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Summary

Every system eventually fails unless it is maintained regularly. To this end each
entity might follow a different maintenance procedure to maximize reliability and
reduce expenses. There are in general 3 procedures for maintenance. One is so
called Reactive Maintenance where the action is taken only after the machine fails.
This might make sense if the system is not crucial or safety related. But if a complex
and expensive system is being dealt with, Reactive method might cause serious
damage and costs and more importantly safety issues. To avoid such consequences,
many companies perform regular controls called Preventive Maintenance. One big
problem with this method is defining when the part replacement must be done and
since we don’t know when the Failure will happen, additional costs will be imposed
as we might waste machine’s useful life. So, if one can predict the failure time, the
maintenance can be performed right before that point. This way, the problems
mentioned before can be easily tackled.

Predictive maintenance (PM) is now a major sector in the industry. Its benefits
now has urged companies and academics to invest in this field which has resulted
in considerable advancements. Furthermore, the arrival of the Internet of Things
necessitates automation of predictions. Among all, bearings are of the most
important parts of any machine and their failure accounts for a major part of
dangerous and expensive damages and therefore are exclusively critical. Among
different methodologies, recent studies discovered the strength of the Artificial
intelligence (AI) in yielding highly accurate estimations of Remaining Useful Life
(RUL) of bearings. Researchers have examined different sub-sects of the AI such
as Machine Learning (ML) in particular Deep Learning (DL) and developed very
precise Health Indicators (HI). In Machine Prognostics, fault feature selection can
be complex. DL methods help us overcome this difficulty by automatising the
feature extraction process. Deep learning (DL) methods provide effective solutions
to surpass the limitations because of their strong feature learning ability. Deep
Networks have multiple hidden layers which have the ability to learn hierarchical
representations from the raw data directly . Through training procedure, deep
Network are able to automatically identify meaningful hierarchical representations
for accurate predictions. DL is now being practically applied to many areas of
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science and technology.[1] Despite huge leaps in Prognostic and Health Management
(PHM) techniques, We are still far from perfect. In this study, we try to improve the
accuracy of data-driven methods for prognostics starting from real world vibrational
data from bearings, processing them and creating an optimum HI through DL
methods.
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Chapter 1

Introduction

Predictive maintenance is a set of techniques that enables us to determine the
health state of the equipment and machinery which is very useful to estimate when
replacements should be done. Knowing exactly when to perform the maintenance
contributes to huge cost savings and prevents serious damages to the facility.
Machinery condition is evaluated through non-destructive testing like Vibrational
analysis, Infrared testing, Thermal imaging, Oil analysis and other online testing
methods.[2]

On the other hand, since the notion of the Internet of things is becoming
more and more serious, sensor based predictive maintenance is becoming more
and necessary but it is important to find a way to define the Remaining Useful
Life (RUL) of the machines with no human interaction. Today, vibrational data
collection is a very efficient method to evaluate the condition of the high-speed
rotatory machines and engineers take advantage of high end accelerometers to
collect important data. When correctly acquired, such data can discover exact
health status of the equipment.

Ball and roller bearings are widely utilised in the industry and are one of the
main parts of the machines, and the bearing failure is one of the usual causes of
rotatory machine failure. According to Electric power Research Institute, bearing
failure accounts for 50 percent of asynchronous motor failures.[3] [4]

Traditionally, system prognostics and health management (PHM) was based
on conventional data and in our case signal processing techniques requiring highly
skilled engineers to interpret the data. Furthermore, some meaningful data might
be hidden to the naked eye. To resolve the two difficulties, scientists have proposed
different automated procedures. Since the Artificial Intelligence (AI) is introduced,
its uses and power in different fields of science and industry are being discovered.
In this study I am going to take advantage of Machine Learning(ML), specifically
Deep Learning (DL), to improve the estimation of RUL of bearings.

Deep learning (DL) is a subgroup of machine learning that consists multiple
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Introduction

nonlinear layers originated from artificial neural network (ANN). As a result of
the rapid growth of computational capacities, DL’s potential power can be put
into practice, in this case in the field of prognostics. DL is capable of extracting
the hierarchical trends hidden in the structures. In DL multiple layers carefully
placed in the network, capture the desired information from the raw input data.
For this, DL models have become popular for their remarkable achievements
in diverse fields of science, like image and speech recognition, natural language
analysis. In the prognostics and the RUL prediction, the potentials of DL have
not been fully discovered. So far the literature on DL focuses on the four deep
architectures including Deep Belief Network, Convolutional Neural Network (CNN),
Auto Encoder and Recurrent Neural Network.[2].

Figure 1.1: Schematic of a Deep Neural Network [5]

The performance of sensor based prognostic methods is highly dependant on
the correct feature extraction in order to have meaningful start to failure trends.
Deep Neural Networks (DNN) extracts the features automatically with no human
interaction once the network is architectured, images are well normalized and
labelling is done.

Moreover, recent papers show that Transfer Learning (TL) methods, i.e. using
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the already architectured Deep Neural Networks (DNN) for the training process
saves a great amount of time and yields surprisingly good results.

In order to achieve acceptable estimations, DNN needs a massive amount of
data. In this study we have used the IMS datasets provHerided by the centre for
Intelligent Maintenance Systems, which is so far the most realistic start to failure
dataset. The dataset consists of time domain .CSV format files acquired from
accelerometers.

In this research instead of creating an original network architecture we are going
to take advantage of networks already created (Transfer Learning) and powering
our applications with it. Among all famous networks, We have decided to use
ALexnet [6] which was initially designed for object classification.

Alexnet [6] is one of the most influential research papers which is published in
the field of computer vision. it has motivated many other researches utilising CNN
with use of GPUs to enhance the learning procedure. Alexnet’s incredible accuracy
on complex datasets, urged us to inspect its power as a base of our transfer-learning
process. It is important to know that by removing any of the convolutional layers
the performance will considerably decrease. This is also tested in our study. Today,
Alexnet is the most used architecture in object-detection projects and computer
vision sector. According to studies [7] Alexnet might be even utilized more than
CNNs for image tasks. Alexnet is an image classifier network. Image classification
is used to identify and predict the class of an object and its features in a group of
pixels in an image [8]. In this thesis our work is based on spectrograms which are
practically images. These images will be used for the learning process of the CNN.

The input of DNN is specifically an image so somehow the time domain data
acquired has to be turned into images . Some studies [9] [10] have used time domain
graphs as an input for the DNN training but time domain has little meaningful
data for training process and might not yield accurate predictions. In this study
we have used spectrograms as a powerful and meaningful input for the training
process which is a 3D time and frequency domain image. In this thesis we used the
short-time Fourier transform (STFT ) to create such images (Spectrograms) but as
one of the trials we have also made a unique dataset made by Continuous Wavelet
Transform method to obtain the aforementioned time-frequency images.
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Figure 1.2: A Spectrogram created by short time Fourier transform technique

1.1 Literature Review
The notion of, Predictive Maintenance (PM), was first proposed in the late 80’s,
where online sensor data was analysed by the engineers to evaluate the health
state of the system.[11] Machine learning on the other hand studies computer
algorithms that are able to improve automatically over time. Machine learning is a
major branch of Artificial Intelligence(AI). Machine learning was first introduced
by Arthur Samuel, an American IMB employee in 1959. This literature review will
concurrently explain the advancement in Prognostics and Health Management and
Deep Learning as main subjects of this thesis.

In 2001 a research by Wenbin Wang [12] Demonstrated that the RUL is not
simply a function of the service time but also the condition info received from
the sensor. If put in practice, this finding can lead to a big reduction of part
replacement and stocking expenses. The following year the same author published
the “remaining life prediction of a set of rolling element bearings using the monitored
vibration signals on the basis of a chosen distribution”.[2]

These two works are particularly important because in them idea of Health
Stage (HS) division is discussed and in the first one the finding the first faulty
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signal place is researched.
In 2006 Robert X.Gao and Ruqiang Yang[13][14] published a paper on transient

nature of bearing vibrations. In this research they claim that signals generated by
transient vibrations in rolling bearings due to structural defects are non-stationary
in nature, and reflect upon the operation condition of the bearings and that non-
stationary signals is critical to bearing health monitoring. This research introduces
four representative time-frequency analysis methods used for non-stationary signal
processing.

Next in 2008, a research “Feature extraction for bearing Prognostics and Health
Management (PHM)” [15][16] was published Weizhong Yan, Hai Qiu, and Naresh
Iyer as a guideline to perform a correct feature extraction procedure and choosing
the correct methods to that end. In the mentioned paper, it is stated that with
PHM we are allowed to use different sensors to sense different variables of a bearing
including Vibration, Temprature, Chemical and acoustical emission and sound
pressure sensors.

The Alexnet Convolutional neural network (CNN) was introduced in 2012 by
Alex Krizhevsky in collaboration with Ilya Sutskever and Geoffrey Hinton [6]. Since
then, the usage of deep convolutional neural network has increased exponentially,
inasmuch it has leveraged several machine learning solution [17] [18]. AlexNet is
regarded as one of the most influential papers published in computer vision, in
that it has inspired many more papers published employing CNNs and GPUs to
accelerate deep learning; according to Google Scholar, the AlexNet paper has been
cited over 80,000 times [19].

A very simple Wavelet analysis technique using Continuous Wavelet Transform
(CWT) that does not require complex signal processing knowledge was proposed by
Sunil Tyagi1 , SK Panigrahi [4] [20] in 2015. They compare the study of Envelope
Detection (ED) effectiveness, and CWT method for bearing fault diagnosis, showing
that the proposed simple CWT based method is better fault diagnostic tool for
bearing fault identification. They suggested applying a band-pass filter, which
removes the large low-frequency components as well as the high frequency noise
only the burst of high frequency vibrations remains and then FFT of this enveloped
signal is taken, to obtain a frequency spectrum.

In “Bearing remaining useful life estimation based on time–frequency represen-
tation and supervised dimensionality reduction” a new approach was proposed by
Minghang Zhao Baoping Tang QianTan[17] [20] in May 2016.

Traditionally, system prognostics and health management (PHM) depends on
sufficient prior knowledge of critical components degradation process in order to
predict the remaining useful life (RUL). However, the accurate physical or expert
models are not available in most cases. In 2017, XiangLi, QianDing and Jian-
QiaoSun [13] simple proposed a novel data-based method for prognostics utilizing
deep convolution neural networks (DCNN). In this research raw collected data
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with normalization are directly used as inputs to the proposed network, and no
prior expertise on prognostics and signal processing is required, that facilitates the
application of the proposed method.

Also in 2017, Yaguo [21] systematically reviewed the data acquisition to RUL
estimation procedure. In this paper both FEMTO[22] from a PRONOSTIA platform
and IMS datasets provided by the center for Intelligent Maintenance Systems, are
described and analysed. In the following graphs a start to failure time domain
graph of one bearing in each dataset is shown:

Figure 1.3: Time domain graphs of IMS
[15] Figure 1.4: Femto Datasets [15]

Then, commonly used HI construction approaches and metrics are discussed.
After that, the Health Stage HS division process is summarized by introducing
its major tasks and existing approaches. Afterwards, the advancements of RUL
prediction are reviewed including the popular approaches and metrics. Finally, the
paper provides discussions on current situation, upcoming challenges as well as
possible future trends for researchers in this field.

For the prediction of Remaining Useful Lifetime (RUL) of turbofan engine using
machine learning, Vimala Mathew et al [23]. used ten machine learning algorithms
for comparing the prediction accuracy in 2017’s IEEE International Conference.
The different algorithms were compared to obtain the prediction model having the
closest prediction of remaining useful lifecycle in terms of number of life cycles.
Next, in the same year, a TL-based approach for bearing fault diagnosis, where
auxiliary data are transferred to improve diagnostic performance among various
operating conditions was introduced by Shen[6] [24].

Another research called “A novel time–frequency image feature to construct HI
and predict the RUL Based on Continuous Wavelet Transform and Convolutional
Neural Network” was proposed by Youngji Yoo and Jun-Geol Baek on 1 June
2018[25] . In this research the proposed method is validated using IMS bearing
dataset provided by PRONOSTIA which is also used in this thesis.

Again in the same year, a paper published by Siyu Shao et al [26]. called Highly
Accurate Machine Fault Diagnosis Using Deep Transfer Learning , used transfer
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learning with CWT spectrograms to classify machine gearbox faults with near 100
percent accuracy.

So far, to our knowledge, no researcher has used Alexnet as a pretrained network
for transfer learining purposes to estimate RUL of the bearing. This research
aims to improve the estimation of remainig useful life of the bearings, trying
different normalizations and methodologies. Also, in this research we base our
training on the IMS bearing data set in which the bearings experienced longer and
more complicated degradation processes than those in the former datasets, which
increases the reality of this dataset as well as the difficulty of RUL prediction.

