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Abstract
DEPARTMENT OF ENGINEERING AND MANAGEMENT

System Dynamics Simulation of the Effects of the DDMRP Implementation.
The Whirlpool EMEA Case Study.

by Jacopo DI GIACOMANTONIO

Firms must rely on their Supply-Chain to execute their strategies and cement their

competitive advantage in markets that rapidly change as the results of globalisation,

emergence of viral “fast-dying trends” powered by social medias and the proliferation of

products designed for shorter life cycles. Moreover, modern times revealed to the general

public what happens when the “invisible hand” of supply-chains suddenly stops moving

things around. The surge of the global COVID-19 pandemic in 2020 made the world

distant again, showing how fragile were the supply-chains used to run the world smoothly,

and still nowadays affected by the global supply shortage.

In this study a first-of-a-kind to the author knowledge System Dynamics model

implementing the innovative inventory management policy of the Demand Driven

Material Requirement Planning (DDMRP) is developed. In the proposed model, a

systemic approach is adopted to assess and model the typical processes involved in a

company trying to cope with the stock management problem, as defined by J.Sterman in

“Business Dynamics”. Hence, eight interconnected modules are devised to describe the

dynamics of the Order Fulfilment function, Demand forecasting, Average Daily Material
Usage (ADU) forecasting. Finished Goods Inventory management, Raw Materials
Inventory management, Direct Procurement, Sales and Operation Planning, and Financial

reporting.

The resulting model was intensively tested against two publicly recognized datasets

about traditional inventory management and DDMRP one, in addition to many small tests

run by the author to fine-tune the model. Very simple univariate and multivariate sensitivity

analysis are also applied trying to define the most impacting DDMRP performance drivers.

The study ends by testing the final version of the model against the data pertaining to the

business case study of Whirlpool. In May 2021, Whirlpool EMEA leadership, faced by an

overshoot in the raw materials inventory at one of its key Italian plants, the Cassinetta (VA)

plant, responded by deploying its pilot implementation of DDMRP.
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Chapter 1

The Dynamic Context
of Supply Chains

“ The supply chain stuff … really tricky ”
cit. Elon Musk

Firms must rely on their Supply-Chain to execute their strategies and cement their
competitive advantage in markets that rapidly change as the results of globalisation,
emergence of viral “fast-dying trends” powered by social medias and the proliferation
of products designed for shorter life cycles. Moreover, modern times revealed to the
general public what happens when the “invisible hand” of supply-chains suddenly
stops moving things around. The surge of the global COVID-19 pandemic in 2020
made the world distant again, showing how fragile the supply-chains used to run the
world smoothly were, and still nowadays a�ecting the input availability worldwide.
After costs have been compressed to the extreme building the most e�cient
productive systems thanks to Lean and Kaizen approaches, no additional radical
growth is attainable by �rms in the market if not by means of proper Supply Chain
Management. In this chapter, a brief introduction of what supply-chains are, how
they are structured and what are the biggest challenges they must face, is given. The
chapter concluded by introducing the Walmart and Zara case studies to illustrate that
communication and collaboration play the key success factors to attain sustainable
competitive advantage in the new V.U.C.A. world. Finally, an overview of the mostly
adopted KPIs adopted to benchmark supply-chain performances is provided.

1.1. What are Supply Chains

As simple as it might sound, supply-chains are established every time a couple of
entities start sharing resources and information flows to pursue the common �nal aim
of satisfying a downstream final customer need.
In reality, supply-chains easily get more complex, presenting multi-echelons
multi-directional structures that can span the globe, also called logistic networks. Is
indeed typical to �nd the following parties participating in a supply-chain
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1. Raw material suppliers, representing all agents sourcing raw inputs and
commodities (e.g foundries, miners, chemicals producers, ect.) to the
downstream nodes ;

2. Original Equipment Manufacturers (OEM), representing all agents
involved in the production of goods and services used as components from a
downstream node ;

3. System-integrators, also known as value-added resellers (VAR), which
assemble semi-�nished products sourced from OEMs into sellable-to-public
finished products , after eventually having performed additional manufacturing
operations ;

4. Wholesalers, representing all Business-to-Business (B2B) distribution
intermediaries responsible for mass serving di�erent regional markets through
retailers, selling items at a lower-than-market-clearing price ; and

5. Retailers, also known as Point-of-Sales (POS), representing all
Business-to-Consumer (B2C) agents directly selling �nished goods to
customers in rather small quantities, thus applying �nal pricing, marketing
promotions and delivery.

Obviously, being the supply-chain landscape extremely varied, such a classi�cation is
not a rigid one and di�erent agents might decide to play multiple roles in the chain for
many strategic reasons, verticalizing from manufacturing down to retailing.

Fig.1.1. Typical multi-echelon structure of supply-chains.

The speci�c structure of the logistic network tends to accommodate the industry cost
structure, seeking a minimum cost configuration. Thus, in general terms, the smaller the
di�erence between procurement, transactional and manufacturing costs gets with respect to
the total costs of all goods movements and material transportations the sparser the networks
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becomes. For instance, the Walmart logistic network is an highly decentralised one,
characterised by many low-cost and small-sized Stock Keeping Units (SKU), sourced by mainly
local vendors, that can easily �t in large quantities on a full-truck load as a results of a
milk-run, whereas the Boeing logistics network is a highly centralised one, characterised by
many expensive items whose production is outsourced to specialised OEMs that ship their
portion of the aircraft back to the single assembly plant from where the aircraft is then
shipped. Such considerations are considered during the strategic activity of network planning
held when designing the company supply-chain.

Along with network planning, a panel of other activities are executed as part of the
Supply-Chain Management (SCM), namely

1. Procurement, grouping all activities required to execute strategic selection of
suppliers, supply-contract negotiation and enforcement, speci�cation development
and good-receipt.

2. Order Ful�lment, grouping all activities required to collect, prioritise and de�ne
promised delivery dates and ful�l customer orders.

3. Inventory Management, grouping all activities required to de�ne target inventory
levels required to reliably sustain desidered service levels and release the inventory
replenishment plan based on a speci�c inventory control policy.

4. Warehousing, grouping all activities required to properly unload received material,
perform inbound quality controls and warehouse management to optimise
pick-pack-and-ship of �nished goods.

5. Transportations, grouping all activities required to de�ne and schedule the proper
delivery route (e.g. Rails, Parcel, Air, ect.) for all inbound and outbound �ows.

6. Planning and Demand Forecasting, grouping all activities required to de�ne
productive capacity requirements, locate facilities to minimise transportations costs
or time-to-market, network planning and forecasting future demand requirements so
as to produce a viable production plan.

7. Customer Support, grouping all activities required to manage after-sales events such
as goods returns, warranty issues or functional troubleshooting.
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Fig. 1.2. The different horizon covered by different SCM functions, extracted from F. Dallari “Rinnovare La
Supply Chain”

Finally, as anticipated above, an open debate regards “where to draw the line”
separating Logistics from SCM. Indeed, in the early days of supply-chains, the word logistics
was rather used to refer to those activities performed so as to manage inbound (e.g. material
receipts) and outbound �ows (e.g. distribution), thus focusing mainly on the operational
aspect of supply-chains. According to the Council of Supply Chain Management (CSCM)
Professionals

Supply-Chain Management “encompasses the planning and management of all
activities involved in sourcing and procurement, conversion, and all logistics management
activities. Importantly, it also includes coordination and collaboration with channel partners,
which can be suppliers, intermediaries, third party service providers, and customers. In essence,
supply chain management integrates supply and demand management within and across
companies”, while

Logistics management “is that part of supply chain management that plans,
implements, and controls the efficient, effective forward and reverse flow and storage of goods,
services and related information between the point of origin and the point of consumption in
order to meet customers' requirements”.

Thus logistics is seen as a subset of SCM. A review of the di�erent opinions about such a
debate lead to four major philosophies

1. Traditionalists, whose position SCM as the subset of logistics practices pertaining
to the “logistics outside the firm” ones.

2. Unionists, the position taken by the CSCM where logistics is treated as part of SCM
but is not limited to intra-company activities rather it includes activities required to
couple with external companies e�ectively.
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3. Intersectionists, suggest that only partial overlapping between logistics and SCM
occurs, being function like marketing and purchasing intrinsically di�erent from
operation management.

4. Re-labelling, where logistic is simply completely replaced by SCM, being both
related to the same things.

The position of the author about such a debate is described by Fig.1.3, being the unionists
approach considered as the most representative of current company practices.

Fig.1.3. The functional structure of Supply-Chain considered in this study, extracted from C.Rafele, et al, 2020.

Hence, the list of activities considered in this study as part of logistic are:
1. Material reception from suppliers,
2. Warehousing,
3. Inventory Control,
4. Pick-Pack-and-Ship,
5. Transportation and last-mile delivery,
6. Reverse logistics.

Such a conclusion is also supported by the 6-months internship experience held by the author
in the Whirlpool Sourcing Excellence Procurement O�ce during early-2021.

1.2. Main challenges in Supply Chain Management

Being �nal customers the unique origin of revenues in the system, the main goal of all
supply-chains should be to maximise the total value extractible from them, considering that
such value must be su�cient so as to reward the whole chain with pro�ts. Assuming
customer willingness to pay for a certain product �xed, to achieving such a goal implies
pursuing two basic objectives

1. Minimising “to-shelf” costs, optimising costs of all activities run by each node of
the chain, and
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2. Maximising product availability, guaranteeing unitary service levels every day.

Thus the supply-chain management problem can be visualised as a classical optimization
problem where two objective functions and must be optimised concurrently under a set𝑍

1
𝑍

2
of constraints de�ned (and controlled) by each agent in the chain. Being classical
optimization problems usually considering a single objective function at the time, already at
this level the complexity of the problem emerges. Moreover, opposing actions seem required
to achieve either goal. That is, guaranteeing higher service levels traditionally requires an
increased inventory commitment, thus an increase in working capital requirements. Moreover,
trying to disaggregate such a problem at the single company level shows that in order to
maximise the own position an additional set of smaller optimisation problems emerge for
each company function, with its set of constraints. Finally, extending such disaggregation to
all nodes in the chain would let opposite incentives among the players emerge which, in
conjunction with typically incomplete information available to all agents, make the pursuit of
a global optimum an extremely hard one to reach. With modern supply-chains getting longer
and spread globally among many cultures, an appropriability threat of such pro�ts emerges.
On the other hand, in the pursuit of cost reduction, the 1980's saw the emergence of new
managing strategies like Just-in-Time (JIT), Lean and Kanbans that positively a�ected the
cost function of many companies. However, nowadays an e�ciency plateau seems reached,
where the only new opportunities for additional cost reductions seem locked under a missing
systemic-view of the chain by its actor (Simchi-Levi). Coordination is thus the �rst biggest
challenge to tackle for e�ective SCM.

A major cause of ine�cient coordination in supply-chain is instead created by the
necessity of all players to forecast future demand, letting uncertainty management become the
second biggest challenge for e�ective SCM. As explained in Simchi-Levi, Chapter. , the three
basic principles of all forecasts states that

1. forecasts are always wrong,
2. the farer their forecasting horizon is, the less accurate they are, and
3. aggregate forecasts are always more accurate than ones on individual items

Hence, with Customer tolerance times constantly getting shorter, when overnight
free-deliveries are o�ered by big worldwide retailers such as Amazon, there is no chance for
manufacturers to pursue any targeted service level without committing in advance to certain
production volumes. Immobilisation of capitals in machinery, labour and raw materials
inventory thus must be run on a bet causing huge �nancial risks and market frictions among
the players.

On top of these, the following are considered by Simchi-Levi tough SCM open issues

1. Proper inventory control, questioning whether inventory must always be a direct
consequence to supply and demand uncertainty and whether agents should always
exactly follow forecasts.
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2. Optimised warehouse localisation, which still represents a hard optimisation
problem especially if extremely �uctuating demand trends are considered.

3. Optimised distribution routes, questioning what are the limits to centralisation
and decentralisation strategies and to which are their e�ects on stock keeping costs
and transportation costs.

4. Strategic partnering, questioning why e�ective supply-chain integrations seems
only applicable by big companies and why are the key informational exchanges
required to make it work.

5. Outsourcing control, questioning how to unequivocally execute outsourcing
contracts and share of intellectual property especially in the case of o�-shored
production.

6. Optimised product designs, questioning whether product redesign can be
implemented so as to minimise the impact of new product introduction on current
inventory levels and obsolescence risk.

7. Informative decision-support systems, questioning which data are really
signi�cant for SCM and which can be ignored.

1.3. The V.U.C.A. environment we live in

Coined by the Demand Driven Institute (DDI), the term V.U.C.A. brie�y summarise
the current status of most supply-chains:

1. Volatile, because demand presents extreme, sudden �uctuations, with many
products having shorter life cycles. Consider for instance a suddenly exploding
demand trend created by the viral spread of a trend on social media and the internet,
or the conventional iPhone 1-year refresh cycle. In Sterman, Chapter 18, an example
from the computer and electronics industry is reported where planners must
concurrently need to forecast sales for a new product introduction while planning the
ramp-down phase of material procurement and production during the
peak-adoption phase of the product life.

2. Uncertain, the high information asymmetry maintained by many players in the
chain, generating bullwhip oscillations, gets coupled with the basic principle of
forecast (all forecasts are wrong) cluttering the view on the system with arti�cial noise.
Moreover, being modern supply-chains mostly decentralised, sources of threats may
come from multiple places.

3. Complex, globalization scattered the logistic network among many nodes making the
already non-trivial task of synchronisation, control and alignment of incentives along
the chain even tougher by means of cultural aspects, languages or simply timezones.
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Moreover, the number of individual SKUs managed by the same company increased
substantially so as to deliver multi-regional market segmentation.

Fig. 1.4. Main air-carriers logistic routes, extracted from C. Rafele et al, 2020.

4. Ambiguous, among the vast amount of data available, companies struggle to grasp
what really matters and what is noise instead. The singular case of fake-news spread
and the dismaling pursuit of proper fact-checking by social media providers such as
Facebook or Twitter provides an example.

The recents events (e.g Covid Crisis, The Suez Canal EverGreen incident, the Ukrainian
con�ict) largely proved the VUCA nature of modern supply-chains and added to the list the
concept of resilience. Pursuing cost reductions to the extreme in the name of “lean the
processes” made supply-chains fragile and rigid at their core. Adaptive systems, where
inventories are managed as assets and not as costs, and where supply-chains act as shock
absorbers, are rather required to guarantee performances in an ever changing environment.

1.4. The Bullwhip effect: what customers don’t see

Most of the time, retailers, being directly exposed to customers, are the only agents in
a supply-chain fully aware of what the real demand for a product is and whether any kind of
trend is foreseeable. On the other hand, being the retailer trying to protect himself from
stock-outs driven by unforeseeable variability in either supply or demand, its applied re-order
logic will hide the real product demand to the upstream layers of the chain, adding variability.
In a chain where only retailers own real demand data, every other node would be forced to
apply forecasting methods against the information stream received by the dowside layer,
applying first-order smoothing of such trends so as to avoid nervousness. However, such
practices under those conditions, in turn, just apply wasteful re-elaboration of the initial
signal coming from customer orders, adding at each stage more and more variability. This
condition is a well-known one in supply-chain management as of bullwhip effect. The APICS
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dictionary, redacted by the International Association for Supply Chain Management
(ASCM), de�nes the bullwhip e�ect as:

“ An extreme change in the supply position upstream in a supply-chain generated by a
small change in demand downstream in the supply chain. Inventory can quickly move from
being backordered to being excess. This is caused by the serial nature of communicating orders up
the chain with the inherent transportation delays of moving product down the chain. The
bullwhip can be eliminated by synchronising the supply chain. ”

Fig. 1.5. Bullwhip effect emerging from the famous MIT Beer Distribution Game, extracted from Sterman, 2013..

Thus, if real customer data were to be visible to all nodes of the chain, each node would have
complete information to apply appropriate forecasting. Among the many reasons why retailers
would not share their knowledge about customer orders, the most relevant ones pertain to
strategic factors. Other arti�cial sources of variation inducing bullwhip scenarios includes
(but are not limited to) events like

1. Batch ordering, where the downstream node prefers to release big lumpy orders
rather than small smoothed ones so as to reduce their order-issuing costs,

2. Materials seasonal promotions, where downstream nodes buy
greater-than-necessary quantities sold at the lower price so as to stock-up and reduce
the direct material costs of its future inventory (thus increasing returns).

3. Allocation threats, where multiple downstream nodes release in�ated “phantom
orders” in order to steal upstream node capacity to competitors, or to reduce the
probability of their orders to be rationed during periods of shortages.
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Finally, Simchi-Levi, Chapter 5, proposes a formulation to quantify the bullwhip-e�ect
showing how the longer and less collaborative the chain is, the greater the amplification ratio
in order estimates between two subsequent layers gets. An important �nding emerging from
it is that upon any kind of echelon-transmission some additional variability is always added to
the initial signal. Thus, collaborative strategies such as Vendor Managed Inventories, or
reshoring, coupled with technologies like Electronic Data Interchange (EDI) are designated as
capable of attacking bullwhip spread, but could never completely cut it o�.

Fig. 1.6. Increase in order variability in centralised and decentralised supply-chains, extracted from Simchi-Levi.

1.5. The competitive advantage derived from Supply-Chains

In 1985, Michael Porter, the father of modern corporate strategy development,
released the innovative concept of value chain, as opposed to the conventional value-added
and costs analysis, to describe companies as a set of primary and supporting value activities
organised together to produce a margin as proof of the company's capability of creating
competitive advantage.

Fig.1.7. The Porter value chain, extracted from Porter.

In the value chain, logistics �gure as primary activities, essential to organise unrelated
components into sellable products, and it is supported by procurement. The key concept for
SCM derived from the Porter value chain model is that value chains belonging to the same
channel can vertically influence each other's performance to produce a margin. Thus, planning
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operations is such a way that the downstream node is eased in its capabilities of generating
margin, it is of interest to the upstream nodes too. Indeed, if the downstream node su�ers of
reputational damage incurred by means of its suppliers poor cooperation, such a node will be
struggling competing in the market, eventually losing market share, cascading back to its
suppliers now receiving less orders. Following, some relevant case studies are brie�y
summarised to address the potential gains from integrating the supply-chain toward margin
generation.

Fig. 1.8. Vertical interaction between value chains, extracted from Porter.

Ironically, in 2015 the world’ best scoring company in terms of revenues was
Wal-mart Stores Inc., the giant of the US discount retailing industry whose motto �ercely
claimed “everyday low prices” (EDLP) since 1972. Wal-Mart strategy focused on replenishing
“the forgotten” small suburbs at the lowest prices possible. The problem with such a strategy
was given by the distribution channel which did not urge to serve such a “niche”. Thus, in
1970 Wal-Mart went public and integrated downstream building its own distribution centres
to e�ciently serve its local stores and slowly expand its business to the bigger US cities. With
time, such a move revealed a winner, letting Wal-Mart become the most attractive partner for
manufacturers (e.g. Procter & Gamble) who wanted to gain instant access to a large customer
pool exploiting Wal-Mart distributed presence in all 50 U.S. states. Such extended demand
gave Wal-Mart extreme bargaining power, which it fully exploited to pursue the EDLP goal
by squeezing vendors' margins to the extreme. In the 1990s, when EDI became available,
within 2 years Walmart extended it to all its US partners. Using EDI, vendors could log into
Walmart “Retail Link” portal and check the status of their items on a store-by-store basis. Such
practice allowed suppliers and manufacturers to synchronise their demand projections under
a collaborative planning, forecasting, and replenishment scheme, resulting in Walmart
achieving faster replenishment, lower inventory, and a product mix more closely tuned to the
local customer needs. Unsurprisingly, the 1996 Wal-Mart expansion attempt in Brazil su�ered
the lack of such integration with the local vendors along with other cultural frictions.

Explaining the Zara business model in a sentence, ]osé Maria Castellano Rios,
Inditex CEO quotes "the original business idea was very simple: link customer demand to
manufacturing, and link manufacturing to distribution”. Zara competes in the fast-fashion
industry, where customer demand is created by young, fashion-conscious city dwellers whose
purchasing decisions are mainly in�uenced by “fashion misses and rock stars” launching
trends that tend to fade some months ahead. Thus, Zara aims at delivering currently in-trend
fashion rather than old stocked patterns, with a vision of “letting people feel comfortable
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wearing Zaras even at weddings”. To achieve that, Zara executed a divide-et-impera
integration strategy of its supply-chain, in-house centralising all the automatizable parts of
the process (e.g. fabric patterns cutting) and subcontracting parts of its productive process to
small spanish and portuguese local manufacturing �rms, such as sewing. Prior to
seasonal-production, new designs were occasionally shared with third-parties so as to let them
prepare samples. This infrastructure would potentially produce a continuous stream of
fabrics moving between the 21 Zara factories and its subcontractors, allowing Zara closing a
style production within 10 days from its �rst order release. Finally, extensive responsibilities
were given to store managers which were empowered to request items from a collection based
on their sensations about local sales, whereas unsold items were recollected for possible
reshu�ing.

1.6. Key Performance Indicators in Supply Chains and Logistics

Being cost reductions and product availability the main pursued objectives in a
supply-chain, the Key Performance Indicators (KPIs) usually deployed to monitor them
include (but are not limited to) the following list

1. Service Level, the probability of not stocking out during a replenishment cycles;
2. Direct costs, Materials costs; Transportation costs; Quality control; Manufacturing

costs; Labour costs; Distribution costs and taxes;
3. Indirect Costs

Shortages costs, the costs associated with stock-outs recognised by lost sales
plus all sunken production costs attached to them;

Transactional costs, the cost of enforcing procurement contracts and control
the supply base;

Shared resource usage;y, such as electricity, or storage space;
4. Return on Assets (ROA), the amount of pro�ts generated by asset utilisation; In

the supply chainR context it can be evaluated as

𝑅𝑂𝐴 = 𝐸𝐵𝐼𝑇𝐷𝐴
𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦  

Being EBITDA the Gross Profit Margin;
5. Inventory Turnovers, the velocity at which inventory “turns” and fully replaces

itself. It measures the �rm’s ability to exploit its inventory to generate pro�ts. The
optimal value of it depends on the reference industry evaluated, but in general
products with higher margins and faster lead times should have low turnovers..

𝑅𝑂𝐴 = 𝐶𝑂𝐺𝑆
𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦  
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6. Forecasting Error, the historical deviation of forecasts from actual demand. It can
be measured in multiple ways, being the Mean squared Error (MSE) typically used in
conjunction with the coefficient of determination R2 when applying linear regression.

Fig. 1.9. Representation of the MSE

7. Warehouse capacity, the maximum available storage space;
8. Customer Satisfaction, it represents a metric made by the aggregation of multiple

aspects, being customer satisfaction driven not only by proper delivery times but also
by the �nal product quality. In this study this metric is evaluated as the portion of
cancelled orders over the total.

9. On-time deliveries, the number of orders shipped within promised dates;
10. Days of Coverage, the days-equivalent of demand coverage kept as inventory. It

provides an estimation of how long the �rm will be able to satisfy demand if
inventory replenishment suddenly stops.

11. Obsolescence Risk, the amount of stored materials and �nished goods that risk to
become obsolete and must be scrapped.
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Chapter 2

Inventory Management Policies

“ The inventory, the value of my company,
walks out the door every evening ”

cit. Bill Gates

Inventory is the tool in the hand of �rms to cope with uncertainty within supply-chains,
indeed �guring on companies' balance sheets as an asset. Therefore, as for all assets, it has the
potential of generating pro�ts if managed properly. However, inventory is rather widely
perceived solely as a bleeding cost that must be “minimised … no costs” in order to properly
pursue supply-chain management. In this chapter, this attitude is challenged and the
conventional strategies available to managers to control their inventory are presented. Then,
the DDMRP methodology, the main character of this study, is carefully detailed for each of
its implementation phases.

2.1. What is Inventory?

In the United States (US) more than a trillion USD of companies assets are
immobilised as inventory (Simchi-Levi, Chap.2). In 1984, General Motors (GM) total
inventory was estimated for 7.4B USD, of which 70% in Work-in-Process (WIP) material. GM
total freight cost to move such imponent quantities topped 4.1B USD. Thus it is
understandable that, for managers inventory typically represents just a bleeding �nancials to
contain and possibly minimise. Such managerial beliefs drove the rapid di�usion of di�erent
supply-chain strategies mostly focusing at redistributing the inventory along the chain, such as
Vendor Managed Inventories (VMI) or the Lean “proximity network”. However, because
such strategies must deal with the VUCA environment mentioned in Chap.1, they hardly
achieve their goal, rather making supply-chain more fragile to disruptions. Indeed, the main
role of inventory is to cope with uncertainty in demand and supply and synchronise them.
Many might be the cause of such uncertainty (Chap.1), being long-term demand forecasts,
shortening products' life cycles and high product variety in the market, seating �rst row.
Hence, the extreme pursuit of inventory minimisation provides a very simplistic view of SCM
(Simchi-Levi). Instead, the real goal of inventory must be to have it

1. in the right quantities,
2. in the right locations,
3. at the right time, so as to
4. minimise the total “to-self” cost, while
5. fully satisfying customer orders. (Simchi-Levi).
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Unfortunately, solving such a multi-objective optimization problem requires challenging the
traditional trade-o� between service level and inventory cost. Even if they are always precisely
wrong, forecasts still generate advantage in a VUCA environment and cannot be fully
deprecated. Precisely, they let supply-chain managers look toward the right direction when
planning future inventory requirements. Indeed, if forecasts were exactly right all the time,
inventory was not needed instead. Managing inventory thus became the key to execute
adaptive-reactive strategies to survive in the VUCA environment (Castro, 2020).

2.2. Traditional Policies

As anticipated in Chap.1, essentially, inventories get critical when they

1. Stocks-out, falling to zero or below generating shortages and starvation of upstream
nodes and thus global service level reductions which translate into lost sales;

2. Overstocks, accumulating in form of excess material, thus immobilising working
capital in storage space and material that rapidly risks becoming obsolete while
weighting on �rm �nancial performances (e.g ROA, ROI).

The major causes of stock out are related to uncertainty on either supply and demand, as
shown in Fig.2.1, materialising the impact of the VUCA world.

Fig. 2.1. Typical causes of Stockouts, C. Rafele et al, 2020.

The di�erent strategies adopted by �rms to stay away from those positions and protect from
stock-outs are typically referred to as Inventory Management Policies. Such rules essentially
de�ne how much and when to order to prevent shortages but nothing is usually said regarding
excess accumulation. Being the bene�ts generated by an improved inventory control of
substantial impact to �rm performance, a large variety of such policies exists, leveraging
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di�erent features of supply-chains. However, they all designed to minimise “to self-cost”, and
maximise service levels, requiring contextual input data, namely the estimates of

1. Customer Demand trends, relying on the Best available Value (BAV) at the time of
policy setting,

2. Replenishment Lead Times, which real values might be only known when real orders
get released,

3. The SKUs impacted by the policy, being them competing for warehouse space and
budget,

4. All cost drivers, typically grouped into ordering costs and holding costs as seen in
Chap.1, and

5. Service Level targets.

Summarising, all policies typically fall in either the category of
1. Fixed Order Quantities (FOQ), where orders of constant size (or multiples of a

minimum order quantity) are released when the actual inventory reaches certain
thresholds, or

2. Fixed Order Period (FOP), where orders of variable sizes are released on speci�c
dates, de�ning what is also known as the inventory review period.

The adoption of any of these rules mainly depends on the time and costs required to the �rm
to fully review its inventory. For the purpose of this study only the Economic Order Quantity
(EOQ) rule and the continuously reviewed (R, Q) inventory policy will be introduced. Both
policies are applicable at each node of the chain while they do not guarantee network
optimality. For a detailed review of inventory management policies the reader can consult
Simich-Levi Chap.2.

To begin the concept of Net Inventory Position must be introduced. The Inventory
position represents the total net firm inventory in the chain at any given time, thus the actual
inventory available on-hand plus all the open supply orders waiting to be received from
suppliers gets discounted by all the pending backordered quantities.

2.2.1. Economic Order Quantity policy

As intuiable by the name, the EOQ �nds the best order size to minimise the total
inventory made of two components: holding and ordering costs. The typical trade-o� is
shown in Fig. 2.2. As the bigger the order size gets, the more the �rm can exploit bargaining
power and scale economies in transportation, while the bigger the cost for stocking those
orders it gets. Thus a minimum exists where the marginal cost increase from an additional
unit equals the marginal bene�t in order costs.
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Fig. 2.2. Economic Order Quantity cost trade-offs, Simchi-Levi.

To achieve such optimality, EOQ assumes a rather simplistic environment where
1. demand is constant
2. every order entail a �xed cost K while the holding cost per unit is constant
3. there is no initial inventory in the system
4. the replenishment lead time is zero

Under such conditions the optimal Economic Order Quantity is given by

producing a chainsaw behaviour as in Fig. 2.3.

Fig. 2.3. The EOQ policy behaviour over time, Simchi-Levi.

2.2.2. (R, Q) reorder point policy

The biggest limitations of the EOQ rule are represented by the zero replenishment
lead time assumption and the zero inventory position at the beginning of the period. Once
those assumptions are relaxed, the best way to manage inventory is to release an order that
brings the inventory position back to a certain maximum level every time it falls below a certain
threshold. Such policies are thus called reorder point policies and their behaviour changes upon
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the frequency at which the inventory position can be reviewed, discriminating between
continous review policies and periodiccaly review policiy. The typical behaviour of a
continuously reviewed reorder point strategy is presented in Fig. 2.4 and it is fully described
by the set of values (R, Q).

The reorder point R is set so as to synchronise an order release exactly when the
current inventory on-hand is just enough to cover the demand during the replenishment lead
time (DDR). DDR is a random variable, thus R is typically set so as to cover average DDR
plus a certain degree of unexpected demand peaks during replenishment lead time,
conventionally known as Safety Stocks (SS). Thus

R = DDR + SS = (µ
𝐷

* 𝑅𝐿𝑇 ) +  (𝑧
𝑆𝑆

* σ
𝐷

* 𝑅𝐿𝑇)

represents the safety factor and it is the connection point between (R, Q) policies and𝑧
𝑆𝑆

targeted service level (SL*). Indeed, being the service level equal to the probability of not
stocking out during replenishment, must satisfy𝑧

𝑆𝑆

𝑃𝑟( 𝐷𝐷𝑅 >=  𝑅 ) =  𝑃𝑟( 𝐷𝐷𝑅 >= [(µ
𝐷

* 𝑅𝐿𝑇 ) +  (𝑧
𝑆𝑆

* σ
𝐷

* 𝑅𝐿𝑇)] =  𝑆𝐿*

Thus, to compute the real probability distribution describing DDR is required. As it can𝑧
𝑆𝑆

be imagined, knowing such a distribution is a non-trivial task, thus conventional theory
invokes a normality distribution assumption of DDR.

Hence, the major limitations of traditional (R, Q) policies lie in the normality
distribution assumption of DDR and the fact that orders received while the �rm is stocked
out are immediately lost. While in many industries customers accept a certain degree of delay
after their order releas3, namely the Customer Tolerance Time, in some other industries like
“fast-fashion” this condition does not necessarily hold.

Fig. 2.4. The (R, Q) inventory policy behaviour over time, C. Rafele et al, 2020.
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Tab.2.1. Normal distribution cumulative z-scores

2.3. Demand Driven MRP (DDMRP)

In 2011, C. Ptak and C. Smith released the concept of Demand Driven Material
Requirement Planning (DDMRP) for the �rst time as an appendix to the last published
version of the Joseph Orlicky MRP seminal book “MRP. The New Way of Life in Production
and Inventory Management”, �rst released in 1975. In their review, the authors show the
MRP ine�ciencies created by trying to cope with modern VUCA supply-chains
environments using an outdated set of assumptions. An important aspect of DDMRP is that
it does not debunk all previous knowledge by introducing completely new concepts, as was
done by Lean and Kanban. DDRMP instead aims to fit the best of all inventory management
and S&OP philosophies together nicely, pursuing a real systemic-approach. In DDMRP, MRP
is not considered “bad” but just “out-of-phase” with modern market dynamics, thus it still
represents an insostituibile component of proper inventory management.

Fig. 2.5. The six pillars of DDMRP sit on the command foundation concept of flow.
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The �nal aim of DDMRP is maximising Return on Investment (ROI) by protecting
the flow of relevant materials and information through the concept of strategic decoupling,
and putting real materials consumption at the centre of the planning equation introducing the
concept of Average Daily Usage (ADU). To implement DDMRP, a �ve-steps
general-purpose procedure is devised by the authors, as represented in Fig. 2. 6.

Fig. 2.6. Implementation phases of DDMRP.

All steps will be introduced in the following paragraphs, starting from why MRP fails in the
modern context.

2.3.1. MRP in modern times

The advent of accessible computing during the 1950’s allowed companies to
outsource to computers one of the pivotal activities of most manufacturing environments:
Material Requirement Planning (MRP). The APICS dictionary de�nes MRP as

a set of techniques that uses bill of material (BOM) data, inventory data, and the
master production schedule to calculate synchronised requirements for materials. [...]

Fig. 2.7. The MRP functional tree
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In other words, MRP carries the heavy-lifting task of exploding the final product
requirements down the product tree, determining exactly when and how much of each
component it is required so as to completely ful�l planned requirements, netting reservoir
stocks to zero. Thus, the more sophisticated the product portfolio, the more valuable MRP is
for a company. MRP represented a huge advancement for inventory management, allowing
managers to fastly create a requirement schedule without being obliged to “keep something
of everything” to o�set the time required to perform the backtracking procedure manually.
With time, the high adoption rate led MRP to be extended and embedded in what are known
as, Enterprise Resource Planning (ERP), connecting materials management with capacity
planning and �nancials. On the other hand, since its �rst development in 1950 by Joe Orlick
and George Plossl, MRP underlying working assumptions were never re-tested against the
ever-changing reality of supply-chain environments. The result is that nowadays MRPs are
mostly known for their delicate nervousness rather than their utility. MRP nervousness, a very
well-known issue to material planners, emerges from the fact that a deterministic exact
procedure, such as MRP, is run against an imprecise, ever-changing input. As seen in Par. 1.2,
companies mostly run on their forecasts to get ready for market. Thus, to produce the
replenishment plan, activate material purchasing agreements, lay down the production
schedule and generally plan-ahead, MRP is run upon such inputs. Then, when the real
demand shows up, the MRP is re-run, completely changing its recommendations. It is not
rare that upon MRP re-runs, materials that yesterday �gured as excesses, today present
shortages only recoverable by orders that should have been released days back. Such
conditions strongly induce MRP’s users to �nd workarounds, generally distrusting its
e�ectiveness and letting MRP work under even less accurate information.

On the other hand, reviewing its initial conceptualisation. such MRP behaviour
seems more a design feature than a �aw. Indeed, the basic MRP underlying assumptions, as
introduced by Olircky is its seminal book are as follow

1. Customer Tolerance Time is equal or greater than the Cumulative
Manufacturing Lead Time. This represents the less reality adherent assumption of
MRP. In 1950 customers’ expectations di�er substantially from modern times.
Ordering a new car model nowadays can mean for a manufacturer to only assemble
customer customisations on top of a pre-assemble base model, pushing goods as fast
as 2-weeks delivery for an item that in the past would have required substantially
more, a market trend currently known as mass-customisation. As seen in Par. 1.3,
modern customers are getting accustomed to overnight deliveries, obliging
manufacturers to run MRP on always wrong forecasts so as to be able to complete the
full purchasing and manufacturing cycle within CTT.
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Fig. 2.8. Relationship between Customer Tolerance Time and the Manufacturing Planning Horizon

2. Absolute precision of input data. Thus, being inputs cascaded down the BOM,
even slight schedule deviation from the initial MRP-run will not be manageable by
the initial MRP plan. Being forecasts always wrong, such a condition is almost never
met.

3. No execution deviation occurs once the plan is generated. Thus, the schedule is
not resilient to any source of disruption, from simple but likely suppliers delivery
delays (even small ones) to major contingent, but increasingly likely events due to
supply-chains elongations, such as the Suez canal incident in 2021.

Following, the major e�ect produced by MRP nervousness is introduced.

2.3.2. Excess and Shortages

Any activity that transforms inputs into outputs can be de�ned as a process. Real
processes are permeated by variability, either whether this comes from exogenous, inevitable
and uncontrollable causes or as the sum of multiple endogenous causal e�ects acting on it.
The �rst type of variability is called natural, denoted with , and is always manifested in anyσ

𝑁
process. Processes subject only to natural variability are said to be in statistical control,
meaning that all the measured values of the process outputs fall within of the process± 3σ

𝑁
mean, . As shown in the next chapter, if the outputs of the process a�ect the future valuesµ

χ
of its inputs, then the process can be de�ned as dynamic and be explained by di�erential
equations. As seen in Par. 2., inventory can be seen as the output of a process of trying to
satisfy an uncertain demand trend based on forecasts, which are essentially sophisticated bets
over future consumption. At each timestep, the di�erence between what is forecasted and the
real extracted demand value accumulates as on-hand Inventory. Is it then plausible to ask
within which range inventory levels can be considered under (statistical) control. A rigorous
approach would require studying the inventory natural distribution and estimating all its
shape parameters thus quantifying its natural tolerance range. The visible and collaborative
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execution component of DDMRP tries to accomplish this task by observing two more practical
basic facts instead.

As seen in Chapter 2, managers try to protect their productive assets from stock-outs
by allocating safety stocks over the bu�ers based on desired service levels whereas the setting
mechanism for maximum admissible inventory levels escalates in complexity with the
frequency of the inventory review. Is thus plausible to believe that inventory �uctuates
between these thresholds, hardly optimising total cost but at least keeping it controlled.
Surprisingly, on a survey of 500 companies, C. Ptak and C. Smith observed that when
considering all �rm inventory, SKUs on-hand quantities usually tended to rather follow a
bimodal distribution (Fig. 2.9) characterised by critical components in shortage and low-value
materials in excess. Something they de�ned “too much of the wrong and too little of the right
anytime, too much in total over time”. Moreover, the authors observed an oscillation pattern
of these parts moving between the two extremes after each new MRP re-run thus suggesting,
as it will be introduced in Chapter 3, the presence of a possible underlying dynamic process
governed by goal-seeking feedback loops with delays. (Sterman chapter. 4.1.3).

