)

θ̂d = arg max
θd

E(θ̂y, θ̂f , θd) (4.3)

At the saddle point resulting from the solution of this optimization problem,
the parameters θy minimize the loss of the classifier, whereas the parameters θd

minimize the loss of the domain discriminator.
Interestingly, the parameters θf minimize the loss of the classifier, while maximizing
the loss of the discriminator[140].
The modifiable hyperparameter λ balances the effect of the two tasks during the
learning of the parameters.

4.5.2 Gradient Reversal Layer
The fundamental component that is implemented in Ganin’s self-supervised adver-
sarial domain adaption framework is the gradient reversal layer.
The deep model which is defined in [140] is set in a multi-task learning context,
in which one task is the main classification problem, while the other is the self-
supervised domain classification which enables its proposed domain adaptation
framework.
Both branches are attached to a common backbone feature extractor.
In practice, the gradient reversal layer is represented by a pseudo function, which
is defined by two incompatible equations: one for the forward pass and the other
for the backpropagation.

1)Rλ(x) = x

2)∂Rλ(x)
∂x

= −λI

Following such formulation, the optimization objective becomes:
E(θf , θy, θd) =

Ø
i∈{1,..N},di=0

Ly(Gy(Gf (xi, θf ); θy); yi)+
Ø

i∈{1,..N}
Ld(Gd(Rλ(Gf (xi, θf )); θd); di)
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4.5.3 Gradient Reversal training schedule

Although λ has been presented as a fixed hyperparameter, the authors of [140]
propose an update schedule which gradually modifies the value of λ from 0 to 1
during training, in order to suppress the noisy signal that is caused by the reversed
gradients at the early stages of training.
Defining p = curr_iter

max_iter
as the fraction of training iterations that have been completed

since the start of the optimization of the network parameters, the λ update schedule
proposed in [140] is as follows:

λp = 2
1 + exp(−γ · p) − 1

4.6 DA-PanopticFPN model implementation

As all components of the DA-PanopticFPN architecture have been presented, the
architecture implementation can be described in detail.

The built model consists of an FPN backbone, which utilizes as bottom-up
embeddings the feature map outputs of the {conv2, conv3, conv4, conv5} ResNet50
stages, here named respectively as {C2, C3, C4, C5}. From these, the top-down path-
way composed of {P2, P3, P4, P5, P6} is built by utilizing the mentioned ResNet50
embeddings. P6 is only utilized by the RPN module to generate object proposals
at the largest possible scale, but is not considered for any other task.
For all levels {P2, P3, P4, P5, P6}, the number of channels is n_channels = 256, in
order to render all components compatible.

The Mask-RCNN instance segmentation, bounding box regression and classifi-
cation branches are employed as a means to output instance mask predictions.
It predicts in parallel instance masks, bounding boxes and the respective
object classes by employing object proposals generated by the RPN from the
FPN top-down levels {P2, P3, P4, P5}
It is set up so as to predict n_thing_classes = 2, which is the number of things
categories that are considered in the developed synthetic-to-real dataset: pedestrian
and car.

The semantic segmentation branch is described in Figure 4.6.
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Figure 4.6: Semantic segmentation branch

It utilizes {P2, P3, P4, P5} as inputs and predicts the output semantic segmen-
tation mask by means of a merged feature representation. It segments the input
image into n_stuff_classes = 11 + 1, which is the number of stuff categories that
are considered in the developed synthetic-to-real dataset: road, sidewalk,building,
wall, fence, pole, traffic light, traffic sign, vegetation, terrain, sky.
The additional category is used as in [65] to group all entities that are instead
considered as things, and are predicted by the Mask R-CNN branch.

The domain adaptive component is the main object of study, within the
PanopticFPN architecture.
As its FPN backbone contains the embeddings {C2, C3, C4, C5} of the ResNet50 in
the bottom-up pathway, from low to high level semantics[91] and the ones of the
top-down pathway {P2, P3, P4, P5, P6}, rich in semantics at all levels it becomes
unclear to which of these the domain classifier proposed by the authors of [140]
should be attached to.
The issue becomes even more relevant if one considers that the Mask R-CNN and
the semantic segmentation branch operate with multiple embeddings instead of a
single intermediate representation output of shared backbone as in [140]
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Hence, the main research question which is addressed here regards the optimal
placement of one or more domain classifiers, with the objective to achieve the
highest possible panoptic quality metric[20].
The only work which explored domain adaptation in the context of multi-task
architectures that operate with multi level embeddings is the domain adaptive
RetinaNet of[155], implemented for domain adaptation for the detection and classi-
fication setting.
The authors show that attaching three different adversarial self-supervised domain
classifiers to the {C3, C4, C5} levels of the ResNet101 stages yields notable results.
Hence, their proposed implementation for {C3, C4, C5} has been implemented, with
a simpler variation attached to C2.
A custom implementation has instead been developed for the {P2, P3, P4, P5, P6}
embeddings.
The entire architecture is shown in Figure 4.7. The domain classifiers are named
for brevity DA x, with the suffix which indicates to which of the FPN embeddings
it is attached to.
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Figure 4.7: DA PanopticFPN architecture

The panoptic mask prediction can be computed by combining instance and
semantic segmentation mask predictions.
To achieve this, predicted instances are sorted by decreasing confidence score,
removing those under a defined threshold inst_score_thresh = 0.5. Then, based
on such sorting, instance masks are copied into the final panoptic mask prediction.
If one of the lower confidence score instance masks has an intersection over union
(IoU) overlap ≥ 0.5 with the preliminary panoptic mask to which higher confidence
scored instance have been added, it is removed.
As the overlaps are resolved, instances fill the final panoptic prediction mask.
The remaining regions are filled with the semantic segmentation predictions, unless
the area covered by any of the semantic segments covers a free area of the final
panoptic mask lower than a specified threshold stuff_area_threshold = 4096 .
Thus, the panoptic prediction is computed externally to the model, as a post-
processing step indicated in Figure 4.7 by the green block.
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4.6.1 Domain classifier implementation
The domain classifier associated with C2 is built as follows:

1. gradient reversal layer

2. convolutional layer n_in_channels = 256, n_out_channels = 256, filters
1 × 1

3. ReLU
item convolutional layer n_in_channels = 256, n_out_channels = 128,
filters 1 × 1

4. ReLU

5. adapative average pooling, output spatial shape 1 × 1

6. convolutional layer n_in_channels = 128, n_out_channels = 1, filters 1x1

The domain classifier associated with C3 is built as follows:

1. gradient reversal layer

2. convolutional layer n_in_channels = 512, n_out_channels = 512, filters
1 × 1

3. ReLU
item convolutional layer n_in_channels = 512, n_out_channels = 256,
filters 1 × 1

4. ReLU

5. adapative average pooling, output spatial shape 1 × 1

6. convolutional layer n_in_channels = 256, n_out_channels = 1, filters 1x1

The domain classifier associated with C4 is built as follows:

1. gradient reversal layer

2. convolutional layer n_in_channels = 1024, n_out_channels = 512, filters
3 × 3, stride= 2

3. Batch normalization

4. ReLU

5. convolutional layer n_in_channels = 512, n_out_channels = 128, filters
3 × 3, stride= 2
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6. Batch normalization

7. ReLU

8. Dropout with probability p = 0.5

9. convolutional layer n_in_channels = 128, n_out_channels = 128, filters
3 × 3, stride= 2

10. Batch normalization

11. ReLU

12. Dropout with probability p = 0.5

13. adapative average pooling, output spatial shape 1 × 1

14. Linear n_in_channels = 128, n_out_channels = 1

The domain classifier associated with C5 is built as follows:

1. gradient reversal layer

2. convolutional layer n_in_channels = 2048, n_out_channels = 1024, filters
3 × 3, stride= 2

3. Batch normalization

4. ReLU

5. Dropout with probability p = 0.5

6. convolutional layer n_in_channels = 1024, n_out_channels = 256, filters
3 × 3, stride= 2

7. Batch normalization

8. ReLU

9. Dropout with probability p = 0.5

10. convolutional layer n_in_channels = 256, n_out_channels = 256, filters
3 × 3, stride= 2

11. Batch normalization

12. ReLU

13. Dropout with probability p = 0.5
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14. adapative average pooling, output spatial shape 1 × 1

15. Linear n_in_channels = 256, n_out_channels = 128

16. Batch Normalization

17. ReLU

18. Dropout with probability p = 0.5

19. Linear n_in_channels = 128, n_out_channels = 1

The domain classifier associated with {P2, P3, P4, P5, P6} is built as follows:

1. gradient reversal layer

2. convolutional layer n_in_channels = 256, n_out_channels = 128, filters
1 × 1, stride= 2

3. Batch normalization

4. ReLU

5. Dropout with probability p = 0.5

6. convolutional layer n_in_channels = 128, n_out_channels = 64, filters
1 × 1, stride= 2

7. Batch normalization

8. ReLU

9. Dropout with probability p = 0.5

10. adapative average pooling, output spatial shape 1 × 1

11. Linear n_in_channels = 64, n_out_channels = 128

12. Batch normalization

13. ReLU

14. Dropout with probability p = 0.5

15. Linear n_in_channels = 128, n_out_channels = 1
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4.7 Optimization of the model parameters

4.7.1 Introduction
As the DA-PanopticFPN architecture is defined, its computation graph and pa-
rameter dependencies are fixed.
Hence, it is possible to jointly optimize the network parameters according to the
multiple task which have been assigned to the network.
This is referred to as the process of training the network.
By default the weights are arbitrarily initialized, but in order to best fit the ob-
jective of the optimization, (e.g. instance or semantic segmentation of the scene,
bounding box regression and so on) an error signal is defined with respect to the
network predictions and the ground truths, both associated to the selected input
data.
As the error function computed between predicted and desired outputs, for the
given inputs, it allows to determine the approximate way to modify the parameters
of the network so as to obtain predictions which closely match the ground truths.
Such framework is formally defined as the minimization of a loss function, which
allows to measure the aforementioned error, based on the task which is objective of
the optimization.
In the general setting, such optimization problem can be written as[156]:

min
θ

F (θ) = 1
N

NØ
i=1

L(yi, fθ(xi))

In which:

• θ is the set (or a subset) of the optimizable neural network parameters

• fθ(·) is the parameterized composite function which represents the neural
network

• (xi, yi) represents the data and the ground truth label of the i-th sample

• L is the loss function applied to the ground truth and the prediction for the
i − th sample

In practice, the minimization happens at sequential steps that allow progressive
minimization of the objective, by means of estimates of the theoretical loss.
Such estimates, are computed over subsets of the whole dataset, named batches.
Each batch is used to compute estimates of the loss at each step of the optimization.
By computing the gradients of such estimate with respect to the network parameters,
it is possible to optimize each according the the locally optimal minimization step.
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This amounts to the modification of the parameters at the i-th step of P maximum
iterates, based on the computed direction of descent, over the batch of samples:

θi+1 = θi − αi∇θF (θ)

Here, the gradient is rescaled by the learning rate αi, which is generally dependent
on the iterate at which the gradient is computed.
Although described in brief this is the general procedure followed by batch stochastic
gradient descent(SGD)[157], which allows to progressively optimize the parameters
of arbitrary functions.
It is a general optimization technique applicable to a broad class of optimization
problems, not just neural networks.
There exist more variants of the method which account also for the trajectory
followed by subsequent gradients such as ADAM [158] or SGD with momentum[159],
thus allowing for faster rates of convergence.

4.7.2 Semantic Segmentation loss
The semantic segmentation branch outputs a tensor of predictionsp of shape
n_stuff_classes × H × W , in which n_stuff_classes = 12, and H × W is the
spatial shape of the input image.
This is done for each image in the input batch of size N .
As such, for each pixel location i, j a vector vi,j of n_stuff_classes logits is
predicted and normalized to become a vector of probabilities by means of the
softmax function.

softmax(vi,j) = expvi,jqn_stuff_classes
k=1 exppk,i,j

Hence, semantic segmentation is treated as a pixel-wise classification problem.
Given the one hot encoded ground truth pixel-wise classes yi,j of each input image
in the training batch, the DA-PanopticFPN parameters are optimized by means of
the following multi class cross-entropy loss:

Lsem_seg = − 1
N · H · W

Ø
b∈{1,...,N}

Ø
i∈{1,...,H}
j∈{1,...,W }

Ø
k∈{1,...,n_stuff_classes}

yb
k,i,j log(pb

k,i,j)

Due to the fact that a class is predicted for each location of the image plane H ×W ,
for all N images in the training a batch, the loss is normalized by the constant
N · H · W as a means to obtain an estimate of the average classification loss.
It can also be noted, that in the practical implementation the batched images can
be of different heights and width.
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However, in order to work with fixed shape tensors within the same batch, the
images are resized to a common H ×W shape. This is also applied to their semantic
segmentation mask.

4.7.3 Mask R-CNN loss
The Mask R-CNN branch involves three parallel tasks: instance segmentation,
object proposal classification, bounding box regression from the object proposals
to the ground truth boxes .
As training of each the subnetworks which implement the aforementioned tasks
requires a common set of ROIs obtained upstream by the RPN module, a batch of
a fixed number of ROIs by subsampling the set of proposals.
Considering a batch of N = 4 input images, Rm = 512 ROIs are sampled from
each image, yielding a total of Nm_ROIs = Rm · N = 2048.
These are sampled so as to keep a proportion of 1:4 foreground to background
ROIs.
If the proportions are maintained, Nforeground_ROIs ≈ Nm_ROIs

4 .
As for Fast R-CNN [106], a ROI is considered positive if its IoU with a ground
truth is greater than 0.5 and negative if 0.1 ≤ IoU ≤ 0.5 otherwise.
The instance segmentation and bounding box regression losses are defined only
on positive ROIs, e.g. the respective loss is set to 0 if the ROI is negative.
As a result, as in [68], the mask and bounding box targets are defined by the
intersection between an RoI and its associated ground-truth mask/box respectively.
Furthermore, the instance and bounding box regression losses are only considered
for the predicted object class, while all others are not accounted for.
Let:

• n_things_classes = 2 + 1 be the number of considered thing classes plus an
additional background category

• pi be the i-th ROI n_things_classes = 2 + 1 vector of class predictions

• yi be the i-th ROI n_things_classes = 2 + 1 vector which represents the
one hot encoded ground truth class (i.e. if the ground truth class is the k-th
yi,k = 1, while all other positions are equal to 0 )

• ti be the 4-tuple ti = (tx, ty, tw, th)i (parameterized version of x,y, width
and height[106]) that represents the predicted bounding box in transformed
coordinates.

• t∗
i be the 4-tuple t∗

i = (t∗
x, t∗

y, t∗
w, t∗

h)i (parameterized version of x,y, width
and height[106]) that represents the cropped ground truth bounding box in
transformed coordinates.
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• Mi be the i-th ROI n_thing_classes×28×28 mask prediction of the instance
segmentation branch.
As each 28 × 28 plane represents a mask of logits, sigmoid is applied separately
to each plane, in order to obtain at each spatial location the probability that
it is a foreground or background pixel.
A 28 × 28 mask is predicted for each class, but only the one at the index of
the ground truth category is considered during training.
At inference time instead, the class prediction of the parallel classification
branch is considered for selection of the respective mask.

• M
ygt

i be the i-th ROI 28 × 28 mask prediction obtained by selecting from
Mi the spatial plane associated with the ground truth label index ygt =
argmaxk∈{1,...,n_thing_classesyi

• M∗
i be the i-th ROI 28 × 28 cropped mask ground truth target obtained as

described above, resized to the ×28 × 28 shape of the prediction.
Each pixel of the grid is either 1 if it belongs to the foreground object, or 0 if
it is associated with the background.