1.2 Work Organization
In the next chapters, we will introduce the step taken forward to achieve the RUL
and HI and then we will briefly go through Deep Learning(DL), Convolutional
Neural Networks (CNN), Classification and regression problem plus Transfer Learn-
ing (TL) and its benefits. Next, We will introduce the problem, its settings the
acquisition mode and the database and its features to give a clear idea of the issue.
Afterwards, the signal processing procedure, the concept of spectrograms, the steps
taken in order to create and normalize them is explained. Then the procedure of
transferring the network ,different training option concepts and optimum training
options are presented. Finally different training results are shown and analysed
comparing to actual experimental results. The results will be then used to reach a
conclusion.
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Chapter 2

Resources

2.1 RUL prediction
Unlike Reactive and Preventive Maintenance procedures, Predictive maintenance
allows us to schedule the maintenance in an optimum time, but the Key to it is
knowing the failure time as accurate as possible. If we can predict when the failure
will happen, it is possible to schedule maintenance right before it. look at figure
2.1.

Figure 2.1: RUL graphical description

The Remaining Useful Life (RUL) is, the time between the working point and
the time machine fails. Based on our system, the RUL might be represented as
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seconds, kilometers, cycles etc... . Depending on how much information we have
on the degradation of the machinery, our approach to estimate the RUL will differ:

Figure 2.2: RUL estimation approaches

Sometimes, there is no history of machine degradation recorded but we know
the the intervals or the time machine has failed. If this is the case, we can benefit
from statistical and probability distribution methods to define the RUL.

Some other times, our data covers a part of machine’s life history and we have a
threshold beyond which it will be no longer safe to use the machine. In this case, a
degradation model up to that point can be fit into a condition indicator that uses
past information to tell how the condition indicator will change in future.

Our dataset though, covers a run-to-fail history of the system, which means
that it includes the data from when the system is healthy, when it is degrading
and when it fails. In this case we shall follow a similarity model based approach in
which the RUL is estimated based on the similar system’s history under similar
conditions.

In general the flow that must followed to achieve RUL starts with data acquisition.
As a strong base we need a large set of data acquired by the sensors collecting a set
of healthy and faulty signals from the machine. The longer and the more diverse
under which you machine works during the data collection the more robust our
model will be. The reason why we implemented Transfer Learning in this thesis is
lack of useful data which makes it impossible to follow normal training procedure
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and when possible, it often leads to over-fitted models.

Figure 2.3: RUL estimation workflow

Next is to preprocess the data in a way health indicators are manifested. Pre-
processing includes techniques such as noise, outlier, and missing value removal or
changing the domain data is represented in the first place. In our case for example,
we have moved from time domain to a 3D time-frequency (spectrogram) domain to
extract the health indicators. In the next section the feature extraction process is
discussed in details.

When the Preprocessing of the data is done, the condition indicators have to be
identified. Condition indicators are the features that change in a meaningful way
as the machine degrades. In deep learning (DL) this step is automatically done by
the filters in each layer in the network.

So far, we have extracted the features that discriminates healthy data from
faulty ones, so the data is ready to be fed into the training model. The AI, based
on the meaningful features, trains a model upon which it can tell the health state
of the system and its remaining useful life.

2.1.1 Feauture Extraction
As mentioned before, correct training and eventually prediction of RUL is strongly
dependant on extraction of meaningful features. Such features must somehow
represent the health state of the machine by either growing or disappearing linearly
or nonlinearly as the machine keeps on working toward failure. In the following
graph a complete map of feature extraction methods can be seen:

Stationary Signal

Acquired signals can be either stationary or transient. Unlike stationary signals
the mean value and statistical properties of a transient signal is time variant.
Almost all real world signals are non-stationary because bearings are inherently
dynamic parts since loads and speed change over time. For computation ease
specially in short time windows such signals are considered stationary. To analyse
stationary signals there are time and frequency domain methods but Time-domain
features are usually good for fault detection, and less efficient for classification,
which is to determine where the defect is located, inner race, outer race, rolling
elements, and cage. For fault classification, frequency-domain features are better.
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Figure 2.4: Taxonomy of vibration-based feature extraction methods [3]

Frequency-domain analysis include spectral analysis, envelope analysis, cepstrum,
and higher-order spectra. [3]

Non-Stationary Signal

In such condition since the statistical properties are time variant, prior methods
become ineffective. Techniques for analysing transient signals are time-frequency
and wavelet analysis. In this research our focus is on the time-frequency method.
Time-frequency analysis: Time-frequency analysis techniques analyze signals in
both time and frequency simultaneously for identifying time-dependent variations
of frequency components within the signal, which makes time-frequency analysis
techniques a powerful tool for analyzing non-stationary signals. The most commonly
used time-frequency analysis techniques are the short-time Fourier transform
(STFT), the Wigner-Ville distribution, and the wavelet transform. Other newly
developed time-frequency analysis techniques include spectral kurtosis, empirical
mode decomposition, and cyclostationary analysis.[3]

Short-time Fourier transform (STFT)

STFT tackles non-stationary signals by applying the conventional FFT to a sliding
window of the signal, which can be assumed to be locally stationary. The squared
magnitude of the STFT, often referred as the spectrogram, provides the energy
density spectrum of the signal as a function of time. Time resolution is determined
by segment length. Thus the success of STFT is hinged on properly choosing
window length, which often time is difficult. In this research we have tried different
spectrograms with different window lengths to gain the optimum length. Using
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STFT for bearing monitoring and diagnosis have shown in many publications, for
example.

The STFT employs a sliding window function g(t) centered at time W to perform
‘timelocalised’ Fourier transform of the signal x(t) consecutively, and the result
reveals variation of the signal’s frequency content as time evolves, as illustrated in
the following figure:

Figure 2.5: Illustration of short-time Fourier transform on the test signal x(t).
[13]

Wavelet Analysis

Waveletes are used to apply a multiresolution analysis of any vibrational signal. This
consists of applying a cascade of adjacent bandpass filter to the time domain signal.
Wavelet analysis enables us to assess the signal content in different frequencies.
In our case, an increase in the higher frequency signal’s energy might indicate an
early spall or lubrication faults. Performing a Multiresolutional analysis helps us
in detecting the frequencies related to the faults.Periodic impacts of a defected
bearing cause the defect frequencies. Such impacts transfer energy in a wide band
of resonance frequencies. Given that in multiresolutional analysis we do not lose
information, also the time domain analysis and features might be applied to the
data in a desired resolution. Since each fault’s contribution is often different in
each frequency, Wavelet method’s ability to decompose signal to its components in
changing frequencies gives us the possibility to discriminate multiple fault types.[3]

Health Prognostics (HP) in Condition based maintenance plays a major role.
That is predicting the RUL of the components relying on the degradation trends
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observed from previous tests. (HP) in machinery is often composed of four technical
steps. First the data acquisition and then construction of a health indicator (HI).
Next the healthstage (HS) division and finally the estimation of the RUL. Initially,
in ,our case the vibrational data is acquired from accelerometers to monitor the
condition of the bearings. Next, from the acquired data, HI is constructed by
utilizing one of the common methods in order to represent the degradation trend of
the bearings. After HI is constructed then the life history of the bearing is devided
into desired stages (i.e. Health Stages). In the HSs finally, which discovers an
obvious and sensible degradation trend, we can estimate the RUL by analysis of
the trend and setting a failure threshold. In my thesis we will firstly skip the HS
division as we benefit from DNN power to see the outcome and if the results aren’t
satisfying we will go for the HS division. [15]

2.2 Deep Learning
Deep learning (also known as deep structured learning) is part of a broader family
of machine learning methods based on artificial neural networks with representation
learning. Learning can be supervised, semi-supervised or unsupervised.

Deep-learning architectures such as deep neural networks, deep belief networks,
graph neural networks, recurrent neural networks and convolutional neural net-
works have been applied to fields including computer vision, speech recognition,
natural language processing, machine translation, bioinformatics, drug design,
medical image analysis, material inspection and board game programs, where they
have produced results comparable to and in some cases surpassing human expert
performance.

Artificial neural networks (ANNs) were inspired by information processing
and distributed communication nodes in biological systems. ANNs have various
differences from biological brains. Specifically, neural networks tend to be static and
symbolic, while the biological brain of most living organisms is dynamic (plastic)
and analogue. The idea of Artificial Neural networks (ANN)was initially inspired
by how the information is processed and distributed in brain. However ANN has
several differences from biological brains. Above all, Neural Networks are more
static and symbolic while brains are mostly dynamic and analogue.

The word "deep" in deep learning refers the number of layers extracting different
features one after another. We now know that a linear perceptron cannot be utilised
as a universal classifier but a network with nonpolynomial activation function
equipped with one hidden layer of unbounded width can. In ML , perceptron
is a kind of algorithm used in supervised learning of binary classifiers. Binary
classifiers are functions that are able to decide if an input, represented by a vector
of numbers, belongs to some specific class [27]. These concepts will be explained in
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detail later. Deep learning is more concerned with an unbound number of layers of
bounded size, that allows us to use it practically. In DL the layers are allowed to be
heterogeneous and to differ widely from biological models to be efficient, trainable
and understandable.

2.3 Basic Theory of CNN

Convolutional Neural Network (CNN) is a sect of deep learning that works in a
similar manner to brain’s visual cortex. We use CNN in Fields such as computer
vision, Speech Recognition and language processing since it can receive raw images
without complex pre-processing steps.[28] Each typical CNN is constructed by
3 layer groups: Convolutonal layers, Subsampling (Pooling) layers and Fully
connected layers. In order to extract features from image data we alternatively
place the convolutional and subsampling layers and place fully conneted layers as
the output layer. Each convolutional network receives the previous layer’s output
and co-involves it with multiple kernels and pass it to an activation function to
create a feature map. This feature map is the result of other input maps and is
calculated as shown below:

X l
j = f(

Ø
X l−1
i ∗ klij + blj) (2.1)

where * is a convolutional operator, xi is ith input map, k is a S*S convolutional
kernel, bj is an additive bias, Mj is a feature map of the convolutional layer, and
l is the lth layer in the network. In the End, the convolutional outputs are passed
to the activation functions of each layer, f. The two most used activation functions
(i.e., rectified linear unit (ReLU) and sigmoid function) are defined as follows:

ReLU(x) = max(0, x) (2.2)

sigmoid(x) = 1/(1 + e−x) (2.3)

The subsampling layer which located after each convolutional layer exists to
downsample the output of a convolution layer along both the spatial dimensions of
height and width. It creates low-resolution maps by extracting the most significant
local features. The most common subsampling layes is max-pooling layer that
extracts the maximum value from each region, as shown in Figure 2.6:
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Figure 2.6: A brief schematic of Max pooling [29]

All feature maps are then mixed into a one dimensional vector to make a flatten
layer. Next, in the FC layer, all neurons of both layers are connected to each other,
like in the traditional multilayer neural networks.

The output of FC layer can be expressed by:

O = f(
dØ
j=1

xFj wj + b) (2.4)

where O is the output value, where O is the output value, xFj is the jth neuron
in the fully connected layer, wj is the weight corresponding to O and xFj , bi is the
bias corresponding to O, and f is a sigmoid function.

2.4 Alexnet
Alexnet [7], a CNN architecture designed by Alex Krizhevsky and his collaborators
and His Ph.D supervisor respectively Ilya Sutskever and Geoffrey Hinton showed
up in 2012 for the first time. the network was designed to compete in the ImageNet
Large Scale Visual Recognition contest where Alexnet achieved a top-5 error in the
competition. Despite being computationally expensive, the initial results of their
paper declared that the depth of the network was vital for the accuracy, however it
was feasible if graphics processing units (GPU) was utilised for the training.
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The architecture consists of eight layers: five convolutional layers and three
fully-connected layers. But this isn’t what makes AlexNet special; these are some
of the features used that are new approaches to convolutional neural networks:

2.4.1 ReLU Nonlinearity

In Alexnet instead of tanh function we have Rectified Linear Units(ReLU) which
was common when alexnet was created. ReLU decreases the trainig time and was
shown in a test by reaching a 25 percent error on the CIFAR-10 dataset up to 6
times quicker than other CNNs using tanh.

2.4.2 Multiple GPUs

Back then when the Alexnet structure was designed GPUs were quite weak compared
to 2021 standards (around 3GB). When training the network with a big amount of
images, low amount of memory was specially an obstacle. Alexnet resolved this
problem by allowing a multi-GPU training, putting half of the models’ neurons on
the GPU and the other half on another. It both increases the volume that can be
trained and decreases the training time.

2.4.3 Overlapping Pooling

CNNs traditionally “pool” outputs of neighboring groups of neurons with no
overlapping. However, when the authors introduced overlap, they saw a reduction
in error by about 0.5 percent and found that models with overlapping pooling
generally find it harder to over-fit. CNNs usually pool the outputs of neighboring
groups of neurons without overlapping. Alexnet’s designer could reduce the error
by 0.5 percent and discovered that models with overlapping maxpooling are more
resisting to overfitting.

Figure 2.7: Overall Structure of the Alexnet [30]
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2.4.4 Alexnet Structure in Matlab
All steps of this study including transfer learning and training were conducted
utilising matlab where the pre-trained version of the network trained on more than
a million images from the ImageNet database is downloaded from mathworks is
accessible. The pre-trained network can classify images into 1000 object categories,
such as keyboard, mouse, pencil, and many animals. As a result, the network has
learned rich feature representations for a wide range of images. The network has
an image input size of 227-by-227 in MATLAB.

