
Politecnico di Torino

Corso di Laurea Magistrale in
Ingegneria Energetica e Nucleare

Model development for the solution
of eigenvalue problems in nuclear

reactor physics

Supervisor: Author:

Sandra Dulla Alberto Calabria

Co-supervisor:

Nicolò Abrate

Torino, March 2022

Abstract

Monte Carlo method has a remarkable variety of applications, from Fi-
nance to Biology, from Engineering to Climate Change studies, etc. This
widespread use is clearly due to its nature of statistical method which allows
to simulate the genuine behaviour of complex systems starting from their
fundamental phenomena provided that they are representable through a sta-
tistical model. Once defined a random variable of use for the quantity to
be evaluated, a numerical code simulates the system behaviour in order to
obtain, through a certain number of experiments, the estimation of the mean
value of this random variable with its statistical uncertainty.

In the field of Nuclear Engineering this set of methods finds use, for
instance, in the crucial evaluation of the criticality condition of a nuclear
reactor. A lot of codes can run this task, such as MCNP (Monte Carlo
N-Particle Transport Code) or Serpent whose programming languages are
respectively Fortran and C.

The purpose of this work is the evaluation of the criticality condition of a
reactor with simple geometrical configuration (mono-dimensional slab with
an heterogeneous medium and a two-groups-discretized energy spectrum) by
investigating both a well-known parameter, such as the κ0 factor, and a less
common one, like the γ0 factor, through the implementation of codes writ-
ten in Python, which is one of the most popular programming languages.
This work will hopefully grant a Monte Carlo benchmark for future differ-
ent approaches to the solution of criticality problems, with the possibility
of customizing the number of energy groups used to describe the neutron
interaction and changing the features of the system under investigation, e.g.,
the number of different layers composing the geometry.

This thesis presents good results in terms of quality of the calculated fac-
tors, which show different behaviours inside the reactor. In order to compute
κ0 and γ0 properly, a judicious choice of the input parameters is necessary.

1

Contents

Introduction 4

1 The neutron transport 6
1.1 Boltzmann’s Transport Equation 7

1.1.1 The general physical model 7
1.1.2 Initial and boundary conditions 14
1.1.3 Plane geometry model 16
1.1.4 Isotropic scattering model 16

2 The criticality problem 19
2.1 Nuclear reactor control . 19
2.2 The eigenvalue problem . 20

2.2.1 The κ-eigenvalue . 22
2.2.2 The γ-eigenvalue . 23
2.2.3 The α-eigenvalue . 24
2.2.4 The δ-eigenvalue . 25

3 The stochastic approach to the criticality problem 26
3.1 The theory behind Monte Carlo method 27

3.1.1 Probability concepts 27
3.1.2 Random variables and Sampling 32
3.1.3 Random number generation 39
3.1.4 The Monte Carlo simulation 44

3.2 Monte Carlo method in transport theory 52
3.2.1 The power iteration method 53
3.2.2 Neutron interaction models 54

2

4 Implementation of the codes 64
4.1 The hierarchy of the codes . 64

4.1.1 Python . 64
4.1.2 Algorithms’ working environment 69
4.1.3 Code structures . 69

4.2 Issues of the codes . 82
4.2.1 Code parallelization . 82
4.2.2 Seed setting . 90

5 Results 92
5.1 The behavior of neutrons in the domain 92

5.1.1 Main issues of source convergence 93
5.1.2 The choice of the best source 102
5.1.3 Population impact on the eigenvalues 116
5.1.4 Impact of the layers on the eigenvalues 118

5.2 Validation of the codes . 120

Conclusions 141

Appendix A 143

Appendix B 171

Appendix C 190

Bibliography 216

3

Introduction

Around the middle of the twentieth century, nuclear physics led an astonish-
ing breakthrough in many technological fields, such as military, transports,
energetic, medical and aerospace. Behind this incredible advance of the hu-
man possibilities, there were the efforts of some of the most brilliant minds
of all time, like John Von Neumann, Enrico Fermi, Stanislaw Ulam, Edward
Teller, Nicholas Metropolis and many others. The birth of Monte Carlo
simulation can be traced back to World War II: the Manhattan project des-
perately needed methods to study nuclear materials ahead of the atomic
bomb assembling. This coincided with another initiative: building the first
electronic computer. The first one, ENIAC, was built in 1946 at Univer-
sity of Pennsylvania [1]. Scientists understood that a statistical approach
for solving neutron diffusion problems would be the right way and so, Von
Neumann prepared an outline of that: he knew that performing exhausting
statistical sampling with the consequent large number of calculations was
the main problem and that the new computer technology could be the right
propellent to solve it. Since Ulam’s uncle used to borrow money from his
family for gambling at the famous Monte Carlo casino in the Principality of
Monaco, this method took this name with which it went down in history[1].
It was immediately realized that the Monte Carlo method was more flexible
for simulating complex problems as compared to differential equations and
the amount of computation, as previously said, was huge, but this obstacle
was quickly overcome, with the development, thanks to Metropolis and Von
Neumann’s wife (Klari), of a new control system for ENIAC and the creation
of FERMIAC (from an idea of the pioneer of the studies in neutron modera-
tion, Fermi). These scientists succeeded in getting the ability to solve several
neutron transport problems [1].

As history teaches, Nuclear Science gave birth to Monte Carlo as sta-
tistical method used for dealing with complex systems. Hence, with the

4

incumbency of a “nuclear renaissance” for the sake of the global ecosystems,
the mastery and the improvement of the available analytical instruments are
more needed than ever. This thesis means to act in this direction. Its main
contents are illustrated in this brief introduction.

The first chapter will provide a presentation of the Transport Theory,
a crucial milestone for every analytical work about Nuclear Physics, with
its general model and its geometrical configuration, its boundary and initial
conditions, and finally its various simplifications.

The second chapter will develop the mathematical basis of the criticality
problem on which this work is focused: the eigenvalue problem and the
definitions of the eigenvalues will be the key issues of this part.

The third chapter will begin with the comparison of the two different
approaches for the previously mentioned problem: the deterministic method
(PN approximation method) and the stochastic one (Monte Carlo method).
The latter is the core of the entire thesis. Thus, it is fundamental to give
essential bases of probability and statistics to understand how this method
works. After this general part, the chapter will deal with the theoretical
aspects of the physical phenomena that occur in a reactor through a ’Monte
Carlo method’ standpoint.

The fourth chapter will show every detail of the codes which has been de-
veloped to accomplish the eigenvalues’ computations, with its programming
language, its general structure, its critical issues and the explanation of each
code that has been written for that purpose.

The final chapter shall illustrate the results and the criteria to be followed
to achieve them. Testing the codes through comparisons with reliable results
from other codes will establish the quality of the present thesis.

The chapters are followed by the conclusions that this work has led to,
and finally by three appendices with the codes created, sorted according to
the ’degree’ of sharing: the first appendix collects all the common scripts,
shared by both the eigenvalue algorithms, while the last two appendices
respectively present scripts which exclusively belong to the single algorithm,
κ0’s and then γ0’s.

5

Chapter 1

The neutron transport

In order to introduce this thesis, it is crucial to begin with the equation
that governs neutron behavior and that ”describes, through a statistical ap-
proach, how thermodynamic systems that are not in equilibrium work” [2].
Formulated in 1872 by Ludwig Boltzmann as a kernel of kinetic theory of
gas, it expresses in an elegant form every phenomenon involving the physical
transport of a quantity or of particles [2]. It is non-linear and presents both
integral and differential nature.

Neutron transport requires two main assumptions to be added to the
original Boltzmann equation: the former states that ”neutrons are point
particles and their trajectories are straight lines between two successive colli-
sions with the medium nuclei”, while the latter says ”that ‘neutron-neutron’
interactions are neglected” [2].

The section 1.1.1 of this first chapter shows the derivation of the gen-
eral form of the Boltzmann equation for neutron transport, with a three-
dimensional spatial configuration, continuous energy spectrum and time de-
pendency. The section 1.1.2 gives the definitions of boundary and initial
conditions, necessary for every differential equation solution. The last sec-
tion 1.1.3 provides the illustration of the major simplifications this thesis
needs, i.e. plane geometry model and isotropic scattering.

6

1.1 Boltzmann’s Transport Equation

1.1.1 The general physical model

The core of the neutron transport is the balance in time of the expected
number of neutrons in a volume element, whose coordinates are not ’classical’,
they are not only spatial and temporal. They form the so-called phase space
[2]. Thus, firstly it is important to define which are the dimensions of this
phase space:

� The spatial coordinates defined by a triplet of values (x, y and z coor-
dinates summarized with ~r) expressed in [cm].

� The directional coordinates of the flight of the neutrons defined by two
angles (the azimuthal angle ϕ with a domain that varies between 0 and
2π, and the co-latitude angle ϑ between -π and π, both summarized
with Ω̂, a unit vector) with steradian as unit of measure [sr].

� The neutron kinetic energy coordinate E, expressed in [MeV].

Thus, there are six values that define the phase space of interest, but that may
be summarized in the equation, for the sake of simplicity, with three magni-
tudes: ~r, Ω̂ and E (together with the obvious time dependence t expressed
in [s]). In section 1.1.3 a more detailed characterization, particularly of the
angular coordinates, will be given. A graphical representation of the phase
space is depicted in Fig.:1.1.: the position is measured from the Cartesian
coordinate system (x, y, z), while the direction is the vector that coincides
with unitary radius of the sphere representing all the possible solid angles.
Its coordinate system consists in the following triad: êx, êy, êz. Although
the direction is a unit vector, in this figure its length is multiplied times the

speed, given by
√

2E
m

, being m the neutron’s mass.

7

Figure 1.1: Neutron phase space [2]

Together, these coordinates form the variables of a function, the neutron
density n(~r,Ω̂,E,t) that represents the probable number of neutrons at point
~r per unit volume, per unit energy, per unit solid angle, at time t. It is
not a density on time, it is not a rate. Its unit of measure is [1

cm3srMeV
].

Multiplying the neutron density times the speed of neutrons v (a function of
the energy and the mass neutron), the definition of the neutron angular flux
φ(~r,Ω̂,E,t) is obtained:

φ(~r, Ω̂, E, t) = n(~r, Ω̂, E, t)v (1.1)

whose unit of measure is [1
cm2srMeV s

]. The term ‘angular’ emphasizes the
dependence on the flight direction of neutron motion. This flux is the total
distance covered by neutrons per unit volume, per unit energy, per unit solid
angle and per unit time. So it is a measure of ‘neutron traffic’ rather than a
classical flux, i.e. a quantity flowing across a surface. In order to have this
kind of information, the elementary current must be defined, by multiplying
the flux times the direction unit vector Ω̂:

~j(~r, Ω̂, E, t) = φ(~r, Ω̂, E, t)Ω̂ (1.2)

this elementary current is the number of neutrons per unit area (perpendic-
ular to neutrons’ direction), per unit energy, per unit solid angle, and per
unit time with the same unit of measure as the flux. Integrating over all
directions both the members in Eq.:1.2, the total flux Φ(~r,E,t) and the net

particle current ~J(~r,E,t) are respectively obtained:

Φ(~r, E, t) =

∮
φ(~r, Ω̂, E, t) dΩ (1.3)

8

and
~J(~r, E, t) =

∮
φ(~r, Ω̂, E, t)Ω̂ dΩ (1.4)

While defining the density, it has been said that is a ‘probable’ number of
neutrons, because this population may fluctuate, since the general balance in
the phase space volume element is affected not only by sources of any kind
and by the free motion of neutrons, but also by their possible interactions
with medium nuclei. These probabilities of collision events are quantified
by the cross sections, defined as the probability per unit path traveled by a
neutron to experience a specific interaction with the nuclei of matter. Their
unit of measure refers to a reciprocal of a length, so it is [1/cm].

The interactions of interest for this dissertation are:

� The total cross section Σt, which quantifies the probability per unit
path of any type of interaction.

� The absorption cross section Σa, characteristic of the absorption events.

� The scattering cross section Σs, for collision events (both elastic and
inelastic collisions).

� The fission cross section Σf , obviously for fission reactions.

Cross sections depend on position (the type of nuclei may change in space)
and neutrons’ energy. They also change in time, but according to a com-
pletely different timescale with respect to neutron mean life, so the time
dependence may be neglected [2].
It is now possible to write down the balance cited above. The variation in
time of the number of neutrons in the phase space element depends on:

� Leakage due to streaming

� Leakage due to collisions (absorption events and scattering-out)

� Gain from scattering-in

� Gain from sources

9

The variation in time of the total number of neutrons in the phase space
element has the following form:

[n(~r, Ω̂, E, t+ dt)− n(~r, Ω̂, E, t)]d~rdtdEdΩ (1.5)

In order to have the flux in the equation, a modification of Eq.:1.5 is needed:

(1/v)[φ(~r, Ω̂, E, t+ dt)− φ(~r, Ω̂, E, t)]d~rdtdEdΩ (1.6)

Leakage for streaming

The first term of the list above consists in the neutrons getting into and going
out through the boundary surfaces of the domain. It is possible to sum up
every surface contribute obtaining a net particle current:∑

i

[φ(~r, Ω̂, E, t)Ω̂]ξidAidtdEdΩ (1.7)

being ξi the vector normal to the single surface. Thanks to the Gauss theo-
rem, the gradient of the current related to a volume might replace the flux
through a surface, so:

[∇ · Ω̂φ(~r, Ω̂, E, t)]d~rdtdEdΩ (1.8)

Because of the convention of the sign for in-going and out-going fluxes (pos-
itive the latter, negative the former) if the ‘in - out term’ is wanted, the
opposite of 1.8 must be taken. Knowing the chain rule for derivation, 1.8
may also be written in another way:

−[∇ · Ω̂φ(~r, Ω̂, E, t)] = −φ(~r, Ω̂, E, t)∇ · Ω̂− Ω̂ · ∇φ(~r, Ω̂, E, t) (1.9)

Since the unit vector Ω̂ is independent of the coordinates of the system, ∇· Ω̂
is equal to zero. So the streaming term can be also written like this:

−[∇ · Ω̂φ(~r, Ω̂, E, t)]d~rdtdEdΩ = −Ω̂ · ∇φ(~r, Ω̂, E, t)d~rdtdEdΩ (1.10)

10

Leakage for collisions

The second term on the right-hand side of the balance takes into account
all the contributes to the removal of neutrons; indeed, the cross section Σt

includes absorption, scattering, fission, etc. Σt is the total sum all the cross
sections considered:

Σt(~r, E)φ(~r, Ω̂, E, t)d~rdtdEdΩ (1.11)

Gain from scattering-in

This term consists in the integral sum of neutrons, having different energies
from the interval (E, E+dE) and different directions from the elemental solid
angle dΩ, that may scatter in the ‘correct’ observation ranges of energy and
direction:∮

dΩ′
∫

dE ′Σs(~r, E
′)φ(~r, Ω̂′, E ′, t)fs(~r, E

′ ⇒ E, Ω̂′ ⇒ Ω̂)d~rdtdEdΩ (1.12)

Thus, this term gives to the equation ”its integral nature” [2]. The proba-
bility per unit path for a neutron of energy E’ in the volume d~r about ~r to
undergo a scattering interaction with a nucleus of the background medium
is expressed by the scattering cross-section Σs. Instead, the probability
that a neutron with the initial energy E’ and direction Ω̂′ will be scattered
in the volume d~r about ~r, with the energy dE about E and direction Ω̂
within the solid angle dΩ is given by the scattering probability function
fs(~r, E

′ ⇒ E, Ω̂′ ⇒ Ω̂). Thus, the scattering kernel fs (transfer function of
scattering) is defined as a probability density function (a concept that will be
more deeply investigated in Chapter 3) which, through the integration over
the energy range and over all the directions, proves to be normalized [2]:∮

dΩ′
∫ ∞

0

dE ′fs(~r, E
′ ⇒ E, Ω̂′ ⇒ Ω̂)d~rdtdEdΩ = 1 (1.13)

If materials can be supposed isotropic, then the function depends neither on
Ω̂′ nor Ω̂, but on the angle between them, that is expressed by their inner
product Ω̂′ · Ω̂. Consequently, the transfer scattering function must change:

fs(~r, E
′ ⇒ E, Ω̂′ · Ω̂) (1.14)

11

Gain from sources

This term is composed by two contributes: the former is the generation from a
external source, not due to fissions. The number of ’new’ neutrons generated
by a source in the volume d~r, having energy in range (E, E+dE), and directed
into dΩ in the time interval dt is given by the following expression:

S(~r, Ω̂, E, t)d~rdtdEdΩ (1.15)

where S(~r, Ω̂, E, t) is the number of neutrons generated by the source per
unit volume, per unit energy, per unit solid angle and per unit time. The
second addition is the fission contribution: it is an isotropic interaction, so
the number of ”new” neutrons within dΩ, with energy range (E, E+dE) has
the following expression:

dΩ

4π
ν(~r, E ′)χ(~r, E)dE (1.16)

where:

�
dΩ
4π

is the probability that a neutron is emitted within dΩ (a neutron
has the same probability of being emitted in every direction).

� ν(~r, E ′) is the number of neutrons generated per fission that depends
on ~r and on the energy of the neutrons that has caused fission.

� χ(~r, E)dE, i.e. the fission spectrum is the probability that a neutron
is emitted with energy in the range between E and E+dE. It is called
fission spectrum and gives the energy distribution of neutrons generated
by fission.

So the fission transfer function is:

1

4π
ν(~r, E ′)χ(~r, E) (1.17)

And the fission contribution term in the balance is:

χ(~r, E)

4π

∮
dΩ′

∫
dE ′Σf (~r, E

′)φ(~r, Ω̂′, E ′, t)ν(~r, E ′)d~rdtdEdΩ (1.18)

12

Finally, it is possible to write down the general, integro-differential form of
the Boltzmann neutron transport equation by unifying and re-arranging all
the terms composing the balance, by dividing both right and left-hand sides
by d~rdtdEdΩ and by taking the limit of dt approaching to zero:

1

v

∂φ(~r, Ω̂, E, t)

∂t
+ Σ(~r, E)φ(~r, Ω̂, E, t) + Ω̂ · ∇φ(~r, Ω̂, E, t)

= S(~r, Ω̂, E, t) +

∮
dΩ′

∫
dE ′Σs(~r, E

′)φ(~r, Ω̂′, E ′, t)fs(~r, E
′ ⇒ E, Ω̂′ · Ω̂)

+
χ(~r, E)

4π

∮
dΩ′

∫
dE ′Σf (~r, E

′)φ(~r, Ω̂′, E ′, t)ν(~r, E ′)

(1.19)

Eq.:1.19 is the time-dependent neutron transport equation in presence of fis-
sion reactions and external source. Nevertheless, the immediate emissions
from fission events concern only a fraction of the entire ’new-born’ popula-
tion. Some neutrons are called delayed [2]. They are indeed emitted in the
decay process of some fission products called the delayed neutron precur-
sors (sorted in N families since they are hundreds). If one take into account
them, Eq.:1.19 has to be modified twice: the former by multiplying the fission
source term times (1-β), i.e. the fraction of prompt neutrons, the latter by
adding to the right-hand side of Eq.:1.19 the term with the decay of precur-
sors (

∑N
i=1 λiCi(~r, t), with Ci being the concentration of the i-th precursor

family). This renewed equation will form a system of N+1 equations (with
the proper set of initial and boundary conditions). Each one of the other
N equations will represent the time balance of the corresponding precursor
family, with the following form [2]:

∂Ci(~r, t)

∂t
= βiνΣfφ(~r, t)− λiCi(~r, t) (1.20)

Between prompt neutrons, i.e those particle which are emitted within frac-
tions of the microsecond by fissile nuclei, have a time advance with respect
to the delayed ones that ranges from values of the order of milliseconds up
to seconds, nearly: it is function of the half-live values of neutron precursors
[2]. For the steady-state problems and criticality evaluations, that are the
focus of this work, the neglect of delayed neutrons might be assumed, but

13

they still play a pivotal role in nuclear reactor kinetics and reactor control.
[2].

1.1.2 Initial and boundary conditions

Eq.:1.19’s left-hand side has a first-order derivative in time and a divergence
(a first-order differential operator). The former generates only one initial
condition, the latter only one boundary condition. The initial condition
usually has the following form:

φ(~r, E, Ω̂, t = 0) = φ0(~r, E, Ω̂) (1.21)

Conversely, the boundary conditions are characterized by a certain level of
variety. The figure below (Fig.:1.2) depicts an interface boundary surface (Γ)
between regions I and II, and unit vectors Ω̂ and Ω̂′ referring to neutrons’
directions entering regions I and II, respectively, and n̂ is the unit vector
normal to surface Γ. Five types of boundary conditions will be discussed:
vacuum, specular reflective, albedo, white and periodic [1].

Figure 1.2: Schematic of an interfacial boundary between two regions [1]

In this thesis only the first two types of boundary conditions will taken
into account, the former as a fundamental condition, the latter as an attempt
of improvement of the computational performance (Chapter 5).

14

1. Vacuum boundary condition: if region II in Fig.1.2 is considered as
void, then no particle will be reflected back to region I. Hence, the
incoming angular flux to region I is expressed by

φ(~rb, E, Ω̂) = 0 (1.22)

for n̂ · Ω̂ < 0 and ~rb ∈ Γ.

2. Specular reflective boundary condition: it is a symmetric condition in
which the incoming and the outgoing angular fluxes at the interface are
equal, i.e.:

φ(~rb, E, Ω̂) = φ(~rb, E, Ω̂′) (1.23)

for n̂ · Ω̂ = −n̂ · Ω̂′ and ~rb ∈ Γ. In order to achieve such a condition,
regions I and II must be identical. If the geometry of the problem allows
its use, it results in significant reduction in model size, and therefore
in computation time [1].

3. Albedo boundary condition: in this case, the incoming and the outgoing
angular fluxes are related as follows:

φ(~rb, E, Ω̂) = α(E)φ(~rb, E, Ω̂′) (1.24)

for n̂ · Ω̂ = −n̂ · Ω̂′ and ~rb ∈ Γ. α(E) is the albedo coefficient for
the particle with energy E. With this condition, only a fraction α(E)
of particles leaving the surface, e.g., along Ω̂′ into region II, will be
reflected back to region I. This allows to avoid modelling a region,
while still keeping its impact, i.e., the reflection of some particles [1].

4. White boundary condition: with this condition, particles leaving region
I are reflected back with a certain cosine distribution p(µ) = µ (a
concept that will be studied in Chapter 3).

5. Periodic boundary condition: in problems with physical periodicity,
such as fuel assemblies or fuel cells in a reactor, in special cases of an
infinite system, one may be able to establish that angular flux distribu-
tion on one boundary ~r is equal to the angular distribution on another
boundary ~r + ~rd in a periodic manner [1]:

φ(~r + ~rd, E, Ω̂) = φ(~r, E, Ω̂′) (1.25)

15

1.1.3 Plane geometry model

Naturally, going from a three-dimensional case to a one-dimensional situation
involves simplifications, but the new model may be useful as well: if the
domain, e.g. a reactor environment, has two dimensions that are by far
greater than the third one, the analysis may be led by focusing only on the
latter: this is a ‘slab configuration’, i.e. the cases examined in this thesis.

If the neutron angular flux depends on a unique spatial coordinate, for
instance the z-coordinate, then it depends only on the angle formed by its
direction with the z-axis or, alternatively, on the cosine of this angle, generally
denoted as µ [2].
In cartesian coordinates, the expression of the unit direction vector Ω̂, as
function of the co-latitude angle ϑ and the azimuthal angle ϕ, is:

Ω̂ =
√

1− µ2 cos(φ)êx +
√

1− µ2 sin(φ)êy + µêz (1.26)

with cos(ϑ) = µ and, obviously, sin(ϑ) =
√

1− µ2. The formulation of the

inner product between Ω̂ and Ω̂′ becomes quite complex with this notation:

Ω̂′ · Ω̂ =
√

1− µ′2
√

1− µ2 cos(ϕ′ − ϕ) + µµ′ (1.27)

Most of the last two equations must be eliminated thanks to the plane geom-
etry assumption. Firstly, it turns all the position coordinates into z, then the
divergence appearing in Eq.:1.19 becomes a simple spatial derivative with
respect to z. The simplifications go on with Ω̂ that reduces to µ, and with
the inner product of Eq.:1.27, which becomes µµ′:

1

v

∂φ(z, µ, E, t)

∂t
+ µ

∂φ(z, µ, E, t)

∂z
+ Σt(z, E)φ(z, µ, E, t)

= S(z, µ, E, t) +

∫ 1

−1

dµ′
∫

dE ′Σs(z, E
′)φ(z, µ′, E ′, t)fs(z, E

′ ⇒ E, µ′µ)

+
χ(z, E)

2

∫ 1

−1

dµ′
∫

dE ′Σf (z, E
′)φ(z, µ′, E ′, t)ν(z, E ′)

(1.28)

1.1.4 Isotropic scattering model

The last simplification for the model of interest is about the scattering trans-
fer function’s angular dependence. Chapter 3 will discuss its energy depen-

16

dence to find a way to simplify it. It has been previously said that scattering
interaction is not isotropic, but this supposition is legitimate. If it is given,
then the probability is constant for all possible value of the polar angle cosine
µ. Moreover, the probability for a neutron of being emitted with all potential
direction and energies is equal to 1, thus:∫ 1

−1

dµ

∫
dEfs(z, E

′ ⇒ E, µ′µ) = 1 (1.29)

Since the isotropy assumption has been made, the probability density is a
constant with respect to µ:

fs(z, E
′ ⇒ E, µ′µ) = Cfs(z, E

′ ⇒ E) (1.30)

where C is a constant value and, after integrating both sides of this equality
over all directions and energy spectrum:∫ 1

−1

dµ

∫
dEfs(z, E

′ ⇒ E, µ′µ) = C

∫ 1

−1

dµ

∫
dEfs(z, E

′ ⇒ E) (1.31)

The left-hand side is of course equal to 1 (from Eq.:1.29), as well as the
integral over the energy spectrum of the right-hand side, which also has an
integral over all the directions that is equal to 2. Hence, the constant C is
equal to 1/2 and, consequently, the scattering transfer function is:

fs(z, E
′ ⇒ E, µ′µ) =

1

2
fs(z, E

′ ⇒ E) (1.32)

Eq.:1.28, thanks to Eq.:1.32, may be re-written in its ultimate form:

1

v

∂φ(z, µ, E, t)

∂t
+ µ

∂φ(z, µ, E, t)

∂z
+ Σt(z, E)φ(z, µ, E, t)

= S(z, µ, E, t) +
1

2

∫ 1

−1

dµ′
∫

dE ′Σs(z, E
′)φ(z, µ′, E ′, t)fs(z, E

′ ⇒ E)

+
χ(z, E)

2

∫ 1

−1

dµ′
∫

dE ′Σf (z, E
′)φ(z, µ′, E ′, t)ν(z, E ′)

(1.33)
Fig.:1.3 depicts an example of the heterogeneous environment on which this
thesis is focused: a layer of ’fuel’ material amid two layers of ’moderator’
material.

17

Figure 1.3: The simplest scheme for an heterogeneous slab.

18

Chapter 2

The criticality problem

A nodal issue in Nuclear Reactor Engineering is understanding whether the
neutron population throughout the core is stable in time, decreases or in-
creases with it, during the operations of the reactor life. By definition, a
nuclear reactor is able to ”self-sustain a controlled fission chain reaction,
i.e. the phenomenon in which neutrons generated by fission reactions of ele-
ments like 235U or 238U , by interacting with others of these nuclides are able
to induce further fission events, and so on” [2].

If a stationary energy production from the fission reactions is the reactor
objective, neutrons produced by fission events and those lost due to absorp-
tion or leakages out of the boundaries of the system must be in equilibrium
[2]. Naturally, human action can safely adjust this balance. Section 2.1 will
explain how it is done and section 2.2 will provide the mathematical grounds
on which is based.

2.1 Nuclear reactor control

If the aforementioned equilibrium is verified, the neutron population in the
reactor is independent of time, and the unique neutron source term is repre-
sented by fissions [2]. A reactor in such a condition is referred to as critical,
with a stationary fission chain reaction. Whether instead the number of neu-
trons ’born’ after fission events is not able to counter-balance the number of
neutrons lost due to absorption or leakage out of outer surface, in absence of
an external neutron source (different from fission) the chain reaction will die

19

out over time and the reactor is said subcritical. In the opposite situation,
the system is destined to increase its neutron population ”from generation
to generation”: this reactor is defined as supercritical [2]. Generally, nuclear
power reactors are designed in such a way that these three conditions can be
modified as needed through the reactor control procedures. The criticality
problem is the research of ”the right combination of two aspects of design
that allows the reactor to achieve a critical state: the material composition
and the geometrical configuration” [2].

Some physical phenomena, as the fuel depletion or the accumulation of
fission products in the core as the chain reaction develops, affect the reactor
criticality making the device subcritical. The increment of the amount of
plutonium, instead, leads the system to supercriticality [2]. To respond to
these events, engineers have developed some strategies, such as the insertion
of control rods or the use of soluble ’neutron poisons’ just to mention a few[2].
Hence, it is important to give a theoretical, basic understanding for that issue
and then to deal with its main, specific markers.

