
POLITECNICO DI TORINO

Master’s Degree in Engineering and Management

Master’s Degree Thesis

Design and Implementation of an Object-Oriented

Python Library for Project Management

Supervisor:

Prof. Demagistris Paolo Eugenio

Candidate:

Chiemerie Ezechukwu

Academic Year 2021/2022

Abstract

When developing Project management backends, one often must plan for data types,

ways to process the data and actions to take. This thesis explores how OOP

methodologies benefit project management systems and software when the building

blocks of the software or system are represented in terms of “self-sufficient” objects.

To improve the ease and speed with which applications are developed, there is the

need for pre-developed libraries or framework. As such, a lot is abstracted from

the library consumer, and they can come up with solutions quicker. A project

management application is no exception to this and can benefit from a library that

already implements or provides an interface for most project management objects

and processes to be represented in the form of objects.

This thesis will produce a python library that models project management objects

and processes that will be essential when developing a Python-based thesis project

management application. For example, in a thesis setting, objects can be created

to represent the project charter, the student involved, the professor and any other

external stakeholders etc. These building blocks can then be aggregated, according

to requirements, to form the core of the given project which should be self-sufficient

(i.e., implement all the methods and attributes necessary). The benefits this will

provide are many folds from appropriating the benefits of OOP to PM to reduced

efforts in the development process due to code reusability to increased flexibility due

to modularity and polymorphism.

1

Table of Contents

Abstract 1

1 Introduction 7

1.1 Object oriented project management 7

1.1.1 What is project management 7

1.1.2 What is a project . 8

1.1.3 Object oriented project management 8

1.2 Object oriented programming . 10

1.2.1 What is Object oriented programming 10

1.2.2 Building blocks of OOP . 12

1.3 Principles of OOP . 15

1.4 Libraries . 22

2 Implementation 23

2.1 Tools and technologies used . 23

2.1.1 Python . 23

2.1.2 Git and GitHub (Version Control) 24

2.1.3 GitHub Actions . 26

2.2 Library Implementation . 29

2.2.1 The ProjectCharter class . 30

2.2.2 The Stakeholder class . 32

2.2.3 The Deliverable class . 33

2.2.4 The ProjectGovernance class 34

2.2.5 The Risk class . 35

2

Table of Contents

2.2.6 The WBS class . 37

2.2.7 The Project class . 40

3 Testing 42

3.1 What is Testing . 42

3.2 What is unit testing . 42

3.3 Testing the library . 43

4 Conclusion 47

4.1 Outcomes . 47

4.2 Future Improvements . 48

References 49

A Source code 51

A.1 src/project/ init .py . 51

A.2 src/project/deliverables/ init .py 53

A.3 src/project/governance/ init .py . 55

A.4 src/project/project charter/ init .py 57

A.5 src/project/project stakeholder/helpers.py 59

A.6 src/project/project stakeholder/ init .py 61

A.7 src/project/risks/helpers.py . 64

A.8 src/project/risks/ init .py . 66

A.9 src/project/wbs/ init .py . 69

A.10 src/project/wbs item/ init .py . 72

A.11 src/utils/ init .py . 75

A.12 src/utils/generic document.py . 76

A.13 src/utils/stakeholder.py . 77

B Unit test code 78

B.1 tests/factories.py . 78

B.2 tests/faker.py . 80

B.3 tests/test project/test deliverables.py 81

3

Table of Contents

B.4 tests/test project/test governance.py 83

B.5 tests/test project/test project charter.py 85

B.6 tests/test project/test project stakeholder.py 88

B.7 tests/test project/test project.py . 91

B.8 tests/test project/test risks.py . 93

B.9 tests/test project/test wbs item.py 96

B.10 tests/test project/test wbs.py . 98

B.11 tests/test utils/test generic document.py 101

B.12 tests/test utils/test stakeholder.py 102

4

List of Figures

1.1 Class Stakeholder implemented in Professor and Student class 11

1.2 Cat class blueprint implementation 12

1.3 Cat class instance . 13

1.4 class methods . 14

1.5 Generic Dog class . 16

1.6 Inheritance illustration . 17

1.7 Child class instance . 17

1.8 Method overriding . 21

2.1 Components of GitHub Actions . 27

2.2 Sample activity node diagram . 39

5

Acronyms

O2PM Object oriented project management

OOP Object oriented programming

PM Project management

WBS Work breakdown structure

6

Chapter 1

Introduction

1.1 Object oriented project management

1.1.1 What is project management

Project management is the use of specific knowledge, skills, tools and techniques to

deliver something of value to people [1].

Project management is the discipline of initiating, planning, executing, controlling

and closing the work of a team to achieve specific goals and meet specific success

criteria. A project is temporary in that it has a defined beginning and end in time,

and therefore defined scope and resources [2].

7

Chapter 1. Introduction

1.1.2 What is a project

A project, on the other hand, is distinct in that it is not a routine action, but

rather a specific group of operations aimed at achieving a single goal. As a result, a

project team frequently consists of people who don’t normally collaborate - perhaps

from separate businesses and across several continents. Examples of projects can

be the creation of software to improve a corporate process, the construction of a

building or bridge, the relief effort following a natural disaster, expansion into a new

geographical market.

1.1.3 Object oriented project management

Object oriented project management (O2PM) is based on concepts of Object oriented

programming such as objects and attributes, classes and members. It consists of

five major activities;

❼ finding classes and objects.

❼ identifying structures.

❼ identifying subjects.

❼ defining attributes.

❼ defining services.

Most importantly, O2PM is all about applying the object-oriented approach to

project management [3].

Coming from the standpoint of O2PM, every aspect of a project is an object. In a

typical project setting, the project manager constructs a project plan using a tool,

8

Chapter 1. Introduction

defines tasks, dates, and effort, and assigns them to team members; however there

are possibly no adequate mechanisms to encapsulate work and define boundaries.

This often will lead to accountability issues, challenges with effectively quantifying

project milestones and producing inaccurate reports.

Many of these issues are addressed by O2PM. The object-oriented approach to

project management is the focus of O2PM, and the key characteristics are as follows:

❼ Encapsulation: Team members can work well within defined bounds when

work deliverables are encapsulated meaning that boundaries are well defined.

Better control and, more crucially, accountability will result from this type of

job encapsulation. It also aids in the easy identification of issues and their

resolution.

❼ Inheritance: will specify the project’s architecture, rules, standards, and

processes, which must be “inherited” by all team members and their work

deliverables.

❼ Polymorphism: Describes the concept that a singular object/interface can

have several other implementations. For example, in a thesis project, the

professor and student are different entities but both implement the same

stakeholder class.

❼ Communication: This defines a known and standard medium through which

each encapsulated work object communicates with each other.

9

Chapter 1. Introduction

1.2 Object oriented programming

1.2.1 What is Object oriented programming

Object oriented programming (OOP) is a programming paradigm that relies on

the concept of classes and objects. It is used to structure a software program

into simple, reusable pieces of code blueprints (called classes), which are used to

create individual instances of objects. There are many object-oriented programming

languages including JavaScript, C++, Java, and Python to name a few [4].

OOP allows programmers to handle software development as if they were dealing

with actual real-world objects. People, in everyday life, have the knowledge and

ability to do a variety of duties. Objects in OOP have fields to hold knowledge,

state, and data, as well as the ability to execute numerous methods.

A class in OOP serves as a blueprint for creating more specific objects. They

represent broad categories that share attributes. They enforce what attributes their

instances can have but the values for any specific instance is set by that instance

itself. For example, in project management, a stakeholder is a party who has an

interest in a specific activity and can either affect or be affected by the said activity.

Now there are several types of stakeholders but in the OOP world, they are all

different implementation of the parent class/blueprint, stakeholder. In order words,

any specific type of stakeholder, will be represented as an object, which itself is a

specific example of the rather generic class, stakeholder and will have unique values

to the properties defined in the class.

The above illustration visually depicts what has been explained so far. A Stakeholder

class to contain all the properties a stakeholder must have and then from it are

derived instances of a Stakeholder type object, Professor and Student to represent

very specific stakeholders. Their attributes are isolated one from another and

10

Chapter 1. Introduction

Figure 1.1: Class Stakeholder implemented in Professor and Student class

can be modified without affecting the original class or other objects. This means

that the singular blueprint, Stakeholder can be reused to represent any number of

stakeholders. The “role” field in the image above is according to RACI model which

describes a responsibility assignment matrix.

The benefits that OOP presents are manyfold, from modelling complex things as

simple reproducible structures to implementing objects that can be reused across

programs to modifying the behavior of specific objects through polymorphism to

their ability to protect information due to encapsulation. It will be beneficial to

explain some basic terminologies in OOP in the next section.

11

Chapter 1. Introduction

1.2.2 Building blocks of OOP

This section deals with elucidating the basic building blocks of an OOP program.

Classes

Classes are user-defined data types which is where the blueprint for the structure

of attributes and methods are created. Individual objects can then be created or

instantiated from this blueprint.

Classes have fields to hold attribute values and methods to model behavior. To

illustrate, below is a code snippet in Python demonstrating how a generic class, Cat

can be represented.

Figure 1.2: Cat class blueprint implementation

The Cat class has attributes name and birthday and methods get_age() and meow().

With the knowledge that the class is only a blueprint for modelling a cat, a cat object

can be instantiated from it to represent an individual real-world thing.

12

Chapter 1. Introduction

Objects

OOP is all about objects. Objects are instances of a class created with specific data.

In code snippet, milana is an instance of the Cat class

Figure 1.3: Cat class instance

When the Cat class is called like on lines 16 and 19:

❼ A new object is created each time and stored in the variables milana and

masha respectively.

❼ The constructor (__init__) method runs with the name and birthday arguments

and assigns values.

13

Chapter 1. Introduction

Attributes

The information that is stored is referred to as attributes. The Class template

defines the attributes. Individual objects have data stored in the attributes field

when they are instantiated.

The data in the object’s attributes fields define the object’s state. The birthday

attribute could define the state of an object, allowing software to manage cats of

various ages differently.

Methods

The behaviors of objects are represented by methods. Methods carry out operations,

such as returning information about an object or updating its data. The code for

the method is specified in the class definition.

Objects can invoke the methods described in the class when they are instantiated.

In the code snippet below, the meow() method is defined in the Cat class and the

meow() method is called on either the milana or masha object on lines 21 and 22

respectively.

Figure 1.4: class methods

14

Chapter 1. Introduction

Methods are often employed to modify, update or delete data but they don’t have

to. As a matter of fact, the meow() method does not modify any data because

meowing does not modify any of the attributes of the Cat class, name or birthday.