Thus, each of the Mask R-CNN task-specific heads (and the FPN backbone) is
optimized by means of the following joint optimization objective:

Lm = 1
Nm_ROIs

Lm_reg + 1
Nm_ROIs

Lm_cls + 1
Nforeground_ROIs

Lm_mask

Lm_mask = − 1
Hmask · Wmask

Ø
i∈{1,...,N}

Ø
j∈{1,...,Hmask}
k∈{1,...,Wmask}

(M∗
i,j,k log(Mygt

i,j,k)+

(1 − M∗
i,j,k) log(1 − M

ygt

i,j,k))
Lm_cls = −

Ø
i∈{1,...,N}

Ø
k∈{1,...,n_thing_classes}

yi,k log(pi,k)

Lm_reg =
Ø

i∈{1,...,N}

Ø
j∈x,y,w,h

1 [yi ≥ 1] smoothL1(tj
i − tj∗

i )

smoothL1(x) =
0.5x2 if |x| ≤ 1

|x| − 0.5 otherwise

The contribution of the i-th ROI to the bounding box regression loss Lm_reg is only
considered if the ground truth class label of the i-th ROI is not the background
class(which is represented by class label = 0).
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4.7.4 RPN loss
In order to perform object/non-object classification and box regression of the
anchors with respect to a target bounding box, the respective ground truths have
to be defined.
The procedure that is employed to define the ground truth targets for the RPN is
described in [112].
The set of location independent anchors is defined by considering a set of anchor
aspect ratios and scales.All combinations of aspect ratios and scales are considered
to generate the set of available anchors i.e. scales = {32, 64, 128, 256, 512}, aspect
ratios = {0.5, 1, 2}, thus n_anchors = card(scales) · (aspect_ratios).
Such set is then associated to all possible spatial locations of the feature maps that
are fed to the RPN module.
In practice, if multi-level feature maps are input to the RPN, as is in the case of
the FPN backbone, each scale is associated with the respective level of the FPN
top-down pathway embeddings e.g. scale= 32 is associated with P2, scale= 64 with
P3 and so on. Multiple aspect ratios are instead kept at all scales
As this yields a large number of ROIs, biased towards background ones[112], these
are subsampled so as to obtain a fixed number of ROIs RRP N from each image in
a batch of input samples of size N . Hence, in this work the number of sampled
ROIs that are batched together as inputs to the RPN is NRP N_ROIs = RRP N ∗ N .
As a batch of ROIs is defined, the ground truth labels associated with each of the
anchors considered by the RPN.
Given an anchor, it is associated with an object(positive label) if:

• it is the anchor with the highest Intersection-overUnion (IoU) overlap with a
ground-truth box

• it is an anchor that has an IoU overlap higher than Acceptance_IoU_threshold =
0.7 with any ground-truth box

Non-positive anchors are associated with the negative category(background) if their
intersection-over-union with all ground truth boxes is less than a defined threshold
e.g. Negative_IoU_threshold = 0.3. All other anchors are instead discarded.
As such matching is completed, the RPN regression target is automatically defined
for each positive anchor by the associated ground truth bounding box coordinates.
It is fundamental to note that a batch of ROIs is obtained by subsampling the set
of all possible anchors associated to all possible locations of the feature maps which
are fed to the RPN module.
As the sampling procedure defined in [106] is used to train the RPN as described
in [112],

Hence the RPN loss is defined with the form shown in[112], with adjusted
normalization constants :
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LRP N = 1
NRP N_ROIs

Ø
i∈{1,...,N}

Lcls(pi, p∗
i )

+ 1
NRP N_ROIs

Ø
i∈{1,...,N}

p∗
i Lreg(ti, t∗

i )

Lcls(pi, p∗
i ) = −(p∗

i log(pi) + (1 − p∗
i ) log(1 − pi))

Lreg(ti, t∗
i ) =

Ø
j∈x,y,w,h

smoothL1(tj
i − tj

i
∗)

smoothL1(x) =
0.5x2 if |x| ≤ 1

|x| − 0.5 otherwise

In which:

• i is the index of an anchor in a batch of training samples

• pi is the predicted objectness probability for anchor i

• p∗
i is the ground truth object/not-object label, respectively encoded as 1 and 0

• ti is a 4-tuple ti = (tx, ty, tw, th)i representing the predicted bounding box
proposal transformed coordinates, respectively associated to the parameterized
x,y, width and height[106].

• t∗
i is a 4-tuple t∗

i = (t∗
x, t∗

y, t∗
w, t∗

h)i representing the ground truth bounding box
in transformed coordinates[106].

• Lcls is the negative log loss which penalizes wrongly predicted object/non-
object anchors.

• Lreg is the bounding box regression loss from anchor box coordinates to ground
truth box coordinates. It is only activated for samples whose ground truth
label is positive e.g. anchors which enclose objects

• NRP N_ROIs is the normalization factor which accounts for the number of
sampled ROIs RRP N from each image of given input batch of image samples
of size N .

4.7.5 Domain classifiers loss
As the domain classifier performs a self-supervised classification task, the ground
truth label is created by considering whether each sample originates from the
source(synthetic) or the target(real world) dataset.
Hence it can be represented by a binary classification problem in which, given a
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batch of N = Nsource + Ntarget and Nsource = Ntarget samples, the source and target
domain samples i ∈ {1, ..., N} become associated with a domain label ground truth
d∗

i = 0 and d∗
i = 1, respectively.

Setting di,j as the predicted probability output for the i-th sample, generated
by the j-th j ∈ {C2, C3, C4, C5, P2, P3, P4, P5, P6} domain classifier, the optimized
objective function can be described.
For the j-th domain classifier which is attached one of {C2, C3, C4, C5, P2, P3, P4, P5, P6},
the following binary classification log loss is defined, following the Focal loss vari-
ant[160]:

Lj
dom = −α

Ø
i{1,...,N}

(d∗
i,j(1 − di,j)γ log(di,j)+

(1 − d∗
i,j)(di,j)γ log(1 − di,j))

In which γ = 2 and α = 0.25 are hyper-parameters of the focal loss, while λj is
the coefficient that allows to balance the weight of the j-th domain classifier loss.
As the neural network is defined, the weight coefficient λj of the j-th domain classi-
fier described by the authors of the self-supervised adversarial domain adaptation
[140] is not inherently visible in the loss.
This is because it downweights only the sign reversed gradients, computed with
respect to the preceding layers parameters.
The domain classifier is optimized without downweighting the gradients with respect
to its own parameters.
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4.7.6 Joint loss
With the defined partial contributions to the overall loss function, the optimization
objective is defined as follows:

L = λi (Lm_mask + Lm_reg + Lm_cls) +
λsLsem_seg+
LRP N+Ø
j∈{C2,C3,C4,C5
P2,P3,P4,P5,P6}

1 [λj > 0] Lj
dom

The λi = 1.0 weighs the instance segmentation, bounding box regression and
box classification losses as described in [65].
λs = 0.5 weighs the semantic segmentation loss within the overall objective.
This is the training protocol described by [65] for training the standard Panop-
ticFPN model, as the losses should provide contributions of similar magnitude in
order for each to not overwhelm the overall computation of the objective.
The contribution of each domain classifier to the loss is only considered if its
respective gradient reversal coefficient λj is greater than 0.
RPN is trained jointly with the network by employing the joint approximate train-
ing mentioned by the authors of Faster R-CNN [112].
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Chapter 5

Experiments

5.1 Experimental context

As the DA-PanopticFPN architecture has been defined, the context of the experi-
ments can be presented.
In this work the objective is to attain an high performance panoptic segmentation
model, in terms panoptic quality metric, which generates high quality panoptic
mask predictions in a real world scene understanding context, while being trained
on labeled synthetic driving images and unlabeled real world scenes.
The reasoning behind the design of such framework stems from the notable disparity
in effort required to label real world data compared to the easily attainable synthetic
version[62][49]. Simulated data comes by-design with the desired labels[6]and can
be generated at a massive scale by means of parallel simulation. Hence no human
effort is required.
However, there is a clear tradeoff between the use of synthetic and real data.
While the former is easily attainable, it originates from a different data distribution
with respect to real world data.
The disparity between the appearance of simulated and real world data is known as
domain shift and it hinders the capabilities of models trained purely on synthetic
data to generalize on real world scenarios.
Nevertheless, domain adaptation techniques have been developed to mitigate the
discrepancy that exists between the synthetic and real domain distributions.

To this end, these experiments have been designed with the objective to find
the optimal domain adaptation setup in order to improve panoptic segmentation
models.
The selection of possible domain adaptation techniques has been narrowed down
to the renowned self-supervised adversarial learning framework proposed by Ganin
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et al. [140], due to the remarkable improvements attained by the technique on
domain adaptation for classification models.
As their techniques requires modifications in order to be adapted to the Panop-
ticFPN architecture[65],these experiments explore the optimal attachment of one
ore more of the domain classifiers proposed by the authors, to the components of
the model developed in this dissertation.
More specifically, a total of 9 domain classifiers have been developed and attached
to the PanopticFPN backbone embeddings {C2, C3, C4, C5P2, P3, P4, P5, P6} , one
for each possible output.

In order to assess the performance of each of the domain adaptive models, a set
of PanopticFPN baselines has been built.
One trained solely on synthetic data and tested on the Cityscapes and bdd100k
datasets, required to assess the improvement of each of the domain adaptive models
with respect to one that does not have access to real world data.
Two more baselines trained and tested on the real world labels of Cityscapes and
bdd100k, in order to assess the maximal possible margin of improvement that is
still attainable by completely removing the domain shift between synthetic and
real data.
As is mentioned, neither of the baselines employ domain adaptation.

5.2 Metrics: panoptic quality PQ
The context of the panoptic segmentation task requires the joint evaluation of
the predictions of thing and stuff classes. Hence, as proposed in [19] the panoptic
quality metric(abbreviated as PQ) provides the means to perform such simulta-
neous assessment, while also accounting for the required interdependence of the
predictions.
Before presenting the metric, it is necessary to note that in the context of panoptic
segmentation each ground truth is represented by a set of segments, each of which
represent the uncountable stuff or the thing instances, the predictions are generated
following the same format.
Hence, the per class panoptic quality metric is computed following a two step
procedure:

1. matching of predicted p and ground truthg segments.

2. panoptic quality computation, given the found matches.

For each class, the matching procedure splits the found matches into three sets:
true positives TP(all matched pairs), false positives (all unmatched predicted
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segments), false negatives FN (all unmatched ground truths). True negatives are
undefined, as unclassified background pixels, which are marked with a special value
both in the prediction or in the ground truth, are considered or penalized (in case
of wrong prediction) in the computation of the metric.
As a result, the per class panoptic quality PQ can be computed as:

PQ =
q

(p,g)∈T P IoU(p, g)
|TP | + 1

2 |FP | + 1
2 |FN |

Then, the overall panoptic quality is computed as the average of all per class
PQ metrics. This renders PQ insensitive to class imbalances[19].

In the above formula, IoU(p, g) is the intersection over union of a given matched
true positive pair of predicted and ground truth binary masks:

IoU(p, g) = |p ∩ g|
|p ∪ g|

In any given binary mask, each pixel associated with an entity of interest of the
considered class(regardless of things or stuff), is associated with the value 1, while
everything else is set to 0.
The terms |p∩g| and |p∪g| respectively represent the cardinality of the intersection
and union set obtained from the marked white pixels in the predicted p and ground
truth masks g.

5.2.1 Segmentation quality SQ and recognition quality RQ
As seen in [19], panoptic quality can provide further insights on the quality of the
model by reformulating the PQ formula by means of multiplication and division by
the number of true positives TP .

PQ =
q

(p,g)∈T P IoU(p, g)
|TP |ü ûú ý

segmentation quality SQ

× |TP |
|TP | + 1

2 |FP | + 1
2 |FN |ü ûú ý

recognition quality RQ

This way, the panoptic quality can provide further insights on the quality of the
segmentations(SQ) and its simultaneous capability to detect with a given level
of accuracy the entities in the scene(RQ). The former can be interpreted as the
average IoU of the matched segments, while the latter is exactly the f1-score

5.3 Experiment design
In order to assess the impact that one or a combination of domain classifiers[140]
have on the improvement of the domain adaptive PanopticFPN model, a common
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hyperparameter setup, described in the Model design chapter, has been imple-
mented for all trained model configurations.

Starting from this common setup, three baseline models have been defined,
with the provided names:

1. domain adaptation baseline: a baseline model trained solely on the built
labeled synthetic dataset and tested on panoptic Cityscapes and BDD100k.

2. target cityscapes baseline: a baseline model trained with label supervision
on the Cityscapes training set and tested on the Cityscapes and BDD100k
validation sets(no domain adaptation).

3. target bdd100k baseline: a baseline model trained with label supervision
on the BDD100k training set and tested on the Cityscapes and BDD100k
validation sets(no domain adaptation).

Baseline 1) is the most important one, as it serves as a reference configuration
to assess the impact that the adversarial self-supervised domain classification task
has on improving the panoptic quality metric associated to each of the considered
domain classifier configurations.
Baseline 2) and 3) are instead necessary to understand to which degree the
domain shift has been mitigated by the domain adaptive model configurations.
As 2) and 3) are trained with supervision on the target domain(real world) datasets,
they allow to measure the maximal possible panoptic quality that could
theoretically be attained by a domain adaptive model, under the circumstance that
the latter completely learns the optimal mapping that allows to remove the domain
shift between synthetic and real data.
This holds due to the fact that no other hidden effect would theoretically be limiting
the capabilities of the baseline 1) from reaching those of baseline 2) and 3).
Of course, in practice improving the synthetic dataset by adding a greater degree
of realism(thus requiring a newer graphic engine) or by hard example mining on
the synthetic data might possibly allow to further reduce the domain gap, but this
is left for further work.

With the defined baseline models, it is possible to define the domain adaptive
classifier configurations objective of the experiment.
Each of such setups is considered as modifications to the template PanopticFPN
model, thus each defines a variant of the Domain-Adaptive PanopticFPN.
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For each of the domain classifier i ∈ S = {C2, C3, C4, C5, P2, P3, P4, P5, P6}, two
possible states are defined:

• λi = 0: no gradient is backpropagated to the layers that precede the i-th
gradient reversal layer of the i-th domain classifier.
Thus it does not influence the model parameter optimization and can be
considered detached from the model

• λi ≥ 0: gradients are backpropagated to the layers that precede the i-th
gradient reversal layer of the i-th domain classifier, and are reversed and
rescaled by the λi coefficient.
In this case, the domain classifier is defined as attached to the model

As such setup would yield 2cardinality(S) = 512 possible configurations, with a
necessary training time with the defined setup of ≈ 2 hours per configuration,
training all such configurations would require ≈ 42 days to reach completion.
Hence to reduce the complexity and test in an heuristic manner also possibly more
effective configurations, a subset of all such possible combinations is considered.
Domain adaptation is performed separately on the configurations that can be
generated by the subsets of S:

• C = {C2, C3, C4, C5}, with 2cardinality(C) = 16 combinations

• P = {P2, P3, P4, P5, P6}, with 2cardinality(S) = 32 combinations

The reasoning is behind such choice is, besides the reduction in complexity, to
apply domain adaptation separately to the embeddings of the bottom-up(the set
C) and top-down(the set P ) pathway of the FPN backbone architecture.
Thus 48 configurations are possible by defining the possible values of λi ∈ {0,0.5{.
It is necessary to note that λi = 0.5 is set to be the maximal reachable value by
the λi with the per-training iterate update schedule proposed in [140].
λi = 0.5 is chosen due to the fact the reversed gradients even in such configuration
can make the training diverge, due to the fact that the PanopticFPN models entails
a greater number of tasks, (hence an higher total loss if one considers also the
multiple domain classifiers of the DA-PanopticFPN) compared to the classification
and self-supervised classification tasks shown by the authors of the adversarial self
supervised domain adaptation paper [140].
For such reasons, in the performed experiments the λi of each attached classifiers
is reduced by a factor which depends on the cardinality |CFG| of the subset
named CFG of attached classifiers, as with preliminary experiments on the subset
λi ∈ {0,0.5{ showed the divergence of some configurations in the case of too many
attached domain classifiers.
Such preliminary configurations, including the divergent ones, are also considered
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in the experiments.
Thus from this description, the following set of experiment configurations are
defined:

• i ∈ C = {C2, C3, C4, C5}, with 2cardinality(C) − 1 = 15(to exclude the baseline
with all detached domain classifiers), λi ∈ {0,0.5{

• P = {P2, P3, P4, P5, P6}, with 2cardinality(S) − 1 = 31 (to exclude the baseline
with all detached domain classifiers), λi ∈ {0, 0.5

|CF G|{ in which |CFG| is the
cardinality of the subset of attached classifiers to the DA-PanopticFPN

• i ∈ C = {C2, C3, C4, C5}, with 2cardinality(C) − 1 = 15 (to exclude the baseline
with all detached domain classifiers), λi ∈ {0, 0.5

|CF G|+1{ in which |CFG| is the
cardinality of the subset of attached classifiers to the DA-PanopticFPN

Thus, a total of 61 experiments on the possible domain adaptive model configura-
tions have been run, with 3 additional separate configurations which represent the
aforementioned baselines.

