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Abstract

In computer system design, an Instruction Set Architecture (ISA) is an abstract model
defining the standard characteristic for specific hardware implementation. The term was
introduced by IBM around 1970 and from that moment most of the popular ISAs are pro-
prietary standards. Even if, the protection of their intellectual property is understandable,
their centralization counteracts innovation and artificially affects the cost of microproces-
sors. In contrast to this monopoly, there are also several open-source projects. One of
the most popular is RISC-V and has started in 2010, as part of the Parallel Computing
Laboratory at UC Berkeley under the direction of Professor David Patterson. RISC-V
ISA is completely free and open-source, and builds on and improves the original Reduced
Instruction Set Computer (RISC). The result is clean, simple, and modular; features that
make it suitable for low-power embedded systems and high-performance computers alike.

RISC-V was born for study and research purposes, but many companies on the market
have started to show interest in implementing their microarchitecture. Considering that,
recent open computing standards (like TCP/IP and UNIX) have proved successful allowing
free-market competition on technical merit; thus, companies and experts have started to
think about the possible benefits of a standard ISA for microprocessors.

The CINI RHES Group Torino, in collaboration with the University of Teheran, aims
at developing AFTAB, its 32-bit RISC-V-based platform for secure embedded systems.
Its core can be used both for research and academic studies, but also allows to make the
work on the platform easier. In particular, the development of such a platform allows
experimenting both safety and security techniques, adopting the design paradigm known
as security-by-design.

The aim is to build up a simulation environment combining the RTL design to a soft-
ware toolchain, and extending it so that it can resist many famous cyber attacks. The
set of instructions supported belongs to the 32-bit base integer ISA variant (RV32I), with
multiplication and division extension (“M”). Cross-compilation has been performed setting
up the RISC-V-toolchain based on GCC compiler. Custom targets have been also added
to automate the RTL compilation running Modelsim commands. The list of instructions
belonging to the RV32IM ISA has been completed implementing the missing ones. More-
over, since AFTAB is meant for secure embedded systems, control and status register have
been introduced to support user and machine privilege levels. In this regard, the “ZicsrÍÍ

instruction set has been added as an extension, together with the modules needed to handle
interrupts and exceptions.

To verify the correctness of architectural changes, a test automation feature has been
added to the toolchain together with some custom test applications in Assembly. To
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conclude, AFTAB performances have been compared with open-source microcontroller
PULPino. The two cores were compared by simulating on both standard benchmarks of
the MiBench embedded suite, published by the University of Michigan.
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Chapter 1

Introduction

Every core hardware implementation is characterized by precise design choices [14] [7] that
are constrained by the Instruction Set Architecture (ISA). In particular, an ISA describes
the registers, functioning of machine-level instructions, their encoding and consequently
the functionality that a particular hardware device should implement. Therefore ISAs are
a crucial aspect for hardware design and innovation, and since their intellectual property
is protected, many companies are asked to pay licenses that hence the high cost of the
processors. Moreover, proprietary ISAs make it difficult to research in computer archi-
tecture because complete RTL descriptions can not be shared. A different approach is
offered by open-source projects that distribute licenses for free and incentivize developers’
cooperation.

One of the well-known open-source projects has started in 2010 and is named RISC-
V. The project was born in the Parallel Computing Laboratory at UC Berkeley and was
directed by Professor David Patterson. RISC-V ISA is completely free and open-source,
and builds on and improves the original Reduced Instruction Set Computer (RISC). The
result is clean, simple, and modular; features that make it suitable for low-power embedded
systems and high-performance computers alike. Study and research are the purposes for
which RISC-V was born, but interest in implementing micro-architectures has been shown
by a large number of companies. Standardization has often proved successful allowing
free-market competition on technical merit; thus, companies and experts have started to
think about the possible benefits of a standard ISA for microprocessors.

In the academic domain, several are the fields in which RISC-V can be studied and can
enrich student knowledge. Working on an architecture, which is based on an instruction
set standard, allows to better understand the general functioning of a system and forces
the designer to meet standard constraints that would not be encountered in a non-standard
implementation. RISC-V also allows software developers to range from bare-metal imple-
mentation up to application level, seeing closely how software is influenced by the hardware.
Besides hardware design and software implementation which is the core field in which stu-
dents can research and experiment, the possibility to work with an open ISA as RISC-V
also opens up horizons towards which it is possible to create projects linked to different
computer engineering fields. In such a context, it is possible to propose to students the
deepening of systems both at the architectural level and also levels concerning greater de-
tail such as the design of specific units or the implementation of specific computation or
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Introduction

security algorithms. Once the design of a system has been realized, it will also be possible
to dedicate oneself to the study of even more detailed topics, such as synthesis and proto-
typing on FPGA. From the software point of view, however, one of the interesting projects
to which a secure platform based on RISC-V could be joined is an Operating System. In
this case, too, students can find fertile ground to study and experiment with concepts such
as Real-Time and OS security.

The CINI RHES Group Torino, in collaboration with the University of Teheran, aims at
developing AFTAB, its 32-bit RISC-V-based processor core for secure embedded systems.
Among the RISC-V advantages listed in the official RISC-V specifications [3], [4], we focus
on:

• Completely open ISA that is freely available to research field and industry;

• Modular extendibility starting from small base integer ISA (RV32I) to optional stan-
dard extensions. The aim is to offer the possibility to implement systems for both
bare-metal programming and general-purpose software development.

• The ISA avoids “over-architecting” for a particular microarchitecture style or imple-
mentation technology (e.g., full-custom, ASIC, FPGA), but allows efficient imple-
mentation in any of these;

• Simplification of experiments with privileged architecture design. Instructions are
divided into those generally used in all privilege modes (Unprivileged) and the ones
requiring a certain level of privilege (Privileged).

The final target is to design a SoC that can be used both for research and academic
studies, but also allows to make the work on the platform easier. In particular, the devel-
opment of such a platform allows experimenting with both safety and security techniques,
adopting the design paradigm known as security-by-design.

The final target is to design an SoC that can be used both for research and academic
studies but also allows to make the work on the platform easier. In particular, the devel-
opment of such a platform allows experimenting with both safety and security techniques,
adopting the design paradigm known as security-by-design.

The simulation environment combines the RTL design with a software toolchain and
extends it so that it can resist many famous cyber-attacks. Examples of security modules
that may be integrated are Physically Unclonable Functions (PUF) and Cryptographically-
Secure Random Number Generators (CSRNG), ciphers, key managers, and others.

The set of instructions supported belongs to the 32-bit base integer ISA variant (RV32I),
with multiplication and division extension (“M”). The base is limited to an essential ar-
rangement of instructions adequate to give a sensible objective to a compiler, constructing
agents, linker, and operating frameworks (with additional advantaged operations), thus
giving a helpful ISA and software apparatus chain "skeleton" around which specialized
processor ISAs can be designed

To perform the source cross-compilation of C, C++, and Assembly inspiration has
been taken from the approach adopted by the PULPino project in which the process is
assigned to the RISC-V-toolchain [12]. It is an open-source project maintained by the
non-profit organization RISC-V international. Being the toolchain based on CMake it has
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also been possible to define a custom target allowing to compile the RTL design running
Modelsim commands. The initial status of the design implemented a good part of the
instructions appertaining to the RV32IM ISA but to complete the necessary ones some
of them have been implemented whereas some of those already featured have required
corrections. Given that AFTAB is intended for Secure Embedded Systems, it has also
been necessary to design and implement a Control and Status Register (CSR) such that
the core could operate both in machine and user privilege mode. In particular, this unit
has allowed the implementation of both System instructions and all the CSR instructions
appertaining to the “ZicsrÍÍ extension. The integration of this unit has also allowed adding
an Interrupt Controller able to handle Exceptions and Interrupts.

Architectural changes verification has been performed through a test environment con-
sisting of a Testbench, containing a core and a memory working in a Harvard Architecture,
and a feature allowing to log the memory content to file after simulating an application. For
all the implemented instructions Assembly test application and expected result generator
have been developed. To conclude it has been chosen to compare AFTAB and PULPino
[2] [1] [10] performances to understand how similar our simulation environment was to one
of the most complete RISC-V-based microcontroller systems. For this intent, it has been
chosen to adapt and simulate Rijndael, Dijkstra, and QuickSort algorithms of MiBench
[9] a standard benchmark suite for embedded systems, distributed by the University of
Michigan.

The remainder of the document is organized as follows:

• Chapter 2: Background on RISC-V ISA: a general description of the RISC-V
instruction set architecture focusing on the implemented extensions.

• Chapter 3: The RISC-V-based AFTAB processor: a general description of
the AFTAB core providing also some information about the different sub-modules.

• Chapter 4: Extension and Test implementation: description of the activities
performed to build up the current status of the simulation environment.

• Chapter 5: Performance Evaluation: describes and evaluates some performance
data collected during the work.

• Chapter 6: Conclusions and Future Work: describes ideas for future develop-
ment.

11
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Chapter 2

Background on RISC-V ISA

The original RISC-V aim is for study and research purposes, but in recent years, also
industries have announced hardware solutions based on this standard. The aim of this
chapter is to describe all the RISC-V’s technical elements needed to have a complete
understanding of the activities performed during this thesis elaborate. Since it would be
too verbose to describe all the extensions and features covered by the official RISC-V
ISA documentation this part focuses only on those studied and experimented with by the
RHES Group Torino and the University of Teheran. The first description of any RISC-V
is implementation is given by the software Execution Environment Interface (EEI), which
defines the initial state of the program as well as the number and type of harts. An Hart
is an described as an entity able to fetch and execute RISC-V Operations.

The EEI also comprises the privilege modes supported by the harts, memory and I/O
area accessibility and attributes, the behavior of all lawful instructions on each hart, and the
handling of any interrupts or exceptions triggered during execution, including environment
calls.

In our case, the execution environment is defined by the core hardware platform and it
starts at power-on reset. Since the core has to be extended to run an operating system and
the instructions have full access to the physical address space, this implementation can be
considered as a bare-metal EEI.

2.1 RISC-V Instruction Set Architecture (ISA)
RISC-V consists of a base integer ISA and optional extensions allowing the modular ex-
tensibility of any implementation. The base integer ISA must be present in any implemen-
tation and has been inspired to that of the early RISC processors, except with no branch
delay slots but with support for optional variable-length instruction encodings. The base
is reduced to an essential set of instructions sufficient to provide a minimal target for com-
pilers, assemblers, linkers, and operating systems (requiring privileged operations), and so
it results to be simple starting point ISA to combine to a toolchain structure around which
incrementally complex ISAs can be added.