Methods are how programmers keep functionality encapsulated within an object and

promote reusability. When debugging, its reusability comes in handy. If an error

occurs, there is only one location to look for it and correct it rather than numerous.

1.3 Principles of OOP

There are four main pillars of OOP;

❼ Inheritance: Child classes inherit data and behavior from their parent classes.

❼ Encapsulation: The process of enclosing information in an object and exposing

only a necessary subset.

❼ Abstraction: exposing high-level public methods for accessing an object.

❼ Polymorphism: many methods can do the same task.

Inheritance

Objects typically have a lot in common. They have some similar logic. However,

they are not comparable. Inheritance allows to reuse the common logic and extract

the unique logic into another separate class. It implies that a (child) class can be

created by deriving from another (parent) class. The child class derives all the parent

class’s fields and methods (common part) and can implement its own (unique part).

Herding dogs, for example, have a one-of-a-kind capacity to herd animals. To put

15

Chapter 1. Introduction

it another way, all herding dogs are dogs, but not all dogs are herding dogs. This

distinction can be illustrated by establishing a HerdingDog child class from a parent

Dog class, and then adding the unique herd() behavior to it.

Inheritance has the advantage of allowing programs to build a generic parent class

and then create more specific child classes as needed. This simplifies the overall

development because, rather than duplicating the Dog class’s structure repeatedly,

child classes can have automatic access to their parent class’s features.

Figure 1.5: Generic Dog class

In the code snippet in Figure 1.6, the child class HerdingDog inherits the method

bark from the parent class Dog in Figure 1.5 and adds a new method herd().

16

Chapter 1. Introduction

Figure 1.6: Inheritance illustration

The bark() method is not duplicated in the HerdingDog class; instead, it inherits

the bark() method defined in the parent Dog class defined in Figure 1.5.

Figure 1.7: Child class instance

When the code in Figure 1.3 calls jasper.bark() method, the bark() method

traverses up the chain to the parent where the method has been defined.

17

Chapter 1. Introduction

Encapsulation

Encapsulation is the process of enclosing all critical information within an object

and only presenting part of it to the outside world. Code within the class template

defines attributes and behaviors.

Encapsulation hides the internal software code implementation inside a class and

hides internal data of inside objects.

Encapsulation is achieved when each object keeps its state private, inside a class.

Other objects don’t have direct access to this state. Instead, they can only call a

list of public methods.

As an example of encapsulation, consider an automobile. Public interfaces are how

the automobile communicates with the outside world by employing blinkers to signal

turns. Under the hood, on the other hand, the engine is hidden.

Security is improved via encapsulation. Private attributes and methods can be

defined to prevent access from outside the class. Public methods and properties are

used to obtain or alter data in an object.

Using the Dog class example, encapsulation helps here so that access to private

information on other Dog instances is not possible. Consider the get_age() method

in Figure 1.5, the calculation is hidden inside the Dog class and each instance of the

class will use the get_age() method to access the age data. Since methods can also

update an object’s data, the developer controls what values can be changed through

public methods.

18

Chapter 1. Introduction

Abstraction

Abstraction can be thought of as a natural extension of encapsulation. It refers to

the user’s interaction with only a subset of an object’s attributes and operations.

To access a complex object, abstraction use simplified, high-level tools. When

employing abstraction, each object should only disclose a high-level mechanism

for interacting with it. Internal implementation details should be hidden behind

this mechanism. Using the automobile example again, you don’t have to know the

details of the inner workings of the engine to drive it. The driver utilizes only a few

tools, such as the gas pedal, brake, steering wheel, and blinker. The driver is not

privy to the engineering. A lot of elements must function together under the hood

to make an automobile run but revealing that knowledge to the driver would be a

risky distraction.

In the Dog class example in Figure 1.5, the calculation of the age has been abstracted

away into a private method _calculate_age() and a simple public method get_age()

is exposed as a way to get the age information

The benefits of abstraction are summarized below:

❼ Simple, high level user interfaces.

❼ Complex code is hidden.

❼ Security.

❼ Easier software maintenance.

❼ Updates to code will rarely change abstraction.

19

Chapter 1. Introduction

Polymorphism

Polymorphism refers to the design of items that have similar behavior. Objects can

override shared parent behaviors with specific child behaviors through inheritance.

Method overriding and method overloading are two ways that polymorphism allows

the same method to perform various actions.

❼ Method Overriding

In method overriding, the child class will provide its own implementation of a

method already in the parent class effectively overriding it. If for the Dog class,

there’s the need to create another child class TrackingDog which for some

reason barks differently, the bark() method established in the parent class

will have to be overridden like in the code snippet in Figure 1.8 to produce a

different bark sound.

❼ Method Overloading

This kind of polymorphism happens at compile or code execution time. Methods

may have the same name but behave differently based on the number of

parameters passed to them.

20

Chapter 1. Introduction

Figure 1.8: Method overriding

The benefits of Polymorphism are:

❼ Objects of different types can be passed through the same interface.

❼ Method overriding.

❼ Method overloading.

21

Chapter 1. Introduction

1.4 Libraries

A ”library” is a collection of program parts that do common and/or specialized

things that save the programmer from needing to ”reinvent the wheel” when writing

software. A class library is a pre-coded OOP template collection. It usually consists

of functions to call and object classes you can instantiate [5].

Libraries encourage code reuse and decrease redundancy by providing implementation

of repetitive jobs. Developing programs from the ground up can be a time-consuming

and costly task. Class libraries include all necessary classes in a previously written

coded format, making programming easier while also improving code quality. Customizing

the class template is done in accordance with the programming requirements. To

minimize programming language limitations, class libraries are regularly updated,

and time verified for stability.

Programmers can decide to build everything from the ground up, but this is incredibly

unsustainable and ill-advised for the reasons below;

❼ Expertise in the domain covered by the library: Authors are usually

experts in the domain covered by the library. This will ensure that users of

the library get the best implementation possible.

❼ Stability: Libraries have the benefit of being used by hundreds, if not thousands,

of developers around the world. Most of the early issues have already been

encountered and resolved by authors.

❼ Knowledge: By having to use code pre-written by others, developers gain

knowledge in the process. Many well-known libraries are built by top developers

and serve as excellent examples of solid coding and design.

❼ Finances: For commercial libraries, the equivalent of hundreds, if not thousands,

of man days of work can be got for free thanks to open source.

22

Chapter 2

Implementation

The implementation of this thesis project focuses on the library to be developed

with the Python programming language.

2.1 Tools and technologies used

2.1.1 Python

Python is a programming language that is commonly used to create websites (server-

side) and applications, automate operations, and perform data analysis. Python is a

general-purpose programming language, which means that it can be used to develop

a wide range of applications and isn’t specialized for any particular problem. Because

of its versatility and beginner-friendliness, it has become one of the most widely used

programming languages today.

Python was designed for readability and has some similarities to the English language

23

Chapter 2. Implementation

with influence from mathematics. Python relies on indentation, using whitespace, to

define scope; such as the scope of loops, functions and classes. Other programming

languages often use curly braces for this purpose.

Python is popular for a variety of reasons from its simple syntax that mimics

natural language to its versatility to the large and incredibly active community

that contributes to Python’s pool of modules and libraries.

2.1.2 Git and GitHub (Version Control)

Git

From web developers to app developers, Git is useful to anyone who writes code or

track changes to files. Git is the most used version control system. It keeps track

of the changes you make to files so you can see what has been done and go back to

previous versions if you need to. Git also facilitates cooperation by allowing several

people’s modifications to be merged into a single source. Initialize Git locally and

your files and their history are stored on your computer. Git repositories contains

all the project files and the entire revision history. It can be created by running the

git init command in the location you wish to create this repository. This creates

a .git subfolder, which contains all of the Git metadata for tracking changes.

GitHub

GitHub, on the other hand, is a Git hosting repository that makes it easier for

developers to work together. Developers can work on the same code repository

without conflicts using features like pull requests, code review, and issues (ticketing

system).

24

Chapter 2. Implementation

Developers can work on separate branches of the same repository, commit code

changes to store them, create a pull request to the main branch, debate and peer-

review code changes before merging the pull request.

A repository is sometimes known as a repo. Repos are Git projects that contain

files and directories associated with a development project, as well as the revision

history of each file. Within a repository, new branches can be created, pull requests

can be made, and merges can take place. The changelog displays the history of file

changes in the repository.

Git and GitHub has been employed to store and version all code modifications for

this project.

Why use Git

❼ Simplifies the process of contributing to open source: GitHub is used

by nearly every open-source project to administer their project. If your project

is open source, GitHub is free to use, and it contains a wiki and issue tracker

that makes it simple to provide more detailed documentation and receive

feedback. To contribute, simply fork a project, make your changes, and submit

a pull request via the GitHub web interface.

❼ Documentation: You make it easy to get quality documentation by using

GitHub. They include articles on practically every issue related to git that

you can think of in their help section and tutorials.

❼ Showcase your work: Do you want to attract recruiters as a developer? The

finest tool you can use for this is GitHub. Most firms now check at GitHub

profiles while looking for fresh hires for their projects. Even if you did not

attend a prestigious university or college, if your profile is available, you will

have a better chance of being hired.

25

Chapter 2. Implementation

❼ Markdown: Markdown allows you to write styled texts using a simple text

editor. Everything on GitHub is written in Markdown, including the issue

tracker, user comments, and everything else. With so many other computer

languages to master in order to build up projects, having your content inputted

in a format without having to learn yet another system is a huge benefit.

❼ Repository This has previously been noted, but it’s worth repeating: GitHub

is a repository. This means that it is possible for your work to be seen

by the general audience. Furthermore, GitHub is one of the largest coding

communities in the world right now, giving your project a lot of exposure.

❼ Keep track of changes in your code over time: It’s difficult to maintain

track of modifications when numerous people work on a project—who modified

what, when, and where those files are stored. This problem is solved by

GitHub, which keeps track of all the modifications that have been pushed to

the repository. You can keep a version history of your code, much like you can

with Microsoft Word or Google Drive, so that earlier versions aren’t lost with

each iteration.

❼ Options for integration: GitHub integrates with popular cloud platforms

like Amazon and Google Cloud, as well as feedback tracking services like

Code Climate, and can highlight syntax in over 200 different programming

languages.

2.1.3 GitHub Actions

For continuous integration (CI), GitHub Actions has been employed.

GitHub Actions is a continuous integration and continuous delivery (CI/CD) platform

that allows you to automate your build, test, and deployment pipeline. It allows for

creating workflows that build and test your source code on events you configure

26

Chapter 2. Implementation

happening in your repository like pull requests or even merge pull requests to

production [6].