2.2 The eigenvalue problem

Mathematically, the criticality problem is approached as an eigenvalue prob-
lem, an expression which reads:

Âϕ = λϕ (2.1)

where Â is a matrix ∈ Cn×n, λ is a scalar, real or complex, and ϕ is a
non-null (”non-trivial solution”) vector such that the expression in Eq.:2.1 is
verified. Thus, any λ satisfying Eq.:2.1 is called an eigenvalue of the matrix
Â and the corresponding solution vector ϕ is the associated eigenvector. The
eigenvectors having in common the same eigenvalue form an eigenspace. In
summary, Â is an operator which, when applied to λ, behaves like the oper-
ator ”multiplication times a constant”, where the constant is the eigenvalue
of the problem [2]. If the eigenvectors belongs to a function space instead of
a vector space, they are called eigenfunctions [3].
Chapter 3 will implement one of the many methods to solve Eq.:2.1. From
the point of view of the neutron transport equation, eigenvalue equations
may be formulated in many ways, but the main ones are four, giving rise to
four different eigenvalues:

20

1. The effective multiplication factor κ.

2. The multiplication factor per collision γ.

3. The fundamental multiplication rate α

4. The effective density factor δ.

In order to have a smarter form of Eq.:1.33, some modifications must be
done. Thus, referring to the steady-state (null time derivative), homogeneous
version of the integro-differential form of the neutron transport equation 1.33,
there would be [2]:

� Leakage operator:

L̂ = µ
∂

∂z
(2.2)

� Removal operator:
R̂ = Σt(z, E) (2.3)

� Scattering operator:

Ŝ =
1

2

∫ 1

−1

dµ′
∫

dE ′Σs(z, E
′)fs(z, E

′ ⇒ E) (2.4)

� Fission operator:

F̂ =
χ(z, E)

2

∫ 1

−1

dµ′
∫

dE ′Σf (z, E
′)ν(z, E ′) (2.5)

� Transport operator:
T̂ = L̂+ R̂ (2.6)

The transport equation, without external sources, in operator form then
yields:

L̂φ(z, µ, E) + R̂φ(z, µ, E) = Ŝφ(z, µ, E) + F̂ φ(z, µ, E) (2.7)

The four different eigenvalue problems differ on the combination of these
specific operators, but the fundamental equation is still Eq.:2.7. Each eigen-
value constitutes an ”identifier of the system deviation from criticality, whose
amount depends on the specific eigenvalue” [2]. Once chosen one of these

21

four markers, the set of eigenvalues solution of the equation is denoted as
the eigenvalue spectrum, or eigenspectrum. The eigenfunctions associated to
the elements of this set are then called modes, or harmonics [2].The eigenval-
ues may be real or complex numbers, with different multiplicity [3]: the one
with the largest modulus is generally referred to as the spectral radius, or the
fundamental eigenvalue. The associated eigenfunction, or the fundamental
mode, in the case of the neutron transport equation, is the only one that is
physically meaningful, having constant sign over all the domain while the
other eigenfunctions are called higher-modes [2].
After this introduction of the general criticality problem, the next subsec-
tions will be dedicated to each eigenvalue previously mentioned. It will not
be an in-depth dissertation, knowing that the purpose of this thesis is to
focus only on κ and γ.

2.2.1 The κ-eigenvalue

It is surely the most commonly investigated eigenvalue, also known as the
effective multiplication factor κ: it modifies the fission source term of Eq.:2.7:

L̂φ+ R̂φ = Ŝφ+
1

κ
F̂φ (2.8)

A first definition denotes κ as the ”ratio between the amounts of neutrons
present in the core in two successive fission generations” [2].The eigenvalue
with the largest real part is denoted as the fundamental κ-eigenvalue, gener-
ally indicated as κ0 or κeff . The solution associated to this eigenvalue is the
κ-mode. If κ0 = 1, the number of neutrons is stable generation by generation
[2]. Hence, in this case the chain reaction is independent on time and the
reactor is referred to as critical. If κ0 < 1, the reactor constitutes instead a
subcritical system, and if κ0 > 1 it is supercritical [2].
In order to see Eq.:2.8 in a typical eigenvalue problem form, some modifica-
tions must be carried out [2]:

(L̂+ R̂− Ŝ)φ =
1

κ
F̂φ (2.9)

Since the F̂ operator could be singular (it would not admit the inverse),
the inversion is applied to the combination of the other operators which is

22

surely not singular. Finally, the multiplication factor is taken on the other
side of the equation leading to the authentic eigenvalue problem form of the
equation [2]:

κφ = (L̂+ R̂− Ŝ)−1F̂ φ (2.10)

2.2.2 The γ-eigenvalue

The γ-eigenvalue, the ‘effective multiplication factor per collision’, may be
seen as a ”direct eigenvalue of the integro-differential neutron transport equa-
tion” [2]. As its denomination indicates, the γ-eigenvalue is inserted in the
Eq.:2.7 as a modification of both the scattering-in and the fission source term
in the neutron balance. In operator notation the transport equation with the
γ eigenvalue reads:

(L̂+ R̂)φ =
1

γ
(Ŝ + F̂)φ (2.11)

Likewise the previous eigenvalue type, the set of γ-eigenvalue for which
Eq.:2.11 is verified, is referred to as the γ-eigenvalue spectrum whereas the
corresponding eigenfunctions φ are denoted as γ-modes. The considerations
done for κ0’s eigenmodes and spectrum are also valid for γ0. From a physical
standpoint, γ0 is interpreted as ”the ratio between the number of neutrons
produced by the scattering-in and the fission source term, and the number
of those lost due to collisions and leakage through the system boundaries”
[2]. Concerning the criticality condition discussion, a system is referred to as
critical if γ0 = 1, as subcritical if γ0 < 1 and finally as supercritical if γ0 > 1
[2].
If, instead of Ŝ and F̂ operators, T̂ is taken into account, and Ĥ is the sum
of the right-hand side terms of Eq.:2.11, the latter becomes:

T̂ φ =
1

γ
Ĥφ (2.12)

With another step, the eigenvalue problem form of the equation is achieved:

γφ = T̂−1Ĥφ (2.13)

23

2.2.3 The α-eigenvalue

It is also referred to as the decay constant or the time eigenvalue to empha-
size the relation between this eigenvalue type (useful to study sub-critical
reactors) and the time-dependent behaviour of a neutron population. In this
case, a relevant number of higher modes is needed, the fundamental one is
no more enough [2]. The starting point is the time-dependent neutron trans-
port equation in its integro-differential form (1.33) without external source
and proper, vacuum boundary conditions applied and kept constant in time,
together with an initial condition as defined in the previous chapter: these
elements form an initial value problem, for which the neutron angular flux
may be found at any time t > 0 as solution of Eq.:1.33. it is demonstra-
ble that this solution may be unique under certain mathematical conditions
about cross-sections and the source term [2]. The final form of this equation’s
solution reads:

φ(z, µ, E, t) = φ(z, µ, E)eαt (2.14)

where α may assume all the values that generate a non-trivial solution of
the homogeneous time-independent neutron transport equation. The corre-
sponding solutions constitute the eigenfunctions of the problem or α-modes
[2]. Hence, by inserting the function 2.14 and the corresponding derivative
with respect to time into Eq.:1.33, one obtains:

α

v
φ(z, µ, E)eαt + µ

∂φ(z, µ, E)eαt

∂z
+ Σtφ(z, µ, E)eαt

=
1

2

∫ 1

−1

dµ′
∫

dE ′Σs(z, E
′)φ(z, µ′, E ′)eαtfs(z, E

′ ⇒ E)

+
χ(z, E)

2

∫ 1

−1

dµ′
∫

dE ′Σf (z, E
′)φ(z, µ′, E ′)eαtν(z, E ′)

(2.15)

Eq.:1.16, in operator formalism, reads:

(T̂ +
α

v
)φ = (Ŝ + F̂)φ (2.16)

It may be seen a kind of increment of the total macroscopic cross-section Σt

by a factor α
v
, referred to as fictitious capture or time-absorption term. This

latter term may be modulated through the α-eigenvalue, until the criticality
is reached [2]. α, differently from the other eigenvalue types, has a unit of
measure, the inverse of time. The dissertation of eigenvalues, spectrum and

24

modes is analogous to the ones of the aforementioned factors. Indeed, α0

is the eigenvalue with the largest real part, and its corresponding solution
is the only one to not die out with respect to the higher exponential modes
[2]. Thus, the criticality problem reduces to determine the sign of α0: if it
is negative, the system neutron population will decay over time following an
exponential behaviour and, as a consequence, the system will be subcritical;
on the contrary,the positive sign will make neutron population diverge over
time (supercritical system), whereas for α0 = 0 the system is critical [2]. The
eigenvalue problem form of Eq.:2.16 reads:

L̂φ+ (R̂ +
α

v
)φ = (Ŝ + F̂)φ (2.17)

with a little re-arrangement of terms, i.e. B̂ = (L̂+ R̂)− (Ŝ + F̂), α stands
alone on the right-hand side of the equation:

vB̂φ = αφ (2.18)

2.2.4 The δ-eigenvalue

The so-called effective density factor expresses a modification of the nu-
clides densities through which criticality may be achieved. Specifically, the
δ-eigenvalue problem in operator formalism reads [2]:

L̂φ+
1

δ
R̂φ =

1

δ
(Ŝ + F̂)φ (2.19)

in which δφ can be easily isolated:

L̂−1[R̂− (Ŝ + F̂)]φ = δφ (2.20)

δ-eigenvalue has influence on both the removal term and on the source terms
of the neutron balance, constituted by the scattering-in and the fission con-
tribution. As for the previously presented eigenvalue types, δ-eigenvalue has
its own spectrum and set of modes. It might be represented as ”the ratio be-
tween the difference of the fission and absorption rate, and the leakage rate”
[2]. The criticality condition in a nuclear system is characterized by δ0 = 1,
a subcritical system is a reactor such that δ0 < 1 and, as a consequence, a
supercritical system is characterized by δ0 > 1.

25

Chapter 3

The stochastic approach to the
criticality problem

Solving problems including simultaneously all the known dependencies (space,
energy, time and travel direction) requires great efforts. Sections 1.1.3 and
1.1.4 have introduced major simplifications, i.e. the plane geometry and the
isotropic scattering. Criticality analysis, regarding the time coordinate, is
addressed as an eigenvalue problem, as seen in the previous chapter: time is
someway marked by the turnover of neutron generations, even though there
is no time dependence. So, it is a ”pseudo-stationary model for the descrip-
tion of slight changes in reactor temporal behaviour” [2]. However, numerical
calculation implies discretization of the variables. For instance, Burrone in
[2] analyses a time-independent neutron population in a mono-dimensional,
homogeneous environment, with neutrons moving at one speed, while Abrate
in [4] adds another energy group. Both works carry out a criticality anal-
ysis through the theory of spherical harmonics by implementing it through
the PN approximation method that discretizes the angular coordinate to
make the model feasible for a numerical code. It is a deterministic approach
based on rigorous mathematical models. The computation of eigenvalues
and eigenmodes, in these cases, exploits the ”iterative Implicit Restarted
Arnoldi Method (IRAM), a suitable way to deal with sparse matrices” [2].
This thesis, instead, aims at following a totally different approach to criti-
cality problems. The Monte Carlo method simulates the random movement
in a medium taking advantage of the probability density distributions char-
acteristic of the phenomenon with no discretization of coordinates (except
the energy as this chapter illustrates). By repeating this simulation a large

26

number of times, this method mimics physical experiment retrieving the av-
eraged quantity of interest with its uncertainty. Instead of IRAM, the power
iteration method is utilized. The main difference between the two methods
is that the latter can compute only the spectral radius.

The section 3.1 of this chapter gives an overview of basic probability and
statistics principles which Monte Carlo method is based on. The section 3.2,
instead, deals with the power iteration method and its application to the
criticality problem.

3.1 The theory behind Monte Carlo method

3.1.1 Probability concepts

Every event humans are able to perceive or not, every event humans are able
to consciously commit or not has consequences, or outcomes. Outcomes are
not nevertheless all equal to each other, even if they might be similar. For
instance ‘tossing a coin’ has a different outcome from ‘tossing a coin and
check which side can be seen’. The former is ‘the coin reaches the ground’
and the observer can do an a-priori, deterministic reasoning about what is
going to happen to the coin, he does know the outcome; while the latter
is ‘heads OR tails’: the observer cannot know the exact outcome, because
it is a random experiment that ”has different outcomes even though it is
repeated in the same manner every time” [5]. Each one of these possible
outcomes belongs to the so-called the sample space of the experiment and,
more precisely, an event is a subset of this space. Set operations may help
to create events, such as [5]:

� The union of two events E1 and E2 is the event that consists of all
outcomes that are contained in either of the two events. It is denoted
as E1 ∪ E2.

� The intersection of two events E1 and E2 is the event that consists of
all outcomes that are contained in both of the two events. It is denoted
as E1 ∩ E2.

� The complement of an event E is the set of outcomes in the sample
space that are not in the event E. It is denoted as E’. E and E’ has

27

no intersection naturally, but their union gives out the entire sample
space: they are called exhaustive events.

Figure 3.1: Venn diagrams [5].

These operations form a base for more complex combinations, displayable
with Venn diagrams, as illustrated in Fig.:3.1.

Although a deterministic argument on a random experiment cannot be
asserted, every outcome has its own probability. There are many definitions
of probability, but the axiomatic one will be given. It consists in three axioms
due to Andrej N. Kolmogorov [5]: ”Probability is a number that is assigned
to each member of a collection of events from a random experiment that
satisfies the following properties: If S is the sample space and E is any event
in a random experiment:

1. P (S) = 1. It is a sure event, while an impossible event has P (E) = 0

2. 0 ≤ P (E) ≤ 1

3. For two events E1 and E2 with E1∩E2 = ∅ (mutually exclusive events)
P (E1 ∪ E2) = P (E1) + P (E2)”

If two events E1 and E2 are not mutually exclusive, their union becomes
P (E1∪E2) = P (E1) +P (E2)−P (E1∩E2). Further complications appear
with the union of three or more events [5].

28

Sometimes an event (E1) may affect the probability of another one (E2)
forcing to narrow it down. Probabilities need to be evaluated again as ad-
ditional information becomes available. This situation is called conditional
probability [5]: ”The conditional probability of an event E2 given an event
E1, denoted as P (E2|E1), is equal to:

P (E2|E1) =
P (E1 ∩ E2)

P (E1)
(3.1)

for P (E1) > 0.”
For example, if a die is rolled, the probability P(E) of getting 2 is 1/6 (if
the die is well-balanced, every die face has the same probability of being
the outcome), but given that the outcome is even (P (F) = 1/2) there is an

additional information and P (E|F) = 1/6
1/2

, so P (E|F) = 1
3
.

If the left-hand side of Eq.:3.1 is multiplied times P(E1) one obtains, after
some passages, another important relation, the Bayes’s Theorem. Firstly:

P (E1 ∩ E2) = P (E2|E1)P (E1) (3.2)

Moreover, the equivalency P (E1∩E2) = P (E2∩E1) is obviously valid and its
right-hand side is equal to P (E1|E2)P (E2) from Eq.:3.2. By substituting
this into Eq.:3.2 and by letting only P (E1|E2) on its left-hand side, the
Bayes’s Theorem formula is constituted [5]:

P (E1|E2) =
P (E2|E1)P (E1)

P (E2)
(3.3)

29

Conditional probability is the basis for the consequent the Total probability
rule, useful when there is a set of N events in a sample space that are mutually
exclusive and exhaustive such as the example of Fig.:3.2. Be event B a subset
of each one of these events. Then:

P (B) =
N∑
i=1

P (B|Ei)P (Ei) (3.4)

Figure 3.2: Partitioning an event into several mutually exclusive subsets [5].

”For example, suppose that in semiconductor manufacturing the proba-
bility is 0.10 that a chip that is subjected to high levels of contamination
during manufacturing causes a product failure. The probability is 0.005 that
a chip that is not subjected to high contamination levels during manufac-
turing causes a product failure. In a particular production run, 20% of the
chips are subject to high levels of contamination. What is the probability
that a product using one of these chips fails ?”[5] If F is the event ‘a product
fails’, H is ‘chip exposed to high levels of contamination’ and P (F |H) and
P (F |H ′) their respective conditional probabilities, by applying Eq.:3.4 the
following result is got:

P (F) = P (F |H)P (H) + P (F |H ′)P (H ′) (3.5)

that is equal to 0.1 ∗ 0.2 + 0.005 ∗ 0.8 = 0.0235.
In some cases, the conditional probability of P (B|A) might be equal to P (B).
In this special case, the knowledge of the outcome of the event A does not
affect the probability of the outcome of event B. Thus, A and B are inde-
pendent [5]: ”Two events are independent if any one of the three following
equivalent statements is true:

30

1. P (A|B) = P (A)

2. P (B|A) = P (B)

3. P (A ∩B) = P (A)P (B)

” It is important to focus on the difference between independence and
mutual exclusivity: the latter is a strong dependence. Indeed, P (E ∩ F) =
P (∅) if they are mutually exclusive, while P (E ∩F) = P (E)P (F) if they are
independent.

In probability evaluation, it is often necessary to be able to effectively
count the number of different ways that a given event can occur and, for
sample spaces with large amount of elements, the different ways in which a
given event may occur are difficult to handle, because of the dimension of
the numbers involved: thus, it is necessary to know the basic principle of
counting.
”If r experiments that are to be performed are such that the first one may
result in any of n1 possible outcomes, and if for each of these n1 possible
outcomes there are n2 possible outcomes of the second experiment, and if
for each of the possible outcomes of the first two experiments there are n3

possible outcomes of the third experiment, and so on..., then there are a total
of
∏r

i=1 ni possible outcomes of the r experiments. For instance, how many
different ordered arrangements of the letters ’a, b,c’ are possible? By direct
enumeration it is clear that there are 6; namely, ’abc, acb, bac, bca, cab,
cba’. Each one of these ordered arrangements is known as a permutation. It
is convenient to introduce the factorial notation, n!. In the previous ‘a-b-c’
example, there are 3! = 6 permutations (it is important to remember that
0! = 1)” [6].
What if the elements to be picked up1 are three of five items A, B, C, D, E?
Since there are 5 ways to select the initial item, 4 ways to then select the next
item, and 3 ways to then select the final item, there are thus 5 ∗ 4 ∗ 3 ways
of selecting the group of 3 when the order in which the items are selected is
relevant [6]. However, since every group of 3, the group consisting of items
A, B, and C, will be counted 6 times (that is, all of the permutations ABC,
ACB, BAC, BCA, CAB, CBA will be counted when the order of selection
is relevant), it follows that the total number of different groups that can be
formed is (5 ∗ 4 ∗ 3)/(3 ∗ 2 ∗ 1) = 10 [6]. In general, as the latter expression

1Without re-immission

31

represents the number of different ways that a group of r items could be
selected from n items when the order of selection is considered relevant, and
since each group of r items will be counted r! times in this count, it follows
that the number of different groups of r items that could be formed from a
set of n items is the binomial coefficient [6]:

n(n− 1)(n− 2)(n− r + 1)

r!
=

n!

(n− r)!r!
=

(
n

r

)
(3.6)

This concept has a clear application in probability computation. ”For
instance, a committee of size 5 is to be selected from a group of 6 men and 9
women. If the selection is made randomly, what is the probability that the
committee consists of 3 men and 2 women?” [6] ’Randomly selected’ means
that each of the

(
15
5

)
possible combinations is equally likely to be selected.

Hence, since there are
(

6
3

)
possible choices of 3 men and

(
9
2

)
possible choices

of 2 women, it follows that the desired probability is given by [6]:(
6
3

)(
9
2

)(
15
5

) =
240

1001
(3.7)

3.1.2 Random variables and Sampling

Normally, outcomes are mapped onto numerical values for mathematical
treatment [1]. These numerical values are called random variables and they
might be discrete, like a natural numbers interval from 1 to 6 indicating the
possible outcomes of a die tossing, or continuous, a real number interval be-
tween 0 and ∞, for instance, standing for the time between two consecutive
particles emission from a radioactive material [1]. For any random variable
ξ, two functions are defined: the cumulative distribution function (or cdf)
and the probability density function (or pdf).
The cumulative distribution function F can be expressed in terms of the pdf
f(x) by F (a) =

∑
x≤a f(x) if ξ is a discrete random variable whose set of

possible values are x1, x2, x3, ..., where x1 < x2 < x3 <... , then its distri-
bution function F is a ’step function’. That is, the value of F is constant in
the intervals [xi − 1, xi) and then takes a step (or jump) of size f(xi) at xi
[6]. If ξ is continuous random variable, then exists a non-negative function

32

f(x), defined for all real x ∈ (−∞,∞), having the property that for any set
B of real numbers:

P [ξ ∈ B] =

∫
B

f(x) dx (3.8)

The function f(x) is called the probability density function of the random
variable X 2. In words, Eq.3.8 states that the probability that x will be in B
may be obtained by integrating the probability density function over the set
B. Since ξ must assume some value, f(x) must satisfy [6]:

P [ξ ∈ (−∞,∞)] =

∫ ∞
−∞

f(x) dx (3.9)

Probabilities about X can be answered in terms of the pdf. For instance,
letting B = [a, b], from Eq.3.8:

P [a ≤ ξ ≤ b] =

∫ b

a

f(x) dx (3.10)

If a = b in the above, then:

P [ξ = a] =

∫ a

a

f(x) dx (3.11)

which is zero. In words, this equation states that ”the probability that a
continuous random variable will assume any particular value is zero” [6].
The relationship between the cdf and the pdf is expressed by:

F (a) = P [−∞ ≤ ξ ≤ a] =

∫ a

∞
f(x) dx (3.12)

Differentiating both sides yields:

∂F (a)

∂a
= f(a) (3.13)

So, the pdf is the derivative of the cdf, or better:

P [a− ε

2
≤ ξ ≤ a+

ε

2
] =

∫ a+ ε
2

a− ε
2

f(x) dx ≈ εf(a) (3.14)

2The probability density functions may also have more than one variable

33

when ε is small. In other words, ”the probability that X will be contained in
an interval of length ε around the point a is approximately εf(a)” [6], a sort of
measure of how likely it is that the random variable is in the neighbourhood
of a. In order to summarize the features of this couple of functions, it is
useful to add the following sum-up. Being ξ the random variable:

� P [ξ < x] = Fξ(x
−).

� P [ξ = b] = Fξ(b
+)− Fξ(b−).

� P [ξ ≤ b] = Fξ(b
+).

� P [a < ξ ≤ b] = Fξ(b)− Fξ(a).

� P [a ≤ ξ ≤ b] = Fξ(b)− Fξ(a−).

� P [a ≤ ξ < b] = Fξ(b
−)− Fξ(a−).

� P [a < ξ < b] = Fξ(b
−)− Fξ(a).

� The pdf is always positive.

� The cdf is always positive and non-decreasing (so, it is invertible).

� The pdf is normalized such that its corresponding cdf varies in range
[0,1].

� If the cdf discontinuous, it is continuous from the right.

Figure 3.3: An example of step-function cdf [5].

34

Figure 3.4: The corresponding pdf of the cdf in Fig.3.3 [5].

Figure 3.5: An example of continuous, but piecewise cdf [7].

Figure 3.6: The corresponding pdf of the cdf in Fig.3.5 [7].

Figs.3.3-3.4-3.5-3.6 provide an example of two couples of pdf and cdf, the
former for a discrete random variable, the latter for a continuous one.

35

Random numbers sequences have a special feature: no one can predict
ηn based on the previous ηn+1 numbers in the sequence. The section 3.1.3
will concern the specific issue of randomness of numbers and their practical
generation. In order to execute a good Monte Carlo simulation, this genera-
tion must yield numbers uniformly distributed in a defined range, commonly
[0,1] [1]. Random numbers might be seen as a random variable η whose pdf
is constant:

q(η) = 1 (3.15)

with 0 ≤ η ≤ 1.
Therefore, the corresponding cdf reads as:

Q(η) =

∫ η

0

q(η′) dη′ (3.16)

with 0 ≤ η ≤ 1.
In a Monte Carlo simulation, physical processes have known probability den-
sity functions from which random variable (x) is obtainable and it may be
written as [1]:

p(x)dx = q(η)dη (3.17)

with 0 ≤ η ≤ 1 and a ≤ x ≤ b.
Then, one can integrate both sides of Eq.:3.15 respectively over [a, x] and
[0,η] to get: ∫ x

a

p(x′) dx′ =

∫ η

0

1 dη′ (3.18)

that is equivalent to write:
P (x) = η (3.19)

Eq.:3.18 gives a relation for getting a continuous random variable x using
a random number η. This is the so-called ”Fundamental Formulation of
Monte Carlo (FFMC)” for continuous random variable [1]. If the latter is
discrete and assumes certain values, while the random number η is always a
continuous variable, the following relation has to be imposed:

Min[P (n)|P (n) ≥ η] (3.20)

where P (n) =
∑n

i=1 pi. This means that n is selected when the minimum of
P(n) is greater than or equal to η [1]. Many approaches for solving FFMC
exist, but the focus will be in particular on two of them: the analytical

36

Figure 3.7: Sampling a continuous random variable x [1].

Figure 3.8: Sampling a discrete random variable xi [1].

inversion and the rejection technique. Figs.3.7-3.8 depict the two kinds of
FFMC: the former for a continuous random variable, the latter for a discrete
one.

In the analytical inversion, the FFMC is inverted to obtain a formulation
for a random variable x in terms of a number η ∈ [0, 1]. Mathematically, this
means to have an inverse formulation, x = P−1(η). For instance, if the pdf
for the random variable x is given by [1]:

p(x) = 1/2 (3.21)

for −1 ≤ x ≤ 1.
Then, corresponding FFMC formulation is:∫ x

−1

1/2 dx′ = η (3.22)

37

And x or P−1(η) is given by:

x = 2η − 1 (3.23)

If the exact computation of P−1(η) is not easy, the rejection technique may
be the alternative and four steps have to be followed [1]:

1. Enclose p(x) in a frame bounded by pmax, a, and b, as shown in Fig.3.9.

2. Generate two random numbers: η1 and η2

3. Sample the random variable x by using:

x = a+ η1(b− a) (3.24)

4. Accept x if:
η2pmax ≤ p(x) (3.25)

In this technique, all the pairs(x, y = η2pmax) are accepted if they are under
the graph of p(x), otherwise, they are rejected. So, the sample is effectively
from the area under the pdf, i.e. the cdf [1]. Because the technique samples
from the area, an efficiency might be stated:

ε =

∫ b
a
p(x) dx

pmax(b− a)
=

1

pmax(b− a)
(3.26)

This technique may be very slow for low values of efficiency [1].

Figure 3.9: Demonstation of the rejection technique [1].

38

3.1.3 Random number generation

The quality of a Monte Carlo simulation is strictly connected to the quality, or
randomness, of the random numbers used. Their generation is implemented
through an experimental way (draw balls from an urn, measure the distance
of a dart from the centre in a dart game, etc.) or through an algorithmic
one. For the latter, this approach is called pseudo random number generator
(PRNG)3 4and its associated numbers pseudo random numbers (PRN). Both
have advantages and disadvantages and there are six factors decreeing which
approach is better than the other one [1]:

1. Randomness : random numbers should assume a uniform distribution.
In the experimental approach, it is achieved if the procedure follows a
uniform distribution, in the algorithmic one, the sequence has to satisfy
several statistical tests.

2. Reproducibility : the random number sequence must be reproduced mul-
tiple times.

3. Length of the sequence of the random numbers : a Monte Carlo simula-
tion for realistic engineering problems needs millions of random num-
bers.

4. Computer memory : the generator should not consume too much com-
puter memory.

5. Generation time: the amount of time that it takes to generate a se-
quence of random numbers should not be significant, e.g., days/months.

6. Computer time: the amount of computer time needed to generate the
sequence should be significantly shorter than the actual simulation.

The algorithmic approach results to be preferable mainly because its sequence
is reproducible and it requires minimal effort (in terms of computer resources
and engineer time) [1].
There are two common types of PRNGs: congruential generators and multi-
ple recursive ones.

3”Anyone who considers arithmetical methods of producing random digits is, of course,
in a state of sin”- John von Neumann (1951) [1]

4”Random number generators should not be chosen at random”- Donald Knuth (1986)
[1]

39

Congruential generators

They are integer generators and use the following formulation:

xk+1 = (axk + b),modM (3.27)

with b < M.
x0 is called the seed, while a, b, and M are given integers. M is the largest
integer representable by a computer, e.g., on binary machine with a 64-bit
word length, the largest unsigned integer is 264 − 1 and the largest signed
one is 263 − 1. The modulus function determines the remainder of the right-
hand side of Eq.:3.26 divided by M. If b 6= 0, Eq.:3.26 is called called linear
congruential generator, if b = 0, multiplicative congruential generator. This
method gives integer x in the range [0, M-1]. To convert the random integer
generated here into a random number in the range of [0,1), the relationship
η = x

M−1
is used [1]. The sequence shown in Fig.:3.10 is a cycle with a = 5,

Figure 3.10: Schematic random number cycle for a linear congruential gen-
erator [1].

b = 1 and M = 16, so if the seed changes, only the starting point of the
sequence will change. The variation of the multiplier a and of the constant b
instead affects the period of PRNG. The obvious goal is to achieve the longest
period as possible (M), a full period. Table:3.1 presents the properties a linear
congruential generator must have to be ‘full-period’. On the other hand, it
is demonstrable that a multiplicative congruential generator can only have a

40

Parameter Value Comment

Multiplier (a) 4N + 1 N > 0

Contact (b) odd number -

Modulus (M) 2k k > 1

Table 3.1: properties of the parameters in a linear congruential generator for
achieving full period [1].

partial period 5 (for some values of the multipliers it is 4, for other values is
even 2). In summary, a congruential generator with a reasonable period is
quite good for executing most of physical simulations, because the physical
system introduces randomness by applying the same random numbers to
different phenomena [1].

Multiple recursive generators

The multiple recursive generators usually give better results in terms of pe-
riod6. A group of them may be expressed by:

xk+1 = (a0xk + a1xk−1 + ajxk−j + b),modM (3.28)

The initial j + 1 random numbers are selected from simpler generators. The
length and the randomness of the generator depend on the values aj, b and
M. One example is the Fibonacci generator that is a good choice for large
problems, is floating point. It computes a new number of the sequence by
combination (sum, difference, or product) of two preceding terms [1]. For
instance:

xk = xk−31 − xk−13 (3.29)

is a Fibonacci generator of lags 31 and 13. Its expected period is p = (231 −
1)2n with n being the number of bits in the mantissa of xi. For example,
for 32-bit floating point arithmetic, n = 24; hence, p ≈ 241 or 1012. To start
this kind of generator, the ‘pre-generation’ of the initial random numbers is

5In order to maximize the period, M must be a prime number and the multiplier a
primitive of M [1]

6Python exploits the Mersenne Twister, a type of multiple recursive generator based
on the homonymous prime number: it has a period of 219937 − 1 [8]

41

needed (in the case of Eq.:3.28 31 numbers). One approach is to represent
each of them in their binary form [1]:

r =
r1

2
+
r2

22
+
rm
2m

(3.30)

for m ≤ n(mantissa).
Each bit ri (0 or 1) must be generated, e.g. by means of a linear congruential
generator: for instance, ri might be set to either 0 or 1 depending on whether
the output of the congruential generator is greater or less than zero. So,
the quality of this simpler generator will state the quality of the Fibonacci
generator. It is worth noting that the largest period that a congruential
generator can have when using 32-bit format is 232, or 4.3 ∗ 109 which is
significantly smaller than the one of the generator described in Eq.:3.28.