Even if we usually talk about RISC-V ISA, RISC-V groups 4 base ISAs. Each of them
is characterized by the width of the integer registers, their number, and the corresponding
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size of the address space:

• RV32I and RV64I are the integer variants which provide 32-bit or 64-bit address
spaces respectively;

• RV32E subset variant of the RV32I base instruction set, added to support small
microcontrollers, and which has half the number of integer registers;

• RV128I variant of the base integer instruction set supports a flat 128-bit address
space;

All extensions use a two’s-complement representation for signed integer values. Since
our academic purpose does not require a 64-bit address, only RV32I has been implemented.
Integer ISA extension can be implemented in case it is thought to use the core in larger
systems. Standard extensions are defined to group correlated instructions such as integer
multiply/divide, atomic operations, and single/double-precision floating-point arithmetic.
This is particularly convenient for developing general-purpose solutions and avoiding "over-
architecting". The extensions defined by RISC-V ISA are the following:

• The base integer ISA is named “I” (prefixed by RV32 or RV64 depending on integer
register width), and contains integer computational instructions, integer loads, integer
stores, and control-flow instructions;

• Integer multiplication and division extension is named “M”, and adds instruc-
tions to multiply and divide values held in the integer registers;

• Standard atomic instruction extension is denoted by “A”, adds instructions that
atomically read, modify, and write memory for inter-processor synchronization;

• Standard single-precision floating-point extension is denoted by “F”, adds
floating-point registers, single-precision computational instructions, and single-precision
loads and stores;

• Standard double-precision floating-point extension is denoted by “D”, intro-
duces new floating-point registers, and explands double-precision computational in-
structions, loads, and stores;

• Standard compressed instruction extension is denoted by “C”, provides nar-
rower 16-bit forms of common instructions;

2.2 RISC-V ISA Extensions
This section describes the RISC-V Base Integer Instruction Set (RV32I), the Integer Mul-
tiplication and Division Extension (RV32M), and “Zicsr” Control and Status Register
Instructions.

RV32I has been designed as an essential base for a compiler target and for executing
modern operating systems. The internal state of base integer ISA is stored into 32 un-
privileged general-purpose registers and the privileged Program Counter (PC). The first

14



2.2 – RISC-V ISA Extensions

holds values stored to be given as input to the execution unit, while the second stores the
address of the current instruction.

AFTAB supports 52 instructions encoded in 32 bits, where the 6 least significant bits are
reserved as Operation Code (opcode). The instructions are grouped in 4 different formats
(R, I, U and S), as shown in Figure 2.1.

Figure 2.1. RISC-V base instruction formats showing immediate variants.

Destination (rd) and source (rs1 and rs2) registers are always encoded at the same
bits in all formats to simplify decoding. Except for the 5-bit immediate used in CSR
instructions, immediate is always sign-extended, are generally packed towards the leftmost
available bits in the instruction, and have been allocated to reduce hardware complexity. To
speed sign-extension circuitry, the immediate sign bit is always in bit 31 of the instruction.

There are a further two variants of the instruction formats (B/J) based on the handling
of immediate, as shown in Figure 2.1.

RV32M is the standard integer multiplication and division instruction extension, which
is named “M” and contains instructions that multiply or divide values held in two integer
registers.

mul performs a 32-bit×32-bit multiplication of rs1 by rs2 and places the lower 32 bits
in the destination register. mulh, mulhu, and mulhsu perform the same multiplication but
return the upper 32 bits of the full 64-bit product, for signed×signed, unsigned×unsigned,
and signed rs1×unsigned rs2 multiplication, respectively.

div and divu perform a 32-bit signed and unsigned integer division of rs1 by rs2,
rounding towards zero. rem and remu provide the remainder of the corresponding division
operation. For rem, the sign of the result equals the sign of the dividend.For both signed and
unsigned division, it holds that dividend = divisor × quotient + remainder. No operation
allows computing both quotient and reminder.

“Zicsr” is the extension defining Control and Status Registers (CSRs) Instructions used
to operate on CSRs addresses. CSR instructions use I-Type format and can read and write
a single register. The CSR specifier is encoded in the 12-bit field of the instruction(imm[31 :
20]). The immediate forms use a 5-bit zero-extended immediate (uimm[4 : 0]) encoded in
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the rs1 field. Since RISC-V allows to implement subsets of CSRs, AFTAB implements only
those needed for handling exceptions/interrupts and for supporting user (U) and machine
(M) modes. Table 2.1 lists the Control and Status registers implemented in AFTAB.

The RISC-V ISA counts total amount of 4096 CSRs. Conventionally, the upper 4 bits
are used to express read and write accessibility according to privilege levels. If the two
most significant bits (csr[11:10]) are set to 00, 01 or 10, the register is read-write, while
if they are set to 11, it is read-only. The other two bits (csr[9:8]) indicate the lowest
privilege level that can access the CSR.

CSR Address Hex Acc. Name
11:10 9:8 7:6 5:0
00 11 00 000000 0x300 RW Machine Status (MSTATUS)
00 11 00 000101 0x305 RW Machine Trap-Vector Base Address (MTVEC)
00 11 00 000001 0x341 RW Machine Exception Program Counter (MEPC)
00 11 00 000010 0x342 RW Machine Trap Cause (MCAUSE)
11 00 00 010000 0xC10 R Privilege Level (PRIVLV)

Table 2.1. Implemented Control and Status Registers .

2.3 Control and Status Registers
Machine Status (MSTATUS)

The MSTATUS register encodes the internal machine status that is given by value associ-
ated to the following fields:

• Machine Previous Privilege mode (MPP): encodes in MSTATUS[12:11] previous
privilege mode.

• Previous Machine Interrupt Enable (MPIE): encodes in MSTATUS[7] the inter-
rupt enable of the previous privilege.

• Machine Interrupt Enable (MIE): encodes in MSTATUS[3] the interrupt enable
of the current priviledge mode.

Machine Trap-Vector Base Address (MTVEC)

The Machine Trap-Vector Base Address contains the base address of the Interrupt Vector
Table (IVT) in memory. The lowest 2 bits are hardwired to 0x1, as they are irrelevant in
a 4-byte aligned access. This code indicates that the core answers to interrupts in vectored
mode, i.e., uses register MCAUSE as offset to be added to the base (PC is set to BASE +
4 × cause). Bits from 31 down to 2 contains the base address.
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2.3 – Control and Status Registers

Machine Exception PC (MEPC)

The Machine Exception Program Counter (MEPC) is used to store the current program
counter whenever an exception is encountered. Once the exception handling is concluded
and the mret instruction is executed, MEPC is loaded in the program counter.

Machine Cause (MCAUSE)

The Machine Cause Register (MCAUSE) is used to encode the exception/interrupt cur-
rently handled. Whenever an exception is encountered, the register is set to its Exception
Code. The register contains two fields:

• Exception Code: encodes in MCAUSE[4:0] the exception code that can assume one
of the values defined by RISC-V ISA.

• Interrupt: encodes in MCAUSE[31] the exception source. In case it was triggered by
an external interrupt, it is set to 1, otherwise to 0.

Privilege Level (PRIVLV)

The Privilege Level register (PRIVLV) stores the current privilege level the core is exe-
cuting. The register is read-only and the reset value is 0x000000003, indicating Machine
mode.

A list of all the implemented instructions is shown in Tables 2.2 and 2.3.
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Category Type Instruction Example Meaning
Arithmetic R add rd, rs1, rs2 rd= rs1 + rs2

R sub rd, rs1, rs2 rd = rs1 - rs2
I addi rd, rs1, imm12 rd = rs1 + imm12
R slt rd, rs1, rs2 rd = 1 if rs1 < rs2 else 0 (s)
R sltu rd, rs1, rs2 rd = 1 if rs1 < rs2 else 0 (u)
I slti rd, rs1, imm12 rd = 1 if rs1 < imm12 else 0 (s)
I sltiu rd, rs1, uimm12 rd = 1 if rs1 < uimm12 else 0 (u)

Mul and Div R mul rd, rs1, rs2 rd = rs1 * rs2 (s) (l)
R mulh rd, rs1, rs2 rd = rs1 * rs2 (s) (h)
R mulhu rd, rs1, rs2 rd = rs1 * rs2 (u) (h)
R mulhsu rd, rs1, rs2 rd = rs1 * rs2 (su) (h)
R div rd, rs1, rs2 rd = rs1 / rs2 (s)
R divu rd, rs1, rs2 rd = rs1 / rs2 (u)
R rem rd, rs1, rs2 rd = rs1 / rs2 (s)
R remu rd, rs1, rs2 rd = rs1 % rs2 (u)

Data transfer I lw rd, imm12(rs1) rd = DMEM[rs1 + imm12]
S sw rd, imm12(rs1) DMEM[rs1 + imm12] = rd
I lh rd, imm12(rs1) rd = sign_16_32(DMEM[rs1 + imm12])
I lhu rd, imm12(rs1) rd = zero_16_32(DMEM[rs1 + imm12])
S sh rd, imm12(rs1) DMEM[rs1 + imm12] = rd[15:0]
I lb rd, imm12(rs1) rd = sign_8_32(DMEM[rs1 + imm12])
I lbu rd, imm12(rs1) rd = zero_8_32(DMEM[rs1 + imm12])
S sb rd, imm12(rs1) DMEM[rs1 + imm12] = rd[7:0]

Logical R and rd, rs1, rs2 rd = rs1 & rs2
R or rd, rs1, rs2 rd = rs1 | rs2
R xor rd, rs1, rs2 rd = rs1 ^ rs2
I andi rd, rs1, 20 rd = rs1 & 20
I ori rd, rs1, 20 rd = rs1 ! 20
I xori rd, rs1, 20 rd = rs1 ^ 20

Shift R sll rd, rs1, rs2 rd = rs1 <<l rs2[4:0]
R srl rd, rs1, rs2 rd = rs1 >>l rs2[4:0]
R sra rd, rs1, rs2 rd = rs1 >>a rs2[4:0]
I slli rd, rs1, uimm5 rd = rs1 <<l uimm5
I srli rd, rs1, uimm5 rd = rs1 >>l uimm5
I srai rd, rs1, uimm5 rd = rs1 >>a uimm5

Conditional branch B beq rd, rs1, imm12 if (rd = rs1) goto pc + imm12 (s)
B bne rd, rs1, imm12 if (rd != rs1) goto pc + imm12 (s)
B blt rd, rs1, imm12 if (rd < rs1) goto pc + imm12 (s)
B bge rd, rs1, imm12 if (rd >= rs1) goto pc + imm12 (s)
B bltu rd, rs1, imm12 if (rd < rs1) goto pc + imm12 (u)
B bgeu rd, rs1, imm12 if (rd >= rs1) goto pc + imm12 (u)

Unconditional branch J jal rd, imm12 rd = pc + 4
goto pc + imm12

J jalr rd, imm12(rs1) rd = pc + 4
goto rs1 + imm12

lui and auipc U lui rd, uimm20 rd[31:12] = uimm20
rd[11:0] = 0

U auipc rd, uimm20 rd = pc + (uimm20 <<l 12)

Table 2.2. RV32IM Instructions supported by AFTAB.
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Category Type Instruction Example Meaning

System I ecall pc = mtvec + (4 * mcause)
mepc = pc

I mret pc = mepc

I csrrw rd, csr, rs1 rd = csr
csr = rs1

I csrrc rd, csr, rs1 rd = csr
csr = csr & !rs1

I csrrs rd, csr, rs1 rd = csr
csr = csr | rs1

I csrrwi rd, csr, uimm5 rd = csr
csr = uimm5

I csrrci rd, csr, uimm5 rd = csr
csr = csr & !uimm5

I csrrsi rd, csr, uimm5 rd = csr
csr = csr | uimm5

Table 2.3. RV32IM and Zicsr Extension Instructions supported by AFTAB.
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2.4 Privilege Levels
Since AFTAB is moving towards a design able to run an operating system, the imple-
mentation of privileged levels and instruction is required. As basic concept, it should be
considered that every RISC-V hardware thread runs at some privilege level, encoded in
the Control and Status Registers (CSR). Figure 2.2 shows RISC-V privilege modes:

Figure 2.2. RISC-V privilege levels.