GitHub Actions extends beyond DevOps by allowing you to execute workflows in

response to other events in your repository. For example, anytime someone opens a

new issue in your repository, you may execute a workflow to automatically add the

required labels.

You can execute your workflows on GitHub’s virtual machines running Linux, Windows,

and macOS, or you can host your own self-hosted runners in your own data center

or cloud infrastructure.

The components of GitHub Actions

When an event occurs in your repository, such as when a pull request is opened or

an issue is raised, you may set up a GitHub Actions workflow to be executed. Your

workflow includes one or more jobs that can execute sequentially or concurrently.

Each task contains one or more steps that either run a script you create or run an

action, which is a reusable addition that can streamline your workflow.

Figure 2.1: Components of GitHub Actions [6]

27

Chapter 2. Implementation

Workflows

A workflow is a programmable automated procedure that executes one or more tasks.

Workflows are specified in a YAML file that is checked into your repository. They

can be triggered by an event in your repository, manually, or on a set timetable.

A repository can contain numerous workflows, each of which can carry out a separate

set of tasks. For example, you may have one workflow to build and test pull requests,

another to deploy your application whenever a release is made, and still another to

add a label if someone reports a new issue.

Events

A workflow run is triggered by an event, which is a specific activity in a repository.

For example, GitHub can be an activity when someone creates a pull request, opens

an issue, or pushes a commit to a repository. A workflow can also be started

manually on a timetable, or by triggering a REST API.

Jobs

A job is a series of workflow stages that all run on the same runner. Each step

consists of either a shell script that will be run or an action that will be performed.

The steps are carried out in a sequential order and are interdependent. Because

each step is run on the same runner, data can be shared from one step to the next.

A step that builds your application, for example, could be followed by a step that

tests the application that was built.

You can configure a job’s dependencies with other jobs; by default, jobs execute in

28

Chapter 2. Implementation

parallel and have no dependencies. When a job becomes reliant on another job, it

will not run until the dependent job has completed. You might have many build

tasks for different architectures with no dependencies and a packaging job that is

dependent on those jobs, for example. The build jobs will run in parallel, and the

packaging job will begin once they have all completed successfully.

Actions

An action is a GitHub Actions platform custom application that performs a sophisticated

but regularly repeated activity. To assist in limiting the amount of repetitive code

in your workflow files, use an action. An action can grab your git repository

from GitHub, configure your build environment’s toolchain, or set up your cloud

provider’s credentials.

Runners

When your workflows are triggered, a runner is a server that executes them. Each

runner is limited to one job at a time. To run your workflows, GitHub provides

Ubuntu Linux, Microsoft Windows, and macOS runners; each workflow run takes

place in a new, freshly provisioned virtual machine. You can host your own runners

if you need a different operating system or a specific hardware setup.

2.2 Library Implementation

In this section, the implementation of the library is showcased and explained. The

library will have 8 distinct project management objects each represented as a class

in the library namely;

29

Chapter 2. Implementation

❼ ProjectCharter class

❼ Stakeholder class

❼ Deliverable class

❼ ProjectGovernance class

❼ Risk class

❼ WBSItem class

❼ WBS class

❼ Project class

2.2.1 The ProjectCharter class

A project charter is a formal, typically short document that describes your project

in its entirety — including what the objectives are, how it will be carried out, and

who the stakeholders are. It is a crucial ingredient in planning the project because

it is used throughout the project lifecycle [7].

The ProjectCharter class presents a few methods and properties.

The class’s methods and signatures are represented below in a very simplified interface

to abstract away the implementation.

class ProjectCharter(project_title = None):

properties

property executive_summary: str

property project_stakeholders: list

property project_title: str

30

Chapter 2. Implementation

methods

method add_stakeholder(self, stakeholder)

static methods

static is_class_stakeholder(obj) -> bool

The constructor is called anytime a new ProjectCharter instance is created. It

takes an optional argument, project_title and goes ahead to initialize an empty

list _project_stakeholders private property that will hold and track Stakeholder

objects

The executive_summary property is a string field that holds summarized information

about project.

There’s a restriction to the ProjectCharter class in that only objects initialized

from the Stakeholder class can be added to the project_stakeholders list.

Adding a stakeholder must be done through the method add_stakeholder. A static

method is_class_stakeholder is available solely for verifying objects before they

are accepted to the stakeholder list. The static method simple returns a boolean

True or False and is used in the method add_stakeholder like below

def add_stakeholder(self, stakeholder):

assert self.is_class_stakeholder(stakeholder)

if isinstance(stakeholder, (list, tuple)):

for s in stakeholder:

self.__finalize_add_stakeholder(s)

else:

self.__finalize_add_stakeholder(stakeholder)

31

Chapter 2. Implementation

@staticmethod

def is_class_stakeholder(obj) -> bool:

"""

Checks that the stakeholder about to be added to the project

is instance of the Stakeholder class

"""

if isinstance(obj, list):

return all(isinstance(s, Stakeholder) for s in obj)

return isinstance(obj, Stakeholder)

2.2.2 The Stakeholder class

This class provides a template for modelling stakeholder objects. Its methods,

properties and signatures are below in a simplified interface.

class Stakeholder(first_name, last_name, email):

methods

method add_to_involved_projects(self, value)

method get_full_name(self) -> str

method get_number_of_projects(self) -> int

properties

property projects_involved: List[Project]

property responsibility: str

property role

property stakeholder_title

property stakeholder_type

The method add_to_involved_projects is designed to be used only by the

__finalize_add_stakeholder() private method defined in the ProjectCharter

class. It is simply used to add new ProjectCharter instances to the list of projects

the stakeholder in question is involved with.

32

Chapter 2. Implementation

get_number_of_projects() simply returns an integer depicting the number of

projects that stakeholder instance is involved with at any point in time.

The property projects_involved returns a list of objects of the ProjectCharter

charter class readily available should the library consumer require it.

For the role property of the various stakeholders, a simple enum following the RACI

responsibility models is defined.

class RoleEnum(Enum):

"""

* R = Responsible (Those who do the work to complete the task)

* A = Accountable (also approver or final approving authority)

* C = Consulted (Those whose opinions are sought)

* I = Informed (Those who are kept up-to-date on progress)

"""

RESPONSIBLE = "R"

ACCOUNTABLE = "A"

CONSULTED = "C"

INFORMED = "I"

UNSET = "UNSET"

2.2.3 The Deliverable class

Deliverables are very important to the success of any project and this library provides

an implementation of a deliverable model. The methods and properties it provides

are showcased in the simple interface below

class Deliverable(doc_title):

methods

method mark_as_accepted(self)

33

Chapter 2. Implementation

method mark_as_rejected(self)

method set_reviewer(self, value)

properties

property accepted: bool

property reviewer

property acceptance_criteria

property description

property expected_result

The mark_as_accepted and mark_as_rejected methods serve to set the accepted

property to True or False depending on whether the deliverable has been accepted

or not. set_reviewer sets the reviewer property to the ”responsible” who is

accountable for the deliverable. acceptance_criteria property serves to define

what determines when a deliverable can be accepted or not.

2.2.4 The ProjectGovernance class

Project Governance is the set of rules, procedures and policies that determine how

projects are managed and overseen.

These rules and procedures define how decisions are made during projects. As part

of the oversight process, project governance also determines the metrics by which

project success is measured.

The methods and properties this class implements are in the simplified interface

below.

class ProjectGovernance(project):

methods

method get_all_stakeholders(self) -> list

34

Chapter 2. Implementation

method sign_agreement(self, signee: Stakeholder)

properties

property not_signed_by: list

property signed_by: list

property signed_by_all: bool

The get_all_stakeholders method simply returns a list of stakeholder objects

included in the current project governance object.

sign_agreement simply exposes a method used to sign the project governance by

the stakeholder object passed in the argument.

There are a few properties in this class as well. not_signed_by returns a list of

stakeholder objects included in the project governance object but has yet to consent

the terms that will govern the project execution. signed_by also returns a list of

stakeholder objects and is the exact opposite of the former. signed_by_all is a

boolean type that simple returns True if all the involved stakeholders have signed

and False otherwise.

2.2.5 The Risk class

Risk is any unexpected event that can affect your project — for better or for worse

[8]. People, processes, technology, and resources can all be impacted by risk. Risks

are not the same as issues, which is a crucial distinction to recognize. Issues are

something you know you’ll have to deal with and may even know when they’ll

happen, such as a planned vacation for a team member or a large rise in product

demand during the holidays. Risks are occurrences that can happen at any time

and that you may not be able to predict — for example, a sudden outbreak of flu

in your office or a critical product component being out of stock.

35

Chapter 2. Implementation

The Risk class for this library has an interface as showcased below

class Risk(risk_name, probability, impact)

methods

method assign_risk_owner(self, value)

method get_risk_score(self)

method set_counter_measure(self, counter_measure)

properties

property counter_measure

property description

property impact

property probability

property risk_owner

assign_risk_owner is simply the method for assigning the risk owner.

get_risk_score is a value calculated based on the probability and impact

properties. An Enum class RiskScore is defined to organize the various risk score

points and is the return type of the method get_risk_score.

class RiskScore(Enum):

VERY_HIGH = range(80, 101) # 80% - 100%

HIGH = range(50, 80) # 50% - 79%

MODERATE = range(30, 50) # 30% - 49%

LOW = range(0, 30) # 0 - 29%

@classmethod

def get_risk_score(cls, value):

for val in cls:

if value in val.value:

return val

The set_counter_measure method is responsible for setting the counter measure

to be adopted for mitigating the particular risk object in question.

36

Chapter 2. Implementation

There are a possible of allowed values for the return value of the set_counter_measure

method. It is defined in the RiskCounterMeasure Enum class

class RiskCounterMeasure(Enum):

REDUCE = "REDUCE"

PREVENT = "PREVENT"

ACCEPT = "ACCEPT"

TRANSFER = "TRANSFER"

@classmethod

def list_allowed_values(cls):

return list(map(lambda c: c.value, cls))

2.2.6 The WBS class

The Work breakdown structure (WBS) class provides an interface for organizing

objects from the WBSItem class. The WBSItem class’s properties are displayed below

class WBSItem(work_item_name, duration, lag):

properties

property duration

property lag

property objective

property percent_complete

property resource

property status

Several WBSItem objects are aggregated under a list type property to make up part

of the WBS class.