Fig. 2.9. Ptak & Smith Bimodal inventory distribution

A study from IHL Group in 2015 estimated that in the worldwide retail industry stock-outs
weighted for $634.1 B yearly in lost sales whereas the cost of overstocks accounted for $471.9
B yearly. The cost of overstocks is easily grasped in the industry of disposable goods, such as
food or drugs, where all unsold production is mostly incinerated. Both extreme positions
thus generate the e�ect of a loss, operationally and �nancially. These losses can be modelled as
proportional to the deviation from the value considered as the desired target, de�ning a Loss
Function over the variability range. Conventionally, no loss is considered for values falling
within the so-called Customer Specification Range (CSR), basically de�ning losses in a binary
way. CSR is a common concept in manufacturing where clients de�ne a Lower Specification
Limit (LSL) and Upper Specification Limit (USL) between which they are willing to accept
and buy the process output units. This is reasonable for values falling near the target but, as
the process starts to deviate, the binary de�nition starts yielding doubting results where the
client experiences sudden dissatisfaction after a slight marginal change in the output value.
More sophisticated loss functions used in quality control are the Taguchi Loss Functions
(TLF) which provide (Fig. 2.10) a more realistic view about losses generation, or customer
dissatisfaction in general. TLFs allow any deviation to be penalised and “smoothly” explains
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the customer “satisfaction tipping point” reach. These concepts are utilised in Par. 2. to
determine the optimal inventory levels suggested by DDMRP.

Fig.2.10. Traditional loss functions compared to a symmetrical quadratic Taguchi loss function

2.3.3. Strategic Buffer positioning and dimensioning

As seen in Par. 2.1, a common misbelief about proper SCM is keeping inventories as
low as possible to minimise immobilised working capital. DDMRP steers to the opposite
direction instead, by promoting the concept of strategic decoupling. Essentially, a decoupling
point is represented by physical material buffers, placed in precise locations of the product
BOM, that acts as a variability absorber. Decoupling points are the only places in BOM
where DDMRP assumes guaranteed perpetual availability of components, as opposed to
MRP where everything is considered always available when needed.

Fig. 2.11. The effect of strategic decoupling on transmission of the bullwhip effect to the productive environment

Thus, all activities between two decoupled positions can operate independently from the rest
creating independent sections in the product BOM, as opposed to conventional MRP where
everything is dependent. By doing so, DDMRP bu�ers assolve a second essential function:
lead-time compression. Among the functions covered by bu�ers, one of them is to buy time. In
typical DDMRP con�gurations, only two kinds of lead-times are considered
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Manufacturing Lead-Times (MLT), is the time it takes to manufacture the upstream
part exclusive of lower-level lead times. Thus, an assembled semis obtained by means of an
assembling operation lasting 1 hour and requiring 2 components manufactured in
respectively 2 and 4 hours, will have a MLT of 1 hour. MLT’s underlying assumption is that
required child-components are available at parent order release date; and

Cumulative Lead-Times (CLT), is the longest sequence in the product structure
defined in time. Thus, in the previous assembled semis will have a CLT of 5 hours. CLT's
underlying assumption is that no child-components are available upon parente order release.

When decoupling is instead considered, it is clear to see that said lead-times represent
respectively the upperbound and lowerbound of the real lead-time value. Being bu�ered
materials assumed always available by DDMRP, the upstream portion of the cumulative
lead-time can be safely discarded, de�ning the pillar DDMRP concept of Decoupled Lead
Time (DLT). Decoupled Lead Time is thus de�ned by their authors as

“ the longest cumulative coupled lead time chain in a manufactured item’s product
structure. It is a form of cumulative lead time but is limited and defined by the placement of
decoupling points within a product structure. ”

Fig. 2.12. Lead-time compression in a simple BOM

Fig. 2.12 visualises the lead-time compression applied by decoupling points, by allowing a
lead-time reduction for the �nal-product FPD from 37 days to 7 days, while components 208
experience a reduction from 19 days to 9 days. Intuitively, the denser the bu�er displacement
in the BOM the lower the maximum DLT, which at the extreme a compression equal to the
part MLT. On the other hand, such reduction comes at a cost which must be evaluated.
Thus, a good DDMRP implementation does not mean placing inventory everywhere, but just
where it is required to protect �ow and maximise ROI.

The designation of the best spots in the BOM where to decouple is guided by an
recursive generic rule-based procedure called “strategic inventory positioning”, brie�y
introduced as follows. A bu�er should be considered at a speci�c component location in the
BOM if

1. The CTT is shorter than the Cumulative Lead Time,
2. There are market opportunities coming from a faster Time-to-Market,
3. The forecasting horizon is considerably larger than the Sales Visibility Horizon,
4. The economic benefits outweigh the increase in working capital requirements.
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5. The component is shared among multiple BOMs,
6. The considered part of the process is subject to high-variability from different sources.
7. A continuous flow is required to the downstream nodes.

Being upper nodes in the BOM connected to many downstream ones, the iterative part of the
procedure comes when evaluating alternative decoupling of all leaf nodes, raising a
combinatorial optimization problem not exactly treated in the original DDMRP formulation.

To evaluate the economic positioning criteria and to be e�ective for their purpose,
bu�ered positions must be sized appropriately to perform their claimed functions. This phase
is called the “strategic buffer dimensioning” phase. In their original formulation, the authors
discriminate between three component classes, namely “vanilla” dynamic replenished parts,
static replenished parts and min-max parts. In this study, only the �rst kind are considered,
being the other two just a subset of those. A typical DDMRP bu�er is fully described by Fig.
2. 13.

Fig. 2.13. DDMRP decouple point structure for replenished parts

The �rst thing that appears is the reutilisation of the redlight concept of Lean in the
de�nition of the buffer zones. Bu�er zones determine a decoupled position response to external
inputs and they do not equal to the total stocked inventory on hand. In par. 1., the actual
inventory on-hand is computed as a combination of the zones.

The red zone assolve the typical role of safety stocks, requesting higher materials on
hand the higher the supply and demand variability are. Thus, such quantities must be really
stored in the bu�er location. Being accounting for two variability sources, the red zone is
made out of two components

𝑅𝑒𝑑 𝐵𝑎𝑠𝑒 (𝑖,  𝑡) =  𝑅𝐵(𝑖, 𝑡) = 𝐿𝑒𝑎𝑑 𝑇𝑖𝑚𝑒 𝐹𝑎𝑐𝑡𝑜𝑟 (𝑖, 𝑡) *  𝐷𝐿𝑇 (𝑖, 𝑡) *  𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐷𝑎𝑖𝑙𝑦 𝑈𝑠𝑎𝑔𝑒 (𝑖, 𝑡)
𝑅𝑒𝑑 𝑆𝑎𝑓𝑒𝑡𝑦 (𝑖,  𝑡) =  𝑅𝑆(𝑖, 𝑡) = 𝑅𝐵(𝑖, 𝑡) *  𝐷𝑒𝑚𝑎𝑛𝑑 𝑉𝑎𝑟𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝐹𝑎𝑐𝑡𝑜𝑟 (𝑖, 𝑡)
𝑅𝑒𝑑  𝑍𝑜𝑛𝑒(𝑖,  𝑡) =  𝑅𝑍(𝑖, 𝑡) = 𝑅𝐵(𝑖, 𝑡) + 𝑅𝑆(𝑖, 𝑡) =  𝑅𝐵(1 + 𝐷𝑉𝐹) 

where i is the i-th element in the BOM and t is time.;

The yellow zone assolve the role of the cycle stock, thus covering demand during lead
time. Being DLT the most accurate metric for lead-time in DDMRP, the yellow zone is
determined as

𝑌𝑒𝑙𝑙𝑜𝑤 𝑍𝑜𝑛𝑒(𝑖,  𝑡) = 𝑌𝑍(𝑖, 𝑡) =  𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐷𝑎𝑖𝑙𝑦 𝑈𝑠𝑎𝑔𝑒 (𝑖,  𝑡) *  𝐷𝑒𝑐𝑜𝑢𝑝𝑙𝑒𝑑 𝐿𝑒𝑎𝑑 𝑇𝑖𝑚𝑒 (𝑖, 𝑡)



2 – Inventory Management Policies 27

Being partially consumed, it can be proved that only half of the yellow zone is stationary in
the bu�er location.

The green zone determines the minimum order size released by a DDMRP system.

𝐺𝑍(𝑖, 𝑡) = 𝑀𝐴𝑋{ 𝑌𝑒𝑙𝑙𝑜𝑤 𝑍𝑜𝑛𝑒(𝑖, 𝑡) * 𝐿𝑇𝐹(𝑖, 𝑡) ,  𝐷𝑒𝑠𝑖𝑟𝑒𝑑 𝑂𝑟𝑑𝑒𝑟 𝐶𝑦𝑐𝑙𝑒 *  𝐴𝐷𝑈(𝑖, 𝑡) ,  𝑀𝑂𝑄(𝑖, 𝑡) }

where MOQ(i,t) represents the Minimum Order Quantity for the i-th part in the BOM,
whereas the Desired Order Cycle represents the planners’ desired average number of days
elapsed between two issued orders. At this point the similarities of DDMRP with traditional
continuously reviewed (R,Q) inventory policies, introduced in Par. 1.2, are evident, con�rming
the DDMRP pursuit of integrating together what it is already known to work properly.

To perform the bu�er zones computation, the values of ADU, DLT, DVF and LTF
must be computed. The most important parameter is the ADU given that all zones depend
on it. Indeed, the ADU stands within the key innovation brought by DDMRP in the MRP
context, shifting the planning focus on real consumptions. On the other hand, being
DDMRP an inclusive-oriented methodology, forecasts are not totally discarded but whether
to use it or not in the ADU estimation process is a decision left open to the implementing
user. For the determination of ADU three key decisions must be taken

1. The time-position of the ADU reviewing window, deciding whether to only use
past consumption data, forecasts or blend the two approaches. The blended approach
seems to be the desirable trade-o� between proper adherence to real consumptions
and visibility of short-termed expectations about future consumption. In case of
non-availability of past data (e.g. new product introductions) further investigation is
required to extrapolate a trusted ADU trend to accommodate the lack of data (e.g
during production ramp-ups phases);

2. The size of the ADU reviewing window, thus deciding the smoothing factor of the
ADU estimate. Small window sizes might make ADU su�er from the same MRP
nervousness.

3. The updating frequency of the estimate, thus deciding the computational effort of
running DDMRP. On the other hand, being computational power not really a
constraint for many applications nowadays, daily updating of ADU estimates yields
the most accurate DDMRP response. Being virtually updated on a daily basis, ADU
represents the most dynamic part of DDMRP, letting bu�er zones change based on
real consumptions. Chap. 2 introduces the Whirlpool DDMRP implementation case
study where massive integration e�orts made by Whirlpool IT department led the
ADU to be updated on a daily-basis.
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Fig.2.14. ADU impact on buffer zones under different working conditions (market introduction and
demand increase)

For what concerns DVF and LTF, an initial distinction between purchased items and
manufactured items is done. Then, a rather simplistic rule based on the pareto approach is
indicated by the authors. For LFT, an analysis of DLT distribution of the whole BOM is
required, to then classify buy items (BI) as

1. Short lead-time (S), those building approximately up to 30% of the DLT distribution

2. Medium lead-time (M), those building approximately from 31% to 70% of the DLT
distribution

3. Long lead-time (L), the remaining items

Fig. 2.15. Example of determination of LTF for purchased items

whereas, make items (MI) as

1. Short lead-time (S), those building approximately up to 60% of the DLT distribution

2. Medium lead-time (M), those building approximately from 61% to 85% of the DLT
distribution

3. Long lead-time (L), the remaining items

Fig. 2.16. Example of determination of LTF for purchased items
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For both item categories, LFT can be set accordingly to the pertaining item macroarea as
suggested in Tab. 2.2. The de�nition of the proper LFT in the range is left available to the
�nal implementing user.

Lead Time Class Lead Time
Factor

Short Lead Time 0.61 - 1

Medium Lead Time 0.41 - 0.6

Long Lead Time 0.2 - 0.4

Tab. 2.2. Available Lead Time factors

It is worth noticing the inverse relationship between Lead-time length and LFT. Finally, for
what regards DVF, the analysis is simpler and dictated only by the frequency of spikes in its
customer demand, de�ning

1. Stable items (SV), the ones presenting no order spikes in the sales records;

2. Medium variable items (MV), the ones presenting occasional order spikes in the sales
records;

3. Highly variable items (HV), the ones presenting frequent spikes in the sales records;

Deciding when a spike occurred is left open to the �nal implementing users. DVF can be set
accordingly to the pertaining item macroarea as suggested in Tab. 2. 3.

Variability
Class

Demand
Variability Factor

Short Lead Time 0 - 0.4

Medium Lead Time 0.41 - 0.6

Long Lead Time 0.61 - 1

Tab. 2.3. Available Demand variability factors

It is worth noticing the direct relationship between Lead-time length and DVF. Thus, by
combining all SKUs characteristics, 18 basic SKUs pro�les are possible. (e.g. (BI, S, MV) or
(MI, M, HV) ). Moreover, the DVF and LTF contribution to safety stock can be summarised
in a unique factor given that𝑧

𝑒𝑞
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𝑅𝑍 = 𝑅𝐵(1 + 𝐷𝑉𝐹) = 𝐴𝐷𝑈 * 𝐷𝐿𝑇 *  𝐿𝑇𝐹 * (1 + 𝐷𝑉𝐹) =  𝑌𝑍 * 𝑧
𝑒𝑞

𝑧
𝑒𝑞

 ∈  [ 0. 2,  2 ] 

reinforcing the parallel drawn with (R, Q) policies.

Fig.5.17. Variability range of DDMRP factor as a function of LTF and DVF𝑧
𝑒𝑞

Finally, the bu�er dimensioning phase is marked as completed by summarising all bu�er
zones together so to determine the buffer thresholds

𝑇𝑜𝑝 𝑜𝑓 𝑅𝑒𝑑 (𝑖, 𝑡) =  𝑇𝑂𝑅(𝑖, 𝑡) =  𝑅𝑍(𝑖, 𝑡)
𝑇𝑜𝑝 𝑜𝑓 𝑌𝑒𝑙𝑙𝑜𝑤 (𝑖, 𝑡) =  𝑇𝑂𝑌(𝑖, 𝑡) =  𝑇𝑂𝑅(𝑖, 𝑡) +  𝑌𝑍(𝑖, 𝑡)
𝑇𝑜𝑝 𝑜𝑓 𝐺𝑟𝑒𝑒𝑛(𝑖, 𝑡) =  𝑇𝑂𝐺(𝑖, 𝑡) =  𝑇𝑂𝑌(𝑖, 𝑡) +  𝐺𝑍(𝑖, 𝑡)

and release of the buffer profile, as shown in Fig. 2.18.

Fig.2.18. The buffer profile generated as a result of the strategic buffer dimensioning phase
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With bu�er pro�les computed for all possible decoupling alternatives, it is possible to
conclude also the strategic bu�er positioning phase by comparing the economic positioning
criteria of each position to each other, as shown in Fig. 2.19, so as to �x the �nal decoupled
positions in the BOM.

Fig. 2.19. Benchmarking economic benefits extracted from different decoupled BOM configurations

2.3.4. Demand Driven Planning

Once bu�ered positions are known and properly dimensioned, all the conditions are
set to run DDMRP and let bu�ers execute their last essential function: replenishment order
generation. Because bu�ered positions are the equivalent of independent leaf nodes in MRP,
starting from them it must be possible to generate an exact dependent requirement schedule
for all downstream components. This task is performed by means of the Net Flow Equation
(NFE) and the concept of decoupled explosion.

The Net Flow Equation is the planning heart of DDMRP and, as anticipated in Par.
2.2.3, resembles the same reordering equations of a continuously reviewed (R,Q) inventory
policy. NFE is de�ned as

𝑁𝑒𝑡 𝐹𝑙𝑜𝑤 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝑖,  𝑡) =  𝑂𝑛 𝐻𝑎𝑛𝑑 (𝑖,  𝑡) +  𝑂𝑝𝑒𝑛 𝑆𝑢𝑝𝑝𝑙𝑦 (𝑖, 𝑡) − 𝑄𝑢𝑎𝑙𝑖𝑓𝑖𝑒𝑑 𝑆𝑎𝑙𝑒𝑠(𝑖, 𝑡)

Looking closely, the �rst two terms are nothing more than the Inventory Position seen in Par.
2. . whereas

1. Quali�ed Sales are de�ned as the sum of sales orders past due, verified sales orders due
today, and qualified spikes.
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𝑄𝑢𝑎𝑙𝑖𝑓𝑖𝑒𝑑 𝑆𝑎𝑙𝑒𝑠(𝑖, 𝑡) = 𝐷𝑎𝑖𝑙𝑦 𝐷𝑢𝑒 𝑂𝑟𝑑𝑒𝑟𝑠 (𝑖, 𝑡) +  𝑄𝑢𝑎𝑙𝑖𝑓𝑖𝑒𝑑 𝑂𝑟𝑑𝑒𝑟 𝑆𝑝𝑖𝑘𝑒𝑠(𝑖, 𝑡)

2. The time horizon within which qualified sales are considered visible is called Demand
Visibility Horizon (DVH) and only allocated sales orders happening within it will
be considered in the quali�ed demand computation.

3. Quali�ed Order Spikes (QOS) are instead de�ned as a future qualifying quantity of
known cumulative daily demand, included in the demand visibility horizon, that
threatens the integrity of the buffer by overshooting the demand spike threshold.

4. The Demand Spike Threshold (DST) is an arbitrarily set amount of daily demand
that is considered by the �nal implementing user as threatening the bu�er ability to
absorb variability. In other words, discarding the presence of the peak will eventually
lead to stock-outs. DDMRP authors provide di�erent possible heuristics to set DST
but complete freedom is left to the �nal implementing user. A typically applied rule is
to consider quali�ed spikes all quantities depleting more than half of the safety stocks.

Fig. 2.20. Visual representation of the NFE

Thus, to put it in another words, NFE answers the following basic planning questions

1. How much is available to satisfy daily demand? On-Hand quantities;

2. How much will be received in the next few days? On-Order quantities;

3. What is the urgent demand? All backorder and daily due orders;

4. What part of future sales orders might cause problems? Quali�ed order spikes.

Once de�ned the DVH and OST , replenishment orders are issued so as to re-establish
the Net Flow Position to the Top-of-Green (TOG) when that overshoot Top-of-Yellow (TOY) in
every decoupled position. Thus, the TOG is the desired net flow position in DDMRP and
de�nes the max inventory level of a traditional continuously reviewed (R, Q) policy, while the
TOY represents the reorder point.

𝑅𝑒𝑜𝑟𝑑𝑒𝑟 𝑃𝑜𝑖𝑛𝑡 =  𝑅
𝐷𝐷𝑀𝑅𝑃

= 𝑇𝑂𝑌(𝑖, 𝑡)  =  𝑅𝑍(𝑖, 𝑡) +  𝑌𝑍(𝑖, 𝑡) +  𝐺𝑍(𝑖, 𝑡) ;

𝑅𝑒𝑝𝑙𝑒𝑛𝑖𝑠ℎ𝑚𝑒𝑛𝑡 𝑂𝑟𝑑𝑒𝑟 = 𝑄
𝐷𝐷𝑀𝑅𝑃

=          𝑇𝑂𝐺 −  𝑁𝐹𝑃             𝑖𝑓  𝑁𝐹𝑃 < 𝑇𝑂𝑌 ;

             0                                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 ;
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The key innovation of DDMRP in this regard is that it basically implements a dynamically
adjusted continuously reviewed (R, Q) inventory policy. Indeed, the dynamic part of the rule is
provided by the order spike detection logic embedded in the NFP. Thus, in absence of
sudden lumpy batch quali�ed orders, DDMRP will behave as in a classic (R,Q) policy, where

= TOY - OH - OS + QD, whereas in presence of a spike > Q during the𝑄
𝐷𝐷𝑀𝑅𝑃

𝑄
𝐷𝐷𝑀𝑅𝑃

entire length of the demand visibility horizon.
The generated replenishment order is presented to the material planner as a𝑄

𝐷𝐷𝑀𝑅𝑃
recommendation, as done byMRP, which must be approved or rejected. Upon acceptance, the
said order is scheduled as due after a DLT unit in the future and the net flow equation is
increased by its quantity given that On-order quantities have now increased. To guide the
phase of demand driven planning, DDMRP fully exploits such reordering mechanism to also
determine the planning orders priorities, de�ned as the percentage of penetration of the NFP
in the TOG. Thus, orders issued when the NFP penetrated the YZ will be prompted with a
yellow �ag, raising a medium-to-low level of concern, whereas more harsh NFP penetrations
down to the RZ will appear more urgent.

Fig.2.21 Planned order prioritisation mechanism of DDMRP

A �nal remark is necessary regarding the decoupled explosion performed by DDMRP.
Whereas in MRP only the leaf node's demand is considered independent and quali�ed to be
cascaded on the whole BOM, generating nervousness, in DDMRP the replenishment
mechanism seen above is triggered everyday at each decoupled position. Thus, in case a bu�ered
position issues a certain replenishment order, such order is transmitted to the �rst subsequent
downstream bu�ered position which receives such an order as part of its qualified demand.
Only in the case where also the NFP of the downstream bu�ered position results below its
TOY threshold, an additional replenishment order will be transmitted to the deeper levels of
the BOM. This concept prevents DDMRP from creating nervousness throughout the BOM
schedule, allowing it to be safely rerun on a daily basis. Moreover, the concept of decoupled
explosion represents a clear integration of a Kanban-based “pull logic” to the typical MRP
“push logic”, thus bringing together methodologies that were usually considered at the end of
the same spectrum.
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Fig. 2.22. DDMRP Decoupled explosion of dependent requirements versus MRP explosion

2.3.5. Demand Driven Execution

During the planning phase the replenishment orders are generated against the status
of net inventory position through the NFE and scheduled so as to always keep it above TOY.
From that moment on, the focus shifts on the real inventory on-hand levels, entering the �nal
execution phase of DDMRP. In the execution phase, the NFE is put aside and the open supply
orders’ promised delivery dates are monitored against the average inventory on-hand in the
bu�ered position so as to decide whether an order must be expedited or not to protect the
bu�er integrity. The bu�er zones are thus rearranged so as to serve the execution task, as
shown in Fig. 2.23, by exploiting the TLFs concepts seen in Par. 2.2.2 to determine a desirable
inventory variability range. This range will be such that the costs from deviation toward
shortages and excess are contained.

Fig. 2.23. Planning view versus execution view of DDMRP buffered positions

While stock-outs easily identify the lowerbound to the variability range of inventory, for each
i-th SKU DDMRP de�nes the upper-bound as a combination of the bu�er zones, as follows

On-hand Inventory (i, t) ∈ [ LB=0, UB=TOR(i, t) + YZ(i, t) ]
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Then, being the cycle stock periodically replenished by orders released via the NFE which are
constrained to be at least as big as the GZ, the lower and upper speci�cation limits can then
be imposed over the initial variability range de�ning the

Optimal On-hand Inventory (i, t) ∈ [ LSL = TOR(i, t), USL = TOR(i, t) + GZ(i, t) ]

Thus, this is equivalent to saying that, at-regime conditions, the healthy inventory status is
determined by a situation where only the cycle inventory is used to feed downstream nodes,
never contingently disposing of safety stocks nor accumulating excesses, releasing a
replenishment order always as large as the GZ which is never a�ected by delivery delays.
Finally, the above optimal inventory range implies a desired optimal on-hand inventory level of

E(Optimal Inventory Level) (i, t) = ( LSL + USL )/2 = TOR(i, t) + (½)*GZ(i, t)y

Fig.2.24. Visual proof of actual inventory on-hand available in the buffered position

This proves what was said in Par. 2.2.3 regarding the actual on-hand quantities kept in the
bu�ered position and it implies requiring a desired inventory coverage of

E(Inventory Coverage)(i, t) = (TOR(i, t) + (½)*GZ(i, t)) / ADU(t)

Fig. 2.25. The optimal variability range of on-hand inventory determined exploiting Taguchi Loss Functions

As for the planning phase, DDMRP exploits the above mechanics to provide the user with
e�ective warning on-hand alerts based on the penetration of actual on-hand inventory into the
safety stocks. The higher the penetration, the higher the alerting level being the real on-hand
approaching a stock-out situation.

A �nal observation leads to say that the formulations above resemble the one
presented for continuously reviewed min-max (s, S) inventory policy, that is the average



2 – Inventory Management Policies 36

inventory level produced by DDMRP is equal to safety stocks plus half the average order size.
The major di�erence between the two lies in the safety stock formulation where the safety
factor z is not used in DDMRP, e�ectively excluding the “service level goal” logic from the
model. While the conventional normality assumptions underlying the safety factor are indeed
questionable (C.E. Clark et al), on the other hand, DDMRP leaves to the planner an even
higher degree of freedom, segmenting the domain of LFT and DVF into generic
“short/medium/long” and “low/medium/high” categories respectively for lead time length
and demand variability. This observation is detailed in C.J. Lee et al where is shown how a
planner facing a DLT of 5 days (short category) and ADU of 1000 pcs can set (LFT, DVF) in
such a way the total maximum safety stock attainable peaks to 10.000 pcs while the minimum
is only 3600 pcs, a variability range of almost three times that make DDMRP �nal
performances questionable.

Tab. 2.4. Exaggerated safety stock variability generated by the DDMRP guidelines, extracted from C.J. Lee et al
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Chapter 3

Problem Setting and
Research Questions

“I know that I know nothing. “
cit. Socrate

In this chapter the research questions of this study are derived from a system literature review
carried against state-of-art academic literature about DDMRP. Finally, the Whirlpool case
study used to validate the author hypothesis is detaily illustrated, where the 6-month
internship period at the company let the author participate in the pilot DDMRP
implementation at the Cassinetta plant.

3.1. Open issues emerging from current DDMRP literature

Having discussed the general scenario of Supply Chains within which DDMRP is
embedded and once reviewed the viewpoint of its creators, it is now crucial to understand
what is the academic position about it and whether there is evidence of the DDMRP claimed
bene�ts.

To do that, a simple systematic literature review (B. Kitchenham 2004, M. N. Saunders 2019)
has been performed against only peer-reviewed papers collected on the online directory Scopus
(www.scopus.com). As of the time of writing, the launched query :

TITLE-ABS-KEY ( "ddmrp" OR "DDMRP" OR "Demand Driven MRP" OR
"demand driven MRP" OR "demand driven mrp" OR "demand driven
material requirements planning" OR "Demand Driven Material
Requirements Planning" )

anchored only 35 documents, ranging from 2007 to 2022, covering the �elds of Engineering
(33% of the documents), Business, Management & Accounting (24% of the documents),
Decisional Sciences (18% of the documents), Computer Science, Mathematics, Physics,
Economics and others (remaining 25%). Only 2 papers (Azzamouri A. 2021, Orue A. 2020)
performed systematic literature reviews, respectively collecting and reviewing 57 (Azzamouri
et al, 2021) and 16 (Orue et al, 2020) documents retrieved from di�erent providers such as
Web of Science, EBSCO, Google Scholar and Scopus.
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While the small corpus of documents retrieved might suggest an error in the query launched,
a quick read of Azzamouri A. 2021 con�rmed the result that even if �rst released more than
10 years ago, the DDMRP methodology has still not reached a signi�cant publication level in
the scienti�c literature (Azzamouri A. 2021) compared to alternative methods. In addition to
this �rst �nding, the main open issues are summarised below merging Azzamouri et al, 2021
and Orue et al, 2020 �ndings with the extracted corpus of documents.

1. Practitioners' claims about “revolutionary DDMRP performances” are
supported by limited public data. Even if the Demand Driven Institute �ercely
provides an extensive collection of successful cases of DDMRP implementations
(www.demanddriveninstitute.com/case-studies), detailed data quantifying the actual
bene�ts gained and cost incurred are di�cult to �nd. This is directly seen in literature
where most of the case-study-based works are done using pedagogical simulated datasets
rather than real industrial applications (Azzamouri et al, 2021). Moreover, implementing
managers have incentives to report in�ated �gures to justify the major organisational
overhaul e�orts required by DDMRP.

2. Only a few industrial sectors are well documented. In particular, DDMRP
implementations in the automotive and ink production sector are well documented in
Shofa & Widyarto, 2017, Kortabarria & Elizburu, 2018 and Ihme & Stratton, 2015.
Applications in other �elds are only summarised in Bahu et al., 2019, and Bahu et al.,
2018.

3. Most of the research is focused on performance analysis and benchmarking. Only
a fraction of papers debate the validity of the DDMRP foundations and propose new
approaches.

4. Is therefore unclear what are the Key Success and Failure Factors of DDMRP
implementation. A debatable point is indeed present over the “subjectivity trait” of
DDMRP where planners are required to set demand and supply variability factors to
deduct the bu�er R/Y/G thresholds. These in turn change the operative setup of
DDMRP, thus its �nal performances. For instance, planners may exploit the fact that all
forecasts are wrong and questionable (D. Simchi-Levi, Chap.2) to set very high demand
variability factors to increase the average inventory position of the SKUs they manage so
as to reduce the chances of stocking out and lower service levels attributable to them. An
executive manager interested only in reported service levels might attribute these bene�ts
to DDMRP “super-powers” when that is only due to a higher total on-hand inventory
coverage. This subjectivity trait of DDMRP is questioned in C. J. Lee et al and an
unbiased formulation for dimensioning DDMRP Safety Stocks (TOR) is proposed.

5. Is unclear whether DDMRP is a generalizable procedure. Only Al-Ammar, 2018,
documented the implementation of a hybrid DDMRP-Kanban approach, suggesting a
“domain of applicability” of DDMRP over Kanban. Most of the studies try instead to
declare a winner between DDMRP and other inventory management policies. The same
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DDMRP authors in their seminal book included a case study regarding the DDMRP
implementation in the clothing retailing industry. In such contexts the number of SKUs
managed by a single company is so high as to let individual ADUs fall near-zero.
Moreover, in retailing inventory must also address the “retailing function”, thus a
minimum amount of it must be always used to display merchandise to the customer.
Hence, SKUs are e�ectively used but not always there are direct sales attached to their
consumption. As reported by the implementing manager “these circumstances made it
impossible to apply the conventional techniques suggested by DDMRP for buffer sizing”
given that with that low ADUs both RZ and YZ would be set to 0, disengaging
DDMRP from its initial goal of managing inventory.

6. Is unclear how DDMRP performs in complex environments or under extremely
stressful conditions. Most of the studies deal with simple productive environments like
�ow-shops manufacturing products with simple BOMs. This is reasonable considering
the DDMRP literature is still trying to validate the base model and given that it is very
well known from Operational Research literature how fastly a problem can escalate in
solving complexity even when only two di�erent machines working on the same job
schedule are considered.

7. Poor to no attention on Demand-Driven Planning and Execution DDMRP
components. “AS-IS” DDMRP uses the Net Flow Equation to generate supply orders
relying on an in�nite downstream capacity assumption. To the author's knowledge, only
Dessevre et al, 2019,  considered capacitated systems.

8. Strategic Demand Driven S&OP is unexplored. Only one article proposed an
implementation of a rule-based system to guide S&OP processes toward building the
fully “Demand-Driven Enterprise”.

9. Major focus on productive environments rather than distribution. C. Ptak and C.
Smith provide an extensive look in <citation to DDMRP book here> on how DDMRP
logic can easily be extended to the distribution network planning theme. In literature,
only one paper (Erraoui et al., 2019) tried to do it.

10. System Dynamics has never been used to explore DDMRP. Extensive use of
Discrete Event Simulation is done instead, followed by implementations of Genetic
Algorithms and rule-based systems. In turn, apart from Dessevre et al., 2019, where lead
time variability is considered and dynamically managed, no other papers deal with the
parameters’ dynamic adjustment according to the system’s state (Azzamouri et al.,
2021). Moreover, there is no evidence of exact solving methods for any DDMRP
component.
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3.2. Research questions

Considered all the above, this study aims at answering the following research questions:

RQ1. How well does the DDMRP perform with respect to traditional inventory min-max
policies in terms of Service Level, Inventory Turnover and average WIP inventory for different
ABC-XYZ product demand profiles?

RQ2. How sensible are the DDMRP performances to the arbitrarily set LFT and DVF
parameters?

RQ3. Does the DDMRP order release logic “stress the system” in presence of internal or
external capacity constraints?

RQ4. Does DDMRP reduce excess generation during periods of high demand variability
generated by unforecastable events like global pandemics and sudden global supply shortages?

RQ5. How much does the Order Spike Visibility feature of DDMRP drive final
performances?

RQ6. Is System Dynamics flexible enough to be embedded in current S&OP processes?

This is done by analysing the industrial case study of the Whirlpool EMEA inventory
overshoot occurred at the Cassinetta (IT) plant during the unprecedented era of supply-chain
disruption led by the COVID-19 pandemic, Suez Canal accident in 2021 and the on-going
Ukrainian War con�ict. The uniqueness of the study is given by the development of a
�rst-of-a-kind (to the author knowledge) System Dynamic model of DDMRP, aimed at
studying its performance in non-traditional settings and evaluating whether the excess
generation in Cassinetta might have been prevented through its adoption. In this way, an
example of the possible “what-if” use of System Dynamics in S&OP processes is shown.
Moreover, such use-case of SD provides evidence of its applicability also in more operative
environments, typically dominated by DES. Finally, the study sheds light on DDMRP
implementation in the not yet documented sector of “white goods” and home appliances.

3.3. A Case Study : Excesses and Shortages in Whirlpool EMEA

Whirlpool Corporation is an American global leading manufacturer and distributor
of laundry and kitchen appliances, also called white goods, headquartered in Benton Charter
Township. Michigan (US). Globally, Whirlpool Corporation counts over 7000 suppliers,
30.000 trade partners and 70 manufacturing and R&D centres.
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3.3.1. Whirlpool Supply-Chain

Whirlpool EMEA S.p.A. (Whirlpool) is the EMEA (Europe, Middle-East & Africa)
operating segment of Whirlpool Corporation, headquartered in Pero (IT). Born after the
acquisition of the Italian Indesit Company SpA brand in 2014 and the later merger in 2016
of Whirlpool Europe S.r.l. into it, Whirlpool EMEA S.p.A. has a sales presence in 35 markets
and 11 manufacturing and technology research centres in 5 countries (Fig. 3.1), positioning
as the largest player in the region, with its three pan-European brands, Whirlpool, Indesit and
KitchenAid, two regional brands, Hotpoint and Bauknecht, and a number of other local
brands, including Scholtes, Ariston, Laden, Polar and Ignis (Fig. 3.2), shipping around 25
MLN products yearly. The product lines are grouped into 5 main categories, ordered by 2021
direct pro�t margin: Laundry, Cooking, Refrigeration, Dishwashing, IBU & Others; with
most of the sales concentrated in the Northern Europe, France, Italy and Russia subclusters.

Fig.3.1. Whirlpool factories location in EMEA

Fig.3.2. The Whirlpool Brands
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Factory
location

Product
category

Productive volumes
( units / year)

Cassinetta di Biandronno (IT) Cooking, Refrigeration > 2 MLN

Comunanza (IT) Laundry > 660.000

Melano (IT) Cooking > 1.9 MLN

Siena (IT) Refrigeration > 200.000

Łódź (PL) Cooking, Laundry > 860.000

Radomsko (PL) Dishwashing > 2.7 MLN

Wrocław (PL) Refrigeration > 1.3 MLN

Lipetsk (RU) Laundry, Refrigeration > 3.3 MLN

Poprad (SL) Laundry > 700.00

Yate (UK) Laundry > 180.000

Tab.3.1. Whirlpool factories production type and yearly volumes

While most of the business functions (Finance, Strategic Planning, Integrated Supply Chain,
Executive Management) are located in Pero (MI), the Procurement O�ce is still located in
Cassinetta di Biandronno (VA) alongside its historical plant. The plant, divided into three
main production areas (Fig. 3.3), plays a pivotal role in the production of built-in ovens,
microwaves and refrigerators, releasing more than 2 million units yearly. In addition to its
productive functions, the plant serves as an important �eld for the R&D of products and
best practices.

To source its plants Whirlpool built over the years a global supply-base of 781
vendors, distributed mainly in Europe and Asia, totalizing a cumulative spend of 2.8B EUR
(Fig.3.4). From a purchasing perspective, all items (make/buy) are categorised into 3 main
classes, namely Raw Materials, Strategic Components, and Structures & Aesthetics. In turn,
these group the 39 Commodity classes to which a material can belong. “The commodity”, as
usually called by procurement employees, thus identi�es a group of similar vendors and their
respective assigned buyers. The buyer is the interfacing agent between Whirlpool and the
speci�c vendor, handling all commercial relationships, o�cial communications and eventual
contingencies. Multiple vendors can be assigned to a buyer, who �nally reports to her
commodity manager.
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Fig.3.3. Cassinetta plant map

On a monthly basis, each commodity team redacts and updates the new version of the MPV
document for the months ahead based on actual consumptions and forecasts. The
widespread of the COVID pandemic especially in the North-Italy area, where most of the
European supply-base lives, justi�ed additional communicational needs to monitor sudden
infections outbreaks that might impact supplied capacity, threatening business continuity.
The Whirlpool Crisis Team was thus established in November 2020 to get weekly phone
reports from all the EMEA-based vendors about the current capacity status and anticipate
potential issues to buyers. Later in April 2021, this process was partially automated by the
author during the internship period at the company Procurement O�ce, developing an
automated Google-based survey capable of self-managing the entire stream of data end-to-end
for all non-critical suppliers, eliminating the need for 300 calls per week on average.

Tab. 3.2. Some of the Whirlpool central commodities
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Fig.3.4. Whirlpool EMEA global supply base

Fig.3.5. Simplified Procurement Office organisational chart

From a supply-chain perspective, all items are categorised according to many criteria.
First, the overall inventory is divided between components and finished goods. All items are
tracked over multiple dimensions, which are all stored and managed through the SAP ERP
system and other in-house developed SAP-integrating tools.