There is a lot of randomness useful tests for evaluating PRNGs 7. Consid-
ering congruential generators , the aims of all of them is to assess the effect
of modulating seed, multiplier and constant. The parameters for this assess-
ment are the period of the sequence, as previously seen, and the average,
i.e.the first moment of the random numbers (explained in the next section),
that must be 0.5 [1].
An impactful way of visualizing the quality of a PRNG is to generate 3-tuple
spatial positions using every three consecutive random numbers of the se-
quence and then mark the positions in a three-dimensional domain, as done
in the next three figures.

It is possible to note a strongly correlated set of random numbers in

7One of the most important is the χ2 − Test [1]

42

Figure 3.11: 3-tuple distribution of random numbers for a linear congruential
generator with a = 65539, b = 1, seed= 1 and mod= 224 [1].

Figure 3.12: 3-tuple distribution of random numbers for a linear congruential
generator with a = 65541, b = 1, seed= 1 and mod= 224 [1].

Fig.:3.11 whose generator does not reach a full period. A milder correla-
tion may be seen in Fig.:3.12’s sequence. Fig.:3.13’s sequence, finally, has no
visible correlation.

43

Figure 3.13: 3-tuple distribution of random numbers for a linear congruential
generator with a = 16333, b = 1, seed= 1 and mod= 224 [1].

3.1.4 The Monte Carlo simulation

Statistical procedures are basilar in dealing with random processes. They
allow to describe and indicate trends and expectations with a related degree
of reliability. In a few words, statistics make use of scientific methods of
sampling (collecting and analysing) and interpreting data when the popula-
tion (in terms of pdf) is unknown. Statistics theory is based on probability
theory. Through the latter, one may determine the likelihood that an un-
known sample has certain characteristics. The former deals with sampling
an unknown population in order to estimate its composition, i.e. probability
density. As previously mentioned, the Monte Carlo approach is a statisti-
cal method that uses random numbers to sample an unknown population,
e.g. particle history, and, consequently, evaluates the expected outcome of a
physical process [1].

The first tool to be handled is the expectation operator : given a continuous
random variable x and its pdf p(x) defined in a range [a, b], the expectation
value (or true mean) of any function g(x) defined in this interval is the

44

following application of the expectation operator.

E[g(x)] =

∫ b

a

p(x)g(x) dx (3.31)

If the function which the expectation operator is applied to is the random
variable itself, the results will be the true mean of x [1]:

mx = E[x] =

∫ b

a

p(x)x dx (3.32)

for a ≤ x ≤ b.
In case of a discrete random variable xi of N outcomes, the formulations of
Eqs.3.30-3.31 become [1]:

E[g(xi)] =
N∑
i=1

p(xi)g(xi) (3.33)

and

mx = E[xi] =
N∑
i=1

p(xi)xi, i = 1, N (3.34)

For now, only the first order moment of random variable x has been taken
into account, but the expected value of generic the k-th power of x, for
continuous random variable, is given by [1]:

mk
x = E[xk] =

∫ b

a

p(x)xk dx (3.35)

And, for the discrete random variable case, by:

mk
x = E[xki] =

N∑
i=1

p(xi)x
k
i (3.36)

Additionally, there is also the definition of the k-th central moment of random
variable x for the two usual situations [1]:

E[(x−mk)
k] =

∫ b

a

p(xi)(x−mx)
k dx (3.37)

45

and

E[(xi −mx)
k] =

N∑
i=1

p(xi)(xi −mx)
k (3.38)

If k = 2, the central moment is referred to as the true variance of x, expressed
by [1]:

σ2
x = E[(x−mx)

2] =

∫ b

a

p(x)(x−mx)
2 dx (3.39)

and

σ2
x = E[(xi −mx)

2] =
N∑
i=1

p(xi)(xi −mx)
2 (3.40)

A more convenient way of computing the true variance is derived from the
expansion of the quadratic term [1]:

σ2
x = E[x2]− E[x]2 (3.41)

Another useful quantity is the square root of the variance, referred to as the
true standard deviation, i.e [1]:

σx =
√
σ2
x (3.42)

It is an indication of the dispersion of random variable x relative to its mean
mx. The true mean and the true variance are the population parameters
because they are obtained from a known pdf [1].

Moreover, the linearity of the expectation operator implies the following
relationships, with a and b being constant coefficient:

� E[ag(x) + b] = aE[g(x)] + b

� E[ag(x1) + bg(x2)] = aE[g(x1)] + bE[g(x2)]

� E[
∑N

i=1 aig(xi)] =
∑N

i=1 aiE[g(xi)]

� σ2[ag(xi)] = a2σ2[g(x)]

� σ2[
∑n

i=1 aig(xi)] =
∑n

i=1 a
2
iσ

2[g(xi)]

46

These relations are useful, for instance, to deal with a combination of two
random variables such as x3 = c1x1 + c2x2. Its true mean and variance are
respectively [1]:

E[x3] = c1mx1 + c2mx2 (3.43)

and

σ2 = σ[c1x1 + c2x2] = E[(c1x1 − c1mx1)
2] + E[(c2x2 − c2mx2)

2]

−2E[(c1x1 − c1mx1)(c2x2 − c2mx2)]
(3.44)

which is equal to:

σ2 = c2
1E[(x1−mx1)

2]+c2
2E[(x2−mx2)

2]+2c1c2E[(x1−mx1)(x2−mx2)] (3.45)

and, finally, to:

σ2 = c2
1σ

2
x1

+ c2
2σ

2
x2
− 2c1c2E[(x1 −mx1)(x2 −mx2)] (3.46)

where E[(x1 −mx1)(x2 −mx2)] = cov(x1, x2), the co-variance, that helps to
define the correlation coefficient between the two random variable as follows
[1]:

ρx1,x2 =

∫ b1
a1
dx1

∫ b2
a2
dx2p(x1, x2)(x1 −mx1)(x2 −mx2)

σx1σx2
(3.47)

If x1 and x2 are independent (p(x1, x2) = p1(x1)p2(x2)), the correlation coef-
ficient formulation reduces to [1]:

ρx1,x2 =
(mx1 −mx1)(mx2 −mx2)

σx1σx2
= 0 (3.48)

Consequently, the formulation of the variance of x3 changes:

σ2 = c2
1σ

2
x1

+ c2
2σ

2
x2

(3.49)

On the other hand, if x1 and x2 are dependent on each other, e.g, x1 = αx2,
then correlation coefficient formulation becomes [1]:

ρx1,x2 =
(αx2 − αmx2)(x2 −mx2)

ασx2σx2
= 1 (3.50)

with the new true variance of x3 defined as:

σ2 = (αc1 + c2)σ2
x2

(3.51)

47

Unknown populations are Statistics field of interest. Hence, true mean and
true variance are no longer meaningful concepts. They are substituted by
the sample mean and the sample variance. Given a sample of size N, the
formulation of the sample mean is [1]:

x =
1

N

N∑
i=1

xi (3.52)

As N → ∞, the sample mean must approach the true one. If one applies
the expectation operator to the sample mean, the following relation will be
obtained:

E[x] =
1

N

N∑
i=1

E[xi] =
1

N
Nmx = mx (3.53)

So, sample mean is a good estimation of the true mean [1].
Based on the definition of variance of Eq.:3.40, the sample variance is:

s2
x =

1

N

N∑
i=1

(xi − x)2 (3.54)

Now the expectation operator is applied to both the sides of Eq.:3.54 and,
inside the parenthesis of its right-hand side, mx is added and subtracted in
order to express the sample variance as function of the true variance [1]:

E[s2
x] = E[

1

N

N∑
i=1

(xi − x)2] = E[
1

N

N∑
i=1

(xi −mx +mx − x)2] (3.55)

which is equal to:

E[s2
x] =

1

N

N∑
i=1

E[(xi −mx)
2] +

1

N

N∑
i=1

E[(x−mx)
2]

+2E[(mx − x)
1

N

N∑
i=1

(xi −mx)]

(3.56)

After some passages, one obtains [1]:

E[s2
x] =

1

N

N∑
i=1

σ2
x +

1

N
NE[(x−mx)

2]− 2E[(x−mx)
2] (3.57)

48

and then:

E[s2
x] = σ2

x − E[(x−mx)
2] (3.58)

The second term on the right-hand side of Eq.:3.58 is the variance of the
sample average x. Hence, as consequence of that [1]:

σ2
x = σ[

1

N

N∑
i=1

xi] =
N∑
i=1

1

N2
σ2[xi] =

σ2
x

N
(3.59)

So, an important fact arises from Eq.:3.59: the variance of the sample average
decreases with the growth of the sample size. Now, it is possible to substitute
Eq.:3.59 into Eq.:3.58 and get [1]:

E[s2
x] =

N − 1

N
σ2
x (3.60)

The above equation demonstrates that the sample variance formulation (Eq.:3.54)
is not a good estimate of the true variance. Thus, to define an unbiased for-
mulation for the sample variance, the above equation may be re-written as:

E[
N

N − 1
s2
x] = σ2

x (3.61)

This means indeed that the term of Eq.:3.61 which the expectation operator
is applied to, yields an unbiased estimate of the true variance. Therefore,
the unbiased sample variance S2

x is equal to [1]:

S2
x =

N

N − 1
s2
x (3.62)

and, consequently, to:

S2
x =

1

N − 1

N∑
i=1

(xi − x)2 (3.63)

The precision associated with the sample average is measured by the relative
statistical uncertainty or relative standard deviation:

Rx =
σx
x

(3.64)

49

On the other hand, the accuracy is the measure of the deviation from the
true mean. The accuracy is generally retrieved by performing an experiment
or by consulting the literature or the results of another technique that is
known to be accurate [1].

Name Pdf True mean True variance

Uniform p(x) = 1
b−a

a+b
2

(b−a)2

12

Bernoulli p(n) = pn(1− p)1−nn = 0, 1 p p− p2

Binomial p(n) =
(
N
n

)
pn(1− p)N−nn = 1, N Np Np(1− p)

Geometric p(n) = (1− p)n−1p 1
p

1
p2
− 1

p

Poisson p(n) = mn

n!
e−m m m

Normal p(x) = 1√
2πσ2

e−
(x−m)2

2σ2 m σ

Table 3.2: Commonly used density functions [1].

Table:3.2 presents some probability density functions often encountered
when dealing with random physical process. The Bernoulli process refers to a
random process with only two outcomes whose probabilities remain constant
[1].
The binomial density function is referred to a Bernoulli process repeated N
times. The sum of the successes (only successful experiment with outcome 1
are worth) follows the binomial distribution8.
The geometric density function gives the probability of achieving a success
after (n− 1) failures [1].
The Poisson density function may be approached by a binomial density func-
tion when p << 1, N >> 1 and n << N .
And finally, the well-known normal density function, with a key role in statis-
tics field. Fig.:3.14 shows an example by depicting both the pdf and cdf. In
this case, the mean value is 40 and the variance is 10. Its main characteristics
may be summarized in [1]:

� Maximum at the mean value.

� Symmetric about the mean.

8If N →∞, the binomial density function approaches Normal density function [1]

50

� Points of inflection (where the second order derivative is null) at one
standard deviation away from the mean and there, its value is about
60% of the maximum.

� Tangents to the distribution curve at the inflection points intersect the
x-axis at x = mx ± 2σ.

� The half-maximum value is at x = 1.177σ.

� The 1
e

of maximum value is at x = 1.414σ.

Figure 3.14: Example of normal density function and its cdf [1].

Another important point is the definition of confidence levels, i.e. the proba-
bility that the estimation of the sample average lies at a certain distance from
the true mean: if the random variable follows the normal density function,
since it is symmetric, this probability may be determined within a number
of ± σ as follows: P [mx − nσx ≤ x ≤ mx + nσx], where n is the number of
standard deviations. This probability is equivalent to [1]:

P [mx − nσx ≤ x ≤ mx + nσx] =
1√

2πσ2
x

[

∫ mx+nσx

−∞
dxe

−(x−mx)2

2σ2x −
∫ mx−nσx

−∞
dx

e
−(x−mx)2

2σ2x]

(3.65)

51

The above integrals are the cumulative density functions, i.e. P (mx + nσx)
and P (mx − nσx) respectively.By symmetry, it can be written:

P [mx − nσx ≤ x ≤ mx + nσx] = 2P (mx + nσx)− 1 (3.66)

� For n = 1, Pr= 68, 3%.

� For n = 2, Pr= 95, 4%.

� For n = 3, Pr= 99, 7%.

The above probabilities indicate that a certain percentage of random vari-
ables lie within one, two or three standard deviations from the mean, respec-
tively, and they are true for any normal distribution because of its normal-
ization [1].

It is crucial , at this point, to introduce the fundamental Central Limit
Theorem: considering the execution of T trials, each of these trials consisting
in N independent samples from a common density function with existing
mean mx and variance σ2

x: then, for any fixed value of N histories per each
trial, there is a pdf fN(x) that describes the distribution of the sample means
after repeating these trials. As N → ∞, the Central Limit Theorem states
that there is a limiting density function for x and is a normal density function
given by [1]:

fN(x) =
1√

2πσ2
x

e
− (x−mx)2

2σ2
x (3.67)

where σ2
x = σ2

x

N
(Eq.:3.59). The applicability to any random variable with

well-defined mx and σ2
x and the emphasis on the sample mean uncertainty

rather than the random variable itself make this theorem the most important
instrument for the assessment of a Monte Carlo simulation [1].

3.2 Monte Carlo method in transport theory

The previous sections of this chapter have introduced the theoretical grounds
of the tools useful to execute the analysis. The next sections aim at illustrat-
ing the specific application of these tools to the physical models presented in
the first chapter. Firstly, the focus will be directed on the way of solving an
eigenvalue problem by means of the power iteration method, as said at the
beginning of the chapter; subsequently on the phases of a neutron’s ’life’.

52

3.2.1 The power iteration method

The most common way of solving an eigenvalue problem is the power itera-
tion technique (or Von Mises iteration) in which the power (in this case of
interest the neutron source) is iterated on until it converges within a pre-
scribed tolerance [1]. From this point on, the computation of the random
variables (κ0 or γ0) for the Monte Carlo simulation shall be executed. Chap-
ter 2 has shown how to obtain the equation for the eigenvalue problem, and
Eqs.2.10-2.13 are those which this thesis is focused on. Both of them might
be generalized by the following form:

λφ = M̂φ (3.68)

The M̂ operator of 3.68 must be a matrix, even with complex elements,
defined in a certain vector field, that is diagonalizable: it implies, among
other things that has n, distinct eigenvalues9. Their absolute values can be
sorted in decreasing order: |λ0| > |λ1| > |λn−1|. If φ0 is a vector such that
its projection on κ0’s eigenspace is not null, then a sequence arises [9]:

φk = M̂φk−1, k ≥ 1 (3.69)

It represents the continuous, iterative applications of the M̂ operator to the
neutron source, and it can be demonstrated that it tends to the eigenvector
(eigenfunction in this case) associated to the greatest eigenvalue, i.e. λ0; k
is the generation counter. Since M̂ is diagonalizable by hypothesis (it has
n distinct eigenvectors, as many as the eigenvalues), each function of the
function field on which the M̂ operator is defined might be expressed as a
linear combination of the n eigenfunctions vi of M̂ (they form a base for the
vector field of M̂): φ0 =

∑n−1
i=0 αivi. Consequently, by definition of eigenvalue

of a matrix, the k-th iteration may be written as [9]:

φk = M̂kφ0 =
n−1∑
i=0

αiM̂
kvi =

n−1∑
i=0

αiλ
k
i vi (3.70)

Now, it is possible to make the ratio between two consecutive powers of the
sequence expressed in Eq.:3.69, taking the non-zero, j-th components of φ
and v (to be indicated with a subscript, while the counter of generations

9From the fundamental theorem of algebra and corollaries [9]

53

is a superscript between parentheses, such as i, the counter of the eigenval-
ues/eigenvectors) [9]:

φ
(k+1)
j

φ
(k)
j

=
λk+1

0

λk0

Rk+1

Rk
(3.71)

where Rk,k+1 = α0v
(0)
j +

∑n
i=1 αi(

λi
λ0

)k,k+1v
(i)
j

10. Since λ0 > λi for every value

of i ≥ 1, for k →∞, Rk+1

Rk
→ 1 (the argument of the sum tends to 0) and the

ratio between φ
(k+1)
j and φ

(k)
j will tend to λ0.

Thus, the method converges slowly if there is an eigenvalue close in magnitude
to the dominant eigenvalue [9]. This might be measured by the Dominance
Ratio, i.e. |λ1

λ0
|: if it is too close to 1 i.e., High Dominance Ratio (HDR), the

convergence will be slow [1].

3.2.2 Neutron interaction models

Power iteration method concerns operators (leakage, removal, scattering and
fission as Chapter 2 has illustrated) which are applied to to functions (the
angular flux of the n-th generation of neutrons). In a Monte Carlo simulation
instead, the concept of collective flux is substituted by the ‘life’, referred to
as random walk, of each single neutron that forms the source for a certain
generation, and the operators consists in random experiments that affect the
coordinates of the single neutron in the phase space (position, energy and
direction). Random walks are nothing but the continuous, random alterna-
tion of the states that are going to be described. This last section shows
how the theoretical concepts analysed in previous sections are applied to the
neutrons transport problem of this thesis. The next chapter will show how
this sort of ‘instructions’ has been given to the neutrons through the codes.

Neutron flight

In some sense, the leakage operator is replaced by the so-called free flight of
the neutrons, the state immediately previous to every kind of interaction. As
a stochastic phenomenon, it is described by a proper pdf:

fΣ(x) = Σt(x)e−
∫ x
0 Σt(x′) dx′ (3.72)

10Being k without surrounding parentheses an exponent, not an index!

54

The pdf expressed in Eq.:3.72 , if multiplied times dx, represents the proba-
bility of the intersection of two independent events, thus, it is a product of
probabilities: the one of having a collision between x and x+dx (Σtdx) after
experiencing no collision between 0 and x (e−

∫ x
0 Σt(x′) dx′). In this thesis, the

change in space of the cross section is not handled in this integral way 11.
So, the actual form of the pdf in Eq.:3.69 is:

fΣ(x) = Σte
−Σtx (3.73)

The mean value of this pdf is 1
Σt

and it is also called mean free path and may
be used as unit of measure of the slab length. As Chapter 1 has explained,
the cross section is function of neutron’s energy, and it has already been said
that the energy levels are discretized in this work. Therefore, every energy
group has its own set of cross sections (shown in Chapter 4). The value
of the distance covered by a neutron, since it depends on cross section, is a
function of the energy of the neutron: the faster is the neutron, the greater the
distance covered will (statistically) be. It may be obtained through analytical
inversion: being FΣ(x) = 1 − e−Σtx the cdf, its inversion, as explained in
Eq.:3.22, results:

1− ln η

Σ(E)
(3.74)

Fig.:3.15 depicts the charts of pdf and cdf for two different cross sections
(from two different energy groups) used for the computations in the next
chapters. The total cross section in the faster group is equal to 0.88721
cm−1, while the other one to 2.9727 cm−1 [10].

Collision

At the end of the free flight, many of things may happen: there is a collision,
and it ends up with an absorption or with a scattering event. This ‘either/or’
situation is perfectly described by a Bernoulli experiment (Table.3.2): in

this case p = Σa(E)
Σt(E)

or p = Σs(E)
Σt(E)

, since they are complementary events. For
instance, the first option is chosen: to sample this pdf, one must start from
the relation 3.20. If this condition is respected, the neutron is absorbed, if
not, it is scattered. This Bernoulli experiment is followed by another one,
in case of absorption. This new ‘either/or’ scenario has the same pdf of the

11The virtual collision approach is used and it will be explained in the next chapter

55

Figure 3.15: Pdf − Cdf couples for different enrgy groups’ cross sections
(Pdf: solid line; Cdf: dashed line).

previous one but with p =
Σf (E)

Σa(E)
or p = Σc(E)

Σa(E)
and states whether a fission

or a capture occurs. Figs.3.3-3.4 would represent quite well this Bernoulli
experiment if the random variable had only two value instead of three.

Fission

As Eq.: suggest, the fission transfer function is a complex operator and the
phenomenon which describes is less straightforward than the free flight, for
instance. First of all, the number of ‘newborn’ neutrons must be sampled. As
Eq.:3.2.2 says, it depends on the fissile element and, weakly, on the colliding
neutron’s energy. Given p(n) is the probability of the number of fission
neutrons born from fission event, then the FFMC for this discrete random
variable n is obtained by satisfying the following inequality [1]:

P (n− 1) < η ≤ P (n), n = 0, nmax (3.75)

where P (n) =
∑n

n′=0 p(n
′). In practice, however, rather than using Eq.:3.75,

the number of fission neutrons are sampled by using the average number of

56

fission neutrons per fission ν given by [1]:

ν =
nmax∑
n′=0

n′p(n′) (3.76)

Using ν, the procedure for sampling the number of fission neutrons consists
in the following steps [1]:

1. Generate a random number ρ.

2. If ρ ≤ mant(ν)12, generate ν −mant(ν) + 1 fission neutrons.

3. If the above condition is not respected, then generate ν −mant(ν)

After sampling the number of neutrons per fission, one must focus on their
energy. The procedure starts from the fission spectrum defined in Chapter
1. Commonly, the fission spectrum is given by the Watt spectrum that for
235U for thermal fission (’slow’ energy group) is given by [1]:

χ(Ê) = 0.4527e
Ê

0.965 sinh
√

2.29Ê (3.77)

with Ê = E
E0

and E0 = 1 MeV. Fig.:3.16 allows to visualize this function.

Figure 3.16: An example of Watt spectrum [11].

12mant() is the mantissa function

57

For such a function, the rejection technique is preferable with respect
to the analytical inversion (Fig.3.9 at pag.38), but in this thesis the energy
spectrum is discretized and the approach of condition 3.20 will be used again.

Scattering

This subsection aims at introducing one last approximation for the model
studied in this thesis: the discretization of the energy spectrum together
with the already mentioned concept of random walk. A random walk is a
path in a certain space that is not predictable a-priori. In the phase space
of interest, the transitions among spatial coordinates constitute a continuous
random walk, just like the transitions among flight directions, as the next
sub-section will show. Transitions among the N energy levels are not only
discrete, but also markovian. A markovian process is a phenomenon whose
evolution depends only on its current condition, not on its previous ‘history’
[12]. First of all, a phase space, consisting in N possible states, has to be
stated. A particle random walk in such phase space is characterized by a
first collision in some state i1, subsequent transmission through a sequence
of states i2, i3... and finally, a termination in some state ik. A discrete random
walk process will therefore be completely specified by [12]:

� a set of first collision probabilities p1
i (probability of first collision in

state i);

� a set of transmission ones pi,j (probability of transition from state j to
state i);

� a set of ’death’ probabilities pi .

With α = i1,. . . ,ik denoting a typical random walk and k being the number
of collisions made to termination, then [12]:

p1
i = P [i1 = i],

pi,j = P [in+1 = i|in = j, k > n],

pi = P [k = n|in = i].

(3.78)

58

It is required that pi > 0 and pi,j ≥ 0,

N∑
i=1

p1
i = 1,

N∑
i=1

1− pi,j ≤ 1

(3.79)

for all j. The latter condition is valid if multiplication, i.e. fission, is excluded.
It can be supposed that α has made collisions at i1,...ik. If P n

j denotes the
probability of making collision n at state j [12]:

P n
j = P [in = j|k > n− 1], n ≥ 2 (3.80)

and:
P 1
j = P [i1 = j] = p1

j (3.81)

It is clear that a recursion formula for P n
j is:

P n
j =

N∑
k=1

pj,kP
n−1
k , n ≥ 2 (3.82)

Eq.:3.82 expresses the fact that the probability that collision n takes place
at j is the probability that the (n− 1)-th collision takes place at k, times the
probability of transition from k to j, summed over all intermediate states k
[12].
For each state j a random variable Xj may be defined such that Xj is the
number of collisions made at j. Then Xj is a discrete random variable on the
space of all random walks α, which may take on any positive integer value.
It is not hard to see that the expected value of Xj may be calculated by [12]:

E[Xj] = 1 · P 1
j + 1 · P 2

j + 1 · P 3
j +

1 · P n
j =

∞∑
n=1

P n
j

(3.83)

Let E[Xj] be the discrete collision density at j with E[Xj] = Pj [12].
To compute Pj, using Eq.:3.82:

∞∑
n=2

P n
j =

∞∑
n=2

N∑
k=1

pj,kP
n−1
k (3.84)

59

i.e.
∑N

k=1 pj,k
∑∞

n=2 P
n−1
k and, after a little modification,

∑N
k=1 pj,k

∑∞
n=1 P

n
k .

Therefore:

Pj = P 1
j +

N∑
k=1

pj,kPk, 1 ≤ j ≤ N (3.85)

The vector with values P1,. . . ,Pn might be denoted with ~P , the array with
values P 1

1 ,...,P 1
N with ~P 1 and the matrix with entries pi,j by K̂, then the

system of Eqs.3.85 may be re-written as a matrix equation [12]:

~P = ~P 1 + K̂ ~P (3.86)

The matrix equation just derived relates the discrete collision density ~P to a
density of first collisions ~P 1 and a operator K̂ describing the probability of
direct transition from one state (or energy group) to another. The solution
of Eq.:3.86 is a vector whose component may be referred to as the densities
of particles about to undergo collision in each state. Hence, the source term,
~P 1, is interpreted as the density of particles about to undergo a first collision,
particles which have already been transferred from their birth state to the
state at which first collision will be made [12]. As a realistic model of the
above process, one may use the steady-state multi-group neutron transport
equations, for an infinite, mono-dimensional, homogeneous medium, without
multiplication:

µ
∂φi(z, µ)

∂z
+ Σtφ

i(z, µ)

= Si(z, µ) +
G∑
j=1

∫ 1

−1

dµ′Σj
t(z)φj(z, µ′)f ijs (z, µ′µ)

(3.87)

where i is the energy index (1 ≤ i ≤ G). φi is the vector flux in the i-th group.
The scattering transfer function, after discretization, still keeps its original,
clear task to operate transition from the generic j-th group to the ’correct’,
i-th one. In an infinite, homogeneous medium, with a constant source, φi is

constant, so that µ∂φ
i(z,µ)
∂z

is null for every energy group [12]. If, further, one

assumes that the source is isotropic, Si(µ) = Si

2
, Eq.:3.87 becomes:

Σtφ
i(µ) =

Si

2
+

G∑
j=1

∫ 1

−1

dµ′Σj
tφ

j(µ′)f ijs (µ′µ) (3.88)

60

with 1 ≤ i ≤ G.
Now, it is better to consider the total flux (integration over all directions):

now it is a scalar:
∫ 1

−1
dµ′φj(µ′) = Φi. It results [12]:

Σi
tΦ

i =
G∑
j=1

Σj
tf

ij
s Φj + Si, 1 ≤ i ≤ G (3.89)

It is the infinite medium equations for the scalar flux [12]. Now, it is impor-
tant to focus on f ijs :

f i,js =

∫ 1

−1

dµ′f ijs (µ′µ) =
Σij
s

Σj
t

(3.90)

The matrix Σij
s is the transition matrix from energy group j to energy group

i:
G∑
i=1

Σij
s = Σj

s ≤ Σj
t (3.91)

where Σj
s is the macroscopic scattering cross section in group j and where Σj

t

is the total macroscopic cross section. Now, let ϑi = Σi
tΦ

i be the definition of
macroscopic scalar collision density in group i. Then Eq.:3.89 becomes [12]:

ϑi =
G∑
j=1

Σij
s

Σj
t

ϑj + Si, 1 ≤ i ≤ G (3.92)

under the assumption that Σj
t 6= 0 for all j. Thus, an equation in matrix

form arises again: ~ϑ = K̂~ϑ + ~S [12]. On physical grounds, Q ≥ 0, K ≥ 0,
and ϑ ≥ 0. Now it is defined [12]:

pij =
Σij
s

Σj
t

(3.93)

so that 0 ≤ pij ≤ 1 and:

G∑
i=1

pij =
1

Σj
t

G∑
i=1

Σij
s =

Σj
s

Σj
t

. (3.94)

61

Let pj = 1 − Σjs
Σjt

. Further, it is defined the first collision probability: p1
i =

Si∑G
i=1 Si

so that 0 ≤ p1
i ≤ 1 and, obviously,

∑G
i=1 p

1
i = 1. With these defini-

tions, requirements 3.79 for a discrete random walk have been satisfied [12].
Then dividing Eq.:3.86 by the normalizing factor 1∑G

i=1 Si
:

1∑G
i=1 Si

ϑ = K̂
1∑G
i=1 Si

ϑ+
1∑G
i=1 Si

~S (3.95)

With ~P = 1∑G
i=1 Si

ϑ and ~P 1 = 1∑G
i=1 Si

~S, the Eq.:3.86 is obtained again: this is

the identification of the multi-group transport process in an infinite medium
as a discrete random walk process. In particular, ~P is the normalized vector
collision density whose j-th component, Pj, represents the expected number
of collisions in group j per unit source particle [12]. It is worth noting that

the source vector ~P 1 may be identified either as the density of births or the
density of first collisions because of the absence of spatial dependence. [12].
In some sense, the source term in Eq.3.86, in the case of κ0 computation al-
gorithm for instance, may be seen as the fission spectrum. In this thesis, the
matrix K̂ has order 2 × 2 and the denominators of the matrix elements are
the scattering macroscopic cross sections of group i (i.e. the sum of all the
scattering cross sections from group i to all the others) because, for the code
(presented in Chapter 4) the scattering transition is a random experiment
that is downstream with respect to the dilemma ‘absorption-or-scattering’.
The matrix of Eq.:3.86, instead, treats the absorption as the complementary
of the scattering, but ‘on an equal footing’. Another important difference
between K̂ and the one used in the codes is that the latter is the transpose
of the former. It is worth noting that matrix K̂ is usually upper (or lower)
triangular. The scattering from a low energy group to a high one, indeed,
should be impossible: collisions reduce neutrons’ speed, they do not acceler-
ate them. In some case, as Chapter 4 will show, this event is not impossible,
but simply highly unlikely. The so-called Scattering Matrix presents as many
probability density functions as rows. It is easy to get the corresponding cu-
mulative distribution functions: when a transition occurs, the energy level
before the scattering event states which row has to be selected. The new
energy level is given by applying the condition of 3.20.
Eq.:3.86 may be re-arranged as a classical linear system with the canonical
form Â~x = ~b:

~P (Î − K̂) = ~P 1 (3.96)

62

where Î is the identity matrix. Naturally, Eq.:3.96 is solvable via Monte
Carlo simulation, but there is a problem with respect to the deterministic
version just shown: the sum in the discrete collision density definition must be
truncated at n = N for the sake of the random variable sampling that cannot
go to∞. The convergence of the Monte Carlo solution to the analytical one,
after a certain number of iterations, is however demonstrable.