Figure 2.8: Alexnet in Matlab

2.5 Transfer Learning
One of the important assumptions in most of ML algorithms is that the feature
data and training data must be in the same space regarding their features and
distribution. In reality however, this assumption proves impractical. As an example,
a lot of times we are interested in classification of domain A but there are only
ample data in domain B. where B might have another feature space or its data
is distributed differently. In this case, We can take advantage of transfer learning
which if done correctly would increase the performance of training by avoiding
labour consuming labeling task.[31]

My thesis focuses on using TL for three reasons, firstly because we do not have
sufficient data to train a regression model from scratch. Secondly the TL in field
of Prognostics is not fully exploited. And Thirdly, it could accelerate the training
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process of the deep network and learning the hierarchical representations. This
can be done using CNNs that are pre-trained using big datasets of natural images.
In our case we will see how the network architecture, model parameter and hyper
parameters are transferred to the aimed model for the HI construction and fault
diagnosis. In TL the lower level weights of the aimed model are obtained from
the pre-trained network and the higher ones are tuned during the training process.
This reduces the number of times parameters need to be updated. This way, TL
can considerably decrease the training time of the Neural Network.

2.6 Experiment
2.6.1 Bearing Fundamentals
Bearings are basically made to provide a friction-less base to support a rotating
shaft.Our focus in this thesis, is on a specific type of rolling element bearings only.
Roller bearings work well in non-ideal conditions, but what happens is that bearings
sometimes, surprisingly fail by minor causes. as an example, a stationary loading,
minor vibrations will progressively push the lubricant inside the bearing out, and
eventually lead to its failure. Bearing failure models are very well-understood at the
moment since their failure mechanism and the theoretical aspects have been studied
for decades. Usually, there are three elements limiting bearing’s life expectancy and
load capacity: abrasion, fatigue and pressure-induced welding, Although there are
many other apparent causes of bearing failure, most can be reduced to these three.
Abrasion is the erosion of the surface by hard material scraped from the bearing
itself. Fatigue on the other hand happens when the specimen is under fluctuating
form of loading. pressure induced welding happens when different metal parts of a
system are put under high pressure and temperatures.

A roller element bearing’s four major components are: inner racer, outer race,
rolling elements (roller), and cage, All of which components might fail under
operation. In general, the signatures of a damaged bearing consists of exponentially
decaying ringing that occurs periodically at the characteristic frequency. The
vibration signal of a defective bearing usually considers being amplitude modulated
at characteristic defect frequency. Matching the measured vibration spectrum with
the defect characteristic frequency enables defect detection and enables diagnosis
on the defective area. [32]

2.6.2 Test Setup
In this test Four Rexnord roller bearings are installed on a shaft. An AC motor is
coupled to the shaft via rub belts and the RPM is kept constant at 2000 RPM. All
bearings are force lubricated and a radial load equal to 6000 lbs is put onto the
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shaft and bearing by a spring mechanism. Rexnord ZA-2115 double row bearings
were installed on the shaft.[33] Rexnord ZA-2115 double row bearings have a pitch
diameter of 2.815in., roller diameter of 0.331in., and a tapered contact angle of
15.17°.

Figure 2.9: Rexnord ZA-2000 bearing series[33]

2.6.3 Sensors and threshold

PCB 353B33 High Sensitivity Quartz ICP accelerometers are the sensors used in
this setup installed on the bearings case (two accelerometers for [x- and y-axes] for
each bearing for data-set 1, one accelerometer for each bearing for data-sets 2 and 3).
Sensor placement is also shown in figure 2.10. All failures occurred after exceeding
designed life time of the bearing which is more than 100 million revolutions. The
debris collected by magnetic plug is used to indicate the degradation in bearing
health. Data is collected until the accumulated debris which adhered to the
magnetic plug exceeds a fixed-threshold level. The test was stopped adaptively by
an electrical switch when the accumulated debris exceeded a certain level.

Figure 2.10: IMS bearing test rig and sensor placement illustration [33]
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2.6.4 Data set
IMS Bearing Dataset

The IMS dataset was Introduced by the center for Intelligent Maintenance Systems
(IMS) of University of Cincinnati [34], and shared on the website of the Prognostic
Data Repository of NASA[35]. the Dataset is composed of 3 tests recording 3 full
bearing degradation. After the tests, the bearings were checked and their fault
patterns were recorded in detail. The data is collected at 20kHz for one second
from the sensors installed on each bearing housing once every twenty minutes until
the failure threshold were reached. The data has 20,480 points at each recording
with sampling rate of 20kHz. [35]

Figure 2.11: Vibration sample in 1 second

2.6.5 Empirical Results

FirstTest Second test Third Test
Duration DD.MM 22.10-25.11 12.2-19.2 04.03-04.04
Number of Files 2156 984 6528
Number of Channcels 8 4 4
Acquisition Interval [min] 10 10 10

Table 2.1: IMS bearing test results
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First Test

In the first dataset, At the end of the test-to-failure experiment, inner race defect
happened in bearing 3 (sensor 5,6) and roller element defect in bearing 4 (sensor
6,7)

Time domain representation of the 1st test sensor data, each row represents the
sensors mounted on one bearing.

Figure 2.12: Start to Failure Time Domain representation of the First Test

Second Test

At the end of the test-to-failure experiment, outer race failure occurred in bearing 1.
The most commonly reported results concern outer-race defects. This is primarily
because outer-race defects are easy to seed in the laboratory and often produce the
most salient fault signatures. [36]
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Figure 2.13: bearing outer race failure [37]

Figure 2.14: Start to Failure Time Domain representation of the First Test

22



Resources

Figure 2.15: Start to Failure Time Domain representation of the Second Test

Third Test

At the end of the test-to-failure experiment, outer race failure occurred in bearing
3.
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Figure 2.16: Start to Failure Time Domain representation of the Third Test

2.6.6 Affecting Variables
Various conditions effect the datasets usually but different datasets give different
results on same training models. A faulty bearing dataset is composed of a signal,
and a signal is made up of three components: (1) frequency, (2) amplitude, (3)
phase. For each type of fault these three properties might differ, and variations
in the signals can be observed within the signals of same health type if they are
collected under different working conditions. So, the type of data utilised in fault
diagnosis of the part has a great significance, as it affects the accuracy of the
developed model. [38]
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No Affecting Parameters
1 Bearing specification
2 Outer race diameter
3 Inner race diameter
4 Ball diameter
5 Ball number
6 Contact angle
7 Clearance
8 Noise
9 Phase angle
10 Change in amplitude
11 Change in sampling frequency

Table 2.2: Parameters and conditions affecting the output signals
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Chapter 3

Work Development

3.1 Signal Processing
The major part of the spectrograms in this study are created using short time
Fourier Transform STFT method on MATLAB. The spectrogram(x) function in
MATLAB returns the short-time Fourier transform of the input signal, x. if the
output of such function is assigned to variable S, each column of S contains an
estimate of the short-term, time-localized frequency content of x.

Another necessary input would be number of time windows that the original
signal will be divided into.

Figure 3.1: Matlab spectrogram function

Matlab code above uses “window” to divide the signal into segments and perform
windowing and in order to avoid leakage and signal loss due to windowing an overlap
is considered by “noverlap” input.

For having a well detailed spectrogram, number of sampling points to calculate
the discrete Fourier transform is also defined by “nfft” input, which is the number
of the FFT points used for Fast Fourier Transform algorithm.

Trial for correct Spectrograms

As mentioned before the success of STFT is hinged on properly choosing window
length and frequency resolution, which often time is difficult. in this study we
have tried different window lengths and frequency resolutions in order to achieve a
correct spectrogram resolution for both in time and frequency axis.

26



Work Development

caption caption

Figure 3.2: time section
length:56 overlap:50% Freq res-
olution:512

Figure 3.3: time section
length:56 overlap:90% Freq res-
olution:512

It is apparent that in this case (i.e. time section:52) the frequency axis is has
not a good resolution (i.e. stretched vertically). In order to improve the result, we
shall increase the time chunk length. In addition to that, from the images it is
obvious that by increasing the overlap percentage, the resolution improves.

Figure 3.4: time section
length:128 overlapping:50% Fre-
quency resolution:512

Figure 3.5: time section
length:128 overlapping:90% Fre-
quency resolution:512

Clearly now, the frequency axis has a better resolution, therefore we continued
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on increasing the time section length to compensate for better frequency resolution.
Again, by increasing the overlap the results improve.

Figure 3.6: time section
length:256 overlapping:50% Fre-
quency resolution:512

Figure 3.7: time section
length:256 overlapping:90% Fre-
quency resolution:512

As it can be seen, by further increasing the time section length, We end up with
clearer images. Next step would be further increasing the time section length.

Figure 3.8: time section
length:512 overlapping:50% Fre-
quency resolution:512

Figure 3.9: time section
length:1024 overlapping:50% Fre-
quency resolution:512

Increasing the time length, clearly, negatively affected the time axis leading to
a decrease of the time resolution, therefore we fix 256 samples as the time length
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and 90% as the time overlap. Now let’s change the frequency resolution to see how
it affects the resolution:

Figure 3.10: time section
length:256 overlapping:90% Fre-
quency resolution:30

Figure 3.11: time section
length:256 overlapping:90% Fre-
quency resolution:100

Figure 3.12: time section
length:256 overlapping:90% Fre-
quency resolution:1024

Figure 3.13: time section
length:256 overlapping:90% Fre-
quency resolution:20480

It is obvious that by over-decreasing the frequency resolution(30 bands), the
image resolution vastly drops and over-increasing it (1024 to 20480) doesn’t increase
the quality and involves more computational resources.

In conclusion, very small time windows lead to lower frequency resolution and
vice versa. Also, increasing the sampling points after a threshold will increase the
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computation overhead and does not significantly increase the resolution. According
to the results we have decided to set the time window sample number to 256 with 98
percent overlap and 512 sampling points to calculate the discrete Fourier transform.

Normalization

In order to have correct trend in amplitude growth, the global minimum and
maximum amplitudes must be found and be fixed as the limits for all spectrograms,
otherwise amplitudes (i.e. the colorscale) feature in Matlab will be in different
ranges in each image and result in wrong trend. The Output P0 (Apendix 0.1) in
our code is a matrix containing the amplitudes of all STFT vectors from which the
higher and lower limits must be found. In the appendixes A.0.1 you can find the
Matlab codes that create the spectrograms.

Amplitude Axis Space

Initially We have produced a full dataset with linear amplitude space. However,
due to its extension the growth trend seemed to be very dis-articulated.

Figure 3.14: Samples of the spectrograms with linear Z-axis

as it can be seen, the color range is almost binary since the harmonics show
very different amplitudes. So We have decided to set the amplitude space (i.e.
colorscale) to logarithmic. and the spectrograms changed as it can be seen below:

3.2 Transfer Learning Procedure
Available image classification networks like GoogleNet and Alexnet are trained
with millions of images and can identify images into hundreds or thousands of
categories, such as trees, glasses, pecs, and animals. These networks have mastered
feature representations for a wide variety of images in a way that they take an
image as input, and then return a label for the object in the image together with
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Figure 3.15: Samples of the spectrograms with logarithmic Z-axis

the probabilities for other object categories. Transfer learning is now widely used
in DL applications. With any pretrained network you can use as a starting point
to make it learn a new task. Furthermore, as noticed before the major focus of
this thesis will be on Alexnet as a pretrained network which is originally a natural
object classifier trained with millions of images. our objective though, is to estimate
the RUL of the bearings. The difference between the two is that the output of
the network should be a continuous number rather than a class. This necessitates
converting the network from a classifier to a regression network.

Figure 3.16: Original Alexnet layers

The convolutional layers of the network extract image features that the last
learnable layer and the final classification layer use to classify the input image.
Such layers are named as “conv” in the Alexnet. They are called the core layers
of the pretrained network and in our case will not be manipulated in transfer
learning process. The layers after the final core layer might be deleted or replaced
according to the new problem’s need. The fully connected (FC) layer "fc8" and the
classifier output carry the information on how to combine the features extracted
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by the network to achieve the class probabilities, loss value and predicted labels.
To retrain our pretrained network for regression, these two layers must be changed
with other layers adapted to regression tasks. The original fully connected layer
has 1000 responses, we here replace it with another FC layer with a single response
and the classification output must be replaced with a regression layer. A regression
layer computes the half-mean-squared-error loss for regression tasks.[39]

Softmax layer is a function that takes a vectors of numbers as input and return
a probability vector, where the probabilites are normalized according to the relatie
scale of each value in the vector. Such a function in our task is use useless since
there is only one output.In the Alexnet softmax is the 24th (Counting ReLu and
Norm as Layers, otherwise 8th) layer and is called “prob”.[39]

Figure 3.17: Softmax function [40]

The proposed network to begin the training process is shown in fig 3.18 and fig
3.19. The initial network might change as we try to optimize the accuracy of the
network.