Components and purchased items are �rst divided into Lead Time classes,
distinguishing between Long Lead Time items (LLT) and Short-Medium Lead Time items



3 – Problem Setting and Research Questions 45

(SMLT). While Whirlpool has complete visibility of its purchasing and manufacturing lead
times, surprisingly the items are assigned to the two categories using a “responsibility
principle” instead:

1. An item is SMLT if it is managed directly by factories

2. An item is LLT otherwise.

This particular approach made sense in terms of semi-components handled within
production lines but generated inconsistencies and misleading results when extended to
purchased items. Put it simply, a container of “high-running material” from China (e.g.
Compressor pumps) would be labelled as SMLT even if it would take more than 50 days to
be unloaded (Fig. 3.6).

Fig.3.6. Lead times overlapping definition (logarithmic scale on the vertical axis)

Components are then further classi�ed accordingly to their consumption velocity,
distinguishing among:

1. High-Runners, components with high consumption rates and inventory levels usually
within SS levels plus their cycle stock;

2. Slow-movers, components with slow-to-lumpy consumption rates;

3. Blocked, components not available for consumption due to several reasons like quality
checks, reworks or reshu�ing between plants;

4. Over-Requirement, components with inventory levels above the SS level plus their
cycle stock;
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5. Obsolescence Risk, components with no consumption 3 months back and no future
requirement on-sight;

6. Obsolete, components with no consumption 12 months back and no future
requirement on-sight.

The ABC-XYZ standard classi�cation is also applied upon 1-year back volumes to
supplement the previous categorization, applying a Pareto approach to inventory:

1. A-items, high-runners building up to 80% of total volumes;

2. B-items, remaining SKUs building from 80% to 90% of remaining total volumes;

3. C-items, remaining SKUs building the last 10% of remaining total volumes;

4. X-items, “stable”, SKUs presenting a Coe�cient of Variation of volumes between 0
and 0.5;

5. Y-items, “seasonal”, SKUs presenting a Coe�cient of Variation of volumes between
0.51 and 1;

6. Z-items, “lumpy”, SKUs presenting a Coe�cient of Variation of volumes above 1;

If not otherwise speci�ed, the ABC-XYZ matrix combinations are used to set desired Service
Levels for each item in all markets. Di�erentiation is done here between freestanding items
and built-ins, respectively identifying items consumed/sold separately or in a bundle with
other products (e.g., a kitchen assembly is a built-in bundle of �nished products and
components). In other words, built-in �nished goods must all be available at the same time to
ship an order.

Tab.3.3. Service Level setting for Freestanding items

Finally, arrival and planned consumption dates are intersected to form a bubble-chart matrix
(Fig. 3.7) highlighting mismatches between planned consumption and the current inventory
position, delimiting 4 priority areas, namely:

1. Green area, components received within 4-weeks back or currently in transit whose
consumption is scheduled within 3-weeks ahead. All components should lie in this area,
maximising turnovers and ROA.
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2. Grey area, components received until 5-weeks back whose consumption is scheduled
within 3-weeks ahead. This area represents past ine�ciencies that will-be/must-be
recovered in the next future.

3. Yellow area, components currently on hand or in transit whose consumption is
scheduled from 3 weeks ahead. This area highlights materials that might build excess in
the next future, de�ning a warning zone.

4. Red area, components currency on hand or in-transit which have no consumptions
scheduled. No components should lie in this area.

Fig.3.7. Bubble-chart highlighting excess accumulations and improvement areas. Bubbles areas
are proportional to SKUs frequency.

For the �nished goods the classi�cation is much streamlined and follows the product life-cycle
stages. Chronologically, each product moves into the following classes:

(the following phase descriptions are simpli�ed on purpose)

1. Violet, the new product introduction (NPI) request is released, de�ning all functional
requirements and “to-market” dates;

2. Orange 1, NPI approval phase and product parts costing estimations. Rejections
redirect to the violet stage;

3. Red, market introduction dates range approval. Rejections redirect to the violet stage;

4. Orange 2, product speci�cation approval. Rejections redirect to Orange 1;

5. Orange 3, detailed product speci�cation de�nition and registration into SAP;
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6. Orange 4, production ramp-up con�rmation;

7. Yellow, testing units send to market-relevant clients, creation of product images and
literature;

8. Green, last BOM updates, APO setting for production plans generation, product life
starts;

9. Brown, phase-out process and production ramp-down;

10. Black, product dismissal.

Green and Brown products are then divided into 2 additional categories:

1. Blocked, �nished goods ready to be shipped to the downstream nodes (e.g. Regional
Warehouses, Distribution partners, Commercial partners, …) but waiting for quality
checks;

2. Undeclared

In conclusion, the total stock available is classi�ed based on its physical position de�ning
1. on-hand,
2. in-transit,
3. on-consignment, and
4. subcontracting located-to-suppliers

quantities.

3.3.2. The Inventory Growth at the Cassinetta plant

The COVID era showed the complexity the supply chain environment can reach in a
fraction of time, cascading disruption on all nodes of modern long supply chains and
questioning their resilience built upon the assumptions of the so predicated Toyota model of
Just-In-Time (P. S. Goodman). The 6-days obstruction of the Suez Canal by the EverGreen
20.000 TEU ship (Fig. 3.8) in March 2021 gave the de�nitive hit on the already weakened
supply-base su�ering from the still-ongoing Chinese materials “shortage of everything”
triggered by the 2020 COVID pandemic. Metals, electronics, plastic and chemicals supplies
suddenly became the most scarce resources, rapidly experiencing skyrocketing price increases.
The March 23rd price quotation of metal - just before the Suez Canal event - �uctuating
around 120 USD/q jumped to 180 USE/q in 2 weeks, peaking to 208.94 USD/q on May 11th
and stabilising around 170 USD/q after it. In comparison, the 2020 average price set to 95
USD/q, peaking to 118.99 USD/q end-of-year, presenting a variation coe�cient of 8.66%
against 17.25% in 2021 (Fig. 3.9). These harsh market conditions induced extreme
competition among all players in securing volumes, pushing some of them also into
contracting materials without a previously agreed-upon price. That is, willing to buy
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materials at any future price to avoid production stoppages. Some of the suppliers’ answers to
the Crisis Team weekly survey, during that period, are reported below

“ We get shortage of steel plastic and trimetal for electrical contacts ; we are every day insisting
and optimising our process to avoid to produce parts for buffers and only the necessary ordered
pieces ”
24 May 2021

“ We are running in an overbooked situation , we may have some delays ”
31 May 2021

“ There could be some general delay in delivering some products due to the big increase of
requests”
3 Jun 2021

“ We are asking all customers to provide forecast requirements, and have increased stocks of all
strategic materials ”

6 Jun 2021

" Polypropylene label material sourcing has become a challenge with extending lead times “
6 Jun 2021

" We are struggling the transport cost increase via container from Asia
low availability of container has increased significantly the costs ”

11  Jun 2021

“ Most of the raw materials are increasing in price and with limited availability. If we do not
pay more for the materials we cannot ensure the continuity of supply ”
13 Jun 2021

“ The raw material shortage is impacting us, and the Forecast is very volatile and imprecise ”
17 Jun 2021

“ DUE TO OVERBOOKING SOME ORDERS MAY HAS DELAYS ”
21 Jun 2021

“ Delivery time for raw material is at the moment for some type of material more like 8 weeks ”
23 Jun 2021
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“ We do not have sufficient raw materials from Whirlpool for producing the running orders ”
3 Aug 2021

“ DELAYS ON FERRITICS GRADES ARE EXISTING SPECIALLY ON AISI 439 ”
10 Aug 2021

“ The supply chain management is still a challenge ”
22 Dec 2021 (6 months after the Suez accident and the surge in Asian shortage)

Fig.3.8. Ever Green obstructing the Suez Canal, By NASA JSC ISS image library

Fig.3.9. Steel price quotation comparison between 2020 and 2021. Source: Google Finance
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Fig.3.10. Traffic jam in the Gulf of Suez during Evergreen obstruction, by Contains modified Copernicus Sentinel
data 2021

Fig.3.11. Extracted from Whirlpool internal report about Suez canal traffic in March 2021

The sharp context partially described above extremely challenged the purse of both
Procurement and Integrated Supply Chain yearly strategic goals, respectively:

Reduce costs and excess accumulations (Procurement)
Ensure the business continuity, at any cost (Global Supply Chain)

somehow proving the executives’ interest in preventing the creation of the bimodal
distribution: procurement will take care of excesses while the integrated supply chain of
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shortages. Yet under such circumstances these two sides of the coin seemed inevitably
contrasting each other.

Evidence about the bimodal distribution upon Whirlpool inventory traces back to
early 2000’s, when the Whirlpool Corporation started to turn its supply chain network to a
global and “fully-integrated” scale, giving birth to the Integrated Supply Chain Division. The
at time supply-chain project director, J. B. Hoyt once declared (G. H. Anthes) “We had too
much inventory, too little inventory, wrong inventory, right inventory/wrong place, any
combination of those things [...] sales department would accept even worse performances
from supply system if they would just be consistent rather than wildly bouncing back and
forth between good and poor production and shipping plans”, strongly recalling the bimodal
scenario.

Nowadays, the EMEA inventory management and strategy is led by Matteo Coppola
who constantly pushes the supply chain team to twist around the “guiding principle to
inventory strategy” of whether

“ Is inventory investment maximising the organisation’s cash generation (margin), protecting
market share and service objectives (customers)? “

and de�ning supply chains as

“the global network used to deliver products and services from raw material to end customers
through an engineered flow of information, physical distribution and cash. A team, a rhythm,
discipline and method. All led by a clear purpose and data-driven decisions.”

Fig.3.12. Whirlpool view of its supply chain

On a monthly basis, the whole EMEA inventory status is reviewed with the Integrated Supply
Chain division and all commodity leaders. Some recurring key points keep emerging at each
review - among many others. Firstly, is how heterogeneous the decision-making processes are
regardless of the big e�orts done in centralising information, leading to a disaggregate,
non-uniform and di�cult-to-review operational response which was causing piling
mismatches between the planned Whirlpool business strategy and its actual performances.
Secondly, there was a strong need to “rebuild inventory as an asset from a liability”.
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The most impacting ine�ciencies in decision-making were attributed to expedition requests
that often later turned out to be not extremely urgent, building expensive excesses. These
requests were tracked completely manually and on separate worksheets between factories
management, �nance and planning. Regardless of the best e�orts deployed by all actors to
make all information needed as clear as possible, nobody in the chain would like to take the
responsibility to delay an expedition request just because “checking is di�cult” while the
potential risk of stopping production is on the way. The urgency nature of the request
coupled with the slow reviewing process made unclear what was necessary and what wasn't.
On the procurement side, many commodity leaders reported that “factories escalate
everything to buyers almost every day”. Mapping the “as-is” state of the currently in-place
decisional processes identi�ed the existence of almost 90 di�erent reports in use, most of
them made of extremely large spreadsheets that on average took 3 hours weekly to refresh
individually. Estimates reported a total amount of 892 hours spent just in reports refreshing,
equivalent to 5.5 Full-Time Employees (FTEs) working solely on that.

Fig.3.13. Extracts from “Reports in circulation” survey ran at Whirlpool in August 2021

On the 2021 roadmap to bring “inventory back to the primary planning mechanics” the main
changes required are :

1. To focus only on what is relevant, �ltering low-frequency noise from real events using
a Paretian approach anywhere possible;

2. To rede�ne target stock levels based on actual consumption rather than forecasts;

3. To reallocate service level priorities, avoiding setting high values also to low-margin
SKUs ;
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4. To de�ne customer tolerance times and identify time-to-market potentials;

5. To push non-strategic material up in chain using Consignment stocks and
Vendor-managed Inventory policies;

6. “Planning, from Excel to a collaborative planning tool”.

In February 2021, EMEA inventory performances deviated by 30M USD over the pro�t plan,
of which 7M USD totalled by the Cassinetta plants only. The situation gets critical in March
peaking to 50M USD, of which 9M USD totalled by the Cassinetta plants, with Cassinetta
Refrigeration and Cooking as the top bleeders. On the other hand, an analysis run
end-of-January investigating On-Time deliveries showed that roughly 40% of deliveries were
more than 2 days delayed and only 45% delivered on time or in advance of promised dates.
The March inventory review reports “short-term Excel expediting is consuming planning
time [...] there is no visibility on materials in transit and their promised arrival dates”.

Fig.3.14. On-time-in-full delivery chart of January 2021

On May 8th the Cassinetta Plant Manager release the following alert by email :

“ It seems quite evident that we have a huge deviation in terms of industrial inventory value in
Cassinetta [...] currently the level of saturation of the Central Warehouse is above 80% but it
should be even more if we consider the materials which are still stored in external overflow areas,
which we need to release as soon as possible [...] Due to the pick of containers we are receiving and the
missing capacity to absorb the whole flow in 2 shifts, we opened the 3rd one starting from the current
week. [...] We are blocking at the Melzo hub what does not seem urgent. We have an agreement for 10
days of free time. In Melzo today we have 21 containers blocked. 17 will be delivered next week and 10
further will be stopped. [...] It could be really helpful to receive the list of codes in transit with n°of
containers because so far we can detect the codes only by checking the paper documents. Indeed we don't
have a clear view of what we will receive in the coming weeks. ”
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The central warehouse mentioned was capable of hosting 12.000 pallets, covering a usable
total surface area of 105 , the equivalent of thirty-�ve 3 wide housing rooms. A𝑚 2 𝑚
preliminary assessment of the issue listed the production losses of March cascading on April
LLT inventory levels and the Suez canal disruption as the main causes of inventory explosion.
The study revealed again a bimodal scenario where urgent expedited shipments were called
for roughly 2M USD worth of material while most of the orders for SKUs already in excess
were postponed or cancelled. Production schedule changed in order to absorb excesses to free
up space for the new arriving material.

3.3.3. The pilot DDMRP implementation project in Cassinetta

On May 12th, considering the lack of visibility over the in-transit materials and what
seemed uncontrolled expedited shipments, Coppola announced the start of a pilot project
taking place on the Cassinetta case. A cross-functional team of Procurement and
Supply-Chain would deploy the innovative DDMRP methodology to manage the Cassinetta
inventory and create complete visibility over real SKUs in shortage and excess based on actual
daily consumption, preferring a “roughly right rather than precisely wrong” analytical
approach. The pilot would have exploited the already great work done by the Global
Information Systems (GIS) department since January on the implementation of a full-�edged
Google Cloud-based Data-platform called “industrial inventory” linked with the SAP ERP
inventory module, so to compute all DDMRP metrics on a simple, customizable-to-needs
and accessible to everyone online spreadsheet.

Considering the contingency nature of the pilot and the elevated computing power
available, DDMRP logics were applied �at on every SKU, that is, no strategic selection of
components in the BOMs was done. Although this approach moved against the DDMRP
principle of “to not decouple everything”, that was instead crucial to protect the
continuation of the project: overcomplicating things requesting a deep review of all product
BOMs manufactured in Cassinetta, in a period of high disruption were even visibility over
in-transit quantities was limited, would have induced strong policy resistance phenomenons
(Sterman, Chap. 1) and dispersed the e�orts without attacking the problem. Namely, get “a
full-body scan” of the inventory health status. Nonetheless, the implementation did not
generate any disagreement, especially among factory management. From their point of view,
implementing another “naive” tracking system was not solving their daily problems of trucks
stuck at the port and, to a point, at the entrance door of the plant. Rather they would have
preferred the acquisition or rent of new warehouse space and worked to reinforce JIT policies
to push more material to suppliers.

With the promise of rapidly cutting o� both excess and shortages and “make planners
life easier”, Coppola notes that "the situation has more than demonstrated the need for a
radical change in the approach to the problem".

Within 2 weeks the team was capable of generating on a weekly basis 2 SKUs priority
lists, dedicated to excess and priorities. The lists acted as the only “truth table” from where
decisions would be taken. The Paretian approach was at the heart of the SKUs prioritisation.
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For excesses, the SKUs - so their relative suppliers - in the list were the ones building up to
80% of total excess value. Excesses quantities - and so their monetary value - were computed
for each i-th SKU by comparing the actual on-hand vs. the DDMRP on-hand optimal range
upper-bound:

Excess(i) = MAX(0, On-Hand(i) - (TOR(i) + YZ(i) )  (units)

Shortages were prioritised based on vanilla DDMRP on-hand alerts principles, thus
measuring the on-hand penetration into Safety Stocks. 4 priority classes were created:

High-warning, IF  On-hand(i) <= 10%*TOR(i) ;
Medium-warning, IF On-hand(i) <= 25%*TOR(i) ;
Low-warning, IF On-hand(i) <= 50%*TOR(i) ;
Potential-warning, IF On-hand(i) <= 75%*TOR(i) ;
No-warning, IF On-hand(i) > 75%*TOR(i) ;

Shortage quantities were computed for all SKUs in high, medium and low shortage priority
as the missing quantities to reestablish half of the safety stock:

Shortage(i) = MAX(0.5*TOR(i) - On-Hand(i), 0)

Fig.3.14. Simplified representation of excess and shortage weekly priority lists. Vendors names are omitted on
purpose for privacy reasons.



3 – Problem Setting and Research Questions 57

Fig.3.15. Buffer dimensioning and excess/shortages calculation for all SKUs

The Average Daily Usage (ADU) was computed for each i-th SKU adopting a blended
approach, thus averaging past sales with forecasts over a �xed time-horizon of 12 weeks. Sales
were extracted from the MB51 and MSEG SAP standard transactions while future
requirements were extracted from the Advanced Planning Optimizer (APO) SAP module.
An addition to the vanilla DDMRP model was performed by allowing the ADU
time-window to dynamically shift more (less) in the past (future) accordingly to item XYZ
classi�cation :

Tab. 3.4. The ADU moving window based on items XYZ classification

SKUs Total Lead Time was computed as the sum of Purchasing Lead time and
Manufacturing Lead time.
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Lead Time Factors (LTF) were assigned �at to BUY items while 3 Lead-time de�ned classes
were created for MAKE items, resembling the vanilla DDMRP model:

IF i is   BUY THEN       LTF(i) = 0.15 ;
IF i is   MAKE  and  LT(i)  <= 10 THEN LTF(i) = 0.8 ;
IF i is   MAKE   and  LT(i)  <= 30 THEN LTF(i) = 0.6 ;
IF i is   MAKE   and LT(i)     >  10 THEN LTF(i) = 0.35 ;

Note that the shorter the lead time, the higher the LTF assigned to it.

Demand Variability Factors (DVF) were assigned �at to BUY items while 3 XYZ de�ned
classes were created for MAKE items, resembling the vanilla DDMRP model:

IF i is  BUY THEN    DVF(i) = 0.25 ;
IF i is  MAKE   and   X THEN    DVF(i) = 0.2 ;
IF i is  MAKE   and   Y THEN    DVF(i) = 0.5 ;
IF i is  MAKE   and   Z THEN    DVF(i) = 0.99 ;

Note that the higher the variability, the higher the DVF assigned to it.

Finally, the Order Cycle Time (OCT) was estimated by counting the number of
consumption records registered in the MSEG SAP transaction over a �xed period of 90 days
in the past.

OCT(i) = 90 / ∑ Consumption Movements Last 90 Days (i)

This value was then compared with the Average Order Frequency generated by the model,
de�ned as in vanilla DDMRP:

AOF(i) = GZ(i) / ADU(i)

Once implemented, the most delicate stages of the pilot started:

1. validating it against current SAP-based scenarios and “people operational knowledge”

2. make it became the real only mechanism of inventory management

The �rst point required extensive cross-functional meeting sessions where all agents
from the factory management to �nance, procurement and planning were asked to give their
feedback about the �gures yield by the model. This process revealed extreme data inaccuracy
set in the SAP system, especially regarding wrong MOQs and Lead Time settings. For
instance, some EU vendors were considered as “JIT vendors” setting very low transportation
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Lead Times in the system (e.g set to 0 to some Italian vendors). It is worth remembering that
the ERP system is entitled to release all the replenishment orders and production scheduling
plans, running MRP on the given values, thus it is in the strong interest of managers to keep
the system up-to-date. While these results might look surprising, this scenario is not a novelty
in the supply-chain world (C. Ptak, C. Smith) and it is mostly due to the well-known
nervousness of the MRP algorithm, one of its main weaknesses. Every night the MRP would
be re-run, changing completely the scenario from the previous day, updating orders priority,
sometimes generating back-dated orders, generating confusion. What the pilot showed was a
tendency behaviour to “keep the system as dormant as possible”, using the MRP data as a
baseline to then be handled manually on spreadsheets to de�ne the actual operational
response. Moreover, the ERP was not designed to massively extract data, usually requiring to
browse one SKU at the time on each needed transaction. The lack of “what-if tools” in
S&OP was already reported in one of the inventory reviews and justi�ed the investment in a
project managed by a consultant to improve the situation. An extensive “massive data
cleaning” campaign was thus launched starting from June, with the aim of reviewing all LTs
and MOQs set in the system and, when possible, thinking about possible re-negotiation of
MOQs based on ADU. In other words, all MOQ greater than ADU were possible candidates
for MOQ reductions. While this approach is quite logical, it must be taken into account that
MOQs are the result of a negotiation where suppliers try to optimise the overall production
line load while the client would desider a “dedicated” infrastructure ready for lot-for-lot
orders. These trade-o�s strongly drive the �nal contract awarded price and MOQs. In
general, lowering MOQs induce unit prices to increase. The analysis thus required a
case-by-case analysis of the trade-o�s involved, selecting from which vendor to start the
campaign again adopting a Paretian approach.

The second point required the pilot results to be massively di�used among the
organisation, giving complete and clear visibility to everyone. A “reporting campaign” thus
started in June with the aim to develop two detailed reporting dashboards bisecting all
possible aspects of inventory, both at global and individual SKU scale. Finally, the reporting
activity was also summarised weekly by emails “bombarding all actors in the organisation
about the current state of things” to promote actions and reactions.

The reported success of the pilot in reducing the excess creation authorised the
extension of it to all EMEA plants, starting from Poprad where a huge obsolescence risk
emerged during the summer. Nowadays, one year from the �rst implementation, the project
approach has been completely ported into the GCP data-platform from where it is then
applied to all upstream plants, with the aim of starting to develop a distribution-oriented
version of it.

3.3.4. The “Industrial Inventory” Google Cloud Data-Platform

Visibility and quality - rather than scarcity - represent the typical major issues related
with data in most supply-chain applications. On the other hand, disposing of massive
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databases does not necessarily guarantee shared and accessible information, or even
information in the �rst place (S. Levi, Chapter.14). Specialised e�orts are usually required to
summarise data into business knowledge, a role typically outsourced to external consultants
guided by company facilitators.

Big players like Whirlpool pull and generate vast amounts of data every day. Thus, its
employees are forced to �nd agile ways to dig into and exploit such abundance while not
slowing down the decision-making pace. As shown in Chapter 2, such circumstances coupled
with the diversity of business needs over time, led most of the teams building tailored reports
to answer leadership speci�c questions, at the end piling a “reports wall” accessible only to the
initial requesting users of the analyses and its developers. Requesting access and support to
use and interpret a “never seen before” report or spreadsheet when participating in
cross-functional tasks seemed the norm rather than the exception. Because generated by
di�erent agents (e.g. planners, buyers, �nance, procurement, factories, suppliers) in di�erent
locations and time, data were typically scattered throughout many systems, starting from the
ERP module of SAP, to its Business Intelligence (SAP BI/HANA) and Advanced Planning
Optimisation (SAP APO) modules, Google Sheet, Excel, Tableau, Prime Viewer and many
others. The SAP ERP module in particular, where most of the data lived, seriously
constrained the data share-ability due to the lack in the ERP design of “massive data
extraction” functions. Rather, every ERP interaction could only take place through speci�c
build-in functions, conventionally called “transactions” in the SAP jargon. All SAP
transactions are identi�ed by speci�c IDs that surprisingly seemed extremely di�cult to
retrieve with certainty, being the SAP o�cial website and the online users forum the �rst
confusing places to search for answers. Accessing any transaction typically required prior
request of speci�c grants that needed approval by designed users. Once all set, the most
e�ective means to understand the scope and the data retrieved by the transaction was to
launch di�erent combination of its parameters as long as either some reasonable results were
returned, guiding a parameters adjustments process in a try-and-error fashion, or the support
of a senior user was required to continue or validate the data. It was rather usual that this
scenario ended in understanding that the used transaction was the wrong one or that
something was missing. For all occasional SAP users, like Team Data Analysts, whose typical
work�ow is not limited to the use of a single tool, most SAP-including analyses ended up
shifting the focus more on reverse engineering the transaction behaviour rather than
advancing the initial business question. In case of success, the transactions allowed retrieval of
information about single instances and not a panel of objects. Thus, retrieving some kind of
data for a family or all SKUs produced even in the same factory would have required multiple
reruns of the same transaction, followed by a data export into di�erent Excel spreadsheets for
each run, which �nally needed to be aggregated in a single one so as to �nally run the
desidered analysis. What seems like an extreme scenario was instead the case when the design
and introduction of a new custom metric, called Delivery Service Index (DSI), started. This
metric would compare the agreed material delivery dates with the actual ones and estimate the
impact of those delays on the production continuity, so as to rank suppliers upon DSI terms.
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Given the extraordinary amount of time required even by expert users to retrieve a rather
small amount of data, the DSI project was seriously redimensioned and decided to be
evaluated on a monthly basis only, somehow losing e�ectiveness and trust.

Finally, many of the considered “expert SAP users”, like buyers and planners, were
declaring to only know how to use a subset of its transactions, the ones they occur to use on a
daily basis, suggesting that the experience they gained was somehow non-reusable in other
business contexts (e.g. �nance transactions). Moreover, unavailability of these employees
would mean a huge loss for the company's ability to use and interpret SAP, creating high
“asset-speci�city”, both to the tool and the employees.

When “broad business questions” were asked, this data environment typically obliged
the analysts to call several meetings with all relevant users to reconstruct the information
puzzle. This situation escalated as broadly as the initial query was and, for those applications
where massive data extraction were essential (e.g. DSI), custom “Z-transactions” were
required to be designed by the Global Information System  (GIS) team.

From June 2021, the Whirlpool GSS leadership decided to cut the ine�ciencies
derived by having so many systems in place and to integrate the majority of those in a single
“point of truth”, with a strong focus on making SAP data quickly and massively accessible.
The resulting Data-Warehouse, essentially a large NoSQL database called “Industrial
Inventory Data-Platform” (DP), would have lived on the Google infrastructure, also known
as the Google Cloud Platform (GCP), exploiting the extraordinary indexing, storing and
computing capabilities of Google for a rather cheap package compared to its added-value. In
this con�guration the previous systems would act solely as “data providers” from which data
would be pulled and streamed automatically into the new system every night. During the
streaming process, normalisation and manipulation of data would be applied to build
automatically refreshed reports designed upon leadership requirements. With this system in
place, Whirlpool employees of any division (e.g Finance, Integrated Supply Chain,
Procurement, ...) would be capable of querying all the Whirlpool knowledge, put it together
in easy to make reports, globally accessible and fed by Big (and reviewed) Data, through the
reporting tool of Google DataStudio embedded into the DP.

The choice of Google as a provider for data-warehousing rather than Microsoft or
Amazon (e.g. Azure, Firebase) determined a strategic win given that the majority of “daily
employees routines” in any o�ce were performed using Google products (e.g. Gmail for
internal and external communications, Google Sheets for internal reporting, Google Drive for
sharing the knowledge base, Google Analytics to monitor e-commerce, ect) thus providing
rapid coupling of the innovation with existing solutions.

Fig. 3.15. shows the Industrial Inventory “SQL interface”, powered by the Google
BigQuery computing engine, where tabular data can be extracted on request using standard
SQL-statements.
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Fig.3.15. The SQL Workbench powered by BigQuery to extract knowledge from the DP

SQL stands for “Standard Query Language” and while at �rst it can feel like an additional
barrier to information, it instead provides a generalised language to explore any tabular
data-structure, regardless of di�erent implementations and business environments, being
considered an industry-standard everytime there is the need of serious (and massive) data
manipulations. Moreover, extensive support is provided for SQL on free peer-reviewed online
forums like StackOver�ow.

Upon this generalised language it comes one of the biggest advantages of the
Industrial Inventory DP : the �ow of relevant information is organised under a “natural
language” structure. Thus, extracting current inventory levels trends for all �nished products
produced in all the Cassinetta Plants during February 2021 looks alike the following query

SELECT
material, commercial_code, material_short_description, emea_category,
plant, plant_desc, plant_type, storage_location,production_line,
On_hand_qty, intransit_qty, moq,lt_transport, lt_manufacturing, unit_price,
creation_date

FROM `IND_INV_FG.stock_application.L2.F_target_stock`
WHERE

plant in ("C020", "C021", "C022") AND
creation_date BETWEEN "2021-02-01" AND "2021-03-01" AND
lifecycle_color = "Green" AND
make_buy = "MAKE"

which returns the matching tabular data in Fig. 3.16.
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Fig.3.16. Tabular query results example provided by the DP

Tables of over 1M rows can easily be exported into common spreadsheet apps using .csv �les,
generated automatically by the DP after each query, or be directly assessed using Google
DataStudio, as in Fig.3.18.

Fig.3.17. Easy query results export

Fig.3.18. Direct Reporting from queries in DataStudio, Whirlpool official reports.
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The DP was built as of best practices in data-warehousing: raw data coming from the
di�erent the Whirlpool individual systems are sequentially moved along 3 di�erent layers,
called respectively L0, L1 and L2, where “L” stands for “layer” and the trailing digit represents
the “layer elevation”. The information content - its quality and relevance - of data in each
layer rises as it gets more elevated, thus �nal users can �nd all relevant and certi�ed pieces of
information by querying L2 directly. For these reasons, SQL-tables stored in L2 are also called
“fact tables”, identi�ed by a leading “F_” in their name.

Data is moved among layers automatically through a set of time-based scheduled
queries called procedures. Procedures typically do not retrieve data directly from the source
SQL-table, but they use a speci�ed “manipulated version” of it, called view. Views hereditate
their name from the fact that they can be seen as “a way of looking into the tables“. They
essentially are “template SQL queries” saved on the GCP that preprocess the raw data to be
streamed to another location, typically a higher layer in the DP. The main di�erence between
SQL-tables and views is that tables are used to store data provided with a certain format,
while views do not. Once a view is run against a table (or a set of them), its result is a
temporary table that can be either handled by procedures, saved into a new table, also called
materialised view, or outputted to the user invoking it. After this, views results are discarded,
requiring to re-run the view if the output is needed again. Views are extremely versatile and
allow to really create knowledge out of raw data, indeed a typical use of them is for
aggregating data from multiple SQL-tables in order to compute aggregated KPIs.

Fig.3.19. L0, L1, L2 data platform structure. Views and procedures are visualised by blue
arrows.

The whole structure of the Industrial Inventory cannot be disclosed but a general
view of the main fact tables is provided.

At the highest level, the DP is divided into 2 pillar projects, the “ind-inv-fg” dedicated
to the �nished goods and the “ind-inv-comp” for components up to raw-materials. Even if
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both projects are still under constant development, the components one still represents a
WIP, thus it was considered less in this work.

Both projects are further divided into 6 main modules, also called datasets:

1. Reporting Dataset. It groups all the views used to construct automatic reports,
providing insight and historical trends for excess and shortages, orders on-allocation,
obsolescence risk, and so on.

2. Target stock Dataset. It is the most important dataset were data from all other
datasets are merged together into a �nal overarching fact table called “target_stock”,
deriving for each good the ABC-XYZ classi�cation, Direct Contribution Margin
(DCM), Net Flow Position (NFP) and Average Daily Usage (ADU) at each plant and
storage location, distribution related data, plants inventory levels, good and plant
metadata, and so on. This represents the L2.

3. Inventory Dataset. It groups all tables and views needed for segmenting the
inventory by the criteria presented in Chap. 2. Together with the Finance dataset, it
completes the L1.

4. Finance Dataset. It groups all tables related to �nancial metrics, like aggregate
historical sales by market, approved forecasts derived by the Open Demand Planning
(ODP) process, pro�t plan targets, and so on. Together with the Inventory dataset, it
completes the L1.

5. BOM Dataset. Still a WIP dataset, in its �nal version it will be the connecting point
between �nished goods data (intermediate assemblies for the components module)
and their child components (raw materials), exploiting BOMs stored in SAP.

6. External Sources Dataset. It represents the L0 where data from SAP material
management (MM) module, SAP BI, and other providers, land.

For what regards SAP data, the DP get refreshed based upon multiple “cycles”:

During the �rst week of the month, the demand forecasts are updated upon release of
a new “consensus forecast” by the Demand Planning (DP) team, made by S&OP leaders, GSS
analysts and planners, Procurement and Finance analysts and Top Management. This
forecast is constituted of both Make-To-Stock (MTS) requirements and Make-To-Order
(MTO) ones that shall take place in the following 12-months of current date. At each release,
the monthly consensus forecast gets loaded into the Advanced Planning Optimizer (APO)
SAP module, which based on all products global lead times, frozen shipping agreements
(quantities that cannot be updated by the optimizer), current production load, target
inventory thresholds and current inventory levels in each plant, distributes the additional
production workload. This process de�nes the “production plan”, thus all the �nished goods
requirements for each working day, also known as the “independent demand”.
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Every night, the MRP module of SAP based on the production plan input and the
current production output, walks backward into each �nished good BOM so as to generate
the so-called “dependent demand”, thus the components requirement up to raw-materials in
order to ful�l the production plan schedule. The dependent demand for raw-materials gets
compared with each supplier purchasing agreement conditions (e.g. MOQ, Lead Time, ect.)
so as to generate what are known as the “open schedule lines” (OSL). Both schedule lines and
purchasing agreements are produced externally from the DP. Purchasing agreements are
established after a negotiating activity happening between buyers and suppliers. Schedule
lines instead represent a “derivative operative contract” of the purchasing agreement, where
multiple schedule agreements can be released based on the same purchasing terms. In each
schedule line speci�c quantities, promised delivery dates and awarding price are �xed. Every
shipping noti�cation can be approved or reviewed and updated by planners, �agging it as
frozen. Moreover, planners have visibility on projected on-hand, by invoking the ZSHORT
SAP transaction, and basically all information relative to materials.

All these take place on SAP. The DP updating processes intercept the summary of the
daily SAP operations by pulling data every night, reversing the logic described above. Thus,
“closing-day” materials data get collected from the MM module of SAP, massively launching
(mainly) the MB51 and MSEG transaction against all codes.

From the MB51, material movements (e.g. consumptions, reverse logistics, material
reworks, internal reshu�ing) are retrieved and analysed in order to quantify ADU, current
inventory levels and material obsolescence rate. The obsolescence rate is estimated on a
monthly basis as the fraction of the material direct costs accrued since the last material
movement registered in the system. Materials can “age” up to 12-months before being
considered fully obsolete, thus needing to be scrapped either by components reselling,
scrapping or shredding. Material ending in those scenarios counts as complete sunk costs
given that the gains from reselling or scrapping hardly cover the total direct (e.g. purchasing
price, transport costs, customs importing duties) and indirect (e.g. storage costs, labour,
machine time) costs generated by them over time. Thus, a metal coils pallet with material
costs of 30.000USD that sits in the same storage location since 4-months without any picking
operation, on current date accrued an

Obsolescence Risk = (4/12) * 30.000 USD = 10.000USD

From the MSEG, data about ODPs and OSLs quantities, delayed order on-allocation
and portfolio quantities are retrieved and used to compute the Quali�ed Demand and Order
Frequency upon a 90-days time-window.

Upon this L0 refresh, the whole inventory segmentation gets recomputed, as long as
the ABC-XYZ classi�cation and the all material DCMs. As introduced in Chapter 2, DVF
and LTF are deduced from the ABC-XYZ matrix.

At this stage, all single bits of information are ready to be merged in the target stock
fact table. Here is where all the DDMRP inventory thresholds and net �ow position get
determined on a daily basis. Once L2 is refreshed, the reporting views are immediately able to
lay out the updated trends.
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Chapter 4

System Dynamics :
Understanding Complex Systems

“ Experience, something you get after you need it. ”
Cit. Anonymous

System Dynamic sits at the core of this study, thus in this chapter a general overview of it is
given to the reader after having explained why simulations play a pivotal role in
decision-making. The basic concepts of feedback loops, stocks, flows, and behavioural modes
required to read any System Dynamic model, are thus provided. Then, a set of alternative
simulation approaches are considered, in conjunction with a brief comparison of System
Dynamics with exact methods coming from Operational Research. The chapter ends by
presenting to the reader relevant academic use-cases of System Dynamics to assess the �eld of
Supply-Chain Management.

4.1. Why do we need simulations

Often decision making is driven by personal beliefs and “gut-feeling” rather than a
justi�able set of rules. This became as true as “trivial” the initial query might sound like,
triggering the innate human trait of feeling overconfident about their personal judgments as
poorly as something is known about a subject. A recognized psychological bias also known as
the Dunning-Kruger effect. Such sets of beliefs are called mental models, and they are the
result of a complex set of causes that change on an individual-basis depending on culture, age,
personal experiences, geographic area, wealth status, job role covered and so on.

Simulations are the easiest tool to apply so as to benchmark such mental models and
expectations against the hard truth of the complexly routed reality. Surprisingly (to the user),
the �nal answer most likely di�ers greatly from expectations. For instance, consider folding a
1/10 mm thick A4 sheet in half 40 times. How thick will the �nal paper block be? And if
folding it 100 times? Turns out that most of the respondent judgments extremely
underestimated their �nal answers, being the �rst case producing a thickness equal to the
distance between the Earth and the Moon, whereas folding it 100 times would yield
(approximately) the same distance travelled by light in 93 years. This social phenomena
emerges all the times the experience gained about an issue is limited and large repetitions are
not available for learning.



4 – System Dynamics : Understanding Complex Systems 68

Fig. 4.1. Folding paper dynamics

Thus, this is the main role of simulation: provide a methodology to empirically assess
hypotheses about a system behaviour, allowing in�nite repetitions to support a feedback
learning process aimed at triggering a shift in personal perspectives. Sterman, in its most
important piece, “Business Dynamics. Systemic Thinking for a Complex World” assess in
depth such human behaviours so as to de�ne the proper analytical mindset required to
modellers when approaching the complex system �eld. In that piece he also de�nes
simulations as “management flight simulators”, clearly underpinning the simulation
potential in the S&OP context.