Here is a look at the WBS class simplified interface

37

Chapter 2. Implementation

class WBS(name, start_date):

methods

method add_wbs_item(self, *args: WBSItem)

method get_critical_path(self)

method link_nodes(self, *args: Tuple[WBSItem, WBSItem])

method update_all(self)

properties

property duration

property finish_date

property percent_complete

property start_date

property wbs_items: List[WBSItem]

The method add_wbs_item takes as many arguments as are passed to it which

themselves must be objects made from the WBSItem’s class. The method adds the

individual WBSItem objects to the WBS object into the property wbs_items

It is important to mention that the WBS class makes use of an external python package

(library), criticalpath [9]. It uses the CPM method to calculate the critical path

of a network of tasks, assuming the graph in question is acyclic (i.e. has no closed

loops)

The method get_critical_path calculates the critical path of the graph utilizing

the criticalpath package. The method returns a visual string representation of

the critical path of the graph in question.

link_nodes takes as many tuple type arguments of WBSItem objects to link to one

another

An example usage from a test case is shown below.

38

Chapter 2. Implementation

def test_WBS_link_nodes(wbs: WBS, wbs_item_factory):

...

node_pairs = (

(node1, node2),

(node2, node3),

(node3, node6),

(node6, node7),

(node2, node4),

(node4, node6),

(node2, node5),

(node4, node5),

(node5, node7),

)

wbs.link_nodes(*node_pairs)

wbs.duration.days # 29

wbs.get_critical_path() # "node1 -> node2 -> node4 -> node6 -> node7"

The graph that produced the node_pairs in the example above will look like in the

image in Figure 2.2.

Figure 2.2: Sample activity node diagram

39

Chapter 2. Implementation

Each node pair has to be represented in order to ensure accurate results when

accessing the .duration.days property or even while calling the

.get_critical_path(). Repitions are ignored. For Figure 2.2, the relevant node

pairs are

❼ node1, node2

❼ node2, node3

❼ node3, node6

❼ node6, node7

❼ node2, node4

❼ node4, node6

❼ node2, node5

❼ node4, node5

❼ node5, node7

2.2.7 The Project class

The project class serves as a demonstration as to how the other class objects can

be managed under a common umbrella. It provides an interface for interacting with

other objects and performing operations on them.

class Project(project_charter):

methods

method create_deliverable(self, deliverable_name)

method add_deliverable(self, deliverable: Deliverable)

method accept_deliverable(self, deliverable: Deliverable)

40

Chapter 2. Implementation

method reject_deliverable(self, deliverable: Deliverable)

method add_new_project_risk(self, risk)

properties

property deliverables

property project_risks

property project_charter

property stakeholders

property project_governance

.create_deliverable()method take an argument, deliverable_name and returns

an object of type Deliverable. It also calls the method .add_deliverable() with

the newly created Deliverable object as the only argument.

.accept_deliverable() and .reject_deliverable() are light wrappers around

the Deliverable objects and serve to mark the deliverable objects as accepted or

rejected using the methods .mark_as_accepted() and .mark_as_rejected() which

the deliverable objects provides themselves.

class Project:

...

def accept_deliverable(self, deliverable: Deliverable):

assert deliverable in self._deliverables, "Deliverable does not exist

within the current project"

deliverable.mark_as_accepted()

def reject_deliverable(self, deliverable: Deliverable):

assert deliverable in self._deliverables, "Deliverable does not exist

within the current project"

deliverable.mark_as_rejected()

41

Chapter 3

Testing

3.1 What is Testing

In general, testing is finding out how well something works. Software testing is

the act of examining the artifacts and the behavior of the software under test by

validation and verification [10].

There are several types of tests that can be carried out on a software but for the

sake of this thesis project, all emphasis will be on unit test.

3.2 What is unit testing

Unit testing is a type of software testing where individual units or components of

a software are tested. The goal is to ensure that each unit of software code works

as intended. Unit test is carried out by developers throughout the development

42

Chapter 3. Testing

(coding) phase of an application. Unit tests are used to isolate a part of code and

ensure that it is correct. Any singular function, method, process, module, or object

might be considered a unit.

Unit testing ensures that all code meets quality standards before it’s deployed. This

ensures a reliable engineering environment where quality is paramount. Over the

course of the product development life cycle, unit testing saves time and money,

and helps developers write better code, more efficiently. It offers a wide variety of

advantages but a few has been listed below:

❼ Bugs are found easily and quicker: Code that is covered by tests is more

dependable than code that is not. If a future modification breaks something in

the code, developers will be able to quickly pinpoint the source of the problem

rather than having to sift through a large codebase.

❼ Unit testing provides documentation: Unit tests are a type of living

product documentation. Developers can use unit tests to acquire a basic

overview of the logic of a module and the system as a whole in order to figure

out what functionality is offered by one module vs another. Unit test cases

are indications that provide information about whether a software component

is being used correctly or incorrectly. As a result, these examples serve as

excellent documentation for these indicators.

❼ Modularity: Thanks to the modular nature of the unit testing, parts of a

project can be tested without waiting for others to be completed.

3.3 Testing the library

Each module and each function down to each line of code was tested yielding a 100%

test coverage. Pytest, a popular Python testing library, was used to accomplish the

43

Chapter 3. Testing

test. A sample test case is included.

from project import Project

from unittest.mock import Mock

from project.governance import ProjectGovernance

def test_Project(project: Project):

assert str(project) == "Fake Project"

assert isinstance(project.project_charter, Mock)

assert hasattr(project.project_charter, "project_stakeholders")

assert hasattr(project.project_charter, "project_title")

assert isinstance(project.project_governance, ProjectGovernance)

assert project.deliverables == []

assert project.project_risks == []

The test cases are enforced through a series of assert statements

These tests were configured to run automatically on GitHub using Github Actions

whenever there’s a new push to the repository. The configuration is in a .yaml file

format.

44

Chapter 3. Testing

name: Test

on:

push:

pull_request:

branches:

- master

jobs:

test:

runs-on: ubuntu-latest

steps:

- name: Check Out

uses: actions/checkout@v2

- name: Get Branch Name

run: echo "BRANCH=✩(echo ✩{GITHUB_REF##*/})" >> ✩GITHUB_ENV

- name: Install requirements, run tests with make and write coverage

run: make testall

- name: Get Coverage for badge

run: echo "COVERAGE=✩(cat coverage.json | jq .totals.percent_covered)%"

>> ✩GITHUB_ENV

- name: Create Badge

uses: schneegans/dynamic-badges-action@v1.1.0

with:

auth: ✩{{ secrets.GIST_SECRET }}

gistID: a1817190b63b0cd8f551cb3ec2ab6524

filename: ✩{{ github.event.repository.name }}_✩{{ env.BRANCH }}

_coverage.json

label: Code Coverage

message: ✩{{ env.COVERAGE }}

color: green

namedLogo: GitHub Actions

45

Chapter 3. Testing

The source code and tests in their entirety are in the Appendix A and Appendix B

section respectively

46

Chapter 4

Conclusion

4.1 Outcomes

The thesis’s outcome is stated in light of the thesis’s goal and scope, which were

established at the beginning.

The main purpose of this thesis was to develop a project management library. It

was designed to provide the basic functionality that will be needed when developing

a thesis management web application but can be also be adapted for other purposes.

Extensive unit tests have also been written to ensure that when future functionalities

are implemented, old ones don’t break. These tests have been configured to run

automatedly in Github hosted linux runners. The result of this test is attached to

a badge on the README.md on the repository to give library users a quick insight

about the health of the source code.

47

Chapter 4. Conclusion

4.2 Future Improvements

❼ Right now, it’s just a library and haven’t been used in any MVP yet. Utilizing

and integrating this library in real world applications will lead to improvement

as some bugs that might have slipped through the unit testing procedure might

eventually be discovered and fixed.

❼ Integrate a static tool checker like mypy. Python is a dynamically typed

language meaning that variables that point to objects can be assigned different

data types during their lifetime. Integrating mypy will reduce errors stemming

from wrong data type assignment.

❼ Loosely couple modules to promote independent use. Some modules require

other modules. For instance, the governance module requires a Stakeholder

object from the project_stakeholder module. This creates interdependence

making using one and not the other impossible. It will be beneficial to conduct

an analysis and implement design patterns to solve the concern.

48

References

[1] Project Management Institute. What is project management?

https://www.pmi.org/about/learn-about-pmi/what-is-project-management.

[2] Harelimana JB. Basic Concepts of Project Management. Austin Publishing

Group, 2017.

[3] K.R. Chandrashekar. Object-oriented project management (o2pm) objectizing

work. Project Management Institute, 2010.

[4] Erin Doherty. What is object-oriented programming? oop explained in depth.

https://www.educative.io/blog/object-oriented-programming.

[5] Steven Parker. What exactly is a library in programming?

https://teamtreehouse.com/community/what-exactly-is-a-library-in-

programming.

[6] GitHub Docs. Understanding github actions.

https://docs.github.com/en/actions/learn-github-actions/understanding-

github-actions.

[7] Wrike. What is a project charter in project management?

https://www.wrike.com/project-management-guide/faq/what-is-a-project-

charter-in-project-management/.

49

https://www.pmi.org/about/learn-about-pmi/what-is-project-management
https://www.educative.io/blog/object-oriented-programming
https://teamtreehouse.com/community/what-exactly-is-a-library-in-programming
https://teamtreehouse.com/community/what-exactly-is-a-library-in-programming
https://docs.github.com/en/actions/learn-github-actions/understanding-github-actions
https://docs.github.com/en/actions/learn-github-actions/understanding-github-actions
https://www.wrike.com/project-management-guide/faq/what-is-a-project-charter-in-project-management/
https://www.wrike.com/project-management-guide/faq/what-is-a-project-charter-in-project-management/

References

[8] Wrike. What is risk in project management? https://www.wrike.com/project-

management-guide/faq/what-is-risk-in-project-management/.

[9] Chris Spencer. criticalpath 0.1.5. https://pypi.org/project/criticalpath/.

[10] Wikipedia. Software testing. https://en.wikipedia.org/wiki/Software testing.