Isotropic emission

Since both scattering and fission emissions are isotropic phenomena (the
former by hypothesis as previously shown in Chapter 1, the latter by its very
nature) the change of direction affects them in the same way, and thus, is
the last random experiment to deal with. Since the model of this thesis has
a plane geometry (Chapter 1) a pdf with only one variable is needed. It
samples only the cosine of the direction. It has, as domain, the range [-1,1]
over which has a constant value given by the normalization, i.e. 1

2
. The

sampling exploits the analytical inversion (3.22).

63

Chapter 4

Implementation of the codes

After the necessary, theoretical part, the moment to turn it into practice has
come. The chosen language is Python, for its great spreading. The task to be
faced, although some simplifications have been introduced in previous chap-
ters, cannot be run by a simple code, but a code system with a certain order
of complexity is needed. The section 4.1.1. will be useful to briefly introduce
Python. The section 4.1.2. will illustrate how the criticality problems for
computing κ0 and γ0 are globally organized, while section 4.1.3. explains
how the programs operate. The actual codes with relative comments will be
presented in the final Appendices A, B and C. The chapter goes on with sec-
tion 4.2 concerning the main issues of the implementation and the strategies
which have been adopted to try to solve them.

4.1 The hierarchy of the codes

4.1.1 Python

”Python is an interpreted high-level, general-purpose programming language,
very easy to be read thanks to the use of indentation. Its language constructs
as well as its object-oriented approach aim to help programmers write clear,
logical codes for small and large-scale projects” [8]. Object-Oriented Pro-
gramming (OOP) instead, is a programming paradigm based on the concept
of objects, which may contain data and code: data in the form of fields (often
referred to as attributes or properties) and code in the form of procedures
(often known as methods). A feature of objects is that an object’s own pro-

64

cedures can access and often modify the data fields of itself (objects have a
notion self in Python). In OOP, computer programs are designed by making
them out of objects that interact with one another [8]. OOP gathers in a
localized area of the source code (class) the statement of the data structures
and the procedures operating on them. Classes consist in abstract models
which at run-time are called to instantiate or create software objects that
are associated with the invoked class. The latter have attributes (variables
and/or constants defining the features of the objects that may be created
invoking the class) and methods (functions operating on the attributes) ac-
cording to their respective classes’ statements. The part of a program which
uses an object is called client [13].
A programming language is object-oriented if it allows to implement three
schemes with the syntax of the language:

� Encapsulation: the separation between class interface and class imple-
mentation; in this way, the clients of an object can use the former, but
not the latter.

� Inheritance: it allows to create classes starting from those which have
already been defined.

� Polymorphism: the fact that the same executable code might be used
with instances of different classes with a super-class in common.

Among the advantages of this kind of programming, one may mention [13]:

� OOP provides a natural support to software modeling of real object or
of the abstract model to be reproduced.

� It allows an easier management and maintenance for large scale projects.

� The class-ordered organization supports modularity and code reuse.

On the other hand, some mechanisms, that are inherent in the object man-
agement, cause overhead from the points of view of time and memory and
may induce efficiency problems, as it is mentioned in Section 4.2.1 [13].

65

Figure 4.1: General scheme of the codes

66

Figure 4.2: Client algorithm for κ0 computation

67

Figure 4.3: Client algorithm for γ0 computation

68

4.1.2 Algorithms’ working environment

After giving the basic information about the programming language, it is time
to concentrate on the working environment itself, starting from an overview.
As Fig.4.1 at pag.66 shows, many classes (red background) serve the algo-
rithm computing the eigenvalue (green background). Some external inputs
are directed to the classes, others to the client itself. If adequately invoked
through the so-called dot-notation, all the attributes and methods of a class
are accessible both in the algorithm and in the other classes. For the sake
of readability, the inner structures of the clients are introduced in Fig.4.2
and Fig.4.3 at pag.67-68, the former for the κ0-eigenvalue algorithm, the lat-
ter for the γ0-eigenvalue one. Thus, the incoming and outgoing entities in
Figs.4.1-4.2-4.3 fit together. In section 4.1.3. a more detailed inspection of
each component in these figures will be presented.

These schemes guide the reader through the fundamental way to compute
the eigenvalues. In Chapter 5 some modifications take place in order to repeat
the same operations by changing one certain parameter at a time, but the
essential structure will remain the same.

4.1.3 Code structures

This section is devoted to the description of all the classes, the functions and
the algorithms seen before. At the begin of all the scripts the developer must
call all the libraries and classes that will be useful for the code. The libraries
which appear with most frequency are:

� Numpy : it offers comprehensive mathematical functions, random num-
ber generators, linear algebra routines , etc.

� Pathlib: it set to add additional directories where python will look for
modules and packages.

� Os : it provides functions for interacting with the operating system.

� Math: it gives access to some common mathematical functions and
constants.

� Matplotlib: it creates static, animated, and interactive visualizations.

69

Dataset Organizer

The inputs for this class are the number of the energy groups and the name of
the file, with ’.txt’ format, that will be opened and read to create a dictionary
with all the useful parameters of the materials forming the slab. In Python,
a dictionary is a mutable, not ordered type that contains items formed by
a key and a value. Once created, a set of couples ‘key-value’ is obtained
and if one wants to get a value, a unique, predefined key must be used to
invoke it. The following tables contain the material data used in eigenvalues’
computation:

Σa1 Σf1 χ1 ν1 Σ1→1 Σ1→2 Σt1

0.0984 0.0936 0.5750 3.1000 0.0792 0.0432 0.2208

Σa2 Σf2 χ2 ν2 Σ2→1 Σ2→2 Σt2

0.09984 0.08544 0.42500 2.93000 0.00000 0.23616 0.33600

Table 4.1: ’Fuel’ dataset for homogeneous critical slab with 2 energy groups
[4].

Σa1 Σf1 χ1 ν1 Σ1→1 Σ1→2 Σt1

0.001940 0.000836 1.000000 2.500000 0.838920 0.046350 0.887210

Σa2 Σf2 χ2 ν2 Σ2→1 Σ2→2 Σt2

0.053633 0.029564 0.000000 2.500000 0.000767 2.918300 2.972700

Table 4.2: ’Fuel’ dataset for heterogeneous slab with 2 energy groups [10].

Cross sections are expressed in [cm−1], while other quantities are dimen-
sionless. In Table4.4 the last column is dedicated to the diffusion coefficient,
expressed in [cm]. Total cross sections are obtained by summing the absorp-
tion and scattering cross sections. The latter, on their turn, are the sum of
the transition cross sections from a generic energy group to all the others.
Therefore, the so-called Dataset Organizer, after reading the files and creat-
ing the dictionaries, is able to make operations on these data to create the
necessary probability density functions and cumulative distribution functions
to accomplish the samplings during the computation.

70

Σa1 Σf1 χ1 ν1 Σ1→1 Σ1→2 Σt1

0.00074 0.00000 0.00000 0.00000 0.83975 0.04749 0.88798

Σa2 Σf2 χ2 ν2 Σ2→1 Σ2→2 Σt2

0.018564 0.000000 0.000000 0.000000 0.000336 2.967600 2.986500

Table 4.3: ’Moderator’ dataset for heterogeneous slab with 2 energy groups
[10].

Σa1 Σf1 χ1 ν1 Σ1→1 Σ1→2 Σt1 D1

0.0023 0.000 1.0000 3.100 0.0600 0.0600 0.12230 1.5000

Σa2 Σf2 χ2 ν2 Σ2→1 Σ2→2 Σt2 D2

0.2000 0.0872 0.0000 2.5000 0.000 1.0000 1.2000 0.4000

Table 4.4: ’Fuel’ dataset for homogeneous slab with 2 energy groups [14].

Domain Assembler

The inputs for this class are:

� The array of materials in their spatial order, e.g. [‘Fuel’, ’Moderator’]
for a two-regions slab. Only these two types of layer are considered.

� The array of the corresponding layer thicknesses (in [cm]).

� The number of detectors per layer: they are the source sub-regions and
play a decisive role in the determination of the initial source and the
normalized one (explained in next sub-sections).

This class sets the coordinates both of internal and of the external boarders
and controls the free flight of neutrons with two dedicated methods: the for-
mer (the function ’Location’) receives the x-coordinate as input and gives as
output the type of the layer in which the neutron lies; the latter (the function
’Boundarycounter’) takes as input the couple of coordinates of beginning and
ending of a free flight and gives back the sorted coordinates of the boundaries
crossed by the neutron. Moreover, the so-called Domain Assembler defines

71

the ensemble of the detectors as matrices with layers as rows 1 and detectors
in the single layer as columns.

Initial Source Setter

Stating the features of the starting neutrons is crucial to address properly
the convergence of the computations (and in Chapter 5 it will be seen). The
inputs needed are:

� The number of starting neutrons (N).

� The distribution that affects both neutrons’ positions and energy levels:
it can be “Uniform”, equally spaced in every layer and mono-energetic
neutrons from a chosen group or “Fission-source-like” that, as the name
suggests, follows the fission spectrum from the energetic point of view
and allocates neutrons only in ‘Fuel’ regions, randomly uniform in each
detector.

� The seed for the pseudo random generation (see Section 4.2.2): the
neutrons in the single detector are positioned in an uniformly, random
way for “Fission-source-like” distribution.

� The direction of the neutrons: it can follow the proper pdf (direction
cosine values “Stochastic”) or be directed towards the centre of the slab
(direction cosine values equal to 1, “Inward”) in case of very thin fuel
layer.

� The geometry that considers the whole slab (“Non-symmetric”) or only
one half of it (“Symmetric”) if it is symmetric (this case is examined
in Chapter 5 for source convergence studies).

The output consists in three arrays of length N: one for the positions, one
for the energy groups and one for the direction cosine values. They are put
together to form a N × 3 matrix.

1Every layer or only the layers of type ‘Fuel’, it depends on the needs of the algorithm:
for instance the sources in the γ0 case are not only in the fuel regions, but also in the
moderator

72

Random Walk and associated functions

As Figs.4.2-4.3 suggested, the treatment of the random walk is the first great
difference between the algorithms of the two eigenvalues’ algorithms. The
γ0-eigenvalue algorithm needs to register not only the absorption sites’ coor-
dinates in fuel regions, as κ0-eigenvalue algorithm does, but also scattering
sites’ coordinates in all the types of material present in the slab. This fact
makes the ‘life’ of a neutron shorter in the former case, but the inputs are
common:

� The three coordinates generated in the Initial Source Setter (or in the
Population Controller, the next class to be analysed) organized as a
N × 3 matrix.

� The seed for the pseudo random generation (Section 4.2.2) for imple-
menting FFMC.

A critical issue is the transition from a layer to another. A change of medium
takes place and is treated like a collision, a virtual collision. The neutron’s
new initial position is the boundary itself, the free flight is sampled with
the cross section of the ‘new’ layer, but energy level and direction cosine do
not change. It may be noted that the update of the energy level in case of
scattering is an example of application of condition 3.20 (the energy group
before the collision ‘decides’ which cdf to be used for the FFMC and the
energy group after the collision is sampled). Finally, the sample of the free
flight is an example of analytical inversion of a pdf. For the κ0-eigenvalue
algorithm, the random walk function gives as output A pairs of positions
and the energy groups of neutrons absorbed in fuel regions in the form of a
A × 2 matrix: the fission function, from this inputs, samples the number of
neutrons born per site, as explained in Section 3.2.2.

73

Figure 4.4: Flowchart of the random walk for κ0 computation (’ff’ and ’fm’
stands for the FFMC of the new energy group respectively in fuel and mod-
erator region).

74

Figure 4.5: Flowchart of the random walk for γ0 computation.

75

Figure 4.6: Flowchart of the fission function

76

Figure 4.7: Flowchart of the scattering function (’ff’ and ’fm’ stands for the
FFMC of the new energy group respectively in fuel and moderator region).

77

For the the random walk function of the γ0-eigenvalue algorithm, gives
as output S pairs of positions and energy groups of neutrons absorbed in
fuel regions and of neutrons scattered in all the region types in the form of a
S × 2 matrix: the fission function acts analogously to the case of the former
eigenvalue calculation. The scattering function, after deciding which region
the neutron is in, and then it executes the usual FFMC. Figs.4.4-4.5-4.6-4.7
at pages 74-75-76-77 may clarify the previous explanations.

Population Controller

Once collected the positions of interactions and the number of new born
neutrons, this two pieces of information serve to know which detector must
be filled up with how many neutrons. The Population Controller is the class
created for this task by operating on the matrix provided by the Domain
Assembler. This task is the one for κ0 algorithm; for γ0’s one , there are two
matrices to be filled up: one for fission sites, the other for the scattering sites.
At this point, a major problem arises. It concerns both the supercritical and
the subcritical systems. From the formula that gives a generic eigenvalue, a
relation between two consecutive generations may be stated [1]:

N (n) = KnN (0) (4.1)

as suggested by the power iteration method. This is a quite good estimate
of the trend of neutron populations as function of the number of cycles. If
K > 1, the number of particles increases significantly generation by gener-
ation, with two important consequences: also the amount of computer time
increases while the source distribution has not converged. On the other hand,
if K < 1, there is the opposite problem: the systems runs out of particles
before converging to a solution. The need to normalize every population to
the initial value derives from this issue. Obviously, it is faced after the com-
putation of the eigenvalue, i.e. the ratio with as numerator the amount of
’new’ neutrons for the next cycle and as denominator the amount of neutrons
at the beginning of the previous cycle (both passed as inputs). The number
of neutrons must be subsequently normalized to the initial value, introduced
by the Initial Source setter. This process is very different for the two eigen-
values.
For the κ0 algorithm, things are simpler: each detector-source is multiplied

78

times a normalization factor, i.e. the ratio between the population of the
initial source (passed to this class as input) and the population of the new
one. Each normalized source is then rounded up (the number of neutrons
must be an integer). In the single detector, the new positions of the neutrons
are chosen randomly, with a uniform distribution (the seed appears again
among the inputs). Once known the amount of the normalized, new source
and each new position, the process may go on with the sampling of the new
energy groups through the fission spectrum and of the new energy directions:
the source for the next cycle is ready.
The normalization in the γ0 algorithm is more complicated. The issue is the
energy groups of scattered neutrons inside each detector. The proportions of
the energy groups have to be preserved, because the meaningfulness of the
phenomenon of scattering must be preserved. So, the two matrices of col-
lectors must be summed to execute the normalization as usual for the array
of new positions. The number of new neutrons from fission is increased/de-
creased proportionally and by difference the numbers of new neutrons from
scattering is obtained. The energy of the neutrons from fission is sampled
via fission spectrum (only in ’fuel’ detectors, obviously) and the proportions
among energy groups of the neutrons from scattering is kept constant: the
normalization causes their round-up and to restore the correct number of
scattering neutrons (to have the correct total number of particles per detec-
tor) the most represented energy group undergoes a proper subtraction. The
process goes on with the normal creation of the other array that constitutes
the new source.

Shannon Entropy

The Population Controller class also deals with the evaluation of the source
convergence by computing the main indicator of this quantity: the Shannon
Entropy (S.E.). From the information theory, the entropy is considered as ”a
measure of the minimum number of bits for representing a probability density
on a computer, or a measure for predicting the outcomes of an experiment”
[1]. Another way to see it, is considering it as a measure of how likely the
messages emitted from a source are. The lower the entropy is, the more
probable an emission becomes. Given an experiment of m possible outcomes
with probability pi for each outcome, the corresponding Shannon Entropy is

79

given by [1]:

H = −C
m∑
i=1

pilog2pi (4.2)

with C an arbitrary constant. This formula might be modified to be useful in
the evaluation of the neutron source convergence: C would be replaced by 1
and pi with the ratio between the normalized population in the i-th detector
and the total normalized population (obtained by summing the contributes
from all the detectors):

H(n)
s = −

m∑
i=1

qilog2qi (4.3)

One way of using the S.E. is to examine its behaviour from one cycle to next;
if the source has converged, then it is expected that S.E. fluctuates about
an average value [1]: the power iteration method has achieved its goal and
statistics may begin to be computed. The next chapter will present a more
detailed description of the S.E. function and its behaviour.

Statistics Executor

After some passages, the initial input from the Initial Source Setter has
become the outputs of the Population Controller, consisting in two different
random variable arrays (the eigenvalue and the S.E., both of them with as
many elements as the number of total cycles performed) and the new source
ready for the next iteration. For the S.E., the expectation values may be
computed just from the first generation, while the other, the eigenvalue,
has to wait for the former to converge. Thus, the Statistics Executor needs
as inputs, in addition to the random variable array, the number of active
and inactive cycles, because only a part of the array that collects a specific
random variable must be used to compute the expectation values. If the
random variable is the S.E. the inactive cycles do not exist, all the cycles
are active. If the random variable is the eigenvalue, a fraction of the total
number of cycles must be skipped. The number of the inactive cycles is
updated at every cycle until the error of the S.E.’s sample average is above
a certain tolerance (an input of the client algorithm). When this error goes
below this given value, the number of active cycles begins to be incremented

80

at each cycle and the error on the eigenvalue’s sample average is computed.
If this error goes below its own tolerance (another client algorithm input) the
iterations do not stop as long as a minimum number of active cycles is not
reached. After a maximum number of active cycles, iterations stop regardless
of the value reached by the error.
The attributes of the Statistics Executor are:

� The sample average.

� The second order moment of the sample.

� The variance of the sample.

� The relative standard deviation of the sample average.

When the sample has only one element, the variance is, by construction, null,
but this fact means, obviously, neither that the event is sure, nor that the
condition on the tolerance is respected. The error is updated to the value
of the relative standard deviation only if the variance is greater than zero
and this possible bias is prevented. Moreover, in order to avoid possible,
precocious counting of active cycles, due to momentary oscillations below
the tolerance from the error on the sample mean of the S.E., a minimum
number of inactive cycles is established (e.g. 10).

Results Visualizer

After every active cycle, the attributes of the Statistics Executor are stored
in specific arrays that constitute the inputs for the Results Visualizer that
creates with the charts of:

� The random variable (as a function of the total number of cycles).

� The sample average evolution.

� The evolution of the second order moment of the sample.

� The evolution of the variance of the sample.

� The evolution of the relative standard deviation of the sample mean.

81

� The evolution of the error bar to be applied to the sample average
graph.

All the quantities of the previous charts, random variable excluded, are con-
sidered, naturally, as functions of the active cycles.

4.2 Issues of the codes

As previous sections have shown, the amount of data to be treated and oper-
ations to be run is remarkable: this fact affects the amount of the computa-
tional time, but also the domain has a certain influence due to, for instance,
the dimension of the slab (trivially the more thicker the slab is, the longer
the single random walk will be) or its heterogeneity (if there is a modera-
tor layer, the overall number of scattering events will increase with respect
to the absorptions and leakages) or even the type of material (e.g. if two
homogeneous slabs have the same thickness, but different cross sections, so
different number of absorption events with respect to scattering ones). As
previously said, also the type of client algorithm has influence on the dura-
tion. Random walks for γ0-algorithm last less than κ0-algorithm ones, but
on the other hand the normalization for the latter is simpler.
In order to contrast the problem of time needed by the system to operate ,
the usage of parallel processing is explored.

4.2.1 Code parallelization

Parallel processing refers to ”being able to process different data and/or
instructions on more than a CPU”[1], a situation achievable in two environ-
ments: several computers connected via a network, and a parallel computer
that is comprised of several CPUs. Computers are characterized by the type
of architecture, classified into four groups considering the number of concur-
rent instructions and data stream [1]:

� SISD (Single Instruction Single Data): a serial computer that does not
have any parallelism in either instruction or data stream.

82

� SIMD (Single Instruction Multiple Data): a parallel computer that
processes multiple data streams through a single instruction.

� MISD (Multiple Instruction Single Data): not been considered.

� MIMD (Multiple Instruction Multiple Data): a computer environment
allowing multiple instruction on multiple system.

Thank to its flexibility, MIMD is the base for the majority of parallel com-
puters nowadays. They could furtherly be divided into:

� Shared-memory MIMD: processors share the same memory or a group
of memory modules.

� Distributed-memory MIMD: each processor has a local memory and
information is exchanged over a network, i.e., message passing.

The performance of a parallel algorithm is measurable by the following fac-
tors:

1. Speed-up, defined by the ratio of the ’wall-clock’ time of the serial pro-
cessing and the ’wall-clock’ time of the parallel one.

2. Efficiency, i.e. the ratio between the speed-up and the number of pro-
cessors used (P), expressed in percentage.

Figure 4.8: Speed-up as a function of the number of processors used (theo-
retical). [1].

83

Figure 4.9: Efficiency as a function of the number of processors used (theo-
retical) [1].

These factors might be compared to the theoretical speed-up predicted by
the Amdahl’s law [1]:

St =
1

(1− fp) + fp
1
P

(4.4)

with fp is the fraction of the code that is parallelized. It represents a the-
oretical upper limit (depicted in Figs.4.8-4.9) that might be compared with
the performance of real cases. Parallel performance is influenced by some
factors [1]: ”

� Load-balancing : the number of operations on different processors has
to be balanced.

� Granularity : the number of operations performed per number of com-
munications (distributed memory) or synchronizations (shared mem-
ory) is called the grain size (or granularity). The parallel performance
deteriorates if the algorithm allocates a low amount of computation
to each processor relative to the processor’s capacity, while processors
require significant number of communications.

� Message passing : on distributed memory MIMD or SIMD computers
and in distributed computing environments, information is exchanged
among processors over a network; this is called message passing. The

84

number of messages and their size and relation to the network affects
the parallel performance.

� Memory contention: on shared memory MIMD computers, if differ-
ent processors access the same memory location, a memory contention
would occur.

” In this thesis the parallelization exploits the library multiprocessing, in
particular the function pool. The function to be parallelized, if it has other
inputs, must be modified by means of the tool partial from functools library:
it fixes some inputs as constants, while the input which can be divided among
the processors (in this case the source coordinates) remains as the only ac-
tual variable parameter. Then the function pool more or less equal fractions
of the input among the desired number of processors. The outputs do not
appear in the same way as they did in the non-parallel version. Each output
is a list of the single outputs performed by each thread. This list must be
recomposed before restarting the normal computation.
The parallel processing has been tested on different slabs for both the algo-
rithms to decide whether parallelization of random walks function is a good
choice or not: 10 cycles have been performed with 10000 neutrons per cy-
cle for two different slab: an homogeneous one (Table.4.1) with a thickness
of 3.5912040 cm, and an heterogeneous one (Tables:4.2-4.3) with a scheme
[’Moderator’, ’Fuel’, ’Moderator’] and respective thicknesses of [5.630757,
9.726784, 5.630757] cm. They are both critical.

85

Figure 4.10: Processors performances with homogeneous critical slab for κ0-
algorithm.

Figure 4.11: Speed-up and Efficiency of parallel processing with homogeneous
critical slab for κ0-algorithm.

86

Figure 4.12: Processors performances with homogeneous critical slab for γ0-
algorithm.

Figure 4.13: Speed-up and Efficiency of parallel processing with homogeneous
critical slab for γ0-algorithm.

87

Figure 4.14: Processors performances with heterogeneous critical slab for
κ0-algorithm.

Figure 4.15: Speed-up and Efficiency of parallel processing with heteroge-
neous critical slab for κ0-algorithm.

88

Figure 4.16: Processors performances with heterogeneous critical slab for
γ0-algorithm.

Figure 4.17: Speed-up and Efficiency of parallel processing with heteroge-
neous critical slab for γ0-algorithm.

89

Figs:4.10-4.12 compare the performances for computing respectively κ0

and γ0 in the aforementioned homogeneous slab in terms of average time
needed to execute a cycle for serial processing (green bar) and with variable
number of threads (blue bars). Figs:4.11-4.13 depict the trends of speed-up
and efficiency associated to each type of processing. Figs:4.14-4.15-4.16-4.17
have the same purpose, but for the heterogeneous slab. The results of this
series of tests clearly demonstrate that this type of parallelizing processes
in Python is not always a good solution to reduce the computational time:
function calls in Python have significant overhead. Hence, multiprocessing is
a trade-off and one cannot know a-priori whether parallelizing is something
worth trying to use; because maybe copying the input data into each of the
four logical processors, doing the operation in each threads and then copying
the output data back is more time consuming than choosing a serial proce-
dure. It depends on the complexity of the processing: sometimes it works
quite well, as in heterogeneous computation of κ0-eigenvalue2, sometimes it
does not.

4.2.2 Seed setting

During the development of the code, checking the results after every little
modification is important. The quality of the latter may suggest if the way
of proceeding is good or ‘going back’ is better. The nature of the Monte
Carlo simulations might deceive the user: the new result comes from the
modifications the user made, or it is just because of the stochastic process?
A deterministic problem, since is not dealing with stochastic events, denotes
easier check-ups. The solution is that the simulation must be run with the
same sequence of random numbers, anytime. The reproducibility of the re-
sults has to be guaranteed. It can be done by fixing the seed (Chapter
3). Python’s library Numpy provides a classical instrument to state the
seed the function np.random.seed(h), with h a natural number. In this
thesis the algorithm involves nevertheless many imported packages or other
scripts of functions or classes, they could reset the global random seed lead-
ing to undesirable output changes and the results would not be reproducible
anymore. Numpy still offers another function to remedy these shortcom-
ings: np.random.defaultrng(h) that must be include among other inputs

2In this case the ’heaviness’ of the overhead is overcome by the time saving of the
multi-processing

90

for classes or functions involving the use of random numbers. The topic of
the seed fixing is also crucial for the parallelization: the seed is obviously
passed to random walk function for its own sampling. With a parallelized
process with P threads and the seed passed as a constant, every processor
would use it: so, instead of N independent random walks, they would be
N/P . So, a possible gain in computation time would pay the price for a
lower precision. This problem is avoided by passing N different seeds as a
new component of the source matrix, and every update of the source must
include an update of the seed.

91

Chapter 5

Results

After presenting the codes and the datasets, the time for examining the re-
sults has come. The way of achieving the eigenvalues is not straightforward:
it is necessary to understand how neutrons behave in the slab reactor in or-
der to correctly set the parameters denoting the convergence of the power
method. Only after this phase, the code verification may take place. With
this perspective, section 5.1 is organized in such a way as to give the reader
an overview of the neutrons source evolution in simplified slabs and of the
diagnostics instruments for studying its convergence (Section 5.1.1). The
successive step is to decide which is the right source to optimize the eigen-
value computation (Section 5.1.2) starting from what has been learnt in the
previous section. Sections 5.1.3 and 5.1.4 will provide important evaluations
about the relationship between eigenvalues and, respectively, the population
per cycle and the slab structure. The final part, Section 5.2, will be dedi-
cated to the actual Monte Carlo method validation, i.e. it will be seen if there
is consistency between results and statistical theory and if these results are
coherent with the ones obtained from literature or through other methods.

5.1 The behavior of neutrons in the domain

First of all, a fact must be emphasized: the set of eigenvalues (κ0 or γ0) at
each generation is a time series, i.e. a sequence of successive points in time

92

spaced at uniform time intervals. If one wants to do a statistical analysis
(and so describe this time series by its mean, variance, etc.) this series has
to be stationary, i.e. statistical property do not change with cycles. Without
a stationary series, to estimate κ0 or γ0 is not achievable [1]. As Chapter 4
has shown, the most widely used and simplest numerical method allowing the
neutron population to converge to the fundamental eigenmode is the power
iteration. Two key issues are known to affect the neutron population during
power iteration: fission source convergence and correlations [15]. Concerning
the former, ”a slow exploration of the viable phase space by the population
implies a poor source convergence.” In particular, it has been shown that
κ0 might converge faster than the associated fundamental eigenmode, since
the former is an integral property of the system and the latter is a local
property [15]. As previously mentioned in Chapter 4, the Shannon Entropy
is an important tool to track the source distribution, but its diagnostics may
have some critical aspects.

5.1.1 Main issues of source convergence

The entropy function provides a measure of the phase space exploration as a
function of the number of generations: when the neutron distribution attains
its stationary shape, the entropy converges. So, by a scalar value the required
information on the spatial repartition is condensed. Moreover, as apparent
from Eq.:4.3, the entropy of the source distribution at the g-th generation is
bounded, namely [15]:

0 ≤ S(g) ≤ log2B (5.1)

where B is the number of cells of the spatial mesh, i.e. the detectors. This
fact ensures that the highest value of S.E. is reached in case of perfect equipar-
tition [15]. The issue of the S.E. use is the impact of correlations induced
by fission events: obviously, a neutron can only be generated in the presence
of a parent particle, so a ’generation-to-generation’ correlation arises, with
neutrons clustering close to each other after a few generations. There is an
asymmetry between correlated fission ’births’ and uncorrelated ’deaths’ by
capture and leakage. This is problem is expected to affect the convergence of
Monte Carlo simulation results and makes Central Limit Theorem applica-

93

bility objectionable. The impact of this issue is inversely proportional to the
number of neutrons per generation [15]. Hence, the entropy function might
in turn be ineffective at detecting these potential deviations of the neutron
population with respect to the expected equilibrium because of compensation
of terms due to the ’integral’ nature of the Shannon Entropy, which may lead
to a false converge for high dominance ratio (See chapter 4) or loosely cou-
pled problems in which the source distribution does not change much, with
the S.E. remaining constant for the same not converged source distribution
[1]. This problem can be overcome with the parallel use, if it is possible, of
the S.E. and the Centre Of Mass (C.O.M.) techniques. Obviously the latter
is meaningful only for symmetric, homogeneous domains, because it consists
in computing the vector position ~ri of each sub-region (i.e. detector) relative
to the geometric centre of the model. Its formulation is given by [1]:

~R(g) =
N∑
i=1

q
(g)
i ~ri (5.2)

where g refers to the cycle number and qi to the normalized source of the
i-th detector. If there is source convergence, C.O.M. coordinate will (more
or less) mildly oscillate around the zero.
In order to test it, it is possible to analyse a simple, homogeneous slab with
data taken by Table4.4 and varying population per cycle, thickness of the
single layer and number of detectors using both κ0 and γ0 algorithms. The
0-th generation neutrons start their random walks at the centre of the slab.
100 cycles are performed.
The first parameter to be modulated is the dimension of the slab (L).