As it will be seen in Paragraphs 3.3 and 3.4, a plethora of simulating tools are available
to researchers. The uniqueness of System Dynamics (SD) is that it forces the modeller to
abandon the straiglighned decision-making approach, to accept a circular one instead. Fig. 4.2
shows the two approaches side-by-side.

Fig. 4.2. The Straighlined decision-making approach versus the systemic one.

In the straighlined approach, the agents in the system have a certain set of goals to be match as
soon as possible, for instance “reducing inventory excess accumulation in all Cassinetta plants
urgently”, and such goals must take place under a certain environment, for instance “the
global COVID19 pandemic mixed with a sudden unavailability of the Suez Canal”. To
achieve such goals, an action plan is thus developed and run against the system, waiting for
results to (hopefully) show up. Such an approach is when contingent situations are thrown to
the agents living in the system (e.g. Whirlpool GSS management) and required to take a rapid
corrective action based on incomplete information. The underlying assumption of the
straighlined approach is that agents' decisions can not influence the future system state, thus
agents are satis�ed enough by pursuing a local optimisation in the short term. While there is no
doubt that pursuing global optimizations in some environments, such as supply chains,
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sounds like a prophetic myth, or sometimes it is even declared impossible by theory, adopting
SD force decision makers to add systemic thinking to their quick-reaction capability. Finally,
being the systems structure circular, their real responses to agent stimuli can be strongly
counter-intuitive and most of the times unpredictable a priori. This is what the London city
government faced while trying to answer the seemingly trivial question of “Should we invest
in more and larger roads or more public transport to reduce the city tra�c problem in
London?”. Developing a SD model allowed the governors to see that the trivial conclusion of
enlarging roads capacity would have produced the expected outcome in the short-run, but let
the tra�c congestion problem explode in the long run. That was due to the simple reinforcing
dynamics of “larger roads, faster travelling times, more people getting accustomed to the
comfort of using the car, thus more people on the roads and the roads getting stuck again,
requiring new roads to be built” closing a self-reinforcing loop. Such a result was achieved by
the father of SD, Jay W. Forrester, in one of his most important pieces “City Dynamics”.

4.2. What is System Dynamics

“ The greatest constant of modern times is change.”
Cit. J. D. Sterman

As de�ned by the System Dynamics Society, System Dynamics (SD) is a
computer-aided modelling approach (rather than a tool) for strategy and policy design, whose
main goal is to support informed decision-making when confronted with complex dynamic
systems. A system is called dynamic when its behaviour is self-dependent, that is, when its
state depends upon itself but in the past. This particular feature is mathematically described
by di�erential equations, making the understanding of those systems complex.

Looking at nature, dynamic processes can be found everywhere. Consider for
instance a hot tea cup seated on a desk at room temperature, its cooling process described by
the thermodynamic laws of natural convection can be seen as the results of a dynamic process,
as shown by the Causal Loop Diagram (CLD) presented in Fig. 4.3. CLDs represent sketchy
representations of the main model’s underlying dynamics where arrows connect variables to
describe a causal relationship between them. Thus, the Temperature Gap is a cause of the fact
that the tea cup and the room are at di�erent temperatures. Next to the arrowhead a positive
or negative sign is placed to indicate the polarity of the relationship. Positive polarities
represent quantities that move in the same direction, while the opposite is true from negative
polarities. Thus, the Temperature Gap has a positive relationship with the tea cup because if
the temperature of the cup gets lower then the lower will also be the Temperature Gap
upper-bound. On the other hand, a negative polarity exists between the Temperature Gap
and the Room Temperature given that as higher the room temperatures gets, as lower the
temperature gap will be.
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△𝑇(𝑡) = 𝑇
𝑐𝑢𝑝

(𝑡)  −  𝑇
𝑟𝑜𝑜𝑚

(𝑡)  

Fig. 4.3. Natural convection explained by means of a dynamic process

Being the temperature of the cup at any given moment given by

𝑇
𝑐𝑢𝑝

(𝑡) =  𝑇
𝑐𝑢𝑝

(𝑡 − 1) * (1 − 𝑐𝑜𝑜𝑙𝑖𝑛𝑔 𝑟𝑎𝑡𝑒(𝑡)) ;

the system's self-dependency is evident. In the SD jargon, such self-dependencies are called
feedback loops and represent the key to systemic thinking.

The beauty of SD is that while it operates in the �eld of complex systems, it is not
complex as well. Almost surprisingly, all possible emerging dynamics from any possible
system are indeed attainable by the interplay of two basic feedbacks loops, namely

1. Self-Reinforcing loops, where a change in the state of any variable in the
loop triggers an everlasting ongoing inde�nitely, and

2. Goal-seeking loops, where a change in the state of any variable in the loop is
penalised and tried to be pushed back to its initial value.

In other words, self-reinforcing loops tend to “make things grow (or decay) exponentially”
while goal-seeking loops “pursue balance and oppose change”. Examples of reinforcing loops
might be reproduction, nicotine addiction, fake-news spreading, the Wintel architecture,
“defensive” war races and the atomic threat, production quality issues, material fatigue, lost
sales from inventory stocks-outs, or global warming, whereas examples of goal-seeking loops
might be an arbitrage opportunity in the stock market, the cooling cycles, deaths, market
saturation after a new product introduction, the daily inventory consumption, the battery
recharging voltage while reaching a full-charge state, or �lling a glass of water. To determine
the polarity of a loop, the polarity of all the causal relationships within it must be assessed.
Chained causal relationships transfer polarities following the typical algebraic rules of “plus
by plus is plus, plus by minus is minus”. Hence if, by following the loop, the overall polarity
sign stays �xed after the whole loop has been walked then the loop is a self-reinforcing one,
the opposite is true if the sign swaps at the end of the loop walk.

Regardless of the fact that only these two types of feedback are possible, a model
might contain thousands of loops interacting with each other. The higher the number of the
loops in a model and the longer their average length, the more complex the system response is
to forecast. The system response is what emerges at the end of the interplay of all those



4 – System Dynamics : Understanding Complex Systems 71

feedback loops together. The resulting equilibrium state is reached by the interaction of three
basic behavioural modes, namely,

1. Exponential growth (decay), when the dominant loops is a self-reinforcing one,

2. Goal-seeking, when the dominant loops is a goal-seeking one, and

3. Oscillations, when the dominant loop is goal-seeking one with some delayed
relationship among some of its variables. In other words, oscillations are generated
because during the time required to decide what to do to react to the unwanted
change, the system keeps changing in the unwanted direction. When the
countermeasure is applied, the system response opposes his direction to a point where
it overshoots the target again but from the opposite side. Looped inde�nitely this
situation generates oscillations.

Fig. 4. 4. The basic behavioural modes of complex systems

These are the dynamics that would be generated by single loops, but when those get mixed
more interesting behavioural modes emerge, namely

1. Capacitated growth, also called “S-shaped growth”, underpins the concept of
“nothing can grow or decline forever”. In this situation, both positive and negative
loops with no delays exist in the system but an initial exponential growth is
dominating, gradually saturating the available system carrying capacity up to a point
where no more growth is possible. The system carrying capacity is represented by any
“global constraint on resources” required by the whole population under assessment.
The underlying assumption to S-shaped growth is that the increase in the population
does not reduce the system carrying capacity. A typical example of S-shaped growth is
city population growth where as soon as the available housing is saturated no more
immigration toward the city is possible until new houses get built. This e�ect is
di�erent from a reduction in growth due to an increase of rent rates.
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Fig. 4.5. S-shaped growth

2. Capacitated Growth with Overshoot, occurs for the same reasons introduced for
vanilla S-shaped growth but in this scenario there exists some negative loops having
delays among their variables that dominates the picture when the carrying capacity is
approached.

Fig. 4.6. S-shaped growth with oscillations

3. Capacitated Growth with Collapse, occurs for the same reasons introduced for
vanilla S-shaped growth but in this scenario the assumption of a �xed carrying
capacity under population growth is relaxed. Collapse is thus intuitive given that an
increasing population erodes an increasing number of resources, up to a point where
the rate of creation of new resources is outweighed by the rate of depletion by the
population.

Fig. 4.7. S-shaped growth with overshoot

4. Equilibrium, occurs when either the modelled dynamics have no substantial e�ect
on the system state, or when powerful negative loops dominate the picture ensuring
the preservation of equilibrium to a �xed steady state. While this behavioural mode
might seem uninteresting, �nding equilibrium conditions for the analysed system
might be a non-trivial task. On the other hand, setting the developed model in an
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initial equilibrium condition is a mandatory requirement in order to isolate the e�ect
of additional stimuli during the validation phase of the model. From studying the
equilibrium properties of the system it might turn out that equilibrium is made of
behavioural patterns, such as a constantly oscillating response of constant phase and
amplitude, or no equilibrium at all is possible.

5. Randomness, shows up as a proof of the ignorance of the modeller upon some
system aspects, hence randomness typically comes from exogenous variables included
in the model.

6. Chaos, presents in systems generating dumped irregular �uctuations. Studying chaos
implies the adoption of various tools like phase-plots and limit-cycles. (see Sterman
Chapter.2 for a detailed review of chaos)

Fig. 4. 8. Chaos analysis in the Beer Distribution Game, extracted from Sterman.

Being aware of these behavioural modes gives modellers the best way to reverse-engineer their
models by looking closely at the studied system response before embarking into the model
development phase. For instance, consider Fig. 4.9 where the cumulated Whirlpool inventory
trends of the Cassinetta Plants during 2021 divided by product category are shown. Looking
at the trends it can be seen that

For refrigeration items, a growth with collapse behaviour followed by an oscillatory
equilibrium seemed to occur. This analysis suggests that in May 2021, the perpetuated stock
accumulation from January saturated some sort of �nite system carrying capacity item (e.g.
the available storage space) to a point where some of this was lost (e.g. reduction in available
vendor willing to accept stock subcontracting agreements), stopping the stock growth to
continue, and settling around the new carrying capacity value. Oscillations prove the presence
of goal-seeking loops a�ected by some sort of delay, thus the most plausible hypothesis is that
such dynamic is generated by the attempt to keep inventory to targeted levels in profit plans but
to do so intensive and slow SAP use must be done, delaying the execution of
countermeasures.

For cooking items, an oscillatory behaviour seemed to occur, plausibly suggesting the
same underlying causes found for refrigeration items.
Randomness exists in both ends, capturing the contingent nature of day-by-day situations
that might occur during the pursuit of the strategic goals and generate irrational measures to
the modeller’ mental model.
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Fig. 4. 9. The cumulated inventory trends of the Whirlpool Cassinetta plants during 2021.

The last essential ingredients required to read, understand and, possibly, draw SD models are

1. Stocks, represent accumulations of things flowing in the system. The concurrent set of
all their values at any moment in time is what characterises the system state.
“Trapping” objects within them, stocks are the source of disequilibrium in a system,
decoupling the rate of change of �ows in the system. Accumulating �ows, stocks are
mathematically represented by integrals.

2. Flows, represent the things that move in the system and their role is to let the system
state move in the continuous system state space.

3. Valves, represent flow controllers regulating the speed of change in the system.

wStock, Flows and Valves are the essential components that can not miss in any proper SD
model. In addition, some helper variables are available to modellers

4. Auxiliaries, quantities re-computed at each timestamp starting from the current
state of the system,

5. Lookup functions, user-de�ned non-linear relationships among two variables as
shown in Fig. 4.10,
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Fig. 4.10. Table function relating Capacity utilisation and pending orders worklog, Sterman.

6. Constants, immutable values in the simulations.

Fig. 4.11 shows the basic stock-and-�ow SD notation and the clear “hydraulic metaphor”
characteristic of SD modelling, while Fig. 4.12 shows a full-�edged SD model developed by
General Electric to evaluate the e�ect of leasing durations on the new car launch sales, taking
also into account the used-car market dynamics.

Fig. 4.11. Stock-and-flow notation developed by Forrester in 1958.

Fig. 4.12. General Electric SD model to determine the effects of leasing durations on new product introductions
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SD was developed by Jay W. Forrester in the mid-1950’s at the Sloan School of
Management of Massachusetts Institute of Technology (MIT). The derivation of SD, as
many things in engineering, traces back to military applications. Forrester joined the newborn
Sloan School of Management in 1956 after a life spent as an Electrical Engineer mostly
working on military applications for the U.S. Navy. On this stage, Forrester had his �rst
contact with the simulation �eld, being the �rst in devising an aircraft �ight simulator to
prove the capabilities of the emerging digital computers technology. Such an application
brought him fully into the Computer Science �eld, heading the MIT Digital Computer
Laboratory where he released a stream of remarkable innovations that became industry
standards,  such as the coincident-current random-access magnetic computer memory.

Backed by this background and his managerial experience derived from the MIT Labs
and many research division held, he concluded that the impassable impediment to progress
came mostly from the managerial side of things rather than the engineering one, a direct
consequence of the fact that social systems were found much harder to understand and
control than physical ones. Forrester's participation at the MIT Sloan School of Management
allowed him to study the key success and failure factors of corporations. SD indeed came out
during a “serious exercise” held manually by Forrester while consulting for the General
Electric (GE) management regarding worrying resignation cycles happening in multiple GE
plants every three years. On that stage, Forrester proved, devising a manual stock-and-flow
diagram, that such events were not driven by GE management beliefs, namely the at the time
economic recession, but they were a direct consequence of the latest adopted company hiring
policies. From that moment on, it was clear to Forrester that a quantitative approach in
studying how human behaviour led to decision making was possible, a bold statement at that
time, being the realm of management a strongly qualitative one, driven by uncodi�ed
knowledge, senior experience and “gut-feelings”. Hence, it could be said that Forrester ideas
pioneered Management as a real branch of science.

In the years ahead, Forrester’s radical ideas quickly gathered consensus among MIT
graduates, leading him to �rst develop the �rst SD dedicated programming language called
S.I.M.P.L.E. (Simulation of Industrial Management Problems with Lots of Equations) in 1958
and DYNAMO in 1959 which became the industry standard in current SD softwares
releases.

4.3. System Dynamics against Discrete Event Simulation

SD is not the only tool available for researchers to simulate large complex systems.
Indeed, as reported by Tako et al. 2011 in their literature review, Discrete Event Simulations
(DES) o�er a widely applied alternative to SD, especially for applications of scheduling,
resource allocation and capacity planning. In the Supply-Chain Management context, DES
applications outweigh SD ones in most of the themes designated by the authors, apart from
studies on the Bullwhip e�ect, suggesting a preference for DES on the operational and
tactical themes whereas SD seems more suited for strategic analysis.
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Fig. 4.13. Comparison results between DES and SD uses in SCM, extracted from Tako et. al 2011

Being both simulation tools, they both share a panel of features and few essential
di�erences. Being the author non-familiar with DES is out of the scope of this section to
declare a winner among the twos but just to present the available alternatives. From Tako,
what seems a promising approach is a hybridisation of the two methods so as to achieve
higher performances.

As intuitable by its name, DES atomises the system response in a discrete sequence of
events (and not timestamps). The whole simulation is just basically a schedule of all events
happening throughout time, which is merely a variable used to order such events occurrences.
The list of possible events is provided by the modeller and scheduled to occur at any moment
upon stochastic use of probability distributions. Events occur when, upon the extraction of
pseudo-random variables from those distributions, the relative cumulative probability is
higher of a certain threshold. Occurrence of an event might trigger a cascaded priority queue
of chained events. The occurrence of an event lets the system state change permanently. The
state of the system is determined by the set of values of the attributes assigned to the model
entities. Multiple events can happen concurrently at the same time.

The discrete nature of DES entails the biggest di�erence with SD. In DES, simulation
time is a cause of event occurrences. No changes to the system state are possible in the
transition phase between two “moments” of the simulation.

In SD the e�ects of an emerging dynamic might virtually spread among all
timestamps in a continuous way, being the approximation logic based on a “continuous” time
integration assumption of its variables. Continuity is given by a constant quantisation of time
as required by the modeller.

Being brief, reproducing with high �delity a weather forecasting model taking
temperature changes into consideration is not reproducible by DES, while it is in SD. On the
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other hand, a model of a waiting queue at a postal o�ce is reproducible with high �delity in
DES, but also in SD. However, it must be acknowledged that in such a case the heavier
computational requirements needed to perform a continuous integration are somehow
wasteful because they will not yield an enhanced �nal answer.

Fig. 4.14. DES integration approach against SD one.

Every DES model can be represented by the combinations of the followings:
1. Servers, the equivalent of stocks in SD. They keep entities in place for a certain

period of time;

2. Gates, the equivalent of valves in SD. They let entities move along the system;

3. Entities, representing single objects moving in the system. In SD there is no need to
refer to speci�c object instances rather similar objects are grouped in the same �ows;

4. Queues, similar to delays in SD. Entities stationate in the queue for an undetermined
period of time.

On the other hand, in SD everything is modelled only as a set of stock and �ows. Fig. 4.15
presents a simple DES model representing the passenger boarding dynamics of an aircraft.
Passengers are the Entities while the corridor is the Queue. At each seat row, one passenger at
the time can take a left or right seat. This is represented by a Server of unitary capacity. Once
seated, entities leave the system, thus seats represent Exiting Gates.

Fig. 4.15. A DES model representing passengers boarding on a flight
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Finally, DES solutions are supported by tools commonly used by researchers in the
SCM �eld, like MatLab, something instead missing for SD which instead requires the use of
proprietary softwares (e.g. Vensim).

4.4. System Dynamics against Operational Research

On the other side of the spectrum, simulations are opposed to exact methods and
operational research methods in general, belonging more to the realm of heuristics. The
typical aim of both is to determine a set of values for the problem input variables so as to
maximise or minimise an objective function (e.g. a cost function to minimised, a pro�t
function to be maximised),

Exact methods di�er from heuristics because of their mathematical provability of
yielding the best solution possible for the tackled problem, thus also called optimal solution.
However, a big downside of exact methods is that they escalate in solving complexity as large
as the number of the variables in the system gets, rapidly leading to the famous category of
Nondeterministic Polynomial (NP) and NP-hard problems. For those no deterministic
polynomial algorithm is known able to solve them in a bounded time, typically requiring
deploying logarithmic or exponential complex algorithms to solve them. All these translate
from long computational times to non-solvable problems at all. Fig. 4.16 shows how the
solving time complexity, also denoted by the big-O notation O(f(n)), grows as the input size
grows.

Fig. 4.16. Solving complexity growth of different algorithms classes, extracted from Della Croce, 2021.

The biggest advantage of heuristics is thus their faster solving speed coupled to a
“good enough” precision. Their performances are given by the di�erent approaches followed
to tackle the problem. While exact methods seek for exact mathematical formulations to
produce the optimal solution, heuristics instead try to brute-force it by guessing all possible
combinations of the inputs and later checking the �nal objective value reached under the
problem constraints. The more cleverly the guessing game is held, the faster and the more
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accurately the heuristic converges to the optimal value. This versatility led researchers to devise
a plethora of heuristics exploiting di�erent strategies to explore the solution space of the
problem, sometimes also by getting inspired to physical thermodynamic concepts as in the
case of Simulated Annealing. In Simulated Annealing the search strategy is constructed on
the concept of “minimum energy state” and “temperature” of the system. A higher
temperature equals a higher entropy of the system, letting the heuristics behave more
frenetically in the exploration of the space and moving around following a random walk logic.
When the temperature settles down a steepest descent walk is followed instead. By devising
temperature pro�les resembling the “annealing cycles” used in metals manufacturing
processes, the solution space can be explored without getting stuck in a local optimum. A
promising trend is brought in the �eld of operational research by the introduction of
matheuristics, namely heuristics exploiting exact methods to construct their solution space
exploration rule.

For the reason given above, exact methods seem applied more frequently to problems
pertaining to the operative or tactical level, delegating broader scenarios to other methods
among which simulations are a �rst choice. Finally, as evidenced by Simchi-Levi, Chapt. 2,
being exact methods most of the time ran against aggregated and imprecise input data, in the
decision maker perspective their cost in providing an exact solution to an approximated
problem is typically higher than relying on an good-enough approximate solution to an
approximate problem that converges much faster and thus can be rerun multiple times.

Fig. 4.17. List of suggested tools to use for different problems categories in SCM, extracted from Simchi-Levi.

4.5. Existing SD applications to Supply Chain Problems

Sterman's contribution in his famous “Business Dynamics” represents today's biggest
SD body-of-knowledge. In that piece a broad span of themes is touched, ranging from
pandemic spreads to supply-chain management, thus showing the extreme �exibility of SD as
a tool for exploring di�erent �elds following an empirical approach. As it will be seen in
Chapter 4, extensive references are done in this study to Sterman, Chapter 16-17-18 so as to
recreate the base underlying structure of the proposed SD model.

In academic literature, SD seems heavily used to address topics pertaining to “holistic
issues”, thus themes of di�usion of innovation, governmental policies e�ects or
Bullwhip-reducing cooperation strategies in supply-chains emerge. Following, a panel of
recent academic uses of SD pertaining supply-chains considered highly relevant during the
development of this study are introduced.
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1. Dominguez, Cannella, Ponte, Framinan, 2021, explore the e�ects of information
sharing among subsets of agents in a multi-echelon supply-chain when the majority of the
agents do not collaborate instead. The developed SD model allows the author to benchmark
seven di�erent information-sharing scenarios, drawing managerial recommendations for
decentralised supply-chain contexts.

Mangano, Zenezini, Cagliano, DeMarco, 2019, develop a SD model to quantify the
e�ciency gains induced by the di�usion of ICT innovative platforms in the context of city
logistic operators and last-mile deliveries.

W.S. Chang, Y.T. Lin, 2018, developed a SD model to assess supply-chain resilience to
disruption induced by extreme variation in Lead Times in a multi-echelon context made a
factory, a distributor and a retailer. The authors exploit their model response to devise two
e�ective mitigation strategies.

A. Perugini, A. C. Cagliano, 2018, develops a SD model to review the internal logistic
dynamics of the Loccioni Group. In this study the model is exploited by the author to
underpin ine�ciencies in the current picking processes involved in a typical
Engineering-to-Market Loccioni’s customer order. The study concludes by illustrating
improvement proposals based upon the model response to Loccioni’s historical data.

M. Postorino, A. De Marco, 2018, after a visiting period at the College of Technology
Innovation of Zayed University of Dubai, the author develops in his master thesis a SD model
to identify investment opportunities that could lead to an increase in the TEU capacity of the
Dubai logistic corridor project.

A. C. Cagliano, Carlin, Mangano, Rafele, 2016, pursue an investigation about the
key drivers of the di�usion dynamics for Full Electric and Hybrid vehicles adoption by
third-party logistics service providers (LSP) in the context of parcel deliveries in the city of
Turin, Italy. A SD model utilising the Bass di�usion model as di�usion engine is devices with
the aim of understanding how e�ective the spreading mechanism of word-of-month,
advertisement, public concern about sustainability and public incentives are in driving the
shift to greener logistics.

Langroodi, Amiri, 2016, developed a SD model representation of a multi-echelon,
multi-product, multi-region supply-chain made of �ve main cascading actors, namely
retailers, �nal product distributors , manufacturers, material distributors, and suppliers,
spread in four regions. The aim of the modellers was to determine which region should be
entitled to rule the others so as to minimise the Bullwhip e�ect under a stochastic demand
input.

As it emerged above, di�erently from Operative Research and Optimisation, SD
seems capable of moving nimbly between operational, tactical and strategic contexts. Exact
provability remains the only downside of SD with respect to optimisation-based approaches.
On the other hand, SD biggest advantage is that most of the times managers hardly base their
decision making on exact but rigid optimisation results, rather they privilege agile
“roughly-right” heuristics that can be re-run quickly against new emerging environment
condition
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Chapter 5

The Proposed Model

“ The eye only sees what the mind is prepared to comprehend. ”
Cit. Henri Bergson

There is no point in creating a model that should be trusted “blindly” on the modeller’s
words, hence in this chapter the proposed SD model is fully disclosed to the reader by
decomposing it to its individual parts. Starting from the plain explanation of the author's
dynamic hypothesis about DDMRP, the focus shifts on its e�ective development organised
in three separated waves. To close each wave, the constructed hypothesis is tested for
impairment by applying multiple validation strategies against it, such as historical data �tting,
extreme test condition and univariate sensitivity analysis. In this chapter all the knowledge
collected throughout the previous chapters is pulled together by the desire of being mature
enough so as to understand it, making not an exact model of reality but an open window
about it.

5.1. Model boundaries and the initial causal loop diagram

To apply System Dynamics e�ectively is mandatory to have a clear idea of what the
purpose of the model is. On the other hand, particularly for non-expert modellers as the
author, the typical problem at the beginning is not where to start but where to cut it. The
simplicity of the System Dynamics tools for modelling somehow allows adding causal
relationships between variables virtually for free, giving the impression to rookie modellers to
be building a very sophisticated model.

As anticipated in Chapter 3, Causal Loop Diagrams (CLD) are the �rst tool provided
by System Dynamics theory to tackle this issue and force the modeller to lay down the
underlying dynamic hypothesis of the study - thus con�rming if there actually exists one - so as
to later benchmark it against the insights revealed by the agents living the real system. Most of
the CLD cannot be considered enough to build a complete SD model, being this task rather
performed by developing stock and flows diagrams. On the other hand, CLDs are usually
complex enough to map the key causal relationships and feedback loops that will be captured
by the �agship model, and act as “readable documentation” about the model boundaries.

For those reasons, developing a CLD for the case study was the �rst milestone to
reach. The initial CLD was developed trying to summarise the knowledge gained during the
6-months internship period in the company procurement o�ce, and it is presented in Fig.
5.1.



5 – The Proposed Model 83

Is trivial to see the messiness included by the author in this chart, �ercely trying to
build “the model of everything”. As mentioned before, this instead reveals a certain lack of
focus on the scope of the SD model. While this was also clear to the author at the time, it is
worth mentioning that this step took place when no further reading about SD was done, nor
any idea introduced in Sterman, Chapter. 16, about the stock management problem were
considered. On the other hand, keeping this CLD was considered of key importance in order
to �x a clear picture of what was the initial author's mental model about the real system
before deep diving with the analysis, and be sure that any possible personal bias would not be
included in the �agship model.

The main causal loops are highlighted in the chart by di�erent colourings. For the
ones considered the most impacting, a descriptive name is given and the loop polarity is
determined. This activity let an initial bias emerge: only 2 reinforcing loops are contrasted by
7 balancing ones, somehow biassing the system response to a general decay. Finally, variables
coloured in pink represent exogenous variables, thus their dynamics are not studied.

To e�ectively read the chart, it is suggested starting from its “core loop” B1,
highlighted in blue, in the centre. Indeed, all “dynamics” are builded on top of the “Daily
Consumption” balancing loop which characterise the interaction between the daily demand
for goods and the on-hand inventory. Every day, the daily demand is compared with the
actual inventory on-hand, de�ning the satis�able portion of demand. This quantity is
withdrawn from the inventory in the form of daily shipments, closing a balancing loop. It is a
balancing loop given that an increased quantity of available stock allows more daily
shipments, thus higher inventory withdrawals and so a reduced inventory to start with in the
next iteration.

The picking operations performed by B1 trigger the “Buffer Replenishment”
balancing loop B2, highlighted in light blue. The goal of B2 is to prevent the inventory to
stock-out, issuing an higher replenishment order to the upstream productive nodes as lower
as the daily inventory position is, thus closing a balancing loop.

It is typical of many industries that the unsatis�ed portion of daily demand is not
immediately lost, rather this quota of orders gets accumulated in what is usually referred to as
“orders on-allocation”. This situation usually occurs either when:

1. there are strategic customers to whom a percentage of the productive capacity
must be always assured thus other minority customer orders get intentionally
delayed, or

2. new product launches are announced, so orders get prioritised in order to prevent
inventory stock-outs during the production ramp-up stage, or

3. inventory cannot actually satisfy demand.

Obviously, customers that see their orders being put on-allocation are willing to wait up to a
certain amount of time before deciding to withdraw their order and seek for alternative
procurement. This time-lag is conventionally known as the “Customer Tolerance Time”
(CTT) and is usually aggregated as the average - or the minimum - CTT of each customer.
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There are many ways in which orders on-allocation can be prioritised, in the proposed model
the FIFO logic is applied instead mainly due to its simplicity in modelling in SD. Moreover,
the FIFO approach allows the introduction of CTT in the explanation of the company order
ful�lment process.

Fig.5.1. The initial Causal Loop Diagram

The “Stock-out” reinforcing loop R1 and the “Shortage Recovery” balancing loop B3 try to
grasp the dynamics explained above. Those loops are intertwined and can be considered as
two sides of the same coin. Indeed, the goal of B3 is to reduce the order on-allocation backlog,
immediately withdrawing the maximum available amounts from the incoming replenished
quantities in order to ful�l within CTT all the back-orders, thus preserving a high customer
satisfaction, and closing a balancing loop. On the other hand, reducing the net replenished
in�ow of goods to the inventory also reduces the available quantities to ful�l new demand,
generating more orders on allocation, closing a reinforcing loop instead. The interplay of R1
and B3 produces the sort of e�ect of a “cat chasing its tail”, where the company (the cat)
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trying to ful�l backorders (the tail) as soon as possible also reduces the daily service levels,
generating new orders on-allocation. Thus an interesting trade-o� between service levels and
customer satisfaction is generated by the dominance of any of two loops.

Being the assessment of what happened in Cassinetta during the 2021 spring (see
Chapter 2) the �l-rouge of this study, a modelling e�ort was spent in order to assess the
possible dynamics generating inventory excesses and high obsolescence risk.

In the initial CLD the excesses are considered generated mainly by an error in the
forecasts. The dynamics generating the forecasting error are considered in�uenced only by 2
drivers:

1. The actual difference between actual sales and forecasted sales, revealed only at each
new iteration of the simulation, and

2. The too delayed production response to backorders.

While the �rst driver is quite self-explanatory, the second one requires a bit of abstraction.
When unsatis�ed demand gets accumulated in the orders on-allocation backlog, a
count-down dictated by the CTT starts. If the productive environment is not capable of
pushing enough goods with a shorter-than-CTT lead time, those orders will be lost. If this
situation occurs, most probably the production of those expedited requests has already
started and they are currently developing along the line. Once orders for those quantities get
cancelled, by all means those represent not-anymore-needed units, or in other words, excesses.

Such dynamics try to be cathed by the interplay of the “Precisely Wrong” balancing
loop B4 and the “Excess ready for tomorrow sales” balancing loop B5. Considering all the
above, the fact that those dynamics should emerge by the interaction of two balancing loops
can be considered as a weakness of the model. On the other hand, loop B5 is a natural
consequence of the second driver. Consider for example that the forecasts are 100% correct,
thus the only source of mismatches between forecasted demand and actual sales are the
cancelled orders due to a slow productive response. If forecasts stay accurate, the excess
produced in the past is not dismantled instantly but can be actually exploited to promptly
satisfy demand, thus reducing new shortage creation and, thus, the chances to produce
additional excess due to slow production. Finally, as was reported by multiple GSS analysts, in
some scenarios :

- “ producing something sometimes is better than producing nothing ”,

- “ there are costs associated with an empty production line ”,

- “ some high-runners are produced even without a specific demand ”.

Is not a novelty that high-volume production environments such as �ow-shops prefer mostly
stable schedule plans and throughput rather than “starts-and-stops”. Thus, excess generation
might also be explained as the result of the process of trying to couple a constant supply signal
to a �uctuating demand one. Additional underlying dynamics explaining the excess
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generation are thus hypothesised. In addition to B5, other 2 additional “excess absorption”
mechanisms were identi�ed:

1. Sales discounts (loops B6 and B7), and

2. Goods obsolescence.

Described in the top section of the CLD, obsolescence dynamics were mainly assessed from a
�nancial perspective. The key metric considered for obsolescence was the portion of the
obsolescence fund left available after each iteration. The obsolescence fund represents a
�nancial reserve that Whirlpool instantiates yearly - along with the pro�t plant - and is used to
discount obsolescence-related losses. Practically, it is used as a benchmark metric to
understand how rapidly obsolescence material grows in which plant and compresses pro�ts.
After a 12-months delay with no good movements (see above), materials are considered
obsolete. Being the CLD focused on �nished goods, obsolete units can either �ow out of the
system as “spare parts” or “resellable components”. Thus, for each obsolete unit, the total cost
for storage and disassembly is accrued as “sunk costs of disposed materials”. Disassembling
costs are considered sunk because they are “incurred twice” given that previous costs were
incurred to assemble the �nished product together. These costs are netted with the total gains
from scrapped material and components resellings revenues, so as to establish the net decrease
(or very unlikely increase) of the remaining available fund. The obsolescence section holds at
its core the second reinforcing loop of the model R2, “The obsolescence trap”. It is a reinforcing
loop given that a decrease of the available fund after some time obliges the acquisition of
additional capital to o�set losses, thus increasing the overall company weighted average costs
of capital (WACC) in the long run. An increase in WACC leads to an increase also in the
costs attributed for future obsolete material, thus further reducing the obsolescence fund
even quickier.

To conclude, to understand the overall interplay of all the presented dynamics in a
single metric, the �nal aim of the modeller was to let all loops have an impact on the �nal
DCM of each SKU.

5.2. Policy Structure Diagram

Fig.5.2 presents an high-order representation, also known as policy structure diagram,
of the �nal proposed SD model, highlighting the basic interaction between its six sub-models
and the most relevant KPIs generated by them.
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Fig. 5.2. Policy structure diagram of the proposed SD model

The choice of a modular approach was pursued in order to keep the model

1. as simple to understand as possible, thus allowing future modellers to quickly step
into it (e.g. Whirlpool employees),

2. easily manageable,  and

3. eventually, scalable.

All modules play a pivotal role, but, as to speak, the essential modules are the one
dedicated to material inventory dynamics, colored in light yellow.

The Finished Goods Inventory Module encloses all dynamics related to goods
production, �nished good inventory management and warehousing. To do so, it must
interact with the Raw Materials Inventory Module where all dynamics related to raw
materials inventory management are modelled instead. The interaction between them is
established through Production Orders, released by the Finished Goods Inventory module
while engaging into the Bu�er Replenishment Loop B1 to restore the Target Inventory
threshold. The Raw Materials Module responds by only releasing the Feasible Production
with Raw Materials on Hand, acting basically as a potential bottleneck for upstream
replenishment. The e�ective released production saturates a portion of the �ow-shop
capacity, de�ning the Line Load. Released production remains stationary by means of a
MATERIAL DELAY for a �xed period of time, namely the Manufacturing Lead Time,
before moving into the �nished good inventory stock.
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The Suppliers Module reproduces the supply base as a single entity which, upon
receipt of a Purchase Order (e.g. Open Schedule Lines) from the Raw Materials Module,
releases material after a �xed time-delay, namely the Agreed Purchasing Lead Time. In
contrast with what is done in Sterman, the Suppliers Module is a rather simplistic one. This
approach was reasonable given that Whirlpool obviously have no visibility about its suppliers
data (even for the co-located supplier in Cassinetta) apart from the Purchasing Agreements
and the Open Schedule Lines, thus it was preferred to avoid modelling something unknown
rather than embarking into a guessing game about the suppliers dynamics, running the likely
risk of just introducing noise in the �nal model response and making its validation trickier.
Very simple logics for modelling Material Delivery Delays are included by adding
randomness to the initial Agreed Purchasing Lead-Time.

The remaining modules are de�ned as supporting modules, even if they have the
potential to drive the whole model dynamics.

The ADU Estimation Module represents one of the main DDMRP customization
build upon the Sterman base model, re-applying the agent's expectation creation theory
concepts introduced in Sterman, Chapt. 10, so as to simulate the ADU estimation process
typical of DDMRP. Its role in the model is to generate the blended ADU expectation trends,
exploiting both past and future desired consumption trends. Past desired consumptions are
collected from the Order Ful�lment Module, where backorders and daily new orders are
aggregated so as to determine the daily Desired Shipment Rate, that is the rate at which the
manager of the system would like to pick-pack and ship goods from inventory, assuming an
in�nite availability of goods. In other words, the Desired Shipment Rate represents the
shipment rate which would always guarantee a unitary service level and fill ratio. The
discrepancies between the Desired Shipment Rate and the current Finished Goods Inventory
determines the Daily Fill Ratio. Unsatis�able orders accumulate among the Orders
On-Allocation, waiting to be either ful�lled or cancelled. The ratio between the cancelled
orders at each timestamp and the total orders received with CTT determines the Customer
Satisfaction.Past ADU consumption trends are then evaluated by averaging the Desidered
Shipments Rate requested during the previous 6-weeks.

Future consumptions are evaluated through an averaged linear projection of the rate
of change in expected customer orders. Such rate is nothing more than the di�erence, at each
simulation timestep, between the new actual demand and the previous manager's expectation
about it. All those metrics are produced by the Demand Forecasting Module, where the
well-known process of exponential smoothing of forecasts is performed. Both the Demand
Forecasting Module and the Order Ful�lment Module are mostly re-creations of the base
models presented in the Sterman, with little additions to let them to also take into account of,
respectively, a second input demand trend, namely the Qualified Demand necessary to
implement DDMRP, and the order cancellations logic.

Finally, in the S&OP module. Based on forecasts and ADU trends, the target
inventory levels are set accordingly to the following basic approaches.

1. Reorder-point logic. The manager sets the target inventory levels so as to maintain a
�xed amount of “days of coverage”, based on her expectation about future customers
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orders. Replenishment orders are generated taking full consideration of the state of
the supply-line (see Sterman Chapter 16) and the expected customer orders.

2. DDMRP logic. The manager sets the target inventory levels as introduced by
DDMRP theory (see DDMRP Optimal Inventory Range in Chapter 2), based only
on her estimates about the ADU trends. Replenishment Orders are generated using
the Net Flow Equation, thus taking full consideration of the state of the supply-line.

The S&OP module represents the corporate operative strategy development, where
management can actually decide which inventory policy to apply to manage inventories and
benchmark �nancials.