50

https://www.wrike.com/project-management-guide/faq/what-is-risk-in-project-management/
https://www.wrike.com/project-management-guide/faq/what-is-risk-in-project-management/
https://pypi.org/project/criticalpath/
https://en.wikipedia.org/wiki/Software_testing

Appendix A

Source code

A.1 src/project/ init .py

from src.project.project_charter import ProjectCharter

from .deliverables import Deliverable

from .governance import ProjectGovernance

class Project:

def __init__(self, project_charter) -> None:

self.project_charter: ProjectCharter = project_charter

self.stakeholders = project_charter.project_stakeholders

self._deliverables = []

self._project_risks = []

self.project_governance = ProjectGovernance(self)

@property

def deliverables(self):

return self._deliverables

51

Appendix A. Source code

@property

def project_risks(self):

return self._project_risks

def add_new_project_risk(self, risk):

assert risk not in self._project_risks, "This Risk already exists within

the current project"

self._project_risks.append(risk)

def add_deliverable(self, value: Deliverable):

assert value not in self._deliverables, "This Deliverable already exists

within the project"

self._deliverables.append(value)

def create_deliverable(self, deliverable_name):

deliverable = Deliverable(deliverable_name)

self.add_deliverable(deliverable)

return deliverable

def accept_deliverable(self, deliverable: Deliverable):

assert deliverable in self._deliverables, "Deliverable does not exist

within the current project"

deliverable.mark_as_accepted()

def reject_deliverable(self, deliverable: Deliverable):

assert deliverable in self._deliverables, "Deliverable does not exist

within the current project"

deliverable.mark_as_rejected()

def __repr__(self) -> str:

return self.project_charter.project_title

52

Appendix A. Source code

A.2 src/project/deliverables/ init .py

from src.utils import AbstractBaseDocument

class Deliverable(AbstractBaseDocument):

def __init__(self, doc_title) -> None:

super().__init__(doc_title)

self._description = None

self._acceptance_criteria = None

self._reviewer = None

self._expected_result = None

self._accepted = None

@property

def accepted(self):

if not isinstance(self._accepted, bool):

return "N/A"

return self._accepted

@property

def description(self):

return self._description

@description.setter

def description(self, value: str):

self._description = value

@property

def acceptance_criteria(self):

return self._acceptance_criteria

@acceptance_criteria.setter

def acceptance_criteria(self, value: str):

self._acceptance_criteria = value

@property

53

Appendix A. Source code

def expected_result(self):

return self._expected_result

@expected_result.setter

def expected_result(self, value: str):

self._expected_result = value

@property

def reviewer(self):

return self._reviewer

def set_reviewer(self, value):

"""

If the reviewer is internal to the project,

value should be an instance of the Stakeholder class

"""

self._reviewer = value

def mark_as_accepted(self):

self._accepted = True

def mark_as_rejected(self):

self._accepted = False

54

Appendix A. Source code

A.3 src/project/governance/ init .py

from ..project_charter import ProjectCharter

from ..project_stakeholder import Stakeholder

class ProjectGovernance:

TERMS_N_CONDITIONS = None

def __init__(self, project) -> None:

self._project = project

self._signed_by = []

self._project_charter: ProjectCharter = project.project_charter

self._not_signed_by: list = self._project_charter.project_stakeholders[:]

@property

def signed_by(self) -> list:

return self._signed_by

@property

def not_signed_by(self) -> list:

return self._not_signed_by

@property

def signed_by_all(self) -> bool:

return not bool(len(self._not_signed_by))

def sign_agreement(self, signee: Stakeholder):

assert isinstance(signee, Stakeholder), "Expected type Stakeholder, found

%s" % type(signee).__name__

assert signee in self.get_all_stakeholders(), (

"%s can’t sign as they are external to the project" % signee.

get_full_name()

)

assert signee not in self._signed_by, "This document has already been

55

Appendix A. Source code

signed by %s." % signee.get_full_name()

self._signed_by.append(signee)

self._not_signed_by.remove(signee)

def get_all_stakeholders(self) -> list:

return self._project_charter.project_stakeholders

56

Appendix A. Source code

A.4 src/project/project charter/ init .py

from typing import List, Optional, Union

from src.utils import AbstractBaseDocument

from ..project_stakeholder import Stakeholder

class ProjectCharter(AbstractBaseDocument):

"""

A project is defined by a project charter.

Once a project charter exists, it is assumed that a project is underway

"""

def __init__(self, project_title: Optional[str] = None) -> None:

super().__init__("Project Charter")

self._project_title = project_title

self._project_stakeholders: List[Stakeholder] = []

self._executive_summary = None

def __repr__(self) -> str:

return f"{self.__class__.__name__}({self._project_title})"

@property

def project_title(self):

return self._project_title

@project_title.setter

def project_title(self, value: str):

self._project_title = value

@property

def executive_summary(self):

return self._executive_summary

@executive_summary.setter

57

Appendix A. Source code

def executive_summary(self, value: str):

self._executive_summary = value

@property

def project_stakeholders(self) -> List[Stakeholder]:

return self._project_stakeholders

def add_stakeholder(self, stakeholder: Union[Stakeholder, List[Stakeholder]])

:

assert self.is_class_stakeholder(stakeholder), (

"Only Stakeholder instances can be added, not %s." % type(stakeholder)

.__name__

)

if isinstance(stakeholder, (list, tuple)):

for s in stakeholder:

self.__finalize_add_stakeholder(s)

else:

self.__finalize_add_stakeholder(stakeholder)

def __finalize_add_stakeholder(self, stakeholder: Stakeholder):

assert stakeholder not in self._project_stakeholders, (

’This Stakeholder "%s" already exists within the charter’ %

stakeholder.get_full_name()

)

self._project_stakeholders.append(stakeholder)

stakeholder.add_to_involved_projects(self)

@staticmethod

def is_class_stakeholder(obj) -> bool:

"""

Checks that the stakeholder about to be added to the project

is instance of the Stakeholder class

"""

if isinstance(obj, list):

return all(isinstance(s, Stakeholder) for s in obj)

return isinstance(obj, Stakeholder)

58

Appendix A. Source code

A.5 src/project/project stakeholder/helpers.py

from enum import Enum

class StakeholderTypeEnum(Enum):

"""Add more stakeholder types to this class as needed"""

PROFESSOR = "professor"

STUDENT = "student"

UNKNOWN = "unknown"

@classmethod

def list_allowed_values(cls):

return list(map(lambda c: c.value, cls))

class RoleEnum(Enum):

"""

This class is meant to model the responsibility roles in the RACI matrix

model

* R = Responsible

Those who do the work to complete the task. There is at least one role with a

participation type of responsible.

* A = Accountable (also approver or final approving authority)

The one who ensures the prerequisites of the task are met and who delegates

the work.

In other words, an accountable must sign off (approve) work that responsible

provides.

There must be only one accountable specified for each task or deliverable.

* C = Consulted

Those whose opinions are sought, typically subject-matter experts; and with

whom there is two-way communication.

59

Appendix A. Source code

* I = Informed

Those who are kept up-to-date on progress, often only on completion of the

task or deliverable.

"""

RESPONSIBLE = "R"

ACCOUNTABLE = "A"

CONSULTED = "C"

INFORMED = "I"

UNSET = "UNSET"

@classmethod

def list_allowed_values(cls):

return list(map(lambda c: c.value, cls))

60

Appendix A. Source code

A.6 src/project/project stakeholder/ init .py

from src.utils import AbstractBaseStakeholder

from .helpers import RoleEnum, StakeholderTypeEnum

class Stakeholder(AbstractBaseStakeholder):

def __init__(self, first_name, last_name, email) -> None:

super().__init__(first_name, last_name, email)

self._stakeholder_type: StakeholderTypeEnum = StakeholderTypeEnum.UNKNOWN

self._responsibility = None

self._stakeholder_title = None

self._role: RoleEnum = RoleEnum.UNSET

self._projects_involved = []

def __repr__(self) -> str:

return f"{self.__class__.__name__}({self.first_name})"

@property

def stakeholder_type(self):

return self._stakeholder_type.value

@stakeholder_type.setter

def stakeholder_type(self, value: str):

allowed_values = StakeholderTypeEnum.list_allowed_values()

assert value.lower() in allowed_values, ’Couldn\’t set property "

stakeholder_type". "%s" is not in %s’ % (

value,

allowed_values,

)

self._stakeholder_type = StakeholderTypeEnum(value.lower())

@property

def role(self):

return self._role.value

61

Appendix A. Source code

@role.setter

def role(self, value: str):

allowed_values = RoleEnum.list_allowed_values()

assert value.upper() in allowed_values, ’Couldn\’t set property "role". "%

s" is not in %s’ % (

value,

allowed_values,

)

self._role = RoleEnum(value.upper())

@property

def responsibility(self):

"""A brief description of the stakeholder’s designated activities"""

if self._responsibility is None:

raise AttributeError("This attribute is not set. call the setter to

set it")

return self._responsibility

@responsibility.setter

def responsibility(self, value: str):

self._responsibility = value

@property

def stakeholder_title(self):

if self._stakeholder_title is None:

raise AttributeError("This attribute is not set. call the setter to

set it")

return self._stakeholder_title

@stakeholder_title.setter

def stakeholder_title(self, value: str):

self._stakeholder_title = value

def get_full_name(self) -> str:

return f"{self.first_name} {self.last_name}"

@property

def projects_involved(self):

62

Appendix A. Source code

"""A list of projects the current stakeholder is involved with"""

return self._projects_involved

def add_to_involved_projects(self, value):

"""

This method should only be called by the ‘.__finalize_add_stakeholder()‘

method in the ProjectCharter class

"""

self._projects_involved.append(value)

def get_number_of_projects(self) -> int:

return len(self._projects_involved)

63

Appendix A. Source code

A.7 src/project/risks/helpers.py

from enum import Enum

class RiskProbabilty(Enum):

"""

Characterizes the likelihood that a particular risk arises during a

particular project

Some arbitrary values are defined here and the upper bounds chosen

* RARE = 0% < x 5%

* UNLIKELY = 5% < x 29%

* POSSIBLE = 30% < x 50%

* LIKELY = 50% < x 80%

* CERTAIN = 80% < x 100%

"""

RARE = 5

UNLIKELY = 30

MODERATE = 50

LIKELY = 80

CERTAIN = 100

class RiskImpact(Enum):

"""Defines how a particular risk can affect the progress of a project"""

HIGH = 100

MEDIUM = 50

LOW = 10

class RiskScore(Enum):

VERY_HIGH = range(80, 101) # 80% - 100%

HIGH = range(50, 80) # 50% - 79%

64

Appendix A. Source code

MODERATE = range(30, 50) # 30% - 49%

LOW = range(0, 30) # 0 - 29%

@classmethod

def get_risk_score(cls, value):

for val in cls:

if value in val.value:

return val

class RiskCounterMeasure(Enum):

REDUCE = "REDUCE"

PREVENT = "PREVENT"

ACCEPT = "ACCEPT"

TRANSFER = "TRANSFER"

@classmethod

def list_allowed_values(cls):

return list(map(lambda c: c.value, cls))

65

Appendix A. Source code

A.8 src/project/risks/ init .py

import re

from .helpers import RiskCounterMeasure, RiskImpact, RiskProbabilty, RiskScore

class RiskMetaClass(type):

pattern = r"^(rare|unlikely|moderate|likely|certain)_probability_(high|medium

|low)_impact✩"

def __getattr__(cls, attr):

if not re.match(cls.pattern, attr):

raise AttributeError("’%s’ object has no attribute ’%s’" % (cls.