3.3 Training options
Training options are a set of variables you can set to control network training.
Both accuracy and training time are part of a network’s performance. There is no
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Figure 3.18: Alexnet Structure Converted to a regression Network

Figure 3.19: Alexnet layers as converted to a regression Network

single “right” way to set the training options for a deep neural network but there
is always a balance between maintaining a high accuracy and decreasing training
time. A general guideline to improve the training is shown in fig 3.20

3.3.1 Solver
Selecting the right solver is so important that the choice of optimization algorithm
for a task can differ between good results in minutes, hours, and days. The preferred
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algorithm in this thesis is the “adam” solver. [41] Adam optimization algorithm
is an extension of the stochastic gradient descent [42] that has been used broadly
for deep learning applications in computer vision and natural language processing
recently. Authors that have used Adam Solver list some of the attractive benefits
of using Adam on non-convex optimization problems mentioned down below:

1. Straightforward to implement.

2. Computationally efficient.

3. Little memory requirements.

4. Invariant to diagonal re-scale of the gradients.

5. Well suited for problems that are large in terms of data and/or parameters.

6. Appropriate for non-stationary objectives.

7. Appropriate for problems with very noisy/or sparse gradients.

8. Hyper-parameters have intuitive interpretation and typically require little
tuning.

Adam combines the best properties of the AdaGrad [43] and RMSProp algorithms
[44] to provide an optimization algorithm that can handle sparse gradients on noisy
problems.

Adam keeps an element-wise moving mean of the parameter gradients and their
squared values:

mι = β ∗mι−1 + (1− β1)∇E(Θl) (3.1)

νl = β2νl−1 + (1− β)[E(Θl)]2 (3.2)
where is the iteration number, >0 is the learning rate, is the parameter vector,

and E() is the loss function and 2 is the decay rate of the moving average. You can
specify the 1 and 2 decay rates using the ’Gradient Decay Factor’ and ’Squared
Gradient Decay Factor’ name-value pair arguments, respectively. Adam uses the
moving averages to update the network parameters as:

Θl+1 = Θl −
αml√
ν + Ô

(3.3)

If gradients are similar over many iterations, then to pick up momentum in a
certain direction, using a moving average of the gradient enables the parameters to
update. If the gradients signal to noise ratio is small, then the moving average of
the gradient gets smaller, and as a result the parameter updates become smaller as
well.
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3.3.2 Learning Rate
Deep learning neural networks are trained using the stochastic gradient descent
optimization algorithm. The learning rate is a hyperparameter that controls how
much to change the model in response to the estimated error each time the model
weights are updated. Choosing the learning rate is challenging as a value too small
may result in a long training process that could get stuck, whereas a value too
large may result in learning a sub-optimal set of weights too fast or an unstable
training process.[28]

The graphs shown during the learning process can help us diagnose the problems
we might encounter. In case there are large spikes in the loss value, or if they’re
not being plotted at all. It is probably because the initial learning rate is very high.
A general rule is decreasing the initial learning rate by a power of ten until the
spikes disappear.

3.3.3 Minibatch and Epoch
In every iteration, a number of the training images, known as a mini-batch, is
taken to update the weights. Each iteration uses a unique mini-batch. Once the
whole training set has been involved, we have an Epoch. The number of epochs
(MaxEpochs) and the number of images in each mini-batche (MiniBatchSize) are
the variables you can set in the network training options. Remember that in
setting the number of images in each minibatch and epoch number there is no
standard. Increasing the number of minibatches in an epoch until a maximum
usually improves the training accuracy and epoch numbers should be increased
until loss and RMSE values reach a plateau.

The loss and accuracy reported during training are for the mini-batch being
used in the current iteration.

3.4 Training procedure
To perform transfer learning we need to prepare 3 things. First we need layers that
represent the network which was discussed in the previous section. Secondly we
need an image datastore with corresponding labels, and last, a variable holding
algorithm settings (i.e. Training options). Once these three factors are introduced
the training process begins and the outcome is a the same network but with updated
weights. In MATLAB by default we see a text display showing the progress of the
training. Accuracy is the percentage of the training images that network classifies
correctly. We want to see that increasing during training and loss is a measure of
how far we are from a perfect prediction totalled over the set of training images
which should decrease toward zero as the training proceeds. [28]
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Figure 3.20: Troubleshooting of the training process algorithm

Sensor nomenclature

To avoid repeating sensor names each time I introduce a set of nomenclature for
the sensors in n-m format where n is the test number and m is the sensor number
e.g. 1-5 is the fifth sensor in the first test.
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3.4.1 Labelling
The training images are represented by dataset = (x, y)Tt=1 where xN∗N is N×N
image at time t. In our case the image size is 227×227 for Alexnet and 224×224 for
Resnet. The degradation y is labelled as 1 for a totally healthy bearing decreasing
to 0 for failed bearing.

3.5 Results

3.5.1 Initial Results
First Try

As a starting point, we kept the core (hidden) layers of the Alexnet, and started
the training process. This network’s layers can be find in table 3.3.

Basically, including the bearings that did not develop full failure, wouldn’t make
sense as long as we can’t confirm the actual RUL of them, hence, our dataset is
limited to the bearings that did actually fail. On the other hand, the IMS bearing
dataset is a real world experiment confirming that a Bearing’s life stages appear
non-linearly. Despite under going equal RPM and Forces, from the 12 bearings in
the experiment only 4 actually failed. Also, the time the defects appeared and the
defect type was different in each failed bearing.

Condition Training Datasets Testing Dataset
Test 1 1-5 1-6 1-8 1-1 1-2 1-3 1-4 1-7
Test 2 2-1 2-2 2-3 2-4
Test 3 3-3 3-1 3-2 3-4

Table 3.1: Sensors participating in the training and testing the Network

We know that if low in amplitude, informative signals are masked by environment
noise,[45] hence, we are expecting that including the spectrograms of the early stages
in the training process will not yield accurate results since the early signatures are
easily buried by the noise. However, to experiment what will the outcome be, we
did include them and the results are presented as shown in table 3.5:

# Epochs Iterations per
Epoch

Learning rate
Schedule

Learning
rate Minibatch # RMSE test RMSE

training
5 1239 Piecewise 1e-07 20 NaN NaN

Table 3.2: Training Options and Results
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Figure 3.21: Graph of the training progress

Figure 3.22: Predictions versus
the actual RUL of the training
images

Figure 3.23: Predictions versus
the actual RUL of the test images

From the prediction graphs 3.22 3.23 it is evident that the results are very
unsatisfactory with such settings so we should try with another settings.
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Name Type Description

1 ’data’ Image INput 227×227×3 images with ’zerocenter’
normalization

2 ’conv1’ Convolution 96 11×11×3 convolutions with stride
[4 4] and padding [0 0 0 0]

3 ’relu1’ ReLu ReLU

4 ’norm1’ Cross Channel Normalization cross channel normalization with 5
channels per element

5 ’pool1’ Max Pooling 3×3 max pooling with stride [2 2]
amd padding [0 0 0 0]

6 ’conv2’ Grouped Convolution 2 groups of 128 5×5×48 convolutions
with stride [1 1] with stride [2 2 2 2]

7 ’relu2’ ReLu ReLU

8 ’norm2’ Cross Channel Normalization cross channel normalization with
5 channels per element

9 ’pool2’ Max Pooling 3×3 max pooling with stride [2 2]
and padding [0 0 0 0]

10 ’conv3’ Convolution 384 3×3×256 convolutions with
stride [1 1] and padding [1 1 1 1]

11 ’relu3’ ReLu ReLU

12 ’conv4’ Grouped Convolution 2 groups of 192 3×3×192 convolutions
with stride [1 1] and padding [1 1 1 1]

13 ’relu4’ ReLu ReLU

14 ’conv5’ Grouped Convolution 2 groups of 128 3×3×192 convolutions
with stride [1 1] and padding [1 1 1 1]

15 ’relu5’ Max Pooling ReLU

16 ’pool5’ Fully Connected 3×3 max pooling with stride [2 2] and
padding [0 0 0 0]

17 ’fc’ Regression Output 1 fully connected layer
18 ’reg’ mean-squared-error

Table 3.3: The Initial transferred network’s layers used in training

2nd Try

Re-editing the network

Initially, We omitted all the layers after the hidden layers of the network. In order
to improve the performance of the network, now, We placed the original layers
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back in place converting the output layer (classifier) to a regression layer, only. the
replaced layers of this test can be found on table 3.4.

Name Type Description

16 ’pool5’ Fully Connected 3×3 max pooling with stride [2 2] and
padding [0 0 0 0]

17 ’fc’ Regression Output 1 fully connected layer
18 ’relu6’ ReLu ReLu
19 ’drop6’ Dropout 50% dropout
20 ’fc7’ Fully Connected 4096 fully connected layer
21 ’relu7’ ReLu ReLu
22 ’drop7’ Dropout 50% Dropout
23 ’fc’ Fully Connected 1 fully connected layer
24 ’regressionoutpu’ Regression Output mean-squared-error

Table 3.4: Re-edited transfered network’s layers used in training

Not surprisingly taking advantage of Alexnet’s complete structure improves
the results of the second trial which are presented in figures 3.24 3.25. The real
performance of the transferred network should be tested on a sensor that didn’t
participate in the training at all. This is reported in fig 3.26.

Figure 3.24: Predictions versus
the actual RUL of the training
images

Figure 3.25: Predictions versus
the actual RUL of the test images

# Epochs Iterations per
Epoch

Learning rate
Schedule

Learning
rate Minibatch # RMSE test RMSE

training
5 1239 Piecewise 1e-07 20 0.13 0.11

Table 3.5: Training Options and Results

40



Work Development

Figure 3.26: Predictions versus actual RUL of sensor 1-7

Figure 3.27: Graph of the training progress
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The Root Mean Square Error values are acceptable with such setting but more
importantly we should check the performance of the network on the a sensor that
did not contribute in the training process. Such performance is shown at figure ??.
The RMSE of the network with this sensor is 0.1709 which is not bad. In the next
trials we shall follow the troubleshooting Flowchart presented before. 3.20

3.5.2 3rd Try

3.5.3 Data Augmentation
One problem with system prognostics and predictive maintenance is lack of faulty
signals as shortly after faulty signals pop out the machine (bearings in this case)
fails. To regularize and help lowering the over-fitting of the network, we can
augment the dataset images. Data Augmentation is used to increase the quantity
of existing data (images) by slightly changing it and adding it to the dataset.

To that end we tried to double the number of spectrograms by halving the
acquisition time from 1 second (20e3 samples) to 0.5 second (10e3 samples). Look
at fig 3.28

Figure 3.28: The spectrograms with halved time axis

This Data Augmentation had no great effect on training and test dataset (0.1124
and 0.1110) of the sensors who participated in the training process. Data The
results are introduced in fugues below: 3.30 3.29

Again the performance of the network on the sensor that did not contribute in
the training process(1-7) is shown in fig 3.31. By doubling the images the RMSE
value of the prediction on sensor 1-7 decreased by 4 percent to 0.1309.

3.5.4 Sigmoid function as second to the last Layer
We set the RUL value in the (0,1) limit. In predictions though, There are outliers
beyond this interval. A sigmoid layer applies a sigmoid function to the input such
that the output is bounded in the interval (0,1).
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Figure 3.29: Predictions versus
the actual RUL of the training
images

Figure 3.30: Predictions versus
the actual RUL of the test images

Figure 3.31: Prediction versus actual value of the sensor 1-7

3.5.5 4th Try

Changing the training dataset

We have then changed the training dataset in order to see the effects on the trained
network performance. The new setting is shown in fig 3.7. Specifically in the new
trial we switched, sensor 1-7 with sensor 1-6.

The results are as shown in figs 3.33 3.32 for trained sensors and fig 3.34 for
sensor 1-6 that was not used in the training procedure. The RMSE value of the
Training is equal to 0.1016 and that of the Test is 0.10129.
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Name Type Description

16 ’pool5’ Fully Connected 3×3 max pooling with stride [2 2] and
padding [0 0 0 0]

17 ’fc’ Regression Output 1 fully connected layer
18 ’relu6’ ReLu ReLu
19 ’drop6’ Dropout 50% dropout
20 ’fc7’ Fully Connected 4096 fully connected layer
21 ’relu7’ ReLu ReLu
22 ’drop7’ Dropout 50% Dropout
23 ’fc’ Fully Connected 1 fully connected layer
24 ’sigmoid’ Sigmoid Sigmoid
25 ’regressionoutpu’ Regression Output mean-squared-error

Table 3.6: Re-edited transfered network’s layers used in training

Condition Training Datasets Testing Dataset
Test 1 1-5, 1-7, 1-8 1-1, 1-2, 1-3, 1-4, 1-6
Test 2 2-1 2-2, 2-3, 2-4
Test 3 3-3 3-1, 3-2, 3-4

Table 3.7: Sensors participating in the training and testing the Network

Figure 3.32: Predictions versus
the actual RUL of the training
images

Figure 3.33: Predictions versus
the actual RUL of the test images
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Figure 3.34: Prediction versus actual value of the sensor 1-7

The RMSE value for sensor 1-6 is equal to 0.2703. again, we can observe that
in the first half of the bearing life the estimations are not accurate enough. this is
because in early stages, the degradation features are buried in noise. [46]

Step shaped Labelling

The idea behind such labelling is based on the face that, at least in the very first
periods of bearing’s life, the spectrograms’ are very similar to each other which
might confuse the network. In this section we tried to label the images in batches
to see if it improves the accuracy. Such labelling is shown in fig 3.35

Figure 3.35: Step Shaped Labelling, such labelling might cause less confusion

In this case, we have divided the life into 10 steps decreasing the RUL by 10
percents each time.
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∀n ∈ (1, 10) : RUL = 1− 0.1 ∗ n

where n=0 stands for fully healthy and n=10 for failed bearing. The results of
training in this case show an improvement in the performance of the network on
the sensors our model has not seen before:

Figure 3.36: Step Shaped Labelling, Predictions versus actual values for test
dataset RMSE=0.1374

Figure 3.37: Predictions versus actual values for Sensor 1-7 which did not take
part in the training process RMSE=16.67

Evidently, overall accuracy has improved. But even though the new model
improved the accuracy of prediction of the mid-life samples, predictions of the
final samples are less accurate with respect to the previous model. This urges us
to train the network based on several models dedicated to different stages using
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spectrograms containing meaningful trends. in the next chapter will shall extract
such trends manually to identify such sections.