The proposed model can be against a desired number year assuming daily buckets as
the minimal time units. Therefore, all model’s parameters and inputs must be provided on a
daily-basis.

5.3. Model development

“ All models are wrong, but some are useful ”
Cit. George E. P. Box

The CLD in Fig. 5.1 was reviewed multiple times with GSS analysts and the academic
tutor, deciding what to include and what to cut. The development plan would have followed
three waves where expansions to the model boundaries would have been done gradually after
passing a validation phase.

During the first development wave (W-I), the focus would have been on modelling
general material movement dynamics from raw materials to �nished goods, discarding
any excess, shortage or obsolescence generation logic. Moreover, all �nancial metrics were also
paused. During this wave, the Sterman manufacturing company model template would have
been used to constitute the model backbone. Validation for this phase would have required
the model to reproduce the same behaviour shown in Sterman.

During the second development wave (W-II), obsolescence generation, productive
capacity saturation and order cancellations dynamics would be added. Validation of
this phase would have required all modi�ed stocks not to violate the basic physical law of mass
conservation, thus falling below zero unexpectedly. From these additions the Daily Service
Level and the Customer Satisfaction KPIs would be computed. Obsolescence would be
evaluated by the total obsolete material trends and the accrued obsolescence risk.

During the last third development wave (W-III), DDMRP customisation would be
added on top of the Sterman base model, modifying it as little as possible so as to not
substantially change its known behaviour. This would allow an easier interpretation of the
new model response. Finally, an initial connection with financial metrics would be done,
computing average inventory levels, turnovers and days of stock. Validation of this phase
would have been carried out by benchmarking the model against known and largely
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published DDMRP simulation datasets �rst. Following, an extensive validation phase based
solely on the Whirlpool real inventory dataset would be carried out. This, as one can imagine,
represents the most delicate part of the study, where substantial discrepancies with historical
trends would mean "a blinded investigation in understanding why". On the other hand, only
divergences create opportunities to improve the model, to a point hopefully where a higher
understanding about the real one is reached.

Finally, both model development and its validation and sensitivity analysis were
performed by using the Vensim® PLE Plus software package.

As a legend for the reader, in the following paragraphs the following drawing conventions
applies
- white boxes identify Stocks,

- red pipes identity Flows,

- blue arrows identify Causal relationships among the model variables,

- orange hexagons identify Simulation scenarios,

- light blue boxes identify Table functions,

- yellow circles identify KPIs,

- dashed black arrows identify input variables for KPIs computing,

- pink text and arrows identify Exogenous variables and their effect on the system,

- grey arrows identify initialization conditions.

Details about the initialisation condition necessary to set the DDMRP con�guration in an
equilibrium state are given in Par. 5.3.5.6.

5.3.1. Wave I : Reproducing the Sterman base model

5.3.1.1. Finished Goods Inventory module

Fig. 5.3 introduces the base Sterman model dedicated to the �nished goods inventory
dynamics, duplicated in the presented model with some slight changes to match it with the
study aims. The main changes applied concerns the fact that the proposed model, as opposed
to Sterman ones, is not grouping multiple �nished goods in the same stock. In addition, the
minimum time targeted for ful�lling incoming orders is assumed unitary. Thus, in
opposition to Sterman, all the inventory on-hand and the daily throughput can be picked in a
single day. Following the panel of variables included in this section is introduced.
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Fig.5.3. Stock and Flow diagram of the base Finished Good Inventory Module

Daily Production Starts. Identi�es the size of the daily production order released
to the productive system. It can be seen as a “production kanban”. Its value is constrained
by either by the maximum production realisable by curren raw materials reserves or by the
required amount needed to keep the �nished good inventory to the targeted amount.

Context = Endogenous Type = Flow UOM = units/day

Daily Production Starts =
INTEGER
(
MIN
(

Feasible Production from Raw materials on hand,
MAX(Desired production rate, 0)

)
)

In the ideal case, thus when an in�nite availability of raw materials is coupled to an
uncapacitated productive environment, the manager of the system would be free to release
the production order that optimises the future state of the �nished good inventory, namely
the Desidered Production Rate. Hence, the fuzzy MIN function is utilised to implement this
logic, always selecting the Desired Production Rate if the amounts of raw materials available
allows even larger production, or constraining it to a complete withdrawal of raw materials in
the opposite case. Finally, the Desired Production Rate during periods of excess accumulation
might turn out to be negative. That is, the manager would like to get rid of some of the
available quantities. However, the Desidered Production Rate is bound to be non-negative,
being impossible to let the productive system absorb existing units. Rather this task might be
achieved by introducing �nished goods scrapping dynamics generated by their obsolescence
(see Par. 5.3.3.1.3). Finally, quantities are constrained to be �nite by the INTEGER function.

Feasible Production from Raw materials on hand. Being de�ned by variables
pertaining to the Raw Materials Module, its formulation and description is detailed in Par.
5.3.1.2.
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Desired Production Rate. The desidered production rate after the manager has
fully considered the current status of the Finished Goods Inventory supply line, namely the
WIP stock.

Context = Endogenous Type = Auxiliary Variable UOM
= units/day

Desired Production Rate =
INTEGER(Desired Replenishment Production + WIP adjustments)

The supply line is a central aspect of the stock management problem introduced in
Sterman. Brie�y, managers can decide whether to base their decision about the intensity of
their corrective actions on the system state solely considering the current level of the stock, or
by projecting the stock levels including future incoming quantities. Thus, a manager that fully
considers the status of the supply line is less likely to overreact to discrepancies to the target
objective. Consider for example a productive system facing a constant demand of 20 pcs/day
where the manager's duty is to keep inventory levels always above 100 pcs. Suppliers require
instead 5 days to ful�l orders. Imagine 120 pcs are kept in inventory at the beginning. During
the �rst day the manager sees her stock lowering to 100, hence it issues a replenishment order
of 120 pcs, covering today's consumption that led to the deviation from the target (e.g 20 pcs)
and the 5-days coverage required to ful�l her expectations about customer orders during
replenishment lead time (e.g. 20 pcs/day * 5 days = 100 pcs). If the manager keeps discarding
the status of the supply line to its stock, the next day it will be pushed even harder by seeing
the stock lowering to 60 pcs and issuing a replenishment order of 140 pcs. The suppliers
receive the new order and schedules it so as to be delivered in 5 days. If this process continues,
at time 5, the stock scratching at 20 pcs gets �nally replenished by the initial order of 120 pcs,
jumping to 140 pcs and relieving the manager pressure. Unfortunately, on the next day, also
the order of 140 issued on day 2 arrives, letting inventory spike to 270 pcs. At the end of this
cycle the manager sees its stock skyrocketing well above her targeted amounts, inducing excess
accumulations, and it could be avoided by considering the current material in transit. This
behaviour is extensively described by Sterman in its famous Beer Simulation Game and clearly
shows an example of agents bounded rationality in action.

Finally, the above formulation utilises the well-known anchoring and adjustment
theory introduced in Sterman about agents' beliefs creation starting from known reference
points. In this formulation, the anchors of the decision is the Desidered Replenishment
Production which is then adjusted to match the Desidered Production Rate with the desired
target levels of WIP inventory.

Desired Replenishment Production. The desidered replenishment volume to
keep the Finished Goods Inventory aligned with targeted levels, without considering the
current status of the supply line.
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Context = Endogenous Type = Auxiliary Variable UOM
= units/day

Desired Replenishment Production =
INTEGER
(
Expected Customer Orders + FG inventory adjustments,

)

In the above formulation, the anchor of the decision are the Expected Customer Orders which
are then adjusted to match the Desidered Replenishment Rate with the desired target levels
of the Finished Goods Inventory.

Expected Customer Orders. Being de�ned by variables pertaining to the Demand
Forecasting Module, its formu is detailed in Par. 5.3.1.4.

WIP. Accumulation of production orders released in previous timestamps of the
simulation that are currently �owing along the line. It groups all intermediate production
stages in the BOM. It represents the supply line to the Finished Goods Inventory stock.

Context = Endogenous Type = Stock UOM
= units

WIP = INTEGRAL(Daily Production starts - Throughput, WIP, Desired
WIP)

The initial condition set to be equal to Desidered WIP is mandatory to ensure the
suboptimal initial equilibrium state of the stock.

Desidered WIP. The desired level of the Finished Goods Inventory supply line so
as to yield the desired replenishment volumes required during a full manufacturing cycle.
The fuzzy MAX function is used to ensure non-negativity of a stock quantity representing
material objects.

Context = Endogenous Type = Auxiliary Variable UOM
= units

Desired WIP = MAX(Desirable Replenishment Production*Decoupled Lead
Time, 0)

WIP adjustments. The response of the managers to deviation of WIP from
targeted WIP, considering the reaction time required to collect data about the stock levels
and take action.

Context = Endogenous ; Type = Auxiliary ;UOM = units/day ;
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WIP adjustments = (Desired WIP-WIP)/WIP adjustment time

The above formulation assumes a linear adjustments logic applied by the system manager, as
done in Sterman.

WIP adjustment time. Manager reaction time required to detect shifts in WIP
levels and take corrective actions.

Context = Exogenous ; Type = Constant ; UOM
= days ;

Finished Good Inventory. The accumulation of all available �nished goods ready
for shipment. It represents the state variable of a real warehouse of �nished products set at
the end of each production line. It represents one of the most important variables of the
model.

Context = Endogenous ; Type = Stocks ;
UOM = units ;

Finished Good Inventory =
INTEGRAL(Throughput-Shipments, Finished Good Inventory, Target

Stock)

Target Stock. The desired level of the Finished Goods Inventory required to
guarantee stock-out protection considered the actual manager expectations of customer
orders.

Context = Endogenous ; Type = Auxiliary Variable ; UOM
= units ;

Target Stock = Expected Customer Orders*(Customer Tolerance
Time+Finished Good Safety Stock Coverage)

The above formulation assumes the Customer Tolerance Time being the Sterman equivalent
to the Minimum Order Processing Time.

FG adjustments. The response of the managers to deviation of Finished Goods
Inventory from Target Stock, considering the reaction time to detect changes to the stock.

Context = Endogenous ; Type = Auxiliary UOM = units/day
;

FG adjustments = (Target Stock-Finished goods inventory)/FG Inventory
Adjustment Time
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FG Inventory adjustment Time. Manager reaction time required to detect shifts
in Finished Goods Inventory levels and take corrective actions.

Context = Exogenous ; Type = Constants; UOM
= days ;

Customer Tolerance Time. The minimum time the customer is willing to wait
upon order release before seeking for alternative procurement.

Context = Exogenous ; Type = Constants ; UOM =
days ;

Finished Good Safety Stock Coverage. The desired minimum Finished Goods
inventory days of coverage with respect to the expected customer demand. It is the result of
the common company practice of setting a determined Service Level for di�erent SKUs.

Context = Exogenous ; Type = Constants ; UOM
= days ;

Throughput. Daily e�ective replenishment output of the productive system. It
represents the net quantity pushed upstream by a production order released during the
previous manufacturing cycle.

Context = Endogenous Type = Flow
UOM = units/day

Throughput = Potential Throughput

This quantity might be a�ected by losses due to scrapped materials generated by
overloading conditions of the production line. The WIP scrapping rate is an addition of
the proposed model to the Sterman base case and it is discussed in Par. 5.3.3.1.3.

Potential Throughput. The theoretical output if no losses occurred during the
manufacturing stage.

Context = Endogenous Type = Auxiliary UOM =
units/day

Potential Throughput =
DELAY MATERIAL(Daily Production starts, Decoupled Lead
Time,Shipments, 0)

Decoupled Lead Time. The manufacturing lead time (MLT).
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Context = Exogenous Type = Constant UOM =
units/day

Decoupled Lead Time = 56 days      (default)

As seen in Chap. 2, the concept of Decoupled Lead Time (DLT) is a novelty introduced by
DDMRP that di�ers from the conventional concept of MTL. However, by assuming in the
proposed model that only 2 bu�ers are placed in the BOM, namely on Raw Materials and
Finished Goods, the DLT can be mapped into the traditional MLT given that if only 2
bu�ers are considered then the time to move materials between them, namely the DLT,
equals to the MLT. This assumes the downstream bu�er is not stocked-out, as in the original
DDMRP de�nition of DLT.

Shipments. The daily actual shipped goods by the system.

Context = Endogenous Type = Flow UOM =
units/day

Shipments = MIN(Max shipment rate, MAX(Desidered Shipment Rate, 0)) ;

Being the Desidered Shipment Rate included in the formulation, it represents the connection
point between the Finished Goods Inventory Module and the Order Ful�lment module. It is
worth noticing that in the current formulation shipments and customer orders are
numerically equivalent but they refer to di�erent �ows, respectively materials �ows as
opposed to information �ows.

Desidered Shipment Rate. Being de�ned by variables pertaining to the Order
Ful�lment Module, its formulation and description it is detailed in in Par. 5,3.1.5.

Max Shipment Rate. The actual sustainable shipment rate provided by the
current inventory on-hand and daily throughput.

Context = Endogenous Type = Auxiliary UOM = units/day

Max Shipment Rate = MAX(Finished goods inventory,0) + Throughput

The above formulation entails a slight change with Sterman, given that in Sterman the Max
Shipment Rate is limited by the exogenous factor of Minimum Order Processing Time. In
the proposed model it is assumed that the manager is willing to ful�l all orders she can in a
day.

Actual Inventory Coverage. The current days of coverage equivalent of the
Finished Goods Inventory if Shipments stay �xed at current levels.
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Context = Endogenous Type = Auxiliary UOM = units/day

Actual Inventory Coverage = XIDZ(Finished goods inventory, Shipments,
0) ;

Actual Inventory Coverage. The current days of coverage equivalent of the
Finished Goods Inventory if Shipments stay �xed at current levels.

Context = Endogenous Type = Auxiliary UOM = units/day

Actual Inventory Coverage = XIDZ(Finished goods inventory, Shipments,
0) ;

5.3.1.2. Raw Materials Inventory module

Fig. 5.4 introduces the base Stock and Flow diagram describing the Raw Materials
inventory dynamics, replicating most of what was done in Sterman with some slight changes
happening mostly on the Suppliers side (see Par. 5.3.1.3). Slightly di�erent Table functions
are used to model Planners Expectations about Suppliers Lead Times and for Components
availability. The Raw Materials Inventory module applies the same concepts of the stock
management problem seen for the Finished Goods Inventory Module but, in this case, the
stock of raw materials aggregates all the different inputs used to manufacture one functioning
unit of the finished product. Hence, such formulation of raw materials cannot represent
typical multi-echelon product BOMs. To cope with the limitation, the module reduces all
components to one distinct instance called “raw materials” and uses auxiliaries and tables
functions so as to simulate an average reasonable availability behaviour of such an aggregated
component. On the other hand, as observed in Sterman, building a model that reproduces
BOMs with extreme �delity guarantees an extreme overcomplication of the model (even from
a time-complexity side) and rarefaction of the analysis focus, which in turn probably results in
marginal accuracy gains.
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Fig. 5.4. Stock and Flow diagram of the Raw Materials Inventory Module

Feasible Production from Raw materials on hand. The equivalent volumes of
�nished goods producible with the total raw materials inventory on hand. It represents the
connection point between the Finished Goods Inventory Module and the Raw Materials
Inventory one, being included in the Daily Production Starts formulation.

Context = Endogenous Type = Auxiliary UOM =
units/day

Feasible Production from Raw materials on hand =
Raw material usage/Avg BOM parent to child usage ratio

Avg BOM parent to child usage ratio. It represents the �rst arti�ce induced by
the Raw Materials Inventory module assumptions: being a typical product BOM made of
multiple components required in di�erent quantities on a functioning unit, this variable
de�nes the average of such requirements. If all components are used in the same quantities,
this variable represents the exact parent-to-child BOM ratio.

Context = Exogenous Type = Auxiliary UOM =
dimensionless

In the proposed model such parameter is set to 1 by default, representing a product BOM
where all components are used only once to make a functional unit, but it can be varied
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during the simulation.

Raw material usage. Represents the quantity of the aggregate component raw
material withdrawn from the raw material reserves. Being the �nished goods production a
“components aggregating” function, this quantity is always bigger than or equal to the
Feasible Production from Raw materials on hand.

Context = Endogenous Type = Flow UOM =
units/day

Raw material usage=
MAX(
0,
INTEGER(
Desidered Material Usage rate*
Components availability
(

XIDZ
(

Raw materials inventory,
MAX(Desidered Material Usage rate, 0),

1
)

)
)
)

Desired Material Usage Rate. It represents the desired amount the manager of
the system would like to withdraw from Raw Materials Inventory so as to execute the
production plan without delays.

Context = Endogenous Type = Auxiliary UOM =
units/day

Desired Materials Usage Rate = INTEGER(Desirable production rate*Avg
BOM parent to child usage ratio)

Being the Desirable Production Rate included in the formulation, the Desired Materials
Usage Rate represents an information bridge between the state of the Finished Goods
Inventory Module and the Raw Materials Inventory one. Such bridging represents the
dependent demand requested to the downstream echelon from the upstream one, thus it is the
SD representation of the MRP explosion and DDMRP decoupled explosion.

Components availability. It represents the second arti�ce induced by the Raw
Materials Inventory module assumptions: being the Raw Materials Inventory stock
representing also the total inventory of raw materials on-hand and, the lower this value it
gets, the higher the probability of some individual components to be stocked-out. Thus, a
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table function relates such probability with the status of the Raw Materials Inventory stock
normalised by the Desired Raw Materials Usage Rate.

Context = Endogenous Type = Look-up UOM =
dimensionless

Fig. 5.5. Table function definition of the Components Availability

Raw Materials Inventory. The accumulation of all purchased raw materials
ready to feed production lines. It represents the state variable of a real warehouse of raw
materials set at the beginning of each production line.

Context = Endogenous Type = Stock UOM =
units

Raw Materials Inventory = INTEGRAL(Raw Materials arrival rate-Raw
material usage-Raw materials obsolescence rate, Target Raw Material
Inventory)

Target Raw Materials Inventory. The desired level of the Raw Materials
Inventory so as to always guarantee enough raw materials to never constrain upstream
production plan requirements thus protecting Raw Materials from stock-outs during a full
replenishment cycle.

Context = Endogenous Type = Auxiliary UOM =
units

Target Raw Materials Inventory =
MAX(Desidered Material Usage rate*(Raw Materials Safety Stock
Coverage+Material Replenishment Inventory Coverage), 0)

Raw Materials Inventory Safety Stocks Coverage. The desired minimum
Raw Materials Inventory days of coverage with respect to the current production plan
upstream requirements.
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Context = Exogenous Type = Auxiliary UOM =
days

Material Replenishment Inventory Coverage. The desired minimum Raw
Materials Inventory days of coverage with respect to the expected delivery lead times from
suppliers. Planners are assumed to always try to build a raw materials inventory coverage
1-day greater than their expectation about suppliers’ replenishment delay.

Context = Exogenous Type = Auxiliary UOM =
days

Material Replenishment Inventory Coverage = Exp Purchasing Lead
Time+1

Expected Purchasing Lead Time. The current planners expected delivery dates
with respect to what suppliers claim.

Context = Endogenous Type = Auxiliary UOM =
days

Expected Purchasing Lead Time =
Agreed Purchasing Lead Time*Planners beliefs about suppliers Lead
Times(XIDZ(Perceived Purchasing Lead Time, Agreed Purchasing Lead
Time, 1))

Agreed Purchasing Lead Time. The delivery promised delay contracted with
suppliers by Schedule Agreements (see Chap. 3).

Context = Exogenous Type = Auxiliary UOM =
days

Perceived Purchasing Lead Time. The observed suppliers delivery delay. Being
the suppliers lead time reviewing process entailing di�erent kind of delays (e.g. reporting to
procurement, waiting real due dates, ..) such expectation adjustment process is described by
the SMOOTH function.

Context = Endogenous Type = Auxiliary UOM =
days

Perceived Purchasing Lead Time =
SMOOTH(Act Purchasing Lead Time, Time to perceive Act Purchasing Lead
Time)

The SMOOTH function applies first-order smoothing to the Actual Purchasing Lead Time
signal, thus creating a cascaded information delay. The result of this process can be seen in
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Fig. 5.6 and it is conventionally used to model situations where the decision maker tries to
�lter out high frequency oscillations in the signal to prefer average trends.

Fig. 5.6. The effect of the SMOOTH function applied on a step input signal increase

Actual Purchasing Lead Time. Being de�ned by variables pertaining to the
Suppliers Module, its formulation is detailed in Par. 5.3.1.3.

Time to Perceive Actual Purchasing Lead Time. The time required to
planners so as to detect changes in the supplier's delivery delays.

Context = Endogenous Type = Auxiliary UOM =
days

Time to Perceive Actual Purchasing Lead Time = MIN(Agreed Purchasing
Lead Time, Actual Purchasing Lead Time) + 5

Thus, planners become aware of a shift in the delivery lead time as soon as either the order
gets delivered beforehand or promised dates get infringed. However, the reviewing processes
of such a condition requires a full 5-days working week to take place to successfully engage
procurement too.

Planners Beliefs about Suppliers Lead Times. It represents the planner's
distrust in their suppliers' claims about Agreed Purchasing Lead Times. Such a relationship
is depicted by a table function relating the Perceived Purchasing Lead Times with what
planners really think the supplier Actual Delivery Lead Time is.

Context = Exogenous Type = Lookup UOM =
days
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Fig. 5.7. Lookup of the Planner beliefs about suppliers Lead times

It is worth noticing that the 45° line represents all those cases where planners believe in their
suppliers claims, whereas all points lying above the bisector line represents all those cases
where planners believe suppliers claims are just wishful underestimates. Finally, when
perceived suppliers delivery lead times overshoot substantially Agreed Purchasing Lead
Times, planners corrective action of suppliers lead times reaches a plateau and stops
increasing.

Adjustments to Raw Materials Inventory. The response of the managers to
deviation of Raw Materials Inventory from Target Raw Materials Inventory, considering
the reaction time needed to detect changes to the stock.

Context = Endogenous Type = Auxiliary UOM =
units/day

Adjustments to Raw Materials Inventory =
(Target Raw Material Inventory-Raw materials inventory)/Raw Materials
Inventory Review Period

Raw Materials Inventory Review Period. The time required for planners to
review the status of all Raw Materials on Hand by using the SAP software manual
trasfactions.

Context = Exogenous Type = Auxiliary UOM = day

From what is seen in Chap. 2, introducing the Industrial Inventory DP to the daily working
routines of material planners it is equivalent to saying that the value of the Raw Materials
Inventory Review Period lowers dramatically.

Raw Materials Coverage. The current days of coverage equivalent of the Raw
Materials Inventory if customer orders stay at current levels.
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Context = Endogenous Type = Auxiliary UOM =
units/day

Raw Materials Coverage = XIDZ(Raw materials inventory, Raw material
usage, 0)

Desired Materials Order Rate. The desired size of the purchasing order to issue
so as to maintain the materials replenishment cycle in equilibrium.

Context = Endogenous Type = Auxiliary UOM =
units/day

Desired Materials Order Rate = INTEGER(Desidered Materials arrival
rate+Adjustment to Ordered materials)

Desired Material Arrival Rate. The desired rate of materials deliveries from
suppliers so as to maintain the targeted Raw Materials Inventory coverage while satisfying
the production plans requirements too.

Context = Endogenous Type = Auxiliary UOM =
units/day

Desired Material Arrival Rate = INTEGER(Desidered Material Usage
rate+Adjustments to Raw Materials Inventory)

Raw Materials On-Order. The desired level of the Raw Materials Inventory so
as to always guarantee enough raw material to never constrain upstream production plan
requirements.

Context = Endogenous Type =Stock UOM =
units

Raw Materials On-Order = INTEGRAL(Raw materials order rate-Raw
Materials arrival rate, Target Materials On-Order)

Target Materials On-Order. The desired level of the Raw Materials Inventory
supply line so as to yield the desired replenishment volumes on proper dates and close the
material replenishment cycle.

Context = Endogenous Type = Auxiliary UOM =
units

Target Materials On-Order = Material Replenishment Inventory
Coverage*Desidered Materials arrival rate
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Adjustment to Ordered Materials. The response of the managers to deviation
of Materials On-Order stock from the Target Materials On-Order, considering the reaction
time to detect changes to the stock.

Context = Endogenous Type = Auxiliary UOM =
units/day

Adjustment to Ordered Materials = (Target Materials on Order-Raw
Materials on Order)/Order Release Time

Order Release Time. The time required to materials planners to review all Open
Schedule Lines, �ll the required documents and o�cially release to the suppliers online
portal a replenishment purchase order.

Context = Exogenous Type = Auxiliary UOM = day

Raw Materials Order Rate. The actual size of the released order to suppliers.

Context = Endogenous Type = Flow UOM =
units/day

Raw Materials Order Rate = MAX(0, Desidered Materials Order Rate)

Raw Materials Arrival Rate. Being de�ned by variables pertaining to the
Suppliers Module, its formulation is detailed in Par. 5.3.1.3.

5.3.1.3. “Suppliers” Module

Fig. 5.8 introduces the “Suppliers” Module embedded as a tail to the Raw Materials
Inventory Module. Di�erently from Sterman, the proposed model is not duplicated so as to
create another instance of a company in the supply-chain representing a supplier. Rather,
suppliers are seen as almost perfect entities that upon receipt of a schedule line they release
material after a certain Lead Time. This approach was mandatory for the reasoning in
Paragraph 5.##. However, a basic logic is deployed so as to recreate the common scenario of
delivering delays from suppliers, by applying a random pink noise generator to the Agreed
Purchasing Lead Time used to set the material release delay. Due to its simplicity, the
Suppliers Module is directly embedded in the Raw Materials Inventory Model.
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Fig. 5.8. Implementation of Suppliers in the proposed model

Raw Materials Order Rate. Being de�ned by variables pertaining to the Suppliers
Module, its formulation is detailed in Par. 5.3.1.2.

Raw Materials Arrival Rate. The daily actual purchased material arrivals at the
plant. Its value depends on whether suppliers are considered e�ciently responding to
orders or impacting the replenishment plan by arbitrary delays.

Context = Endogenous Type = Flow UOM =
units/day

Raw Materials Arrival Rate =
INTEGER(IF THEN ELSE(Purchasing Delays=0, Agreed Materials arrival
rate, Delayed Materials arrival rate))

Agreed Materials Arrival Rate. The Raw Materials arrival rate when raw
materials replenishment is executed by suppliers as planned by the Purchasing Agreement.

Context = Exogenous Type = Auxiliary UOM =
days

Agreed Materials Arrival Rate = DELAY MATERIAL(Raw materials order
rate, Agreed Purchasing Lead Time, Desired Raw Materials Order Rate,
0)
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The use of DELAY MATERIAL entails a slight di�erence with what is done in Sterman,
where materials resupplies from suppliers are modelled by means of a �rst-order delay. The
initial delay condition is set so as to match the initial Desired Raw Materials Order Rate.

Purchasing Delays. A boolean value allowing to activate the Purchasing Delays
Scenario. When TRUE, the actual supplier's response to commanded Raw Materials
Orders do not always match with the replenishment plan.

Context = Endogenous Type = Scenario UOM =
dimensionless

Actual Purchasing Lead Time. The actual suppliers’ response to commanded
Raw Materials orders when the Purchasing Delays scenario is turned on. The deviation
from agreed conditions is modelled by means of a random pink noise generator fed with
the Agreed Purchasing Lead Time as noise average value, and a standard deviation
uniformly distributed between 1 and 10 days. The degree of autocorrelation between noise
values is set to a 5-days full working week.

Context = Endogenous Type =Auxiliary UOM =
days

Actual Purchasing Lead Time = IF THEN ELSE(Purchasing Delays=1,
MAX(Agreed Purchasing Lead Time, RANDOM PINK NOISE(Agreed Purchasing
Lead Time, RANDOM UNIFORM(1, 10, 0), 5, Agreed Purchasing Lead
Time)), Agreed Purchasing Lead Time)

Delayed Materials Arrival Rate. The Raw Materials arrival rate when raw
materials replenishment is not executed by suppliers as planned by the Purchasing
Agreement.

Context = Endogenous Type = Auxiliary UOM =
units/day

Delayed Materials Arrival Rate = DELAY MATERIAL(Raw materials order
rate, Act Purchasing Lead Time, 0, 0)

5.3.1.4. Demand Forecasting module

Fig. 5.9 introduces the base Demand Forecasting module, an exact replica (at this
development stage) of what was done in Sterman apart from the additional feature of being
able to select di�erent demand scenarios to launch the model against. This will be essential to
perform a rapid comparative analysis when data of multiple datasets will be investigated.
Finally, to simulate more realistic demand trends, it is possible to let the average demand
signal pass through a “noise gate” de�ned by a random pink noise generator (Fig. 5.10). This
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can be turned on and o� depending on the scope of the analysis. Finally, the process of
exponential smoothing of the �nal demand signal is applied as introduced in Sterman.

Fig.5.9. Stock and Flow Diagram of the base Demand Forecasting Module

Fig.5.10. Simulation of a realistic demand trend from an average trend

Average Trend of Demand. The average trend of demand followed by the Daily
Demand. This value is selected by means of the Demand Scenario

Context = Endogenous Type = Auxiliary UOM =
units/day

Demand Scenario. It allows to run the model under di�erent Average Trend of
Demand inputs. In the �nal version of the proposed model 5 demand scenarios are
available.

Context = Endogenous Type = Scenario UOM =
dimensionless

IF demand scenario=0 THEN Constant Demand = 10000/7
IF demand scenario=1 THEN Step Increase
IF demand scenario=2 THEN Sinusoidal Demand
IF demand scenario=4 THEN Whirlpool inventory dataset (see Chap.
6)
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IF demand scenario=4 THEN DDI simulation dataset (see Par.
5.3.6)

Realistic Demand. It allows to alter the Average Trend of Demand so as to
generate a more realistic demand trend derived from the average one. When the Realistic
Demand scenario is set to FALSE, the average trend of demand equals the Daily Demand.

Context = Endogenous Type = Scenario UOM =
dimensionless

Daily Demand. The actual daily amount of goods requested by the market to the
company. If the Realistic Demand scenario is set to TRUE the incoming Average Trend of
Demand signal is passed as the average value of a random pink noise generator so as to
generate a 5-days autocorrelated signal with a coe�cient of variation (CoV) equal to 0.2.

Context = Endogenous Type = Auxiliary UOM =
units/day

Daily Demand =INTEGER( IF THEN ELSE(realistic demand=1, MAX(RANDOM
PINK NOISE(average trend of demand,0.2*average trend of demand, 5,
0), 0), average trend of demand))

Step Increase. A selectable average demand trend presenting a sudden �xed %
Increase of its base value set equal to 1428 units /day.

Context = Exogenous Type = Auxiliary UOM =
dimensionless

Step Increase = (10000/7)*(PULSE(0,FINAL TIME+1)+(PULSE(FINAL
TIME/12,FINAL TIME)*(perc increase)))

% Increase. The percentual amount of the demand step increase.

Context = Exogenous Type = Auxiliary UOM =
dimensionless

Sinusoidal Demand. A selectable average demand trend described by a sinusoidal
function. It is useful to simulate demand trend a�ected seasonality and it provides a highly
dynamic input to test the model against.

Context = Exogenous Type = Auxiliary UOM =
units/day

Sinusoidal Demand =
10000

7 * (𝑃𝑈𝐿𝑆𝐸(0,  35) + ((2 + 𝑠𝑖𝑛( 𝑇𝑖𝑚𝑒−35
2000*240 ) + 𝑠𝑖𝑛( 35*(𝑇𝑖𝑚𝑒−35)

240 )) * 𝑃𝑈𝐿𝑆𝐸(35,  𝐹𝐼𝑁𝐴𝐿 𝑇𝐼𝑀𝐸))
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Expected Customer Orders. The �rst-order smoothed manager expectations of
future customer orders.

Context = Endogenous Type = Stock UOM =
units

Expected Customer Orders = INTEGRAL(Change in exp, Daily Demand) ;

It is worth noticing that the stock and �ow representation of this variable is the same
implemented by a SMOOTH function.

Change in Expectations. The forecasting error a�ecting manager’s beliefs about
future customer orders with respect to actual daily demand, considering the time required
to execute countermeasures.

Context = Endogenous Type = Auxiliary UOM =
units/day

Change in Expectations = (Daily Demand-Expected Customer Orders)/Time
to perceive orders rate changes

Time to Perceive Orders rate changes. The manager's reactiveness in accepting a
shift from its beliefs about customer orders.

Context = Endogenous Type = Auxiliary UOM =
days

5.3.1.5. Order Fulfilment module

Fig. 5.11 introduces the base Order Ful�lment Module, a replica of what was done in
Sterman but considering a slightly di�erent formulation for the Desired Shipment Rate.
Indeed, in the proposed model the Desired Shipment Rate is the one needed by the system to
meet all “open demand”, thus all backorders and daily demand, whereas in Sterman only
backorders are considered. Indeed, in Sterman new orders are purposely fractionally ful�lled
at each iteration so as to maintain a certain Target Delivery Delay. This delay represents in
Sterman the “targeted time elapsed between order receipt and shipment”, namely the agreed
purchasing lead time, and it is used to determine the

Desired Shipment Rate (Sterman) = Backlog/Target Delivery Delay

This value is recognized by Sterman as the “shipment rate that would allow the
company to fulfil new orders within its targeted delivery delay”. Thus, if the Actual Ful�lment
Rate always equals the Desired Shipment Rate then all orders will be met within the Targeted
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Delivery Delay. On the other hand, in Sterman there is no penalization for delayed orders,
thus orders get accumulated inde�nitely as backorders waiting to be ful�lled at potentially
any speed the system is capable of maintaining. When the backorder increases, then the
desired speed of ful�lment increases as well, but if the backorder stock keeps increasing for an
extended period of time, the urgency of ful�lling backorders should increase more on the
already “old” orders than the new one. In the Sterman formulation the order ful�lment speed
increases linearly with the increase in the backorder stock but does not take into account that
in the stock “orders of di�erent ages” gets accumulated. Older orders should be ful�lled faster
than the new incoming backorders to prevent them from being cancelled.

A possible approach to tackle the issue could try to evaluate the average age of the
backorders and use that to determine the actual speed of ful�lment. Unfortunately, no simple
approach was found to achieve this given that each order “decay alone” thus an ageing chain
of length equal to the customer tolerance time would be needed to model such a concept. Of
course, this representation would be extremely static and speci�c for a single CTT value.
Thus the selected approach the company undergoes to ful�l backorders is a “As Soon as
Possible” one. This is equivalent of saying that in the proposed model the Targeted Delivery
Delay is always set equal to same day delivery, thus

Target Delivery Delay (proposed model) = 1 ;

Desired Shipment Rate (Sterman) = Incoming Orders + Orders on Allocation ;

Putting this on another perspective, a company that wants to meet speci�c Purchasing Lead
Times is limited by its capability of satisfying orders within that target. To do so, it can either
exploit quantities already available, labelling them as sold and planning their delivery on the
order due date, or it must ramp up production so as to obtain the missing units within the
due order date. The above reasoning is pursued in the proposed model formulation. Finally,
the Daily Service Level is evaluated.

Fig.5.11. Stock and Flow diagram of the base Order Fulfilment Module



5 – The Proposed Model 112

Desidered Shipment Rate. The shipment rate the manager would like to meet in
order to always hit 100% �ll rates and service levels. It represents the connection point
between the Finished Goods Module and the Order Ful�lment Module.

Context = Endogenous Type = Auxiliary UOM =
days

Desired Shipment Rate = Orders on Allocation+Incoming Orders

Orders On-Allocation. The accumulation of all daily unful�lled orders waiting
to be ful�lled based on FIFO ASAP logic.

Context = Endogenous Type = Stock UOM =
orders

Orders On-Allocation = INTEGRAL(Incoming Orders - Fulfilled orders,
0)

Incoming Orders. The daily ordered amounts requested to the company.

Context = Endogenous Type =Flow UOM =
orders/day

Incoming Orders = Daily Demand

Fulfilled Orders. The portion of daily quali�ed orders that the system is able to
satisfy. As was said in Par. 5.3.1.1, in the current formulation shipments “nullify” pending
orders, letting Ful�lled Orders and Shipments numerically equivalent, but they refer to
di�erent �ows.

Context = Endogenous Type = Flow UOM =
orders/day

Fulfilled Orders = Shipments

Daily Demand. Being de�ned by variables pertaining to the Demand Forecasting
Module, its formulation is detailed in Par. 5.3.1.4.

Context = Exogenous Type = Auxiliary UOM =
orders/day

Shipments. Being de�ned by variables pertaining to the Demand Forecasting
Module, its formulation is detailed in Par. 5.3.1.1.
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Actual Delivery Time. The actual time required by the system to deliver the
accumulated backorders.

Context = Endogenous Type = Flow UOM =
orders/day

Actual Delivery Time = INTEGER(XIDZ(Orders on Allocation, Fulfilled
orders), 1))

Service Level. The ratio between the daily satis�ed demand and the total daily
quali�ed

Orders.

Context = Endogenous Type =Auxiliary UOM =
dimensionless

Service Level = XIDZ(Fulfilled orders, Incoming Orders+Orders on
Allocation, 1)

Cumulative Service Level. The cumulative sum of all the obtained values of the
service level.

Context = Endogenous Type = Stock UOM =
dimensionless

Cumulative Service Level = INTEGRAL(Service Level, 0)

While this metric has a poor real sense, it is exploited so as to summarise the overall system
performance after a full simulation. Thus, by comparing the cumulative service level it is
possible to have a �rst-order idea about which inventory policy generated the highest
performance. In other words, if at any simulation timestamp a policy yields higher service
levels than another, it is reasonable to say that such policy outweighs the latter one.

5.3.2. Wave I validation : Model response to a step increase in
customer orders

5.3.2.1. Testing conditions

As anticipated in Par. 5.3, Validating W-I meant having a model which reproduced the
same trends obtained in Sterman, Chapt. 18 when a sudden 20% step-increase stimulus
from the initial equilibrium condition set by the daily customer order curve was applied, as
shown by Fig. 5.12. The list of all parameters settings to run the validation phase is given in
Tab. 5.1. All exogenous variables and company parameters (e.g. Stock adjustment times,
Supplier Lead Times, Material Usage Ratio, Manufacturing Lead Times, …) have been set to
match with what reported in Sterman. Being the Sterman model based on weekly time
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buckets, the reported value in Tab. 5. are reconducted on a daily basis, being the proposed
model instead based on daily time buckets.