Privilege levels are used to provide protection between different components of the soft-
ware stack and attempts to perform operations not permitted by the current privilege mode
cause an exception to be raised. These exceptions normally cause traps in an underlying
execution environment.

The highest privilege is held by machine-level and it must necessarily be implemented by
any RISC-V hardware microarchitecture. Code run in machine mode (M-mode) is usually
inherently trusted, as it has low-level access to the machine implementation, therefore
it is used to manage secure execution environments on RISC-V. M-mode has unfettered
access to the whole machine and can access any register and memory region. User mode
(U-mode) and supervisor mode (S-mode) are intended for conventional application and
operating system usage respectively.

Figure 2.3. Supported combinations of privilege modes.

As shown in Figure 2.3, RISC-V supports three different combinations of privilege
modes: machine (M), machine-user (M, U), and machine-supervisor-user (M, S, U). A
normal execution flow is performed U-mode but the hart is forced to switch to a different
privilege level because of a trap (in AFTAB it may run in M-mode). The first step executed
by the hart is to jump and execute a trap handler, at the end of which execution may resume
from the original trapped instruction from U-mode. Traps increasing privilege level are
termed vertical traps, while traps causing no privilege elevation are termed horizontal traps.

At the current version, AFTAB is intended to be used as a Secure embedded system,
as it implements M-mode and U-mode. In order to run an OS, S-mode should be added
to the design.
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2.5 Exceptions,Traps and Interrupts
AFTAB supports interrupts, exceptions and traps that can be handled thanks to the pres-
ence in the datapath of two units: the CSR Unit and the Interrupt Controller. Whenever
an exception or an interrupt is encountered, the Interrupt Vector Table (IVT) base ad-
dress is read from the MTVEC register, processed in order to add the offset relative to
the encountered exception (encoded in MCAUSE register), and written into the program
counter.

2.5.1 Exceptions
Exceptions are used to handle internal faults regarding instruction execution. Illegal in-
struction exceptions will raise an interrupt to the normal execution flow and cannot be
masked. From RISC-V ISA the following cases have been considered:

• illegal instruction opcode;

• division by zero;

• instruction address misaligned (i.e., not multiple of 4);

• CSR illegal instructions (i.e., bad CSR address or permission denied).

2.5.2 Traps
Traps are exceptions required from user program, e.g., to invoke system/environment per-
mission to perform an action. In RISC-V ISA, the instruction allowing to execute an
environment call is named ecall. When it is executed, the core switches to a higher priv-
ilege mode (for example, for User to Machine), and the PC jumps tho the ecall handler
base address. In order to go back to the previous privilege level, the mret instruction is
executed.

2.5.3 Interrupts
Interrupts are events for which normal instruction flow is interrupted by an external request
through a physical pin. This implementation allows to disable interrupt in a general basis
only. The global interrupt enable is done via setting the corresponding bit in the CSR
register MSTATUS. Concurrent interrupts priority is given by an Interrupt Controller.
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Chapter 3

The RISC-V-based AFTAB
processor

The aim of this section is to provide a general description of AFTAB, a custom imple-
mentation of the RISC-V architecture by the group of the RHES Group Torino and the
University of Teheran.

3.1 AFTAB core
AFTAB is a 32-bit microprocessor with 4 basic macro-stages and a load/store ISA. The
architecture is divided adopting a structure that includes Fetch, Decode, Execute, and Mem-
ory. During instruction execution, the stages are performed serially, therefore it features
no pipelining. Given that pipelining is not implemented, no branch prediction mechanism
or unit has been included. Moreover, no caching has been implemented. All arithmetic
operations are performed once both operands are loaded in the register file from the main
memory. Intermediate processed data are stored into 32-bit general-purpose registers form
r0 to r31. r0 always assume value zero and can not be written. At the current state,
AFTAB is thought to be simulated in Von Neumann architecture. Therefore, the basic
environment used includes the core and one memory only, following a little-endian conven-
tion.

As per good practice in hardware design, the core consists of two main sub-components,
Datapath and Control Unit. These sub-modules can generally be described as follows:

• AFTAB Control Unit: the AFTAB Control Unit is the coordinator of all the
instructions executed inside the core, which means that its control signals are used to
drive any possible datapath configuration. The set of all the control signals is named
control world and it is set by the control unit during the decode stage.

• AFTAB Datapath: the AFTAB Datapath contains the components of Fetch, De-
code, Execute, and Memory. The Fetch aim is to select the new instruction that
can be chosen between value read from instruction memory, trap vector, exception
program counter, and jump result. Once the instruction is selected, data are read
from memory thanks to a Data Adjustment Read Unit (DARU) and written into the
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instruction register. In the decode stage, the instruction fields are decoded and given
used as reading addresses for the register file or immediate. Register file outputs and
immediate are used in the execute stage to fed the computational units that will be
briefly described in the following sections. Finally, the memory stage allows both to
read and write data thanks to a DARU and a Data Adjustment Write Unit (DAWU).

Figure 3.1 shows the high-level representation of the datapath stages.

Figure 3.1. High-level representation of the AFTAB datapath.

The Control and Status Unit (CSRU) and Interrupt Controller components will be
described in the third Chapter, since they have been implemented during the performed
activities.

3.1.1 Control Unit
The AFTAB Control Unit is the coordinator of all the instructions executed inside the
core. Every datapath configuration is performed through the control signals. After the
instruction is fetched, the CU identifies the instruction through the fields opcode, func3,
and func7, and generates the correct control word for the datapath. The control word is
defined as the set of all signals required by the datapath to commit the instruction: clock
enables, signals for the registers, multiplexer selectors, and any other type of command
for the datapath. The control word of the AFTAB has 37 control signals in total, with
27 single-bit signals and 10 multi-bit signals. The amount for the multi-bit signals is 66
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and the total control bit count is 93. When IR loads a new instruction, the opcode (IR[6
: 0]), the func3 (IR[14: 12]), and the func7 (IR[31: 25]) fields are read by the CU to
compute the control word. The CU is internally defined as a Finite-State Machine (FSM)
in which every single state sets the entire control word according to the configurations to be
performed in each of the datapath stages. The Control Unit is a completely synchronous
block, so the internal state is updated every clock cycle. Figure 31 shows a schematic of
the Control Unit, with control signals divided per machine stage and unit. Figure A.2
in the Appendix shows a schematic of the Control Unit, with control signals divided per
machine stage and unit.

3.1.2 Datapath and Instruction Execution Flow
This Section aims at providing details on a basic behavior of the AFTAB microproces-
sor, going through each stage of the datapath (shown in the RTL diagram provided in
the documentation files). When the reset signal is asserted, the following operations are
performed:

• Reset of internal registers and flip-flops;

• Reset value of the Program Counter(PC), which is forwarded to the instruction mem-
ory port;

• The first instruction is fetched.

After the initial state reset, the execution cycle is repeated infinitely unless it is blocked
by exceptions or interrupts. In the following, the stages the core may enter during the
machine cycle are detailed.

Fetch

It aims at loading the program counter with the address of the new instruction, selecting
the value to forward to the Instruction Register (IR), and adjusting the instruction read
for instruction memory. This tasks are performed in two different states named Fetch and
and GetInstr:

• Fetch: the fetch stage is always performed in one clock cycle and aims at choosing
the value to load in the PC, loading it, and setting the control signals for the following
state GetInstr. The PC choice can be selected between five different inputs: current
PC incremented by 4, register file port 1 output, branch or jump result, Machine Trap
Vector Base Address (MTVEC), and Machine Exception Program Counter (MEPC)

• GetInstr: since only 32-bit instructions are implemented, this stage always requires
4 clock cycles to complete, each one of them reading an instruction byte. Starting
from the PC address, the DARU2 unit reads the instruction increasing the address
by 1 at each clock cycle and adjusting the read value into a 32-bit output, forwarded
to the IR.

25
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Decode

The decode stage always lasts one clock cycle and aims at extracting the instruction fields
from the Instruction Register. The extracted fields are the following (also shown in Figure
2.1), and change according to the instruction type:

• opcode fixed at IR[6 : 0];

• Destination register (rd) fixed at IR[11 : 7];

• Register addres 1 (rs1) fixed at IR[19 : 15];

• Register addres 2 (rs2) fixed at IR[24 : 20];

• Immediate at different position according to instruction type provided by Control
Unit. For I-Type, it is taken from IR[31 : 20], for S-Type from IR[31 : 25] and for
U-Type from IR[31 : 12];

• Extended unsigned immediate for CSR instructions;

The remaining field, such as funct3 and funct7 are extracted by the Control Unit.
At the end of the clock cycle, the Register File (RF) synchronously updates the two read
ports p1 and p2, while the immediate is computed by the Immediate Selection and Sign
Extension Unit (ISSEU).

Execute

During the execution, the operands (p1 and p2) and immediate are ready to be used by
all the units inside the execute stage. The actual values provided to the units are selected
by two bypass multiplexers that select the two inputs between the computed ones. A first
multiplexer chooses the operand between:

• output of the RF read port 1 (p1)

• current value of the Program Counter

• Extended unsigned immediate used in CSR Instructions.