94

Figure 5.1: Shannon entropy and Centre Of Mass coordinate evolutions in a
slab with variable length: κ0-eigenvalue.

95

Figure 5.2: Shannon entropy and Centre Of Mass coordinate evolutions in a
slab with variable length: γ0-eigenvalue.

Figs.5.1-5.2 show the evolution of S.E. and C.O.M. coordinate for each
eigenvalue. The number of neutrons per cycle (N) is fixed at 10000 and the
number of detectors (B) at 100. When the neutron density is high (i.e., L is
small for a given N), the fission sites converge to an equilibrium configuration
where neutrons are homogeneously spread over the whole slab, with mild
fluctuations mostly due to scattering. As the thickness increases, spatial
fluctuations due to the competing mechanisms of fission, absorption and
scattering become more apparent, in particular if one observes for C.O.M.
coordinate, while these fluctuations are almost imperceptible for the S.E.:
the asymptotic value of S.E., being N and B constant, is quite similar for
all the slabs and close to the ideal value and upper bound of relation 5.1,
i.e. log2(100) (but the greater is the slab, the more empty cells there will
be). For even larger L, the neutron population displays patchiness, with
neutrons randomly moving around the slab grouped into a large cluster. The

96

effects of spatial correlations becomes stronger, and the evolution of C.O.M.
coordinate becomes increasingly erratic [15]. S.E. evolution, on the other
hand, shows that the needed number of generations to reach an asymptotic
value is different for each slab. This fact has physical meaning: if all the
initial neutrons start their random walks at the centre, the larger is L, the
more generations reaching all the detectors will take 1. This number of cycle
is smaller, for equal slab dimension, in κ0 source evolution than in γ0 one. The
reason is simple: each neutron covers a smaller distance if scattering sites
must be stored too. C.O.M. coordinate, on the contrary, presents slighter
oscillations around the zero for γ0’s source evolution: because, again, the
average distance covered by a neutron generation is smaller for γ0.

1The number m of generations taken by the neutron population to achieve spatial
convergence (i.e., to explore the whole reactor) starting from a point source can be roughly
estimated by the ratio between the slab length and mean square displacement of a particle
per generation [15]

97

Figure 5.3: Shannon entropy and Centre Of Mass coordinate evolutions in a
slab with variable population per cycle: κ0-eigenvalue.

98

Figure 5.4: Shannon entropy and Centre Of Mass coordinate evolutions in a
slab with variable population per cycle: γ0-eigenvalue.

If L and B are kept constant and N is modulated as shown in Figs.5.3-5.4,
things will change. Now L remains equal to 30 cm and B to 100. When the
parameter to be changed was the slab dimension, spatial correlation effects
were more visible in C.O.M. coordinate evolution (except for the number of
cycle needed to reach the asymptote for S.E.). Now fluctuations are evident in
both of the graphs of the single figure. First of all, it is clear that S.E. reaches
its asymptotic value after the same number of cycles for every population
(indeed this number of cycle is not a function of the number of neutrons in
the reactor). The presence of a certain amount of empty cells with a low
population per cycle is also clearer in this case: the less neutrons a cycle has,
less widely distributed their sources will be, with a consequent decrease of
the S.E.. So, as N decreases, spatial fluctuations become more apparent, and
for even smaller populations neutron clustering eventually sets in [15]. Also
in this case, γ0’s C.O.M. coordinate has slighter oscillations with respect to

99

corresponding quantity of κ0.

Figure 5.5: Shannon entropy and Centre Of Mass coordinate evolutions in a
slab with variable number of detectors: κ0-eigenvalue.

100

Figure 5.6: Shannon entropy and Centre Of Mass coordinate evolutions in a
slab with variable number of detectors: γ0-eigenvalue.

The last parameter to be modulated is B. It is done by keeping N and
L constant, respectively equal to 10 cm and 10000 neutrons per cycle. As
depicted in Figs.5.5-5.6, the C.O.M. coordinate evolution is useless in this

case, because ~R(g) is, by construction, independent on the number of spatial
meshes [15]. Hence, this time, more information might be collected from S.E.
evolution chart. It presents, at fixed N, a little distance between asymptotic
value and ideal value of S.E. that increases with B, because when the number
of mesh B is larger, the number of particles N required to mitigate the effects
of correlations in each detector must be also larger [15]. Therefore, a too
high number of detectors with respect to the neutron population per cycle is
quite detrimental in convergence of S.E., but, on the other hand, if there are
a few detectors, when normalization processes sample the new neutrons’ po-
sitions (as Chapter 4 has shown), the new coordinate may have been varied
dramatically, causing unexpected leakages for instance. A good choice would

101

be a detector dimension that is a fraction of the mean free path in such a
way that the new position after normalization is not too much different from
the ’original’ one.
These diagnostic tests have demonstrated that many factors play a role in
source convergence. A good ‘rule of thumb’ may be derived from the dif-
fusion theory approximation: some previous investigations have found that
phenomena of spatial clustering are quenched when L2 << M2N where M2

is the migration area, the sum of thermal and fast neutron diffusion areas
[15]. Thanks to the data of Table:4.4, it is possible to evaluate this inequal-
ity for every single treated case. Being the fast diffusion area L2

1 equal to
D1/Σa1 and the thermal diffusion area L2

2 equal to D2/Σa2, it results that L2
1

is 652.17 cm2 and L2
2 is 2.0 cm2. Hence, their sum is 654.17 cm2.

For instance, when the slab dimension was 5 cm with fixed N = 10000 neu-
trons per cycle, the inequality was 25cm2 << 6.5 × 106cm2, while with a
thickness of 100 cm, it was 104cm2 << 6.5 × 106cm2. When the fixed pa-
rameter was the slab dimension (30 cm) and variable population per cycle
(respectively 5000 and 30000) the relations were: 900cm2 << 3.3 × 106cm2

and 900cm2 << 1.9× 107cm2.
The inequalities above demonstrate that spatial clustering, although it is
present, is more or less always negligible in the case of the plotted examples,
but the issue of spatial correlations cannot be neglected.

5.1.2 The choice of the best source

In the Chapter 4 dealing with high computational time was seen from the
perspective of parallel processing. Another fundamental way of reducing it is
to properly configure the source at the 0-th generation. The situations anal-
ysed in Section 5.1.1, with their initial source at the centre of the slab, wanted
to stress the fact that two eigenvalues reach the convergence with different
’speeds’, but those source choices were not accurate at all. The graphs this
section is going to present will show how the parameters that define the initial
source (from Chapter 4) affect the evolution of the S.E. and of the eigenvalue.
The slab to be examined have materials from Tables:4.2-4.3 with a [Moderator-
Fuel-Moderator] scheme of layers and each of them has a thickness of 2 cm.

102

Fission-source-like distribution

Figure 5.7: κ0-eigenvalue and Shannon entropy evolutions with a ’Fission-
source-like’ distribution.

103

Figure 5.8: γ0-eigenvalue and Shannon entropy evolutions with a ’Fission-
source-like’ distribution.

As section 4.1.3 have illustrated, the ‘Fission-source-like’ distribution sorts
the neutrons with a random, uniform distribution into the detectors of fuel
layers with energy groups that follow the fission spectrum. It is a good choice
for the computation of κ0, because it follows the recommendation to cover
all fissionable regions [16]. If the eigenvalue to be computed is γ0 instead,
the region hosting neutron sources are the moderator layers too. Thus, this
distribution becomes less useful for this purpose, because the propagation in
the other layers take some cycles. Figs.5.7-5.8 show clearly this difference
between the two eigenvalues. In particular, γ0 at the beginning presents a
kind of ’overestimation’ due to the large number of neutrons in fuel region
with more probability of causing fissions. After the propagation through
other regions, the γ0 sees its value drop and then grow again to the ultimate
stationarity values. The S.E. trend seems to prove that this distribution is
not very suitable for γ0 computation.

104

Uniform distribution

Figure 5.9: κ0-eigenvalue and Shannon entropy evolutions with a ’Uniform’
distribution and fast neutrons

105

Figure 5.10: κ0-eigenvalue and Shannon entropy evolutions with a ’Uniform’
distribution and thermal neutrons

With ‘Uniform’ distribution, the initial neutrons are equally spaced through-
out the slab, regardless of the detectors or the type of layers. Since this
thesis deals only with two energy groups, every neutron of this distribution
will be from the first level (fast group) or from the second level (thermal
group). Figs.5.9-5.10 namely depict these two different energy distributions
for κ0-eigenvalue case. Since the faster neutrons move, the less probable in-
teractions will be, neutrons starting from ‘thermal’ energy group (Fig.5.9)
undergo more interactions and, thus, more fissions before reaching the ‘real’
range of values. This source, in some way, overestimates the criticality, while
the source in which every neutron is fast underestimates it at the beginning
(leakages are more probable), but the correct range of eigenvalue is reached
immediately afterwards. Hence, the ‘Fission-source-like’ distribution is gen-
erally better for the κ0-eigenvalue calculation, even if the difference in speed
of convergence is not so huge, since the overestimation/underestimation dies

106

out in a few cycles. S.E. has no great peculiarity to be stressed (except for
a very mild, initial underestimation and overestimation respectively in the
’fast’ situation and in the thermal one).

Figure 5.11: γ0-eigenvalue and Shannon entropy evolutions with a ’Uniform’
distribution and fast neutrons

107

Figure 5.12: γ0-eigenvalue and Shannon entropy evolutions with a ’Uniform’
distribution and thermal neutrons

Figs.5.11-5.12 show the same situation, but in the case of γ0-eigenvalue.
At the beginning of the cycles the overestimation/underestimation of the
eigenvalue, that was so evident for κ0 case, is still present, but is hidden
by the fact that the majority of interactions are scattering events; so if the
initial neutrons are all thermal, they will likely undergo more fission events
(more likely in this energy level) with respect to the case with all fast starting
neutrons. This fact makes γ0 start to grow from higher value for thermal neu-
tron source with respect to fast neutron source, but always below the range
of stationarity oscillations. On the other hand, the S.E. already oscillates in
the stationary range at first cycles for the ’initially fast’ situation while the
other one is slightly higher: since thermal neutrons, if they do not do fission,
tend to stay thermal (up-scattering, at least, very unlikely) and cover smaller
distances, they take time to get concentrated in central regions and also the
leakages will be less frequent. So, if ’fast source’ has a better S.E.’s initial

108

range, on the other hand has a lower, starting γ0. The two situations are
not so different, but for the code validation in the last part of the chapter,
’thermal source’ has been chosen.

Symmetry

Not only the position and the energy of initial neutrons are important, but
also which environment they interact with: taking into account only one half
of the domain is very useful, if the slab geometry allows it, to reduce the size
of the reactor, the number of detectors (it will be easier to fill them up) and
the dominance ratio [16]. Thus, this change implies a better distribution of
neutrons2, a consequent convergence improvement and so a faster computa-
tion. Figs.5.13-5.14 may help to understand by comparing them with the
corresponding ’full-slab’ situations (Figs.5.7-5.12): in particular, γ0 shows a
better convergence situation in both of the charts, also in terms of cycles
needed to the eigenvalue to reach stationarity.

2Obviously, with fixed number of neutrons per cycle

109

Figure 5.13: κ0-eigenvalue and Shannon entropy evolutions with a ’Fission-
source-like’ distribution in half-domain.

110

Figure 5.14: γ0-eigenvalue and Shannon entropy evolutions with a ’Uniform’
distribution (all thermal neutrons) in half-domain.

Before applying the symmetric geometry, the slab symmetry must be
verified. For this purpose, a new method is added to the Domain Assembler
class: the function ’Issymmetric’ whose output is a Boolean variable (True if
the slab is symmetric and False if not). It checks if the two halves are equal
from the standpoint of materials and from the standpoint of thicknesses.
The random walk function has to be modified too. Another virtual collision
must be take into account, the one at the axis of symmetry: energy remains
constant, the starting neutron position is updated to the axis of symmetry,
the cosine of the direction changes its sign and the free flight length is sampled
according to the material of the layer where the axis of symmetry lies. The
method registering the crossed boundaries must be consequently modified to
consider the axis of symmetry’s abscissa too.

111

Direction

If the central layer is very thin, for instance the scheme is [2.0-0.5-2.0] cm,
one may think to make things easier by directing all the initial neutron to-
wards the centre of the slab (cosine directions equal to 1 or −1). For both the
eigenvalues the distribution is Uniform and thermal, so the effects for ran-
dom directions are analogous to the ones of Figs.5.10-5.12(but γ0’s S.E. has
oscillations already in the ’correct’ ,Fig.:5.17, range because of convergence
made easier by the reduced dimension of the slab). If the κ0 computation
starts with inward-directed neutrons, the aforementioned, initial overestima-
tion is furtherly increased, as depicted in Figs.5.15-5.16. Then, κ0 lowers to
the usual correct range of values. S.E. seems not to be greatly affected by
this type of directions.

Figure 5.15: κ0-eigenvalue and Shannon entropy evolutions with a ’Uniform’
distribution (all thermal neutrons) and randomly-directed initial neutrons.

112

Figure 5.16: κ0-eigenvalue and Shannon entropy evolutions with a ’Uniform’
distribution (all thermal neutrons) and inward-directed initial neutrons.

This time, the overestimation is clearly visible also for γ0 (Fig.:5.18); then
it lowers to the normal range which, instead, is reached more quickly than in
the ’random-directions’ case. At first, S.E. is higher than the ’stationarity’
oscillations range because leakages are absolutely absent.

113

Figure 5.17: γ0-eigenvalue and Shannon entropy evolutions with a ’Uniform’
distribution (all thermal neutrons) and randomly-directed initial neutrons.

114

Figure 5.18: γ0-eigenvalue and Shannon entropy evolutions with a ’Uniform’
distribution (all thermal neutrons) and inward-directed initial neutrons.

These graphs show clearly the lack of utility in directing in this way
neutrons for computing κ0, but the improvement, at least for the eigenvalue
(not for the S.E.) is tangible for γ0. So this type of direction for the initial
source is not completely useless for thin fuel regions and it deserves the
investigation as much as the other types of source modification.

These experiments have shown that the only truly decisive source param-
eters are the distribution and the geometry. They also have displayed that γ0

and its S.E. are slower to converge. Energy levels and direction changes have
been useful only for illustrating the initial neutron behaviour with different
source’s features.

If one compares every S.E. evolution chart of κ0-eigenvalue with the one of
γ0-eigenvalue, once reached the ’stationarity range of oscillations’, he/she will
not only note the difference in the scale of the oscillation range (γ0-eigenvalue
case has more detectors) but also a kind of periodicity in oscillations, at least

115

in limited sections of the entire set of cycles, that S.E. of the κ0-eigenvalue
does not seem to have. After the initial transient, S.E. for γ0-eigenvalue has
a ‘saw-like’ trend (Fig.:5.11) that decreases for some cycles before going up
again. The reason for this difference between the two examined Shannon
Entropies could be that the one of κ0-eigenvalue does not visualize the peri-
odical migration of neutrons from fuel regions to moderator regions and vice
versa, in contrast to S.E. of γ0-eigenvalue, whose decreasing stretches could
represent the progressive fission neutrons build-up, and the following growth
after reaching a kind of periodical minimum could indicate the subsequent
spread all over the slab; perhaps, if the thicknesses of materials are similar
and the distance between the outer boundary and the materials’ interface is
more or less close to 1 mean free path, this sort of ’pulsed’ behaviour is more
prominent and more visible through the inspection of the S.E., because neu-
tron sources, with not too thick moderator layers, can spread more deeply in
this type of regions and lie not only close to the interfaces with fuel.

5.1.3 Population impact on the eigenvalues

Figs.5.3-5.4 have shown quite well the effects of a not sufficiently high num-
ber of neutrons per cycle on the source convergence, but that strongly erratic
behaviour also affects the eigenvalue, causing a certain degree of undersam-
pling. Actually, a kind of proportionality between the eigenvalue bias and
the population per cycle exists [16] and the two following pictures (Fig.:5.19-
Fig.:5.20) depict it (with as abscissas the inverse of the populations per cycle),
respectively for κ0-eigenvalue and for γ0-eigenvalue of an homogeneous slab
with a critical thickness of 3.591204 cm (data from Table:4.1). The active
cycles are fixed at 30.

116

Figure 5.19: Bias in κ0.

Figure 5.20: Bias in γ0.

These charts illustrate clearly the gradual increase of distance between the

117

expected value and the sample averages, but also the increase of the degree
of uncertainty for the latter values. Obviously, the growth of the population
per cycle implies a trade-off with the concomitant, increasing computational
time.

5.1.4 Impact of the layers on the eigenvalues

The previous analysis took into account κ0 and γ0 behaviours separately. It
is worth trying to visualize them together, for instance with a simultaneous
variation of the slab, starting from the previous critical slab and then pro-
gressively increase/decrease the length by 0.25 cm, as occurred in Fig.:5.21.

Figure 5.21: Parametrization of κ0 and γ0 with the slab length (Homogeneous
case).

It is clear that κ0 is more sensible to the variation of the slab length, if
the focus is set on the neighbourhood of the critical thickness: for instance,
the focus may be directed on the increment. If the thickness increases of
dx, there will be an increment of the interactions: for γ0 they consist in the

118

’first’ fission events and the scattering events, i.e. every interaction but the
leakages and the captures; for κ0 they consist in the ’first’ fission events too,
but also ’post-scattering’ fission events: so, a kind of transfer from the scat-
tering events to the fission ones takes place. Thus, the fission events caused
by the thickness increment are more numerous for κ0. If the total number of
new events is normalized to a certain, common amount for each eigenvalue,
the total number of new particles will be greater for κ0 because its average
multiplication factor is bigger (it can vary from 2 to 4 sometimes, while the
one of γ0 is made lower by the major presence of scattering events whose
contribute is unitary). Analogously, the decrease of κ0 is more prominent
than the one of γ0.
It is also interesting to observe how the two eigenvalues react to the modi-
fication of the slab length in the heterogeneous case: that is the aim of the
following figure. Initially the slab (data from Tables4.2-4.3) has the usual
scheme [’Moderator’, ’Fuel’, ’Moderator’] and thicknesses [1.0-1.0-1.0] cm.
Then, they are increased by 2 cm (the fuel region before the moderator re-
gion) and by keeping the symmetry. Fig.:5.22 may help to visualize:

Figure 5.22: Parametrization of κ0 and γ0 with the slab length (Heteroge-
neous case).

The fastest growth still characterizes κ0 (the lower line), but both the

119

eigenvalues prove to be more sensible to the fuel addition.

5.2 Validation of the codes

Verification is defined as “the process of evaluating a system or component
to determine whether the products of a given development phase satisfy the
conditions imposed at the start of the phase or as a proof of correctness
which is defined as a formal technique used to prove mathematically that
a computer program satisfies its specified requirements” [10]. In contrast
to verification, validation is “the process of evaluating a system or compo-
nent during or at the end of the development process to determine whether
it satisfies specified requirements” [10]. Thus code verification checks that
the implemented code precisely reflects the intended calculations and that
these calculations have been executed correctly. Code validation compares
the accuracy of these calculated results usually with experimental data or
with other computer codes [10].
The final algorithms turn out to be benchmarks, which are always precious:
their continuous development or improvement is important, although they
are not used in everyday processes for the dramatic computational cost. Since
they simulate how a physical model really evolves, their outputs may be con-
sidered as ’the truth’ and be compared either with simple diffusion problem
outputs or with more complex PN approximation ones.

Actually, Figs.5.19-5.20-5.21 have already proven that the results from
this code are good because the criticality of their configurations come from
the works of others ([4]-[10]). Something is still missing: for instance, is the
Central Limit Theorem respected? And the decrease of uncertainty of the
sample mean follows its typical behaviour? These questions almost overpass
the boarder between validation and verification, because they are equivalent
to asking whether the code solves problems correctly rather than asking if the
code solves the correct problem. This last part is a kind of fusion of this two
concepts and involves data from both [4] and [10]. From the former the check
of the Central Limit Theorem is implemented by performing 100 trials with 2,
10 and 100 experiments per trial (obviously for both the eigenvalues in critical
situation); from the latter a single trial is performed for each eigenvalue, but
with different, critical thicknesses: κ0 is calculated for a slab with the usual
scheme [’Moderator’, ’Fuel’, ’Moderator’] and lengths [1.126152, 13.393604,

120

1.126152] cm, and γ0 with lengths [5.630757, 9.726784, 5.630757] cm. In the
former situation the moderator is 1 mean free path long, while in the latter
is 5 mean free paths long.

Central Limit Theorem (CLT)

Being the number of operations huge, a parallel processing is needed, but in
this case the threads do not share the random walks, but entire trials, whose
mutual independency is guaranteed by the input, i.e. the seeds: there are as
many seeds as trials and each thread pick up a fraction of them. Other
inputs are kept constant with the partial function applied to the Monte
Carlo simulations executor. The number of particles per cycles are 10000
and detectors 100.

Figure 5.23: κ0 CLT test → Trials: 100; Histories: 2.

121

Figure 5.24: γ0 CLT test → Trials: 100; Histories: 2.

The low number of experiments per trial (i.e. the active cycles) makes the
variance of the distribution particularly high, with a significant shift of the
maximum away from the true mean. The shape itself is completely different
from the normal one, both in Fig.:5.23 and in Fig.:5.24.

122

Figure 5.25: κ0 CLT test → Trials: 100; Histories: 10.

123

Figure 5.26: γ0 CLT test → Trials: 100; Histories: 10.

The increase of the number of experiments per trial is beneficial and
apparent in Figs.:5.25-5.26: the maximum of the distribution is closer to the
true mean for both the eigenvalues and the variance is reduced.

124

Figure 5.27: κ0 CLT test → Trials: 100; Histories: 100.

125

Figure 5.28: γ0 CLT test → Trials: 100; Histories: 100.

With such a number of active cycles, the precision is furtherly improved,
and the two distributions of Fig.:5.27-5.28 are more similar to the Gaussian
curves.

κ0 1− σ 2− σ 3− σ

2 histories 0.42 0.65 0.78

10 histories 0.59 0.87 0.98

100 histories 0.66 0.92 0.99

Table 5.1: Confidence levels of κ0 for experiments with 100 trials

126

γ0 1− σ 2− σ 3− σ

2 histories 0.36 0.63 0.75

10 histories 0.61 0.92 0.97

100 histories 0.68 0.95 0.98

Table 5.2: Confidence levels of γ0 for experiments with 100 trials

The tables above (4.7-4.8) sum up the approaching of the confidence levels
of the previous distributions to the typical values of a normal one (Chapter
4). Running many independent trials is useful in eigenvalue convergence
study [16].

Single trial

By drawing lessons about the source choice from the previous sections, the
Monte Carlo method is now tested on single trials. κ0 computations have a
population per cycle of 12000, a tolerance for the error on the S.E. sample
mean of 0.0005 and 200 active cycles as maximum. There are 25 detectors
(obviously only in the central layer). The charts of κ0’s statistics come first.

127

Figure 5.29: κ0-eigenvalue: Sample

Figure 5.30: κ0-eigenvalue: Evolution of Sample Average

128

Figure 5.31: κ0-eigenvalue: Evolution of Second Order Moment of Sample

Figure 5.32: κ0-eigenvalue: Evolution of Variance of the Sample

129

Figure 5.33: κ0-eigenvalue: Evolution of Relative Standard Deviation of the
Sample Average

Now it is the turn of κ0 S.E.’s statistics graphs.

Figure 5.34: κ0-eigenvalue’s S.E.: Sample

130

Figure 5.35: κ0-eigenvalue’s S.E.: Evolution of Sample Average

Figure 5.36: κ0-eigenvalue’s S.E.: Evolution of Second Order Moment of
Sample

131

Figure 5.37: κ0-eigenvalue’s S.E.: Evolution of Variance of the Sample

Figure 5.38: κ0-eigenvalue’s S.E.: Evolution of Relative Standard Deviation
of the Sample Average

The final result is κ0 = 1.00009 ± 0.00087. The two samples (Figs.5.29-
5.34) are initially far from their respective oscillation ranges (perhaps the

132

length of the moderator is such that leakages are not hard to occur), but
they soon reach them. Figs.5.30-5.31 (Sample Average and Second Order
Moment) show almost identical trends due to the fact that the second power
of values that are close to 1 are close to 1 themselves. On the contrary, the
corresponding charts of S.E. (Figs.5.35-5.36), although they are similar be-
tween each other, have different scales.
The evolution of variance (Fig.:5.32) stops having an increasing trend after
about 100 active cycles, i.e. when the extrema of the random variable have
already been explored. On the other hand, Fig.:5.37 shows a decreasing be-
haviour for S.E.’s variance evolution: since the maximum value of random
variable is reached at the first generation, all the other values are smaller.
The evolutions of relative standard deviations in (Figs.5.33-5.38) are charac-
terized by strong initial oscillations, particularly the one of κ0. The trend of
both the graphs, however, is quite ‘loyal’ to the inverse of the square root of
the active cycles. As a consequence, the error bar widths decrease cycle after
cycle (Fig.:5.30).
γ0 computations have a population per cycle of 10000, a tolerance for the
error on the S.E. sample mean of 0.00035 and 200 active cycles as maximum.
There are 25 detectors in each layer (50 globally because there are only two
layers thanks to symmetry of the slab). The charts of γ0’s statistics come
first.

Figure 5.39: γ0-eigenvalue: Sample

133

Figure 5.40: γ0-eigenvalue: Evolution of Sample Average

Figure 5.41: γ0-eigenvalue: Evolution of Second Order Moment of Sample

134

Figure 5.42: γ0-eigenvalue: Evolution of Variance of the Sample

Figure 5.43: γ0-eigenvalue: Evolution of Relative Standard Deviation of the
Sample Average

Now it is the turn of γ0 S.E.’s statistics graphs.

135

Figure 5.44: γ0-eigenvalue’s S.E.: Sample

Figure 5.45: γ0-eigenvalue’s S.E.: Evolution of Sample Average

136

Figure 5.46: γ0-eigenvalue’s S.E.: Evolution of Second Order Moment of
Sample

Figure 5.47: γ0-eigenvalue’s S.E.: Evolution of Variance of the Sample

137

Figure 5.48: γ0-eigenvalue’s S.E.: Evolution of Relative Standard Deviation
of the Sample Average

The final result is γ0 = 0.99948 ± 0.000094. The charts dedicated to
quantities related to γ0 (Figs.:5.39-5.40-5.41-5.42-5.43) denote similar trends
to the ones of κ0: skipping the inactive cycles eliminates the transient before
the stationarity oscillation range. This cannot be done for the S.E., and its
initial overestimation affects each evolution charts (Figs.:5.44-5.45-5.46-5.47-
5.48). Both γ0 and its S.E., as already explored in previous sections, have
more difficulties in converging, so the statistics graphs, in particular the ones
of the S.E., show a very different trend. At first, γ0’s S.E. error tolerance
was set to 0.0005 as for κ0 but it was not enough to reach the stationarity
range for γ0 (5.39), that starts after about the 200-th generation; once again
the seed setting has demonstrated its utility allowing to ’adjust the shot’.

It is worth noting that γ0’s Shannon Entropies plotted in Section 5.1.2 had
growing trends (Fig.:5.8) or already stable and quite close to the stationarity
oscillation range (Figs.:5.11-5.12 and others); but the one of Fig.:5.44 de-
creases until the convergence is reached. The reason stays behind the quality
of the initial source guess: it might be the one with a greater neutron concen-
tration (i.e. ’Fission-source-like’) which underestimate the real fundamental
eigenmode distribution, or the one which equally distributes initial neutrons
throughout the slab (i.e. ’Uniform’) and consequently overestimates the S.E..
When the ’Uniform’ distribution was studied in Section 5.1.2, γ0’s S.E. had

138

initial values quite close to the ’stationarity range of oscillations’. Therefore,
it was a good guess for the eigenmode distribution: but in those cases the
slab had layers with equal length (2 cm) and very thin moderator material
in terms of mean free path. So, the distribution of source between fuel and
moderator regions was quite balanced and thus, closer to ’Uniform’ as start-
ing situation rather than ’Fission-source-like’. The following figures depict
the same experiment for γ0, with same data, but a ’Fission-source-like’ source
instead of ’Uniform’ in order to compare them with Figs:5.39-5.40-5.44. An-
other difference is the augmented number of detectors per layer (100) and of
active cycles (250).

Figure 5.49: γ0-eigenvalue and its S.E.: Sample-’Fission-source-like’ initial
distribution

139

Figure 5.50: γ0-eigenvalue: Evolution of the Sample Average of 5.49

The result is γ0 = 1.0000139±0.000087. In this situation, both ’Uniform’
and ’Fission-source-like’ are away from the stationary range of oscillations,
but the slab is different from the one of Section 5.1.2: fuel layer is prominent
in length and moderator layers are of the order of 5 mean free paths: so,
neutron source are rarefied in outer regions and denser toward the materials’
interface. Hence, the choice of ’Fission-source-like’ distribution for starting
neutrons now is ’less’ wrong than it was in Fig.(5.8). In Fig.:5.49, the dis-
tance between the initial S.E. value and the stationarity one is larger than
in Fig.:5.44 and with ’different’ sign. On the contrary, the eigenvalue is in
the ’correct’ range from the beginning with respect to the one depicted in
Fig.:5.39. The number of cycles before S.E. convergence is rather similar
both in ’Fission-source-like’ case and in ’Uniform’ case (about 200 cycles)
and the precision of both results are comparable with each other, as shown
by the sample mean with its error bar Fig.:5.50.

140

Conclusions

After explaining the fundamental theory which this work is based on (Chap-
ters 1-2-3) the digital device to put it into practice by writing the codes has
been developed (Chapter 4), and finally, the outcomes of all the efforts made
(Chapter 5).