Fig.5.12. Step perturbation from equilibrium for Customer Orders used to validate W-I

Finished Good
Inventory
parameter

Validation
WI

Raw Materials
Inventory
parameter

Validation
WI

Demand
Forecasting

Module
parameter

Validation
WI

Decoupled
Lead Time

56 days Avg BOM parent
to child usage ratio

1 pcs/pcs Customer
Orders

See Fig. 5.12

FG Inventory
adjustment time

56 days Raw Materials
Safety Stock

Coverage

6 days Time to perceive
orders rate changes

56 days

WIP
adjustment time

14 days Raw Materials
Inventory Review

Period

14 days Order Ful�lment
Module

parameter

Validation
WI

Finished Goods
Safety Stock

Coverage

14 days Order Release
Time

14 days Customer
Tolerance Time

14 days

Agreed Purchasing
Lead Time

7 days

Tab. 5.1. Parameters setting for W-I validation

5.3.2.2. Discussion of the model response

As it can be seen by Fig.5.13 and 5.14, all model pro�les match exactly apart for
the Desidered Shipment Rate and the Actual Delivery Time : in the proposed model
both metrics stay always equal or lower than what reported in Sterman. This is due to the
di�erent approach taken by the modeller regarding the orders ful�lment behaviour.

As detailed in Par. 5.3.1.5, in the proposed model the Order Ful�lment Module
always tries to release all the backorders and the incoming ones, thus applying a FIFO logic
and assigning no order priority. In other words, in the proposed model the Desidered
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Shipment Rate is the shipment rate that would be needed to always achieve a unitary Service
Level. This condition pushes the company to “operate full throttle”, targeting in the best-case
daily ful�lment of all orders, thus an Actual Delivery Time equal to 0. Counter-intuitively,
while the previous is true, thus one might expect higher desidered shipment rates, the
Desidered Shipment Rate stays lower than what is done in Sterman because orders tend to
accumulate less as backorders. Indeed, a company that always tries to empty the order
on-allocation stock is targeting a minimization of future e�orts, thus lowering future
desidered shipment rates. Moreover, companies that act in this way put customer satisfaction
ahead of everything else. Orders get cancelled if they cannot be ful�lled within promised
delivery dates, the customer tolerance time. On the other hand, this approach can be heavily
questioned claiming that in this way there is no order prioritisation, a rather common
practice in many companies. Moreover, it is not said that all clients appreciate
earlier-than-scheduled deliveries. Indeed, if the �nal client is not the �nal user of the �nished
product (e.g. another manufacturer) then it is likely that the required order delivery dates are
not random but the result of a heavy planning and optimisation activity that relies on the
accuracy of those dates. Material delivered in advance might not �nd enough space available
on truck-unloading, thus requiring (based on the purchasing Incoterms agreements) either
the supplier or the manufacturer to pay additional costs for momentarily storing this
material. The Delivery Service Index (DSI) mentioned in the previous paragraphs was indeed
devised by Whirlpool so as to tackle this issue, obviously penalising less early deliveries than
late ones. Such an approach was mandatory in order to match with the DDMRP de�nition
of Daily Quali�ed Demand (see Chap.2). Finally, a divergent behaviour appears for
Throughput where in Sterman the curve presents a smoothed trend delaying the one of
Production Starts. In the proposed model the initial behaviour of Throughput trend equals
the Daily Production Starts one but it shifted to exactly DLT units from it. This is due to the
di�erent delay function used in the proposed model for Throughput than what was done in
Sterman. Indeed in the proposed model a pipeline delay de�ned by the DELAY MATERIAL
function is used whereas in Sterman a first-order delay is used instead. Using a pipeline delay
is equivalent to assuming perfect items dispatching within the stock, thus goods production is
assumed as a rigid, perfect system never a�ected by variability that always releases the exact
amount of requested �nished goods after DLT units of time. Such modeller decision was
taken to prevent any possible double-countings in the Throughput values once more
constraints would be added to Throughput but for sure it represents a doubtable assumption.

Evident di�erences appear instead when comparing the Raw Material
Modules responses, as shown in Fig.5.15 and 5.16. Indeed, the biggest di�erences between
the two are yielded by the Supplier Module. While Sterman duplicates its base model so as to
have two di�erent companies linked in a supply-chain where purchase orders are exchanged
by the downstream company (upon exogenous demand) and smoothed by the upstream
supplier, this was not done in the proposed model. As mentioned above, Whirlpool (and
typically most companies) does not have visibility on its suppliers data thus it was impossible
to have a proper estimate about suppliers inner parameters, required by Sterman model, like
the time to update forecast beliefs, to review inventory or issue orders. Those values are
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company-intrinsic and depend on its management beliefs, thus are typically unknown to its
external stakeholders. As introduced above, in the proposed model suppliers consist of a
single basic entity which releases all the material requested at once after an agreed delay,
without any forecasting and smoothing done by them. For this reason, material deliveries are
not as smooth as in Sterman, instead they present typical Bullwhip oscillations. This emergent
pattern is considered consistent by the author with the conventional supply-chain body of
knowledge, moreover this response is similar to what obtained by Sterman further in its
model development stages, when trust issues get considered in the model. The same issues are
also considered in the proposed model.

Fig.5.13. Sterman simulation trends of Finished Good Inventory module after 20% increase in customer orders
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Fig.5.14. Proposed model Finished goods Inventory trends during validation of WI

Fig.5.15. Sterman simulation trends of Finished Good Inventory module after 20% increase in customer orders

5
Fig.5.16. Proposed model Raw Materials Inventory trends during validation of WI
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5.3.3. Wave II : Enlarging the base model boundaries

5.3.3.1. Additions to the Finished Goods Inventory Module

5.3.3.1.1. Material Obsolescence

Fig. 5.17 and 5.18 introduce how materials obsolescence is addressed in the Finished
Goods and Raw Materials modules. To recall, Whirlpool determination of obsolete goods
and material is based on the date of the last recorded good movement in the MSEG SAP
transaction. Goods that are not reached by any movement type (e.g. pick-pack and ship,
internal reshu�e, production consumption, good returns) for more than 12 months are
considered fully obsolete and for them the processes of scrapping or reselling can be initiated.
This is done by applying a MATERIAL DELAY of 365 days, namely the Obsolescence Time,
to all the quantities entering the stocks of Finished Goods and Raw Materials. In parallel, a
stock accumulating the information of all goods moved during the same Obsolescence Time
is set so as to be able to compare the potentially obsolete quantities with the total consumed
ones. This approach thus implies a FIFO logic to inventory usage.

Fig.5.17. Obsolescence logic in the Finished Goods Module
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Fig.5.18. Obsolescence logics in the Raw Materials Module

As it can be seen, the implementation of obsolescence in either modules is specular. Di�erent
variables’ names duplicating the same formulations must be created to allow Vensim to
discriminate between di�erent �ows. Hence, the following formulation of obsolescence is
abstracted for any item. The reader can obtain the speci�c formulation by substituting the
relative Item Name in the formulas.

Reformulated Items Inventory.

Context = Endogenous Type = Stock UOM =
units

Items Inventory = INTEGRAL(Stock Input Flow - Stock Output flow -
Obsolescence Rate, Target Items Inventory)

Items Obsolesce Rate. The daily items amount that become obsolete according to
the company obsolescence de�nition (see Chap. 2 for Whirlpool de�nition of
obsolescence).

Context = Endogenous Type = Flow UOM =
units/day

Obsolesce Rate = MAX(Potentially obsolete items-items used within
Obsolescence time,0)
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Potentially Obsolete items. The theoretical items amounts that would become
obsolete on the current date if they have not been used since �rst entering the item stock. It
represents the Obsolesce Rate upper-bound.

Context = Endogenous Type = Auxiliary UOM = units/day

Potentially Obsolete items = DELAY MATERIAL(Stock Input Flow,
Obsolescence time, 0, 0)

Items used within Obsolescence Time. The accumulation of all items used
during a moving time period equal to the Obsolescence Time.

Context = Endogenous Type = Stock UOM =
units

Items used within Obsolescence Time = INTEGRAL(Items used within obs.
input rate-Items used within obs. output rate,  Stock Output flow)

Items used within obs. input rate. The items �owing out of the stock at each
iteration and that must be added at each iteration to the time-moving sum of used items.

Context = Endogenous Type = Flow UOM
=units/day

Items used within obs. input rate = Stock Output Flow

Items used within obs. output rate. The used items within obsolescence time
quantity that must be subtracted at each iteration from the time-moving sum of used
items.

Context = Endogenous Type = Flow UOM
=units/day

Items used within obs. output rate = DELAY MATERIAL(Stock Output
flow, Obsolescence time, 0, 0)

Obsolete Items. The accumulation of the Obsolescence rate throughout the
simulation.

Context = Endogenous Type = Stock UOM =
units

Obsolete Items = INTEGRAL(Obsolescence Rate-Scrapping rate, 0)
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Obsolescence Time. The company-de�ned time horizon after which an item that
presents no goods movements since then is considered obsolete.

Context = Exogenous Type = Auxiliary UOM = day

Scrapping Rate. The dismantling rate of obsolete items to make them resellable
as intermediate components, second-hand material on the spot-markets or as material
scraps to shredders.

Context = Exogenous Type = Auxiliary UOM = units/day

It was decided to have this value deactivated by default given that such material reselling
dynamics were not included in the current scope of the study.

5.3.3.1.2. Productive Capacity Constraints

To address the RQ3 of this study (see Chap.3), it was of interest to the modeller to
evaluate the e�ects of a capacity bottleneck on di�erent inventory policies. Moreover,
assuming an uncapacitated productive system in a model addressed to the operative side, as
the one proposed in this study, is a rather strong approximation of reality. To make the
addition as impactless as possible on the overall system structure, productive capacity is set
exogenously and imposed as a hard bound to the maximum concurrent WIP loadable in the
system, as shown in Fig.5.19.

Fig. 5.19. Addition of the productive capacity constraint to the Daily Production Starts

Reformulated WIP.
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Context = Endogenous Type = Stock UOM =
units

WIP = INTEGRAL(Daily Production starts-Throughput, MIN(Desired
WIP,Productive Capacity)

Productive Capacity. The maximum amount of Work-In-Process that can be
loaded on the production environment. It represents the maximum amount of goods the
system is capable of generating after a full Manufacturing Cycle Time.

Context = Exogenous Type = Auxiliary UOM = units

Line Load. The fraction of the Productive Capacity saturated by the current state
of the WIP.

Context = Endogenous Type = Auxiliary UOM =
dimensionless

Line Load = XIDZ(WIP, Productive Capacity, 0)

Reformulated Daily Production Starts.

Context = Endogenous Type = Flow UOM =
orders/day

Daily Production Starts =
INTEGER(
MIN
(
MIN
(
Feasible Production from Raw materials on hand,
MAX(Desirable production rate, 0)
),

MAX(Productive Capacity-(WIP-Throughput), 0)
)
)

5.3.3.1.3. Quality issues from system overload

Having enlarged the system boundaries to also include productive capacity now
allows also to consider all capacity-dependent feedback loops, such as scenarios induced by
overloading conditions. The modeller assumed that when the productive system is brought up
near the maximum limit capacity then the percentage of human mistakes, reworks and
machine downtimes would increase. Such a dynamic hypothesis is presented in Fig.5.20. The
WIP scrapping rate out�ow was thus added to the WIP stock to quantify such a material loss.
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This quantity reduces the actual throughput from its potential ones, negatively impacting the
replenishment capability of the productive system. Thus, a system already struggling in
recovering delays rapidly saturates its productive capacity, stressing the system and its
workforce to a point where material leaks during production as scraps, increasing the inability
to recover delays, closing a “Schedule Pressure” balancing feedback loop.

Being the above the result of a modeller's hypothesis that were not fully discussed
with Whirlpool GSS analysts, it might possibly induce a bias in the model. Thus, the whole
mechanism can be turned on and o�. By default the WIP scrapping logic is deactivated in
order to prevent potential undetected formulation �aws from interfering during the
validation stages.

Fig.5.20. WIP Scrapping rate emerging from an overloaded productive environment

Consider Overloading conditions. It allows activation of the Production
Overloading scenario where the e�ects of peak Line Loads produce part of the scheduled
production to be lost as scraps.

Context = Exogenous Type = Scenario UOM =
dimensionless



5 – The Proposed Model 124

Reformulated WIP.

Context = Endogenous Type = Stock UOM = units

WIP = INTEGRAL(Daily Production starts - Throughput-WIP scrapping rate,
MIN(Desired WIP, Productive Capacity))

WIP scrapping rate. The amount of WIP that is lost due to accidents during
production, machine breakages or human mistakes induced by a busy productive
environment reaching its peak throughput.

Context = Endogenous Type = Flow UOM = units/day

WIP scrapping rate = IF THEN ELSE(Consider overloading conditions=1,
INTEGER(Effect of work schedule on quality(XIDZ(WIP,Productive
Capacity, 0))*WIP), 0)

Effect of Work schedule on quality. The percentage of scraps generated by the
production system as a function of the actual Line Load.

Context = Endogenous Type = Lookup UOM
=dimensionless

Fig. 5.21. Lookup for the Effect of Work Schedule on Quality

Reformulated Throughput.

Context = Endogenous Type = Flow UOM =
orders/day

Throughput =  MAX(Potential Throughput-WIP scrapping rate, 0)
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5.3.3.2. Adding Order cancellations

In the proposed model all backorders a�ected by Delivery Delays greater than the
Customer Tolerance Time are assumed lost, as explained in Par. 5.3.1.5 and 5.3.1.6. Upon
this assumption, Fig. 5.22 presents the implementation of the rule in SD. By a quick look it
can be seen that a similar approach used for modelling material obsolescence was exploited. In
essence, at each iteration the Potentially Due Orders are compared with the Orders ful�lled
within CTT stock. If the latter is smaller than the previous then some orders were not met
during the CTT and therefore will be cancelled when the customer recognizes the order is in
delay thus on the day after its promised delivery date.

Fig.5.23. Order Cancellation logic addition to the base Order Fulfilment Module

Reformulated Orders On-allocation.

Context = Endogenous Type =Stock UOM = orders

Orders On-allocation = Incoming Orders-Cancellation rate - Fulfilled
orders

Cancellation Rate. The daily cancelled orders.

Context = Endogenous Type = Flow UOM =
orders/day
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Cancellation Rate = MAX(Potentially due orders -Orders Fulfilled
within CTT, 0)

Potentially Due Orders. The theoretical amount of daily orders that would be
cancelled on current date if they su�ered a delivery delay greater than the CTT. Customers
wait the day after the order's promised date before cancelling the order.

Context = Endogenous Type = Auxiliary UOM =
orders/day

Potentially Due Orders = DELAY MATERIAL(Incoming Orders, Customer
Tolerance Time+1, 0, 0)

Orders fulfilled within CTT. The accumulation of ful�lled orders during a
moving period equal to the CTT.

Context = Endogenous Type = Stock UOM = orders

Orders fulfilled within CTT = INTEGRAL(Orders fulfilled within CTT
input rate.-Orders fulfilled within CTT output rate, 0))

Orders fulfilled within CTT input rate. The new daily ful�lled orders �owing
out Orders On-Allocation stock that must be added at each iteration to the time-moving
sum of ful�lled orders within CTT.

Context = Endogenous Type = Flow UOM =
orders/day

Orders fulfilled within CTT input rate = Fulfilled orders

Orders fulfilled within CTT output rate. The daily ful�lled orders that must
be subtracted at each iteration to the time-moving sum of ful�lled orders within CTT.

Context = Endogenous Type = Flow UOM =
orders/day

Orders fulfilled within CTT output rate = DELAY MATERIAL(Fulfilled
orders, Customer Tolerance Time, 0, 0)

Cancelled Orders. The accumulation of the Cancellation Rate throughout the
simulation.

Context = Endogenous Type = Stock UOM = orders

Cancelled Orders = INTEGRAL(Cancellation Rate, 0)
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Order Fulfilment Ratio. The ful�lled fraction of the daily due orders. An
assumption of the proposed model formulation is indeed that orders can be ful�lled also by
single units, even if a customer might request a batch order of multiple units.

Context = Endogenous Type = KPI UOM = dimensionless

Order Fulfilment Ratio = 1-XIDZ(Cancellation rate, Potentially due
orders, 0)

Customer Satisfaction. The fraction of satis�ed customers during the entire
simulation.

Context = Endogenous Type = KPI UOM = orders/day.

Customer Satisfaction = 1-XIDZ(Cancelled Orders, Orders Received, 0)

Order Received. The accumulation of all orders received during the simulation.

Context = Endogenous Type =Stock UOM = orders

Order Received = INTEGRAL(Incoming Orders,0)

5.3.4. Validating Wave II : Model response under extreme
testing conditions

5.3.4.1. Testing conditions

In sight of the additions done to the model in Par. 5.3.2, the scope of this validation
phase is less about reproducing known data and more on “stress-testing” the model so as to let
potential issues emerge. Moreover, the customisations introduced to the base Order
Ful�lment Model are tested for resilience against possible infringements of the basic physic
law of mass conservation.

Fig. 5.23 shows the input stimulus used for this validation phase: a base sinusoidal
function is given as input to a random pink noise generator producing 5-days (e.g. one
working week) autocorrelated values. Exact formulation of the sinusoid used to generate the
average input trend is provided in Par. 5.3.1.4. The simulation will last 365 days.

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑇𝑟𝑒𝑛𝑑 𝑜𝑓 𝐷𝑒𝑚𝑎𝑛𝑑 =  𝑆𝑖𝑛𝑢𝑠𝑜𝑖𝑑𝑎𝑙 𝐷𝑒𝑚𝑎𝑛𝑑 (𝑠𝑒𝑒 𝑃𝑎𝑟.  5. 3. 1. 4)

Demand Trend =
INTEGER(
IF THEN ELSE(realistic demand=1,
MAX(RANDOM PINK NOISE(Average Trend of Demand,0.2*Average

Trend of Demand, 5, 0), 0),
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Average Trend of Demand)
)

Fig.5.23. Damped sinusoidal perturbation from equilibrium condition in Customer Orders

To make the validation working environment as complex as possible to the model, additional
constraints are added to face such an high variable demand trend, namely

Capacity Bottleneck. Productive capacity is cut to only 120.000 pcs of concurrent
production in WIP,

;𝑀𝑎𝑥 𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 =  𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑒 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦
𝑀𝑎𝑛𝑢𝑓𝑎𝑐𝑡𝑢𝑟𝑖𝑛𝑔 𝐿𝑒𝑎𝑑 𝑇𝑖𝑚𝑒  =  120.000 𝑝𝑐𝑠

56 𝑑𝑎𝑦  ≈ 2150 𝑝𝑐𝑠 / 𝑑𝑎𝑦

;𝐸(𝐷𝑒𝑚𝑎𝑛𝑑 𝐼𝑛𝑝𝑢𝑡) = µ
𝐷

 =  2680 𝑝𝑐𝑠
𝑑𝑎𝑦  > 𝑀𝑎𝑥 𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡

𝑆𝑇𝐷. 𝐷𝐸𝑉(𝐷𝑒𝑚𝑎𝑛𝑑 𝐼𝑛𝑝𝑢𝑡) = σ
𝐷

 =  1468. 40 𝑝𝑐𝑠
𝑑𝑎𝑦

“Fast-fashion” Industry. Customers are willing to wait only 1 day (CTT=1) before
cancelling their orders.
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Fig. 5.24. Harsh limiting boundary conditions during validation of W-II

All other model parameters were left unchanged as set during the validation phase of W-I, as
listed in Tab. 5.3. The model response to these working conditions is instead presented in Fig.
5.25, 5.26, 5.27 and 5.28.

Finished Good
Inventory
parameter

Validation
W.II

Raw Materials
Inventory
parameter

Validation
W.II

Demand
Forecasting

Module
parameter

Validation
W.II

Productive Capacity 120.000 pcs Avg BOM parent
to child usage ratio

1 pcs/pcs Customer
Orders

See Fig. 5.23

Decoupled
Lead Time

56 days Raw Materials
Safety Stock

Coverage

6 days Time to perceive
orders rate changes

56 days

FG Inventory
adjustment time

56 days Raw Materials
Inventory Review

Period

14 days Order Ful�lment
Module

parameter

Validation
W.II

WIP
adjustment time

14 days Order Release
Time

14 days Customer
Tolerance Time

1 days

WIP scraps rate 0 pcs/day Agreed Purchasing
Lead Time

7 days

Obsolescence Time 365 days Obsolescence Time 365 days

Finished Goods
Safety Stock

Coverage

14 days

Tab.5.3. Parameters setting for validating W-II
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Fig.5.25. Finished goods Inventory module performances under extreme testing condition

Fig.5.26. Raw Materials Inventory trends  under extreme testing condition
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Fig.5.27. Service Levels and Customer Satisfaction versus the input signal   under extreme testing condition

Fig.5.28. Order Fulfilment module performances  under extreme testing condition

5.3.4.2. Discussion of the model response

The system struggled dealing with such a demand signal, never recovering
Service Level over 20% neigher during periods of decreasing demand. On the other hand, the
company seems able to maintain and surprisingly gain customer satisfaction even while
maintaining very low service levels. However, such behaviour should be doubted.

Regarding the Actual Delivery Time, which during the validation of W-I always
stayed to 0, it increased as soon as the Finished Good Inventory reached no coverage as
expected. Surprisingly instead, the frequency of order cancellations stayed quite low
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regardless of the harsh condition the company was facing. By intuition, as soon as the Actual
Delivery Time overshoots the Customer Tolerance Time the amount of cancelled orders should
rise.

Finally, some remarks regarding capacity bottlenecking emerged after the CTT was
allowed to increase from the initial condition set (CTT = 1) for this validation phase. As
intuiable, in all runs the general system response was mainly driven by the productive capacity
bottleneck. The Line Load trend repeats after each manufacturing cycle completes.

Fig. 5.29. The capacity bottleneck constraining order fulfilment module during the entire simulation

By analysing the model response under di�erent CTTs settings (CTT>1), results
suggest that when a capacity bottleneck is introduced, the system throughput is not large enough
to replenish the inventory faster than daily shipment withdrawals. Thus, once the equilibrium
quantity stocked in inventory at the beginning of the simulation is fully consumed, the actual
shipment rate must equal the throughput rate. In this scenario, it occurs that the orders
on-allocation grow indefinitely at a rate proportional to the daily unsatisfiable portion of
incoming orders.
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Fig.5.30. Effects of a capacity bottleneck on Orders On-Allocations and Cancelled Orders. Max capacity in red =
70.000 pcs; Max capacity in blue = 200.000 pcs; CTT = 3 days.

In general, as seen in Chap.4, no quantity can really grow indefinitely, thus the ones that do
typically highlight potential issues in the model formulation.

An extensive testing session was thus run in order to spot formulation �aws emerging
from all the aforementioned issues and led to the following conclusions

(1) A growth behaviour of backorders is the only one attainable in presence of a
capacity bottleneck under the current model formulation. Indeed, a base assumption
of the proposed model is that orders can be partially ful�lled even by single units. Thus, a
bottlenecked system is only capable of at least satisfying the order fraction covered by its
maximum throughput. The unful�lled remaining units of a Potentially Due Order will
be cancelled if stationary in the stock for longer than CTT. However, even in the worst
case scenario (e.g. throughput=0, CTT=0) the maximum quantity cancelled cannot be
greater than the initial order, thus at best keeping the stock of orders on allocation in
equilibrium at the speci�c level it sits at that moment. In other words, the system will
be capable of lowering its backorders stock only when there is unused capacity,
such as during periods of decreasing demand, where multiple waiting orders can be
processed at once, letting the Order Ful�lment Rate overshoot the Daily Demand. That
is what indeed happens when Productive Capacity is not constraining the system in Fig.
5.31.

Fig.5.31. Backorders accumulate only in presence of a productive capacity bottleneck

(2) a bias was introduced in the Order Cancellation logic,

(3) a double-counting issue was included in the computation of cancelled orders,
arti�cially lowering the cancellation rate,

(4) an imprecise formulation for the Actual Delivery Time was used, and

(5) an imprecise de�nition of the Service Level was used.
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These insights emerging from the initial model response obliged the modeller to review the
whole order cancellation logic.

5.3.4.3. Model Reformulation

5.3.4.3.1. Unbiased Order Cancellation logic

Comparing Actual Delivery Time and Order Cancellations side-by-side produced the
trends presented in Fig. 5.32. The system response does not match with intuition. While the
Actual Delivery Time continues growing, peaking to around 30-days (30x the Customer
Tolerance Time) at t=200, yet we see no orders cancellations.

Fig.5.32. Actual Delivery Times versus Order cancellations affected by a bias

As shown in Par. 5.3.2.1.3, the author initially set order cancellations to occur only
after 1 time-unit had passed since the Customer Tolerance Time expiration. Such personal
bias allowed the company to virtually have an additional day available to satisfy those
late deliveries thus improving the order cancellation metric. Indeed, if unlabeled in Fig.
5.32, the two trends would seem rather unrelated. Once removed the bias, thus letting orders
getting cancelled after exactly CTT-time units, a re-run under the same conditions produced
the trends in Fig. 5.33. As it can be seen, the two trends now “follow each other” (being
however plotted on di�erent scales) almost perfectly: as soon as the Actual Delivery Time is
greater than CTT, order cancellations start occuring. By applying such a small change, the
new response of the system changed substantially, as shown by Fig. 5.34 and Fig.5.35.
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Fig.5.33. Actual Delivery Time versus Order cancellations under extreme testing condition after W-II
reformulation

Fig.5.34. Finished goods Inventory module performances under extreme testing condition after W-II model
reformulation
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Fig. 5.35. Raw Materials Inventory module performances under extreme testing condition after W-II model
reformulation

Another positive behaviour is presented in Fig. 5.36 where Service Level reasonably presents
valleys where demand instead peaks. Being the production centre constantly saturated by new
production orders (Fig. 5.29), is rather likely to expect a reduction in Service Levels if orders
rises than an increase. In the previous model formulation the situation was instead reversed,
with service levels picking where demand picked, even if being stuck to very low values.

Fig. 5.36. Service Level and Customer Satisfaction under extreme testing condition after W-II model
reformulation
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Fig.5.37. Order Fulfilment module performances under extreme testing condition after W-II model
reformulation

5.3.4.3.2. Inflated Order Cancellations and Schedule Gains

Once removed the initial bias, it was noticed that the former formulation to compute
the Cancellation Rate was not netting the total quantity of satis�ed orders within CTT with
the ones used to satisfy the daily due order. Consider the following example where a constant
order input of 2900 pcs/day is required to a system with maximum throughput of 1400 pcs /
day, allowing 2 days of CTT. As can be seen by Tab. 5.4, the former formulation of the
Cancellation Rate used to doubly assign accumulated production within CTT to two
consecutive Potentially Due Orders, arti�cially understating the amount of Orders
Cancellations.

Tab. 5.4. Original formulation of Cancellation Rate compared with the reformulated one
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The new concept of Schedule Gains was thus introduced to the Order Ful�lment Module. Fig
5. 38 shows the modi�cation done to the model so as to include Schedule Gains.

Fig.5.38. Modifications to the Order Fulfilment Module to implement corrected Cancellation Rate Formulation

Schedule Gains. The quantities available, among what produced since the
beginning of the current CTT cycle, to ful�l tomorrow Potential Due Orders in addition
to the daily Throughput.

Context = Endogenous Type = Auxiliary UOM =
orders/day.

Schedule Gains = DELAY MATERIAL(MAX(Orders Fulfilled within CTT -
Potentially Due Orders ,0), 1, 0, 0)

To prevent circularity issues by means of initial simultaneous equations between
Ful�lled Order Rate and the Cancellation Rate, it was mandatory to let Schedule Gains
and daily Throughput accumulate in a stock called Order Fulfilment Capacity.

Context = Endogenous Type = Stock UOM = orders
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Order Fulfilment Capacity = INTEGRAL(Order Fulfilment Capacity inp.
Rate - Order Fulfilment Capacity out. Rate., 0)

Order Fulfilment Capacity inp. Rate. The daily capacity of the system to
satisfy the Potentially Due Order.

Context = Endogenous Type = Stock UOM = orders

Order Fulfilment Capacity inp. Rate= Schedule Gains + Throughput

Order Fulfilment Capacity out. Rate. The Order Ful�lment Capacity value
that must be subtracted from the Order Ful�lment Capacity stock to prevent double
countings.

Context = Endogenous Type = Stock UOM = orders

Order Fulfilment Capacity out. Rate = DELAY MATERIAL(Order Fulfilment

Capacity inp. rate, 1, 0,0)

Reformulated Cancellation Rate.

Context = Endogenous Type =Flow UOM = orders/day.

Cancellation Rate = MIN(MAX(Potentially due orders-Daily Order
Capacity,0), Orders on Allocation)

5.3.4.3.3. Actual Delivery Time and Time to Fulfil Shortages

By reviewing the whole Order Ful�lment Module in the previous points, it was
noticed that the initial Actual Delivery Time formulation, a heritage of the Sterman base
model, did not really represent in the proposed model the same concept intended by
Sterman. Indeed, in its initial formulation the Actual Delivery Time was de�ned as

Actual Delivery Time = INTEGER(XIDZ(Orders on Allocation, Ful�lled orders), 1)) ;

However, this formulation does not provide a proper estimate of what the variable was meant
to be in the proposed model, rather it provides the time required by the system to get rid of all
the backorders given the actual fulfilment rate. Thus, it was decided to separate the two
concepts, being both equally important in providing a more complete view on the system
state. Interestingly, the changes introduced to address the the previous points turned out to
be exploitable to also provide a proper formulation for the Actual Delivery Time on a
per-order basis



5 – The Proposed Model 140

Reformulated Actual Delivery Time. The actual time to order delivery yielded by
the system.

Context = Endogenous Type = Auxiliary UOM = days

Actual Delivery Time =
MAX
(
Customer Tolerance Time *
(1 + (1 - Order Fulfilment Ratio) - XIDZ(Schedule Gains, Orders

received within CTT, 0)),
0
)

The logic behind the above formulation is that orders can be either fulfilled within the CTT or
not.

If they are not, then it means that part of them will be cancelled, lowering the Order
Ful�lment Rate. The cancelled amounts can be used as a proxy estimate for “how much the
initial order was in delay”. Hence, the inverse of the Order Fulfilment Ratio provides the first
CTT adjustment factor to increase it so as to estimate what the real delivery time would have
been if the company was to ship the full order under the base Sterman model formulation;
whereas

If they are, then the system must have accumulated a certain total schedule gain so
far and it is highly likely that the current order will be ful�lled either the same day, or at worst,
within less than CTT. Hence, the Schedule Gain, distributed on all Orders Fulfilled within
CTT, provides the second adjustment factor for CTT to reduce it so as to measure the
anticipated response of the company.

Fig.5.39. Actual Delivery Time response under the initial extreme testing condition after W2 model
reformulation
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Is worth noticing that the reformulated Actual Delivery Time reproduces a comparable trend
with the one in Fig. 5.33, morbidly validating its correctness. However, it is also worth
noticing that the trend in Fig. 5.33 only occurs as a special case of CTT = 1 under the former
Actual Delivery Time formulation, whereas the current one generalises for any CTT. Fig. 5.40
shows such lack of consistency of the previous Actual Delivery Time formulation where
when CTT > 1 the Actual Delivery Time is rather measuring the Time to Ful�l Shortages.

Fig.5.40. Former incoherent formulation of Actual Delivery Time versus the reformulated one under the extreme
testing conditions

Thus, those metrics were separated and captured in the proposed model by renaming the old
Actual Delivery Time into Time to Ful�l Shortages, as shown in Fig.5.41.

Fig.5.41. Separation of Actual Delivery Time from Time to Fulfil Shortages

Time to Fulfil Shortages. The time required by the system to process all the
backorders given the current Order Ful�lment Rate.

Context = Endogenous Type = Auxiliary UOM = days

Time to Fulfil Shortages =
IF THEN ELSE
(
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Fulfilled orders < Orders on Allocation,
XIDZ(Orders on Allocation,Fulfilled orders, 1),
0
)

Thus taking the inverse of it allows the de�nition of the

Shortage Recovery Rate. The daily fraction of processed backorders.

Context = Endogenous Type = Auxiliary UOM =
dimensionless

Shortage Recovery Rate = XIDZ(1, Time to Fulfil Shortages, 1)

Fig.5.42. Time to Fulfil Shortage response under extreme testing condition

5.3.4.3.4. Service Level and Fill Ratio

Investigating on the previous issues led to conclude that service level was evaluated
upon a misinterpreted de�nition. As seen in Chap.1, Service Level is defined as the probability
of not stocking-out during a replenishment cycle. Thus:

where X represents the Demand During Lead Time, and s the Available Stock at the
beginning of the replenishment cycle. In its original formulation (Par. 5.3.1.5), Service Level
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was estimated instead as the ful�lled fraction of the Desidered Shipment Rate. As it can be
seen, this formulation di�ers substantially from the above mentioned, resembling more the
de�nition of Fill Ratio. Therefore, it was decided to separate the two concepts by adding
dedicated sections to compute those KPIs in the Order Ful�lment Module, as shown in Fig.
5.43, 5.44. and 5.46.

Fig. 5.43. Definition of Fill Rate in the Order Fulfilment Module

Fill Ratio. The fraction of customer demand met within the previous CTT
period.

Context = Endogenous Type = KPI UOM =dimensionless

Fill Ratio = 1-XIDZ(Cancelled Orders within CTT, Order received
within CTT previous cycle, 0)

The Fill Ratio is conventionally de�ned as the fraction of customer demand that is met through
immediate stock availability, without backorders or lost sales and it is typically empirically
measured by averaging the number of correctly serviced requests over the total number of
requests.

The formulations for the Cancelled Orders within CTT stock repropose the same logic used
for the Orders ful�lled within CTT shown in Par. 5.3.2.2 and therefore they are here
omitted.
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Fig.5.44. Definition of Daily Fill Rate in the Order Fulfilment Module

Daily Fill Ratio. The system ability to meet new daily demand discarding the
e�orts in backorders ful�lment.

Context = Endogenous Type = KPI UOM =dimensionless

Daily Fill Rate =
IF THEN ELSE
(
Fulfilled orders > Orders on Allocation,
(Fulfilled orders-Orders on Allocation)/Incoming Orders,
0
)

In other words, in order to also satisfy daily demand in presence of backorders, the system
must ful�l orders at a rate greater than its whole backorders stock. Fig. 5.46 shows the
response of the newly introduced KPIs to the W-II validation conditions.



5 – The Proposed Model 145

Fig.5.45. Reformulated Daily Fill Ratio and Fill ratio under extreme condition

The Service Level is estimated in Fig. 5.46 by adopting a frequentist probability
approach, hence the total number of times where the Order Received during DLT is lower or
equal to Finished Good Inventory at the start of the replenishment cycle are compared with
the total number of replenishment cycles occurring within the simulation. At the beginning
of each cycle, the Finished Good Inventory available at that moment is delayed up to the end
of the cycle where it gets compared with the total accumulated demand received within the
cycle. If the �rst is greater than the latter, the ended cycle counts as a 1 to the total Service
Level frequency, increasing the overall Service Level, whereas 0 otherwise. The replenishment
lead time is considered equal to the Manufacturing Lead Time because of DDMRP
assumption of guaranteed items availability at any moment in any decoupling location.

Fig. 5.46. New implementation of the Service Level
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Reformulated Service Level. The probability of not stocking-out during a full
replenishment cycle.

Context = Endogenous Type = KPI UOM = dimensionless

Service Level =
XIDZ
(

IF THEN ELSE(Time <>0, Tot Service Level freq, Service Level
freq),

elapsed replenishment cycles,
IF THEN ELSE(Time <>0, total Service Level freq, Service Level

freq)
)

Tot Service Level freq. The number of times since the start of the simulation where the
Demand during lead time was smaller or equal to the available inventory at the beginning of the
replenishment cycle. It represents the numerator of the frequentist probability representing the
Service Level.

Context = Endogenous Type = Auxiliary UOM =
dimensionless

Tot Service Level freq = INTEGRAL(Service Level freq, 0)

Service Level freq. It detects whether the Demand during lead time was smaller or equal
to the available inventory at the beginning of the currently ongoing replenishment cycle. It allows
detecting when a replenishment cycle counts as TRUE in the frequentist estimation of the Service
Level .

Context = Endogenous Type = Auxiliary UOM =
dimensionless

Service Level freq =
IF THEN ELSE
(
MODULO(Time, IF THEN ELSE(Time<>0, Decoupled Lead Time, Actual

Inventory Coverage))=0
:AND:
Time >0,
IF THEN ELSE(Orders received within DLT<=Inventory at start

replenishment cycle,1,0),
IF THEN ELSE
(
(Orders received within DLT*Actual Inventory Coverage)<=Inventory at

start replenishment cycle,
:AND:
Time=0,
1,0
)
)
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Elapsed Replenishment Cycle. The number of replenishment cycles has occurred since
the start of the simulation. It represents the denominator of the frequentist probability
representing the Service Level

Context = Endogenous Type = Auxiliary UOM =
dimensionless

Elapsed Replenishment Cycles = INTEGRAL(new replenishment cycle, 0) ;

New Replenishment cycle. It detects when a new replenishment cycle is about to start.

Context = Endogenous Type = Auxiliary UOM =
dimensionless

New Replenishment cycle =
IF THEN ELSE
(

MODULO(Time,IF THEN ELSE(Time<>0,Decoupled Lead Time,Actual
Inventory Coverage))=0,

1, 0
)

Inventory at Start Replenishment Cycle. The value of the Finished Goods Inventory at
the beginning of the currently on-going replenishment cycle.