All configurations are validated on a subset of Synthetic-CARLA, Cityscapes
and BDD100k.

5.4 Model training setup
Model training has been carried out by considering the same PanopticFPN architec-
ture hyperparameters described in the Model design chapter, for all configurations.

Each DA-PanopticFPN model starts with pretrained Imagenet[52] weights,
for all parameters that are also present in the template PanopticFPN model.
All domain classifier convolutional layers are initialized by sampling them from a nor-
mal distribution with mean = 0, standard deviation= 0.01. Their linear layers are
initialized by sampling from an uniform distribution U

5
− 1√

in_features
, 1√

in_features

6
.

No biases are used for any of these layers.

In the baseline experiments the batch size has been set to batch_size = 4.
In all other experiments with domain adaptive components the batch is composed
by half of the samples from the labeled synthetic domain data and the remaining
half from the unlabeled target domain(e.g. Cityscapes or bdd100k as representa-
tive of real world data). Thus batch_size = 8 = batch_source + batch_target,
batch_source = batch_target.
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Due to the fact that each batch of batch_size RGB images can contain images
of different H × W height, width and aspect ratios, these are resized so that their
shortest side is common and at least min(H, W ) ≥ 800. If after resizing its longest
side max(H, W ) ≥ 1333, it is downscaled such that it max(H, W ) = 1333. Then,
they are batched together based on their aspect ratio.
The images are preprocessed by mean subtraction and standardization of the RGB
channels, considering the Imagenet[52] mean channel values [103.530, 116.280, 123.675],
and standard deviations= [57.375, 57.120, 58.395].
As data augmentation, input images are randomly flipped horizontally with proba-
bility p = 0.5

Regarding the model parameter optimization, the ADAM[158] algorithm for
stochastic optimization has been utilized.
The optimization procedure is run for N_iter = 10000 iterations.
ADAM is configured as follows:

• momentum = 0.9

• γ = 0.1

• weight decay = 1e − 4
As a polynomial decay schedule, of which the behavior is shown in figure5.1 is used
to modify the learning rate during the N_iter of optimization, such schedule is
configured as follows:

• initial learning rate lr0 = 0.001

• final learning rate lr10000 = 0.0

• linear warmup period of 1000 iterations

• warmup factor set to 0.001

• power= 0.9

Figure 5.1: Polynomial decay schedule, obtained with the provided configuration
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The model is trained on a distributed data parallel setup, on two 3090 GPUs,
filling approximately 80 − 95% of the memory of each.

Each configuration requires ≈ 2 hours to complete training and inference steps.
Inference and sampling of the validation loss is carried out every 1000 training
iterations.

5.5 Experiment results
Based on the described experiment setup, the training results have been gathered.
While the total training and validation loss have been, considered, their interpreta-
tion is not trivial due to the effect of the domain classifier on the backpropagated
reversed gradients[140] , which although allow the model to generalize to the target
domain, affect the neural network parameter optimization process.

Aside from this preliminary note, for each model configuration and baseline, the
following metrics have been collected at the best validation iterate of the the 10000
training iterations (the first 1000 iterates are not considered as it is the warmup
period of the ADAM optimizer):

• panoptic quality on Cityscapes validation and BDD100k out of sample sets

• recognition quality on Cityscapes validation and BDD100k out of sample sets

• segmentation quality on Cityscapes validation and BDD100k out of sample
sets

• instance segmentation loss on Cityscapes validation

• semantic segmentation loss on Cityscapes validation

• training iterate

The baseline metrics are reported below, for brevity the prefix c or b signify
Cityscapes validation and bdd100k validation respectively(L stands for Loss):

baseline name cPQ cRQ cSQ bPQ bRQ bSQ cL seg cL mask best iter
DA baseline 1) 26.6 19.6 33.9 26.0 52.6 68.0 0.61 0.48 6000
cityscapes 2) 50.8 62.7 76.6 32.7 40.4 78.3 0.12 0.34 10000
bdd100k 3) 39.9 49.7 73.0 36.3 44.3 81.2 0.15 0.28 10000

The best 16 domain adaptation experiment results are reported below, sorted
by decreasing cityscapes validation panoptic quality.
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For each configuration, the experiment names indicate with the convention Embed-
dingName__ λembedding,
the FPN backbone embedding name {C2, C3, C4, C5, P2, P3, P4, P5, P6} and the
maximum λ coefficient assigned to the respective attached domain classifier.
The λ of all domain classifiers that are associated with an embedding that is not
present in the provided naming convention are set λ = 0, thus are detached from
the network. These do not provide any contribution to the loss.

experiment name cPQ bPQ cRQ bRQ cSQ bSQ cL seg cL mask best iter
C2_0.17__C5_0.17 30.1 22.7 38.3 29.0 63.6 67.7 0.22 0.42 1000
C2_0.25 29.3 21.7 37.2 28.4 58.8 62.6 0.5 0.49 1000
P5_0.25__P6_0.25 28.8 23.3 36.6 29.3 63.8 68.4 0.23 0.44 1000
P3_0.17__P5_0.17
P6_0.17 28.7 23.0 36.7 29.0 59.1 69.1 0.31 0.33 1000

P2_0.17__P3_0.17
P5_0.17 28.7 22.1 36.2 28.1 61.8 68.9 0.25 0.48 2000

C4_0.17__C5_0.17 28.7 22.2 36.6 28.5 64.1 72.4 0.43 0.41 7000
P2_0.17__P4_0.17
P5_0.17 28.7 22.7 36.4 28.5 57.4 66.0 0.27 0.43 2000

P2_0.25__P3_0.25 28.6 23.2 36.6 29.4 63.8 71.3 0.38 0.42 1000
P4_0.25__P5_0.25 28.5 21.9 36.5 28.1 65.0 64.0 0.39 0.38 1000
P2_0.12__P3_0.12
P4_0.12__P6_0.12 28.5 21.0 36.1 27.6 62.8 67.5 0.39 0.42 10000

P2_0.5 28.5 22.6 36.2 28.3 59.1 60.5 0.58 0.55 1000
P2_0.25__P4_0.25 28.5 21.6 36.0 27.8 59.3 72.6 0.45 0.45 7000
C2_0.5 28.4 20.9 35.8 27.1 59.6 68.8 0.38 0.42 5000
C4_0.5 28.4 21.4 36.1 27.6 59.3 68.9 0.29 0.4 5000
P4_0.25__P6_0.25 28.3 21.9 36.3 28.2 62.9 68.3 0.3 0.47 6000
P2_0.12__P3_0.12
P5_0.12__P6_0.12 28.3 21.5 36.1 28.1 63.6 67.8 0.35 0.45 1000

Table 5.1: Domain adaptation experiment metrics, sorted by decreasing panoptic
quality on Cityscapes validation set(cPQ)
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experiment name cPQ bPQ cRQ bRQ cSQ bSQ cL seg cL mask
C2_0.17
C5_0.17 13.2% 15.8% 13.0% 11.5% 20.9% -0.4% -63.9% -12.5%

C2_0.25 10.2% 10.7% 9.7% 9.2% 11.8% -7.9% -18.0% 2.1%
P5_0.25
P6_0.25 8.3% 18.9% 8.0% 12.7% 21.3% 0.6% -62.3% -8.3%

P3_0.17
P5_0.17
P6_0.17

7.9% 17.3% 8.3% 11.5% 12.4% 1.6% -49.2% -31.2%

P2_0.17
P3_0.17
P5_0.17

7.9% 12.8% 6.8% 8.1% 17.5% 1.3% -59.0% 0.0%

C4_0.17
C5_0.17 7.9% 13.3% 8.0% 9.6% 21.9% 6.5% -29.5% -14.6%

P2_0.17
P4_0.17
P5_0.17

7.9% 15.8% 7.4% 9.6% 9.1% -2.9% -55.7% -10.4%

P2_0.25
P3_0.25 7.5% 18.4% 8.0% 13.1% 21.3% 4.9% -37.7% -12.5%

P4_0.25
P5_0.25 7.1% 11.7% 7.7% 8.1% 23.6% -5.9% -36.1% -20.8%

P2_0.12
P3_0.12
P4_0.12
P6_0.12

7.1% 7.1% 6.5% 6.2% 19.4% -0.7% -36.1% -12.5%

P2_0.5 7.1% 15.3% 6.8% 8.8% 12.4% -11.0% -4.9% 14.6%
P2_0.25
P4_0.25 7.1% 10.2% 6.2% 6.9% 12.7% 6.8% -26.2% -6.2%

C2_0.5 6.8% 6.6% 5.6% 4.2% 13.3% 1.2% -37.7% -12.5%
C4_0.5 6.8% 9.2% 6.5% 6.2% 12.7% 1.3% -52.5% -16.7%
P4_0.25
P6_0.25 6.4% 11.7% 7.1% 8.5% 19.6% 0.4% -50.8% -2.1%

P2_0.12
P3_0.12
P5_0.12
P6_0.12

6.4% 9.7% 6.5% 8.1% 20.9% -0.3% -42.6% -6.2%

Table 5.2: Domain adaptation experiments reported in percentage change of
the metrics with respect to the domain adaptation baseline(baseline 1),
sorted by decreasing panoptic quality on Cityscapes validation set(cPQ)
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experiment name cPQ bPQ cRQ bRQ cSQ bSQ cL seg cL mask
C2_0.17
C5_0.17 -40.7% -30.6% -38.9% -28.2% -17.0% -13.5% 83.3% 23.5%

C2_0.25 -42.3% -33.6% -40.7% -29.7% -23.2% -20.1% 316.7% 44.1%
P5_0.25
P6_0.25 -43.3% -28.7% -41.6% -27.5% -16.7% -12.6% 91.7% 29.4%

P3_0.17
P5_0.17
P6_0.17

-43.5% -29.7% -41.5% -28.2% -22.8% -11.7% 158.3% -2.9%

P2_0.17
P3_0.17
P5_0.17

-43.5% -32.4% -42.3% -30.4% -19.3% -12.0% 108.3% 41.2%

C4_0.17
C5_0.17 -43.5% -32.1% -41.6% -29.5% -16.3% -7.5% 258.3% 20.6%

P2_0.17
P4_0.17
P5_0.17

-43.5% -30.6% -41.9% -29.5% -25.1% -15.7% 125.0% 26.5%

P2_0.25
P3_0.25 -43.7% -29.1% -41.6% -27.2% -16.7% -8.9% 216.7% 23.5%

P4_0.25
P5_0.25 -43.9% -33.0% -41.8% -30.4% -15.1% -18.3% 225.0% 11.8%

P2_0.12
P3_0.12
P4_0.12
P6_0.12

-43.9% -35.8% -42.4% -31.7% -18.0% -13.8% 225.0% 23.5%

P2_0.5 -43.9% -30.9% -42.3% -30.0% -22.8% -22.7% 383.3% 61.8%
P2_0.25
P4_0.25 -43.9% -33.9% -42.6% -31.2% -22.6% -7.3% 275.0% 32.4%

C2_0.5 -44.1% -36.1% -42.9% -32.9% -22.2% -12.1% 216.7% 23.5%
C4_0.5 -44.1% -34.6% -42.4% -31.7% -22.6% -12.0% 141.7% 17.6%
P4_0.25
P6_0.25 -44.3% -33.0% -42.1% -30.2% -17.9% -12.8% 150.0% 38.2%

P2_0.12
P3_0.12
P5_0.12
P6_0.12

-44.3% -34.3% -42.4% -30.4% -17.0% -13.4% 191.7% 32.4%

Table 5.3: Domain adaptation experiments reported in percentage change of
the metrics with respect to the Cityscapes baseline(baseline 2) , sorted by
decreasing panoptic quality on Cityscapes validation set(cPQ)
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5.5.1 Result summary

As can be seen from Table 5.2, the top domain adaptive configuration in the top
row, attains a 13.2% and 15.8% panoptic quality(PQ) improvement respectively on
Cityscapes and BDD100k validation over the baseline trained solely on synthetic
and tested on real data.
Overall, all metrics improve with respect to baseline 1), except for the segmentation
quality on BDD100k validation, which is only marginally increased with respect to
the baseline metrics.
The losses are all much lower than the baseline ones, with a decrease of −63%
and 12.5% in semantic and instance segmentation loss respectively, for the top
performing model.
Nevertheless, there is a lot of room for improvement.
As the table 5.2 shows, the top performing domain adaptive model presents a
panoptic quality metric which is 40.7% and 30.6% worse than the "oracle" model
(baseline 2) metrics, respectively computed on predictions made on Cityscapes and
BDD100k validation sets.
Thus, the final model can be defined as the DA-PanopticFPN model which is trained
with the domain adaptive classifiers attached to C2 and C5(each implemented as
described in the model design section), respectively with maximum λC2 = 0.17 and
λC5 = 0.17. The architecture is shown in figure 5.2, with the considered domain
adaptive components highlighted in yellow. The ones that must remain detached
are greyed out.

Figure 5.2: DA PanopticFPN architecture with the optimal domain classifiers
attached respectively to C2 and C5
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The PQ metrics obtained on the validation sets by the best configuration at its
best training iteration are shown for Synthetic-CARLA, Cityscapes and BDD100K
in figure 5.3.

Figure 5.3: PQ metrics of the best model on validation Cityscapes(left) and
BDD100k(right)

For comparison, all PQ metrics are plotted in an unique graph in figure 5.4.
The grey configuration at the top is the baseline 2) model.