__name__, attr))

return lambda risk_name: cls.__get_risk_class(attr, risk_name)

def __get_risk_class(cls, attr: str, risk_name: str):

probability, _, impact, _ = attr.split("_")

probability_value = RiskProbabilty[probability.upper()].value

impact_value = RiskImpact[impact.upper()].value

return Risk(risk_name, probability_value, impact_value)

class Risk(metaclass=RiskMetaClass):

def __init__(self, risk_name: str, probability: int, impact: int):

"""

:param name: Name of the Risk instance

:type name: str

:param probability: A value between 0 and 100 where each point denotes a

percentage point

:type probability: int

:param impact: A value between 0 and 100 where each point denotes a

percentage point

:type impact: int

"""

66

Appendix A. Source code

self.risk_name = risk_name

self.impact = impact

self.probability = probability

self._risk_owner = None

self._description = None

self._counter_measure = None

def get_risk_score(self):

return RiskScore.get_risk_score(int(self.probability / 100 * self.impact))

@property

def risk_owner(self):

return self._risk_owner

@risk_owner.setter

def risk_owner(self, value):

self.assign_risk_owner(value)

def assign_risk_owner(self, value):

self._risk_owner = value

@property

def description(self) -> str:

return self._description

@description.setter

def description(self, value):

self._description = value

@property

def probability(self) -> int:

return self._probability

@probability.setter

def probability(self, value: int):

"""

:param value: An integer between 0 and 100 where each point denotes a

percentage point

67

Appendix A. Source code

:type value: int

"""

assert value in range(101), "Please pass an integer between 0 and 100"

self._probability = value

@property

def impact(self) -> int:

return self._impact

@impact.setter

def impact(self, value: int):

"""

:param value: An integer between 0 and 100 where each point denotes a

percentage point

:type value: int

"""

assert value in range(101), "Please pass a number between 0 and 1"

self._impact = value

@property

def counter_measure(self):

return self._counter_measure

@counter_measure.setter

def counter_measure(self, value):

self.set_counter_measure(value)

def set_counter_measure(self, counter_measure: str):

"""counter_measure is a value to be chosen from the RiskCounterMeasure

Enum"""

allowed_values = RiskCounterMeasure.list_allowed_values()

assert counter_measure.upper() in allowed_values, "%s is not in %s" % (

counter_measure,

allowed_values,

)

self._counter_measure = RiskCounterMeasure(counter_measure.upper())

68

Appendix A. Source code

A.9 src/project/wbs/ init .py

from datetime import datetime

from typing import List, Tuple

from src.utils import Node

from ..wbs_item import WBSItem

class WBS:

_check_update_called = False

def __init__(self, name, start_date: datetime = datetime.now()) -> None:

self.name = name

self._wbs_items: List[WBSItem] = []

self.start_date: datetime = start_date

self.parent_node = Node(self.name)

@property

def percent_complete(self):

assert self._wbs_items, "The WBS Items list is empty. Populate it to get

the value of this attribute"

return sum(x.percent_complete for x in self._wbs_items) // len(self.

_wbs_items)

@property

def start_date(self):

return self._start_date

@start_date.setter

def start_date(self, value: datetime):

assert isinstance(value, datetime), "start_date takes a datetime object,

not %s." % type(value).__name__

self._start_date = value

@property

69

Appendix A. Source code

def finish_date(self):

"""This value depends on duration which depends on wbs_items not being

empty"""

return self.start_date + self.duration if self.duration else "N/A"

@property

def duration(self):

self.update_all()

return self.parent_node.duration

@property

def wbs_items(self):

return self._wbs_items

def update_all(self):

"""

Updates timing calculations for all children nodes.

Sets the es, ls, ef, lf information and updates duration

"""

if not self._check_update_called and self.wbs_items:

self._check_update_called = True

self.parent_node.update_all()

def get_critical_path(self):

"""calculate the critical path using CPM"""

self.update_all()

critical_path = self.parent_node.get_critical_path()

return " -> ".join(str(x) for x in critical_path) if critical_path else

None

def add_wbs_item(self, *args: WBSItem):

for wbs_item in args:

assert isinstance(wbs_item, WBSItem), "Only WBSItem instances can be

added, not %s." % (

type(wbs_item).__name__,

)

if wbs_item in self._wbs_items:

continue

70

Appendix A. Source code

self._wbs_items.append(wbs_item)

self.parent_node.add(wbs_item.node_instance)

def link_nodes(self, *args: Tuple[WBSItem, WBSItem]):

"""

links the WBSItems in a directed graph

"""

initial = self.parent_node

for pair in args:

assert all(isinstance(x, WBSItem) for x in pair), "Only tuples of

WBSItem instances are allowed"

origin, dest = pair

try:

initial = initial.link(str(origin), str(dest))

except KeyError as ke:

raise KeyError(

f"The WBSItem {ke} does not exist within this WBS. "

"Did you forget to add it? add it using the method ‘.

add_wbs_item()‘"

)

def __repr__(self) -> str:

return self.name

71

Appendix A. Source code

A.10 src/project/wbs item/ init .py

from datetime import timedelta

from src.utils import Node

class WBSItem:

def __init__(self, work_item_name: str, duration: timedelta, lag: timedelta =

timedelta(days=0)) -> None:

self.work_item_name: str = work_item_name

self.duration: timedelta = duration

self.lag: timedelta = lag

self._percent_complete: int = 0

self._status = None

self._objective = None

self._resource = None

@property

def duration(self):

return self.__duration

@duration.setter

def duration(self, value: timedelta):

assert not (

hasattr(self, "duration") or hasattr(self, "__duration")

), "This attribute is immutable once the object is created"

assert isinstance(value, timedelta), "Only timedelta objects can be set,

not %s." % type(value).__name__

self.__duration = value

@duration.deleter

def duration(self):

raise Exception("This attribute is immutable")

@property

72

Appendix A. Source code

def lag(self):

return self._lag

@lag.setter

def lag(self, value: timedelta):

assert isinstance(value, timedelta), "Only timedelta objects can be set,

not %s." % type(value).__name__

self._lag = value

@property

def percent_complete(self):

return self._percent_complete

@percent_complete.setter

def percent_complete(self, value: int):

assert value in range(0, 101), "Enter a integer between 0 and 100"

self._percent_complete = value

@property

def status(self):

return self._status

@status.setter

def status(self, value):

self._status = value

@property

def objective(self):

return self._objective

@objective.setter

def objective(self, value):

self._objective = value

@property

def resource(self):

return self._resource

73

Appendix A. Source code

@resource.setter

def resource(self, value):

self._resource = value

@property

def node_instance(self):

return Node(name=self.work_item_name, duration=self.__duration, lag=self.

_lag)

def __repr__(self) -> str:

return self.work_item_name

74

Appendix A. Source code

A.11 src/utils/ init .py

flake8: noqa

from .generic_document import AbstractBaseDocument

from .node import Node

from .stakeholder import AbstractBaseStakeholder

75

Appendix A. Source code

A.12 src/utils/generic document.py

from abc import ABC

from datetime import datetime, timezone

class AbstractBaseDocument(ABC):

def __init__(self, doc_title) -> None:

super().__init__()

self.doc_title = doc_title

self.time_created = datetime.now(tz=timezone.utc)

76

Appendix A. Source code

A.13 src/utils/stakeholder.py

from abc import ABC, abstractmethod

class AbstractBaseStakeholder(ABC):

def __init__(self, first_name, last_name, email) -> None:

super().__init__()

self.first_name = first_name

self.last_name = last_name

self.email = email

@abstractmethod

def get_full_name(self):

"""an instance method to get the stakeholders full name"""

77

Appendix B

Unit test code

B.1 tests/factories.py

import random

from datetime import timedelta

import factory

from project.project_stakeholder import Stakeholder

from project.wbs_item import WBSItem

from .faker import faker

class StakeholderFactory(factory.Factory):

class Meta:

model = Stakeholder

first_name = factory.LazyAttribute(lambda _: faker.unique.first_name())

last_name = factory.LazyAttribute(lambda _: faker.unique.last_name())

78

Appendix B. Unit test code

email = factory.LazyAttribute(lambda self: "{}{}@example.com".format(self.

first_name, self.last_name).lower())

class WBSItemFactory(factory.Factory):

class Meta:

model = WBSItem

work_item_name = factory.LazyAttribute(lambda _: faker.unique.text().split("

")[0])

duration = factory.LazyAttribute(lambda _: timedelta(days=random.randint(0,

365)))

@factory.post_generation

def add_percent_complete(self, create, extracted, **kwargs):

self.percent_complete = random.randint(1, 100)

79

Appendix B. Unit test code

B.2 tests/faker.py

from faker import Faker

faker = Faker()

80

Appendix B. Unit test code

B.3 tests/test project/test deliverables.py

from project.deliverables import Deliverable

from project.project_stakeholder import Stakeholder

def test_Deliverable(deliverable: Deliverable, monkeypatch):

"""

:param deliverable: comes from conftest.py at the root

:type deliverable: Deliverable

:param monkeypatch: pytest fixture for patching on the fly

"""

assert deliverable.doc_title == "Fake Deliverable"

assert deliverable.accepted == "N/A"

assert deliverable.description is None

assert deliverable.acceptance_criteria is None

assert deliverable.expected_result is None

assert deliverable.reviewer is None

monkeypatch.setattr(deliverable, "description", "Fake Description", raising=

True)

assert deliverable.description == "Fake Description"

monkeypatch.setattr(deliverable, "acceptance_criteria", "Fake Criteria",

raising=True)

assert deliverable.acceptance_criteria == "Fake Criteria"

monkeypatch.setattr(deliverable, "expected_result", "Fake Result", raising=

True)

assert deliverable.expected_result == "Fake Result"

def test_can_set_deliverable_reviewer(deliverable: Deliverable, stakeholder:

Stakeholder):

deliverable.set_reviewer(stakeholder)

assert deliverable.reviewer is stakeholder

81

Appendix B. Unit test code

def test_can_accept_deliverable(deliverable: Deliverable):

deliverable.mark_as_accepted()

assert deliverable.accepted is True

def test_can_reject_deliverable(deliverable: Deliverable):

deliverable.mark_as_rejected()

assert deliverable.accepted is False

82

Appendix B. Unit test code

B.4 tests/test project/test governance.py

from unittest.mock import Mock

import pytest

from project.governance import ProjectGovernance

@pytest.fixture

def governance(stakeholder_factory, monkeypatch):

stakeholders = stakeholder_factory.create_batch(5)

mock_project_charter = Mock(spec=["project_stakeholders"])

monkeypatch.setattr(mock_project_charter, "project_stakeholders",

stakeholders, raising=True)

mock_project = Mock(spec=["project_charter"])

monkeypatch.setattr(mock_project, "project_charter", mock_project_charter,

raising=True)

governance = ProjectGovernance(project=mock_project)

yield governance

def test_ProjectGovernance(governance, monkeypatch):

stakeholders = governance.get_all_stakeholders()

assert stakeholders == governance.not_signed_by

terms = "Some terms and conditions"

monkeypatch.setattr(governance, "TERMS_N_CONDITIONS", terms, raising=True)

assert governance.TERMS_N_CONDITIONS == terms

assert not governance.signed_by

assert not governance.signed_by_all

83

Appendix B. Unit test code

for stakeholder in stakeholders:

governance.sign_agreement(stakeholder)

assert governance.signed_by_all

assert governance.signed_by == stakeholders

def test_external_stakeholder_cannot_sign(governance, stakeholder):

with pytest.raises(AssertionError):

governance.sign_agreement(stakeholder)

def test_stakeholder_cannot_sign_twice(governance):

stakeholders = governance.get_all_stakeholders()

governance.sign_agreement(stakeholders[0])

with pytest.raises(AssertionError):

governance.sign_agreement(stakeholders[0])

assert len(governance.signed_by) == len(stakeholders) - len(governance.

not_signed_by)

def test_only_stakeholder_instances_allowed_to_sign(governance):

not_stakeholder_instance = Mock()

with pytest.raises(AssertionError):

governance.sign_agreement(not_stakeholder_instance)

84

Appendix B. Unit test code

B.5 tests/test project/test project charter.py

from typing import List

from unittest.mock import Mock, call, patch

import pytest

from project.project_charter import ProjectCharter

from project.project_stakeholder import Stakeholder

@pytest.fixture

def charter():

yield ProjectCharter(project_title="Fake Project")

def test_ProjectCharter(charter: ProjectCharter):

assert charter.doc_title == "Project Charter"

assert charter.project_title == "Fake Project"

assert not charter.project_stakeholders

assert not charter.executive_summary

assert str(charter) == "ProjectCharter(Fake Project)"

def test_ProjectCharter_set_project_title(charter: ProjectCharter, monkeypatch):

monkeypatch.setattr(charter, "project_title", "New Fake Project", raising=

True)

assert charter.project_title == "New Fake Project"

def test_ProjectCharter_set_executive_summary(charter: ProjectCharter,

monkeypatch):

monkeypatch.setattr(charter, "executive_summary", "Fake Summary", raising=

True)

assert charter.executive_summary == "Fake Summary"

85

Appendix B. Unit test code

def test_ProjectCharter_is_class_stakeholder(charter: ProjectCharter, stakeholder

, stakeholder_factory):

assert charter.is_class_stakeholder(stakeholder) is True

stakeholders: List[Stakeholder] = stakeholder_factory.build_batch(5)

assert charter.is_class_stakeholder(stakeholders) is True

not_stakeholder = Mock()

assert charter.is_class_stakeholder(not_stakeholder) is False

altered_stakeholders = stakeholders.append(not_stakeholder)

assert charter.is_class_stakeholder(altered_stakeholders) is False

def test_ProjectCharter__finalize_add_stakeholder(charter: ProjectCharter,

stakeholder: Stakeholder):

charter._ProjectCharter__finalize_add_stakeholder(stakeholder)

assert stakeholder in charter.project_stakeholders

assert charter in stakeholder.projects_involved

def test_ProjectCharter__finalize_add_stakeholder_cannot_add_stakeholder_twice(

charter: ProjectCharter, stakeholder: Stakeholder

):

charter._ProjectCharter__finalize_add_stakeholder(stakeholder)

with pytest.raises(AssertionError):

charter._ProjectCharter__finalize_add_stakeholder(stakeholder)

@patch("project.project_charter.ProjectCharter.is_class_stakeholder")

def test_ProjectCharter_add_stakeholder(mocked_is_class_stakeholder, charter:

ProjectCharter, stakeholder_factory):

assert charter.is_class_stakeholder is mocked_is_class_stakeholder

stakeholders: List[Stakeholder] = stakeholder_factory.build_batch(5)

mocked_is_class_stakeholder.return_value = False

with pytest.raises(AssertionError):

86

Appendix B. Unit test code

charter.add_stakeholder(stakeholders[0])

mocked_is_class_stakeholder.return_value = True

charter._ProjectCharter__finalize_add_stakeholder = Mock()

charter.add_stakeholder(stakeholders[0])

charter._ProjectCharter__finalize_add_stakeholder.assert_called_with(

stakeholders[0])

charter.add_stakeholder(stakeholders)

expected_calls = (call(stakeholder) for stakeholder in stakeholders)

charter._ProjectCharter__finalize_add_stakeholder.assert_has_calls(

expected_calls)

87

Appendix B. Unit test code

B.6 tests/test project/test project stakeholder.py

from unittest.mock import Mock

import pytest

from project.project_stakeholder import Stakeholder

from tests.faker import faker

FIRST_NAME = faker.first_name()

LAST_NAME = faker.last_name()

EMAIL = "{}{}@example.com".format(FIRST_NAME, LAST_NAME).lower()

RESPONSIBILITY = faker.text()

TITLE = faker.job()

@pytest.fixture

def stakeholder(stakeholder_factory):

yield stakeholder_factory.build(first_name=FIRST_NAME, last_name=LAST_NAME)

def test_Stakeholder(stakeholder: Stakeholder):

assert isinstance(stakeholder, Stakeholder)

assert stakeholder.first_name == FIRST_NAME

assert stakeholder.last_name == LAST_NAME

assert stakeholder.email == EMAIL

assert not stakeholder.projects_involved

assert stakeholder.stakeholder_type == "unknown"

assert stakeholder.role == "UNSET"

assert str(stakeholder) == f"Stakeholder({stakeholder.first_name})"

assert stakeholder.get_full_name() == f"{stakeholder.first_name} {stakeholder

.last_name}"

@pytest.mark.parametrize("attr", ["responsibility", "stakeholder_title"])

def test_Stakeholder_attr_raises_when_not_set(attr, stakeholder):

with pytest.raises(AttributeError):

88

Appendix B. Unit test code

getattr(stakeholder, attr)

@pytest.mark.parametrize("attr, value", [("responsibility", RESPONSIBILITY), ("

stakeholder_title", TITLE)])

def test_Stakeholder_attr_not_raises_when_set(attr, value, stakeholder):

setattr(stakeholder, attr, value)

assert getattr(stakeholder, attr) == value

@pytest.mark.parametrize(

"attr, value",

[("stakeholder_type", "not_allowed_value"), ("role", "not_allowed_value")],

)

def test_Stakeholder_cannot_set_attr_not_in_allowed_values(attr, value,

stakeholder):

with pytest.raises(AssertionError):

setattr(stakeholder, attr, value)

@pytest.mark.parametrize("allowed_value", ["professor", "student", "unknown"])

def test_Stakeholder_can_set_type_in_allowed_values(allowed_value, stakeholder):

setattr(stakeholder, "stakeholder_type", allowed_value)

assert getattr(stakeholder, "stakeholder_type") == allowed_value

@pytest.mark.parametrize("allowed_value", ["R", "A", "C", "I"])

def test_Stakeholder_can_set_role_in_allowed_values(allowed_value, stakeholder):

setattr(stakeholder, "role", allowed_value)

assert getattr(stakeholder, "role") == allowed_value

def test_add_project_to_stakeholder(stakeholder: Stakeholder):

fake_project1 = Mock()

fake_project2 = Mock()

stakeholder.add_to_involved_projects(fake_project1)

assert stakeholder.get_number_of_projects() == 1

stakeholder.add_to_involved_projects(fake_project2)

89

Appendix B. Unit test code

assert stakeholder.get_number_of_projects() == 2

90

Appendix B. Unit test code

B.7 tests/test project/test project.py

from unittest.mock import Mock

import pytest

from project import Project

from project.deliverables import Deliverable

from project.governance import ProjectGovernance

@pytest.fixture

def project(stakeholder_factory, monkeypatch):

stakeholders = stakeholder_factory.create_batch(5)

mock_project_charter = Mock(spec=["project_stakeholders", "project_title"])

monkeypatch.setattr(mock_project_charter, "project_stakeholders",

stakeholders, raising=True)

monkeypatch.setattr(mock_project_charter, "project_title", "Fake Project",

raising=True)

project = Project(project_charter=mock_project_charter)

yield project

def test_Project(project: Project):

assert str(project) == "Fake Project"

assert isinstance(project.project_charter, Mock)

assert hasattr(project.project_charter, "project_stakeholders")

assert hasattr(project.project_charter, "project_title")

assert isinstance(project.project_governance, ProjectGovernance)

assert project.deliverables == []

assert project.project_risks == []

def test_Project_create_deliverable(project: Project):

91

Appendix B. Unit test code

deliverable = project.create_deliverable(deliverable_name="Fake deliverable")

assert isinstance(deliverable, Deliverable)

assert len(project.deliverables) == 1

assert project.deliverables[0] == deliverable

def test_Project_accept_reject_deliverable(project: Project):

deliverable = project.create_deliverable(deliverable_name="Fake deliverable")

project.accept_deliverable(deliverable=deliverable)

assert deliverable.accepted is True

project.reject_deliverable(deliverable=deliverable)

assert deliverable.accepted is False

def test_Project_add_new_project_risk(project: Project):

risk = Mock()

assert project.project_risks == []

project.add_new_project_risk(risk=risk)

assert project.project_risks == [risk]