Context = Endogenous Type = Auxiliary UOM = units

Inventory at Start Replenishment Cycle =
DELAY MATERIAL
(
IF THEN ELSE(MODULO(Time, Decoupled Lead Time)=0, Finished goods

inventory,0),
IF THEN ELSE(Time<>0, Decoupled Lead Time, Actual Inventory

Coverage),
Finished goods inventory,0
)

The formulations for the Orders received within DLT stock repropose the same logic used for
the Orders ful�lled within CTT shown in Par. 5.3.2.2 and therefore they are here omitted.
Fig. 5.47 presents the new response of the reformulated Service Level to the W-II validation
conditions reasonably showing a decrease as the available Finished Good Inventory
stocks-out.
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Fig.5.47. Service Level Response under the initial testing condition after reformulation

5.3.5. Wave III : Implementing DDMRP

5.3.5.1. Qualified Demand in the Demand Forecasting Module

To port DDMRP logic into the model, the �rst requirement was being able to
compute, or load exogenously, a trend representing the Daily Qualified Demand.
Unfortunately, no simple implementation was found to allow the determination of quali�ed
demand starting from the Daily Demand input, thus a new variable called Daily Qualified
Demand was added to the Demand Forecasting Module. To this, multiple trends can be
provided exploiting Table functions and the Demand Scenario variable which can be used as a
switch among all provided demand trends, as shown in Fig. 5.48. This mechanism will be
exploited to concurrently benchmark all the multiple datasets needed for validation.
Moreover, the quali�ed demand visibility features can be turned on and o� by the Spike
Horizon Visibility variable. Turning it o� means that the Quali�ed Demand equals the Daily
Demand, thus practically discarding the Spike Alerting logic typical of DDMRP. The
addition of this feature was inspired by the work of C.J. Lee where it is implicitly questioned
whether the DDMRP claimed bene�ts are only caused by its Spike alerting logic.
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Fig.5.48. Stock and Flow diagram of the DDMRP customised Demand Forecasting Module

Spike Horizon Visibility. It allows to deactivate the DDMRP feature of using
the Order Spike Rule to compute quali�ed demand. Removing DDMRP spike visibility is
equivalent to running the base model solely on the Daily Demand Input.

Context = Endogenous Type = Scenario UOM =
dimensionless

Daily Qualified Demand. The Quali�ed Demand Trend as de�ned by DDMRP
as de�ned in Chap.2. Given that no mechanism to derive the quali�ed demand trend was
found directly in SD, the trend must be computed externally and loaded by the user using a
table function.

Context = Exogenous Type = Lookup UOM = units/day

IF THEN ELSE(Spike Horizon visibility=1 :AND: demand scenario=2,
Qualified Demand Trend(Time),
Daily Demand
)

5.3.5.2. The S&OP module

As seen at the beginning, the basic logic behind the dynamics of the inventory
modules is the one of the stock management problem. For this reason, it is clear that their
behaviour is mostly driven by the dynamical adjustment process of their targeted stock levels.
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As initially stated, the modeller's desired DDMRP implementation approach would
try to modify as little as possible the base model. Thus, operating on the formulations of the
target stock levels seemed the most practical place where to start.

The S&OP module serves this purpose, grouping together all logic necessary to either
produce the base model output or the DDMRP one. Separating those logics from the
Finished Good Inventory module seemed the best way so as to prevent cluttering the other
modules. Fig. 5.49 presentes the structure of the S&OP module. The �rst thing that jumps to
the eye is the absence of stock variables, resembling more a CLD. This is rather unsurprising
given that the target inventory levels setting process is one completely driven by manipulating
other variables of the system and the environment, without doing any aggregation (thus
stocking of quantities). While this might not always be the case (there exists situations where
information �ows can be also stocked), it was not the case in the proposed model.

Fig.5.49. Causal Loop Diagram of the S&OP module to determine the Target Stock in all configurations

Reformulated Target Stock. The desired Finished Good Inventory level in either
the base model con�guration and the DDMRP one.

Context = Endogenous Type = KPI UOM = units

Target Stock =
((Set initial value as MRP*Expected Customer Orders*(MIN(Customer
Tolerance Time, Decoupled Lead Time)+Finished Good Safety Stock
Coverage))*PULSE(INITIAL TIME,-INITIAL TIME+1))
+

PULSE(IF THEN ELSE(Set initial value as MRP, 1, INITIAL TIME),FINAL
TIME+1)*
(
IF THEN ELSE
(
Adopted Inventory management policy=0,
Expected Customer Orders*(MIN(Customer Tolerance Time, Decoupled

Lead Time)+Finished Good Safety Stock Coverage),
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IF THEN ELSE
(
Concurrent policy transition=0,
"Top of Red (TOR)"+(0.5*Green Zone),

(Expected Customer Orders*(MIN(Customer Tolerance Time,
Decoupled Lead Time)+Finished Good Safety Stock Coverage)*
PULSE(INITIAL TIME, 60))+("Top of Red (TOR)"+(0.5*Green
Zone))*PULSE(60, FINAL TIME))

)
)

The extensive formulation above is due to the fact that both base model setting and DDMRP
ones are grouped in the same variable. The initial part of the formulation is used to override
the initial Target Stock value to a custom one while the original formulation of Target Stock
presented in Par. 5.3.1.1 is embedded within multiple IF THEN ELSE statements.

Adopted Inventory Management Policy. It allows the user to select upon
which inventory policy to run the model, representing the most impacting scenario variable
of the model.

Context = Exogenous Type = Scenario UOM =
dimensionless

IF Adopted Inventory Management Policy = 0 THEN Base
Sterman logic
IF Adopted Inventory Management Policy = 1THEN DDMRP logic

Concurrent Policy Transition. It allows activation of the Concurrent Policy
Transition scenario where the DDMRP introduction is performed after some time elapsed
from simulation start.

Context = Exogenous Type = Scenario UOM =
dimensionless

Set initial value as MRP. It overrides the initial DDMRP value of the Finished
Goods Target Stock so as to let the DDMRP con�guration start with the same quantities
on hand that would be done under a base con�guration.

Context = Exogenous Type = Scenario UOM =
dimensionless

Green Zone. The Green Zone as de�ned by DDMRP as de�ned in Chap. 2

Context = Endogenous Type = Auxiliary UOM = units

Green Zone =
INTEGER(
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MAX(
MAX(

Yellow Zone*Lead Time Factor,
Desidered Order Cycle*ADU beliefs),

Minimum Order Quantity
)

)

ADU beliefs. Being de�ned by variables pertaining to the Suppliers Module, its
formulation is detailed in Par. 5.3.5.4.

Yellow Zone. The Yellow Zone as de�ned by DDMRP as de�ned in Chap. 2

Context = Endogenous Type = Auxiliary UOM = units

Yellow Zone = INTEGER(Decoupled Lead Time*ADU beliefs)

Red Zone. The Red Zone as de�ned by DDMRP as de�ned in Chap.2

Context = Endogenous Type = Auxiliary UOM = units

Red Zone = INTEGER(Red Base+Red Safety)

Red Safety. The Red Safety as de�ned by DDMRP in Chap. 2

Context = Endogenous Type = Auxiliary UOM = units

Red Safety = Red Base*Demand Variability Factor

Red Base. The Red Base as de�ned by DDMRP as de�ned in Chap. 2.

Context = Endogenous Type = Auxiliary UOM = units

Red Base = Yellow Zone*Lead Time Factor

Demand Variability Factor. The Demand Variability Factor as de�ned by
DDMRP as de�ned in Chap. 2.

Context = Endogenous Type = Auxiliary UOM =
dimensionless

Demand Variability Factor = Set Coverage equal to MRP scenario =
IF THEN ELSE(Set coverage equal to MRP scenario=0,
0.5,(-1+(1-(4*(-(Finished Good Safety Stock Coverage/Decoupled Lead
Time))))^(1/2))/2)
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Demand Variability Factor is set by default to 0.5. In its formulation the exact computation
to let Demand Variability Factor yield the same inventory coverage under a base model
con�guration, is performed. The computation assumes that

LFT = DVF
TOR = Finished Good Safety Stock Coverage  (see Par. 5.3.1.1)

Lead Time Factor. The Lead Time Factor as de�ned by DDMRP as de�ned in
Chap.2.

Context = Endogenous Type = Auxiliary UOM =
dimensionless

Lead Time Factor  =
IF THEN ELSE(Set coverage equal to MRP scenario=0,
0.5,(-1+(1-(4*(-(Finished Good Safety Stock Coverage/Decoupled Lead
Time))))^(1/2))/2)

Lead Time Factor is set by default to 0.5. In its formulation the exact computation to let Lead
Time Factor yield the same inventory coverage under a base model con�guration, is
performed. The computation assumes that

LFT = DVF
TOR = Finished Good Safety Stock Coverage  (see Par. 5.3.1.1)

Set Coverage equal to MRP scenario. It allows activation of the “Same as MRP
coverage” scenario for the DDMRP con�guration where there Finished Goods Inventory is
managed by DDMRP so as to obtain the same inventory coverage pursued with the base
con�guration. Hence, this variable triggers the alternative formulation for Lead Time
Factors and Demand Variability Factors mentioned above.

Context = Exogenous Type = Scenario UOM = units

Days of Safety in the Buffer. The Days of Safety within the bu�er as de�ned by
DDMRP in Chap. 2.

Context = Endogenous Type = Auxiliary UOM = days

Days of Safety = XIDZ(Red Zone, Shipments, Finished Good Safety Stock
Coverage)

Desired Order Cycle. The desired number of days planners would like to release
replenishment orders in a DDMRP con�guration. (see Chap. 2)

Context = Exogenous Type = Auxiliary UOM = days



5 – The Proposed Model 154

Minimum Order Quantity. The SKU speci�c Minimum Order Quantity
negotiated by procurement through Purchasing Agreements.

Context = Exogenous Type = Auxiliary UOM = units

Top-of-Red (TOR). The Top-of-Red as de�ned by DDMRP in Chap. 2.

Context = Endogenous Type = Auxiliary UOM = units

Top-of-Red (TOR) = Red Zone*(1-No safety stocks)

No DDMRP Safety Stocks. It allows activation of the “No DDMRP Safety
Stock” scenario where the DDMRP Top-of-Red value is overridden to 0. This was required
to account for some Whirlpool DDMRP managed SKUs where no TOR was set.

Context = Exogenous Type = Scenario UOM =
dimensionless

Top-of-Yellow (TOY). The Top-of-Yellow as de�ned by DDMRP. as de�ned in
Chap.2.

Context = Endogenous Type = Auxiliary UOM = units

Top-of-Yellow (TOY) = "Top of Red (TOR)"+Yellow Zone

Top-of-Green (TOG). The Top-of-Green as de�ned by DDMRP in Chap. 2.

Context = Endogenous Type = Auxiliary UOM = units

Top-of-Green (TOG) = "Top of Yellow (TOY)"+Green Zone

Optimal Range UpperBound. The Optimal Inventory Upperbound as de�ned
by DDMRP in Chap. 2.

Context = Endogenous Type = Auxiliary UOM = units

Optimal Range UpperBound = Optimal Range LB+Green Zone

Optimal Range LowerBoud. The Optimal Inventory Lowerbound as de�ned by
DDMRP in Chap.2.

Context = Endogenous Type = Auxiliary UOM = units

Optimal Range LowerBoud = "Top of Red (TOR)"
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5.3.5.3. Customisation to the Finished Good Inventory module
5.3.5.3.1. Net Flow Position

The second important requirement to port DDMRP into the model was computing
the Net Flow Position used to generate replenishment orders through the Net Flow Equation.
Fig. 5.50 introduces the customisation required to bring the change in the Finished Good
Inventory Module. To improve model clarity, here a parallel was drawn with the base model,
given that the Net Flow equation basically overrides the base model replenishment rule (see
paragraph ##). The Desired Daily Production variable formulation was thus required to
change depending on the selected inventory policy. To do this, the Adopted Inventory
Management Policy variable was added to act as a toggle in all variables whose formulation
would change depending on the policy set (e.g. Desirable Daily Production), as shown in Fig.
##.

Fig.5.50. Introduction of the Net Inventory Position variable in the Finished Good Inventory Module

Net Inventory Position. The Net Flow Position as de�ned by DDMRP. as
de�ned in Chap. 2.

Context = Endogenous Type = Auxiliary UOM = units

Net Inventory Position = (Finished goods inventory+WIP-Daily
Qualified Demand)

An interesting point emerged regarding the WIP adjustments, used in Sterman to let
managers take into account the state of the supply line in their re-ordering rule. To run the
DDMRP con�guration, the WIP adjustments variable is required to be inactive, being the
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reordering rule completely handled by the Net Flow Equation, thus suggesting that DDMRP
actually does not consider the status of the Supply Line in its reorder rule. However, this is an
incorrect conclusion given that the Net Flow Equation rule is using the Net Inventory
Position to seize replenishment orders, thus fully considering the status of the Supply Line
(see Chapter. 1). Being in the strong interest of the modeller to modify the base model as less
as possible, it was tried to not deactivate the WIP adjustments logic, letting the Net Flow
Equation only compare On-hands quantities with quali�ed demand and then determining
the size of the adjustments for the supply line as the deviation of the WIP from the TOY.
However, this approach produced a less stable behaviour of the DDMRP thus it was
discarded.

Fig.5.51. Deactivation of Finished Goods Inventory Supply Line Adjustments in DDMRP configuration

5.3.5.3.2. Excess and Shortages

With all the logic to compute the DDMRP Bu�er thresholds in place in the S&OP
module, a primal implementation to evaluate Excesses and Shortages was �nally added to the
Finished Goods Inventory Module.
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Fig.5.52. Excess and Shortage primal implementation in the model

Excesses. The quantity overshooting the targeted inventory levels. Because
DDMRP implies an oscillatory equilibrium, as shown in Par. 5.3.5.6, the DDMRP
con�guration excesses are considered only after the Finished Good Inventory overshoots
the Optimal Inventory Range Upperbound.

Context = Endogenous Type = Auxiliary UOM = units

Excesses =
IF THEN ELSE
(
Adopted Inventory management policy=0,
MAX(Finished goods inventory-Target Stock,0),
MAX(Finished goods inventory-Optimal Range UB,0)
)

Shortages. All daily demanded quantities that were not shipped on the same day.
It represents the Fill ratio in terms of material units rather than a ratio.

Context = Endogenous Type = Auxiliary UOM = units

Shortages = MAX(Daily Demand-Shipments, 0)

5.3.5.4. The ADU estimation module

Fig. 5.53 introduces the ADU estimation module. As seen in Chapter 1, the Average
Daily Usage is at the heart of DDMRP bu�er dimensioning, being thus the most important
metric in DDMRP. In its textbook DDI proposes various methods to compute ADU,
Whirlpool adopted a blended estimation of it based on a 12-week ABCXYZ dynamic
window, as introduced in Chapter 2. Hence, the same logic is implemented in the proposed
model, with some exceptions, by reutilizing the expectation creation mechanism used in
Sterman for the Demand Forecasting Module. That is, the ADU trend is treated as if it was a
forecast on future consumption that gets updated everyday.
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The trend is created by a 6-week moving average of past consumption blended with a
6-week estimation of future consumptions. The window size can be changed depending on
the ABC-XYZ classi�cation of the SKU analysed.

Being unknown to the modeller how to introduce the concept of “future values” in
System Dynamics (while it is pretty easy instead to delay quantities in the future), the future
expectations about ADU are given by the latest value of the expected orders beliefs, thus it is
assumed that future consumptions stay �xed to what the manager currently believe would be
during all the considered future weeks. However, this assumption plays a determinant
limitation to the model capability to properly represent DDMRP logic. On the other hand,
to have a fair comparison between di�erent policies it should always be considered what is the
real information available to the managers of the system: if information about future trends
would be known to the DDMRP manager, they should be known and used also by the
non-DDMRP one. Thus, given that the non-DDMRP manager does not use this
information, this approach makes comparisons fairer.

To compute the moving average instead the values of the Desired Shipment Rate has
been used. Values are accumulated in a stock, building the numerator of the moving average
to then be divided by the days included in the past ADU window, so as to extract the average.
The average moves because the stock is constantly increased by the new values of Desired
Shipment RAte and decreased by a MATERIAL DELAY over the same input values lasting
exactly the same number of days in the ADU review window. While at �rst glance using the
Desired Shipment Rate for estimating ADU, rather than daily Shipments, seems a trivial
mistake, it must be considered that when the system cannot ful�l orders due to a stock-out,
shipments go and stay to zero while the Desired Shipment Rate jumps. If the Shipments were
to be used instead of the Desired Shipment Rate, then extended periods of stockouts would
produce a reduction in buffer sizes rather than an increase as it should be to recover from
shortages. A debatable point is instead possible on the use of the Expected Customer Orders
to estimate ADU. This approach has been discarded because Expected Customer Orders only
account for the daily portion of demand, without considering the accumulated backorders.
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Fig.5.53. Stock and Flow diagram of the ADU estimation module

ADU beliefs. The manager smoothed expectations about ADU.

Context = Endogenous Type = Stock UOM = units/day

ADU beliefs = INTEGRAL(change in ADU exp, Expected Customer Orders)

Change in ADU Expectations. The forecasting error a�ecting manager’s beliefs
about ADU. ADU is evaluated by means of a blended approach, averaging past and future
desired consumptions.

Context = Endogenous Type = Auxiliary UOM = units

Change in ADU Expectations = INTEGER(((Past ADU Rolling
average+Future expectation about ADU)/2)-ADU beliefs)

Past ADU Rolling Average. The past ADU moving average used to blend
manager past ADU expectations with future ones.

Context = Endogenous Type = Auxiliary UOM = units/day
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Past ADU Rolling Average = cumulative Desidered Shipment rate/IF THEN
ELSE (Time<ADU review time window, Time+1,ADU review time window)

Cumulative Desired Shipment Rate. The accumulation of all Desired
Shipment Rates occurred during the ADU review time window.  It creates the numerator
of the past ADU moving average.

Context = Endogenous Type = Stock UOM = units

Daily Desired Shipment Rate = INTEGRAL(daily desidered shipment
rate-past desidered shipment rate, Desidered Shipment Rate)

Past Desired Shipment Rate. The values of Desired Shipment Rate that must be
subtracted at each iteration from the Cumulative Desired Shipment Rate.

Context = Endogenous Type = Flow UOM = units/day

Past Desired Shipment Rate = DELAY MATERIAL(Desidered Shipment Rate,
ADU review time window-1, 0, 0)

ADU review time window. The size of the past ADU moving average window.

Context = Exogenous Type = Auxiliary UOM = days

5.3.5.5. The Financial Performances module

Fig. 5.54 introduces the Stock and Flow diagram used to extract �nancial
performances from the model response. As said, since the beginning of the modelling phase
all �nancial metrics were put temporarily aside, thus the following subsection is still
considered a Work-in-Process. On the other hand, as stated in Simchi-Levi, cost minimisation
plays the pivotal role in all supply chain problems. Hence, the �nal aim of the modeller was to
compress all model performances down to the single metric of SKU Direct Contribution
Margin (DCM), being this metric the one that typically drove GSS analysts and leaders’
decision making. Unfortunately, as expected it was impossible to determine with certainty the
underlying key variables that yield to the DCM, thus it does not appear in the current
formulation. It was possible instead to start evaluating typical �nancial metrics used in to
benchmark the inventory performances, including the Whirlpool-own de�nition of
obsolescence risk (see Chapter 2).
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Fig.5.54. Stock and Flow diagram of the Financial Performances module

FG Inventory Turnover. It measures the speed with which Finished Goods
Inventory gets replaced. As seen in Chap.1, it is a strongly used metric to evaluate company
e�ciency in exploiting inventory as an asset.

Context = Endogenous Type = KPI UOM = days

FG Inventory Turnover = XIDZ(Shipped goods,average inv, 0)

WIP Turnover. It measures the speed with which WIP Inventory gets replaced. It
can be used to assess whether there exists excess capacity or monitor production related
issues.

Context = Endogenous Type = KPI UOM = days

WIP Turnover = XIDZ(Shipped goods,average wip, 1)

DOS on hand. Also known as the Days of Inventory On-Hand (DOH) it is used to
measure how much of the company's liquidity is tied up in inventory.

Context = Endogenous Type = KPI UOM = days

DOS on hand = XIDZ(average inv*MAX(Time, 1), Shipped goods, 0)
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Obsolescence Risk. The economic value at risk associated with potential
obsolescence of Finished Goods currently kept.

Context = Endogenous Type =KPI UOM = EUR

Obsolescence Risk = (DOS On hand/365)*Finished goods inventory

The DOS On-Hand are used as an estimate of average life of the Finished Goods stocked in
current inventory so as to evaluate their obsolescence risk as de�ned by Whirlpool (see
Chap.3). The monetary value of obsolescence is considered directly proportional to its
volumes, thus Obsolescence Risk like “1 EUR” in reality means that 1 Finished Good is
risking obsolescence and that might count as the full monetary value of the item (e.g. 850
EUR).

Shipped Goods. The accumulation of all shipments throughout the simulation.

Context = Endogenous Type =KPI UOM = units

Shipped Goods = INTEGRAL(Shipments, Shipments)

Cumulative FG Inventory. The accumulation of all levels of the Finished Goods
Inventory throughout the simulation.

Context = Endogenous Type =Stock UOM = units

Finished Goods Inventory= INTEGRAL(Finished Goods Inventory, Finished
Goods Inventory)

Average FG Inventory. The average Finished Goods Inventory kept during the
simulation.

Context = Endogenous Type = KPI UOM = units/day

Average FG Inventory = cumulative FG inventory/MAX(1, Time)

Cumulative WIP Inventory. The accumulation of all levels of the WIP
throughout the simulation.

Context = Endogenous Type =Stock UOM = units

Cumulative WIP Inventory = INTEGRAL(WIP, WIP)

Average WIP Inventory. The average WIP Inventory kept during the
simulation.
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Context = Endogenous Type =KPI UOM = units/dat

Average WIP Inventory = cumulative WIP inventory/MAX(1, Time)

Cumulative Raw Materials Inventory. The accumulation of all levels of the
Raw Materials Inventory throughout the simulation.

Context = Endogenous Type =Stock UOM = units

Cumulative Raw Materials Inventory = INTEGRAL(Raw Materials
Inventory, Raw Materials Inventory)

Average Raw Materials Inventory. The average Raw Materials Inventory kept
during the simulation.

Context = Endogenous Type =KPI UOM = units/day

Average Raw Materials Inventory = cumulative Raw Materials
Inventory/MAX(1, Time)

5.3.5.6. DDMRP oscillatory equilibrium condition

Before diving into the full validation phase of W-II, it was in the interests of the
modeller to assure that the equilibrium properties of all modules were preserved after the
substantial changes brought by the DDMRP additions.

It turns out that the DDMRP replenishment rule imposes an oscillatory equilibrium
of inventory on-hand around the target inventory value (see Chap.2), as shown in Fig. 5.55.
This seems due to the fact that, di�erently from the Sterman base case, a replenishment order
is issued upon a rather non-continuous rule, issuing orders only when the Net Inventory
Position falls below the Top-of-Yellow for a quantity that is bounded to be at least equal to
the Green Zone (Fig. 5.56). This logic obliges the inventory on-hand to gradually lower until
a new order is released and new quantities are resupplied. It is worth noticing that this
chainsaw trend is also what is typically considered when introducing continuously reviewed
(s, S) inventory policies in Simchi-Levi, Chap.2. The system was hence considered in
equilibrium when this pattern emerged and the order release function presented a “as
uniform as possible” trend (e.g. always releasing roughly the same quantities after a certain
number of days).
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Fig.5.55. DDMRP oscillatory equilibrium condition under a constant demand input

Fig.5.56. Discrete DDMRP order release rule under equilibrium conditions

As can be seen by its formulation provided in paragraph ##, an important remark
emerged while setting initial conditions for the Desired WIP. At a �rst glance, by reviewing
DDMRP theory, it would seem straightforward that the yellow zone is the desired WIP in
DDMRP configuration, being the yellow zone equal to the cycle inventory. On the other hand,
if this con�guration gets loaded in the model, the system does not present the expected
oscillatory equilibrium condition in Fig. 5.55. Thus, an exact formulation for the initial WIP
that would have ensured initial equilibrium was sought. To be in equilibrium, regardless of
any adopted policy, the quantities withdrawn from a stock must equal the one entering in it.
Hence, the following formulation for Desired WIP follows :

Initial Finished Goods Inventory = Target Inventory = OH(0)
Initial Top-of-Red = TOR(0)
Initial Green Zone = GZ(0)
Initial Net Flow Position = NFP(0)
Initial WIP = Desired WIP = WIP(0)
Initial Daily Demand = DD(0) = exogenous
Initial Throughput = THR(0)
Initial Daily Production Starts = DPS(0)
Initial Daily Shipments = SHIP(0)

OH(0)   = TOR(0) + ( 0.5*GZ(0) ) ;
SHIP(0) = DD(0) ;
NFP(0)  = OH(0) + WIP(0) - DD(0) ;
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THR(0)  = MATERIAL DELAY(DPS(0)) ;
To keep the WIP stock equilibrium :
THR(0) = DPS(0) ;

To keep Finished Goods stock equilibrium :
THR(0) = SHIP(0) ;

Thus :

DPS(0)  = f(NFP(0)) = TOG(0) - NFP(0) = SHIP(0) = DD(0) ;
SHIP(0) = TOG(0) - OH(0) - WIP(0) + DD(0) = DD(0) ;

WIP(0) = TOG(0) - TOR(0) - 0.5*GZ(0)
= (TOR(0) + YZ(0) + GZ(0)) - TOR(0) - 0.5*GZ(0)
= YZ(0) - 0.5*GZ(0) < YZ(0) ;

Loading the above condition for Desired WIP indeed produced the equilibrium conditions
shown in Fig. 5.55. This result con�rm the initial belief of

Desired WIP = Yellow Zone

but it also shows that the half of minimum order size (see Chapter 2) must be subtracted to
the yellow zone to take full account of the status of the WIP supply line and so let the
DDMRP system start in equilibrium.

Struggling in �nding a proper initial system equilibrium conditions for DDMRP
environments is something that also showed up during the 2014 APICS Conference, when E.
Bush, CEO of Demand Driven Technologies, embarked into a “live simulation of DDMRP”
by constructing a random demand function grouping answers from the audience. The
approach used in that occasion is the one typically adopted also by other authors of “establish
a period of prior history to enable the buffer to settle into an expected behaviour” (E. Bush).
Through the above equilibrium formulation this condition is unnecessary in the proposed
model.

Finally, Fig. 5.57 shows that DDMRP logics work properly in face of step increase in
demand, updating the ADU beliefs proportionally to the increase. The shift in the bu�er
thresholds is also followed by the Net Flow Equation logic, never letting the Net Inventory
Position to fall below Top-of-Yellow. The value of the Finished Good Inventory oscillates
around the new Target Inventory value following the step increase. These initial encouraging
results allowed the modeller to move toward a detailed validation phase of W3.



5 – The Proposed Model 166

Fig.5.57. DDMRP Oscillatory equilibrium with a 20% step increased demand input

5.3.6. Wave III validation: Model response to the Demand
Driven Institute dataset

5.3.6.1. Testing Conditions

For the purpose of validating W-III, an extensively validated DDMRP dataset was
desirable for testing whether the customisations introduced to port the DDMRP logic in the
model worked correctly. Such a dataset should not be extremely di�cult to analyse in order to
facilitate the issue-detection phase, given that the major additions done during W-III could
already turn into multiple sources of noise. Finally, a huge advantage would be if the selected
dataset were also known to Whirlpool employees involved in the DDMRP transition project (see
Chap. 3), so that no "learning barriers" would interfere during the model sharing phase,
easing the acceptance of the model and its review.

As introduced in Chapter 2, the Demand Driven Institute (DDI) is the global
reference institution regarding DDMRP, having developed the methodology in 2011 and
nowadays providing extensive ASCM-certi�ed company training programs about it (e.g.
Demand Driven Planner (DDP), Demand Driven S&OP Leader (DDL) Programs). In 2013
DDI released the third edition of its original DDMRP textbook, representing the DDMRP
most updated body-of-knowledge. In Chapter 9 (pp. 209-226) of the textbook a
learning-oriented “step-by-step” 21-days simulation of the DDMRP behaviour is provided
for a �nished product having the following bu�er pro�le.
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Fig.5.58. The DDI simulation buffer profile for the example component

The DDI example featured all the desidered requirements for initiating the validation of
W-III. Moreover - and maybe the most important aspect of it - GSS management invested in
educating their material planners about DDMRP by purchasing the full stack of DDI
corporate learning programs. Thus, the following dataset is well-known and “accepted as
valid” by them. Fig. 5.59 shows the Quali�ed Demand and Daily Demand and trends used in
the DDI simulation. Those were provided to the model by means of Lookups.

Fig. 5.59. Qualified Demand and Daily Demand curves used to validate W-III
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Tab. 5.6. DDI dataset Qualified Demand and Daily Demand curves

The �rst issue to tackle for loading the DDI dataset into the model was how to mimic
its starting condition. Fig. 5.60 provides the initial state of the system in the DDI simulation.

Fig.5.60. The initial simulation condition provided in the DDI simulation dataset

While setting parameters like MOQ, initial On-hand, LTF and DVF or Quali�ed Demand is
straightforward exploiting Vensim capability of setting initial point values for any variable,
the initial condition for variables that are de�ned upon more complex dynamic loops
required custom modi�cation to the model. In particular, for what regards the in-transit
quantities, which in the proposed model are represented by the total WIP in the system (WIP
+ Throughput), the initial condition is de�ned as a set of values to take place during a
Manufacturing Lead Time cycle. In other words, the initial condition for the throughput in
the DDI example was not a single value at t=0, but rather a list of values, namely

- 35 units �owing into Finished goods inventory at t = 1,
- 37 units �owing into Finished goods inventory at t = 5
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This condition was achieved by making the throughput formulation capable of selecting
which input to use, choosing between the Potential Throughput Rate and the exogenous
Initial Throughput Rate function, based on the current simulation time, as shown in Fig.
5.61

Fig.5.61. Modification to the throughput to match DDI initial conditions

Following the new formulations are reported

Reformulated Throughput. The same throughput as de�ned in Par. 5.3.2.1.3 but with
the additional feature to override its initial condition setting.

Context = Endogenous Type = Flow UOM = units/day

Throughput. =
(
Set initial Throughput *
(initial throughput value+(MAX(Potential Throughput-WIP scrapping

rate, 0) *
((PULSE(0,6)*0)+(PULSE(7,FINAL TIME)*1))))
)
+
(
(1-Set initial throughput)*MAX(Potential Throughput-WIP scrapping

rate, 0)
)

Set initial Throughput. It allows to override the Throughput initial condition
set by the system feedback loops to impose a custom initial set of values.

Context = Exogenous Type = Scenario UOM = dimensionless

Initial Throughput Value. The custom function to override the initial
Throughput behaviour.

Context = Exogenous Type = Auxiliary UOM = dimensionless
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Initial throughput value =  (35 * PULSE(2,0)) + (37 * PULSE(4,0))

The PULSE function, which allows the creation of step stimuli of any intensity for a
determined period of time-units, was extensively used. Using PULSE for triggering
“point-stimulus” in the desidered dates allowed constructing the same DDI input function
for throughput in the model.

Finally, slight modi�cations were needed in order to impose a custom value to the
initial �nished goods and WIP inventory target levels.

Fig.5.62. Modification to the Target Stock to accept a custom initial value

Set Custom initial value. It allows to override the initial Target Stock condition
with a custom exogenous value.

Context = Endogenous Type = Scenario UOM = dimensionless

Custom FG initial value. The custom initial value to set for the Finished Goods
Inventory.

Context = Exogenous Type = Constant UOM = units

Fig.5.63. Modification to the Desired WIP to accept a custom initial value

Formulations for the WIP follow the same logic as above and are hereby omitted. The
formulation for the Target Stock and Desired WIP are here omitted, being the impact of
those additions marginal on their formulation. However, they are included in the Appendix
to this study.

A �nal addition was required to let the model fully match with the DDI simulation,
namely adding a “quality inspection plan” logic. Indeed, in the DDI simulation, from t=17 to
t=20, 40 units are taken from the available stock-on hand to perform quality checks. In the
DDMRP logic this situation is handled as an increase in the quantity in-transit for a decrease
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of quantities on-hand. In the proposed model this is not doable, being the quantity in transit
determined by the system throughput and the current WIP. Thus an additional stock, called
Under Quality Check and connected with the Finished Good Inventory Stock, was added,
as shown in Fig. 5.64.

Fig.5.64. Addition of the under quality check stock

Under quality check. The accumulation of quantity sampled from the Finished
Good Inventory for quality inspections.

Context = Endogenous Type = Stock UOM = units

Under quality check = INTEG (quality samples-good quality samples,
Under quality check, 0)

Quality samples. Quantity sampled from the Finished Good Inventory for
quality inspections.

Context = Endogenous Type = Flow UOM = units/day

Quality samples =
IF THEN ELSE(demand scenario=4 :AND: Decoupled Lead Time=7,
IF THEN ELSE(Finished goods inventory>0, 40*PULSE(16,1), 0)

,0)

Good quality samples. The fraction of non-defective items from the sampled
population of Finished Goods.

Context = Endogenous Type = Flow UOM = units/day

Good quality samples = DELAY MATERIAL( quality samples, 7, 0, 0)

Reformulated Net Inventory Position. The net inventory position as de�ned in Par.
5.3.3.3.1 adapted to accept quality check withdrawals.
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Context = Endogenous Type = Stock UOM = orders

Net Inventory Position = (Finished goods inventory+WIP-Daily
Qualified Demand)+under quality check

As it can be seen, this part of the model formulation is speci�c to the DDI case only, thus it is
deactivated during other use-cases (e.g. pieces are sampled for quality checks only when
running the Demand Scenario = 4). On the other hand, taking into account quality issues,
goods returns or reverse logistics in general, it is something to expect in a model oriented to
productive environments, hence for this reason, the quality inspection plan logic is kept in the
model even if not e�ectively utilised yet in all other demand scenarios. In this way the option
to further investigate its dynamic contribution to the whole system response in the future is
left open for future developments.

Table 5.6. gives all model parameter settings in order to launch the simulation.

Finished Good
Inventory

Validation
W-III

Raw Materials
Inventory

Validation
W-III

S&OP Validation
W-III

Productive Capacity 120.000 pcs Avg BOM parent to
child usage ratio

1 pcs/pcs Finished Goods
Safety Stock

Coverage

14 days

Adopted Inventory
Management Policy

DDMRP Adopted Inventory
Management Policy

MRP Adopted Inventory
Management Policy

DDMRP

Decoupled
Lead Time

56 days Raw Materials Safety
Stock Coverage

6 days Impose ADU trend TRUE

FG Inventory
adjustment time

56 days Raw Materials
Inventory Review

Period

14 days ADU trend 10 pcs/day

WIP
adjustment time

14 days Order Release Time 14 days Demand Variability
Factor

0.5

WIP scraps rate 0 pcs/day Agreed Purchasing
Lead Time

7 days Lead Time Factor 0.5

Obsolescence Time 365 days Obsolescence Time 365 days Minimum Order
Quantity

20 pcs

Set initial WIP TRUE Demand Forecasting
Module

Validation
W-III

Desired
Order Cycle

0 days

Initial WIP 72 pcs Daily
Customer Orders

See Fig. 5.59 Order Ful�lment
Module

Validation
W-III

Set initial
Throughput

TRUE Daily
QUalified Demand

See Fig. 5.59 Customer
Tolerance Time

14 days

Initial Throughput 35 * PULSE(2,0)
+ 37 * PULSE(4,0)

Time to perceive orders
rate changes

56 days ADU Estimation
Module

Validation
W-III

disabled disabled

Tab. 5.6. Parameters setting for W-III validation phase
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5.3.6.2. Discussion of the model response

Once all inputs were loaded, the model responded as shown in Fig.5.65. The model
re-proposed the same trends for Net Flow Position and On-Hand Inventory presented by the
authors of DDI simulation. On top of those, all aforementioned metrics have been also
computed, showing something new about the DDI simulation. The capability to provide a
large panel of metric on each run is considered one of the model's main strengths, making it
attractive for inclusion in real S&OP processes.

The positive outcome of this validation step worked as an essential “acid-test” prior to
embark into the �nal validation of the model against the Whirlpool case study, knowing at
this point that the underhood DDMRP model logic already proved trustworthy in other -
even if extremely simpli�ed - contexts.

Fig.5.65. Side-by-side comparison of DDI simulation results with the proposed model response
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Fig.5.66. Additional metrics computed by the proposed model about the DDI example

5.3.7. Sensitivity Analysis of the final model
5.3.7.1. The effect of capacity bottleneck

Before embarking into validating the model against the case study dataset, it was of
interest to the modeller to brie�y review the system response generated by the di�erent
inventory management policies under the same harsh conditions used in Par. 5.3.2.3, by
comparing some of the main model KPIs. Fig. 5.66 presents the model response under either
the DDMRP con�guration and the base con�guration. As reported by other authors, there is
no such “one size �ts all” regarding inventory management policies so declaring an absolute
winner among the considered policies is not the real scope of this study. At a �rst sight is
evident that there exists “performance overlappings” for the twos under many KPIs, but a
general overview seems to suggest that

1. DDMRP heavily su�ers when a capacity bottleneck is introduced. Being the
net �ow equation logic impeding continuous release of production orders, the
average size of the downstream orders is larger than in the base model. If a capacity
bottleneck hits on order release, the bu�er will not be replenished as planned. On the
other hand, the base model formulation assumes orders of any size can be released
without taking into consideration economies of scales.

2. DDMRP requires a greater use of productive capacity to run smoothly and
prevent excess accumulation. This result goes in contrast with what many authors
found, namely a lower WIP in DDMRP con�gurations. It must be noticed that
DDMRP is getting compared to a model where continuous replenishment is allowed
whereas DDMRP seems to generate a discrete stream of large lumpy orders
downstream when under stress.

3. Both policies yielded the same service level trend but customer satisfaction
di�ers substantially. Once the �nished good inventory is stocked-out due to the
capacity bottleneck in the DDMRP con�guration, the rather lumpy replenishment
rule produces “no-throughput gaps” where no orders are ful�lled at all due to the
discrete gap in the throughput �ow, as shown in Fig.5.67. Hence, all orders in those



5 – The Proposed Model 175

gaps are likely to be cancelled. Once those are cancelled, the replenishment quantities
arriving in dela,  stock as excesses.