Figure 5.4: PQ metrics of the best model on validation Cityscapes(top) and
BDD100k(bottom)

The train and validation total loss(sum of all contributions) of the best configu-
ration on all datasets are plotted in figure 5.5
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Figure 5.5: Train and validation losses: the train total loss on Synthetic-
CARLA(bottom), validation total loss Synthetic-CARLA(top-left), Cityscapes
(top-center), BDD100k(top-right)

The panoptic predictions obtained on the validation sets by the best configura-
tion at its best training iteration are shown for Cityscapes in figure 5.6, BDD100K
in figure 5.7 and Synthetic-CARLA in figure 5.8.
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Figure 5.6: validation Cityscapes panoptic predictions of the best configuration
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Figure 5.7: validation BDD100k panoptic predictions of the best configuration
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Figure 5.8: validation Synthetic-CARLA panoptic predictions of the best config-
uration
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Chapter 6

Conclusions and further
work

The development of SAE level5 autonomous vehicles entails a set of complex prob-
lems each of which has to be solved with the most robust algorithms, refined to
the utmost perfection.
As the authors of [2] prove, to demonstrate safety and reliability of autonomous
vehicles with respect to robustness requirements of the SAE[3] metrics, 100 to 600
years of cumulative driving are needed to collect the needed data, for each separate
issue e.g. fatality rate, failure rate, crash rate.
Hence, the authors set the case for the aided development of autonomous vehicles
by means of simulation.
However, up to now simulation can only provide approximate models of the real
world.
As the discrepancy between simulation and real world data distributions, defined
as domain shift, is the major obstacle that hinders the widespread use of simulation
for autonomous vehicles, this dissertation focuses its attention on such issue.
The study has been developed from the perspective of the implementation of
scene understanding models for autonomous driving, as it presents one of the best
use-cases both for deep learning models and domain adaptation techniques that
directly address the domain shift problem.
This issue has been addressed in regards to the novel panoptic segmentation task,
which allows to capture fine details of the scene as well as detect all actors within
it.
As deep models are known to be data hungry, the theoretical complete removal of
the domain shift would allow them to be trained on simulation, which by design
automatically annotates data, and achieve the same performance of such model
trained on costly annotated real world data.
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As such, this work developed the context of such use-case, by employing the state
of the art CARLA[6] simulator as a means to generate auto-annotated synthetic
data. Then, real world data has been obtained by means of the Cityscapes[60] and
BDD100k[62] datasets.
With the creation of a label matched dataset for panoptic segmentation, the Panop-
ticFPN model has been trained with proper modifications so as to be usable in a
domain adaptation framework.
To this end, the self-supervised adversarial domain adaptation technique described
by Ganin et al.[140] has been utilized to adapt the model for supervised and
self-supervised training on synthetic and real data respectively.
As self-supervision does not require a human annotator in order to generate ground
truths for the data, it enables the use of real world images, although as a restricted
version(panoptic annotations on real world data would still provide much better
signals for training deep models).
From the experiments that have been run, it has been possible to observe that
it is indeed possible to improve models trained on labeled simulated data and
self-supervised real world data, by means of domain adaptation. Hence, the optimal
self-supervised adversarial domain adaptation setup has been determined and the
developed DA-Panoptic FPN has been implemented according to such configuration,
shown in Figure 5.2.
Domain adaptation employed as described above, allowed to improve the panoptic
quality metric of the chosen model by 13.8% and 15.8% over the same baseline
PanopticFPN architecture, named baseline 1, but trained solely on synthetic data
and tested on the real world Cityscapes and BDD100k datasets.
Nevertheless, the margin for further improvements are large, as the ideal Panop-
ticFPN model, named baseline 2, trained with label supervision directly on the
Cityscapes real world dataset attains much higher panoptic quality.
The former should however be considered only as an ideal condition, as it implies
that all real world data would be provided with annotations.
Nevertheless, a theoretical optimal domain adaptive model should be able to miti-
gate or completely remove the domain shift, so as to attain the same performance
as the above "oracle" model.
For comparison, the optimal DA-PanopticFPN architecture attains 40.7% worse
panoptic quality compared to the aforementioned oracle model.

Therefore, the avenues for further research on domain adaptation for the panop-
tic segmentation task are many.
Firstly, as this dissertation focused on the PanopticFPN architecture, the wide
variety of panoptic segmentation models that are available in the literature should
be benchmarked against the developed DA-PanopticFPN, with their own custom
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domain adaptive implementation.
Many of such works have been mentioned in the related works chapter, such as the
PanopticDeepLab[21], EfficientPS[22], CVRN[24] convolutional architectures.
Novel research on the panoptic task should also expand to the novel Vision Trans-
former deep learning models, which approach computer vision problems from the
perspective of architectures originally developed to work on sequence based data.

Another variation stems from the use of the SYNTHIA [25] or GTA5[5] syn-
thetic datasets, paired with either BDD100k or Cityscapes as a means to enrich
the literature on domain adaptation for the panoptic segmentation task by means
of easily accessible benchmarks.

Further benchmarks can also be developed by testing the mentioned variety of
panoptic segmentation models, properly modified in order to use different domain
adaptation techniques, such as discrepancy based approaches (e.g. maximum
mean discrepancy), pretext-task based methods (which are similar in nature to the
self-supervised task employed in this work) or other adversarial domain adaptation
techniques (e.g. GAN based synthetic-to-real image translation methods).

One final development which stays on the same research track as this work, is
the enrichment of the CARLA semantic labels so as to provide a set of stuff and
thing classes which directly match with the ones of the renowned driving datasets
in the literature: Cityscapes, BDD100k,Mapillary Vistas, SYNTHIA, GTA5 to
name a few.

118



Bibliography

[1] Aidan Fuller, Zhong Fan, Charles Day, and Chris Barlow. «Digital Twin:
Enabling Technologies, Challenges and Open Research». In: IEEE Access 8
(2020). Conference Name: IEEE Access, pp. 108952–108971. issn: 2169-3536.
doi: 10.1109/ACCESS.2020.2998358 (cit. on pp. 1, 3).

[2] Nidhi Kalra and Susan M. Paddock. «Driving to safety: How many miles of
driving would it take to demonstrate autonomous vehicle reliability?» In:
Transportation Research Part A: Policy and Practice 94.C (2016). Publisher:
Elsevier, pp. 182–193. issn: 0965-8564. url: https://econpapers.repec.
org/article/eeetransa/v_3a94_3ay_3a2016_3ai_3ac_3ap_3a182-
193.htm (visited on 03/26/2022) (cit. on pp. 1, 2, 47, 116).

[3] J3016C: Taxonomy and Definitions for Terms Related to Driving Automation
Systems for On-Road Motor Vehicles - SAE International. url: https://
www.sae.org/standards/content/j3016_202104/ (visited on 03/28/2022)
(cit. on pp. 2, 116).

[4] Deepdrive. en. url: https://deepdrive.io/ (visited on 02/17/2022) (cit.
on p. 3).

[5] GTA V + Universe. Jan. 2017. url: http://web.archive.org/web/
20170111195314/https://openai.com/blog/GTA-V-plus-Universe/
(visited on 02/17/2022) (cit. on pp. 3, 118).

[6] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and
Vladlen Koltun. «CARLA: An Open Urban Driving Simulator». In: arXiv:1711.03938
[cs] (Nov. 2017). arXiv: 1711.03938. url: http://arxiv.org/abs/1711.
03938 (visited on 02/17/2022) (cit. on pp. 3, 13, 50, 54, 99, 117).

[7] Shital Shah, Debadeepta Dey, Chris Lovett, and Ashish Kapoor. «AirSim:
High-Fidelity Visual and Physical Simulation for Autonomous Vehicles». In:
arXiv:1705.05065 [cs] (July 2017). arXiv: 1705.05065. url: http://arxiv.
org/abs/1705.05065 (visited on 02/17/2022) (cit. on p. 3).

[8] Gazebo : Blog : Vehicle and city simulation. url: https://gazebosim.org/
blog/car_sim (visited on 02/17/2022) (cit. on p. 3).

119

https://doi.org/10.1109/ACCESS.2020.2998358
https://econpapers.repec.org/article/eeetransa/v_3a94_3ay_3a2016_3ai_3ac_3ap_3a182-193.htm
https://econpapers.repec.org/article/eeetransa/v_3a94_3ay_3a2016_3ai_3ac_3ap_3a182-193.htm
https://econpapers.repec.org/article/eeetransa/v_3a94_3ay_3a2016_3ai_3ac_3ap_3a182-193.htm
https://www.sae.org/standards/content/j3016_202104/
https://www.sae.org/standards/content/j3016_202104/
https://deepdrive.io/
http://web.archive.org/web/20170111195314/https://openai.com/blog/GTA-V-plus-Universe/
http://web.archive.org/web/20170111195314/https://openai.com/blog/GTA-V-plus-Universe/
http://arxiv.org/abs/1711.03938
http://arxiv.org/abs/1711.03938
http://arxiv.org/abs/1705.05065
http://arxiv.org/abs/1705.05065
https://gazebosim.org/blog/car_sim
https://gazebosim.org/blog/car_sim


BIBLIOGRAPHY

[9] NVIDIA. NVIDIA Automotive Simulation. Jan. 2018. url: https://www.
youtube.com/watch?v=booEg6iGNyo (visited on 02/17/2022) (cit. on p. 3).

[10] NVIDIA. NVIDIA DRIVE Sim. Jan. 2019. url: https://www.youtube.
com/watch?v=DXsLDyiONV4 (visited on 02/17/2022) (cit. on p. 3).

[11] Gerard Andrews. What is synthetic data? en-US. June 2021. url: https:
//blogs.nvidia.com/blog/2021/06/08/what- is- synthetic- data/
(visited on 02/17/2022) (cit. on p. 3).

[12] Artificial Intelligence & Autopilot. en-us. url: https://www.tesla.com/AI
(visited on 02/07/2022) (cit. on p. 3).

[13] Tesla. Tesla AI Day. Aug. 2021. url: https://www.youtube.com/watch?v=
j0z4FweCy4M&t=5715shttps://www.youtube.com/watch?v=j0z4FweCy4M
(visited on 02/17/2022) (cit. on p. 3).

[14] VI-grade provides DiM150 dynamic driving simulator to NIO as key solution
for the development of new electric cars. en. url: https://www.vi-grade.
com/en/about/news/vi-grade-provides-dim150-dynamic-driving-
simulator-to-nio-as-key-solution-for-the-development-of-new-
electric-cars_37/ (visited on 02/17/2022) (cit. on p. 3).

[15] Alexis C. Madrigal. Waymo Built a Secret World for Self-Driving Cars. en.
Section: Technology. Aug. 2017. url: https://www.theatlantic.com/
technology/archive/2017/08/inside-waymos-secret-testing-and-
simulation-facilities/537648/ (visited on 02/17/2022) (cit. on p. 3).

[16] Waypoint - The official Waymo blog: Off road, but not offline: How simulation
helps advance our Waymo Driver. url: https://blog.waymo.com/202
0/04/off- road- but- not- offline-- simulation27.html (visited on
02/17/2022) (cit. on p. 3).

[17] Waypoint - The official Waymo blog: Simulation City: Introducing Waymo’s
most advanced simulation system yet for autonomous driving. url: https://
blog.waymo.com/2021/06/SimulationCity.html (visited on 02/17/2022)
(cit. on p. 3).

[18] Self-Driving Simulation | Uber ATG. en. url: https://www.uber.com/us/e
n/atg/research-and-development/simulation/ (visited on 02/17/2022)
(cit. on p. 3).

[19] Alexander Kirillov, Ross Girshick, Kaiming He, and Piotr Dollár. «Panop-
tic Feature Pyramid Networks». In: arXiv:1901.02446 [cs] (Apr. 2019).
arXiv: 1901.02446. url: http://arxiv.org/abs/1901.02446 (visited on
01/28/2022) (cit. on pp. 3, 100, 101).

120

https://www.youtube.com/watch?v=booEg6iGNyo
https://www.youtube.com/watch?v=booEg6iGNyo
https://www.youtube.com/watch?v=DXsLDyiONV4
https://www.youtube.com/watch?v=DXsLDyiONV4
https://blogs.nvidia.com/blog/2021/06/08/what-is-synthetic-data/
https://blogs.nvidia.com/blog/2021/06/08/what-is-synthetic-data/
https://www.tesla.com/AI
https://www.youtube.com/watch?v=j0z4FweCy4M&t=5715shttps://www.youtube.com/watch?v=j0z4FweCy4M
https://www.youtube.com/watch?v=j0z4FweCy4M&t=5715shttps://www.youtube.com/watch?v=j0z4FweCy4M
https://www.vi-grade.com/en/about/news/vi-grade-provides-dim150-dynamic-driving-simulator-to-nio-as-key-solution-for-the-development-of-new-electric-cars_37/
https://www.vi-grade.com/en/about/news/vi-grade-provides-dim150-dynamic-driving-simulator-to-nio-as-key-solution-for-the-development-of-new-electric-cars_37/
https://www.vi-grade.com/en/about/news/vi-grade-provides-dim150-dynamic-driving-simulator-to-nio-as-key-solution-for-the-development-of-new-electric-cars_37/
https://www.vi-grade.com/en/about/news/vi-grade-provides-dim150-dynamic-driving-simulator-to-nio-as-key-solution-for-the-development-of-new-electric-cars_37/
https://www.theatlantic.com/technology/archive/2017/08/inside-waymos-secret-testing-and-simulation-facilities/537648/
https://www.theatlantic.com/technology/archive/2017/08/inside-waymos-secret-testing-and-simulation-facilities/537648/
https://www.theatlantic.com/technology/archive/2017/08/inside-waymos-secret-testing-and-simulation-facilities/537648/
https://blog.waymo.com/2020/04/off-road-but-not-offline--simulation27.html
https://blog.waymo.com/2020/04/off-road-but-not-offline--simulation27.html
https://blog.waymo.com/2021/06/SimulationCity.html
https://blog.waymo.com/2021/06/SimulationCity.html
https://www.uber.com/us/en/atg/research-and-development/simulation/
https://www.uber.com/us/en/atg/research-and-development/simulation/
http://arxiv.org/abs/1901.02446


BIBLIOGRAPHY

[20] Alexander Kirillov, Kaiming He, Ross Girshick, Carsten Rother, and Piotr
Dollár. «Panoptic Segmentation». In: arXiv:1801.00868 [cs] (Apr. 2019).
arXiv: 1801.00868. url: http://arxiv.org/abs/1801.00868 (visited on
01/28/2022) (cit. on pp. 4, 9–11, 15, 45, 59, 86).

[21] Bowen Cheng, Maxwell D. Collins, Yukun Zhu, Ting Liu, Thomas S. Huang,
Hartwig Adam, and Liang-Chieh Chen. «Panoptic-DeepLab: A Simple,
Strong, and Fast Baseline for Bottom-Up Panoptic Segmentation». In:
arXiv:1911.10194 [cs] (Mar. 2020). arXiv: 1911.10194. url: http://arxiv.
org/abs/1911.10194 (visited on 02/22/2022) (cit. on pp. 4, 16, 40, 43, 45,
46, 69, 118).

[22] Rohit Mohan and Abhinav Valada. «EfficientPS: Efficient Panoptic Seg-
mentation». In: arXiv:2004.02307 [cs] (Feb. 2021). arXiv: 2004.02307. url:
http://arxiv.org/abs/2004.02307 (visited on 02/22/2022) (cit. on pp. 4,
16, 40, 45, 69, 118).

[23] Yuwen Xiong, Renjie Liao, Hengshuang Zhao, Rui Hu, Min Bai, Ersin
Yumer, and Raquel Urtasun. «UPSNet: A Unified Panoptic Segmentation
Network». en. In: 2019 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR). Long Beach, CA, USA: IEEE, June 2019,
pp. 8810–8818. isbn: 978-1-72813-293-8. doi: 10.1109/CVPR.2019.00902.
url: https://ieeexplore.ieee.org/document/8953750/ (visited on
01/28/2022) (cit. on pp. 4, 45).

[24] Jiaxing Huang, Dayan Guan, Aoran Xiao, and Shijian Lu. «Cross-View Regu-
larization for Domain Adaptive Panoptic Segmentation». In: arXiv:2103.02584
[cs] (Mar. 2021). arXiv: 2103.02584. url: http://arxiv.org/abs/2103.
02584 (visited on 03/23/2022) (cit. on pp. 4, 46, 118).

[25] German Ros, Laura Sellart, Joanna Materzynska, David Vazquez, and An-
tonio M. Lopez. «The SYNTHIA Dataset: A Large Collection of Synthetic
Images for Semantic Segmentation of Urban Scenes». In: 2016 IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR). ISSN: 1063-6919.
June 2016, pp. 3234–3243. doi: 10.1109/CVPR.2016.352 (cit. on pp. 5, 12,
13, 118).

[26] Qi Wang, Junyu Gao, and Xuelong Li. «Weakly Supervised Adversarial
Domain Adaptation for Semantic Segmentation in Urban Scenes». In: IEEE
Transactions on Image Processing 28.9 (Sept. 2019). arXiv: 1904.09092,
pp. 4376–4386. issn: 1057-7149, 1941-0042. doi: 10.1109/TIP.2019.291
0667. url: http://arxiv.org/abs/1904.09092 (visited on 03/12/2022)
(cit. on p. 5).