A second multiplexer chooses between the output of the read port 2 (p2) and the immediate
computed by the ISSEU. The execute stage lasts a variable number of clock cycles that
depend on the operation to perform.

In the following all the datapath’s computational units are listed:

• Comparator: takes one clock cycle to compute the result of three comparisons:
greater-than (gt), lower-than (lt) and equal-to (eq).;

• Adder/Subtractor Unit (ASU): takes one clock cycle to compute a 32-bit result
that can be selected between Adder and Subtractor;

• Logical Logic Unit (LLU): takes one clock cycle to compute the result of three
possible logic operations: XOR, OR and AND;
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• Barrel Shifter Unit (BSU):takes one clock cycle to perform on of the three possible
operations: Shift Left Logic (SLL), Shift Right Logic (SRL) and Shift Right Arithmetic
(SRA);

• Attached Arithmetic Unit (AAU): allows to perform both multiplication and di-
vision on 32 bit. Multiplication is implemented exploiting Booth Algorithm and takes
64 clock cycle to compute signed or unsigned product. Division exploits Restoring
Algorithm and takes 64 clock cycle to compute quotient or reminder(both signed and
unsigned can be executed

Control Status Register Unit and Interrupt Controller will be described in the
following section since they have been implemented during the thesis work.

Memory

This stage is performed only in case a load or store instruction has to be executed. In
this case, the CU respectively starts DARU1 and DAWU1 and enters the states getData
(for load) or putData (for store), and keeps each state for a number of clock cycles that
depends on the number of bytes exchanged from/to the memory. In particular, the clock
cycles required for instructions sb and lb are one, while two clock cycles are taken for sh
and lh and four for sw and lw.

Write-Back into register file is performed at the end of the Execute stage. Since there
is no ALU output register, the operations result and data read from memory are directly
written to the Register File.

3.2 Programmers Model
This Section is intended to show the AFTAB software model available to programmer for
programs execution. AFTAB implements RISC-V Base Integer Instruction Set (RV32I),
the Integer Multiplication and Division Extension (RV32M) and ıZicsr” Control and Status
Register Instructions.Moreover, it supports privilege execution (U-mode and M-Mode) and
has an Interrupt Vector Table (IVT). As starting point, for running both machine-only and
machine-user executions, Appendix ?? explains how to setup privilege execution.

When writing a program for AFTAB, a programmer may choose to provide both an
Assembly source file (.s) Assembly or C/C++ source file. Since the address bus is on 32
bit, the .text section for instructions and the .data section for variables can reach up to
4 GB.

General-purpose registers are labeled from x0 to x31. RISC-V programming convention
assigns standardized names to most of them specified in the application binary interface
(ABI. They are listed in the following:

• Saved registers: (s0 to s11) are used to store data that must be preserved across
function calls;

• Argument registers: (a0 to a7), are used to pass arguments;

• Temporary registers (t0 to t6) are used for function for computation;
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• Specialized registers Stack Pointer (sp), the Global Pointer (gp), the Thread
Pointer (tp) and Link Register (ra).

All naming convention is listed in Table 3.1.
RISC-V also provides standard pseudo-instructions, that do not have a direct machine

equivalent but are translated by the mnemonic Assembly in machine language instructions.
An example can be the register “copy" pseudo-instruction, coded as:

mv rd , rs

but actually translated into the machine language instruction as:

addi rd , rs , 0

RISC-V does not support pop and push instructions, and they are performed through
simple load and store to stack memory region. Whenever the processor is intended to use
the stack, the programmer is strongly recommended to:

• Decide the stack size that should be used;

• Decrement x2 (conventionally used as sp) by the decided size;

• Incrementally store and load form the top of the stack area;

• Restore the stack value adding the used size.

The memory can be used by the programmer according to its own convention: RISC-V
standard does not specify fixed map or convention. At the current state, AFTAB does not
support any memory protection or management mechanism.
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Register ABI Use by convention Preserved?
x0 zero hardwired to 0 ignores writes
x1 ra return address/link register no
x2 sp stack pointer yes
x3 gp global pointer _n/a_
x4 tp thread pointer _n/a_
x5 t0 temporary register 0 no
x6 t1 temporary register 1 no
x7 t2 temporary register 2 no
x8 s0 or fp saved register 0 or frame pointer yes
x9 s1 saved register 1 yes
x10 a0 return value or function argument 0 no
x11 a1 return value or function argument 1 no
x12 a2 function argument 2 no
x13 a3 function argument 3 no
x14 a4 function argument 4 no
x15 a5 function argument 5 no
x16 a6 function argument 6 no
x17 a7 function argument 7 no
x18 s2 saved register 2 yes
x19 s3 saved register 3 yes
x20 s4 saved register 4 yes
x21 s5 saved register 5 yes
x22 s6 saved register 6 yes
x23 s7 saved register 7 yes
x24 s8 saved register 8 yes
x25 s9 saved register 9 yes
x26 s10 saved register 10 yes
x27 s11 saved register 11 yes
x28 t3 temporary register 3 no
x29 t4 temporary register 4 no
x30 t5 temporary register 5 no
x31 t6 temporary register 6 no
pc (none) program counter _n/a_

Table 3.1. RV32I general register map.
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Chapter 4

Extension and Test
implementation

Chapters 2 and 3 have presents the background knowledge needed for working with RISC-
V ISA on AFTAB. The one we are introducing describes the performed activities that
have advanced the status of the RISC-V simulation platform born from the collaboration
between CINI and University of Teheran. Inspiration for the elaborate has been take form
one of the better organized and featured projects published on GitHub, PULPino [10].

Our intent is to implement a simulation environment similar to PULPino. For this
reason, it has been decided to start integrating the RISC-V toolchain adopting its same
structure. This CMake tool combined to the RTL description makes much simpler the
compilation of both HDL description and C applications, but also allows to easily run
simulation on Modelsim. One of the main advantages is that all the commands run inside
the RISC-V platform share the same “make”-like format and details are hidden inside
simulation and compilation scripts. Another interesting feature is the possibility of adding
custom targets.

This setup has allowed move our focus from compilation and simulation details to the
ones related to the RTL design description. The first activity performed on the RTL is to
check implemented instructions’ correctness and implement the one missing for completing
RV32IM and “ZicsrÍÍ extension. Where needed, some instructions has also been corrected.

The next phase of the thesis has been dedicated to the Test environment setup. To
verify corrected and implemented instruction, functional tests of all the instructions have
been performed. Since it was necessary to check single machine instruction’s result, scripts
containing multiple call for every one of them has been developed. For the testbench, a Von
Neumann architecture has been set up connecting the core to a memory, whose content
has been loaded and dumped thanks to dedicated files. Verification of the instructions
gave us the certainty of their functioning and it has allowed us to start implementing C
and C++ applications. In order to collect data regarding AFTAB performances, it has
been thought that could be interesting to run some benchmark applications. Since the
implementation of many of the standard benchmarks uses standard I/O with fscanf()
and frpintf(), some changes have been made. Basically, due to the absence of peripherals
for handling files and UARTs, all printed output have been removed and files have been
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replaced by static variables. The source from which the benchmarks have been chosen
is MiBench [9], a standard suite for embedded systems distributed by the University of
Michigan. In particular, we have chose three common algorithm: Quick Sort, Rijndael,
and Dijkstra. Finally, we have analyzed the performances obtained running benchmarks on
both AFTAB and PULPino. The resulting performances has allowed to better understand
the status AFTAB with respect to a well-known platform as PULPino.

4.1 ISA Extension and Correction
As anticipated in the previous Section, the base structure of AFTAB has been provided by
the University of Teheran who also shared some related diagrams. Since the test program
have been developed during the thesis work, at first we were unaware of which instructions
worked correctly and if any of them needed corrections. Therefore, we have performed an
analysis on all the modules and afterward, changes have been made to some of them. In
the following, a brief description of the modules and how they have been edited:

• Core: this unit describes the Core which internally connects Datapath and Con-
troller. It has been edited adding one memory port and 16 external interrupt lines.

• Controller: this unit describes the Control Unit which is internally implemented as
a Finite State Machine. The performed changes are the following:

– Interface refactor as shown in Figure A.2 and described in Tables A.2 and A.3;
– Extension of the decode stage including the opcodes of the implemented instruc-

tion. In particular the instruction implemented are listed in Table 2.3;
– Added CU states for implemented instructions, in particular: system, control

and status register operations, exception handling, and illegal instructions. A
brief description is provided in Table A.4;

– VHDL style refactor.

• Attached Arithmetic Unit (AAU): the AAU, internally instantiates two compo-
nents for Signed-Unsigned Division (using restoring Algorithm) and Booth Multipli-
cation. Neither algorithm has been relevantly modified. The only change that has
been performed concerns the Division, in which at the first operation cycle we added
check for zero divisor. In chase this condition is verified, a signal connected to AAU
output port is set to 1;

• Data Adjustment Read Unit (DARU): interface signals related to instructions
and data errors have been added. The unit has been extended inserting a check for
misaligned memory addresses. Since misaligned read occurs whenever the address is
not a multiple of the number of bytes exchanged, the read amount of data has been
considered. A dedicated signal has been added to the port;

• Data Adjustment Write Unit (DAWU): DAWU interface listed signals for in-
structions and data errors, but did not implement any of them. The unit has been
extended inserting a check for misaligned memory address, as for DARU;
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• Comparator: this unit describes a generic Comparator able to perform three com-
parisons: greater-than (gt), lower-than (lt) and equal-to (eq).;

• Control and Status register Unit (CSRU): this unit describes a Control and
Status Register Unit managing operations on CSRs. The unit has been added to
the initial state and its development has been inspired by an open-source structure
available online. Further details will be provided in the following Sections.

• Datapath: this unit describes the Datapath on which changes have been performed:

– Renaming of both interface and internal signals: some of the initial ones did not
allow an easy understanding of the unit.ì;

– All the multiplexers were implemented using one-hot encoding for every input
selection. This has been simplified by changing the selecting signals to a loga-
rithmic quantity with respect to the inputs;

– Instantiation of the CSRU;
– Instantiation of the Interrupt Controller;
– Interrupt and exception signals;
– Added signals for handling Exceptions and CSR Instructions to the interface;
– VHDL style refactor;
– Duplication of the DARU to have a dedicate DARU for instructions and another

for data.

• Interrupt Controller: the unit describes the Interrupt Controller that collects all
exception and interrupt signals. The Control Unit is notified according to the excep-
tions priority. Further details will be provided in the following Sections.

In order to automate the process of solving VHDL style issues, we have exploited an
open-source tool named VHDL-style-guide [15]. Its features allow to report and fix common
errors in VHDL coding standard running a simple command, thus avoiding having to solve
them by hand.