Fig.5.67. Throughput gaps inducing higher order cancellation in DDMRP environments
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Fig.5.66. Sterman model versus DDMRP model under extreme testing conditions

Table. 5.7. Side-by-side comparison of Base Case vs. DDMRP simulation under extreme stress-testing conditions

Based on these �rst insights, a univariate sensitivity analysis was performed to study the e�ect
of the capacity constraint on the DDMRP performance. 10000 simulations over a time
horizon of 10 years were run for both model con�gurations. The productive capacity was set
to be varying in a range from 0 to 2M pcs in order to cover most of the spectrum, while DLT
was kept to 56 days so as to simulate a worse-case scenario of an SKU made by components
procured overseas. The input demand signal was as in Fig. 5.67. What seems to emerge is an
extremely high dependency of DDMRP performance, measured in terms of total inventory
levels and WIP utilisation, when a capacitated system is considered. Indeed, when a stock-out
hits in a saturated system, DDMRP starts triggering large replenishment orders as long as the
NFP stays below zero. Such batch orders are repeated at each iteration while the decoupled
position is stocked out, accumulating orders as big as the entire maximum DDMRP
buffer size (TOY+GZ) in the inventory supply line. If stockouts occur while demand is
rising, the situation get worse and worse, always releasing bigger batch orders, leading to the
situation shown in Fig. 5.68. This behaviour is seen by the author as a clear representation of
the penetration of Bullwhip oscillations within the decoupled position through the
downstream nodes. This overactive behaviour seems instead not a�ecting the response of
the base Sterman model, being the mechanism of control of the supply line in place.
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Fig.5.67. The input demand trend used during to assess the effect of Productive capacity on the model

Fig.5.68. Proposed model Finished Good Inventory reaction to capacity bottleneck

Fig.5.69. Proposed model WIP reaction to capacity bottleneck
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Fig.5.70. Sterman model Finished Good Inventory reaction to capacity bottleneck

Fig.5.71. Sterman model WIP reaction to capacity bottleneck
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5.3.7.2. The effect of LTF and DVF on DDMRP performance

In order to answer to RQ3, a simple multivariate sensitivity analysis was run for the
DDMRP con�guration while letting varing DVF and LTF between the ranges indicated for a
Purchased Item with Short Lead Time (DLT=1). Thus DVF∈ [0, 1] whereas LTF∈ [0.6,
1].
The same input demand trend used in Par.# was used for this simulation. The resulting
model response for the Finished Good Inventory levels is shown in Fig.5.72 it can be seen that
the inventory �uctuate heavily, peeking up to 30.000 units / day.

Fig.5.72. Effects of DVF and LTF on the Finished Goods Inventory levels
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Chapter 6

Model validation
against Whirlpool inventory data

In Chapter 5 the rolling-wave development approach deployed to derive the �nal full-�edged
model was described. In the following Chapter such a model is �nally tested against the real
case study data in order to see what results it returns and whether they �t with the historical
data.

6.1. Finished goods selection

While the DDMRP methodology is applicable to multiple SKU environments by
simply exploding and adding the top-end requirements’s ADU on all shared components, the
proposed model focuses instead on single SKUs, exploiting the caveats introduced in Sterman
to consider components availability without duplicating the Raw Materials module for each
branch in the BOM.

Moreover, the proposed model was idealised as to be a tool for rapidly benchmarking
S&OP scenarios while relying on an accurate but “high-order” view of inventory. On the
other hand, the Whirlpool working environment is determined by parallel production of
multiple products, having in its portfolio both high-runner and slow-movers goods. Thus,
limiting the proposed model to single SKUs analysis would mean purposely discarding all
those dynamics generated by capacity cannibalization between “competing SKUs” produced
in the same plant, in terms of shared raw-material, components or machine-time.

Hence, a reasonable trade-o� between model accuracy and reality representation
requires considering a panel of SKUs so as to cover all typical �nished goods categories
present in the Cassinetta plants portfolio. The ABCXYZ matrix was the tool used to guide
this step, determining 3 representative classes:

Flagships. Goods presenting very high-volumes with very low variability, thus all items
belonging to the AX-class. Those goods drive most of the sales, their demand is easily
forecasted and thus very high service-levels must be always assured to them at any cost. This
goods represents the typical “JIT example” where dedicated capacity is assigned only for their
production.
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Nervous. Goods presenting medium-to-low volumes with very high variability, thus all items
belonging to the BZ-class. Those goods represent a threat to �agships, being their volumes
not as low as to not impact �agships production schedule plans. Moreover, their management
complexity is increased by their highly volatility of volumes which make their forecasts
unreliable, thus nervousness in their production schedule is foreseen. Items with high unit
costs represent a double threat.

Customs. Goods presenting low volumes with very high variability, thus all items belonging
to the CZ-class. Those goods present lumpy demand that suddenly creates a production
requirement, stealing potential capacity to �agships. A typical example of customs are built-in
kitchen bundles required by big wholesalers like IKEA.

The proposed segmentation of SKUs can be seen for the model purposes as flagships
protection being the overall goal of the system getting distrubed by other SKUs requirements.

For each of the three classes the most representative SKUs (as of time of extraction)
were selected, basing the selection on the DCM for �agships and Unit Costs for the rest.
Being the model “plant-based”, a hard selection criteria was that all selected SKUs were
produced in the same plant.

While further customisations to the model so as to address parallel production
dynamics were not planned for this study, the decision of considering benchmarking the
model upon multiple SKUs types is a �rst step toward that direction. The extraction was
performed by querying the L2 level of the DP directly so as to extract the overall ABCXYZ
matrix grouped by plants, something apparently missing at the time in the DP (Fig. 6.1).
From it the selected SKUs with the matching characteristics described above were

Flagship  : 859991602220 (Cassinetta REF) AX with max DCM in last 6 months
Nervous  : 859991551170 (Cassinetta CKG) BZ with max unit cost in last 6 months
Customs : 859991635270 (Cassinetta REF) CZ with max unit cost in last 6 months

Fig. 6.1. The reconstructed global ABC-XYZ classification by plant
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The codes introduced above represent the SKUs ID used by GSS to track each item. While
GSS analysts usually do not use additional metadata to elaborate information about SKUs,
and thus they are also not required in the proposed model, for clarity to the reader following
it is provided “what these products really are”.

859991602220 : Build-In Fridge and Freezer SP40 801 SPACE 400
Line

Fig.6.2. Product images and dimensions of 859991602220

859991551170 : Build-In Double Ovens and Steam Ovens W9 OS2 4S1 PW
STEAM (Line 4)

Fig.6.3. Product images and dimensions of 859991551170
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859991635270 : Build-In Fridge and Freezer WHC20 T593 P CB Electric Thunder Line

Fig.6.4. Product images and dimensions of 859991635270

6.1.1. Historical data extraction

An extensive review of the Whirlpool inventory Google Cloud data-platform (DP)
was given in Chapter 2. To retrieve from it all the data required, a detailed reverse-engineering
activity has been performed to understand how all SQL-tables (more than 200) used to work
together, in which sequential order they got updated, which were deprecated or outdated and
which instead were only used for development or testing purposes. Google BigQuery
provides a set of “metadating queries” that can be launched against the DP datasets to retrieve
all their information, like the list of all the included tables ordered by creation date and
last-update date. Those queries were exploited to �lter out the non-relevant SQL-tables and
have an idea of the updating time-schedule of each of those.

A custom SQL-procedure has been devised in order to extract from the DP all
required data for the SKUs in scope. The queried data-sources were reviewed as much as
possible with the GSS analysts. The procedure takes 5 input parameters:

- The target SKU,
- The Simulation Start Date,
- The Simulation End Date,
- A boolean value to decide whether data must be aggregated by plant or kept separate

and returns the following data for each SKU:
- Material code ID,



6 – Model validation against Whirlpool inventory data 184

- Historical date of reference,
- relative timestamp from simulation start date,
- daily forecasted demand trend,
- daily quali�ed demand
- daily net �ow position
- total target inventory
- average daily usage
- on hand usable quantity (net of bad stock)
- in-transit quantity
- red zone
- yellow zone
- green zone

One of the main advantages of having a procedure for data retrieval, aside from its speed, is
that it can manipulate the data directly from the sources and pre-format them as needed to
ease in their �nal use, namely loading them in Vensim. This is done by computing the relative
simulation timestamp to which data in each row are referred to, or allowing aggregation of all
values by plants. The data-series which “sets the clock” are the demand forecasts, without
which it is impossible to compute quali�ed demand and run the model. Thus the minimum
date available of demand sets the zero of the simulation, whereas the last demand input �ags
its end. Moreover, as clear by their name, devising a procedure for data retrieval is basically the
same done when planning systematic literature review, establishing a literature review
protocol: it standardises the data-retrieval process, documenting it for future assessment, needs
or modellers.

Fig.6.5. The extracted dataset from the SQL-procedure

The procedure is reported in the appendix of this paper, after some privacy changes in the
table names have been done. The extraction was done on 2022-02-23 by setting the
SQL-procedure to retrieve all data available between 2021-01-01 and 2023-12-31. This data
range should cover all the data visibility on the DP (Chap.3). As it can be seen in Tab.#, no
data was found after 2022-02-27. Moreover, not all series are included within the same



6 – Model validation against Whirlpool inventory data 185

boundaries. Indeed, while data about SAP historical inventory levels are daily available since
the �rst release of the DP (June 2021) and cannot reasonably go into the future, the data
retrieved about demand forecasts starts only from September 2021. A further restriction to
the range is then imposed by the Daily Quali�ed Demand trends, which were introduced in
the DP from the beginning of December 2021, constraining the number of usable days of
data to run the simulation to only 83. The Daily Demand trend range determines the
time-zero position, set at 2021-09-06.

Tab. 6.1. The date ranges of all series in the extracted datasets

Fig. 6.6 visualises the extracted dataset plotting each series over time. While stock quantities
and DDMRP bu�er thresholds trend were veri�able against o�cial Whirlpool, the accuracy
of the data retrieved about Daily Demand, Daily Quali�ed Demand and Net Flow Position
was heavily doubted instead. For these, no o�cial report was indeed yet published, denoting
the probable still on-going development of the metrics. Indeed, while the relationship
between Daily Quali�ed Demand and Net Flow Position seems reasonable (when demand
rises, net �ow lowers), the order scale of the values do not match with the daily demand. Even
the Stable Flagship, which should rarely present quali�ed demand spikes, instead presents a
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quali�ed demand that averages around 4000 units/day, while its daily demand spikes once at
around 200 units /day. Thus, being the Whirlpool order spike horizon at best 60 days (for Z
components the ADU window is shifted 8 weeks in the future), this data seems not correct.
By reconstructing the planning and execution typical DDMRP views, it can be seen that

1. Whirlpool still does not manage SKUs planning using DDMRP. This can be
seen by the Net Flow Position which is never included within [TOR, TOY] and does
not follow the reorder logic seen in Chap.2. At all e�ects, Whirlpool uses DDMRP
only to bisect current inventory levels into TOR, TOY, TOG and determine
from this whether materials are in excess or shortage.

2. The AX component historical inventory levels seem rather to present AZ lumpy
demand instead, �uctuating rapidly between 800 and 150 units /day.

3. All selected SKUs do not have an active RZ.

A second doubtable point was on SKUs Lead Times. As reported in Tab.#, all SKUs seem to
require 10 days of lead time in order to complete manufacturing. This value seems highly
inflated, considering the kind of industry in which Whirlpool operates and the price it sells its
products. The insight in Tab.# repropose the urgency of the massive data cleaning
phase as introduced in Chap.3, where lead-times had been identi�ed as the main bleeding
point to attack to improve the quality of the �nal decisions.. Finally, the MOQs seem quite
low, even for the Flagship.

Tab. 6.2. Doubting values of Lead Time and MOQs

Many could be the reasons behind those issues, foremost an author error in reverse
engineering the DP seems the most likely cause, considering the scale of the DP that required
outsourcing the project to an external consultancy company to build. For example, the way in
which the ABC-XYZ matrix was reconstructed by plant might be not appropriate. On the
other hand, the DP project is continuously updated thus the data retrieved might be a�ected
by still on-going developments, such as for the Daily Quali�ed Demand and Net Flow
Position. Unfortunately it was not possible to deeply review those data with GSS analysts due
to the emergence of the contingent situation of the Ukrainian con�ict. Thus, the quality of
the following results must be doubted.
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Fig.6.6. The extracted dataset visualised

6.1.2. Fitting historical trends under MRP setting

To load Whirlpool demand data into Vensim, a short Python script reads the table
provided by the procedure mentioned above and builds a text string properly formatted so
that the software can translate it into a Lookup function. The Lookups can be selected as
demand inputs as seen in Chap.5. Following the model inputs are presented for all selected
SKUs. Following the model runs against those inputs is presented. For all cases, Customer
Tolerance Time has been set to 7 days. This value was estimated by reviewing Whirlpool online
website where product sale is provided included with a house delivery to the house door and
installation within a week. As said above, the historical data have been compared with the
model running under a non-DDMRP setting. As expected, no correspondence between
the historical trends and the model output can be found even only by a qualitative
look. Some convergence can be seen in the Net Flow Position trends instead. Such result,
even if extremely dismal, pinpoints the need to investigate more on possibly omitted
important variables and their feedback loops, in conjunction with an improved validation of
the data extraction procedure. In this regard, it is suspected that a still-ongoing data cleanup
phase held by Whirlpool DP managers is a�ecting the quality of the extracted data.

Because of such results, it was not possible to simulate additional scenarios.
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Fig. 6.7. Input data for 859991602220

Fig.6.8. Model Finished Goods Inventory for 859991602220 under MRP-setting

Fig.6.9. Historical Finished Good Inventory for 859991602220
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Fig.6.10. Model Net Inventory Position for 859991602220 under MRP-setting

Fig.6.11. Input data for 859991551170

Fig.6.12. Model Finished Goods Inventory for 859991551170 under MRP-setting
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Fig.6.13. Historical Finished Good Inventory for 859991551170

Fig.6.14. Model Net Flow Position for 859991551170 under MRP-setting

Fig.6.15. Input data for 859991635270



6 – Model validation against Whirlpool inventory data 191

Fig.6.16. Model Finished Goods Inventory for 859991635270 under MRP-setting

Fig.6.17. Historical Finished Good Inventory for 859991635270

Fig.6.18. Model Net Flow Position for 859991635270 under MRP-setting
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6.2. Model response to historical data under DDMRP
setting

After the dismal results obtained in the previous paragraph, the DDMRP setting was
anyway tested in order to have a grasp of how DDMRP would have reacted under the
historical demand trend.

Apart for the 859991602220 where the DDMRP behaviour seems as expected, also
the DDMRP results under the Whirlpool data settings seem generally incorrect,
claiming that for 859991551170 and 859991635270 a huge sudden increase in inventory
occurs after the decoupled position are stocked-out for a long period of time. While this
response makes sense with DDMRP theory, given that when the decoupled position is
stocked out then the NFE will always generate a replenishment order since the decouple
position integrity is rebuilt. Thus, when stockouts occur, the DDMRP seems to overreach
to the disruption by not fully considering the status of the supply line of new
materials on order. Then, as seen in Sterman, when all issued orders during the stockout
arrive, suddenly the decouple position overshoots its target, accumulating excesses, leading to
no more orders since the net �ow position is restored within the [TOY, TOG]
bounds.

While those conclusions sound incorrect given the NFE formulation seen in Chap.2,
this was the only cause the author could �nd to explain the model response. On the other
hand, in support of such a claim it can be seen that, as seen in Chap.2, when the decoupled
position is stocked-out it completely loses its capability of shielding the productive
environment from the Bullwhip e�ect. Thus, all variability in the demand signal is passed
to the downstream nodes and ampli�ed, leading to overactive behaviours. On the other hand,
such approach to disruption seems to allow DDMRP to better cope with demand
variability, as the Service Level under the BZ and CZ SKU runs produced higher
performances than the MRP runs.

Fig.6.19. Model Net Flow Position for 859991602220 under MRP-setting
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Fig.6.20. Model Net Flow Position for 859991551170 under MRP-setting

Fig.6.21. Model Net Flow Position for 859991635270 under DDMRP-setting

Fig.6.22. Service Level under for the different SKU runs
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Chapter 7

Conclusions
In this study a deep review of DDMRP has been performed. Because DDMRP, as all

other inventory management policies, is rooted in the bigger context of Supply-Chains, such
context was reviewed too. It was shown that the basic assumption buried under the
MRP-based approach to material management fails to account for the VUCA fabric of the
modern supply-chain context, and that nervousness is a consequence of loading a precise
“netting-to-zero” procedure, such as MRP, with imprecise forecasted data. Proper
communication and strategic partnerships along the chain are the way to contrast the
propagation of Bullwhip oscillations.

Then, the case study of the Whirlpool EMEA inventory growth during the surge of
COVID-19 pandemic in May 2021 and the DDMRP implementation Cassinetta pilot project
run to �ght it, were illustrated. By the opportunity given to the author of participating in
such a pilot project during his internship at the company, the current study developed. Upon
such experience on the �eld, this study performed an empirical analysis of DDMRP
performance by exploiting the System Dynamics modelling approach to derive whether
DDMRP extension to most of the Whirlpool SKUs were to be beneficial for the company and
provide a better strategy for inventory. A SD model made by 6 submodels was developed
following the J. Sterman seminal work done regarding supply-chain analysis using SD. On
top of his base models, the author customised them in order to add relevant features of the
more realistic Whirlpool case study and implemented the DDMRP logic by minimally
modifying the Steramn base equations. It is worth mentioning that the proposed model
represents a �rst-of-a-kind SD model to the author's knowledge implementing DDMRP.
This represents, to the author, either the model key weakness and key strength, foreseeing
large space for improvements.

As seen in Chap.5 and 6, the toughest part of the study applied during model
validation. “All models are wrong, but some are useful”, indeed the proposed model proved to
provide reasonable results when tested against academic datasets provided by J.
Sterman and the Demand Driven Institute, but completely failed the task of reproposing
the Whirlpool historical trends even qualitatively when the historical demand trends
and initial inventory conditions were loaded into it. Because of such dismaling result, no
further analysis could be carried out and no further questions about the business case could be
posed. However, because the model proved its validity under academic datasets, such dismal
responses were anyway analysed and, at this point, it is possible to provide an answer to the
Research Questions of this study initially stated in Chap.3.
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RQ1. How well does the DDMRP perform with respect to traditional inventory continuous
(R, Q) policies in terms of Service Level, Inventory Turnover and average WIP inventory for
different ABC-XYZ product demand profiles?

RQ3. Does the DDMRP order release logic “stress the system” in presence of internal or
external capacity constraints?

RQ4. Does DDMRP reduce excess generation during periods of high demand variability
generated by unforecastable events like global pandemics and sudden global supply shortages?

From both academic literature and multiple companies who adopted it, DDMRP
is claimed to yield overall improved performance in terms of average inventory and WIP.
This study con�rms such a result, after having compared multiple demand trends
between an MRP-like setting and the DDMRP one, thus answering positively to RQ1.

On the other hand, this result seems to occur only when an uncapacitaed
system is considered. As shown in Chap.5, when a capacity bottleneck was introduced to
constrain the NFE-based replenishment logic, DDMRP seem to have a tendency to
overreach to downstream starvation, keeping signalling a dangerous situation and
releasing ever-increasing downstream orders as long as the integrity of the decoupled
position is restored. Such a behaviour produces a sudden spike in �nished goods
inventory levels when all continuously released orders arrive, thus producing higher
inventory levels and WIP utilisation than MRP. This result goes in accordance with
some of the studies found in literature (Al-Ammar, 2018) where it is claimed the existence
of a domain of applicability of DDMRP on some specific types of SKUs. However, in this
study the characteristics of such an applicability domain were not found.

RQ2. How sensible are the DDMRP performances to the arbitrarily set LFT and DVF
parameters?

From the sensitivity analysis run at Chap.5, the impact of LTF and DVF seems
to be sensibly high, presenting high variability of the Finished Goods Inventory levels
with the increase of the z-eq factor = LTF(1+DVF). Such results seem to con�rm the result
found by C. J. Lee about the too loose bounds of the DDMRP SS setting rule, but the too
simplistic analysis run in this study can only suggest such a claim and a more
rigorous study would be required.

RQ5. How much does the Order Spike Visibility feature of DDMRP drive final
performances?

This study did not properly answer this research question.
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RQ6. Is System Dynamics flexible enough to be embedded in current S&OP processes?

Even if it required to build a model that might be considered slightly complex, SD
adoption in such an operative context like the one of Inventory Management
resulted extremely versatile, allowing to build a model able to compare side-by-side two
di�erent inventory management policies. Moreover, once a model of the operative context
is built, it can be plugged into a bigger model more strategically oriented, bridging the two
environments and letting them feed each other dynamically. It is worth noticing that these
are the aims of the Demand Driven Institute is trying to achieve with its DDMRP.
IAs seen in Chap.2, DDMRP is only the operative module of a bigger S&OP strategic
module called Demand Driven Adaptive Enterprise (DDAE) model.

7.1. Current issues and future steps

Considering all the above,

1. The more stringent priority lies in understanding why the model
responses were so highly inaccurate when loaded with historical data.
Part of such investigation is already performed in Chap.5, where a possible
issue with the quality of data retrieved emerged. Because the model proved its
validity when loaded with exact input data of well known datasets, the �rst
logical attempt to improve its response is to validate with high con�dence the
accuracy of data retrieved. To achieve this goal, sharing the model to the
Whirlpool GSS analyst by highlighting both its strengths and �aws, is of
key importance;

2. Because DDMRP proved extremely sensible to the arbitrarily set DVF and
LTF, a deeper investigation of the insight might be planned by loading the
model with the J. Lee, et al, proposed formulation that claims a shrinkage of
the DDMRP Safety Stock variability range;

3. As rilevated by DDMRP authors, the e�ect of very large MOQs on DDMRP
performances is not clearly stated. In their studies they obtain that an increase
of MOQ did not play favourably to DDMRP. A possible investigation about
the issue might be pursued by exploiting the proposed SD model.

4. Finally, the issue found more relevant by the author to advance the DDMRP
body-of-knowledge is the one related to determining whether DDMRP
should be generally applied to all environments or whether it should
be limited to only some kind of SKUs. The obtained results about
DDMRP overactive behaviours in presence of a capacitated system suggest
the latter. From what is seen in Chap.3, there are no such things as
uncapacitated systems.
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Appendix

10.1. Interface Python Script interface script between the DP and
Vensim

1 def build_vensim_lookup_from_csv(file_uri: str, destination_file_name: str):
2 """
3 Given a .CSV file containing 2 columns [MATERIALCODE, RELATIVE-TIMESTAMP, QUANTITY] assumed
4 to be ascendly ordered by Relative Timestamps it outputs to the console the the properly
5 formatted string that produces an equivalent vensim lookup function if copy-pasted in it.
6
7 [IMPORTANT]
8 Missing values for any timestamp between min and max are imposed to be = 0 to avoid any
9 linear interpolation done in Vensim later.
10 """
11 if '"' in file_uri:
12 file_uri = file_uri[1:-1]
13 vns_lookup: str = "[(0,0)-(10,10)]"
14 with open(rf"{file_uri}", "r") as f:
15 data: list = [
16 (int(l.split(",")[1].strip("\n")),
17 float(l.split(",")[2].strip("\n"))) for i, l in enumerate(f) if i != 0
18 ]
19 vns_lookup = [(i,0) for i in range(len(data))]
20 for d in data:
21 if d[0]>=0:
22 vns_lookup[d[0]]=d
23 vns_lookup.insert(0,"[(0,0)-(10,10)]")
24 data = vns_lookup[0]
25 for i in range(1, len(vns_lookup)):
26 data += f",\n{vns_lookup[i]}"
27 if destination_file_name == "":
28 print(data)
29 else:
30 - with open(path.join(path.join(environ['USERPROFILE']),
31 'Desktop\\', destination_file_name+".txt"), "w") as f:
32 f.write(data)
34 with open(path.join(path.join(environ['USERPROFILE']),
34 'Desktop\\demand-trend-all-steps.csv'), "w") as f:
35 for i, d in enumerate(vns_lookup):
36 if i==0:
37 f.write(f"CODE,REL-TIMESTAMP,DEMAND\n")
38 else
39 f.write(f"XXXXXXX,{d[0]},{d[1]}\n")

https://www.pwc.com/it/en/services/consulting/operations/ddmrp.html
https://www.whirlpool.eu/pdf/MOG_231_WHIRLPOOL_EMEA_per_sito.pdf
https://www.whirlpoolcorp.com/supplier-code-of-conduct/
https://www.whirlpoolcorp.com/wroclaw-and-cassinetta-sites-conduct-the-first-world-class-manufacturing-audit/
https://www.whirlpoolcorp.com/wroclaw-and-cassinetta-sites-conduct-the-first-world-class-manufacturing-audit/
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10.2  Final System Dynamics Model
Finished Good Inventory Module
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Raw Materials Inventory Module
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Demand Forecasting Module
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Order Fulfilment Module
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S&OP Module
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ADU Estimation Module
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Financials Module
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A.1: The data-retrieval SQL-procedure

-- the procedure pulls all the data required for running the SD DDMRP model given 2
start and end dates

-- the procedure also provides the model initial conditions -> values for rel_timestamp
= 0

1 BEGIN
2 DECLARE dt_sim_start DATE;
3 DECLARE dt_sim_end DATE;
4 DECLARE target_sku_code STRING;
5 DECLARE aggreagate_plants BOOLEAN;
6
7 SET target_sku_code = "859991602220";
8 SET aggreagate_plants = TRUE;
9 SET dt_sim_start = DATE("2021-01-01");
10 SET dt_sim_end = DATE("2023-01-01");
11
12
13 SET dt_sim_end = DATE_ADD(DATE_TRUNC(dt_sim_end, WEEK), INTERVAL 7 DAY);
14
15 IF aggreagate_plants THEN
16
17 SELECT
18 *
19 FROM
20 (
21 -- the following aggregates all cassinetta plants quantities together and
generates daily demand trend
22 -- from weekly ones assuming equal workload allocation during 6 days week
23 with wk_dmd_crv as
24 (
25 SELECT
26 material,
27 ref_week,
28 sum(demand_total_qty) value,
29 FROM `ind-inv-fg.demand`
30 where
31 ref_week BETWEEN dt_sim_start AND dt_sim_end
32 AND plant in ("C020", "C021","C022")
33 AND material = target_sku_code
34 group by 1, 2
35 ),
36 dt_sim as
37 (
38 select
39 material,
40 MIN(ref_week) ini,
41 DATE_ADD(MAX(ref_week), INTERVAL 6 DAY) lst
42 from
43 wk_dmd_crv
44 group by 1
45 ),
46 dd_dmd_crv as
47 (
48 with dd_cal as
49 (
50 select
51 dt_sim.material,
52 l as d_date
53 FROM
54 dt_sim, UNNEST(GENERATE_DATE_ARRAY(dt_sim.ini, dt_sim.lst)) l
55 )
56
57 select
58 material,
59 d_date,
60 YEAR,
61 ISOWEEK,
62 (
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63 LAST_VALUE(value IGNORE NULLS)
64 OVER (PARTITION BY material, YEAR, ISOWEEK ORDER BY d_date)
65 )/6 as value
66 from
67 (
68 select
69 s.material,
70 s.d_date,
71 EXTRACT(YEAR FROM s.d_date) YEAR,
72 EXTRACT(ISOWEEK FROM s.d_date) ISOWEEK,
73 d.value
74 from dd_cal s
75 left join wk_dmd_crv d
76 on s.material=d.material AND s.d_date=d.ref_week
77 )
78 ),
79 dd_hist_trends_qual_dmd_nfp as
80 (
81 -- REVERSE ENGINEERED APPROACH TO EXTRACT NFE HISTORY BY MATERIAL PLANT
82 -- this gives the historical qualified demand trend input and the net
flow position
83 SELECT
84 material,
85 creation_date,
86 cod_argument,
87 value
88 FROM
89 (
90 SELECT
91 s.material,
92 s.creation_date,
93 SUM(d.qual_ord_qty) daily_qual_demand,
94 SUM(d.nfe_qty) daily_net_flow_pos,
95 FROM `ind-inv-fg.target_stock_history` s
96 LEFT JOIN
97 (
98 SELECT
99 d.market,
100 s.material,
101 s.creation_date,
102 s.qual_ord_qty,
103 s.nfe_qty
104 FROM `ind-inv-fg.nfe_by_mat_sales_area` s
105 LEFT JOIN
106 (
107 SELECT
108 DISTINCT
109 sales_area,
110 market
111 FROM `ind-inv-fg.external_data.market_to_sales_area`
112 ) d
113 ON s.sales_area=d.sales_area
114 WHERE
115 s.creation_date BETWEEN dt_sim_start AND dt_sim_end
116 AND s.material = target_sku_code
117 ) d
118 ON
119 d.market=s.market AND
120 d.material=s.material AND
121 d.creation_date=s.creation_date
122 where
123 s.creation_date BETWEEN dt_sim_start AND dt_sim_end
124 AND s.plant IN ("C020", "C021", "C022")
125 AND s.material = target_sku_code
126 AND s.bad_stock_flag IS NULL
127 AND s.good_quality_flag = "GQ"
128 group by 1, 2
129 )
130 UNPIVOT
131 (
132 value for cod_argument in
133 (
134 daily_qual_demand,
135 daily_net_flow_pos
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136 )
137 )
138 ),
139 dd_hist_trends_inv as
140 (
141 -- this gives the historical inventory trends as computed by the DDMRP
automatic report
142 SELECT
143 material,
144 creation_date,
145 cod_argument,
146 value
147 FROM
148 (
149 SELECT
150 s.material,
151 s.creation_date,
152 sum(on_hand_qty) on_hand_usable_qty,
153 sum(intransit_qty) intransit_qty,
154 sum(total_target) tot_target_inv,
155 sum(red_zone) red_zone,
156 sum(yellow_zone) yl_zone,
157 sum(green_zone) gr_zone,
158 sum(adu_total) adu,
159 FROM `ind-inv-fg.target_stock_history` s
160 WHERE
161 creation_date BETWEEN dt_sim_start AND dt_sim_end
162 AND plant in ("C020", "C021", "C022")
163 AND s.material = target_sku_code
164 AND s.bad_stock_flag IS NULL
165 AND s.good_quality_flag = "GQ"
166 group by 1, 2, 3
167 )
168 UNPIVOT
169 (
170 value for cod_argument in
171 (
172 on_hand_usable_qty,
173 intransit_qty,
174 tot_target_inv,
175 red_zone,
176 yl_zone,
177 gr_zone,adu
178 )
179 )
180 )
181
182 SELECT
183 s.material,
184 "Cassinetta Site" as plant,
185 s.YEAR,
186 s.ISOWEEK,
187 s.d_date,
188 "daily_demand_trend" as cod_argument,
189 value,
190 DATE_DIFF(s.d_date, dt_sim.ini, DAY) AS rel_timestamp
191 FROM dd_dmd_crv s, dt_sim
192
193 UNION ALL
194
195 select
196 t.material,
197 "Cassinetta Site" as plant,
198 EXTRACT(YEAR from t.creation_date) YEAR,
199 EXTRACT(ISOWEEK FROM t.creation_date) ISOWEEK,
200 t.creation_date,
201 t.cod_argument,
202 t.value,
203 DATE_DIFF(t.creation_date, dt_sim.ini, DAY) AS rel_timestamp
204 from dd_hist_trends_qual_dmd_nfp t, dt_sim
205
206 UNION ALL
207
208 select
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209 t.material,
210 "Cassinetta Site" as plant,
211 EXTRACT(YEAR from t.creation_date) YEAR,
212 EXTRACT(ISOWEEK FROM t.creation_date) ISOWEEK,
213 t.creation_date,
214 t.cod_argument,
215 t.value,
216 DATE_DIFF(t.creation_date, dt_sim.ini, DAY) AS rel_timestamp
217 from dd_hist_trends_inv t, dt_sim
218 )
219 order by 8, 1, 2;
220
221 ELSE
222
223 SELECT
224 *
225 FROM
226 (
227 with wk_dmd_crv as
228 (
229 SELECT
230 material,
231 ref_week,
232 sum(demand_total_qty) value,
233 FROM `ind-inv-fg.demand`
234 where
235 ref_week BETWEEN dt_sim_start AND dt_sim_end
236 AND plant in ("C020", "C021","C022")
237 AND material = target_sku_code
238 group by 1, 2
239 ),
240 dt_sim as
241 (
242 select
243 material,
244 MIN(ref_week) ini,
245 DATE_ADD(MAX(ref_week), INTERVAL 6 DAY) lst
246 from
247 wk_dmd_crv
248 group by 1
249 ),
250 dd_dmd_crv as
251 (
252 with dd_cal as
253 (
254 select
255 dt_sim.material,
256 l as d_date
257 FROM
258 dt_sim, UNNEST(GENERATE_DATE_ARRAY(dt_sim.ini, dt_sim.lst)) l
259 )
260
261 select
262 material,
263 d_date,
264 YEAR,
265 ISOWEEK,
266 (
267 LAST_VALUE(value IGNORE NULLS)
268 OVER (PARTITION BY material, YEAR, ISOWEEK ORDER BY d_date)
269 )/6 AS value
270 from
271 (
272 select
273 s.material,
274 s.d_date,
275 EXTRACT(YEAR FROM s.d_date) YEAR,
276 EXTRACT(ISOWEEK FROM s.d_date) ISOWEEK,
277 d.value
278 from dd_cal s
279 left join wk_dmd_crv d
280 on s.material=d.material AND s.d_date=d.ref_week
281 )
282 ),
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283 dd_hist_trends_qual_dmd_nfp as
284 (
285 -- REVERSE ENGINEERED APPORACH TO EXTRACT NFE HISTORY BY MATERIAL PLANT …
286 -- this gives me the historical qualified demand trend input AND the net flow position
287 SELECT
288 material,
289 creation_date,
290 cod_argument,
291 value
292 FROM
293 (
294 SELECT
295 s.material,
296 s.creation_date,
297 SUM(d.qual_ord_qty) daily_qual_demand,
298 SUM(d.nfe_qty) daily_net_flow_pos,
299 FROM `ind-inv-fg.target_stock_history` s
300 LEFT JOIN
301 (
302 SELECT
303 d.market,
304 s.material,
305 s.creation_date,
306 s.qual_ord_qty,
307 s.nfe_qty
308 FROM `ind-inv-fg.nfe_by_mat_sales_area` s
309 LEFT JOIN
310 (
311 SELECT
312 DISTINCT
313 sales_area,
314 market
315 FROM `ind-inv-fg.external_data.market_to_sales_area`
316 ) d
317 ON s.sales_area=d.sales_area
318 WHERE
319 s.creation_date BETWEEN dt_sim_start AND dt_sim_end
320 AND s.material = target_sku_code
321 ) d
322 ON
323 d.market=s.market AND
324 d.material=s.material AND
325 d.creation_date=s.creation_date
326 where
327 s.creation_date BETWEEN dt_sim_start AND dt_sim_end
328 AND s.plant IN ("C020", "C021", "C022")
329 AND s.material = target_sku_code
330 AND s.bad_stock_flag IS NULL
331 AND s.good_quality_flag = "GQ"
332 group by 1, 2
333 )
334 UNPIVOT
335 (
336 value for cod_argument in
337 (
338 daily_qual_demand,
339 daily_net_flow_pos
340 )
341 )
342 ),
343 dd_hist_trends_inv as
344 (
345 -- this given me the historical inventory trends as computed by the DDMRP
chart
346 SELECT
347 material,
348 plant,
349 creation_date,
350 cod_argument,
351 value
352 FROM
353 (
354 SELECT
355 s.material,
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356 s.plant,
357 s.creation_date,
358 sum(on_hand_qty) on_hand_usable_qty,
359 sum(intransit_qty) intransit_qty,
360 sum(total_target) tot_target_inv,
361 sum(red_zone) red_zone,
362 sum(yellow_zone) yl_zone,
363 sum(green_zone) gr_zone,
364 sum(adu_total) adu,
365 FROM `ind-inv-fg.target_stock_history` s
366 WHERE
367 creation_date BETWEEN dt_sim_start AND dt_sim_end
368 AND plant in ("C020", "C021", "C022")
369 AND s.material = target_sku_code
370 AND s.bad_stock_flag IS NULL
371 AND s.good_quality_flag = "GQ"
372 group by 1, 2, 3
373 )
374 UNPIVOT
375 (
376 value for cod_argument in
377 (
378 on_hand_usable_qty,
379 intransit_qty,
380 tot_target_inv,
381 red_zone,
382 yl_zone,
383 gr_zone,adu
384 )
385 )
386 )
387
388 SELECT
389 s.material,
390 "Cassinetta Site" as plant,
391 s.YEAR,
392 s.ISOWEEK,
393 s.d_date,
394 "daily_demand_trend" as cod_argument,
395 value,
396 DATE_DIFF(s.d_date, dt_sim.ini, DAY) AS rel_timestamp
397 FROM dd_dmd_crv s, dt_sim
398
399 UNION ALL
400
401 select
402 t.material,
403 "Cassinetta Site" as plant,
404 EXTRACT(YEAR from t.creation_date) YEAR,
405 EXTRACT(ISOWEEK FROM t.creation_date) ISOWEEK,
406 t.creation_date,
407 t.cod_argument,
408 t.value,
409 DATE_DIFF(t.creation_date, dt_sim.ini, DAY) AS rel_timestamp
410 from dd_hist_trends_qual_dmd_nfp t, dt_sim
411
412 UNION ALL
413
414 select
415 t.material,
416 t.plant,
417 EXTRACT(YEAR from t.creation_date) YEAR,
418 EXTRACT(ISOWEEK FROM t.creation_date) ISOWEEK,
419 t.creation_date,
420 t.cod_argument,
421 t.value,
422 DATE_DIFF(t.creation_date, dt_sim.ini, DAY) AS rel_timestamp
423 from dd_hist_trends_inv t, dt_sim
424 )
425 order by 8, 1, 2;
426
427 END IF;
428 END;