The true motivation at the base of this thesis has been the need for possess
a code able to provide a useful support to other codes for the computation
of two criticality eigenvalues, particularly γ0, whose computation via Monte
Carlo simulation had never been explored.
This thesis has also demonstrated the feasibility of a criticality problem solu-
tion via Monte Carlo simulation without using a professional code (although
there are overhead troubles in parallel processing) with quite good results by
following a set of recommendations:

1. To avoid bias in eigenvalue:

� Use 10000 or more neutrons per cycle (100000 only for full-core
situations); more efficient parallel calculations.

� Discard enough initial cycles.

� Always check convergence of both the eigenvalue and the source
distribution.

2. To help with convergence:

� Take advantage of problem symmetry, if possible.

� Choose a good source such as to cover all fissionable regions.

� Run at least 100 active cycles to compute reliable statistics.

141

� Make multiple, independent runs.

The evolution of neutron source distribution over the generations turned out
to differ according to which factor had to be computed, in particular with an
heterogeneous medium: the presence of a moderator induces a slowdown of
source convergence throughout the slab, already affected by a larger number
of detectors to be filled up. These facts made γ0 source converge worse than
the other one, although the single cycle for the computation γ0 takes less
time. This is due to the shorter duration of the single random walk, which is
strictly related to the smaller mean displacement of a particle per generation
for γ0 with respect to κ0.
The two factors react differently for the same addition of medium (in terms
of quantity and quality), with κ0 being faster to grow up or to decline than
γ0. If the choice of the source distribution is quite trivial for κ0, on the other
hand the optimum for γ0 is harder to see: it could be uniform in all the
domain in case of slabs with similar layer thicknesses and moderator layers
not so thick, or uniform only in fuel layers if the reactor has a prominent
fuel layer length and thick moderator layers which do not allow neutrons to
spread uniformly throughout the moderator itself.
Another important feature of the code developed in this work is its customiz-
able nature from the point of view of the energy groups. It has been tested
only with two energy groups, but it has a structure such as to accept every
(integer) number of energy levels: the more they are, the closer to reality the
problem will be.

142

Appendix A

In this section the scripts shared by both the algorithms are presented. If the
line starts with ’#’, it is a comment which helps to understand the purpose
of the lines below.

Dataset organizer

’#’ is also the marker that indicates the key for the dictionary in the ’.txt’
file with the cross-sections.

import numpy as np
from os import path
from path l i b import Path

Dict ionary keys
#= Abs===> Absorption c r o s s s e c t i o n
#= Fiss===> F i s s i o n c r o s s s e c t i o n
#= Chit===> Energy spectrum (PDF to s t a t e in which group
the f i s s i o n neutron w i l l be born)
#= Nubar===> Number o f born neutrons per s i n g l e f i s s i o n
#= S0===> S c a t t e r i n g matrix

fname ===> Name o f the f i l e
nE : Number o f energy groups

c l a s s Data s e t o rgan i z e r :
de f i n i t (s e l f , fname , nE) :

Organise the data=s e t as a d i c t i o n a r y (key==>value)

143

s e l f d i c = s e l f . d i c t
G = None
Open the f i l e
l i n e s = open (fname) . read () . s p l i t (’\n ’)

f o r i l , l i n e in enumerate (l i n e s) :
I f the cur r ent l i n e o f the f i l e beg ins
with ’\# ’ the key o f an item
of the d i c t i o n a r y i s determined by
the f i r s t word a f t e r that symbol
i f l i n e . s t a r t s w i t h (’# ’) :

key = (l i n e . s p l i t (’ # ’) [1]) . s t r i p ()
matrix = None

e l i f l i n e == ’ ’ :
cont inue

e l s e :
Every s p l i t t e d element o f the l i n e from the f i l e
i s t r ea t ed as a f l o a t type
and put in an array
data = np . asar ray ([f l o a t (va l) f o r va l in l i n e . s p l i t ()])
i f G i s None :

G = len (data)

i f G != nE :
r a i s e OSError (’ Number o f groups in l i n e g

i s not c o n s i s t e n t ! ’ , i l)

i f key . s t a r t s w i t h (’ S ’) :
multi=l i n e data (s c a t t e r i n g matrix)
i f matrix i s None :

matrix = np . asar ray (data)
e l s e :

matrix = np . c [matrix , data]

i f matrix . shape == (G, G) :
s e l f d i c [key] = matrix .T

144

e l i f matrix . shape == (G,) :
s e l f d i c [key] = matrix

e l s e :
s i n g l e=l i n e data (not a s c a t t e r i n g matrix)
s e l f d i c [key] = np . asar ray (data)

Total s c a t t e r i n g c r o s s s e c t i o n (f o r each energy group)
s e l f . X s s c a t t o t = np . sum(s e l f . S0 , a x i s =1)

Total c r o s s s e c t i o n (f o r each energy group)
s e l f . Xs tot = s e l f . X s s c a t t o t + s e l f . Abs

Capture c r o s s s e c t i o n (f o r each energy group)
s e l f . Xs capt = s e l f . Abs = s e l f . F i s s

Number o f energy groups
s e l f . n gr = nE

Matrix o f p r o b a b i l i t y o f s c a t t e r i n g
(s i n g l e element o f the s c a t t e r i n g matrix
div ided by the r e s p e c t i v e Total s c a t t e r i n g c r o s s s e c t i o n
of the energy group===> PDF c a l c u l a t e d along the the columns)
s e l f . mat prob scat = np . z e r o s ((nE , nE))

Matrix o f the cumulat ive d i s t r i b u t i o n
func t i on (CDF) o f the prev ious PDF
s e l f . mat cum scat = np . z e r o s ((nE , nE + 1))

Matrix o f the cumulat ive d i s t r i b u t i o n
func t i on (CDF) o f the energy spectrum
s e l f . En f i s s cum = np . z e r o s (nE + 1)

f o r j in range (nE) :
s e l f . En f i s s cum [j + 1] =

s e l f . En f i s s cum [j] + s e l f . Chit [j]
f o r k in range (nE) :

s e l f . mat prob scat [j] [k] =

145

s e l f . S0 [j] [k] / s e l f . X s s c a t t o t [j]
s e l f . mat cum scat [j] [k+1] =

s e l f . mat cum scat [j] [k]
+ s e l f . mat prob scat [j] [k]

Fission function

import numpy as np
from os import path
from path l i b import Path
import sys
sys . path . append (’ . ’)

LEGEND
double abs .T [0] ===> Column o f a matrix with the p o s i t i o n s
o f the absorbed neutrons a f t e r a f r e e f l i g h t
double abs .T [1] ===> Column o f a matrix with the energy groups
of the absorbed neutrons a f t e r a f r e e f l i g h t
s l abob j ===> Domain d e f i n i t i o n ob j e c t (with boundaries ,
mate r i a l q u a l i f i c a t i o n , d e t e c t o r d e f i i t i o n , . . .)
f l i b o b j ===> Data s e t o f f u e l mate r i a l
seed ===> seed o f the pseudo=random genera to r

de f f i s s i o n f u n c (double abs , s labobj , f l i b o b j , seed) :

F i s s i o n l o c = []
F i s s i o n n u p e r s i t e = []

f o r ct in range (double abs . shape [0]) :

po = double abs [c t] [0]
gr = i n t (double abs [c t] [1])

i f s l abob j . l o c a t i o n (po) == ’ Fuel ’ :
#Absorption occurred in the f u e l r eg i on
ran1 = seed . random ()

146

i f ran1 <= f l i b o b j . F i s s [gr] / f l i b o b j . Abs [gr] :
F i s s i o n occurred

F i s s i o n l o c = np . append (F i s s i o n l o c , po)

ran2 = seed . random ()
i f ran2 <= (f l i b o b j . Nubar [gr]=np . f l o o r (f l i b o b j . Nubar [gr])) :

How many f i s s i o n neutrons are born ?
F i s s i o n n u p e r s i t e = np . append (F i s s i o n n u p e r s i t e ,

i n t (np . f l o o r (f l i b o b j . Nubar [gr])) + 1)
e l s e :

F i s s i o n n u p e r s i t e = np . append (F i s s i o n n u p e r s i t e ,
i n t (np . f l o o r (f l i b o b j . Nubar [gr])))

F i s s mat r i x = np . c [F i s s i o n l o c , F i s s i o n n u p e r s i t e]

r e turn F i s s mat r i x

Domain assembler

import numpy as np
import sys
sys . path . append (’ . ’)
import math

LEGEND
v lay : vec to r with the mate r i a l o f each t h i c k n e s s
v t h i c : vec to r with the l eng th s o f each l a y e r
n det : number o f d e t e c t o r s in each l a y e r o f mate r i a l

c l a s s Domain assembler :
de f i n i t (s e l f , v lay , v th i c , n det , seed) :

s e l f . num lay = len (v l ay)
l t = l en (v t h i c)

i f s e l f . num lay != l t :
r a i s e OSError (’ Number o f l a y e r s not c o n s i s t e n t

147

with the a s s o c i a t e d number o f t h i c k n e s s e s ! ’)

Thickness o f the s l ab
s e l f . l ength = f l o a t (np . sum(v t h i c))

Symmetry a x i s
s e l f . xmid = s e l f . l ength / 2

Vector with the mate r i a l (FUEL or MODERATOR) o f each l a y e r
s e l f . l a y e r s = np . asar ray (v l ay)

Vector with the l ength o f each l a y e r
s e l f . t h i c k n e s s e s = np . asar ray (v t h i c)

Matrix with the coo rd ina t e s o f l aye r s ’ boundar ies on each row
s e l f . m ends = np . z e r o s ((l t , 2))

Vector with the coo rd ina t e s o f boundar ies (inne r and outer)
o f the s l ab

s e l f . v ends = np . z e r o s (l t +1)
f o r end in range (1 , l t +1):

s e l f . v ends [end] = s e l f . v ends [end=1] + v t h i c [end=1]

f o r e l in range (l t) :
f o r i in range (2) :

s e l f . m ends [e l] [i] = s e l f . v ends [i + e l]

s e l f . d e t p e r r e g i o n = n det

Lengths o f the s i n g l e , g e n e r i c de t e c t o r (dx v)
f o r each l a y e r in order to have the same
number o f d e t e c t o r s
s e l f . dx v = s e l f . t h i c k n e s s e s / s e l f . d e t p e r r e g i o n

Vector with the l eng th s o f the FUEL l a y e r s
s e l f . t h v f = []

Matrix with the coo rd ina t e s o f FUEL laye r s ’

148

boundar ies on each row
s e l f . m a t l a y f u e l = np . z e r o s (2)
r f = 0
f o r p in range (l en (s e l f . l a y e r s)) :

i f s e l f . l a y e r s [p] == ’ Fuel ’ :
r f += 1
s e l f . t h v f = np . append (s e l f . th v f , s e l f . t h i c k n e s s e s [p])
s e l f . m a t l a y f u e l =

np . append (s e l f . mat l ay fue l , s e l f . m ends [p])
s e l f . m a t l a y f u e l = s e l f . m a t l a y f u e l . reshape (r f +1, 2)

s e l f . m a t l a y f u e l = np . d e l e t e (s e l f . mat l ay fue l , 0 , 0)

Lengths o f the s i n g l e f u e l d e t e c t o r (dx vf)
f o r each l a y e r in order to have the
same number o f d e t e c t o r s
s e l f . dx vf = s e l f . t h v f / s e l f . d e t p e r r e g i o n

Number o f f u e l l a y e r s
s e l f . f u e l l a y e r s = r f

Matrix with a l l the d e t e c t o r s : the row s t a t e s the layer ,
the column the de t e c t o r
i n s i d e the s p e c i f i c l a y e r . The e lements w i l l be
the f i s s i o n neutrons born in each de t e c t o r (source)
r r = s e l f . num lay
cc = s e l f . d e t p e r r e g i o n
s e l f . de t matr s = np . z e r o s ((rr , cc))
s e l f . d e t mat r f = np . z e r o s ((rr , cc))

Same o f the above matrix but the e lements
w i l l be ” normal ized ” neutrons (in order to keep
constant the populat ion f o r the next computations)
s e l f . norm matr t = np . z e r o s ((rr , cc))

Vector with the coo rd ina t e s o f boundar ies
(inner and outer) o f the s lab ,
i n c l u d i n g the symmetry a x i s

149

s e l f . v ends m = s e l f . v ends
f o r zzz in range (1 , l en (s e l f . v ends)) :

i f (s e l f . xmid > s e l f . v ends [zzz =1])
and (s e l f . xmid <= s e l f . v ends [zzz]) :

s e l f . v ends m =
np . i n s e r t (s e l f . v ends , zzz , s e l f . xmid , a x i s =0)

Index o f symmetry a x i s in v ends m
s e l f . imid = zzz

i f s e l f . v ends m [s e l f . imid] ==
s e l f . v ends m [s e l f . imid +1] :

s e l f . v ends m =
np . d e l e t e (s e l f . v ends m , s e l f . imid +1, a x i s =0)

El iminate the par t s o f v e c t o r s / matr i ce s p r e v i o u s l y
created that are u s e l e s s f o r symmetric case
s e l f . v ends s = s e l f . v ends m

f o r u i in range (l en (s e l f . v ends m) = s e l f . imid = 1) :
s e l f . v ends s =

np . d e l e t e (s e l f . v ends s , s e l f . imid + 1 , a x i s =0)

s e l f . m ends s = np . z e r o s ((l en (s e l f . v ends s) = 1 , 2))

f o r e l in range (l en (s e l f . v ends s) = 1) :
f o r i in range (2) :

s e l f . m ends s [e l] [i] = s e l f . v ends s [i + e l]

stndrd = 0

f o r bn in range (l en (s e l f . v ends)) :
i f s e l f . v ends [bn] == s e l f . xmid :

stndrd = 1

Vector with the l ength o f each l a y e r i n c l u d i n g the
two extra=l a y e r s de f ined by the symmetry a x i s

i f stndrd == 0 :
s e l f . th i cknes se s m = np . empty (1)

150

f o r hhh in range (l en (s e l f . v ends m) = 1) :
i f (hhh == s e l f . imid) :

s e l f . th i cknes se s m =
np . append (s e l f . th icknesses m ,

s e l f . t h i c k n e s s e s [hhh = 1] /2)
s e l f . i t h i c = hhh = 1

i f (hhh == (s e l f . imid = 1)) :
s e l f . th i cknes se s m =

np . append (s e l f . th icknesses m ,
s e l f . t h i c k n e s s e s [hhh] / 2)

i f (hhh < (s e l f . imid = 1)) :
s e l f . th i cknes se s m =

np . append (s e l f . th icknesses m ,
s e l f . t h i c k n e s s e s [hhh])

i f (hhh > (s e l f . imid)) :
s e l f . th i cknes se s m =

np . append (s e l f . th icknesses m ,
s e l f . t h i c k n e s s e s [hhh = 1])

s e l f . th i cknes se s m =
np . d e l e t e (s e l f . th icknesses m , 0 , a x i s =0)

e l s e :
s e l f . th i cknes se s m = s e l f . t h i c k n e s s e s
s e l f . i t h i c = s e l f . imid = 1

s e l f . t h i c k n e s s e s s = s e l f . th i cknes se s m

f o r uj in range (i n t (l en (s e l f . th i cknes se s m) / 2)) :
s e l f . t h i c k n e s s e s s =

np . d e l e t e (s e l f . t h i c k n e s s e s s , s e l f . i t h i c + 1 , a x i s =0)

Vector with the l eng th s o f the FUEL
l a y e r s (symmetric case)
s e l f . t h v f s = []

Matrix with the coo rd ina t e s o f FUEL laye r s ’ boundar ies
on each row (symmetric case)

s e l f . m a t l a y f u e l s = np . z e r o s (2)

151

r f s = 0
f o r p in range (l en (s e l f . t h i c k n e s s e s s)) :

i f s e l f . l a y e r s [p] == ’ Fuel ’ :
r f s += 1
s e l f . t h v f s =

np . append (s e l f . t h v f s , s e l f . t h i c k n e s s e s s [p])
s e l f . m a t l a y f u e l s =

np . append (s e l f . m a t l a y f u e l s , s e l f . m ends s [p])
s e l f . m a t l a y f u e l s =

s e l f . m a t l a y f u e l s . reshape (r f s + 1 , 2)

s e l f . m a t l a y f u e l s = np . d e l e t e (s e l f . m a t l a y f u e l s , 0 , 0)

Number o f f u e l l a y e r s (symmetric case)
s e l f . f u e l l a y e r s s = r f s

Number o f l a y e r s (symmetric case)
s e l f . num lay s = len (s e l f . t h i c k n e s s e s s)

Dimension o f a f u e l d e t e c t o r (symmetric case)
s e l f . d x v f s = s e l f . t h v f s / s e l f . d e t p e r r e g i o n

Dimension o f a de t e c t o r (symmetric case)
s e l f . dx v s = s e l f . t h i c k n e s s e s s / s e l f . d e t p e r r e g i o n

Create matr i ce s with the same purpose
o f the prev ious ones but f o r symmetric case

s e l f . d e t m a t r f s =
np . z e r o s ((s e l f . num lay s , s e l f . d e t p e r r e g i o n))

s e l f . d e t m a t r s s =
np . z e r o s ((s e l f . num lay s , s e l f . d e t p e r r e g i o n))

s e l f . norm matr t s =
np . z e r o s ((s e l f . num lay s , s e l f . d e t p e r r e g i o n))

Function Locat ion : INPUT==> coo rd inate
OUTPUT==> mate r i a l
o f the l a y e r in which the coord ina te i s
de f l o c a t i o n (s e l f , y) :

152

f o r wh in range (s e l f . num lay) :
i f y >= s e l f . m ends [wh] [0] and y <=

s e l f . m ends [wh] [1] :
r e turn s e l f . l a y e r s [wh]

i f y < 0 or y > s e l f . l ength :
r e turn ’Out o f the s lab ’

Function boundarycounter : INPUT===> s t a r t po int
and end point o f a f r e e f l i g h t
OUTPUT===> boundar ies
cro s s ed during
the f r e e f l i g h t ordered from f i r s t
to l a s t encountered

de f boundarycounter (s e l f , y in , y f i n) :
boundary crossed = []

f o r cc in range (l en (s e l f . v ends)) :
i f (s e l f . v ends [cc] >

y in and s e l f . v ends [cc] <
y f i n) or (s e l f . v ends [cc] <
y in and s e l f . v ends [cc] > y f i n) :

boundary crossed =
np . append (boundary crossed , s e l f . v ends [cc])

boundary cros sed ordered =
np . z e r o s (l en (boundary crossed))

i f y in < y f i n :
boundary cros sed ordered =

boundary crossed . copy ()
e l s e :

boundary cros sed ordered [:] =
np . f l i p u d (boundary crossed [:])

r e turn boundary cros sed ordered

153

Function issymmetr ic : i t s t a t e s i f a s l ab i s symmetric or not .
I t c r e a t e s two coup l e s o f a r rays : the f i r s t one
i s a sequence o f ’1 ’ and ’0 ’ to i n d i c a t e which
mate r i a l the l a y e r s are made o f . The 2 e lements o f the couple
(l a y e r s from the 2 ha lve s) are compared to
v e r i f y i f both ones are spe cu l a r in terms o f compos it ion .
The second couple o f a r rays in s t ead o f ’1 ’ and ’0 ’ has
the l eng th s o f each l a y e r in both ha lve s to v e r i f y i f both ones
are spe cu l a r in terms o f dimension .
de f i s symmetr ic (s e l f) :

f l g 1 = 0
f l g 2 = 0

mater ia l s m = []
f o r t t t in range (l en (s e l f . v ends m)=1):

i f s e l f . l o c a t i o n (s e l f . v ends m [t t t]+1e=7) == ’ Fuel ’ :
mater ia l s m = np . append (mater ia ls m , 1)

i f s e l f . l o c a t i o n (s e l f . v ends m [t t t]+1e=7) == ’ Moderator ’ :
mater ia l s m = np . append (mater ia ls m , 0)

m1n = mater ia l s m [0 : s e l f . imid]
m2n = mater ia l s m [s e l f . imid : l en (mater ia l s m)]

m1m = s e l f . th i cknes se s m [0 : s e l f . imid]
m2m = s e l f . th i cknes se s m [s e l f . imid : l en (mater ia l s m)]
i f l en (m1n) != len (m2n) :

answer = Fal se
e l s e :

f o r yyy in range (l en (m1n)) :
i f m1n [yyy] == np . f l i p u d (m2n) [yyy] :

f l g 1 += 1

f o r vvv in range (l en (m1m)) :
i f m1m[vvv] == np . f l i p u d (m2m) [vvv] :

f l g 2 += 1

154

i f f l g 1 == len (m1n) and f l g 2 == len (m1m) :
answer = True

e l s e :
answer= False

re turn answer

Function boundary counter s : same purpose o f the
boundary counter func t i on but modi f i ed f o r symmetric ca s e s
de f boundarycounter s (s e l f , y in , y f i n) :

boundary crossed = []

f o r cc in range (l en (s e l f . v ends s)) :
i f (s e l f . v ends s [cc] > y in and s e l f . v ends s [cc] < y f i n) or

(s e l f . v ends s [cc] <
y in and s e l f . v ends s [cc] > y f i n) :

boundary crossed =
np . append (boundary crossed , s e l f . v ends s [cc])

boundary cros sed ordered =
np . z e r o s (l en (boundary crossed))

i f y in < y f i n :
boundary cros sed ordered =

boundary crossed . copy ()
e l s e :

boundary cros sed ordered [:] =
np . f l i p u d (boundary crossed [:])

r e turn boundary cros sed ordered

Initial source setter

import numpy as np
from os import path
from path l i b import Path

155

import sys
sys . path . append (’ . ’)

LEGEND
f l i b o b j ===> Data s e t o f f u e l mate r i a l
s l abob j ===> Domain d e f i n i t i o n
ob j e c t (with boundaries , mate r i a l q u a l i f i c a t i o n , d e t e c t o r d e f i n i t i o n , . . .)
Neo ===> Amount o f neutrons o f the 0=th populat ion
seed ===> seed o f the pseudo=random genera to r
I f the geometry i s Symmetric , the second
h a l f o f the s l ab can be neg l e c t ed .
I f the geometry i s Point=source=l i k e ,
neutrons p o s i t i o n s are at the geometr ic c en t r e .
I f the d i s t r i b u t i o n i s F i s s i on=source=l i k e , neutrons s t a r t the
f l i g h t from f u e l r e g i o n s with energy group given from the proper CDF.
I f the d i s t r i b u t i o n i s Uniform , neutrons are mono=e n e r g e t i c
(2nd group , i f Uniform 0 1 s t group) and s t a r t the f l i g h t
both in f u e l and moderator r e g i o n s .
I f the d i r e c t i o n i s Inward , the neutrons w i l l s t a r t
the f l i g h t towards the cen t r e o f the s l ab
(u s e f u l with th in l a y e r o f f u e l) .

c l a s s I n i t i a l s o u r c e s e t t e r :
de f i n i t (s e l f , f l i b o b j , s l abobj , Ne0 , seed , geometry ,

d i s t r i b u t i o n , d i r e c t i o n) :

i f geometry == ’ Symmetric ’ and d i s t r i b u t i o n ==
’ F i s s i on=source=l i k e ’ and d i r e c t i o n == ’ Inward ’ :

How many neutrons s t a r t from each s l o t ?

s e l f . n e u t p e r s l o t = i n t (
np . c e i l (Ne0 / (s l abob j . f u e l l a y e r s s *

s l abob j . d e t p e r f u e l r e g i o n)))

s e l f . s t a r t p o s i t i o n s = []
s e l f . s t a r t e n e r g i e s = []

P o s i t i o n s (Absc i s sa s) o f the 0=th gene ra t i on

156

i n s i d e each s l o t

f o r i i in range (s l abob j . f u e l l a y e r s s) :
f o r j j in range (s l abob j . d e t p e r f u e l r e g i o n) :

s e l f . s t a r t p o s i t i o n s =
np . append (s e l f . s t a r t p o s i t i o n s ,
seed . uniform (s l abob j . m a t l a y f u e l s [i i] [0] +
j j * s l abob j . d x v f s [i i] ,
s l abob j . m a t l a y f u e l s [i i] [0] +
(j j +1)* s l abob j . d x v f s [i i] , s e l f . n e u t p e r s l o t))

Energy groups o f the 0=th gene ra t i on i n s i d e each s l o t
f o r t t in range (l en (s e l f . s t a r t p o s i t i o n s)) :

s e l f . s t a r t e n e r g i e s =
np . append (s e l f . s t a r t e n e r g i e s ,
np . argmax (
np . where (f l i b o b j . En f i s s cum = seed . random () < 0)))

#I n i t i a l d i r e c t i o n s o f the 0=th gene ra t i on i n s i d e each s l o t
s e l f . s t a r t d i r e c t i o n s = np . ones (l en (s e l f . s t a r t e n e r g i e s))

i f geometry == ’ Symmetric ’ and d i s t r i b u t i o n ==
’ F i s s i on=source=l i k e ’ and d i r e c t i o n == ’ Stochas t i c ’ :

How many neutrons s t a r t from each s l o t ?
s e l f . n e u t p e r s l o t = i n t (

np . c e i l (
Ne0 /
(s l abob j . f u e l l a y e r s s * s l abob j . d e t p e r r e g i o n)))

s e l f . s t a r t p o s i t i o n s = []
s e l f . s t a r t e n e r g i e s = []

P o s i t i o n s (Absc i s sa s) o f the 0=th gene ra t i on i n s i d e
each s l o t
f o r i i in range (s l abob j . f u e l l a y e r s s) :

f o r j j in range (s l abob j . d e t p e r r e g i o n) :

157

s e l f . s t a r t p o s i t i o n s = np . append (
s e l f . s t a r t p o s i t i o n s ,
seed . uniform (s l abob j . m a t l a y f u e l s [i i] [0] +
j j * s l abob j . d x v f s [i i] ,
s l abob j . m a t l a y f u e l s [i i] [0] +
(j j +1)* s l abob j . d x v f s [i i] , s e l f . n e u t p e r s l o t))

Energy groups o f the 0=th gene ra t i on i n s i d e each s l o t
f o r t t in range (l en (s e l f . s t a r t p o s i t i o n s)) :

s e l f . s t a r t e n e r g i e s = np . append (
s e l f . s t a r t e n e r g i e s , np . argmax (
np . where (f l i b o b j . En f i s s cum = seed . random () < 0)))

I n i t i a l d i r e c t i o n s o f
the 0=th gene ra t i on i n s i d e each s l o t
s e l f . s t a r t d i r e c t i o n s = seed . uniform (=1 ,

1 , l en (s e l f . s t a r t e n e r g i e s))

i f geometry == ’ Symmetric ’ and d i s t r i b u t i o n ==
’ Uniform ’ and d i r e c t i o n == ’ Inward ’ :

How many neutrons s t a r t from each s l o t ?

s e l f . n e u t p e r s l o t = i n t (
np . c e i l (
Ne0 /
(s l abob j . num lay s * s l abob j . d e t p e r r e g i o n)))

s e l f . s t a r t p o s i t i o n s = []

P o s i t i o n s (Absc i s sa s) o f the 0=th
genera t i on i n s i d e each s l o t

f o r i i in range (s l abob j . num lay s) :
f o r j j in range (s l abob j . d e t p e r f u e l r e g i o n) :

s e l f . s t a r t p o s i t i o n s =

158

np . append (s e l f . s t a r t p o s i t i o n s ,
seed . uniform (s l abob j . m ends s [i i] [0] +
j j * s l abob j . dx v s [i i] ,
s l abob j . m ends s [i i] [0] +
(j j +1)* s l abob j . dx v s [i i] ,
s e l f . n e u t p e r s l o t))

Energy groups o f the 0=th gene ra t i on i n s i d e each s l o t
s e l f . s t a r t e n e r g i e s = np . ones (l en (s e l f . s t a r t p o s i t i o n s))

#I n i t i a l d i r e c t i o n s o f the 0=th gene ra t i on i n s i d e each s l o t
s e l f . s t a r t d i r e c t i o n s = np . ones (l en (s e l f . s t a r t e n e r g i e s))

i f geometry == ’ Symmetric ’ and d i s t r i b u t i o n ==
’ Uniform ’ and d i r e c t i o n == ’ Stochas t i c ’ :

How many neutrons s t a r t from each s l o t ?

s e l f . n e u t p e r s l o t = i n t (
np . c e i l (
Ne0 /

(s l abob j . num lay s * s l abob j . d e t p e r r e g i o n)))

s e l f . s t a r t p o s i t i o n s = []

P o s i t i o n s (Absc i s sa s) o f the
0=th gene ra t i on i n s i d e each s l o t

s e l f . s t a r t p o s i t i o n s = np . l i n s p a c e (0 , s l abob j . xmid , Ne0)

Energy groups o f the 0=th gene ra t i on i n s i d e each s l o t
s e l f . s t a r t e n e r g i e s = np . ones (l en (s e l f . s t a r t p o s i t i o n s))

#I n i t i a l d i r e c t i o n s o f the 0=th gene ra t i on i n s i d e each s l o t
s e l f . s t a r t d i r e c t i o n s =
seed . uniform (=1 ,
1 , l en (s e l f . s t a r t e n e r g i e s))

159

i f geometry == ’Non=symmetric ’ and d i s t r i b u t i o n ==
’ F i s s i on=source=l i k e ’ and d i r e c t i o n == ’ Inward ’ :
How many neutrons s t a r t from each s l o t ?

s e l f . n e u t p e r s l o t =
i n t (
np . c e i l (Ne0 /
(s l abob j . f u e l l a y e r s *

s l abob j . d e t p e r f u e l r e g i o n)))

s e l f . s t a r t p o s i t i o n s = []
s e l f . s t a r t e n e r g i e s = []
s e l f . s t a r t d i r e c t i o n s = []

P o s i t i o n s (Absc i s sa s) o f the
0=th gene ra t i on i n s i d e each s l o t

f o r i i in range (s l abob j . f u e l l a y e r s) :
f o r j j in range (s l abob j . d e t p e r f u e l r e g i o n) :

s e l f . s t a r t p o s i t i o n s =
np . append (s e l f . s t a r t p o s i t i o n s ,
seed . uniform (s l abob j . m a t l a y f u e l [i i] [0] +
j j * s l abob j . dx vf [i i] ,
s l abob j . m a t l a y f u e l [i i] [0] +
(j j +1)* s l abob j . dx vf [i i] , s e l f . n e u t p e r s l o t))