4.2 Privileged Modes and Exceptions design
Privilege Mode implementation has been necessary when implementing System Instructions
belonging to both RV32I and “Zicsr” extension. This is because they require a control
and status register bank that can be accessed respecting privilege levels. All the operations
involving CSRs are handled by the Control and Status Register Unit (CSRU), which is a
synchronous component hosting the implemented ones. The unit design was inspired by an
available open-source project found on Github [11]. This unit, together with the Interrupt
Controller, also allows handling Exceptions and Interrupts.
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4.2.1 Control and Status Register Unit (CSRU)
The unit works as a simple memory bank allowing to update and read every single register
according to their own read and write permissions. This operation can be performed
through CSR instructions, in which each register can be read and updated within three
clock cycles. CSRU also allows to handle exceptions and interrupts, requiring an entry
and an exit phase that is started through the signals int_entry and int_exit. Figure 4.1
shows the CSRU interfacing ports.

Figure 4.1. Control and Status Register Unit.

• clk and rst: all CSR instruction and exception handling are performed synchronously
on clock rising edge while the active high reset is asynchronous;

• rd: it is a 32-bit input used for indicating the CSR operation destination register;

• datain: it is a 32-bit input used for data to be written in CSR registers;

• csrop: 2-bit input encoding the CSR operation: 10 for write, 01 for set and 11 for
clear;

• csraddr: 12-bit input used for addressing CSRs;

• int_cause: 32-bit input signal used for encoding exception/interrupt cause;

• dataout: 32-bit output signal used for data to be written into register file;

• csrop_complete: 2-bit input encoding the CSR operation status. 00 for not com-
plete, 01 for complete and not write, and 11 for complete and write;

• int: output signal to the Interrupt Vector Table (IVT) set whenever an interrupt is
risen (i.e., invalid CSR Instruction);

34



4.2 – Privileged Modes and Exceptions design

• int_entry: input signal from the Control Unit set whenever an exception/interrupt
has to be risen;

• int_exit: input signal set to when exception/interrupt is concluded;

• out_status: 32-bit output of the register MSTATUS;

• out_cause 32-bit output of the register MCAUSE;

• out_tvec: 32-bit output necessary for the computation of the destination PC;

• out_epc: 32-bit output of the register MEPC.

CSRU Finite State Machine

The Control and Status Register Unit operates over three different states: READ_OR_IDLE,
MODIFY and WRITE. The transitions between the different states are shown in the
FSM in Figure 4.2.

Figure 4.2. Control and Status Register Unit Finite State Machine.

In CSRU, Mealy state machine operations may last both two (no write) or three (write)
clock cycles depending on the values of the signals datain and csrop. The behavior of the
single states is the following:

• READ_OR_IDLE: the CSR unit keeps this state until the input csrop requires
to execute an operation (csrop). When an operation is requested and the privilege
level is over the minimum one (i.e., csrop >= csraddr[9:8]), the CSR bank is read
at the requested address, while if the privilege level is lower than the minimum, the
signal int is set for rising an illegal instruction exception. The same exception is risen
in case the requested address is not among the implemented ones. The next state is
set to MODIFY if an operation is started, while it remains at READ_OR_IDLE
if an exception is risen or it is not asked to perform any operation;
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• MODIFY: in such a state, the next value to be written at csraddr is computed. In
case the operation is a write, it is simply set to datain, while if the operation is set
or clear, the computed value is computed performing OR (between datain and the
current value) and AND (between the negated datain value and the current value
). If the register is read-only (i.e., csraddr[11:10] = "11") and a write operation
has to be performed, an illegal instruction exception is risen. The next state is set
to WRITE if a new value has to be assigned to a CSR, while it switches back to
READ_OR_IDLE if it is only read or an exception is risen;

• WRITE: in this state, the next control and status register are set and the operation
is completed. The next state is unconditionally set to READ_OR_IDLE.

Interrupt/Exception Entry and Exit

Interrupt/exception entry and exit process follow these steps:

• int_entry: whenever the signal int_entry is set, the core enters Machine mode set-
ting the privilege level to the maximum value (3). In addition, MPIE (corresponding
to bit mstatus[7]) is set to the current MIE (mstatus[3]), MIE is set to zero and
MPP is set to the current privilege mode, MCAUSE and MEPC are set and the
out_tvec output value is computed;

• int_exit: whenever the signal int_exit is set, the core enters the privilege mode
stored in the bits MPP. In addition MIE is set to MPIE, MPIE is set to 1 and
MPP is set to "00".

Both the procedures are concluded in 2 clock cycles.

4.2.2 Interrupt Controller
The Interrupt Controller is a unit aiming to collect all the exceptions/events and provide
a unique notification to the Control Unit to preempt its normal activity. Figure 4.3 shows
its interfacing ports.

Figure 4.3. AFTAB Interrupt Controller.

Whenever an exception/interrupt is encountered, one of the input lines is set to 1. If
this happens, the Interrupt Controller outputs the cause on the 32-bit signal err_cause
(following the MCAUSE encoding) and sets the err_rise signals, telling the Control Unit
that an exception has to be handled.

If more events occur concurrently, the priority is assigned statically, following the lowest-
to-highest bit ordering of the input signal. Therefore, the user of this processor can decide
to connect his/her peripheral interrupt lines depending on which is the desired priority.
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For exceptions, the priority is fixed by the specification, and all internal exceptions must
precede external interrupts. In conclusion, AFTAB features such a priority list:

1. Illegal instruction;

2. Instruction address misaligned;

3. Environment call;

4. External interrupt;

AFTAB does not support automatic priority enqueuing. Modules sending an interrupt
request or an exception signal must keep it active until they are served.

4.2.3 Bootloader
Since the simulation environment is thought for secure embedded systems, AFTAB sup-
ports two different execution modes: Machine-only (M) and Machine-User (MU). Their
main difference concerns the boot process and exception handling.

The first operation performed by both boot processes is to enter the reset handler
procedure, in which:

• registers are set to zero;

• stack and BSS start addresses are set;

• BSS region is initialized;

• main() routine is entered.

Regardless of the execution mode chosen (M or MU), this operation is performed in
Machine privilege mode, which is default set at reset time by the hardware itself. This
privilege level is kept with M boot mode, while it changes to User in case MU is chosen.
It is important to highlight that if the privilege level must switch to User, the Assembly
instruction used to perform to enter the main() routine must be mret, while if Machine
mode is kept, jal is sufficient. From now on, if the main() runs with Machine privileges,
all Control, and Status registers can be accessed, whereas if we are in User mode, some of
them require to increase privilege, for example by using environment call (ecall).

One more difference between the two boot modes is related to the exception handling.
If the core is executing instructions in Machine mode, and an exception is encountered, the
privilege mode does not change, while it does if it is encountered in User mode. For this
reason, to jump back to the normal execution flow, in the first case a simple ret instruction
is used, but in the second case, mret is required.

The following Boot Loaders are available:

• Boot Loader for Machine-only mode;

• Boot Loader for Machine-User mode;

• Boot Loader for Machine-User mode customized for testing CSR instructions.
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4.3 Testing
This part concerns the AFTAB test environment and it is used. As Figure 4.4 shows, the
testbench consists of core and memory instantiation, plus a test process tasked to drive
test signals.

4.3.1 Functional Test of the Environment
The testbench internally makes connections between the core and memory interface, as
well as for the signal driven by the testbench process itself.

These signals are:

• clk: a unique clock with the same frequency used for both core and memory;

• rst: asynchronous reset asserted at the beginning of the simulation. During this
operation, the instruction memory region is initialized by a process internal to the
memory entity, which reads the external file produced by the compilation within the
build folder. Once this is concluded, the processor starts fetching the first instruction;

• log_en: this signal is used to perform a data memory dump into an external file at
the end of the execution, for automatic results checks.

The memory supports a 32-bit address, which corresponds to 4 GB virtual addressing
space, but it is internally designed for a physical dimension of 8 KB (cfr. Figure 4.5). In
order to simplify the resizing, the hardware description for the memory is generic. Memory
initialization and data memory dump files are used as parameters inside the VHDL file.

As shown in Figure 4.4, the instruction memory has been provided with a signal log_en
used to dump the content of the data memory into an external file. After the simulation,
this file can be optionally compared to a file containing the expected memory dump, to
verify the correct behavior of the AFTAB design.

The check operation is authomatically performed running a simulation command. The
test result can be analyzed through the terminal that outputs possible mismatching mem-
ory addresses, with their expected and actual memory content.

4.3.2 Test Applications
As it happens for PULP platform, AFTAB simulation environment allows to add custom
applications and places its expected output in the dedicated folder. Applications folder
already contains some applications allowing to test specific RV32IM and “Zicsr” Assembly
instructions. Specific test applications are provided for:

• Arithmetic instructions;

• Branch and jump instructions;

• Control and Status Registers instructions. For this test, a specific boot script has
been written (see below);

• Data transfer instructions;
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Figure 4.4. AFTAB simulation environment.
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Figure 4.5. AFTAB current memory map.

• Logical shift and load immediate instructions.

In order to automate test update some scripts have been developed. These have been
used to generate both test application codes and related golden dumps that are directly
updated inside their folders. In order to understand their general functioning, here some
info is provided:

• RV32IM test generator: this Python script allows to automatically generate ap-
plication and expected result for the following group of instructions: Arithmetic,
Branches, Jumps Data Transfers, Logical, Shift and Upper Immediate operations.
Inside the script, some functions are defined and used to provide an essential gen-
eralization of the test. The data used to set registers and generate expected values
are contained inside static arrays (named REGS and IMM) that can be modified if it is
needed to perform a specific calculation. Support variables (named ADDR and OFFSET)
are used to keep track of the address to be used. Functions used to write the files
aim at:
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– Set Registers: writes to the test file instructions that set a certain amount of
registers with the values REGS array;

– Register-Register instruction: writes to test file some register-register in-
structions taking as input a specific operation;

– Register-Immediate instruction: writes to test file some register-immediate
instructions taking as input a specific operation;

– Load and Store instruction: writes to test file some load and store instruc-
tions;

– Load Upper Immediate Instruction: writes to test file lui or auipc instruc-
tions;

– Jump instruction: writes to test file some jump instructions taking as input a
specific specified operation;

– Branch instruction: writes to test file some branch instructions taking as input
a specific operation.

All the functions write the expected results to the proper golden dump file and the
tests into the test files.