121

http://arxiv.org/abs/1801.00868
http://arxiv.org/abs/1911.10194
http://arxiv.org/abs/1911.10194
http://arxiv.org/abs/2004.02307
https://doi.org/10.1109/CVPR.2019.00902
https://ieeexplore.ieee.org/document/8953750/
http://arxiv.org/abs/2103.02584
http://arxiv.org/abs/2103.02584
https://doi.org/10.1109/CVPR.2016.352
https://doi.org/10.1109/TIP.2019.2910667
https://doi.org/10.1109/TIP.2019.2910667
http://arxiv.org/abs/1904.09092


BIBLIOGRAPHY

[27] Matteo Biasetton, Umberto Michieli, Gianluca Agresti, and Pietro Zanuttigh.
«Unsupervised Domain Adaptation for Semantic Segmentation of Urban
Scenes». In: 2019 IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops (CVPRW). ISSN: 2160-7516. June 2019, pp. 1211–
1220. doi: 10.1109/CVPRW.2019.00160 (cit. on p. 5).

[28] Jiaxing Huang, Dayan Guan, Aoran Xiao, and Shijian Lu. «Semi-Supervised
Domain Adaptation via Adaptive and Progressive Feature Alignment». In:
arXiv:2106.02845 [cs] (June 2021). arXiv: 2106.02845. url: http://arxiv.
org/abs/2106.02845 (visited on 03/11/2022) (cit. on p. 5).

[29] Hui Zhang, Yonglin Tian, Kunfeng Wang, Haibo He, and Fei-Yue Wang.
«Synthetic-to-Real Domain Adaptation for Object Instance Segmentation».
In: 2019 International Joint Conference on Neural Networks (IJCNN). ISSN:
2161-4407. July 2019, pp. 1–7. doi: 10.1109/IJCNN.2019.8851791 (cit. on
p. 5).

[30] Manuel Diaz-Zapata, Özgür Erkent, and Christian Laugier. «Instance Seg-
mentation with Unsupervised Adaptation to Different Domains for Au-
tonomous Vehicles». In: 2020 16th International Conference on Control,
Automation, Robotics and Vision (ICARCV). Dec. 2020, pp. 421–427. doi:
10.1109/ICARCV50220.2020.9305452 (cit. on p. 5).

[31] Zhenwei He and Lei Zhang. «Multi-adversarial Faster-RCNN for Unrestricted
Object Detection». In: arXiv:1907.10343 [cs] (Sept. 2019). arXiv: 1907.10343.
url: http://arxiv.org/abs/1907.10343 (visited on 03/12/2022) (cit. on
p. 5).

[32] Yuhua Chen, Wen Li, Christos Sakaridis, Dengxin Dai, and Luc Van Gool.
«Domain Adaptive Faster R-CNN for Object Detection in the Wild». In:
arXiv:1803.03243 [cs] (Mar. 2018). arXiv: 1803.03243. url: http://arxiv.
org/abs/1803.03243 (visited on 03/12/2022) (cit. on p. 5).

[33] Dongnan Liu, Donghao Zhang, Yang Song, Fan Zhang, Lauren O’Donnell,
Heng Huang, Mei Chen, and Weidong Cai. «Unsupervised Instance Segmen-
tation in Microscopy Images via Panoptic Domain Adaptation and Task
Re-weighting». In: arXiv:2005.02066 [cs] (May 2020). arXiv: 2005.02066.
url: http://arxiv.org/abs/2005.02066 (visited on 03/11/2022) (cit. on
p. 5).

[34] Borna Bešić, Nikhil Gosala, Daniele Cattaneo, and Abhinav Valada. «Un-
supervised Domain Adaptation for LiDAR Panoptic Segmentation». In:
IEEE Robotics and Automation Letters 7.2 (Apr. 2022). arXiv: 2109.15286,
pp. 3404–3411. issn: 2377-3766, 2377-3774. doi: 10.1109/LRA.2022.314
7326. url: http://arxiv.org/abs/2109.15286 (visited on 03/11/2022)
(cit. on p. 5).

122

https://doi.org/10.1109/CVPRW.2019.00160
http://arxiv.org/abs/2106.02845
http://arxiv.org/abs/2106.02845
https://doi.org/10.1109/IJCNN.2019.8851791
https://doi.org/10.1109/ICARCV50220.2020.9305452
http://arxiv.org/abs/1907.10343
http://arxiv.org/abs/1803.03243
http://arxiv.org/abs/1803.03243
http://arxiv.org/abs/2005.02066
https://doi.org/10.1109/LRA.2022.3147326
https://doi.org/10.1109/LRA.2022.3147326
http://arxiv.org/abs/2109.15286


BIBLIOGRAPHY

[35] Lingdong Kong, Niamul Quader, and Venice Erin Liong. «ConDA: Unsuper-
vised Domain Adaptation for LiDAR Segmentation via Regularized Domain
Concatenation». In: arXiv:2111.15242 [cs] (Nov. 2021). arXiv: 2111.15242.
url: http://arxiv.org/abs/2111.15242 (visited on 03/12/2022) (cit. on
p. 5).

[36] Qiangeng Xu, Yin Zhou, Weiyue Wang, Charles R. Qi, and Dragomir
Anguelov. «SPG: Unsupervised Domain Adaptation for 3D Object Detection
via Semantic Point Generation». In: arXiv:2108.06709 [cs] (Aug. 2021).
arXiv: 2108.06709. url: http://arxiv.org/abs/2108.06709 (visited on
03/12/2022) (cit. on p. 5).

[37] Jens Behley, Martin Garbade, Andres Milioto, Jan Quenzel, Sven Behnke,
Jürgen Gall, and Cyrill Stachniss. «Towards 3D LiDAR-based semantic scene
understanding of 3D point cloud sequences: The SemanticKITTI Dataset».
en. In: The International Journal of Robotics Research 40.8-9 (Aug. 2021).
Publisher: SAGE Publications Ltd STM, pp. 959–967. issn: 0278-3649.
doi: 10.1177/02783649211006735. url: https://doi.org/10.1177/
02783649211006735 (visited on 03/01/2022) (cit. on p. 5).

[38] Ze Wang, Weiqiang Ren, and Qiang Qiu. «LaneNet: Real-Time Lane Detec-
tion Networks for Autonomous Driving». In: arXiv:1807.01726 [cs] (July
2018). arXiv: 1807.01726. url: http : / / arxiv . org / abs / 1807 . 01726
(visited on 02/18/2022) (cit. on p. 8).

[39] Paul Voigtlaender, Michael Krause, Aljosa Osep, Jonathon Luiten, Berin
Balachandar Gnana Sekar, Andreas Geiger, and Bastian Leibe. «MOTS:
Multi-Object Tracking and Segmentation». en. In: 2019 IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR). Long Beach,
CA, USA: IEEE, June 2019, pp. 7934–7943. isbn: 978-1-72813-293-8. doi:
10 . 1109 / CVPR . 2019 . 00813. url: https : / / ieeexplore . ieee . org /
document/8953401/ (visited on 02/18/2022) (cit. on p. 8).

[40] Tien-Wen Yeh, Huei-Yung Lin, and Chin-Chen Chang. «Traffic Light and
Arrow Signal Recognition Based on a Unified Network». en. In: Applied
Sciences 11.17 (Jan. 2021). Number: 17 Publisher: Multidisciplinary Digital
Publishing Institute, p. 8066. issn: 2076-3417. doi: 10.3390/app111780
66. url: https://www.mdpi.com/2076-3417/11/17/8066 (visited on
02/18/2022) (cit. on p. 8).

[41] Julian Müller and Klaus Dietmayer. «Detecting Traffic Lights by Single Shot
Detection». In: arXiv:1805.02523 [cs] (Oct. 2018). arXiv: 1805.02523. url:
http://arxiv.org/abs/1805.02523 (visited on 02/18/2022) (cit. on p. 8).

123

http://arxiv.org/abs/2111.15242
http://arxiv.org/abs/2108.06709
https://doi.org/10.1177/02783649211006735
https://doi.org/10.1177/02783649211006735
https://doi.org/10.1177/02783649211006735
http://arxiv.org/abs/1807.01726
https://doi.org/10.1109/CVPR.2019.00813
https://ieeexplore.ieee.org/document/8953401/
https://ieeexplore.ieee.org/document/8953401/
https://doi.org/10.3390/app11178066
https://doi.org/10.3390/app11178066
https://www.mdpi.com/2076-3417/11/17/8066
http://arxiv.org/abs/1805.02523


BIBLIOGRAPHY

[42] Phuc Manh Nguyen, Vu Cong Nguyen, Son Ngoc Nguyen, Linh My Thi
Dang, Ha Xuan Nguyen, and Vinh Dinh Nguyen. «Robust Traffic Light
Detection and Classification Under Day and Night Conditions». In: 2020 20th
International Conference on Control, Automation and Systems (ICCAS).
ISSN: 2642-3901. Oct. 2020, pp. 565–570. doi: 10.23919/ICCAS50221.2020.
9268343 (cit. on p. 8).

[43] Pavly Salah Zaki, Marco Magdy William, Bolis Karam Soliman, Kerolos
Gamal Alexsan, Keroles Khalil, and Magdy El-Moursy. «Traffic Signs Detec-
tion and Recognition System using Deep Learning». In: arXiv:2003.03256
[cs, eess] (Mar. 2020). arXiv: 2003.03256. url: http://arxiv.org/abs/
2003.03256 (visited on 02/19/2022) (cit. on p. 8).

[44] Aashrith Vennelakanti, Smriti Shreya, Resmi Rajendran, Debasis Sarkar,
Deepak Muddegowda, and Phanish Hanagal. «Traffic Sign Detection and
Recognition using a CNN Ensemble». In: 2019 IEEE International Confer-
ence on Consumer Electronics (ICCE). ISSN: 2158-4001. Jan. 2019, pp. 1–4.
doi: 10.1109/ICCE.2019.8662019 (cit. on p. 8).

[45] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott
Reed, Cheng-Yang Fu, and Alexander C. Berg. «SSD: Single Shot MultiBox
Detector». In: arXiv:1512.02325 [cs] (Dec. 2016). arXiv: 1512.02325. doi:
10.1007/978-3-319-46448-0_2. url: http://arxiv.org/abs/1512.
02325 (visited on 03/21/2022) (cit. on pp. 8, 35, 81).

[46] Qingquan Li, Long Chen, Quanwen Zhu, Ming Li, Qun Zhang, and Shuzhi
Sam Ge. «Intersection detection and recognition for autonomous urban driv-
ing using a virtual cylindrical scanner». en. In: IET Intelligent Transport Sys-
tems 8.3 (2014). _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1049/iet-
its.2012.0202, pp. 244–254. issn: 1751-9578. doi: 10.1049/iet-its.2012.
0202. url: https://onlinelibrary.wiley.com/doi/abs/10.1049/iet-
its.2012.0202 (visited on 02/19/2022) (cit. on p. 8).

[47] Dhaivat Bhatt, Danish Sodhi, Arghya Pal, Vineeth Balasubramanian, and
Madhava Krishna. Have i reached the intersection: A deep learning-based
approach for intersection detection from monocular cameras. Pages: 4500.
2017. doi: 10.1109/IROS.2017.8206317 (cit. on p. 8).

[48] DRIVE Labs: Pursuing Perfection for Intersection Detection - NVIDIA Blog.
en-US. May 2019. url: https://blogs.nvidia.com/blog/2019/05/10/
drive-labs-intersection-detection/ (visited on 02/19/2022) (cit. on
p. 8).

124

https://doi.org/10.23919/ICCAS50221.2020.9268343
https://doi.org/10.23919/ICCAS50221.2020.9268343
http://arxiv.org/abs/2003.03256
http://arxiv.org/abs/2003.03256
https://doi.org/10.1109/ICCE.2019.8662019
https://doi.org/10.1007/978-3-319-46448-0_2
http://arxiv.org/abs/1512.02325
http://arxiv.org/abs/1512.02325
https://doi.org/10.1049/iet-its.2012.0202
https://doi.org/10.1049/iet-its.2012.0202
https://onlinelibrary.wiley.com/doi/abs/10.1049/iet-its.2012.0202
https://onlinelibrary.wiley.com/doi/abs/10.1049/iet-its.2012.0202
https://doi.org/10.1109/IROS.2017.8206317
https://blogs.nvidia.com/blog/2019/05/10/drive-labs-intersection-detection/
https://blogs.nvidia.com/blog/2019/05/10/drive-labs-intersection-detection/


BIBLIOGRAPHY

[49] Holger Caesar, Jasper Uijlings, and Vittorio Ferrari. «COCO-Stuff: Thing
and Stuff Classes in Context». In: arXiv:1612.03716 [cs] (Mar. 2018).
arXiv: 1612.03716. url: http://arxiv.org/abs/1612.03716 (visited
on 03/22/2022) (cit. on pp. 8–10, 39, 40, 99).

[50] Omar Elharrouss, Somaya Al-Maadeed, Nandhini Subramanian, and Naj-
math Ottakath. «Panoptic Segmentation: A Review». en. In: (), p. 29 (cit. on
p. 11).

[51] Tsung-Yi Lin et al. «Microsoft COCO: Common Objects in Context». In:
arXiv:1405.0312 [cs] (Feb. 2015). arXiv: 1405.0312. url: http://arxiv.
org/abs/1405.0312 (visited on 03/01/2022) (cit. on p. 11).

[52] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. «Ima-
geNet: A large-scale hierarchical image database». In: 2009 IEEE Conference
on Computer Vision and Pattern Recognition. ISSN: 1063-6919. June 2009,
pp. 248–255. doi: 10.1109/CVPR.2009.5206848 (cit. on pp. 11, 27, 104,
105).

[53] COCO - Common Objects in Context. url: https://cocodataset.org/
#format-data (visited on 03/28/2022) (cit. on pp. 12, 59).

[54] Edward H. Adelson. «On seeing stuff: the perception of materials by humans
and machines». In: ed. by Bernice E. Rogowitz and Thrasyvoulos N. Pappas.
San Jose, CA, June 2001, pp. 1–12. doi: 10.1117/12.429489. url: http://
proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=
903694 (visited on 03/12/2022) (cit. on p. 12).

[55] Stephan R. Richter, Vibhav Vineet, Stefan Roth, and Vladlen Koltun. «Play-
ing for Data: Ground Truth from Computer Games». In: arXiv:1608.02192
[cs] (Aug. 2016). arXiv: 1608.02192. url: http://arxiv.org/abs/1608.
02192 (visited on 03/22/2022) (cit. on pp. 12, 13).

[56] Daniel Hernandez-Juarez, Lukas Schneider, Antonio Espinosa, David Vázquez,
Antonio M. López, Uwe Franke, Marc Pollefeys, and Juan C. Moure. «Slanted
Stixels: Representing San Francisco’s Steepest Streets». In: arXiv:1707.05397
[cs] (July 2017). arXiv: 1707.05397. url: http://arxiv.org/abs/1707.
05397 (visited on 03/22/2022) (cit. on p. 13).

[57] Emanuele Alberti, Antonio Tavera, Carlo Masone, and Barbara Caputo.
«IDDA: a large-scale multi-domain dataset for autonomous driving». In:
IEEE Robotics and Automation Letters 5.4 (Oct. 2020). arXiv: 2004.08298,
pp. 5526–5533. issn: 2377-3766, 2377-3774. doi: 10.1109/LRA.2020.300
9075. url: http://arxiv.org/abs/2004.08298 (visited on 01/28/2022)
(cit. on p. 13).