3.5.6 Identification of the fault initiation point
So far we insisted on not dividing the the bearing life into Health Stages (HS).
Health Indicators in RUL estimation give a varying trends in degradation as the
remaining useful life gets lower and lower. The degradation history of the machinery
should be split into HSs based on the trends of the health indicator, whatever it
might be[47]. As researches suggest, because there is no information about the
degradation trend in the healthy stage, it is difficult and unnecessary to predict
the RUL during this stage. The RUL prediction should be triggered once we enter
the unhealthy stage, which its beginning is defined as the first predicting time
(FPT).[34] Many researches have been working on finding out when exactly the
first defect signal pops out. [2] [48] [49] [50] In any case, the task of HS division
is to detect the incipient degradation of machinery and provide a suitable FPT
for RUL prediction. According to the previous researches a single degradation
model is unable to describe the time-varying degradation trends. Therefore, it is
necessary to divide the HIs into two or multiple HSs according to the change of
their degradation trends and assign different models or missions to each stage.[15]

In fig 3.38 multiple stages are observed in the degradation process of a double
row bearing, including a healthy stage, a degradation stage and a critical stage. The
RMS values are stable during the healthy stage and then experience an “increase-
decrease-increase” trend during the degradation stage. With the aggregation of
damage, the RMS values increase rapidly and reach the failure threshold in short
time. In such complex cases, a single degradation model is unable to describe
the time-varying degradation trends. Therefore, it is necessary to divide the
HIs into multiple HSs according to the change of their degradation trends and
assign different models or missions to each stage. In the following two subsections,
the publications related to the two-stage division and multi-stage division are
summarized, respectively.

Figure 3.38: Degradation Process with multiple stages [15]
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The number of division depending on the trends of the vibrational data might
be two or more sections.[50] The easiest strategy would be a two stage division
based on a threshold on HI.Wang et al.[2] for example, detected the initial point
of a defect (FFP) for bearings when their RMS (root mean square) exceeded a
pre-specified threshold.

In ISO-18436 [51] as another example, the following evaluation zones are defined
to permit a qualitative assessment of the vibration of a given machine and to provide
guidelines on possible actions. Zone A: The vibration of newly commissioned
machines would normally fall within this zone. Zone B: Machines with vibration
within this zone are normally considered acceptable for unrestricted long-term
operation. Zone C: Machines with vibration within this zone are normally considered
unsatisfactory for long-term continuous operation. Generally, the machine may
be operated for a limited period in this condition until a suitable opportunity
arises for remedial action. Zone D: Vibration values within this zone are normally
considered to be of sufficient severity to cause damage to the machine, therefore in
this research we shall asses the RUL in the C and D zones i.e. after where the first
fault shows up.

3.5.7 Root mean square

In time domain studies The RMS (root mean square) value is generally the most
useful because it is directly related to the energy content of the vibration data
and therefore its destructive capability. [52] [21] On the other hand, RMS takes
into account the wave form’s time history . As it can be seen during the healthy
stage, no fault occurs in the rolling element bearing and the RMS values present
random fluctuations and During the unhealthy stage, RMS values increase with
the deterioration of the bearing. Here we create and analyse the RMS vectors in
order to find such points :
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Figure 3.39: Global RMS value 1-5 Figure 3.40: Global RMS value 1-6

Figure 3.41: Global RMS value 1-7 Figure 3.42: Global RMS value 1-8

Figure 3.43: Global RMS value
2-1

Figure 3.44: Global RMS value
3-3
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As it can be seen from the RMS value graphs, the first fault signals are located
in the final part of the bearing RUL.

Lets now check another method utilised in the papers to see if we can discover
another HS division mode:

3.5.8 Power spectral density (PSD)

James K. Kimotho et al. [28] in addition to the RMS have used Power Spectral
Density in their research to define the FFS and estimate the HSs. Likewise, We
have used the Power spectral density (PSD) to convert time domain data into
frequency domain data. A plot of the frequencies at the peak amplitude of the
PSD spectrum against time revealed existence of different health states, where a
new set of frequencies appeared or disappeared in the lifetime of the bearing [46] ,
as shown in Figures below:

Figure 3.45: Appearance of
Important PSD frequencies over
time 1-1

Figure 3.46: Appearance of
Important PSD frequencies over
time 1-2
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Figure 3.47: Appearance of
Important PSD frequencies over
time 1-3

Figure 3.48: Appearance of
Important PSD frequencies over
time 1-4

Figure 3.49: Appearance of
Important PSD frequencies over
time 1-5

Figure 3.50: Appearance of
Important PSD frequencies over
time 1-6
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Figure 3.51: Appearance of
Important PSD frequencies over
time 1-7

Figure 3.52: Appearance of
Important PSD frequencies over
time 1-8

Figure 3.53: Appearance of
Important PSD frequencies over
time 2-1

Figure 3.54: Appearance of
Important PSD frequencies over
time 2-2
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Figure 3.55: Appearance of
Important PSD frequencies over
time 2-3

Figure 3.56: Appearance of
Important PSD frequencies over
time 2-4

Figure 3.57: Appearance of
Important PSD frequencies over
time 3-1

Figure 3.58: Appearance of
Important PSD frequencies over
time 3-2
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Figure 3.59: Appearance of
Important PSD frequencies over
time 3-3

Figure 3.60: Appearance of
Important PSD frequencies over
time 3-4

3.5.9 High Frequency Crest Factor (HFCF)

Among time domain features, some other papers suggest the High Frequency Crest
Factor(HFCF) as the Health indicator in bearing wear indication.[53]

HFCF is a time domain parameter of any alternating signal that demonstrates
the ratio between the peak values of each signal to its effective value. The HCFC
gives a sense of the extremity of the maximum values of a signal. HFCF equal to
1 means there are no peaks such as square waves or DC current. In the contrary
machine vibration data have values often larger than 1. The higher the peaks are
the bigger the HFCF value will be.

HFCH is calculated by dividing the absolute value of the maximum amplitude
of the signal (in our case each of the time samples (1s)) to its RMS value which is
equivalent to its ratio of L norm to the L2 norm of signal’s function.

HFCF = |xpeak|
RMS

The results of the HFCF calculations for the failed bearings are shown below:
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Figure 3.61: global HFCF value 1-5 Figure 3.62: global HFCF value 1-6

Figure 3.63: global HFCF value 1-7 Figure 3.64: global HFCF value 1-8

Figure 3.65: global HFCF value 2-1 Figure 3.66: global HFCF value 3-3
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The healthy and faulty stages for the first test are very well distinguishable,
however for the 2nd and 3rd test graphs do not contain a meaningful trend.

In the following table, the first fault signal (FFS) is written for each sensor using
two different indicators.

Sensor 1-1 1-2 1-3 1-4 1-5 1-6 1-7 1-8
RMS NA NA NA NA 2001 1994 1612 1612
PSD 2121 2134 2121 2125 1789 1855 1865 1291

Sensor 2-1 2-2 2-3 2-4 3-1 3-2 3-3 3-4
RMS 709 NA NA NA 5996 NA NA NA
PSD 529 613 603 625 6037 6004 5943 5857

Table 3.8: First Fault initiation points in different bearings using RMS and PSD
methods

Training considering the FFS

Ramp labelling

Here we change the labelling mode as it can be seen in fig3.67. According to the
FFS we shall consider the state of the bearing as healthy (i.e. RUL=1) before the
first fault signal appears and after that the RUL starts decreasing linearly.

Figure 3.67: Graph of the training progress

The results of such training process is presented down below:
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Figure 3.68: Performance of
the network on test images

Figure 3.69: Performance of
the network on training images

Figure 3.70: Performance of the network on a sensor that didn’t take part in
training RMSE=0.3471

The outcomes are not acceptable so we shall try another method.

quadratic labelling

Looking at the predictions so far, it is evident that the predictions for the early
stages are far lower than actual values, this is because the spectrograms have
insignificant gradient of changes in the early life periods. In this section we are
going to label the images with their RUL quadratically descending as it can be
seen in fig 3.71:
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Figure 3.71: Quadratic labelling: the curve is fit to the first fault signal point

in such labeling format the fault initiation point is put at the 45° arc to change
the slope of degradation as soon as the fault appears. the results for such labeling
format are shown below;

Figure 3.72: Performance on test images, rmse = 0.0905

Figure 3.73: Performance on training images,rmse = 0.0874

From the results it is clear that a quadratic model of degradation fits the trend
of changes in the images images quiet well, therefore the RMSE values increase
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significantly (around 10 percents).

Figure 3.74: Performance of the network on the sensor it has never seen (1-6),rmse
= 0.1029

However the performance of the network in the final period of the bearings life
for the sensors our network has never seen before is not acceptable. this is because
the real degradation trend doesn’t fully overlap with the proposed model. In the
next trial, we will fit a quadratic curve on the bearings’ degradation trend based
on their RMS values.

Curve fitting on the RMS value

In the literature [54] the RMS value is considered as as a very powerful indicator
of machinery health. This made us to base our health degradation profile on the
RMS increase profile.

In this part we tried to fit the degradation trend (RUL decrease) on the RMS
growth trend to see what the results were. by flipping the values as seen in image
3.75 and fitting a curve by 3 or more points on them we can have a good estimation
of the degradation. Such degradation is shown in figure 3.76 . Such labeling might
help with the correct RUL decrease profile.

Figure 3.75: Graph of RMS flipped vertically
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Figure 3.76: Curve fitting on the RMS value sensotr 1-7

Figure 3.77: Performance on test images, rmse = 0.0484

Figure 3.78: Performance on training images, rmse = 0.0402
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Figure 3.79: Performance of the network on the sensor it has never seen (1-6),
rmse = 0.0491

3.5.10 Isolation of the Faulty Signal

As seen, The previous labelling highly overfit the network and diminished the
precision so We have decided to develop another method. This time, input images
go through a flowchart initially and then based on the outcome the next step is
taken. The proposed flowchart can be seen in graph 3.80 [55] HS division performs
a service role for RUL estimation. [2] In our case Two-stage division provides a
FFP for RUL prediction. Multi-stage division however, may help with the RUL
estimation process following these three steps. Firstly, a RUL estimation problem
is transformed into a multi-stage classification through the multi-stage division,
therefore various multi-class classification techniques can be applied to the area of
RUL prediction [55] [56]. Next, different tasks are assigned into different stages after
HS division, such as condition monitoring in the normal stage, one-step prediction
in the slight degradation stage, RUL prediction in the severe degradation stage
and shutdown in the failure stage. Third, due to the variation of the degradation
trends in different stages, multi-model prediction is expected to perform better
than a single prognostic model.
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Figure 3.80: proposed workflow for the decision tree model

In this Model, the input image first enters a classifier network. which was trained
based on the FFS dividing the dataset into two healthy and faulty sub datasets.
this classifier network was again trained on the alexnet. The Trained classifier is 98
percent accurate and the confusion matrix of this classifier is presented below. 3.81

Figure 3.81: The confusion matrix of the proposed binary classifier

Next, if the bearing is faulty the image will enter a regression network to estimate
the RUL. This way, only the spectrograms containing the faulty signals might enter
the HI indicator yielding accurate results.

3.6 Conclusion
This thesis discovers potentials of Deep Learning in field of Predictive Maintenance
and Prognostics with different settings and datasets. The biggest challenge with our
dataset is its reality and therefore non-linearity which results in a non-homogeneous
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trend of degradation and lack of useful signals for training. However, when the
network is trained and tested on the same sensors the results are up to 95 percent
accurate but when trained and tested on a different sensors unknown to the trained
network, the accuracy drastically plummets. This is mainly because the signal
including at least one defect type, namely, outer race failure, make a very little
percentage of the whole faulty signals (only about 2 percent of whole dataset).
By using different methods and settings of creating spectrograms and different
normalizations we attempted to extract meaningful trends from the data and in
order to decrease the overfitting effect we tried augmentation, separating the failed
sensors and training the network only with the failed ones. And finally to increase
the accuracy we isolated the faulty signals of the failed sensors for training only.
Fortunately, each of these steps positively contributed to the overall accuracy of
the network but due to the challenges mentioned before, having a general network
for all defect types, seems to be very challenging, using non-supervised training
methods.