92

Appendix B. Unit test code

B.8 tests/test project/test risks.py

import pytest

from src.project.risks import Risk

from src.project.risks.helpers import RiskCounterMeasure, RiskImpact,

RiskProbabilty, RiskScore

from tests.faker import faker

@pytest.fixture

def risk():

yield Risk(risk_name="Fake Risk Name", probability=50, impact=100)

def test_create_Risk_object_directly(monkeypatch, stakeholder, risk):

assert risk.risk_name == "Fake Risk Name"

assert risk.impact == 100

assert risk.probability == 50

assert risk.risk_owner is None

assert risk.description is None

assert risk.counter_measure is None

assert risk.get_risk_score() == RiskScore.HIGH

assert isinstance(risk.get_risk_score(), RiskScore)

monkeypatch.setattr(risk, "risk_owner", stakeholder, raising=True)

assert risk.risk_owner == stakeholder

monkeypatch.setattr(risk, "description", "Fake Description", raising=True)

assert risk.description == "Fake Description"

def test_cannot_set_unallowed_counter_measure(risk):

with pytest.raises(AssertionError):

setattr(risk, "counter_measure", "Fake counter measure")

assert risk.counter_measure is None

93

Appendix B. Unit test code

@pytest.mark.parametrize("counter_measure", ["ReDuce", "prevenT", "aCCepT", "

transfer"])

def test_can_set_allowed_counter_measures_and_value_is_case_insensitive(

counter_measure, risk):

setattr(risk, "counter_measure", counter_measure)

assert isinstance(risk.counter_measure, RiskCounterMeasure)

assert risk.counter_measure == RiskCounterMeasure(counter_measure.upper())

@pytest.mark.parametrize("wrong_classmethod", ["not_a_real_classmethod", "

maybe_probability_high_impact"])

def test_access_to_dynamic_classmethod_not_matched_by_regex_raises(

wrong_classmethod):

with pytest.raises(AttributeError):

getattr(Risk, wrong_classmethod)

@pytest.mark.parametrize(

"class_method",

[

"rare_probability_high_impact",

"rare_probability_medium_impact",

"rare_probability_low_impact",

"unlikely_probability_high_impact",

"unlikely_probability_medium_impact",

"unlikely_probability_low_impact",

"moderate_probability_high_impact",

"moderate_probability_medium_impact",

"moderate_probability_low_impact",

"likely_probability_high_impact",

"likely_probability_medium_impact",

"likely_probability_low_impact",

"certain_probability_high_impact",

"certain_probability_medium_impact",

"certain_probability_low_impact",

],

)

94

Appendix B. Unit test code

def test_access_to_dynamic_classmethod_matched_by_regex_will_not_raise(

class_method):

name = faker.unique.name()

instance = getattr(Risk, class_method)(risk_name=name)

assert instance.risk_name == name

assert isinstance(instance.get_risk_score(), RiskScore)

probability, _, impact, _ = class_method.split("_")

probability_value = RiskProbabilty[probability.upper()].value

impact_value = RiskImpact[impact.upper()].value

assert instance.get_risk_score() == RiskScore.get_risk_score(int(

probability_value / 100 * impact_value))

95

Appendix B. Unit test code

B.9 tests/test project/test wbs item.py

from datetime import timedelta

import pytest

from project.wbs_item import Node, WBSItem

NAME = "Fake WBSItem"

DURATION = timedelta(days=56)

@pytest.fixture

def wbs_item(wbs_item_factory):

yield wbs_item_factory.build(work_item_name=NAME, duration=DURATION)

def test_WBSItem(wbs_item: WBSItem, monkeypatch):

assert str(wbs_item) == NAME == wbs_item.work_item_name

assert wbs_item.work_item_name == NAME

assert wbs_item.duration == DURATION

assert wbs_item.lag == timedelta(days=0)

assert wbs_item.percent_complete != 0

assert wbs_item.percent_complete in range(1, 101)

assert wbs_item.status is None

assert wbs_item.objective is None

assert wbs_item.resource is None

assert isinstance(wbs_item.node_instance, Node)

monkeypatch.setattr(wbs_item, "percent_complete", 50, raising=True)

assert wbs_item.percent_complete == 50

monkeypatch.setattr(wbs_item, "status", "IN_PROGRESS", raising=True)

assert wbs_item.status == "IN_PROGRESS"

monkeypatch.setattr(wbs_item, "objective", "Fake objective", raising=True)

assert wbs_item.objective == "Fake objective"

96

Appendix B. Unit test code

monkeypatch.setattr(wbs_item, "resource", "Fake resource", raising=True)

assert wbs_item.resource == "Fake resource"

def test_WBSItem_duration_cannot_be_deleted_or_modified(wbs_item: WBSItem):

with pytest.raises(AssertionError):

setattr(wbs_item, "duration", timedelta(days=4))

with pytest.raises(Exception):

delattr(wbs_item, "duration")

97

Appendix B. Unit test code

B.10 tests/test project/test wbs.py

from datetime import datetime, timedelta

from typing import List

import pytest

from project.wbs import WBS, Node

from project.wbs_item import WBSItem

WBS_NAME = "Fake WBS"

FIXED_START_DATE = datetime(2022, 1, 14, 11, 26, 3)

@pytest.fixture

def wbs():

yield WBS(name=WBS_NAME, start_date=FIXED_START_DATE)

def test_WBS(wbs: WBS):

assert str(wbs) == WBS_NAME == wbs.name

assert wbs.wbs_items == []

assert wbs.start_date == FIXED_START_DATE

assert wbs.finish_date == "N/A"

assert wbs.get_critical_path() is None

assert isinstance(wbs.parent_node, Node)

with pytest.raises(AssertionError):

"""

Accessing this atribute before adding WBSItems should raise an assertion

error

"""

assert wbs.percent_complete

def test_WBS_add_items(wbs: WBS, wbs_item_factory):

number_of_items = 100

98

Appendix B. Unit test code

wbs_items: List[WBSItem] = wbs_item_factory.build_batch(number_of_items)

wbs.add_wbs_item(*wbs_items)

assert wbs.percent_complete == sum(x.percent_complete for x in wbs_items) //

number_of_items

assert wbs.wbs_items == wbs_items

assert len(wbs.wbs_items) == number_of_items

def test_WBS_link_nodes(wbs: WBS, wbs_item_factory):

node1 = wbs_item_factory.build(work_item_name="node1", duration=timedelta(

days=5))

node2 = wbs_item_factory.build(work_item_name="node2", duration=timedelta(

days=3))

node3 = wbs_item_factory.build(work_item_name="node3", duration=timedelta(

days=2))

node4 = wbs_item_factory.build(work_item_name="node4", duration=timedelta(

days=9))

node5 = wbs_item_factory.build(work_item_name="node5", duration=timedelta(

days=6))

node6 = wbs_item_factory.build(work_item_name="node6", duration=timedelta(

days=8))

node7 = wbs_item_factory.build(work_item_name="node7", duration=timedelta(

days=4))

must call ‘.add_wbs_item()‘ first and add all items

wbs.add_wbs_item(node1, node2, node3, node4, node5, node6, node7)

assert len(wbs.wbs_items) == 7

wbs.add_wbs_item(node1, node2) # duplicate not added

assert len(wbs.wbs_items) == 7

assuming the graph is this below

/ node3node6

/ / \

node1---node2-------node4--- node7

\ \ /

__________node5_____/

99

Appendix B. Unit test code

The corresponding node pairs is this below

node_pairs = (

(node1, node2),

(node2, node3),

(node3, node6),

(node6, node7),

(node2, node4),

(node4, node6),

(node2, node5),

(node4, node5),

(node5, node7),

)

wbs.link_nodes(*node_pairs)

assert wbs.duration.days == 29

assert wbs.get_critical_path() == "node1 -> node2 -> node4 -> node6 -> node7"

test cannot call ‘.link_nodes() with a node not added to wbs_items

node8 = wbs_item_factory.build(work_item_name="node8", duration=timedelta(

days=4))

node9 = wbs_item_factory.build(work_item_name="node9", duration=timedelta(

days=44))

with pytest.raises(KeyError):

wbs.link_nodes((node8, node9))

100

Appendix B. Unit test code

B.11 tests/test utils/test generic document.py

from datetime import datetime

from utils.generic_document import AbstractBaseDocument

def test_AbstractBaseStakeholder():

document = AbstractBaseDocument(doc_title="fake_doc_title")

assert document.doc_title == "fake_doc_title"

assert isinstance(document.time_created, datetime)

101

Appendix B. Unit test code

B.12 tests/test utils/test stakeholder.py

import pytest

from utils.stakeholder import AbstractBaseStakeholder

def test_AbstractBaseStakeholder_raises_when_not_subclassed():

with pytest.raises(TypeError):

AbstractBaseStakeholder(

first_name="fake_first_name",

last_name="fake_last_name",

email="fake_email",

)

def test_AbstractBaseStakeholder():

class Stakeholder(AbstractBaseStakeholder):

def get_full_name(self):

return "%s %s" % (self.first_name, self.last_name)

stakeholder = Stakeholder(

first_name="fake_first_name",

last_name="fake_last_name",

email="fake_email",

)

assert stakeholder.first_name == "fake_first_name"

assert stakeholder.last_name == "fake_last_name"

assert stakeholder.email == "fake_email"

assert stakeholder.get_full_name() == "fake_first_name fake_last_name"

102

	Abstract
	Introduction
	Object oriented project management
	What is project management
	What is a project
	Object oriented project management

	Object oriented programming
	What is Object oriented programming
	Building blocks of OOP

	Principles of OOP
	Libraries

	Implementation
	Tools and technologies used
	Python
	Git and GitHub (Version Control)
	GitHub Actions

	Library Implementation
	The ProjectCharter class
	The Stakeholder class
	The Deliverable class
	The ProjectGovernance class
	The Risk class
	The WBS class
	The Project class

	Testing
	What is Testing
	What is unit testing
	Testing the library

	Conclusion
	Outcomes
	Future Improvements

	References
	Source code
	src/project/__init__.py
	src/project/deliverables/__init__.py
	src/project/governance/__init__.py
	src/project/project_charter/__init__.py
	src/project/project_stakeholder/helpers.py
	src/project/project_stakeholder/__init__.py
	src/project/risks/helpers.py
	src/project/risks/__init__.py
	src/project/wbs/__init__.py
	src/project/wbs_item/__init__.py
	src/utils/__init__.py
	src/utils/generic_document.py
	src/utils/stakeholder.py

	Unit test code
	tests/factories.py
	tests/faker.py
	tests/test_project/test_deliverables.py
	tests/test_project/test_governance.py
	tests/test_project/test_project_charter.py
	tests/test_project/test_project_stakeholder.py
	tests/test_project/test_project.py
	tests/test_project/test_risks.py
	tests/test_project/test_wbs_item.py
	tests/test_project/test_wbs.py
	tests/test_utils/test_generic_document.py
	tests/test_utils/test_stakeholder.py