125

http://arxiv.org/abs/1612.03716
http://arxiv.org/abs/1405.0312
http://arxiv.org/abs/1405.0312
https://doi.org/10.1109/CVPR.2009.5206848
https://cocodataset.org/#format-data
https://cocodataset.org/#format-data
https://doi.org/10.1117/12.429489
http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=903694
http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=903694
http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=903694
http://arxiv.org/abs/1608.02192
http://arxiv.org/abs/1608.02192
http://arxiv.org/abs/1707.05397
http://arxiv.org/abs/1707.05397
https://doi.org/10.1109/LRA.2020.3009075
https://doi.org/10.1109/LRA.2020.3009075
http://arxiv.org/abs/2004.08298


BIBLIOGRAPHY

[58] Jean-Emmanuel Deschaud. «KITTI-CARLA: a KITTI-like dataset gener-
ated by CARLA Simulator». In: arXiv:2109.00892 [cs] (Aug. 2021). arXiv:
2109.00892. url: http://arxiv.org/abs/2109.00892 (visited on 03/22/2022)
(cit. on p. 13).

[59] A Geiger, P Lenz, C Stiller, and R Urtasun. «Vision meets robotics: The
KITTI dataset». en. In: The International Journal of Robotics Research
32.11 (Sept. 2013). Publisher: SAGE Publications Ltd STM, pp. 1231–
1237. issn: 0278-3649. doi: 10 . 1177 / 0278364913491297. url: https :
//doi.org/10.1177/0278364913491297 (visited on 03/01/2022) (cit. on
pp. 13, 55).

[60] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus
Enzweiler, Rodrigo Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele.
«The Cityscapes Dataset for Semantic Urban Scene Understanding». In:
arXiv:1604.01685 [cs] (Apr. 2016). arXiv: 1604.01685. url: http://arxiv.
org/abs/1604.01685 (visited on 02/05/2022) (cit. on pp. 14, 50, 58, 117).

[61] Gerhard Neuhold, Tobias Ollmann, Samuel Rota Bulò, and Peter Kontschieder.
«The Mapillary Vistas Dataset for Semantic Understanding of Street Scenes».
In: 2017 IEEE International Conference on Computer Vision (ICCV). ISSN:
2380-7504. Oct. 2017, pp. 5000–5009. doi: 10.1109/ICCV.2017.534 (cit. on
p. 14).

[62] Fisher Yu, Haofeng Chen, Xin Wang, Wenqi Xian, Yingying Chen, Fangchen
Liu, Vashisht Madhavan, and Trevor Darrell. «BDD100K: A Diverse Driving
Dataset for Heterogeneous Multitask Learning». In: arXiv:1805.04687 [cs]
(Apr. 2020). arXiv: 1805.04687. url: http://arxiv.org/abs/1805.04687
(visited on 01/28/2022) (cit. on pp. 14, 50, 58, 99, 117).

[63] Ming-Fang Chang et al. «Argoverse: 3D Tracking and Forecasting with
Rich Maps». In: arXiv:1911.02620 [cs] (Nov. 2019). arXiv: 1911.02620. url:
http://arxiv.org/abs/1911.02620 (visited on 01/28/2022) (cit. on
p. 15).

[64] Holger Caesar et al. «nuScenes: A multimodal dataset for autonomous
driving». In: arXiv:1903.11027 [cs, stat] (May 2020). arXiv: 1903.11027.
url: http://arxiv.org/abs/1903.11027 (visited on 01/28/2022) (cit. on
p. 15).

[65] Alexander Kirillov, Ross Girshick, Kaiming He, and Piotr Dollár. «Panop-
tic Feature Pyramid Networks». In: arXiv:1901.02446 [cs] (Apr. 2019).
arXiv: 1901.02446. url: http://arxiv.org/abs/1901.02446 (visited on
01/28/2022) (cit. on pp. 15, 16, 40, 45, 69, 76, 85, 98, 100).

126

http://arxiv.org/abs/2109.00892
https://doi.org/10.1177/0278364913491297
https://doi.org/10.1177/0278364913491297
https://doi.org/10.1177/0278364913491297
http://arxiv.org/abs/1604.01685
http://arxiv.org/abs/1604.01685
https://doi.org/10.1109/ICCV.2017.534
http://arxiv.org/abs/1805.04687
http://arxiv.org/abs/1911.02620
http://arxiv.org/abs/1903.11027
http://arxiv.org/abs/1901.02446


BIBLIOGRAPHY

[66] Sukjun Hwang, Seoung Wug Oh, and Seon Joo Kim. «Single-shot Path
Integrated Panoptic Segmentation». In: arXiv:2012.01632 [cs] (Dec. 2020).
arXiv: 2012.01632. url: http://arxiv.org/abs/2012.01632 (visited on
02/22/2022) (cit. on p. 16).

[67] Yanwei Li, Hengshuang Zhao, Xiaojuan Qi, Liwei Wang, Zeming Li, Jian Sun,
and Jiaya Jia. «Fully Convolutional Networks for Panoptic Segmentation».
en. In: (Dec. 2020). url: https://arxiv.org/abs/2012.00720v2 (visited
on 02/22/2022) (cit. on p. 16).

[68] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. «Mask
R-CNN». In: arXiv:1703.06870 [cs] (Jan. 2018). arXiv: 1703.06870. url:
http://arxiv.org/abs/1703.06870 (visited on 01/28/2022) (cit. on
pp. 16, 41, 45, 69, 77, 93).

[69] Liang-Chieh Chen, Huiyu Wang, and Siyuan Qiao. «Scaling Wide Residual
Networks for Panoptic Segmentation». In: arXiv:2011.11675 [cs] (Feb. 2021).
arXiv: 2011.11675. url: http://arxiv.org/abs/2011.11675 (visited on
02/22/2022) (cit. on p. 16).

[70] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. «Attention Is All You
Need». en. In: (June 2017). url: https://arxiv.org/abs/1706.03762v5
(visited on 02/22/2022) (cit. on pp. 16, 27).

[71] Zhuofan Xia, Xuran Pan, Shiji Song, Li Erran Li, and Gao Huang. «Vision
Transformer with Deformable Attention». en. In: (Jan. 2022). url: https:
//arxiv.org/abs/2201.00520v2 (visited on 02/22/2022) (cit. on p. 16).

[72] Alexey Dosovitskiy et al. «An Image is Worth 16x16 Words: Transformers
for Image Recognition at Scale». en. In: (Oct. 2020). url: https://arxiv.
org/abs/2010.11929v2 (visited on 02/22/2022) (cit. on p. 16).

[73] Zhiqi Li, Wenhai Wang, Enze Xie, Zhiding Yu, Anima Anandkumar, Jose M.
Alvarez, Tong Lu, and Ping Luo. «Panoptic SegFormer: Delving Deeper
into Panoptic Segmentation with Transformers». en. In: (Sept. 2021). url:
https://arxiv.org/abs/2109.03814v3 (visited on 02/22/2022) (cit. on
p. 16).

[74] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. «Learning
representations by back-propagating errors». en. In: Nature 323.6088 (Oct.
1986). Number: 6088 Publisher: Nature Publishing Group, pp. 533–536.
issn: 1476-4687. doi: 10.1038/323533a0. url: https://www.nature.com/
articles/323533a0 (visited on 03/14/2022) (cit. on pp. 17, 27).

127

http://arxiv.org/abs/2012.01632
https://arxiv.org/abs/2012.00720v2
http://arxiv.org/abs/1703.06870
http://arxiv.org/abs/2011.11675
https://arxiv.org/abs/1706.03762v5
https://arxiv.org/abs/2201.00520v2
https://arxiv.org/abs/2201.00520v2
https://arxiv.org/abs/2010.11929v2
https://arxiv.org/abs/2010.11929v2
https://arxiv.org/abs/2109.03814v3
https://doi.org/10.1038/323533a0
https://www.nature.com/articles/323533a0
https://www.nature.com/articles/323533a0


BIBLIOGRAPHY

[75] Xavier Glorot and Yoshua Bengio. «Understanding the difficulty of training
deep feedforward neural networks». en. In: Proceedings of the Thirteenth
International Conference on Artificial Intelligence and Statistics. ISSN: 1938-
7228. JMLR Workshop and Conference Proceedings, Mar. 2010, pp. 249–256.
url: https://proceedings.mlr.press/v9/glorot10a.html (visited on
03/16/2022) (cit. on p. 18).

[76] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. «Delving Deep
into Rectifiers: Surpassing Human-Level Performance on ImageNet Classi-
fication». In: arXiv:1502.01852 [cs] (Feb. 2015). arXiv: 1502.01852. url:
http://arxiv.org/abs/1502.01852 (visited on 03/16/2022) (cit. on
p. 18).

[77] Wadii Boulila, Maha Driss, Eman Alshanqiti, Mohamed Al-Sarem, Faisal
Saeed, and Moez Krichen. «Weight Initialization Techniques for Deep Learn-
ing Algorithms in Remote Sensing: Recent Trends and Future Perspectives».
en. In: Advances on Smart and Soft Computing. Ed. by Faisal Saeed, Taw-
fik Al-Hadhrami, Errais Mohammed, and Mohammed Al-Sarem. Vol. 1399.
Series Title: Advances in Intelligent Systems and Computing. Singapore:
Springer Singapore, 2022, pp. 477–484. isbn: 9789811655586 9789811655593.
doi: 10.1007/978-981-16-5559-3_39. url: https://link.springer.
com/10.1007/978-981-16-5559-3_39 (visited on 03/16/2022) (cit. on
p. 18).

[78] Philipp Krähenbühl, Carl Doersch, Jeff Donahue, and Trevor Darrell. «Data-
dependent Initializations of Convolutional Neural Networks». In: arXiv:1511.06856
[cs] (Sept. 2016). arXiv: 1511.06856. url: http://arxiv.org/abs/1511.
06856 (visited on 03/16/2022) (cit. on p. 18).

[79] Vincent Dumoulin and Francesco Visin. «A guide to convolution arith-
metic for deep learning». In: arXiv:1603.07285 [cs, stat] (Mar. 2016). arXiv:
1603.07285 version: 1. url: http://arxiv.org/abs/1603.07285 (visited
on 02/28/2022) (cit. on pp. 20, 21, 24).

[80] Fisher Yu and Vladlen Koltun. «Multi-Scale Context Aggregation by Dilated
Convolutions». In: arXiv:1511.07122 [cs] (Apr. 2016). arXiv: 1511.07122.
url: http://arxiv.org/abs/1511.07122 (visited on 02/28/2022) (cit. on
p. 21).

[81] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and
Ruslan Salakhutdinov. «Dropout: A Simple Way to Prevent Neural Networks
from Overfitting». In: Journal of Machine Learning Research 15.56 (2014),
pp. 1929–1958. issn: 1533-7928. url: http://jmlr.org/papers/v15/
srivastava14a.html (visited on 03/19/2022) (cit. on p. 22).

128

https://proceedings.mlr.press/v9/glorot10a.html
http://arxiv.org/abs/1502.01852
https://doi.org/10.1007/978-981-16-5559-3_39
https://link.springer.com/10.1007/978-981-16-5559-3_39
https://link.springer.com/10.1007/978-981-16-5559-3_39
http://arxiv.org/abs/1511.06856
http://arxiv.org/abs/1511.06856
http://arxiv.org/abs/1603.07285
http://arxiv.org/abs/1511.07122
http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html


BIBLIOGRAPHY

[82] Sergey Ioffe and Christian Szegedy. «Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift». In: arXiv:1502.03167
[cs] (Mar. 2015). arXiv: 1502.03167. url: http://arxiv.org/abs/1502.
03167 (visited on 03/19/2022) (cit. on pp. 22, 23).

[83] Vinod Nair and Geoffrey E. Hinton. «Rectified linear units improve restricted
boltzmann machines». In: Proceedings of the 27th International Conference
on International Conference on Machine Learning. ICML’10. Madison, WI,
USA: Omnipress, 2010, pp. 807–814. isbn: 978-1-60558-907-7. (Visited on
03/20/2022) (cit. on pp. 25, 26).

[84] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. «ImageNet Classi-
fication with Deep Convolutional Neural Networks». In: Advances in Neural
Information Processing Systems. Vol. 25. Curran Associates, Inc., 2012. url:
https://proceedings.neurips.cc/paper/2012/hash/c399862d3b9d6
b76c8436e924a68c45b-Abstract.html (visited on 03/13/2022) (cit. on
pp. 27–29).

[85] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. «Gradient-based learning
applied to document recognition». In: Proceedings of the IEEE 86.11 (Nov.
1998). Conference Name: Proceedings of the IEEE, pp. 2278–2324. issn:
1558-2256. doi: 10.1109/5.726791 (cit. on pp. 27, 28).

[86] Jeffrey L. Elman. «Finding Structure in Time». en. In: Cognitive Science 14.2
(1990). _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1207/s15516709cog1402_1,
pp. 179–211. issn: 1551-6709. doi: 10.1207/s15516709cog1402_1. url:
https://onlinelibrary.wiley.com/doi/abs/10.1207/s15516709cog14
02_1 (visited on 03/14/2022) (cit. on p. 27).

[87] Sepp Hochreiter and Jürgen Schmidhuber. «Long Short-Term Memory». In:
Neural Computation 9.8 (Nov. 1997), pp. 1735–1780. issn: 0899-7667. doi:
10.1162/neco.1997.9.8.1735. url: https://doi.org/10.1162/neco.
1997.9.8.1735 (visited on 03/14/2022) (cit. on p. 27).

[88] [1609.02907] Semi-Supervised Classification with Graph Convolutional Net-
works. url: https://arxiv.org/abs/1609.02907 (visited on 03/14/2022)
(cit. on p. 27).

[89] Yann LeCun. «Generalization and network design strategies». en. In: unde-
fined (1989). url: https://www.semanticscholar.org/paper/Generali
zation-and-network-design-strategies-LeCun/01b6affe3ea4eae197
8aec54e87087feb76d9215 (visited on 03/14/2022) (cit. on p. 27).

129

http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1502.03167
https://proceedings.neurips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://proceedings.neurips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://doi.org/10.1109/5.726791
https://doi.org/10.1207/s15516709cog1402_1
https://onlinelibrary.wiley.com/doi/abs/10.1207/s15516709cog1402_1
https://onlinelibrary.wiley.com/doi/abs/10.1207/s15516709cog1402_1
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://arxiv.org/abs/1609.02907
https://www.semanticscholar.org/paper/Generalization-and-network-design-strategies-LeCun/01b6affe3ea4eae1978aec54e87087feb76d9215
https://www.semanticscholar.org/paper/Generalization-and-network-design-strategies-LeCun/01b6affe3ea4eae1978aec54e87087feb76d9215
https://www.semanticscholar.org/paper/Generalization-and-network-design-strategies-LeCun/01b6affe3ea4eae1978aec54e87087feb76d9215


BIBLIOGRAPHY

[90] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard,
and L. D. Jackel. «Backpropagation applied to handwritten zip code recog-
nition». In: Neural Computation 1.4 (1989), pp. 541–551. issn: 0899-7667.
doi: 10.1162/neco.1989.1.4.541. url: https://doi.org/10.1162/
neco.1989.1.4.541 (visited on 03/14/2022) (cit. on p. 27).

[91] Matthew D. Zeiler and Rob Fergus. «Visualizing and Understanding Convo-
lutional Networks». In: arXiv:1311.2901 [cs] (Nov. 2013). arXiv: 1311.2901.
url: http://arxiv.org/abs/1311.2901 (visited on 03/14/2022) (cit. on
pp. 29, 35, 36, 75, 85).

[92] Karen Simonyan and Andrew Zisserman. «Very Deep Convolutional Net-
works for Large-Scale Image Recognition». In: arXiv:1409.1556 [cs] (Apr.
2015). arXiv: 1409.1556. url: http://arxiv.org/abs/1409.1556 (visited
on 03/13/2022) (cit. on pp. 29, 35).