3.6.1 Discussion
Overall, if the network is trained in a correct manner, this method can acceptably
predict the failure in the final stages of bearing life, whether the sensor data related
to the tested bearing participated in the training process or not. Predicting the
RUL in the early stages of the lifetime however prove to be quiet challenging due
to lack of useful data since the signal to noise ratio is quite low in the early stages.

On the other hand, bearings are prone to different types of defects, each of which
demonstrating a different degradation trend, fault frequency band and amplitude.
This is another challenge to be thought of when we are trying to train a unique
model for different fault types. Almost all the literature successfully estimating the
RUL have clustered the bearings by defect type when the defect type was known or
by similar degradation patterns when the defects were unknown. In this thesis we
avoided doing so mainly because of scarcity of useful data for different fault types
but creating an algorithm in which first the fault is classified and then the RUL
estimator model is activated according to the defect can greatly help the outcome.
furthermore, It is a common phenomenon to discover multiple faults in a single
bearing in real applications. However, this is often ignored in academic researches
for simplification.

In the literature, the HS division accuracy is in general elaborated subjectively
and is not verified by the actual process of degradation of the machinery. This
is because because it is very challenging to monitor the real degradation stages
of the machine. The HSs in are segmented according to the changes of signal
characteristics but different methods we utilised in this research yielded different
fault initiation points. firstly, such points were not the same when using different
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methods. for example the fault initiation point for sensor 1-5 using the RMS
threshold method,turns out to be the sample number 2001, however when the PSD
method is used, such point is sample number 1789 for which I couldn’t find a clear
explanation. secondly for some of the sensors (i.e. sensors 2-1,3-3) such points
didn’t show up until the very last moments. this impedes utilisation of a great deal
(about 99% in sensor 3-3) of the data. more work should be done on this issue.

In addition, the Particular features of the IMS data set need to be addressed
here. Overall the for most of the sensors there are no linear degradation trends
and in addition to that the self-healing effect present in the first dataset are great
challenges to be tackled. furthermore, In the early stages of the bearing life, sensors
have registered an unusual sudden shift in the RMS value in the first test which
can be obviously noticed in the spectrograms.

3.7 The App

As a practical outcome of this work, I have proposed the development of a standalone
application that could be separately installed on computer devices to estimate the
RUL by reading a .CSV file, or connecting to a sensor to receive the time domain
data and then creating the spectrogram and finally feeding into the CNN trained
during the development of this thesis and follows the final algorithm proposed by
me.

3.7.1 instructions of use

once the application has loaded, In the first tab, if the vibration data is saved
before by clicking on the brows button user might upload the pre-recorded .CSV
file obtained from the accelerometer in case we have a 3-axis accelerometer the
desired channel number must be defined and then in the second tab by clicking on
the Run button the RUL is estimated.
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Figure 3.82: Input data port or file selection tab

Another functionality, is connecting the Acquisition interface to the computer.
In this case user has to click on list sensors and when the sensor light turns into
green the desired sensor might be selected by copying and pasting its name to
the sensor name field. (The duration of acquisition(0.5s) and sampling frequency
(20480Hz) is preset by us). Once the sensor is selected, the acquisition might be
done by clicking on acquire button. once the data is uploaded, the time domain
graph is shown and then again in the second tab by clicking on Run button the
RUL is calculated.

Figure 3.83: Acquisition sensors
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Figure 3.84: RUL calculation tab

3.7.2 Extension of use
Deep learning has a limited ability to be generalized across domains different
than the original one. Specifically speaking, to transfer knowledge from the target
domain to another domain unseen by the model is a quite difficult problem and
is not discussed in this literature. Presenting solutions [57] to this problem could
help with many real world issues as well as the RUL estimation.

Because Vibration analysis is the most common monitoring method used in the
industry, the developed model has the potential to be utilised in a wider domain
under a similar monitoring process. By implementing a cross domain strategy it
is possible to generalize the functionality of such an app on other systems with
dynamic and mechanical characteristics other than the dataset used in this thesis.
The design of the cross domain strategy is outside the scope of this thesis.
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MATLAB codes

A.0.1 Spectrogram Creator

1 c l c , c l e a r
2 opengl ( ’ save ’ , ’ s o f tware ’ )
3 f s = 20E3 ; % uni t : Hz
4 time = l i n s p a c e (0 , 1 , f s ) ’ ;
5 f d s = f i l e D a t a s t o r e ( " 1 s t_te s t \ " , " ReadFcn " , @myCustomReader ) ;
6 l ength ( fd s . F i l e s ) ;
7 f o r i =1: l ength ( fd s . F i l e s )
8 H=importdata ( fd s . F i l e s [ 1 ] ) ;
9 f o r j =1:4

10 h=H( : , j ) ;
11 [ ~ , fvec , tvec , P0 ] = spectrogram (h ,256 ,230 ,512 , f s ) ;
12 f i g=f i g u r e ;
13 c l f ;
14 ah = axes ( ’ Units ’ , ’ Normalize ’ , ’ Po s i t i on ’ , [ 0 0 1 1 ] ) ;
15 imagesc ( tvec , fvec , P0) ;
16 ax i s ( ah , ’ square ’ ) ;
17 f i g . Po s i t i on (3 ) = f i g . Po s i t i on (4 ) ; %s e t width equal to he ight
18 ax i s xy ;
19 l im = c a x i s ;
20 c a x i s ( [ 0 12e −4]) ;
21 ax i s o f f ;
22 colormap j e t ;
23 co l o rba r
24 s e t ( gca , ’ Co lo rSca l e ’ , ’ l og ’ ) ;
25 co l o rba r
26 t i t l e ( " " ) ;
27 f igname = append ( ’ spctrgrm ’ , num2str ( j ) , num2str ( i ) , ’ . jpg ’ ) ;
28 saveas ( f i g , f igname ) ;
29 c l o s e a l l ;
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30 end
31 end

A.0.2 Codes for training

1 c l c , c l e a r
2 opengl ( ’ save ’ , ’ s o f tware ’ )
3

4 1 s t t e s t
5 %to perform l a b e l i n g in a r e g r e s s i o n problem we need to have tab le −

type data d i r e c t o r y
6 %I chose the 1 s t 3 rd 4 th 5 th 7 th 8 th s e n s o r s f o r t r a i n i n g and 2nd 6th

f o r
7 %c r o s s t e s t . o f course I a l s o cons ide r ed 10% of each senso r data f o r

s e l f t e s t i n g .
8 % fds11 = f i l e D a t a s t o r e ("1−1 l o g s c a l e \" , " ReadFcn " , @myCustomReader ) ;
9 % Spectrogram11=n a t s o r t f i l e s ( fds11 . F i l e s ) ; %order data in natura l

order in s t ead o f d e f a u l t 1 10 100 2 20 200 e tc . . .
10 % fds13=f i l e D a t a s t o r e ( ’1−3 l o g s c a l e \ ’ , " ReadFcn " , @myCustomReader ) ;
11 % Spectrogram13=n a t s o r t f i l e s ( fds13 . F i l e s ) ;
12 % fds14=f i l e D a t a s t o r e ( ’1−4 l o g s c a l e \ ’ , " ReadFcn " , @myCustomReader ) ;
13 % Spectrogram14=n a t s o r t f i l e s ( fds14 . F i l e s ) ;
14 fd s15=f i l e D a t a s t o r e ( ’ 1−5\ ’ , " ReadFcn " , @myCustomReader ) ;
15 Spectrogram15=n a t s o r t f i l e s ( fds15 . F i l e s ) ;
16 fd s17=f i l e D a t a s t o r e ( ’ 1−7\ ’ , " ReadFcn " , @myCustomReader ) ;
17 Spectrogram16=n a t s o r t f i l e s ( fds17 . F i l e s ) ;
18 fd s18=f i l e D a t a s t o r e ( ’ 1−8\ ’ , " ReadFcn " , @myCustomReader ) ;
19 Spectrogram18=n a t s o r t f i l e s ( fds18 . F i l e s ) ;
20 %senso r 1−5
21

22 load ( " r u l 1 5 f i t t e d . mat " ) ;
23 Rul15_1=ru l15
24 %senso r 1−7
25 load ( ’ r u l 1 7 f i t t e d . mat ’ ) ;
26 Rul17_1=ru l17
27 %senso r 1−8
28 load ( ’ r u l 1 8 f i t t e d . mat ’ ) ;
29 Rul18_1=ru l18
30

31 2nd t e s t
32 fd s21 = f i l e D a t a s t o r e ("2 −1\" , " ReadFcn " , @myCustomReader ) ;
33 Spectrogram21=n a t s o r t f i l e s ( fds21 . F i l e s ) ;
34 % fds22 = f i l e D a t a s t o r e ("2−2 l o g s c a l e \" , " ReadFcn " , @myCustomReader ) ;
35 % Spectrogram22=n a t s o r t f i l e s ( fds22 . F i l e s ) ;
36 % fds24 = f i l e D a t a s t o r e ("2−4 l o g s c a l e \" , " ReadFcn " , @myCustomReader ) ;
37 % Spectrogram24=n a t s o r t f i l e s ( fds24 . F i l e s ) ;
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38 load ( ’ r u l 2 1 f i t t e d . mat ’ ) ;
39 Rul21_1=ru l21
40

41 3 rd t e s t
42 fd s33 = f i l e D a t a s t o r e ("3 −3\" , " ReadFcn " , @myCustomReader ) ;
43 Spectrogram33=n a t s o r t f i l e s ( fds33 . F i l e s ) ;
44 % fds32 = f i l e D a t a s t o r e ("3−2 l o g s c a l e \" , " ReadFcn " , @myCustomReader ) ;
45 % Spectrogram32=n a t s o r t f i l e s ( fds32 . F i l e s ) ;
46 % fds34 = f i l e D a t a s t o r e ("3−4 l o g s c a l e \" , " ReadFcn " , @myCustomReader ) ;
47 % Spectrogram34=n a t s o r t f i l e s ( fds34 . F i l e s ) ;
48 load ( ’ r u l 3 3 f i t t e d . mat ’ ) ;
49 Rul33_1=ru l33
50

51 Spectrogram=[Spectrogram15 ; Spectrogram16 ; Spectrogram18 ; Spectrogram21 ;
Spectrogram33 ] ;

52 Rul=[Rul15_1 ; Rul17_1 ; Rul18_1 ; Rul21_1 ; Rul33_1 ] ;
53 Ttes=tab l e ( Spectrogram , Rul ) ;
54 % %c r e a t e the t r a i n i n g f i l e s and t e s t f i l e s
55 numf i l e s=length ( Rul ) ;
56 my_indices = randperm ( numf i l e s ) ;
57 t e s t s e t = Ttes ( my_indices ( 1 : f l o o r ( 0 . 1∗ l ength ( Rul ) ) ) , : ) ;
58 t r a i n s e t = Ttes ( my_indices ( c e i l ( 0 . 1∗ l ength ( Rul ) ) : end ) , : ) ;
59

60 load ( ’ c o o l l a y e r . mat ’ )
61 layers_2 ( 1 : 1 6 )=freezeWeights ( layers_2 ( 1 : 1 6 ) ) ;
62 net=layers_2
63

64

65

66 %t r a i n i n g opt ions
67 opt ions = tra in ingOpt ions ( " adam" , . . .
68 " P lo t s " , " t r a in ing −prog r e s s " , ’ I n i t i a lL ea rnRat e ’ , 0 . 00001 , . . .
69 " LearnRateSchedule " , " p i e c ew i s e " , ’ S h u f f l e ’ , ’ every−epoch ’ , . . .
70 " LearnRateDropPeriod " , 1 , ’ LearnRateDropFactor ’ , 0 . 1 . . .
71 , " MaxEpochs " , 5 , ’ MiniBatchSize ’ ,20) ;
72

73 Faultyonly = trainNetwork ( t r a i n s e t , net , opt i ons )
74

75 t e s t d s = augmentedImageDatastore ( [ 2 27 227 ] , t e s t s e t ) ;
76 p r e d s t e s t = p r e d i c t ( Faultyonly , t e s t d s ) ;
77

78 t e s t v a l s = t e s t s e t . Rul ; %ac tua l t e s t Values
79 e r r o r = t e s t v a l s − p r e d s t e s t ;
80