Energy groups o f the 0=th gene ra t i on i n s i d e each s l o t
I n i t i a l d i r e c t i o n s o f the 0=th gene ra t i on
i n s i d e each s l o t
f o r t t in range (l en (s e l f . s t a r t p o s i t i o n s)) :

s e l f . s t a r t e n e r g i e s =
np . append (s e l f . s t a r t e n e r g i e s ,
np . argmax (
np . where (
f l i b o b j . En f i s s cum = seed . random () < 0)))
i f t t <= i n t (np . c e i l (l en (s e l f . s t a r t p o s i t i o n s) / 2)) :

160

s e l f . s t a r t d i r e c t i o n s = np . append (
s e l f . s t a r t d i r e c t i o n s , 1 .)

e l s e :
s e l f . s t a r t d i r e c t i o n s = np . append (

s e l f . s t a r t d i r e c t i o n s , =1.)

i f geometry == ’Non=symmetric ’ and d i s t r i b u t i o n ==
’ F i s s i on=source=l i k e ’ and d i r e c t i o n == ’ Stochas t i c ’ :

How many neutrons s t a r t from each s l o t ?

s e l f . n e u t p e r s l o t = i n t (
np . c e i l (Ne0 /
(s l abob j . f u e l l a y e r s *

i n t (s l abob j . d e t p e r r e g i o n))))

s e l f . s t a r t p o s i t i o n s = []
s e l f . s t a r t e n e r g i e s = []

P o s i t i o n s (Absc i s sa s) o f the
0=th gene ra t i on i n s i d e each s l o t

f o r i i in range (s l abob j . f u e l l a y e r s) :
f o r j j in range (i n t (s l abob j . d e t p e r r e g i o n)) :

s e l f . s t a r t p o s i t i o n s =
np . append (
s e l f . s t a r t p o s i t i o n s ,
seed . uniform (
s l abob j . m a t l a y f u e l [i i] [0] +
j j * s l abob j . dx vf [i i] ,
s l abob j . m a t l a y f u e l [i i] [0] +
(j j +1)* s l abob j . dx vf [i i] ,
s e l f . n e u t p e r s l o t))

Energy groups o f the 0=th gene ra t i on i n s i d e each s l o t
f o r t t in range (l en (s e l f . s t a r t p o s i t i o n s)) :

s e l f . s t a r t e n e r g i e s = np . append (s e l f . s t a r t e n e r g i e s ,
np . argmax (

161

np . where (f l i b o b j . En f i s s cum = seed . random () < 0)))

#I n i t i a l d i r e c t i o n s o f the 0=th gene ra t i on i n s i d e each s l o t
s e l f . s t a r t d i r e c t i o n s =
seed . uniform (=1 ,
1 , l en (s e l f . s t a r t e n e r g i e s))

i f geometry == ’Non=symmetric ’ and d i s t r i b u t i o n ==
’ Uniform ’ and d i r e c t i o n == ’ Inward ’ :

How many neutrons s t a r t from each s l o t ?

s e l f . n e u t p e r s l o t = i n t (
np . c e i l (Ne0 /
(s l abob j . num lay *

s l abob j . d e t p e r r e g i o n)))

s e l f . s t a r t p o s i t i o n s = []
s e l f . s t a r t d i r e c t i o n s = []

P o s i t i o n s (Absc i s sa s) o f the
0=th gene ra t i on i n s i d e each s l o t
s e l f . s t a r t p o s i t i o n s = np . l i n s p a c e (0 , s l abob j . length , Ne0)

Energy groups o f the 0=th gene ra t i on i n s i d e each s l o t
s e l f . s t a r t e n e r g i e s = np . ones (l en (s e l f . s t a r t p o s i t i o n s))

I n i t i a l d i r e c t i o n s
o f the 0=th gene ra t i on i n s i d e each s l o t
f o r f g in range (l en (s e l f . s t a r t p o s i t i o n s)) :

i f f g <= i n t (np . c e i l (l en (s e l f . s t a r t p o s i t i o n s) / 2)) :
s e l f . s t a r t d i r e c t i o n s = np . append (

s e l f . s t a r t d i r e c t i o n s , 1 .)
e l s e :

s e l f . s t a r t d i r e c t i o n s = np . append (
s e l f . s t a r t d i r e c t i o n s , =1.)

i f geometry == ’Non=symmetric ’ and d i s t r i b u t i o n ==
’ Uniform 0 ’ and d i r e c t i o n == ’ Stochas t i c ’ :

162

How many neutrons s t a r t from each s l o t ?

s e l f . n e u t p e r s l o t = i n t (
np . c e i l (
Ne0 / (s l abob j . num lay *

s l abob j . d e t p e r r e g i o n)))

s e l f . s t a r t p o s i t i o n s = []
s e l f . s t a r t e n e r g i e s = []

P o s i t i o n s (Absc i s sa s) o f the
0=th gene ra t i on i n s i d e each s l o t

s e l f . s t a r t p o s i t i o n s = np . l i n s p a c e (0 , s l abob j . length , Ne0)

Energy groups o f the 0=th gene ra t i on i n s i d e each s l o t
s e l f . s t a r t e n e r g i e s = np . z e r o s (l en (s e l f . s t a r t p o s i t i o n s))

#I n i t i a l d i r e c t i o n s o f the
0=th gene ra t i on i n s i d e each s l o t
s e l f . s t a r t d i r e c t i o n s =
seed . uniform (=1 ,
1 , l en (s e l f . s t a r t e n e r g i e s))

i f geometry == ’ Point=source=l i k e ’ and d i s t r i b u t i o n ==
’ F i s s i on=source=l i k e ’ and d i r e c t i o n == ’ Stochas t i c ’ :

P o s i t i o n s (Absc i s sa s) o f the 0=th gene ra t i on
s e l f . s t a r t p o s i t i o n s =
seed . uniform (
s l abob j . xmid=1e=3,
s l abob j . xmid+1e=3, Ne0)

s e l f . s t a r t e n e r g i e s = []
Energy groups o f the 0=th gene ra t i on i n s i d e each s l o t
f o r t t in range (l en (s e l f . s t a r t p o s i t i o n s)) :

s e l f . s t a r t e n e r g i e s =

163

np . append (
s e l f . s t a r t e n e r g i e s , np . argmax (
np . where (
f l i b o b j . En f i s s cum = seed . random () < 0)))

#I n i t i a l d i r e c t i o n s o f the
0=th gene ra t i on i n s i d e each s l o t
s e l f . s t a r t d i r e c t i o n s =
seed . uniform (=1 ,
1 , l en (s e l f . s t a r t e n e r g i e s))

i f geometry == ’ Point=source=l i k e ’ and d i s t r i b u t i o n ==
’ Uniform ’ and d i r e c t i o n == ’ Stochas t i c ’ :

P o s i t i o n s (Absc i s sa s) o f the 0=th gene ra t i on
s e l f . s t a r t p o s i t i o n s =
seed . uniform (
s l abob j . xmid=1e=3,
s l abob j . xmid+1e=3, Ne0)

Energy groups o f the 0=th gene ra t i on i n s i d e each s l o t
s e l f . s t a r t e n e r g i e s = np . ones (l en (s e l f . s t a r t p o s i t i o n s))

#I n i t i a l d i r e c t i o n s o f the 0=th gene ra t i on
i n s i d e each s l o t
s e l f . s t a r t d i r e c t i o n s =
seed . uniform (=1 ,
1 , l en (s e l f . s t a r t e n e r g i e s))

i f geometry == ’ Symmetric ’ and d i s t r i b u t i o n ==
’ Uniform 0 ’ and d i r e c t i o n == ’ Stochas t i c ’ :

How many neutrons s t a r t from each s l o t ?

s e l f . n e u t p e r s l o t = i n t (
np . c e i l (Ne0 /
(s l abob j . num lay s *

s l abob j . d e t p e r r e g i o n)))

164

s e l f . s t a r t p o s i t i o n s = []

P o s i t i o n s (Absc i s sa s) o f the
0=th gene ra t i on i n s i d e each s l o t
s e l f . s t a r t p o s i t i o n s = np . l i n s p a c e (0 , s l abob j . xmid , Ne0)

Energy groups o f the
0=th gene ra t i on i n s i d e each s l o t
s e l f . s t a r t e n e r g i e s = np . z e r o s (l en (s e l f . s t a r t p o s i t i o n s))

#I n i t i a l d i r e c t i o n s o f the 0=th gene ra t i on
i n s i d e each s l o t
s e l f . s t a r t d i r e c t i o n s =
seed . uniform (=1 ,
1 , l en (s e l f . s t a r t e n e r g i e s))

i f geometry == ’Non=symmetric ’ and d i s t r i b u t i o n ==
’ Uniform ’ and d i r e c t i o n == ’ Stochas t i c ’ :

How many neutrons s t a r t from each s l o t ?

s e l f . n e u t p e r s l o t = i n t (
np . c e i l (Ne0 /
(s l abob j . num lay *

s l abob j . d e t p e r r e g i o n)))

s e l f . s t a r t p o s i t i o n s = []
s e l f . s t a r t e n e r g i e s = []

P o s i t i o n s (Absc i s sa s) o f the
0=th gene ra t i on i n s i d e each s l o t

s e l f . s t a r t p o s i t i o n s = np . l i n s p a c e (0 , s l abob j . length , Ne0)

Energy groups o f the
0=th gene ra t i on i n s i d e each s l o t

165

s e l f . s t a r t e n e r g i e s = np . ones (l en (s e l f . s t a r t p o s i t i o n s))

#I n i t i a l d i r e t i o n s o f the
0=th gene ra t i on i n s i d e each s l o t
s e l f . s t a r t d i r e c t i o n s =
seed . uniform (=1 ,
1 , l en (s e l f . s t a r t e n e r g i e s))

Statistics Executor

import numpy as np
import sys
sys . path . append (’ . ’)
import math

rv v ===> Vector whose e lements are
the random v a r i a b l e at each c y c l e
a c ===> Number o f a c t i v e c y c l e s
i c ===> Number o f i n a c t i v e c y c l e s

c l a s s S t a t i s t i c s e x e c u t o r :
de f i n i t (s e l f , rv v , a c , i c , K amp) :

Number o f t o t a l c y c l e s
t c = a c + i c

Take only e lements o f the random
v a r i a b l e from a c t i v e c y c l e s
vv = rv v [i c : t c]
Vector with the update o f the s t a t i s t i c s
f o r the subsequent p l o t v i s u a l i z a t i o n
s e l f . MC update = np . z e r o s ((5 , 1))

Update Sample average
s e l f . MC update [0] = np . sum(vv)/ (a c)

Update Second order moment
of the sample
s e l f . MC update [1] = np . sum(vv **2)/(a c)

166

Update Variance o f the sample
s e l f . MC update [2] = s e l f . MC update [1] = s e l f . MC update [0]**2

Update Re la t i v e standard dev i a t i on
of the sample mean
s e l f . MC update [3] =
math . s q r t (s e l f . MC update [2] / (a c))/ abs (s e l f . MC update [0])
Update Error bar f o r the sample mean
s e l f . MC update [4] =
s e l f . MC update [3] * abs (s e l f . MC update [0])

Results Visualizer

import numpy as np
import sys
sys . path . append (’ . ’)
import matp lo t l i b . pyplot as p l t

LEGEND
v rc ===> Vector with the va lue s o f the
random v a r i a b l e to be p l o t t ed
v sa ===> Vector with the va lue s o f the
sample average to be p l o t t ed
v 2o ===> Vector with the 2nd order moment
of the sample average to be p l o t t ed
v va ===> Vector with the va lue s o f the
var iance to be p l o t t ed
v rsd ===> Vector with the va lue s o f the
r e l a t i v e standard dev i a t i on to be p l o t t ed
v eb ===> Vector with the va lue s o f the
of the e r r o r bar to be p l o t t ed
i c ===> Number o f i n a c t i v e c y c l e s
t c ===> Number o f t o t a l c y c l e s
name ===> Name o f the quant i ty
to be p l o t t ed

c l a s s R e s u l t s v i s u a l i z e r :
de f i n i t (s e l f , comv , v rv , v sa , v 2o , v va ,

167

v rsd , v eb , i c , t c , name) :

xx = np . arange (l en (v sa))
x = np . arange (t c)
i f name == ’\u03B30 Eigenvalue ’ :

p l t . f i g u r e (’RV k ’)
p l t . p l o t (x , v rv , ’ r ’)
ax = p l t . f i g u r e (’RV k ’) . gca ()
ax . s e t x t i c k s (np . arange (0 , t c , 100))
p l t . x l a b e l (’ Total Cycles ’)
p l t . y l a b e l (’Random Variable ’)
p l t . t i t l e (name)
p l t . g r i d ()

p l t . f i g u r e (’ SA k ’)
p l t . p l o t (xx , v sa , ’b ’)
ye r r = v eb
ax = p l t . f i g u r e (’ SA k ’) . gca ()
ax . s e t x t i c k s (np . arange (0 , t c = i c , 100))
p l t . e r r o rba r (xx , v sa , ye r r = yerr , c o l o r = ’ r ’)
p l t . x l a b e l (’ Act ive Cycles ’)
p l t . y l a b e l (’ Sample Average ’)
p l t . t i t l e (name)
p l t . g r i d ()

p l t . f i g u r e (’2 nd ord mom k ’)
p l t . p l o t (xx , v 2o , ’ r ’)
ax = p l t . f i g u r e (’2 nd ord mom k ’) . gca ()
ax . s e t x t i c k s (np . arange (0 , t c = i c , 100))
p l t . x l a b e l (’ Act ive Cycles ’)
p l t . y l a b e l (’ Second order moment ’)
p l t . t i t l e (name)
p l t . g r i d ()

p l t . f i g u r e (’VAR k ’)
p l t . p l o t (xx , v va , ’ r ’)
ax = p l t . f i g u r e (’VAR k ’) . gca ()
ax . s e t x t i c k s (np . arange (0 , t c = i c , 100))

168

p l t . x l a b e l (’ Act ive Cycles ’)
p l t . y l a b e l (’ Variance ’)
p l t . t i t l e (name)
p l t . g r i d ()

p l t . f i g u r e (’ RSD k ’)
p l t . p l o t (xx , v rsd , ’ r ’)
ax = p l t . f i g u r e (’ RSD k ’) . gca ()
ax . s e t x t i c k s (np . arange (0 , t c = i c , 100))
p l t . x l a b e l (’ Act ive Cycles ’)
p l t . y l a b e l (’RSD’)
p l t . t i t l e (name)
p l t . g r i d ()

e l s e :
p l t . f i g u r e (’ RV ks ’)
p l t . p l o t (x , v rv , ’ g ’)
ax = p l t . f i g u r e (’ RV ks ’) . gca ()
ax . s e t x t i c k s (np . arange (0 , t c , 100))
p l t . x l a b e l (’ Total Cycles ’)
p l t . y l a b e l (’Random Variable ’)
p l t . t i t l e (name)
p l t . g r i d ()

p l t . f i g u r e (’ SA ks ’)
p l t . p l o t (xx , v sa , ’b ’)
ye r r = v eb
ax = p l t . f i g u r e (’ SA ks ’) . gca ()
ax . s e t x t i c k s (np . arange (0 , t c = i c , 100))
p l t . e r r o rba r (xx , v sa , ye r r = yerr , c o l o r = ’ g ’)
p l t . x l a b e l (’ Act ive Cycles ’)
p l t . y l a b e l (’ Sample Average ’)
p l t . t i t l e (name)
p l t . g r i d ()

p l t . f i g u r e (’2 nd ord mom ks ’)
p l t . p l o t (xx , v 2o , ’ g ’)
ax = p l t . f i g u r e (’2 nd ord mom ks ’) . gca ()
ax . s e t x t i c k s (np . arange (0 , t c = i c , 100))

169

p l t . x l a b e l (’ Act ive Cycles ’)
p l t . y l a b e l (’ Second order moment ’)
p l t . t i t l e (name)
p l t . g r i d ()

p l t . f i g u r e (’ VAR ks ’)
p l t . p l o t (xx , v va , ’ g ’)
ax = p l t . f i g u r e (’ VAR ks ’) . gca ()
ax . s e t x t i c k s (np . arange (0 , t c = i c , 100))
p l t . x l a b e l (’ Act ive Cycles ’)
p l t . y l a b e l (’ Variance ’)
p l t . t i t l e (name)
p l t . g r i d ()

p l t . f i g u r e (’ RSD ks ’)
p l t . p l o t (xx , v rsd , ’ g ’)
ax = p l t . f i g u r e (’ RSD ks ’) . gca ()
ax . s e t x t i c k s (np . arange (0 , t c = i c , 100))
p l t . x l a b e l (’ Act ive Cycles ’)
p l t . y l a b e l (’RSD’)
p l t . t i t l e (name)
p l t . g r i d ()

p l t . show ()

170

Appendix B

In this appendix, scripts exclusively for the computation κ0 are presented.
Also the random walk of ’Symmetry’ case is taken into account.

Random walk - κ0

import numpy as np
import sys
sys . path . append (’ . ’)
import math
from fermi import f i s s i o n f u n c

LEGEND
t r i p l e .T [0] ===> Column o f the array with the s t a r t i n g
p o s i t i o n s o f the neutrons (always in a f u e l l a y e r)
t r i p l e .T [1] ===> Column o f the array with the s t a r t i n g
energy group o f the neutrons
t r i p l e .T [2] ===> Column o f the array with the s t a r t i n g
d i r e c t i o n s o f neutrons
s l abob j ===> Domain d e f i n i t i o n ob j e c t (with boundaries ,
mate r i a l q u a l i f i c a t i o n , d e t e c t o r d e f i n i t i o n , . . .)
f l i b o b j ===> Data s e t o f f u e l mate r i a l
mlibobj ===> Data s e t o f moderator / r e f l e c t o r mate r i a l
seed ===> seed o f the pseudo=random genera to r

de f Random walk k (t r i p l e , s l abobj , f l i b o b j , mlibobj , seed) :

171

Abs fue l mat r ix = []

f o r f c in range (l en (t r i p l e)) :
s t a r t i n g absc i s s a , energy group and d i r e c t i o n (c o s i n e)
x0 = t r i p l e [f c] [0]
E0 = i n t (t r i p l e [f c] [1])
mu = t r i p l e [f c] [2]

i f (x0 < 0) or (x0 > s l abob j . l ength) :
r a i s e OSError (’ Out o f the s l ab ! ’)

i f s l abob j . l o c a t i o n (x0) == ’ Fuel ’ :
d i s t ance covered i f i t s t a r t s from a f u e l r eg i on
l = = math . l og (1 = seed . random ()) / f l i b o b j . Xs tot [E0]

e l s e :
d i s t ance covered i f i t s t a r t s from a moderator r eg i on
l = = math . l og (1 = seed . random ()) / ml ibobj . Xs tot [E0]

f l a g s e t t i n g
a l i v e = 1

Star t the random walk
whi l e (a l i v e) :

new p o s i t i o n in the s l ab
x = x0 + l *mu

how many inner boarders did the neutron c r o s s ?
b c r o s s = s l abob j . boundarycounter (x0 , x)

i f (l en (b c r o s s) == 0) and (s l abob j . l o c a t i o n (x0) ==
’ Fuel ’) :

the neutron has not c ro s s ed any inner
boundar ies and i s s t i l l in a f u e l l a y e r
rho1 = seed . random ()
i f rho1 <= f l i b o b j . Abs [E0] / f l i b o b j . Xs tot [E0] :

absorpt ion occurred
end po int = x
end group = E0
Abs fue l mat r ix = np . append (

172

Abs fue l matr ix , np . append (x , E0))
a l i v e = 0

e l s e :
s c a t t e r i n g occurred : energy , c o s i n e d i r e c t i o n ,
s t a r t i n g po int a b s c i s s a
and d i s t anc e covered change
E = np . argmax (
np . where (
f l i b o b j . mat cum scat [E0] = seed . random () < 0))
E0 = i n t (E)
mu = seed . uniform (=1 ,1)
x0 = x
l =
= math . l og (1 = seed . random ()) / f l i b o b j . Xs tot [E0]

cont inue

i f (l en (b c r o s s) == 0) and (s l abob j . l o c a t i o n (x0) ==
’ Moderator ’) :

the neutron has not c ro s s ed any inner boundar ies
and i s s t i l l in a moderator l a y e r
rho2 = seed . random ()
i f rho2 <= mlibobj . Abs [E0] / ml ibobj . Xs tot [E0] :

absorpt ion occurred
a l i v e = 0

e l s e :
s c a t t e r i n g occurred : energy , d i r e c t i o n ,
s t a r t i n g po int
and d i s t anc e covered change
E = np . argmax (
np . where (
ml ibobj . mat cum scat [E0] = seed . random () < 0))
E0 = i n t (E)
mu = seed . uniform (=1 ,1)
x0 = x
l =
= math . l og (1 = seed . random ()) / ml ibobj . Xs tot [E0]

cont inue

173

i f (l en (b c r o s s) == 1) and (b c r o s s [0] == 0 . or
b c r o s s [0] == s l abob j . l ength) :
the neutron has c ro s s ed one outer
boundary===> out o f the s l ab
a l i v e = 0

i f (l en (b c r o s s) >= 1) and ((b c r o s s [0] != 0 .) and
(b c r o s s [0] != s l abob j . l ength)) :
the neutron has c ro s s ed at l e a s t one inner
boundary===> v i r t u a l c o l l i s i o n
change only s t a r t i n g po int a b s c i s s a
and d i s t anc e covered
i f s l abob j . l o c a t i o n (x0) == ’ Fuel ’ :

the neutron has entered a moderator r eg i on
l =

= math . l og (1 = seed . random ()) / ml ibobj . Xs tot [E0]
i f s l abob j . l o c a t i o n (x0) == ’ Moderator ’ :

the neutron has entered a f u e l r eg i on
l =
= math . l og (1 = seed . random ()) / f l i b o b j . Xs tot [E0]

x0 = b c r o s s [0]

Change the shape o f the vec to r in an N x 2 matrix
to have coup l e s o f p o s i t i o n s and energy groups
Abs fue l mat r ix = np . reshape (

Abs fue l matr ix , (i n t (l en (Abs fue l mat r ix) / 2) , 2))

re turn f i s s i o n f u n c (Abs fue l matr ix , s labobj , f l i b o b j , seed)

174

Random walk - κ0 - Symmetric case

import numpy as np
import sys
sys . path . append (’ . ’)
import math
from fermi import f i s s i o n f u n c

LEGEND
t r i p l e .T [0] ===> Column o f the array with the s t a r t i n g
p o s i t i o n s o f the neutrons (always in a f u e l l a y e r)
t r i p l e .T [1] ===> Column o f the array with the s t a r t i n g
energy group o f the neutrons
t r i p l e .T [2] ===> Column o f the array with the s t a r t i n g
d i r e c t i o n s o f neutrons
s l abob j ===> Domain d e f i n i t i o n ob j e c t (with boundaries ,
mate r i a l q u a l i f i c a t i o n , d e t e c t o r d e f i n i t i o n , . . .)
f l i b o b j ===> Data s e t o f f u e l mate r i a l
mlibobj ===> Data s e t o f moderator / r e f l e c t o r mate r i a l
seed ===> seed o f the pseudo=random genera to r

de f Random walk k symm (t r i p l e , s l abobj , f l i b o b j , mlibobj , seed) :

Abs fue l mat r ix = []

f o r f c in range (l en (t r i p l e)) :
s t a r t i n g absc i s s a , energy group and d i r e c t i o n (c o s i n e)
x0 = t r i p l e [f c] [0]
E0 = i n t (t r i p l e [f c] [1])
mu = t r i p l e [f c] [2]

i f (x0 < 0) or (x0 > s l abob j . l ength) :
r a i s e OSError (’ Out o f the s l ab ! ’)

i f s l abob j . l o c a t i o n (x0) == ’ Fuel ’ :
d i s t ance covered i f i t s t a r t s from a f u e l r eg i on

175

l = = math . l og (1 = seed . random ()) / f l i b o b j . Xs tot [E0]
e l s e :

d i s t ance covered i f i t s t a r t s from a moderator r eg i on
l = = math . l og (1 = seed . random ()) / ml ibobj . Xs tot [E0]

f l a g s e t t i n g
a l i v e = 1

Star t the random walk
whi l e (a l i v e) :

new p o s i t i o n in the s l ab
x = x0 + l *mu

how many inner boarders did the neutron c r o s s ?
b c r o s s = s l abob j . boundarycounter s (x0 , x)

i f (l en (b c r o s s) == 0) and (s l abob j . l o c a t i o n (x0) ==
’ Fuel ’) :

the neutron has not c ro s s ed any inner
boundar ies and i s s t i l l in a f u e l l a y e r
rho1 = seed . random ()
i f rho1 <= f l i b o b j . Abs [E0] / f l i b o b j . Xs tot [E0] :

absorpt ion occurred
end po int = x
end group = E0
Abs fue l mat r ix = np . append (
Abs fue l matr ix , np . append (x , E0))
a l i v e = 0

e l s e :
s c a t t e r i n g occurred : energy , c o s i n e d i r e c t i o n ,
s t a r t i n g po int a b s c i s s a
and d i s t anc e covered change
E = np . argmax (
np . where (
f l i b o b j . mat cum scat [E0] = seed . random () < 0))
E0 = i n t (E)
mu = seed . uniform (=1 ,1)
x0 = x
l =

176

= math . l og (1 = seed . random ()) / f l i b o b j . Xs tot [E0]
cont inue

i f (l en (b c r o s s) == 0) and (s l abob j . l o c a t i o n (x0) ==
’ Moderator ’) :

the neutron has not c ro s s ed any inner boundar ies
and i s s t i l l in a moderator l a y e r
rho2 = seed . random ()
i f rho2 <= mlibobj . Abs [E0] / ml ibobj . Xs tot [E0] :

absorpt ion occurred
a l i v e = 0

e l s e :
s c a t t e r i n g occurred : energy , d i r e c t i o n ,
s t a r t i n g po int
and d i s t anc e covered change
E = np . argmax (
np . where (
ml ibobj . mat cum scat [E0] = seed . random () < 0))
E0 = i n t (E)
mu = seed . uniform (=1 ,1)
x0 = x
l =
= math . l og (1 = seed . random ()) / ml ibobj . Xs tot [E0]

cont inue

i f (l en (b c r o s s) == 1) and (b c r o s s [0] == 0 . or
b c r o s s [0] == s l abob j . l ength) :
the neutron has c ro s s ed one outer
boundary===> out o f the s l ab
a l i v e = 0

i f (l en (b c r o s s) >= 1) and ((b c r o s s [0] != 0 .) and
(b c r o s s [0] != s l abob j . l ength)) :
the neutron has c ro s s ed at l e a s t one inner
boundary===> v i r t u a l c o l l i s i o n

177

change only s t a r t i n g po int a b s c i s s a
and d i s t anc e covered
i f s l abob j . l o c a t i o n (x0) == ’ Fuel ’ :

the neutron has entered a moderator r eg i on
l =

= math . l og (1 = seed . random ()) / ml ibobj . Xs tot [E0]
i f s l abob j . l o c a t i o n (x0) == ’ Moderator ’ :

the neutron has entered a f u e l r eg i on
l =
= math . l og (1 = seed . random ()) / f l i b o b j . Xs tot [E0]

x0 = b c r o s s [0]
i f (l en (b c r o s s) >= 1) and (b c r o s s [0] ==

s l abob j . xmid) :
the neutron has c ro s s ed the symmetry a x i s
and f o r each neutron that l e a v e s the f i r s t ha l f ,
another e n t e r s i t
with oppos i t e c o s i n e ===> v i r t u a l c o l l i s i o n

x0 = b c r o s s [0]
mu *= =1

i f s l abob j . l o c a t i o n (x0) == ’ Fuel ’ :
the symmetry a x i s i s in a f u e l r eg i on
l = = math . l og (
1 = seed . random ()) / f l i b o b j . Xs tot [i n t (E0)]

i f s l abob j . l o c a t i o n (x0) == ’ Moderator ’ :
the symmetry a x i s i s in
a moderator r eg i on
l =
= math . l og (1 = seed . random ()) / ml ibobj . Xs tot [i n t (E0)]

Change the shape o f the vec to r in an N x 2 matrix
to have coup l e s o f p o s i t i o n s and energy groups
Abs fue l mat r ix = np . reshape (

Abs fue l matr ix , (i n t (l en (Abs fue l mat r ix) / 2) , 2))

re turn f i s s i o n f u n c (Abs fue l matr ix , s labobj , f l i b o b j , seed)

178

Population controller - κ0

The case of multiprocessing is taken into account. So, the sum of the list of
detector matrices must take place.

import numpy as np
import sys
sys . path . append (’ . ’)
import math

LEGEND
doub l e f ===> L i s t o f matr i ce s whose e lements are
the neut ron i c sou r c e s in each de t e c t o r
f l i b o b j ===> Dict ionary o f f u e l mate r i a l
s l abob j ===> Domain d e f i n i t i o n ob j e c t
(with boundaries , mate r i a l q u a l i f i c a t i o n , d e t e c t o r d e f i n i t i o n , . . .)
old pop ===> Amount o f neutrons in
the prev ious gene ra t i on
N0 ===> Amount o f neutrons in the 0=th gene ra t i on
seed ===> seed o f the pseudo=random number genera to r

c l a s s P o p u l a t i o n c o n t r o l l e r :
de f i n i t (s e l f , doub le f , f l i b o b j , s l abobj , old pop ,

N0 , seed) :

Unify the s i n g l e matr i ce s o f the l i s t
s l abob j . de t mat r f = np . sum(

np . asar ray (doub l e f) , a x i s =0)

Sum the prev ious matrix to get the
new populat ion generated
s e l f . new gene = np . sum(
np . sum(
np . asar ray (doub l e f) , a x i s =0))

s e l f . z e ro gene = N0
s e l f . o ld gene = old pop

179

Compute the K=e i g enva lue
s e l f . K eig = s e l f . new gene / s e l f . o ld gene

Compute the norma l i za t i on f a c t o r
f a c t = s e l f . z e ro gene / s e l f . new gene