[93] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. «Deep Residual
Learning for Image Recognition». In: arXiv:1512.03385 [cs] (Dec. 2015).
arXiv: 1512.03385. url: http://arxiv.org/abs/1512.03385 (visited on
01/28/2022) (cit. on pp. 29–31, 69, 71–73).

[94] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He.
«Aggregated Residual Transformations for Deep Neural Networks». In:
arXiv:1611.05431 [cs] (Apr. 2017). arXiv: 1611.05431. url: http://arxiv.
org/abs/1611.05431 (visited on 03/13/2022) (cit. on pp. 31, 32).

[95] Sergey Zagoruyko and Nikos Komodakis. «Wide Residual Networks». In:
arXiv:1605.07146 [cs] (June 2017). arXiv: 1605.07146. url: http://arxiv.
org/abs/1605.07146 (visited on 03/13/2022) (cit. on p. 31).

[96] Jie Hu, Li Shen, Samuel Albanie, Gang Sun, and Enhua Wu. «Squeeze-
and-Excitation Networks». In: arXiv:1709.01507 [cs] (May 2019). arXiv:
1709.01507. url: http://arxiv.org/abs/1709.01507 (visited on 03/15/2022)
(cit. on p. 32).

[97] Mingxing Tan and Quoc V. Le. «EfficientNet: Rethinking Model Scaling for
Convolutional Neural Networks». In: arXiv:1905.11946 [cs, stat] (Sept. 2020).
arXiv: 1905.11946. url: http://arxiv.org/abs/1905.11946 (visited on
03/13/2022) (cit. on p. 32).

[98] Edward Adelson, Charles Anderson, James Bergen, Peter Burt, and Joan
Ogden. «Pyramid Methods in Image Processing». In: RCA Eng. 29 (Nov.
1983) (cit. on p. 33).

[99] D.G. Lowe. «Object recognition from local scale-invariant features». In:
Proceedings of the Seventh IEEE International Conference on Computer
Vision. Vol. 2. Sept. 1999, 1150–1157 vol.2. doi: 10.1109/ICCV.1999.790410
(cit. on p. 33).

130

https://doi.org/10.1162/neco.1989.1.4.541
https://doi.org/10.1162/neco.1989.1.4.541
https://doi.org/10.1162/neco.1989.1.4.541
http://arxiv.org/abs/1311.2901
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1611.05431
http://arxiv.org/abs/1611.05431
http://arxiv.org/abs/1605.07146
http://arxiv.org/abs/1605.07146
http://arxiv.org/abs/1709.01507
http://arxiv.org/abs/1905.11946
https://doi.org/10.1109/ICCV.1999.790410


BIBLIOGRAPHY

[100] Lara Younes, Barbara Romaniuk, and Eric Bittar. A COMPREHENSIVE
AND COMPARATIVE SURVEY OF THE SIFT ALGORITHM (Feature
detection, description, and characterization. Feb. 2012 (cit. on p. 33).

[101] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. «Spatial Pyra-
mid Pooling in Deep Convolutional Networks for Visual Recognition». In:
arXiv:1406.4729 [cs] 8691 (2014). arXiv: 1406.4729, pp. 346–361. doi: 10.
1007/978-3-319-10578-9_23. url: http://arxiv.org/abs/1406.4729
(visited on 03/21/2022) (cit. on p. 33).

[102] Jonathan Long, Evan Shelhamer, and Trevor Darrell. «Fully Convolutional
Networks for Semantic Segmentation». In: arXiv:1411.4038 [cs] (Mar. 2015).
arXiv: 1411.4038. url: http://arxiv.org/abs/1411.4038 (visited on
03/21/2022) (cit. on pp. 33, 35, 36, 43, 44).

[103] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. «U-Net: Convolutional
Networks for Biomedical Image Segmentation». In: arXiv:1505.04597 [cs]
(May 2015). arXiv: 1505.04597. url: http://arxiv.org/abs/1505.04597
(visited on 02/28/2022) (cit. on pp. 34–36, 43, 44).

[104] Zhaowei Cai, Quanfu Fan, Rogerio S. Feris, and Nuno Vasconcelos. «A
Unified Multi-scale Deep Convolutional Neural Network for Fast Object
Detection». In: arXiv:1607.07155 [cs] (July 2016). arXiv: 1607.07155. url:
http://arxiv.org/abs/1607.07155 (visited on 03/21/2022) (cit. on
p. 34).

[105] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. «Rich
feature hierarchies for accurate object detection and semantic segmentation».
In: arXiv:1311.2524 [cs] (Oct. 2014). arXiv: 1311.2524. url: http://arxiv.
org/abs/1311.2524 (visited on 02/27/2022) (cit. on pp. 34, 42, 78).

[106] Ross Girshick. «Fast R-CNN». In: arXiv:1504.08083 [cs] (Sept. 2015).
arXiv: 1504.08083. url: http://arxiv.org/abs/1504.08083 (visited
on 01/28/2022) (cit. on pp. 34, 39, 78, 80, 93, 95, 96).

[107] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan,
and Serge Belongie. «Feature Pyramid Networks for Object Detection». In:
arXiv:1612.03144 [cs] (Apr. 2017). arXiv: 1612.03144. url: http://arxiv.
org/abs/1612.03144 (visited on 02/22/2022) (cit. on pp. 35, 36, 69, 74,
79).

[108] Matthew D. Zeiler, Dilip Krishnan, Graham W. Taylor, and Rob Fergus.
«Deconvolutional networks». In: 2010 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition. ISSN: 1063-6919. June 2010,
pp. 2528–2535. doi: 10.1109/CVPR.2010.5539957 (cit. on p. 36).

131

https://doi.org/10.1007/978-3-319-10578-9_23
https://doi.org/10.1007/978-3-319-10578-9_23
http://arxiv.org/abs/1406.4729
http://arxiv.org/abs/1411.4038
http://arxiv.org/abs/1505.04597
http://arxiv.org/abs/1607.07155
http://arxiv.org/abs/1311.2524
http://arxiv.org/abs/1311.2524
http://arxiv.org/abs/1504.08083
http://arxiv.org/abs/1612.03144
http://arxiv.org/abs/1612.03144
https://doi.org/10.1109/CVPR.2010.5539957


BIBLIOGRAPHY

[109] Shu Liu, Lu Qi, Haifang Qin, Jianping Shi, and Jiaya Jia. «Path Aggregation
Network for Instance Segmentation». en. In: arXiv:1803.01534 [cs] (Sept.
2018). arXiv: 1803.01534. url: http : / / arxiv . org / abs / 1803 . 01534
(visited on 03/22/2022) (cit. on p. 37).

[110] Mingxing Tan, Ruoming Pang, and Quoc V. Le. «EfficientDet: Scalable and
Efficient Object Detection». en. In: arXiv:1911.09070 [cs, eess] (July 2020).
arXiv: 1911.09070. url: http://arxiv.org/abs/1911.09070 (visited on
03/22/2022) (cit. on pp. 37–39).

[111] Golnaz Ghiasi, Tsung-Yi Lin, Ruoming Pang, and Quoc V. Le. «NAS-FPN:
Learning Scalable Feature Pyramid Architecture for Object Detection».
en. In: arXiv:1904.07392 [cs] (Apr. 2019). arXiv: 1904.07392. url: http:
//arxiv.org/abs/1904.07392 (visited on 03/22/2022) (cit. on p. 37).

[112] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. «Faster R-CNN:
Towards Real-Time Object Detection with Region Proposal Networks». In:
arXiv:1506.01497 [cs] (Jan. 2016). arXiv: 1506.01497. url: http://arxiv.
org/abs/1506.01497 (visited on 01/28/2022) (cit. on pp. 39, 41, 78, 80, 95,
98).

[113] Nikita Dvornik, Konstantin Shmelkov, Julien Mairal, and Cordelia Schmid.
«BlitzNet: A Real-Time Deep Network for Scene Understanding». In: arXiv:1708.02813
[cs] (Aug. 2017). arXiv: 1708.02813. url: http://arxiv.org/abs/1708.
02813 (visited on 03/22/2022) (cit. on p. 39).

[114] Jiale Cao, Yanwei Pang, and Xuelong Li. «Triply Supervised Decoder Net-
works for Joint Detection and Segmentation». In: arXiv:1809.09299 [cs]
(Sept. 2018). arXiv: 1809.09299. url: http://arxiv.org/abs/1809.09299
(visited on 03/22/2022) (cit. on p. 39).

[115] Jiayuan Mao, Tete Xiao, Yuning Jiang, and Zhimin Cao. «What Can
Help Pedestrian Detection?» In: arXiv:1705.02757 [cs] (May 2017). arXiv:
1705.02757. url: http://arxiv.org/abs/1705.02757 (visited on 03/22/2022)
(cit. on p. 39).

[116] Iasonas Kokkinos. «UberNet: Training a ‘Universal’ Convolutional Neural
Network for Low-, Mid-, and High-Level Vision using Diverse Datasets and
Limited Memory». In: arXiv:1609.02132 [cs] (Sept. 2016). arXiv: 1609.02132.
url: http://arxiv.org/abs/1609.02132 (visited on 03/22/2022) (cit. on
p. 39).

[117] Alex Kendall, Yarin Gal, and Roberto Cipolla. «Multi-Task Learning Us-
ing Uncertainty to Weigh Losses for Scene Geometry and Semantics». In:
arXiv:1705.07115 [cs] (Apr. 2018). arXiv: 1705.07115. url: http://arxiv.
org/abs/1705.07115 (visited on 03/22/2022) (cit. on pp. 39, 40).

132

http://arxiv.org/abs/1803.01534
http://arxiv.org/abs/1911.09070
http://arxiv.org/abs/1904.07392
http://arxiv.org/abs/1904.07392
http://arxiv.org/abs/1506.01497
http://arxiv.org/abs/1506.01497
http://arxiv.org/abs/1708.02813
http://arxiv.org/abs/1708.02813
http://arxiv.org/abs/1809.09299
http://arxiv.org/abs/1705.02757
http://arxiv.org/abs/1609.02132
http://arxiv.org/abs/1705.07115
http://arxiv.org/abs/1705.07115


BIBLIOGRAPHY

[118] Jian Yao, Sanja Fidler, and Raquel Urtasun. «Describing the scene as a whole:
Joint object detection, scene classification and semantic segmentation». In:
2012 IEEE Conference on Computer Vision and Pattern Recognition. ISSN:
1063-6919. June 2012, pp. 702–709. doi: 10.1109/CVPR.2012.6247739
(cit. on p. 39).

[119] Ishan Misra, Abhinav Shrivastava, Abhinav Gupta, and Martial Hebert.
«Cross-stitch Networks for Multi-task Learning». In: arXiv:1604.03539 [cs]
(Apr. 2016). arXiv: 1604.03539. url: http://arxiv.org/abs/1604.03539
(visited on 03/22/2022) (cit. on p. 40).

[120] Yi Li, Haozhi Qi, Jifeng Dai, Xiangyang Ji, and Yichen Wei. «Fully Convo-
lutional Instance-aware Semantic Segmentation». In: arXiv:1611.07709 [cs]
(Apr. 2017). arXiv: 1611.07709. url: http://arxiv.org/abs/1611.07709
(visited on 03/24/2022) (cit. on p. 41).

[121] Jifeng Dai, Kaiming He, Yi Li, Shaoqing Ren, and Jian Sun. «Instance-
sensitive Fully Convolutional Networks». In: arXiv:1603.08678 [cs] (Mar.
2016). arXiv: 1603.08678. url: http : / / arxiv . org / abs / 1603 . 08678
(visited on 03/24/2022) (cit. on p. 41).

[122] Bharath Hariharan, Pablo Arbeláez, Ross Girshick, and Jitendra Malik.
«Hypercolumns for Object Segmentation and Fine-grained Localization». In:
arXiv:1411.5752 [cs] (Apr. 2015). arXiv: 1411.5752. url: http://arxiv.
org/abs/1411.5752 (visited on 03/24/2022) (cit. on p. 42).

[123] Jordi Pont-Tuset, Pablo Arbelaez, Jonathan T. Barron, Ferran Marques, and
Jitendra Malik. «Multiscale Combinatorial Grouping for Image Segmentation
and Object Proposal Generation». In: arXiv:1503.00848 [cs] (Mar. 2016).
arXiv: 1503.00848. doi: 10.1109/TPAMI.2016.2537320. url: http://
arxiv.org/abs/1503.00848 (visited on 03/24/2022) (cit. on p. 42).

[124] Min Bai and Raquel Urtasun. «Deep Watershed Transform for Instance
Segmentation». In: arXiv:1611.08303 [cs] (May 2017). arXiv: 1611.08303.
url: http://arxiv.org/abs/1611.08303 (visited on 03/24/2022) (cit. on
p. 42).

[125] Naiyu Gao, Yanhu Shan, Yupei Wang, Xin Zhao, Yinan Yu, Ming Yang,
and Kaiqi Huang. «SSAP: Single-Shot Instance Segmentation With Affinity
Pyramid». In: arXiv:1909.01616 [cs] (Sept. 2019). arXiv: 1909.01616. url:
http://arxiv.org/abs/1909.01616 (visited on 03/23/2022) (cit. on
pp. 42, 47).

[126] Pedro O. Pinheiro, Ronan Collobert, and Piotr Dollar. «Learning to Seg-
ment Object Candidates». In: arXiv:1506.06204 [cs] (Sept. 2015). arXiv:
1506.06204. url: http://arxiv.org/abs/1506.06204 (visited on 03/24/2022)
(cit. on p. 43).

133

https://doi.org/10.1109/CVPR.2012.6247739
http://arxiv.org/abs/1604.03539
http://arxiv.org/abs/1611.07709
http://arxiv.org/abs/1603.08678
http://arxiv.org/abs/1411.5752
http://arxiv.org/abs/1411.5752
https://doi.org/10.1109/TPAMI.2016.2537320
http://arxiv.org/abs/1503.00848
http://arxiv.org/abs/1503.00848
http://arxiv.org/abs/1611.08303
http://arxiv.org/abs/1909.01616
http://arxiv.org/abs/1506.06204


BIBLIOGRAPHY

[127] Xinlei Chen, Ross Girshick, Kaiming He, and Piotr Dollár. «TensorMask:
A Foundation for Dense Object Segmentation». In: arXiv:1903.12174 [cs]
(Aug. 2019). arXiv: 1903.12174. url: http://arxiv.org/abs/1903.12174
(visited on 03/24/2022) (cit. on p. 43).

[128] Dor Bank, Noam Koenigstein, and Raja Giryes. «Autoencoders». In: arXiv:2003.05991
[cs, stat] (Apr. 2021). arXiv: 2003.05991. url: http://arxiv.org/abs/
2003.05991 (visited on 02/28/2022) (cit. on p. 43).

[129] Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Man-
zagol. «Extracting and composing robust features with denoising autoen-
coders». In: Proceedings of the 25th international conference on Machine
learning. ICML ’08. New York, NY, USA: Association for Computing Machin-
ery, 2008, pp. 1096–1103. isbn: 978-1-60558-205-4. doi: 10.1145/1390156.
1390294. url: https://doi.org/10.1145/1390156.1390294 (visited on
02/28/2022) (cit. on p. 43).

[130] Marc’Aurelio Ranzato, Fu Jie Huang, Y-Lan Boureau, and Yann LeCun.
«Unsupervised Learning of Invariant Feature Hierarchies with Applications
to Object Recognition». In: 2007 IEEE Conference on Computer Vision and
Pattern Recognition. ISSN: 1063-6919. June 2007, pp. 1–8. doi: 10.1109/
CVPR.2007.383157 (cit. on p. 43).

[131] Yifei Zhang. «A Better Autoencoder for Image: Convolutional Autoencoder».
en. In: (), p. 7 (cit. on p. 43).