81 squares = e r r o r . ^ 2 ;
82 rmse = sq r t (mean( squares ) )
83

84

85 %t e s t the network on t e s t s e t
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86 f i g u r e (2 )
87 Ttest=tab l e ( t e s t s e t . Spectrogram , t e s t s e t . Rul , p r e d s t e s t ) ;
88 TTe = sort rows ( Ttest , ’ Var2 ’ , ’ descend ’ ) ;
89 pred_sort = TTe . Var3 ;
90 % smooth = smoothdata ( pred_sort ) ;
91 tes t_va l_sort = TTe . Var2 ;
92 % e r r o r =abs ( tes t_va l_sort −pred_sort ) ;
93 % errsmooth=smoothdata ( e r r o r ) ;
94 p lo t ( pred_sort , " . " , ’ DisplayName ’ , ’ Pred ic ted ’ ) ;
95 hold on
96 p lo t ( test_val_sort , ’ DisplayName ’ , ’ Actual ’ ) ;
97 % plo t ( e r ror , ’ DisplayName ’ , ’ e r ro r ’ ) ;
98 t i t o l o=append ( ’ performance on the t e s t data ’ ) ;
99 t i t l e ( t i t o l o ) ;

100 y l i n e ( rmse , ’ −.b ’ , ’RMSE’ ) ;
101 l egend ( ) ;
102 y l a b e l ( ’RUL ’ )
103 x l a b e l ( ’ Samples ’ )
104 hold o f f
105

106 %t e s t network on t r a i n i n g s e t
107 t r a i n d s=augmentedImageDatastore ( [ 227 227 ] , t r a i n s e t )
108 pr ed s t r a i n= p r e d i c t ( Faultyonly , t r a i n d s )
109 Ttrain=tab l e ( t r a i n s e t . Spectrogram , t r a i n s e t . Rul , p r ed s t r a i n ) ;
110 TTr = sort rows ( Ttrain , ’ Var2 ’ , ’ descend ’ ) ;
111 pred_sort_train = TTr . Var3 ;
112 t ra in_val_sort = TTr . Var2 ;
113 e r ro r_t ra in =abs ( tra in_val_sort −pred_sort_train ) ;
114

115 t r a i n v a l s = t r a i n s e t . Rul ; %ac tua l t e s t Values
116 e r r o r t = t r a i n v a l s − pr ed s t r a i n ;
117

118 square s t = e r r o r t . ^ 2 ;
119 rmset = sq r t (mean( square s t ) )
120

121 f i g u r e (5 )
122 p lo t ( pred_sort_train , " . " , ’ DisplayName ’ , ’ Pred ic ted ’ ) ;
123 hold on
124 p lo t ( tra in_val_sort , ’ DisplayName ’ , ’ Actual ’ ) ;
125 % plo t ( e r ror_tra in , ’ DisplayName ’ , ’ e r ro r ’ ) ;
126 t i t o l o t r=append ( ’ performance o f the t r a i n i n g data ’ ) ;
127 t i t l e ( t i t o l o t r ) ;
128 y l i n e ( rmse , ’ −.b ’ , ’RMSE’ ) ;
129 l egend ( ) ;
130 y l a b e l ( ’RUL ’ )
131 x l a b e l ( ’ Samples ’ )
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A.0.3 Codes for the APP

1 c l a s s d e f FINALE < matlab . apps . AppBase
2

3 % Prope r t i e s that correspond to app components
4 p r o p e r t i e s ( Access = pub l i c )
5 UIFigure matlab . u i . Figure
6 TabGroup matlab . u i . c on ta ine r . TabGroup
7 Tab matlab . u i . c on ta ine r . Tab
8 BrowseButton matlab . u i . c o n t r o l . StateButton
9 S e l e c t s e n s o r E d i t F i e l d L a b e l matlab . u i . c o n t r o l . Label

10 S e l e c t s e n s o r E d i t F i e l d matlab . u i . c o n t r o l .
NumericEditFie ld

11 DateTimeEditFieldLabel matlab . u i . c o n t r o l . Label
12 DateTimeEditField matlab . u i . c o n t r o l . Ed i tF i e ld
13 CSVfi leLabel matlab . u i . c o n t r o l . Label
14 SesnorLabel matlab . u i . c o n t r o l . Label
15 ListSensorsButton matlab . u i . c o n t r o l . Button
16 ListTextArea matlab . u i . c o n t r o l . TextArea
17 SensornameEditFie ldLabel matlab . u i . c o n t r o l . Label
18 SensornameEditField matlab . u i . c o n t r o l . Ed i tF i e ld
19 Lamp_2 matlab . u i . c o n t r o l .Lamp
20 AcquireButton matlab . u i . c o n t r o l . Button
21 modelTextArea matlab . u i . c o n t r o l . TextArea
22 NameLabel matlab . u i . c o n t r o l . Label
23 Di s c r i p t i onLabe l matlab . u i . c o n t r o l . Label
24 UIAxes2 matlab . u i . c o n t r o l . UIAxes
25 Tab2 matlab . u i . c on ta ine r . Tab
26 Image matlab . u i . c o n t r o l . Image
27 spectrogramLabel matlab . u i . c o n t r o l . Label
28 Lamp matlab . u i . c o n t r o l .Lamp
29 RULGauge matlab . u i . c o n t r o l . LinearGauge
30 Label matlab . u i . c o n t r o l . Label
31 StateEd i tF i e ldLabe l matlab . u i . c o n t r o l . Label
32 Sta t eEd i tF i e ld matlab . u i . c o n t r o l . Ed i tF i e ld
33 ISO18436EditFie ldLabel matlab . u i . c o n t r o l . Label
34 ISO18436EditField matlab . u i . c o n t r o l . Ed i tF i e ld
35 RULEditFieldLabel matlab . u i . c o n t r o l . Label
36 RULEditField matlab . u i . c o n t r o l . Ed i tF i e ld
37 Faul t typeEdi tF ie ldLabe l matlab . u i . c o n t r o l . Label
38 Fau l t typeEdi tF ie ld matlab . u i . c o n t r o l . Ed i tF i e ld
39 UIAxes matlab . u i . c o n t r o l . UIAxes
40 end
41

42 % Cal lbacks that handle component events
43 methods ( Access = pr i va t e )
44
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45 % Value changed func t i on : BrowseButton
46 f unc t i on BrowseButtonValueChanged ( app , event )
47 value = app . BrowseButton . Value ;
48 [ FileName , PathName , F i l t e r I n d e x ] = u i g e t f i l e ( ’ ’ ) ;
49 app . DateTimeEditField . Value=FileName ;
50 H=importdata ( FileName ) ;
51 sensornum=app . S e l e c t s e n s o r E d i t F i e l d . Value ;
52 h=H( : , sensornum ) ;
53 time =1:1: l ength (h) ;
54 p lo t ( app . UIAxes , time , h) ;
55 y l a b e l ( ’m/ s2 ’ )
56 x l a b e l ( ’ t [ s ] ’ )
57 xlim ( [ 0 20480 ] )
58 f s =20480;
59 [ ~ , fvec , tvec , P0 ] = spectrogram (h (1 : 10240 ) ,256 ,230 ,512 , f s )

;
60 % f i g=f i g u r e ( ’Menu ’ , ’ none ’ , ’ ToolBar ’ , ’ none ’ ) ;
61 f i g u=f i g u r e ;
62 c l f ;
63 % fh = f i g u r e ( ’Menu ’ , ’ none ’ , ’ ToolBar ’ , ’ none ’ ) ;
64 ah = axes ( ’ Units ’ , ’ Normalize ’ , ’ Po s i t i on ’ , [ 0 0 1 1 ] ) ;
65 imagesc ( tvec , fvec , P0) ;
66 ax i s ( ah , ’ square ’ ) ;
67 f i g u . Po s i t i on (3 ) = f i g u . Po s i t i on (4 ) ; %s e t width equal to

he ight
68 ax i s xy ;
69 l im = c a x i s ;
70 c a x i s ( [ 1 e−6 1e −3]) ;
71 ax i s o f f ;
72 colormap j e t ;
73 s e t ( gca , ’ Co lo rSca l e ’ , ’ l og ’ ) ;
74 co l o rba r o f f ;
75 t i t l e ( " " ) ;
76 F = getframe ( gc f ) ;
77 [X, Map] = frame2im (F) ;
78 f i g=i m r e s i z e (X, [ 2 2 7 227 ] ) ;
79 app . Image . ImageSource=f i g ;
80 load ( ’ F a r i d c l a s s i f i e r . mat ’ ) ;
81 c l=c l a s s i f y ( F a r i d c l a s s i f i e r , f i g ) ;
82 c l=char ( c l (1 ) ) ;
83 app . S ta t eEd i tF i e ld . Value=c l ;
84 i f strcmp ( c l , ’ Fa i l ed ’ )
85 load ( " t y p e c l a s s i f i e r . mat " )
86 f l=c l a s s i f y ( F a r i d t y p e c l a s s i f i e r , f i g ) ;
87 f l=char ( f l ( 1 ) ) ;
88 app . Fau l t typeEdi tF ie ld . Value=f l ;
89 load ( ’ Faultyu . mat ’ ) ;
90 pred=p r e d i c t ( Faultyonly , f i g ) ;
91 i f pred >=0.9
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92 app .Lamp . Color =[0.4660 0 .6740 0 . 1 8 8 0 ] ;
93 app . ISO18436EditField . Value=’ Zone has been f i n i s h e d ’

;
94 e l s e i f pred <0.9 && pred >=0.5
95 app .Lamp . Color=’ ye l low ’ ;
96 app . ISO18436EditField . Value=’ Zone B: The

RUL i s i s high enough ’ ;
97 e l s e i f pred <0.5 && pred >0.1
98 app .Lamp . Color =[0.8500 0 .3250 0 . 0 9 8 0 ] ;
99 app . ISO18436EditField . Value=’ Zone C: The RUL i s

l e s s than h a l f ’ ;
100 e l s e
101 app .Lamp . Color=’ r ’ ;
102 app . ISO18436EditField . Value=’ Zone D: The RUL i s

very low , r e p l a c e Bearing ’ ;
103 end
104 app . RULGauge . Value=pred ∗100 ;
105 app . RULEditField . Value=num2str ( pred ) ;
106

107 e l s e i f strcmp ( c l , ’ Healthy ’ )
108 app . ISO18436EditField . Value=’ Zone A: No ac t i on needed

’ ;
109 app .Lamp . Color=’ g ’ ;
110 app . RULGauge . Value=1;
111 app . RULEditField . Value=’ 100 ’ ;
112 app . Fau l t typeEdi tF ie ld . Value=’None ’ ;
113 end
114 end
115

116 % Button pushed func t i on : L i s tSensorsButton
117 f unc t i on ListSensorsButtonPushed ( app , event )
118 s enso r=daq . getDev ices
119 x={senso r ( 1 , : ) . ID } ;
120 app . ListTextArea . Value=x ;
121 app .Lamp_2 . Color=’ g ’
122 m={senso r ( 1 , : ) . Model}
123 app . modelTextArea . Value=m;
124 end
125

126 % Button pushed func t i on : AcquireButton
127 f unc t i on AcquireButtonPushed ( app , event )
128

129 name=app . SensornameEditFie ld . Value
130

131 %% Create a data a c q u i s i t i o n s e s s i o n
132 daqSess ion = daq . c r e a t e S e s s i o n ( ’ d i r ec t sound ’ ) ;
133

134 %% Add channe l s s p e c i f i e d by subsystem type and dev i c e
135 daqSess ion . addAudioInputChannel (name , ’ 1 ’ ) ;
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136 daqSess ion . addAudioInputChannel ( ’ Audio1 ’ , ’ 2 ’ ) ;
137

138 %% Conf igure p r o p e r t i e s
139 daqSess ion . Rate = 20480 ;
140 daqSess ion . Rate = 20000 ;
141

142

143 %% Conf igure p r o p e r t i e s
144 daqSess ion . DurationInSeconds = 1 ;
145

146 %% Run the data a c q u i s i t i o n s e s s i o n
147 [ data , time ] = daqSess ion . s tartForeground ( ) ;
148

149 p lo t ( app . UIAxes2 , time , data )
150

151 %% Disconnect from the dev i c e
152 daqSess ion . r e l e a s e ( ) ;
153 d e l e t e ( daqSess ion ) ;
154 c l e a r daqSess ion ;
155

156 end
157 end
158

159 % Component i n i t i a l i z a t i o n
160 methods ( Access = pr i va t e )
161

162 % Create UIFigure and components
163 f unc t i on createComponents ( app )
164

165 % Create UIFigure and hide u n t i l a l l components are
c reated

166 app . UIFigure = u i f i g u r e ( ’ V i s i b l e ’ , ’ o f f ’ ) ;
167 app . UIFigure . Po s i t i on = [100 100 679 5 0 9 ] ;
168 app . UIFigure .Name = ’MATLAB App ’ ;
169

170 % Create TabGroup
171 app . TabGroup = uitabgroup ( app . UIFigure ) ;
172 app . TabGroup . Pos i t i on = [ 1 −22 699 5 3 2 ] ;
173

174 % Create Tab
175 app . Tab = uitab ( app . TabGroup) ;
176 app . Tab . T i t l e = ’Tab ’ ;
177

178 % Create BrowseButton
179 app . BrowseButton = uibutton ( app . Tab , ’ s t a t e ’ ) ;
180 app . BrowseButton . ValueChangedFcn = createCal lbackFcn ( app ,

@BrowseButtonValueChanged , t rue ) ;
181 app . BrowseButton . Text = ’ Browse ’ ;
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182 app . BrowseButton . BackgroundColor = [ 0 . 9 2 9 4 0 .6941
0 . 1 2 5 5 ] ;