• Zicsr test generator: this Python script allows to automatically generate applica-
tion and expected result for the application test_asm_csr. This requires a dedicated
script because of the different instruction combinations. As for test_generator.py,
some functions allow defining a general method to write into files. Similar is also the
variables and arrays. The function used to write the files are:

– Set Registers: writes to the test file instructions that set a certain amount of
registers with the values REGS array;

– CSR instruction: this function allow to write test for a specific CSR instruction
on all the control and status registers implemented. Since the instructions csrrw,
csrrc and csrrs are available both as register-register and register-immediate,
"r" or "i" option has to be specified. The tested registers are: mstatus, mtvec,
mcause, mepc and privlv (at address 0xC10);

– CSR instruction on specific CSR: this function allow to write test for a
CSR instruction for a specific control and status registers. For the instructions
csrrw, csrrc and csrrs it has to be specified whether read ("r"), write ("w")
or read-write (‘"rw") operation has to be performed, the register on which it is
performed and if the operation is "r" or "i";

– Illegal CSR Instruction: this function writes to the text file some illegal
instruction that should rise illegal instruction exception. In particular, these
instructions are those accessing CSR registers without having privilege.

Since CSR instructions require privileges in order to be executed, the test is split be-
tween its dedicated bootloader and the test code. The test code file contains only the illegal
instructions, while all the remaining ones are written inside the boot loader substituting a
pattern. Memory map is the same as Figure 4.5.
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4.4 Benchmarking
After Design and Test, we have decided to compare AFTAB and PULPino performances
running real applications running real applications. These have been selected formMiBench,
a standard benchmark suite shared by University of Michigan. The suit applications are
grouped into specific fields from which we have chosen three benchmark belonging to Au-
tomotive, Network and Security that are respectively Quick Sort, Dijkstra and Rijndael
(base algorithm for AES).

The benchmarks distributed by MiBench have required some changes because of the
internal usage of files and print. These could not be exploited because of the absence of
the peripherals required to handle such operations. Therefore, the applications have been
simply modified substituting files with static variables and removing all printf functions.

4.4.1 Quick Sort
Quick Sort is a well-known algorithm for sorting data inside arrays [13]. This operation
is particularly important for embedded systems but also for general-purpose computers
because it allows to define priorities, interpret results, organize data and reduce execution
time. As expressed by its name, the algorithm aims to sort elements as fast as possible,
regardless of the length of the array. The used approach is a divide-and-conquer method
that splits an array into two smaller ones and it repeats this process sub-arrays until the
algorithm is complete. The Quick Sort steps are the following:

• Check array size: proceed with the algorithm if the array size is at least two;

• Pivote choice: the first step is to identify a pivot through partition routine (maybe
random);

• Sort Partitions: reorder the elements of the partitions, in such a way that values
lower than the pivot come before a division point, while all elements with greater
values come after it; Equal values can go either way. elements that are equal to the
pivot can go either way.

• Recursion on sub-ranges: Recursively apply the quicksort to the sub-range lower
than the pivot and to the greater one, excluding the values equal to the pivot;

According to the partition, Quicksort complexity varies from the best case O(n log n) to
the worst one that is O(n2). The benchmark code is shown in ?? while a graphical example
is shown in Figure 4.6.
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Figure 4.6. Quick Sort Example.

4.4.2 Rijndael
Rijndael is the original name for Advanced Encryption Standard (AES) [8], a widely em-
ployed algorithm for encryption of digital data. For the thesis it has not been necessary
to deepen the algorithm details, however, this section provides a description of its general
behavior. The algorithm embraces the principle of substitution-permutation network and
it has good performances for both hardware and software implementations. Moreover, we
can also highlight that it features a simple design, ensures compactness and speed, and
can resist well-known attacks;

The size of the symmetric key that has been used coincide with one of the standards
128,192 or 256. In order to show the algorithm behavior, a 128-bit key will be considered.
Rijndael operates on a square matrix of bytes of dimension 4 and column-major ordered.
This contains the current state and is typically represented with a two-dimensional array.

b0 b4 b8 b12
b1 b5 b9 b13
b2 b6 b10 b14
b3 b7 b11 b15


In Rijndael, encryption with a 128-bit key is performed through nine transformations

(named rounds) and is based on byte replacement, swap, and XOR operations. The pro-
cedure is as follows:

• Key expansion: in this phase, the 128-bit round keys required by the algorithm
are generated. Nine are the keys for rounds plus an additional one. All of them are
stored into a dedicated four-by-four matrix (array).

• Plain-text setup: in this phase the plaintext is divided into 128-bit four-by-four
matrices.
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• Round execution: in this phase, each one of the plain text matrices goes through
the following computations:

– Byte substitution: in this step each of the matrix bytes are substituted with
a value read from an S-Box Lookup table;

– Rows Shifting: in this step the last three rows of the matrix are shifted by a
certain amount of steps;

– Column Mix: the bytes contained by each column are combined performing a
linear mixing operation;

– Add Round Key: each byte of the matrix is combined with the round key
performing a xor.

These operations are not performed in all rounds. In the first round, only “Add Round
Key” step is performed, whereas in the last one all of them are except “Column Mix”.
In the remaining steps, all the steps are executed.

Figure 4.7. Byte Substitution and Rows Shifting operations.

Figure 4.8. Column Mix and Add Round Key operations.
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4.4.3 Dijkstra
Dijkstra is widely used algorithm in networking field [6]. Its aim is to identify the shortest
path between a couple of nodes in a graph that can be associated to different entities in a
real world. As for the precedent algorithm, this Section will not go through the benchmark
detail, but it will only describe the algorithm.

In Dijkstra benchmark, a graph is described as an adjacency matrix where every index
I,J corresponds to the distance between the two nodes. Every time the algorithm is run
two node index are taken as input and one of them is labeled as initial node. Then the
algorithm sets the initial distance to infinite and tries to reduce it through step by step
graph visits. Here are listed the main steps:

• Unvisited Set: the first step is lable all the unvisited nodes including them in a set.

• Node distances: the second step aims at setting the distance of the shortest path
between the initial node and all the others. Obviously the initial it at zero distance by
itself while all the other distance are set to infinite because they are still not known.

• Visit neighbors: once distances are set the visit starts form the current node, that
is assigned to the initial when the algorithm starts. For all the visited nodes their
possible new distance is computed as distance of the current node plus the arch weight.
Once the value has been computed it is assigned to the current node if it is lower
than the current distance. For example, if current distance is 8 and the computed
one is 6 it is changed while if it was 9 it will be kept. This step is repeated for all the
neighbors.

• Mark visited: when all neighbors have been visited the current node is removed
from unvisited set. This implies that it will not be visited again.

• Conclusion check: the algorithm ends when the destination node is visited or when
the smallest distance between the unvisited nodes is infinitive ( this means that there
is no connection between source and destination). The algorithm can stop also when
the destination has the smallest distance between the unvisited;

• Set Current node: if conclusion condition is not verified the current node is set
to the one with the lowest distance between the unvisited. After this continue from
“Visit Neighbors" step;
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Chapter 5

Performance Evaluation

The aim of this Chapter is to show the results obtained during the performed activities
focusing on each one of them. In the first phase, the ISA has been extended and some
changes have been performed on the design, as explained in 4.1. From the interfacing point
of view, the core now features two read-write ports for data memory and one read port for
instruction memory. The addressing is still limited to 32-bit, but this memory interface
offers the essential base for future pipeline implementation. The interface has also been
extended with 16 external interrupt lines and, consequently, the core has been enabled to
handle external interrupts. The internal structure still exploits the Controller-Datapath
pattern while the control signals have been corrected and extended as in A.1.1. For the
Controller, the internal states have been changed as in A.1.2, while the Datapath has
been extended with Control and Status Register Unit (CSRU) and Interrupt Controller.
These two-component have allowed handling Privilege Modes (User and Machine) and
Exceptions. Moreover, a general refactor of the Datapath has helped to make it more
readable. Final result for Control Unit and Datapath are shown respectively in Figure A.2
and A.3.

The design changes have allowed the hardware to support some of the missing RV32IM
instructions and implement all those belonging to ”Zicsr” Extension. Their correct behav-
ior has then been tested through dedicated Assembly applications and validated thanks
to the automated test environment. This has allowed us to verify the correct behavior
of every instruction logging the memory content into an external file and comparing it to
a golden reference at the end of every simulation. Even if this strategy did not allow to
perform the test of every single unit, the validation process has speeded up considerably
when extending or correcting the RTL description. The implemented tests are internally
designed in order to test multiple times every single instruction, checking for each operation
both basic behavior and critical cases (division by zero, overflow, signed-unsigned variants,
etc.. ). All the instructions listed by Tables 2.2 and 2.3 have been validated, therefore the
correctness of 100% of the implemented instructions can be verified running the tests.

As a final activity, we have adjusted and simulated three well-known algorithms taken
from the MiBench benchmark suite. The applications have been run both on AFTAB
and one of the most notable examples of the RISC-V-based platform, PULPino. This has
allowed us to compare the two core performances. The benchmark algorithms are Quick-
Sort, Dijkstra and Rijndael. All of them have been run with the same logic stimulation
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frequency of 200 MHz (clock period: 5 ns) on both cores. For the QuickSort, we have used
one hundred randomly ordered integers that have been sorted in a one-dimensional static
array. The Rijndael algorithm has been performed on a simple 16-byte plaintext using a
128-bit key and a 128-bit initialization vector. The application both encrypts and decrypts
the interested plaintext and the results are stored in static variables. Dijkstra algorithm
has been run ten times on a graph consisting of ten nodes described by an adjacency matrix
and the resulting paths have been stored into a static array. The applications simulation
times on both AFTAB and RI5CY are listed in table 5.1.

Algorithm Core Clock Period Simulation Time Boot Time Program Time
Dijkstra AFTAB 5 ns 685580 ns 6285 ns 679295 ns
Dijkstra RI5CY (PULPino) 5 ns 240280 ns 160260 ns 80020 ns
Quick Sort AFTAB 5 ns 1571840 ns 2220 ns 1569620 ns
Quick Sort RI5CY (PULPino) 5 ns 355900 ns 159582 ns 196320 ns
Rijndael AFTAB 5 ns 606540 ns 2810 ns 603730 ns
Rijndael RI5CY (PULPino) 5 ns 235510 ns 159667 ns 75845 ns

Table 5.1. Benchmaking simulation time on both AFTAB and RI5CY.