[132] Jonathan Masci, Ueli Meier, Dan Cireşan, and Jürgen Schmidhuber. «Stacked
Convolutional Auto-Encoders for Hierarchical Feature Extraction». en. In:
Artificial Neural Networks and Machine Learning – ICANN 2011. Ed.
by Timo Honkela, Włodzisław Duch, Mark Girolami, and Samuel Kaski.
Vol. 6791. Series Title: Lecture Notes in Computer Science. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 2011, pp. 52–59. isbn: 978-3-642-21734-0
978-3-642-21735-7. doi: 10.1007/978- 3- 642- 21735- 7_7. url: http:
//link.springer.com/10.1007/978- 3- 642- 21735- 7_7 (visited on
02/28/2022) (cit. on p. 43).

[133] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy,
and Alan L. Yuille. «DeepLab: Semantic Image Segmentation with Deep
Convolutional Nets, Atrous Convolution, and Fully Connected CRFs». In:
arXiv:1606.00915 [cs] (May 2017). arXiv: 1606.00915. url: http://arxiv.
org/abs/1606.00915 (visited on 03/24/2022) (cit. on pp. 43, 44).

[134] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy,
and Alan L. Yuille. «Semantic Image Segmentation with Deep Convolutional
Nets and Fully Connected CRFs». In: arXiv:1412.7062 [cs] (June 2016).

134

http://arxiv.org/abs/1903.12174
http://arxiv.org/abs/2003.05991
http://arxiv.org/abs/2003.05991
https://doi.org/10.1145/1390156.1390294
https://doi.org/10.1145/1390156.1390294
https://doi.org/10.1145/1390156.1390294
https://doi.org/10.1109/CVPR.2007.383157
https://doi.org/10.1109/CVPR.2007.383157
https://doi.org/10.1007/978-3-642-21735-7_7
http://link.springer.com/10.1007/978-3-642-21735-7_7
http://link.springer.com/10.1007/978-3-642-21735-7_7
http://arxiv.org/abs/1606.00915
http://arxiv.org/abs/1606.00915


BIBLIOGRAPHY

arXiv: 1412.7062. url: http://arxiv.org/abs/1412.7062 (visited on
03/24/2022) (cit. on pp. 43, 44).

[135] Wei Liu, Andrew Rabinovich, and Alexander C. Berg. «ParseNet: Look-
ing Wider to See Better». In: arXiv:1506.04579 [cs] (Nov. 2015). arXiv:
1506.04579. url: http://arxiv.org/abs/1506.04579 (visited on 03/24/2022)
(cit. on pp. 43, 44).

[136] Hyeonwoo Noh, Seunghoon Hong, and Bohyung Han. «Learning Decon-
volution Network for Semantic Segmentation». In: arXiv:1505.04366 [cs]
(May 2015). arXiv: 1505.04366. url: http://arxiv.org/abs/1505.04366
(visited on 03/24/2022) (cit. on p. 44).

[137] Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla. «SegNet: A Deep
Convolutional Encoder-Decoder Architecture for Image Segmentation». In:
arXiv:1511.00561 [cs] (Oct. 2016). arXiv: 1511.00561. url: http://arxiv.
org/abs/1511.00561 (visited on 03/24/2022) (cit. on p. 44).

[138] Z. Tu, Xiangrong Chen, Alan Yuille, and Song Zhu. «Image Parsing: Unifying
Segmentation, Detection, and Recognition». In: International Journal of
Computer Vision 63 (Jan. 2005), pp. 113–140. doi: 10.1007/s11263-005-
6642-x (cit. on p. 45).

[139] Tien-Ju Yang, Maxwell D. Collins, Yukun Zhu, Jyh-Jing Hwang, Ting Liu,
Xiao Zhang, Vivienne Sze, George Papandreou, and Liang-Chieh Chen.
«DeeperLab: Single-Shot Image Parser». In: arXiv:1902.05093 [cs] (Mar.
2019). arXiv: 1902.05093. url: http : / / arxiv . org / abs / 1902 . 05093
(visited on 03/23/2022) (cit. on p. 46).

[140] Yaroslav Ganin and Victor Lempitsky. «Unsupervised Domain Adaptation
by Backpropagation». In: arXiv:1409.7495 [cs, stat] (Feb. 2015). arXiv:
1409.7495. url: http://arxiv.org/abs/1409.7495 (visited on 03/26/2022)
(cit. on pp. 48, 82–85, 97, 100, 101, 103, 106, 117).

[141] Mingsheng Long, Yue Cao, Jianmin Wang, and Michael I. Jordan. «Learning
Transferable Features with Deep Adaptation Networks». In: arXiv:1502.02791
[cs] (May 2015). arXiv: 1502.02791. url: http://arxiv.org/abs/1502.
02791 (visited on 03/26/2022) (cit. on p. 48).

[142] Konstantinos Bousmalis, George Trigeorgis, Nathan Silberman, Dilip Krish-
nan, and Dumitru Erhan. «Domain Separation Networks». In: arXiv:1608.06019
[cs] (Aug. 2016). arXiv: 1608.06019. url: http://arxiv.org/abs/1608.
06019 (visited on 03/26/2022) (cit. on p. 48).

[143] Baochen Sun, Jiashi Feng, and Kate Saenko. «Return of Frustratingly
Easy Domain Adaptation». In: arXiv:1511.05547 [cs] (Dec. 2015). arXiv:
1511.05547. url: http://arxiv.org/abs/1511.05547 (visited on 03/26/2022)
(cit. on p. 48).

135

http://arxiv.org/abs/1412.7062
http://arxiv.org/abs/1506.04579
http://arxiv.org/abs/1505.04366
http://arxiv.org/abs/1511.00561
http://arxiv.org/abs/1511.00561
https://doi.org/10.1007/s11263-005-6642-x
https://doi.org/10.1007/s11263-005-6642-x
http://arxiv.org/abs/1902.05093
http://arxiv.org/abs/1409.7495
http://arxiv.org/abs/1502.02791
http://arxiv.org/abs/1502.02791
http://arxiv.org/abs/1608.06019
http://arxiv.org/abs/1608.06019
http://arxiv.org/abs/1511.05547


BIBLIOGRAPHY

[144] Ruijia Xu, Guanbin Li, Jihan Yang, and Liang Lin. «Larger Norm More
Transferable: An Adaptive Feature Norm Approach for Unsupervised Domain
Adaptation». In: arXiv:1811.07456 [cs] (Aug. 2019). arXiv: 1811.07456. url:
http://arxiv.org/abs/1811.07456 (visited on 03/26/2022) (cit. on
p. 48).

[145] Mohammad Reza Loghmani, Luca Robbiano, Mirco Planamente, Kiru
Park, Barbara Caputo, and Markus Vincze. «Unsupervised Domain Adap-
tation through Inter-modal Rotation for RGB-D Object Recognition». In:
arXiv:2004.10016 [cs] (Apr. 2020). arXiv: 2004.10016. url: http://arxiv.
org/abs/2004.10016 (visited on 03/26/2022) (cit. on p. 48).

[146] Yu Sun, Eric Tzeng, Trevor Darrell, and Alexei A. Efros. «Unsupervised
Domain Adaptation through Self-Supervision». In: arXiv:1909.11825 [cs,
stat] (Sept. 2019). arXiv: 1909.11825. url: http://arxiv.org/abs/1909.
11825 (visited on 03/26/2022) (cit. on p. 48).

[147] Richard Hartley and Andrew Zisserman. Multiple View Geometry in Com-
puter Vision. 2nd ed. Cambridge: Cambridge University Press, 2004. isbn:
978-0-521-54051-3. doi: 10.1017/CBO9780511811685. url: https://www.
cambridge.org/core/books/multiple-view-geometry-in-computer-
vision/0B6F289C78B2B23F596CAA76D3D43F7A (visited on 03/01/2022) (cit.
on p. 52).

[148] Pei Sun et al. «Scalability in Perception for Autonomous Driving: Waymo
Open Dataset». In: arXiv:1912.04838 [cs, stat] (May 2020). arXiv: 1912.04838.
url: http://arxiv.org/abs/1912.04838 (visited on 01/28/2022) (cit. on
p. 55).

[149] Autopilot. en-us. url: https://www.tesla.com/autopilot (visited on
02/23/2022) (cit. on p. 56).

[150] facebookresearch/detectron2. original-date: 2019-09-05T21:30:20Z. Mar. 2022.
url: https://github.com/facebookresearch/detectron2/blob/6886f
85baee349556749680ae8c85cdba1782d8e/datasets/prepare_panoptic_
fpn.py (visited on 03/28/2022) (cit. on pp. 60, 61).

[151] COCO 2018 Panoptic Segmentation Task API (Beta version). original-date:
2018-06-27T13:00:46Z. Mar. 2022. url: https://github.com/cocodatase
t/panopticapi/blob/7bb4655548f98f3fedc07bf37e9040a992b054b0/co
nverters/detection2panoptic_coco_format.py (visited on 03/28/2022)
(cit. on p. 60).

136

http://arxiv.org/abs/1811.07456
http://arxiv.org/abs/2004.10016
http://arxiv.org/abs/2004.10016
http://arxiv.org/abs/1909.11825
http://arxiv.org/abs/1909.11825
https://doi.org/10.1017/CBO9780511811685
https://www.cambridge.org/core/books/multiple-view-geometry-in-computer-vision/0B6F289C78B2B23F596CAA76D3D43F7A
https://www.cambridge.org/core/books/multiple-view-geometry-in-computer-vision/0B6F289C78B2B23F596CAA76D3D43F7A
https://www.cambridge.org/core/books/multiple-view-geometry-in-computer-vision/0B6F289C78B2B23F596CAA76D3D43F7A
http://arxiv.org/abs/1912.04838
https://www.tesla.com/autopilot
https://github.com/facebookresearch/detectron2/blob/6886f85baee349556749680ae8c85cdba1782d8e/datasets/prepare_panoptic_fpn.py
https://github.com/facebookresearch/detectron2/blob/6886f85baee349556749680ae8c85cdba1782d8e/datasets/prepare_panoptic_fpn.py
https://github.com/facebookresearch/detectron2/blob/6886f85baee349556749680ae8c85cdba1782d8e/datasets/prepare_panoptic_fpn.py
https://github.com/cocodataset/panopticapi/blob/7bb4655548f98f3fedc07bf37e9040a992b054b0/converters/detection2panoptic_coco_format.py
https://github.com/cocodataset/panopticapi/blob/7bb4655548f98f3fedc07bf37e9040a992b054b0/converters/detection2panoptic_coco_format.py
https://github.com/cocodataset/panopticapi/blob/7bb4655548f98f3fedc07bf37e9040a992b054b0/converters/detection2panoptic_coco_format.py


BIBLIOGRAPHY

[152] Marius Cordts. The Cityscapes Dataset. original-date: 2016-02-20T13:00:11Z.
Mar. 2022. url: https://github.com/mcordts/cityscapesScripts/bl
ob/aeb7b82531f86185ce287705be28f452ba3ddbb8/cityscapesscripts/
preparation/createPanopticImgs.py (visited on 03/28/2022) (cit. on
p. 61).

[153] bdd100k/to_coco_panseg.py at master · bdd100k/bdd100k. en. url: https:
//github.com/bdd100k/bdd100k (visited on 03/28/2022) (cit. on p. 61).

[154] Yuxin Wu and Kaiming He. «Group Normalization». In: arXiv:1803.08494
[cs] (June 2018). arXiv: 1803.08494. url: http://arxiv.org/abs/1803.
08494 (visited on 03/26/2022) (cit. on p. 77).

[155] Giovanni Pasqualino, Antonino Furnari, Giovanni Signorello, and Giovanni
Maria Farinella. «An Unsupervised Domain Adaptation Scheme for Single-
Stage Artwork Recognition in Cultural Sites». In: arXiv:2008.01882 [cs]
(Dec. 2020). arXiv: 2008.01882. url: http://arxiv.org/abs/2008.01882
(visited on 03/26/2022) (cit. on p. 86).

[156] Ruoyu Sun. «Optimization for deep learning: theory and algorithms». In:
arXiv:1912.08957 [cs, math, stat] (Dec. 2019). arXiv: 1912.08957. url:
http://arxiv.org/abs/1912.08957 (visited on 03/27/2022) (cit. on
p. 91).

[157] H. Robbins. «A Stochastic Approximation Method». In: (2007). doi: 10.
1214/AOMS/1177729586 (cit. on p. 92).

[158] Diederik P. Kingma and Jimmy Ba. «Adam: A Method for Stochastic
Optimization». In: arXiv:1412.6980 [cs] (Jan. 2017). arXiv: 1412.6980. url:
http://arxiv.org/abs/1412.6980 (visited on 03/27/2022) (cit. on pp. 92,
105).

[159] Sebastian Ruder. «An overview of gradient descent optimization algorithms».
In: arXiv:1609.04747 [cs] (June 2017). arXiv: 1609.04747. url: http://
arxiv.org/abs/1609.04747 (visited on 03/27/2022) (cit. on p. 92).

[160] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár.
«Focal Loss for Dense Object Detection». In: arXiv:1708.02002 [cs] (Feb.
2018). arXiv: 1708.02002. url: http : / / arxiv . org / abs / 1708 . 02002
(visited on 03/27/2022) (cit. on p. 97).

137

https://github.com/mcordts/cityscapesScripts/blob/aeb7b82531f86185ce287705be28f452ba3ddbb8/cityscapesscripts/preparation/createPanopticImgs.py
https://github.com/mcordts/cityscapesScripts/blob/aeb7b82531f86185ce287705be28f452ba3ddbb8/cityscapesscripts/preparation/createPanopticImgs.py
https://github.com/mcordts/cityscapesScripts/blob/aeb7b82531f86185ce287705be28f452ba3ddbb8/cityscapesscripts/preparation/createPanopticImgs.py
https://github.com/bdd100k/bdd100k
https://github.com/bdd100k/bdd100k
http://arxiv.org/abs/1803.08494
http://arxiv.org/abs/1803.08494
http://arxiv.org/abs/2008.01882
http://arxiv.org/abs/1912.08957
https://doi.org/10.1214/AOMS/1177729586
https://doi.org/10.1214/AOMS/1177729586
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1609.04747
http://arxiv.org/abs/1609.04747
http://arxiv.org/abs/1708.02002

	List of Tables
	List of Figures
	Introduction
	Simulation for autonomous driving
	Research setting and main motivations 
	Thesis outline

	Related works
	Autonomous driving scene understanding
	Object detection
	Semantic segmentation
	Instance segmentation
	Panoptic segmentation

	Scene understanding datasets
	Synthetic autonomous driving datasets
	Real world autonomous driving datasets

	Deep learning perception
	Convolutional neural network structure
	Basic mathematical operations
	Backbone architectures
	Feature pyramid network architectures
	Multi-task learning 
	Instance segmentation models
	Semantic segmentation models
	Panoptic Segmentation models

	Self-supervised Domain Adaptation
	Domain adaptation methods


	Synthetic-to-Real dataset creation methodology
	Generation of a label-matched simulated and real world image dataset
	Synthetic dataset creation
	The CARLA simulator
	Synthetic driving scenarios
	Sensor setup
	Synthetic images and ground truth formats

	Synthetic-to-Real dataset
	Multi dataset label matching


	Model design
	Introduction
	Backbone
	ResNet feature extractor
	FPN

	Semantic segmentation head
	Mask R-CNN head
	Region Proposal Network
	ROI align
	Bounding Box regression and Object classification branch
	Instance segmentation branch

	Domain Adaptation branches
	Adversarial Self-supervised Domain Adaptation
	Gradient Reversal Layer
	Gradient Reversal training schedule

	DA-PanopticFPN model implementation
	Domain classifier implementation

	Optimization of the model parameters
	Introduction
	Semantic Segmentation loss
	Mask R-CNN loss
	RPN loss
	Domain classifiers loss
	Joint loss


	Experiments
	Experimental context 
	Metrics: panoptic quality PQ
	Segmentation quality SQ and recognition quality RQ

	Experiment design
	Model training setup
	Experiment results
	Result summary


	Conclusions and further work
	Bibliography