183 app . BrowseButton . Pos i t i on = [16 444 100 2 2 ] ;
184

185 % Create S e l e c t s e n s o r E d i t F i e l d L a b e l
186 app . S e l e c t s e n s o r E d i t F i e l d L a b e l = u i l a b e l ( app . Tab) ;
187 app . S e l e c t s e n s o r E d i t F i e l d L a b e l . Hor izontalAl ignment = ’

r i g h t ’ ;
188 app . S e l e c t s e n s o r E d i t F i e l d L a b e l . FontColor = [ 1 0 .4118

0 . 1 6 0 8 ] ;
189 app . S e l e c t s e n s o r E d i t F i e l d L a b e l . Po s i t i on = [13 402 78 2 2 ] ;
190 app . S e l e c t s e n s o r E d i t F i e l d L a b e l . Text = ’ S e l e c t s enso r ’ ;
191

192 % Create S e l e c t s e n s o r E d i t F i e l d
193 app . S e l e c t s e n s o r E d i t F i e l d = u i e d i t f i e l d ( app . Tab , ’ numeric

’ ) ;
194 app . S e l e c t s e n s o r E d i t F i e l d . Po s i t i on = [106 402 100 2 2 ] ;
195 app . S e l e c t s e n s o r E d i t F i e l d . Value = 5 ;
196

197 % Create DateTimeEditFieldLabel
198 app . DateTimeEditFieldLabel = u i l a b e l ( app . Tab) ;
199 app . DateTimeEditFieldLabel . Hor izontalAl ignment = ’ r i g h t ’ ;
200 app . DateTimeEditFieldLabel . Po s i t i on = [16 361 64 2 2 ] ;
201 app . DateTimeEditFieldLabel . Text = ’ Date , Time ’ ;
202

203 % Create DateTimeEditField
204 app . DateTimeEditField = u i e d i t f i e l d ( app . Tab , ’ t ex t ’ ) ;
205 app . DateTimeEditField . Ed i tab le = ’ o f f ’ ;
206 app . DateTimeEditField . Po s i t i on = [106 361 101 2 2 ] ;
207

208 % Create CSVfi leLabel
209 app . CSVfi leLabel = u i l a b e l ( app . Tab) ;
210 app . CSVfi leLabel . Po s i t i on = [16 476 49 2 2 ] ;
211 app . CSVfi leLabel . Text = ’CSV f i l e ’ ;
212

213 % Create SesnorLabel
214 app . SesnorLabel = u i l a b e l ( app . Tab) ;
215 app . SesnorLabel . Po s i t i on = [268 476 47 2 2 ] ;
216 app . SesnorLabel . Text = ’ Sesnor ’ ;
217

218 % Create Li s tSensorsButton
219 app . L i s tSensorsButton = uibutton ( app . Tab , ’ push ’ ) ;
220 app . L i s tSensorsButton . ButtonPushedFcn = createCal lbackFcn

( app , @ListSensorsButtonPushed , t rue ) ;
221 app . L i s tSensorsButton . Pos i t i on = [267 383 100 2 2 ] ;
222 app . L i s tSensorsButton . Text = ’ L i s t Sensors ’ ;
223

224 % Create ListTextArea
225 app . ListTextArea = u i t e x t a r e a ( app . Tab) ;
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226 app . ListTextArea . Pos i t i on = [375 356 84 6 0 ] ;
227

228 % Create SensornameEditFie ldLabel
229 app . SensornameEditFie ldLabel = u i l a b e l ( app . Tab) ;
230 app . SensornameEditFie ldLabel . Hor izontalAl ignment = ’ r i g h t

’ ;
231 app . SensornameEditFie ldLabel . Po s i t i on = [294 325 77 2 2 ] ;
232 app . SensornameEditFie ldLabel . Text = ’ Sensor name ’ ;
233

234 % Create SensornameEditFie ld
235 app . SensornameEditFie ld = u i e d i t f i e l d ( app . Tab , ’ t ex t ’ ) ;
236 app . SensornameEditFie ld . Po s i t i on = [386 325 100 2 2 ] ;
237 app . SensornameEditFie ld . Value = ’Copy&paste Name ’ ;
238

239 % Create Lamp_2
240 app .Lamp_2 = uilamp ( app . Tab) ;
241 app .Lamp_2 . Pos i t i on = [317 475 20 2 0 ] ;
242 app .Lamp_2 . Color = [1 0 .4118 0 . 1 6 0 8 ] ;
243

244 % Create AcquireButton
245 app . AcquireButton = uibutton ( app . Tab , ’ push ’ ) ;
246 app . AcquireButton . ButtonPushedFcn = createCal lbackFcn ( app

, @AcquireButtonPushed , t rue ) ;
247 app . AcquireButton . BackgroundColor = [ 0 . 9 2 9 4 0 .6941

0 . 1 2 5 5 ] ;
248 app . AcquireButton . Pos i t i on = [268 272 100 2 2 ] ;
249 app . AcquireButton . Text = ’ Acquire ’ ;
250

251 % Create modelTextArea
252 app . modelTextArea = u i t e x t a r e a ( app . Tab) ;
253 app . modelTextArea . Pos i t i on = [458 356 229 6 0 ] ;
254

255 % Create NameLabel
256 app . NameLabel = u i l a b e l ( app . Tab) ;
257 app . NameLabel . Po s i t i on = [400 415 38 2 2 ] ;
258 app . NameLabel . Text = ’Name ’ ;
259

260 % Create D i s c r i p t i onLabe l
261 app . D i s c r i p t i onLabe l = u i l a b e l ( app . Tab) ;
262 app . D i s c r i p t i onLabe l . Po s i t i on = [486 416 62 2 2 ] ;
263 app . D i s c r i p t i onLabe l . Text = ’ D i s c r i p t i o n ’ ;
264

265 % Create UIAxes2
266 app . UIAxes2 = uiaxes ( app . Tab) ;
267 t i t l e ( app . UIAxes2 , ’ T i t l e ’ )
268 x l a b e l ( app . UIAxes2 , ’X ’ )
269 y l a b e l ( app . UIAxes2 , ’Y ’ )
270 z l a b e l ( app . UIAxes2 , ’Z ’ )
271 app . UIAxes2 . Pos i t i on = [375 73 300 1 8 5 ] ;
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272

273 % Create Tab2
274 app . Tab2 = uitab ( app . TabGroup) ;
275 app . Tab2 . T i t l e = ’Tab2 ’ ;
276

277 % Create Image
278 app . Image = uiimage ( app . Tab2) ;
279 app . Image . Pos i t i on = [493 314 157 1 4 5 ] ;
280

281 % Create spectrogramLabel
282 app . spectrogramLabel = u i l a b e l ( app . Tab2) ;
283 app . spectrogramLabel . Po s i t i on = [536 293 72 2 2 ] ;
284 app . spectrogramLabel . Text = ’ spectrogram ’ ;
285

286 % Create Lamp
287 app .Lamp = uilamp ( app . Tab2) ;
288 app .Lamp . Pos i t i on = [ 8 456 20 2 0 ] ;
289

290 % Create RULGauge
291 app . RULGauge = uigauge ( app . Tab2 , ’ l i n e a r ’ ) ;
292 app . RULGauge . Limits = [ 0 1 ] ;
293 app . RULGauge . Sca l eCo lo r s = [ 0 0 1 ;0 0 .4471 0 . 7 4 1 2 ; 0 . 3 0 2

0 .7451 0 . 9 33 3 ; 0 . 4 66 7 0 .6745 0 . 1 88 2 ; 0 . 3 92 2 0 .8314 0 . 0745 ; 1 1
0 ; 0 . 9294 0 .6941 0 . 1255 ; 1 0 .4118 0 . 1608 ; 1 0 0 ] ;

294 app . RULGauge . Sca l eCo lo rL imi t s = [ 0 . 9 1 ; 0 . 8 0 . 9 ; 0 . 7
0 . 8 ; 0 . 6 0 . 7 ; 0 . 5 0 . 6 ; 0 . 3 5 0 . 5 ; 0 . 2 5 0 . 3 5 ; 0 . 1 5 0 . 2 5 ; 0 0 . 1 5 ] ;

295 app . RULGauge . Pos i t i on = [164 423 301 4 0 ] ;
296

297 % Create Label
298 app . Label = u i l a b e l ( app . Tab2) ;
299 app . Label . Po s i t i on = [219 387 25 2 2 ] ;
300 app . Label . Text = ’%’ ;
301

302 % Create Sta teEd i tF i e ldLabe l
303 app . S ta teEd i tF i e ldLabe l = u i l a b e l ( app . Tab2) ;
304 app . S ta teEd i tF i e ldLabe l . Hor izontalAl ignment = ’ r i g h t ’ ;
305 app . S ta teEd i tF i e ldLabe l . Po s i t i on = [119 353 34 2 2 ] ;
306 app . S ta teEd i tF i e ldLabe l . Text = ’ State ’ ;
307

308 % Create S ta t eEd i tF i e ld
309 app . S ta t eEd i tF i e ld = u i e d i t f i e l d ( app . Tab2 , ’ t ex t ’ ) ;
310 app . S ta t eEd i tF i e ld . Ed i tab le = ’ o f f ’ ;
311 app . S ta t eEd i tF i e ld . Po s i t i on = [164 353 104 2 2 ] ;
312

313 % Create ISO18436EditFie ldLabel
314 app . ISO18436EditFie ldLabel = u i l a b e l ( app . Tab2) ;
315 app . ISO18436EditFie ldLabel . Hor izontalAl ignment = ’ r i g h t ’ ;
316 app . ISO18436EditFie ldLabel . Po s i t i on = [86 476 63 2 2 ] ;
317 app . ISO18436EditFie ldLabel . Text = ’ ISO 18436 ’ ;
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318

319 % Create ISO18436EditField
320 app . ISO18436EditField = u i e d i t f i e l d ( app . Tab2 , ’ t ex t ’ ) ;
321 app . ISO18436EditField . Ed i tab le = ’ o f f ’ ;
322 app . ISO18436EditField . Po s i t i on = [164 476 486 2 2 ] ;
323

324 % Create RULEditFieldLabel
325 app . RULEditFieldLabel = u i l a b e l ( app . Tab2) ;
326 app . RULEditFieldLabel . Hor izontalAl ignment = ’ r i g h t ’ ;
327 app . RULEditFieldLabel . Po s i t i on = [123 387 30 2 2 ] ;
328 app . RULEditFieldLabel . Text = ’RUL’ ;
329

330 % Create RULEditField
331 app . RULEditField = u i e d i t f i e l d ( app . Tab2 , ’ t ex t ’ ) ;
332 app . RULEditField . Ed i tab le = ’ o f f ’ ;
333 app . RULEditField . Po s i t i on = [164 387 48 2 2 ] ;
334

335 % Create Fau l t typeEdi tF ie ldLabe l
336 app . Fau l t typeEdi tF ie ldLabe l = u i l a b e l ( app . Tab2) ;
337 app . Fau l t typeEdi tF ie ldLabe l . Hor izontalAl ignment = ’ r i g h t ’

;
338 app . Fau l t typeEdi tF ie ldLabe l . Po s i t i on = [95 314 58 2 2 ] ;
339 app . Fau l t typeEdi tF ie ldLabe l . Text = ’ Fault type ’ ;
340

341 % Create Fau l t typeEdi tF ie ld
342 app . Fau l t typeEdi tF ie ld = u i e d i t f i e l d ( app . Tab2 , ’ t ex t ’ ) ;
343 app . Fau l t typeEdi tF ie ld . Ed i tab le = ’ o f f ’ ;
344 app . Fau l t typeEdi tF ie ld . Po s i t i on = [164 314 154 2 2 ] ;
345

346 % Create UIAxes
347 app . UIAxes = uiaxes ( app . Tab2) ;
348 t i t l e ( app . UIAxes , ’Time Domain ’ )
349 x l a b e l ( app . UIAxes , ’Time [ s ] ’ )
350 y l a b e l ( app . UIAxes , ’ a [m/ s2 ] ’ )
351 z l a b e l ( app . UIAxes , ’Z ’ )
352 app . UIAxes . Po s i t i on = [364 73 300 2 0 6 ] ;
353

354 % Show the f i g u r e a f t e r a l l components are c rea ted
355 app . UIFigure . V i s i b l e = ’ on ’ ;
356 end
357 end
358

359 % App c r e a t i o n and d e l e t i o n
360 methods ( Access = pub l i c )
361

362 % Construct app
363 f unc t i on app = FINALE
364

365 % Create UIFigure and components
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366 createComponents ( app )
367

368 % Reg i s t e r the app with App Des igner
369 reg i s t e rApp ( app , app . UIFigure )
370

371 i f nargout == 0
372 c l e a r app
373 end
374 end
375

376 % Code that execute s be f o r e app d e l e t i o n
377 f unc t i on d e l e t e ( app )
378

379 % Delete UIFigure when app i s de l e t ed
380 d e l e t e ( app . UIFigure )
381 end
382 end
383 end
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