The Table shows that the simulation time observed on AFTAB is always greater than
the ones obtained running the same programs on RI5CY. If the boot time is excluded,
it can be observed that Dijkstra Program Time (Tp) is more than 8 times bigger than
the one registered for RI5CY, almost 8 times for the QuickSort, and almost 8 times for
Rijndael. These informations are particularly important because they are the first source
of comparison with a well-known project such as PULPino, and can be considered as a
starting point for reaching similar or better performances. As we expected, in fact, the
two cores have very different performances, as RI5CY adopts pipelining while AFTAB
does not. For this reason, AFTAB throughput is still much lower and also depends on the
instruction distribution of a specific program.
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Conclusions and Future Work

To summarize this thesis work, it is good to emphasize the importance of implementing
a RISC-V platform allowing research and experiment in academia. As covered in detail
inthe introductory part, RISC-V ISA is an open-source project based on the original Re-
duced Instruction Set Computer, that has been proposed as an instruction set standard
by both academia and companies due to its characteristics. In addition to the saving due
to fees absence, it gives the possibility to research groups such as RHES Group Torino
to work on several possible projects and train a wide range of skills. During the work on
AFTAB, it has been possible to gain experience in several fields both related to software
and hardware. From the hardware point of view, the initial version of AFTAB has been
extended completing the base instructions set and implementing the extension for handling
privileges modes, control and status register instructions, and interrupts. In particular, the
most relevant implemented units are the Control and Status Register Unit (CSRU) and the
Interrupt Controller. This part has been particularly interesting because has both required
to design units but ensure that they could be integrated into the existing system respecting
the constraints of the instruction set.

From the software side, in addition to the utilities used during the project, to validate
both the parts of the system already present and those implemented later, an environment
to perform functional testing has been set up. This environment allows to check the
test result at every simulation and compare it with the expected results that have to be
prepared for every application. Thanks to it, it has been possible to test some Assembly
programs for which both code and results have been generated through dedicated Python
scripts. As the last activity, the performance of AFTAB and PULPino has been compared
to three well-known benchmarks. The comparison results in Table 5.1 show that AFTAB
performance is lower with respect to PULPino, as AFTAB is not a pipelined architecture,
and therefore its throughput is necessarily lower. Even if the result is still not close to our
target, I consider myself satisfied, as the goal of structuring a stable toolchain around the
design has been fully reached.

Moreover, I think that the actual state offers a good base from which several future
projects can start. Some of the most relevant are listed in the following:

• Synthesys on FPGA: a micro-architecture such as AFTAB can be used in many
fields, and one of the RHES Group Torino aims is to exploit it in Capture-the-Flag
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challenges domain [5]. In this scenario, a possible future work could be based on
the synthesis of the core. For this purpose, the platform could be integrated with
an automated tool for FPGA synthesis able to speed up the process of generating
versions of AFTAB with particular vulnerabilities. In addition, it could also be used
to extract and analyze data about the area, timing, and power;

• Pipelining: since performance is one of the main limits for AFTAB, implementing
pipelining would be a precious update;

• Units Choice: AFTAB currently features a Multiplier and Divisor that take respec-
tively 32 and 64 clock cycles to complete. These are designed in order to save space
at expense of timing, therefore it could be considered to substitute them with a dif-
ferent algorithm implementation. For the multiplication, it could also be considered
pipelining;

• ISA Extension: in order to enlarge the range of applications that can be run on the
platform, some of the RISC-V extensions can be implemented. For example, the first
one could be “F” and “D” extensions, for single and double-precision floating-point
instructions;

• Interrupt Handling the interrupt controller currently defines the static priority for
Interrupts and Exceptions, but does not implement any queuing mechanism and does
not allow to enable each one of them selectively. This would require the extension
of the implemented CSRs (see Machine Interrupt Registers MIE and MIP) and the
check of the related informations by the interrupt controller.

• CSRU Extension: in parallel to AFTAB, one of the RHES Group Torino projects is
to design a Secure Real-Time Operating System that could not be run on AFTAB at
the current state and would need some extensions. As shown in Figure 2.3, the min-
imum requirements for running a Unix-like operating system include the Supervisor
privilege level that is currently not supported. Therefore, Control and Status Register
Unit should be extended to implement all the required CSRs. At the moment, both
CSRU structure and register list are essential, and for this reason, it is suggested to
revisit the unit starting from the good base developed during this elaborate. For ex-
ample, all the register individual signals might be grouped into an individual register
bank;

• Peripherals design: to extend the platform functionalities, possible future exten-
sions may introduce peripherals to the system. As in the PULPino platform, some
peripherals that could be implemented are UART, MPU, GPIO, SPI, and I2C. For
example, UART could be exploited to log results through the "print" instruction. To
realize this idea, it would be good to extend the testbench so that it can redirect the
output of the peripheral towards the standard output;

• Secure Real-Time Operating System: the RHES Group Torino aims at starting
the design of such OS because of the growing need for systems capable of defending
against cyberattacks targeting embedded devices. This path can be pursued indepen-
dently of the AFTAB platform, but can be run on it only after the implementation
of the required feature (e.g., supervisor mode);
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• Control Flow Integrity: as a secure embedded core, AFTAB may be extended to
resist binary attacks that aim at changing the order of instruction execution. For this
purpose, the AFTAB platform may be extended both with hardware and software
solutions. From the hardware point of view, an idea could be to integrate into the core
a unit able to perform Control-Flow Integrity. Then, to check the effectiveness of the
implementation, it could also be interesting to adapt a software tool for vulnerability
assessment;

To sum up, I can say that I feel gratified by this thesis experience, as a student, and
as a person. First of all, I consider myself lucky to have taken part in the RHES Group
Torino and collaborated with the University of Teheran, because here I found a young
and dynamic environment where I also had the opportunity to work on a project that
allowed me to observe a microarchitecture from different abstraction levels. It has been
particularly interesting to deal with a wide range of activities from the hardware description
to the bare-metal programming. In general, I like being able to have an overview and find
links between different but similar areas, so I found this context particularly enjoyed this
context.

Finally, I would also like to express my gratitude to all those I shared time with during
this experience. Within the RHES Group Torino, I was lucky enough to find people with
whom I could collaborate but also share moments of leisure. For the thesis experience, I
particularly thank Gianluca, who always managed to constantly support both me and all
the graduate students. A sincere thanks to Professor Prinetto, who gave me the opportunity
to participate in this project.
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Appendix A

AFTAB Tecnical
documentation

This Appendix aims to provide technical documentation for anyone wishing to understand
more detailed aspects about AFTAB. Figure A.1 shows AFTAB pinout:

Figure A.1. Pinout of the AFTAB microprocessor.

Signals Description
clk, rst Fundamental clock and active high synchronous reset

Port 1 Data Interface
memReady1 Ready signal for data memory
memRead1 Read signal for data memory
memAddr1 32-bit address bus for addressing the data memory
memWrite Write signal for data memory
memDataIn1, memDataOut1 Two 8-bit data bus for data input and data output from/to the data memory

Port 2 Instruction Interface
memReady2 Ready signal for instruction memory
memRead2 Read signal for instruction memory
memAddr2 32-bit instruction address bus which carries out the content of the Program Counter
memDataIn2 8-bit data bus; during load and store, it carries variable number of bytes (B,H,W) in multiple clock cycles
interrupt_signals 16-bit interrupt lines bus

Table A.1. AFTAB interfacing port.
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A.1 Control Unit

Figure A.2. AFTAB Control Unit.
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A.1.1 Control Word
All the control word signal are set to be asserted in the state in which they operate. Tables
A.2 and A.3 describe each one of them.

Stage Control Signal I/O Description
Fetch ld_pc O esnable PC load

sel_mux_npc[2:0] O

selects next program counter between:
- csr_epc (010);
- csr_tvec (011);
- pc incremented by 4 (000);
- addResult (001);
- no selection (100).

sel_mux_instr[1:0] O

selects instruction between:
- PC (01);
- read port 1 of register file (00);
- no selection(10).

start_daru2 O starts DARU2 read process
completeDARU2 I set when DARU2 read process is completed
ld_ir O enables IR load

Decode mux_code[11:0] O code indicating how ISSEU unit has to choose immediate value
Execute ld_dr O enables data register load

write_regfile O RF write enable

sel_mux_lh[1:0] O

selects result in multiplications or divisions between :
- lower part (00);
- higher part (01);
- no value (10).

sel_mux_writedata[2:0] O

selects unit result to be written in RF between:
- CSRU (110);
- AAU (101);
- ASU (100);
- LLU (011);
- BSU (010);
- DARU2 output (001);
- PC incremented by 4 (000).

sel_mux_i1[1:0] O

selects execute operand 1 between:
- output port 1 of RF (p1) (10);
- current PC (01);
- extended unsigned immediate (00);
- no selection (11).

sel_mux_i2[1:0] O

selects execute operand 2 between:
- output port 2 of RF (p2) (00);
- immediate (01);
- no selection (10).

Table A.2. Control word signals (first part).
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Stage Control Signal I/O Description
Execute-Mem ld_adr O enables address load

nbytes[1:0] O

selects number of bytes:
- word (11);
- halfword (10);
- byte (01).

start_daru1 O starts DARU1 read process
start_dawu1 O starts DAWU1 write process

Execute-addSub add_sub O selects addition or subtraction
Execute-compare set_one O writes 1 into destination register (for comparison instructions)

set_zero O writes 0 into destination register (for comparison instructions)

Execute-logical sel_logic[1:0] O

selects bitwise logic instruction:
- XOR (00);
- OR (10);
- AND (11).

Execute-shift sel_shift[1:0] O

selects shift instruction:
- SLL (00);
- SRL (10);
- SRA (11).

Execute-multiplyDivide complete_aau I tells whether AAU operation is completed
signed_signed O if set to 1, both multiplication operands are signed
signed_unsigned O if set to 1, op. 1 is signed and op. 2 is unsigned
start_multiply_aau O starts multiplication
start_divide_aau O starts division
unsigned_unsigned O if set to 1, both multiplication operands are signed

Execute-conditionalBranch comp_signed_unsigned O elects unsigned or signed comparison
eq I set if comparison returns equal
lt I set if comparison returns lower than
gt I set if comparison returns greater than

Execute-LUI pass O set to perform lui instruction
adder/subtractor consider shifted immediate only

Execute-CSR csr_op[1:0] O

selects CSR instruction:
- no op (00);
- write (01);
- set (01);
- clear (11).

csrop_complete[1:0] I

tells whether and how CSR instruction is completed:
- not completed (00);
- complete no write (01);
- complete write (01).

Execute-system int_entry O set when an exception is risen
int_exit O set for exiting an exception

int_cause[31:0] O Input encoding the system call cause. The ecall is encoded as:
- ECALL form U (00000008);

err_rise I set in case of internal exception (for example, zero division)

err_cause[31:0] I

encodes internal exception cause:
- instruction access fault (00000001);
- illegal instruction (00000002);
- instruction address misaligned (00000000);
- store address misaligned (00000006);
- load address misaligned (00000004);
- store access fault (00000007);
- load access fault (00000005).

Memory load O selects word after load data adjusting
ldbyte_signed O selects signed or unsigned byte after load data adjusting
ldhalf_signed O selects signed or unsigned halfword after load data adjusting
complete_daru1 I tells whether DARU1 operation is completed
complete_dawu1 I tells whether DAWU1 operation is completed

Table A.3. Control word signals (second part).
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A.1.2 States
At each clock cycle, the internal Control Unit FSM can be in one of the states shown in
Table A.4.

States Description

Fetch
This is the initial state at reset time. During this state the next value of the
program counter is chosen and also the current
value to be read form memory. It also starts the reading from IRAM.

GetInstr In getInstr the instruction is loaded over four clock cycles in byte blocks.
When all the blocks are loaded the instruction is loaded into IR

Decode
In decode stage the control unit identifies which instruction has to be
performed looking at the OPCODE, func3 and func7 fields
of the IR. According to their vale the next state is chosen.

loadInstr1-2 LoadInstr1 computes the load address and loads it into address register.
LoadInstr2 specifies the number of bytes to be read and starts the read process.

getData
In getData state data are read in byte blocks and the total amount
of clock cycles depends on the specified amount of bytes.
Word requires 4 CCs, halfword requires 2 CCs and byte require 1 CC.

storeInstr1-2
storeInstr1 computes the store address, loads it into address register and the data
to be store in the data register.
storeInstr1 specifies the number of bytes to be stored and starts the store process.

putData
In putData state data are stored in byte blocks and the total amount
of clock cycles depends on the specified amount of bytes.
Word requires 4 CCs, halfword requires 2 CCs and byte require 1 CC.

addSub Datapath is configured to perform addition or subtraction.

compare Datapath is configured to perform a comparison.
Signed-unsigned combinations specified by the control word.

logical Datapath is configured to perform a logic instruction.
shift Datapath is configured to execute a shift instruction.

system Exception for System instruction is risen.
The instruction may require a change of privilege level.

CSR
Datapath is configured to execute a Control and Status register
instruction. Control word specifies the instruction that normally
requires 3 CCs (2 if write s not performed).

HANDLE_EXCEPTION1-2 Datapath is configured to handle a specific Exception specified by the
control word.

ILLEGAL_INSTRUCTION1-2 Datapath is configured to handle an Illegal Instruction Exception
multiplyDivide1-2-3 Datapath is configured to perform Division or Multiplication both require 64 CCs.

conditionalBranch Datapath is configured to perform a Branch instruction and select
the new PC according the comparison result.

JAL Datapath is configured to perform Jump and Link Instruction
JALR Datapath is configured to perform Jump and Link register Instruction
LUI Datapath is configured to perform Load Upper Immediate.

Table A.4. Control Unit states.

A.2 Datapath
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Figure A.3. AFTAB RTL diagram
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Appendix B

Benchmarks

This Appendix aims to provide technical documentation for anyone wishing to understand
more detailed aspects about benchmarks.

B.1 Quick Sort

extern int nums [] = { // integers to be sorted };

void swap(int* a,int* b){
int t = *a;
*a = *b;
*b = t;

}

int partition (int arr[], int low , int high ){
int pivot = arr[high ];
int i = (low - 1);
for (int j = low; j <= high - 1; j++){

if (( arr[j] < pivot) ? 1 : 0){
i++; swap (& arr[i], &arr[j]);

}
}
swap (& arr[i + 1], &arr[high ]);
return (i + 1);

}
void quickSort ( int arr[],int low , int high ){

if (low < high ){
int pi = partition ( arr ,low , high );
quickSort (arr , low , pi - 1);
quickSort (arr ,pi + 1, high );

}
}
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int main (){
int n = sizeof(nums) / sizeof(nums [0]);
quickSort ( nums ,0, n - 1);
return 0;

}
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B.2 Dijkstra

#define NUM_NODES 10
#define NONE 9999
#define SHORT_PATH_MAX 8
#define N_SHORT_PATH 10
#define NULL (( char *)0)

char graph_arc [ SHORT_PATH_MAX * N_SHORT_PATH ] = { // initialized }

// Index I,J is the cost for the transition to I to J.
int AdjMatrix [ NUM_NODES ][ NUM_NODES ] = {

32 ,32 ,54 ,12 ,52 ,56 ,8 ,30 ,44 ,94 ,
// .....

};

struct _NODE
{

int iDist;
int iPrev;

};
typedef struct _NODE NODE;

struct _QITEM
{
int iNode;
int iDist;
int iPrev;
};
typedef struct _QITEM QITEM;

NODE rgnNodes [ NUM_NODES ];
int ch;
int iPrev , iNode , npath =0;
int i, iCost , iDist;

QITEM qHead [20] = {{. iNode =NONE ,. iDist=NONE ,. iPrev =NONE},
... // all ad first };
int q_index = 0;
int i_head = -1;

void pop_path (NODE *rgnNodes , int chNode ){
char lines_buff [8];
int j=0;
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int n_a= 0;
int node = chNode;

for (int i = 0; i < 8;i++){
if (node != NONE || i == 0){

lines_buff [j] = node;
n_a ++;
int nodecp = node;
node = rgnNodes [nodecp ]. iPrev;

} else {
lines_buff [j] = 0;

}
if ( j == 7 ) {

for (int i = 0; i < 8; i++) {
graph_arc [npath *8+i] = lines_buff [i];

}
}else{

j++;
}

}
npath ++;

}
void enqueue (int iNode , int iDist , int iPrev ){

qHead[ q_index ]. iNode = iNode;
qHead[ q_index ]. iDist = iDist;
qHead[ q_index ]. iPrev = iPrev;
q_index ++;
i_head ++;

}

void dequeue (int *piNode , int *piDist , int *piPrev ){
if (i_head != -1){

*piNode = qHead[i_head ]. iNode;
*piDist = qHead[i_head ]. iDist;
*piPrev = qHead[i_head ]. iPrev;
qHead[i_head ]. iNode =NONE;
qHead[i_head ]. iDist=NONE;
qHead[i_head ]. iPrev = NONE;
q_index --;
i_head --;

}
}

int qcount (void ){
return( q_index );
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}

int dijkstra (int chStart , int chEnd) {
for (ch = 0; ch < NUM_NODES ; ch ++){

rgnNodes [ch]. iDist = NONE;
rgnNodes [ch]. iPrev = NONE;

}

if ( chStart == chEnd ){}
else {

rgnNodes [ chStart ]. iDist = 0;
rgnNodes [ chStart ]. iPrev = NONE;

enqueue (chStart , 0, NONE );

while (qcount () > 0) {
dequeue (& iNode , &iDist , &iPrev );

for (i = 0; i < NUM_NODES ; i++){
int iCost = AdjMatrix [iNode ][i];

if (( iCost) != NONE ){
if (( NONE == rgnNodes [i]. iDist) ||

( rgnNodes [i]. iDist > (iCost + iDist ))){
rgnNodes [i]. iDist = iDist + iCost;
rgnNodes [i]. iPrev = iNode;
enqueue (i, iDist + iCost , iNode );

}
}

}
}
pop_path (rgnNodes , chEnd );

}
}

int main(int argc , char *argv []) {
int i,j,k;
/* finds 10 shortest paths between nodes */
for (i=0,j= NUM_NODES /2;i <1;i++,j++) {

j=j% NUM_NODES ;

dijkstra (i,j);
}

return 0;

}
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B.3 Rijndael

# include "aes.h"// MiBench Library

/* A Pseudo Random Number Generator (PRNG) used for the */
/* Initialisation Vector. The PRNG is George Marsaglia ’s */
/* Multiply -With -Carry (MWC) */
#define RAND(a,b) (((a= 36969 *(a & 65535) + (a >> 16)) << 16)
+ (b = 18000 * (b & 65535) + (b >> 16)) )

char key [32] = " 1234567890 ABCDEFFEDCBA0987654321 ";
char key_char [16]= { /* all ’0’ */ };
char text_in [16] = {’A’,’B’,’1’,’4’,’7’,’9’};
char text_iv [16] = { /* all ’0’ */ };
char text_out [16] = { /* all ’0’ */ };
char text_out_dec [16] = { /* all ’0’ */ };

void fillrand (char *buf , int len ){
static unsigned long a[2], mt = 1, count = 4;
static char r[4];
int i;
if(mt) {

mt = 0;
a[0]=0 xeaf3;
a[1]=0 x35fe;

}

for(i = 0; i < len; ++i){
if(count == 4){

*( unsigned long *)r = RAND(a[0], a[1]);
count = 0;

}
buf[i] = r[count ++];
}

}

int encfile ( aes *ctx ){
char inbuf [16] , outbuf [16] ,c;
unsigned long i=0, l=0;

for(i = 0; i < 16; ++i) inbuf[i] = text_in [i];
fillrand (outbuf , 16); /* set an IV for CBC mode */
for(i = 0; i < 16; ++i) text_iv [i] = outbuf[i];
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for(i = 0; i < 16; ++i) /* xor in previous cipher text */
inbuf[i] ^= outbuf[i];
encrypt (inbuf , outbuf , ctx ); /* and do the encryption */
for(i = 0; i < 16; ++i) text_out [i] = outbuf[i];
return 0;

}

int decfile ( aes *ctx ){
char inbuf1 [16] , inbuf2 [16] , outbuf [16] , *bp1 , *bp2 , *tp;
int i, l, flen;

for(i = 0; i < 16; ++i) inbuf1[i] = text_iv [i];
for(i = 0; i < 16; ++i) inbuf2[i] = text_out [i];
decrypt (inbuf2 , outbuf , ctx ); /* decrypt it */
for(i = 0; i < 16; ++i) /* xor with previous input */

outbuf[i] ^= inbuf1[i];
for(i = 0; i < 16; ++i) text_out_dec [i] = outbuf[i];
return 0;

}

int main(int argc , char *argv []){
char *cp , ch;
int i=0, by=0, key_len =16, err = 0;
aes ctx [1];
cp = key;

while(i < 32 && *cp){ /* max key length is 32 bytes */
ch = *cp ++; /* process a hexadecimal digit */
if(ch >= ’0’ && ch <= ’9’)

by = (by << 4) + ch - ’0’;
else if(ch >= ’A’ && ch <= ’F’)

by = (by << 4) + ch - ’A’ + 10;
else /* error if not hexadecimal */

return 0;

/* store a key byte for each pair of hexadecimal digits */
if(i++ & 1)

key_char [i / 2 - 1] = by & 0xff;
}

set_key (key_char , key_len , enc , ctx );
err = encfile ( ctx );
set_key (key_char , key_len , dec , ctx );
err = decfile ( ctx );
return 0;
}
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