Compute the normal ized (’ f u tu r e old ’)
gene ra t i on and the e lements
f o r the Shannon entropy .
Update p o s i t i o n s , energy groups and d i r e c t i o n s
#f o r the next random walks ;
a l s o compute d i f f e r e n t
random number genera to r
#f o r each new RW
s e l f . n ew born s i t e s = []
s e l f . new energy l eve = []
s e l f . norm new gene = 0

I f i t i s p o s s i b l e , compute the C.O.M. f o r
the new gene ra t i on o f neutrons
s e l f .COM = 0

f o r i i in range (s l abob j . f u e l l a y e r s) :
f o r j j in range (s l abob j . d e t p e r f u e l r e g i o n) :

i f s l abob j . de t mat r f [i i] [j j] == 0 . :
cont inue

Normalize each de t e c t o r source
s l abob j . norm matr t [i i] [j j] =

s l abob j . de t mat r f [i i] [j j] * f a c t
norm per s l o t = i n t (
np . c e i l (s l abob j . norm matr t [i i] [j j]))

l e f t e x = s l abob j . m a t l a y f u e l [i i] [0] +
j j * s l abob j . dx vf [i i]

r i g h t e x = s l abob j . m a t l a y f u e l [i i] [0] +

180

(j j +1)* s l abob j . dx vf [i i]

Add the new p o s i t i o n s i n s i d e the de t e c t o r
s e l f . n ew born s i t e s = np . append (

s e l f . new born s i t e s , seed . uniform (
l e f t e x , r i gh t ex , no rm per s l o t))

Update C.O.M. ()
s e l f .COM += ((l e f t e x + r i g h t e x) *

0 .5 = s l abob j . xmid) * norm per s l o t

Update the normal ized gene ra t i on counter
s e l f . norm new gene += norm per s l o t

Weighted average f o r C.O.M.
s e l f .COM /= s e l f . norm new gene

Update energy groups and seeds f o r next RWs
ext r = i n t (np . c e i l (seed . random ()*1 e8))
s e l f . rnd sd v = seed . permutation (

[np . random . d e f a u l t r n g (i) f o r i in range (
ext r * s e l f . norm new gene ,
(ex t r +1)* s e l f . norm new gene)])

f o r s s s in range (l en (s e l f . n ew born s i t e s)) :
s e l f . new energy l eve =
np . append (
s e l f . new energy leve , np . argmax (
np . where (f l i b o b j . En f i s s cum = seed . random () < 0)))

Update d i r e c t i o n s f o r next RWs
s e l f . new cos ines = seed . uniform (
=1, 1 , l en (s e l f . n ew born s i t e s))

Compute S .E.
s e l f . Shannon en = 0

f o r i i in range (s l abob j . f u e l l a y e r s) :

181

f o r j j in range (s l abob j . d e t p e r f u e l r e g i o n) :
i f s l abob j . norm matr t [i i] [j j] != 0 :

s e l f . Shannon en ==
(s l abob j . norm matr t [i i] [j j] / s e l f . norm new gene)*
math . log2 (
s l abob j . norm matr t [i i] [j j] / s e l f . norm new gene)

General algorithm - κ0- Multi-thread case

import matp lo t l i b . pyplot as p l t
import numpy as np
import sys
sys . path . append (’ . ’)
from Read data import Data s e t o rgan i z e r
from s l ab import Domain assembler
from f l i g h t import Random walk k
from f l i g h t s import Random walk k symm
from c o n t r o l s import Populat ion contro l l e r symm
from c o n t r o l import P o p u l a t i o n c o n t r o l l e r
from postproc import S t a t i s t i c s e x e c u t o r
from primasource import I n i t i a l s o u r c e s e t t e r
from images import R e s u l t s v i s u a l i z e r
import time
import mu l t i p ro c e s s i ng as mp
from f u n c t o o l s import p a r t i a l

de f main () :
Def ine the domain : a multi=l a y e r s l ab
made o f a l t e r n a t i n g t h i c k n e s s e s o f f u e l
and moderator / r e f l e c t o r with the r e s p e c t i v e
leng th s (expres sed in cm) .
Def ine the number o f d e t e c t o r s in the f u e l r e g i o n s .
The d e f i n i t i o n o f other inputs are wr i t t en in c l a s s f i l e s

D e t e c t o r p e r f u e l l a y e r = 50
Reactor = Domain assembler (
[’ Moderator ’ , ’ Fuel ’ , ’ Moderator ’] , [2 . , 2 . , 2 .] ,

182

D e t e c t o r p e r f u e l l a y e r)

State the number o f p r o c e s s o r s invo lved
in the p a r a l l e l i z a t i o n
omp = mp. cpu count ()
State the seed f o r the pseudo=random
genera t i on o f numbers f o r
the MC s imu la t i on (to be passed to every func t i on
and c l a s s)
rng = np . random . d e f a u l t r n g (81)

Read the data from the given f i l e s and o rgan i s e
them accord ing to the chosen number o f energy group
Num en group = 2
Comb = Data s e t o rgan i z e r (’ s o o d f u e l . txt ’ , Num en group)

Moder = Data s e t o rgan i z e r (’ s o o d r e f l e c t o r . txt ’ , Num en group)

#Def ine the number o f i n i t i a l neutrons in each de t e c t o r
Neut or ig = 12000

Symmetry f l a g
flag symm = 0

I s the s l ab symmetric ?
Def ine the number o f i n i t i a l neutrons
in each de t e c t o r . Spec i f y the geometry , the
neut ron i c d i s t r i b u t i o n and
the angular d i r e c t i o n o f the i n i t i a l source
i f Reactor . i s symmetr ic () == True :

Gen zero = I n i t i a l s o u r c e s e t t e r (
Comb, Reactor , Neut or ig , rng , ’ Symmetric ’ ,
’ F i s s i on=source=l i k e ’ , ’ S tochas t i c ’)
flag symm = 1

e l s e :
Gen zero = I n i t i a l s o u r c e s e t t e r (
Comb, Reactor , Neut or ig , rng , ’Non=symmetric ’ ,
’ F i s s i on=source=l i k e ’ , ’ S tochas t i c ’)

183

Get the p o s i t i o n s o f the 0=th gene ra t i on o f
neutrons , t h e i r d i r e c t i o n s
and t h e i r energy groups from the ob j e c t
de f ined above .
Generate one random number genera to r
seed per s t a r t i n g neutron
to avoid sampling the same neutrons
mul t ip l e t imes
ext r = i n t (np . c e i l (rng . random ()*1 e8))
rngs = rng . permutation (
[np . random . d e f a u l t r n g (i) f o r i in range (
ext r *Neut or ig , (ex t r +1)*Neut or ig)])
s t a r t i n p u t s = np . c [Gen zero . s t a r t p o s i t i o n s ,
Gen zero . s t a r t e n e r g i e s ,
Gen zero . s t a r t d i r e c t i o n s , rngs]

State the number o f i n a c t i v e c y c l e s f o r the Monte Carlo
computation o f e i g enva lue K and Shannon Entropy (S .E .)
and the ar rays f o r the r e s p e c t i v e random v a r i a b l e s
I n a c y c l e s = 0
I n a c y c l e s s h = 0
Kappa vect = []
S ent r = []
COM vec = []

Set the e r r o r s to 1 and s t a t e
the t o l e r a n c e s f o r
K=e i g enva lue and S .E.
e r r o r 1 = 1
e r r o r 2 = 1

t o l 1 = 0.00001
t o l 2 = 0.0005

I n i t i a l i z e the populat ion and the matrix
f o r the MC c a l c u l a t i o n

184

(1 s t row Sample average ,
2nd row Second order moment , 3 rd row
Variance , 4 th row RSD, 5 th row e r r o r bar)
f o r Kappa and S .E.
The a c t i v e c y c l e s f o r K=e i g enva lue must
be s e t to zero ,
such as the counter o f the i t e r a t i o n s
old popu = Neut or ig
c y c l e = 0
Act cyc l e s = 0
MC kappa matr = np . empty ((5 , 1))
MC Shan matr = MC kappa matr . copy ()

Measure the time needed f o r a l l
the loops (s e t to zero)
t ime to t = 0

State the minimum number o f a c t i v e c y c l e s and
the maximum one
min n = 100
max n = 100

Modify the f u n c t i o n s o f random walk and f i s s i o n in
order to have only a v a r i a b l e input (the ’ i t e r a b l e ’ f o r
the p a r a l l e l i z a t i o n)
i f flag symm == 1 :

Random walk f i s s k par = p a r t i a l (
Random walk k symm , s l abob j = Reactor ,
f l i b o b j = Comb,
ml ibobj = Moder)

e l s e :
Random walk f i s s k par = p a r t i a l (
Random walk k , s l abob j = Reactor , f l i b o b j = Comb,
ml ibobj = Moder)

Star t the whi l e loop f o r K=e i g enva lue c a l c u l a t i o n

185

whi le ((e r r o r 1 > t o l 1) or (Ac t cyc l e s < min n)) and
(Ac t cyc l e s < max n) :

Star t the t imer
t1 = time . time ()
c y c l e += 1
pr in t (’ Cycle number ’ , c y c l e)

For the S .E. every c y c l e i s a c t i v e
A c t c y c l e s s h = c y c l e

Random walk beg ins and then t a l l y i n g
i f flag symm == 1 :

P a r a l l e l i z a t i o n o f the ’ Symmetric ’ RW func t i on
pool = mp. Pool (omp)
ext = pool .map(Random walk f i ss k par , s t a r t i n p u t s)

Tal ly ing , Sor t ing and c o n t r o l l i n g
the neut ron i c populat ion
Computing the K=e igenva lue , S .E .
and other q u a n t i t i e s
r e s u l t s = Populat ion contro l l e r symm (ext , Comb, Reactor ,
old popu , Neut or ig , rng)

e l s e :
P a r a l l e l i z a t i o n o f the RW func t i on
pool = mp. Pool (omp)
ext = pool .map(Random walk f i ss k par , s t a r t i n p u t s)

Tal ly ing , s o r t i n g and c o n t r o l l i n g
the neut ron i c populat ion
Computing the K=e igenva lue , S .E .
and other q u a n t i t i e s
r e s u l t s = P o p u l a t i o n c o n t r o l l e r (

ext , Comb, Reactor , old popu , Neut or ig , rng)

Updating inputs f o r the next i t e r a t i o n
old popu = r e s u l t s . norm new gene
s t a r t i n p u t s = np . c [r e s u l t s . new born s i t e s ,

186

r e s u l t s . new energy leve ,
r e s u l t s . new cos ines , r e s u l t s . rnd sd v]

Add the r e s u l t s o f the running loop to
the r e s p e c t i v e ar rays
Kappa vect = np . append (Kappa vect , r e s u l t s . K eig)
S ent r = np . append (S entr , r e s u l t s . Shannon en)
COM vec = np . append (COM vec , r e s u l t s .COM)

Set de t e c t o r matrix to zero f o r the new i t e r a t i o n
i f flag symm == 1 :

Reactor . d e t m a t r f s = np . z e r o s ((Reactor . f u e l l a y e r s s ,
Reactor . d e t p e r f u e l r e g i o n))

e l s e :
Reactor . de t mat r f = np . z e r o s ((Reactor . f u e l l a y e r s ,
Reactor . d e t p e r f u e l r e g i o n))

p r i n t (’K: ’ , r e s u l t s . K eig)
p r i n t (’ S .E . : ’ , r e s u l t s . Shannon en)

Compute the update o f the s t a t i s t i c a l
measurements and
add them to the appropr ia t e array (S .E .)
sh prc = S t a t i s t i c s e x e c u t o r (
S entr , Ac t cyc l e s sh , I n a c y c l e s s h)
MC Shan matr = np . append (
MC Shan matr , sh prc . MC update , a x i s =1)

i f sh prc . MC update [2] > 0 . :
Update the value o f the e r r o r (S .E .)
e r r o r 2 = sh prc . MC update [3]
p r i n t (’ Error o f S .E . : ’ , e r r o r 2)

i f (e r r o r 2 > t o l 2) or (c y c l e <= 1 0) :
Build up the number o f i n a c t i v e c y c l e s u n t i l the
appropr ia t e cond i t i on i s s a t i s f i e d
I n a c y c l e s += 1

187

Since at the f i r s t i t e r a t i o n s the e r r o r can
randomly f l u c t u a t e below
the to l e rance , a minimum number o f c y c l e
i s needed to avoid t h i s
i f (e r r o r 2 <= t o l 2) and (c y c l e > 1 0) :

Updating o f the number o f a c t i v e c y c l e s
Ac t cyc l e s = c y c l e = I n a c y c l e s

Compute the update o f the s t a t i s t i c a l
measurements and add them
to the appropr ia t e array (K=e i g enva lue)
p prc = S t a t i s t i c s e x e c u t o r (
Kappa vect , Act cyc l e s , I n a c y c l e s ,
amp err barr)
MC kappa matr = np . append (
MC kappa matr , p prc . MC update ,
a x i s =1)

i f p prc . MC update [2] > 0 . :
Update the value o f the e r r o r (K=e i g enva lue)
e r r o r 1 = p prc . MC update [3]
p r i n t (’ Error : ’ , e r r o r 1)

Stop the t imer
t2 = time . time ()
p r i n t (” This c y c l e took ” , t2 = t1 , ” seconds ”)
p r i n t (’\n ’)

Increment o f the time needed to run the ope ra t i on s
t ime to t += (t2 = t1)

Tot cyc l e s = c y c l e

MC kappa matr = np . d e l e t e (MC kappa matr , 0 , a x i s =1)
MC Shan matr = np . d e l e t e (MC Shan matr , 0 , a x i s =1)

Print the s i g n i f i c a n t r e s u l t s

188

pr in t (” Total durat ion : ” , t ime tot , ” seconds ”)
p r i n t (”\n”)
p r i n t (” Average c y c l e durat ion : ” , t ime to t / Tot cyc l e s , ” seconds ”)
p r i n t (’\n ’)
p r i n t (” Total number o f c y c l e s : ” , Tot cyc l e s)
p r i n t (’\n ’)
p r i n t (”Number o f a c t i v e c y c l e s : ” , Ac t cyc l e s)
p r i n t (’\n ’)
p r i n t (”Number o f i n a c t i v e c y c l e s : ” , I n a c y c l e s)
p r i n t (’\n ’)
p r i n t (”K=e i g enva lue : ” , MC kappa matr [0] [=1] , ”+=”,
MC kappa matr [=1] [=1])

Plot a l l the char t s
p k = p l o t t i n g (COM vec , Kappa vect , MC kappa matr [0] ,
MC kappa matr [1] ,
MC kappa matr [2] , MC kappa matr [3] , MC kappa matr [4] ,
I n a c y c l e s ,
Tot cyc l e s , ”\u03BA0 Eigenvalue ”)
p s = p l o t t i n g (COM vec , S entr , MC Shan matr [0] ,
MC Shan matr [1] ,
MC Shan matr [2] , MC Shan matr [3] ,
MC Shan matr [4] ,
I n a c y c l e s s h , Tot cyc l e s , ”Shannon Entropy ”)

p l t . show ()

i f name == ” main ” :
main ()

189

Appendix C

This final appendix, analogously to the previous one, is dedicated just for γ0

and its peculiar classes/functions.

Random walk - γ0

import numpy as np
from os import path
from path l i b import Path
import sys
sys . path . append (’ . ’)
import math
from crash import s c a t t f u n c
from fermi import f i s s i o n g

LEGEND
t r i p l e .T [0] ===> Column o f the array with the
s t a r t i n g p o s i t i o n s o f the neutrons (always in a f u e l l a y e r)
t r i p l e .T [1] ===> Column o f the array
with the s t a r t i n g energy group o f the neutrons
t r i p l e .T [2] ===> Column o f the array with the
s t a r t i n g d i r e c t i o n s o f neutrons
s l abob j ===> Domain d e f i n i t i o n ob j e c t
(with boundaries , mate r i a l q u a l i f i c a t i o n , d e t e c t o r d e f i n i t i o n , . . .)
f l i b o b j ===> Data s e t o f f u e l mate r i a l
mlibobj ===> Data s e t o f moderator / r e f l e c t o r mate r i a l
seed ===> seed o f the pseudo=random genera to r

190

de f Random walk g (s e l f , t r i p l e , s l abobj , f l i b o b j ,
mlibobj , seed) :

abs pos vec = []
abs group vec = []

s c a p o s v e c = []
s ca g roup vec = []

f o r f c in range (l en (t r i p l e)) :
s t a r t i n g absc i s s a , energy group and
d i r e c t i o n (c o s i n e)
x0 = t r i p l e [f c] [0]
E0 = i n t (t r i p l e [f c] [1])
mu = t r i p l e [f c] [2]

i f (x0 < 0) or (x0 > s l abob j . l ength) :
r a i s e OSError (’ Out o f the s l ab ! ’)

i f s l abob j . l o c a t i o n (x0) == ’ Fuel ’ :
d i s t ance covered i f i t s t a r t s from a f u e l r eg i on
l =
= math . l og (1 = seed . random ()) / f l i b o b j . Xs tot [E0]

e l s e :
d i s t ance covered i f i t s t a r t s
from a moderator r eg i on
l =
= math . l og (1 = seed . random ()) / ml ibobj . Xs tot [E0]

f l a g s e t t i n g
a l i v e = 1

Star t the random walk
whi le (a l i v e) :

new p o s i t i o n in the s l ab
x = x0 + l * mu

191

how many inner boarders did
the neutron c r o s s ?
b c r o s s = s l abob j . boundarycounter (x0 , x)

i f (l en (b c r o s s) == 0) and
(s l abob j . l o c a t i o n (x0) == ’ Fuel ’) :
the neutron has not c ro s s ed any inner
boundar ies and i s s t i l l in a f u e l l a y e r
rho1 = seed . random ()
i f rho1 <= f l i b o b j . Abs [E0] / f l i b o b j . Xs tot [E0] :

absorpt ion occurred
abs pos vec = np . append (abs pos vec , x)
abs group vec =
np . append (abs group vec , E0)
a l i v e = 0

e l s e :
s c a t t e r i n g occurred
s ca p o s v e c =
np . append (sca pos vec , x)
s ca g roup vec =
np . append (sca group vec , E0)
a l i v e = 0

i f (l en (b c r o s s) == 0) and
(s l abob j . l o c a t i o n (x0) == ’ Moderator ’) :

the neutron has not c ro s s ed any inner
boundar ies and i s s t i l l in a moderator l a y e r
rho2 = seed . random ()
i f rho2 <=

mlibobj . Abs [E0] / ml ibobj . Xs tot [E0] :
absorpt ion occurred
a l i v e = 0

e l s e :
s c a t t e r i n g occurred
s ca p o s v e c =
np . append (sca pos vec , x)

192

s ca g roup vec =
np . append (sca group vec , E0)
a l i v e = 0

i f (l en (b c r o s s) == 1) and (b c r o s s [0] == 0 or
b c r o s s [0] == s l abob j . l ength) :

the neutron has c ro s s ed
one outer boundary===> out o f the s l ab
a l i v e = 0

i f l en (b c r o s s) >= 1 and (b c r o s s [0] != 0
and b c r o s s [0] != s l abob j . l ength) :

the neutron has c ro s s ed at l e a s t
one inner boundary===> v i r t u a l c o l l i s i o n
change only s t a r t i n g po int a b s c i s s a
and d i s t anc e covered
i f s l abob j . l o c a t i o n (x0) == ’ Fuel ’ :

the neutron has entered a moderator r eg i on
l =
= math . l og (1 = seed . random ()) /

ml ibobj . Xs tot [E0]
i f s l abob j . l o c a t i o n (x0) == ’ Moderator ’ :

the neutron has entered a f u e l r eg i on
l =
= math . l og (1 = seed . random ()) /

f l i b o b j . Xs tot [E0]

x0 = b c r o s s [0]
cont inue

Apply the proper func t i on to each matrix to get
the number o f new neutrons from f i s s i o n and
the new energy from
s c a t t e r i n g
e n d m a t r i x f i s s =

193

f i s s i o n g (
np . c [abs pos vec , abs group vec] , s l abobj , f l i b o b j , seed)
end matr ix s ca t =
s c a t t f u n c (
np . c [s ca pos vec , s ca g roup vec] ,
s l abobj , f l i b o b j , mlibobj , seed)

re turn e n d m a t r i x f i s s , end matr ix s ca t

Random walk - γ0 - Symmetric case

import numpy as np
from os import path
from path l i b import Path
import sys
sys . path . append (’ . ’)
import math
from crash import s c a t t f u n c
from fermi import f i s s i o n g

LEGEND
t r i p l e .T [0] ===> Column o f the array with the
s t a r t i n g p o s i t i o n s o f the neutrons (always in a f u e l l a y e r)
t r i p l e .T [1] ===> Column o f the array
with the s t a r t i n g energy group o f the neutrons
t r i p l e .T [2] ===> Column o f the array with the
s t a r t i n g d i r e c t i o n s o f neutrons
s l abob j ===> Domain d e f i n i t i o n ob j e c t
(with boundaries , mate r i a l q u a l i f i c a t i o n , d e t e c t o r d e f i n i t i o n , . . .)
f l i b o b j ===> Data s e t o f f u e l mate r i a l
mlibobj ===> Data s e t o f moderator / r e f l e c t o r mate r i a l
seed ===> seed o f the pseudo=random genera to r

de f Random walk g symm (s e l f , t r i p l e , s l abobj , f l i b o b j ,
mlibobj , seed) :

194

abs pos vec = []
abs group vec = []

s c a p o s v e c = []
s ca g roup vec = []

f o r f c in range (l en (t r i p l e)) :
s t a r t i n g absc i s s a , energy group and
d i r e c t i o n (c o s i n e)
x0 = t r i p l e [f c] [0]
E0 = i n t (t r i p l e [f c] [1])
mu = t r i p l e [f c] [2]

i f (x0 < 0) or (x0 > s l abob j . l ength) :
r a i s e OSError (’ Out o f the s l ab ! ’)

i f s l abob j . l o c a t i o n (x0) == ’ Fuel ’ :
d i s t ance covered i f i t s t a r t s from a f u e l r eg i on
l =
= math . l og (1 = seed . random ()) / f l i b o b j . Xs tot [E0]

e l s e :
d i s t ance covered i f i t s t a r t s
from a moderator r eg i on
l =
= math . l og (1 = seed . random ()) / ml ibobj . Xs tot [E0]

f l a g s e t t i n g
a l i v e = 1

Star t the random walk
whi le (a l i v e) :

new p o s i t i o n in the s l ab
x = x0 + l * mu

how many inner boarders did
the neutron c r o s s ?
b c r o s s = s l abob j . boundarycounter s (x0 , x)

195

i f (l en (b c r o s s) == 0) and
(s l abob j . l o c a t i o n (x0) == ’ Fuel ’) :
the neutron has not c ro s s ed any inner
boundar ies and i s s t i l l in a f u e l l a y e r
rho1 = seed . random ()
i f rho1 <= f l i b o b j . Abs [E0] / f l i b o b j . Xs tot [E0] :

absorpt ion occurred
abs pos vec = np . append (abs pos vec , x)
abs group vec =
np . append (abs group vec , E0)
a l i v e = 0

e l s e :
s c a t t e r i n g occurred
s ca p o s v e c =
np . append (sca pos vec , x)
s ca g roup vec =
np . append (sca group vec , E0)
a l i v e = 0

i f (l en (b c r o s s) == 0) and
(s l abob j . l o c a t i o n (x0) == ’ Moderator ’) :

the neutron has not c ro s s ed any inner
boundar ies and i s s t i l l in a moderator l a y e r
rho2 = seed . random ()
i f rho2 <=

mlibobj . Abs [E0] / ml ibobj . Xs tot [E0] :
absorpt ion occurred
a l i v e = 0

e l s e :
s c a t t e r i n g occurred
s ca p o s v e c =
np . append (sca pos vec , x)
s ca g roup vec =
np . append (sca group vec , E0)
a l i v e = 0

196

i f (l en (b c r o s s) == 1) and (b c r o s s [0] == 0 or
b c r o s s [0] == s l abob j . l ength) :

the neutron has c ro s s ed
one outer boundary===> out o f the s l ab
a l i v e = 0

i f l en (b c r o s s) >= 1 and (b c r o s s [0] != 0
and b c r o s s [0] != s l abob j . l ength) :

the neutron has c ro s s ed at l e a s t
one inner boundary===> v i r t u a l c o l l i s i o n
change only s t a r t i n g po int a b s c i s s a
and d i s t anc e covered
i f s l abob j . l o c a t i o n (x0) == ’ Fuel ’ :

the neutron has entered a moderator r eg i on
l =
= math . l og (1 = seed . random ()) /

ml ibobj . Xs tot [E0]
i f s l abob j . l o c a t i o n (x0) == ’ Moderator ’ :

the neutron has entered a f u e l r eg i on
l =
= math . l og (1 = seed . random ()) /

f l i b o b j . Xs tot [E0]

x0 = b c r o s s [0]
cont inue
i f (l en (b c r o s s) >= 2) and
(b c r o s s [1] == s l abob j . xmid) :
the neutron has c ro s s ed the symmetry
a x i s and f o r each
neutron that l e a v e s the f i r s t ha l f ,
another e n t e r s i t
with oppos i t e c o s i n e ; other
parameters do not change

x0 = b c r o s s [1]

197

mu *= =1

i f s l abob j . l o c a t i o n (x0) == ’ Fuel ’ :
the symmetry a x i s i s in a f u e l r eg i on

l = = math . l og (1 = seed . random ()) /
f l i b o b j . Xs tot [E0]

i f s l abob j . l o c a t i o n (x0) == ’ Moderator ’ :
the symmetry a x i s i s in a moderator r eg i on

l = = math . l og (1 = seed . random ()) /
ml ibobj . Xs tot [E0]

Apply the proper func t i on to each matrix to get
the number o f new neutrons from f i s s i o n and
the new energy from
s c a t t e r i n g
e n d m a t r i x f i s s =
f i s s i o n g (
np . c [abs pos vec , abs group vec] , s l abobj , f l i b o b j , seed)
end matr ix s ca t =
s c a t t f u n c (
np . c [s ca pos vec , s ca g roup vec] ,
s l abobj , f l i b o b j , mlibobj , seed)

re turn e n d m a t r i x f i s s , end matr ix s ca t

Scattering function

import numpy as np
from os import path
from path l i b import Path
import sys
sys . path . append (’ . ’)

LEGEND
a r r b i s .T [0] ===> Column o f a matrix
with the p o s i t i o n s o f the s c a t t e r e d neutrons

198

a r r b i s .T [1] ===> Column o f a matrix with
the energy groups o f the s c a t t e r e d neutrons
s l abob j ===> Domain d e f i n i t i o n ob j e c t
(with boundaries , mate r i a l q u a l i f i c a t i o n , d e t e c t o r d e f i n i t i o n , . . .)
f l i b o b j ===> Data s e t o f f u e l mate r i a l
seed ===> seed o f the pseudo=random genera to r

The outputs are the p o s i t i o n s o f the se neutrons
(f i r s t column unchanged) and t h e i r energy groups

de f s c a t t f u n c (a r r b i s , s labobj , f l i b o b j , mlibobj , seed) :

new gr = np . z e r o s (a r r b i s . shape)
new gr .T [0] = a r r b i s .T [0]

f o r gg in range (l en (a r r b i s)) :

i f s l abob j . l o c a t i o n (a r r b i s [gg] [0]) == ” Fuel ” :
new gr [gg] [1] =
np . argmax (
np . where (
f l i b o b j . mat cum scat [i n t (a r r b i s [gg] [1])] = seed . random ()
< 0))

i f s l abob j . l o c a t i o n (a r r b i s [gg] [0]) == ”Moderator ” :
new gr [gg] [1] =
np . argmax (
np . where (
ml ibobj . mat cum scat [i n t (a r r b i s [gg] [1])] = seed . random ()
< 0))

re turn new gr

Population controller - γ0

The case of multiprocessing is taken into account. So, the sum of the list of
detector matrices must take place.

import math

199

import numpy as np
import sys
sys . path . append (’ . ’)

LEGEND
f i s s 2 d a .T [0] ===> Column o f the matrix whose e lements
are the p o s i t i o n s o f the f i s s i o n s i t e s
f i s s 2 d a .T [1] ===> Column o f the matrix whose e lements
are neutrons emitted per f i s s i o n s i t e
sca t t 2da .T [0] ===> Column o f the matrix whose e lements
are the p o s i t i o n s o f the s c a t t e r i n g s i t e s
sca t t 2da .T [1] ===> Column o f the matrix whose e lements
are neutrons emitted per s c a t t e r i n g energy groups
s c a t t c o r d .T[0] ===> Column o f the matrix whose e lements
are the p o s i t i o n s o f the s c a t t e r i n g s i t e s
s c a t t c o r d .T[1] ===> Colum of the matrix whose e lements are
the energy group o f the neutrons a f t e r s c a t t e r i n g events
f l i b o b j ===> Data s e t o f f u e l mate r i a l
s l abob j ===> Domain d e f i n i t i o n ob j e c t
(with boundaries , mate r i a l q u a l i f i c a t i o n ,
de t e c t o r d e f i n i t i o n , . . . e t c)
old pop ===> Amount o f neutrons in the prev ious gene ra t i on
N0 ===> Amount o f neutrons in the 0=th gene ra t i on
seed ===> seed o f the pseudo=random genera to r

c l a s s P o p u l a t i o n c o n t r o l l e r :
de f i n i t (s e l f , f i s s 2 d a , scat t 2da ,

s ca t t coo rd , f l i b o b j , s l abobj , old pop , N0 , seed) :

s c t c o o r d = np . asar ray (s c a t t c o o r d)
inne r = s c t c o o r d [: , 0] != =2.
s c t c o o r d = s c t c o o r d [inne r]

Unify the sour c e s (F i s s i o n s and s c a t t e r i n g events separated)
in each de t e c t o r
s l abob j . de t mat r f =
np . sum(np . asar ray (f i s s 2 d a) , a x i s =0)
s l abob j . de t matr s =

200

np . sum(np . asar ray (s ca t t 2da) , a x i s =0)

Merge the 2 matr i ce s
det matr t =
s l abob j . de t mat r f + s l abob j . de t matr s

Sum the prev ious matrix
#to get the new populat ion generated
s e l f . new gene = np . sum(det matr t)

s e l f . o ld gene = old pop
s e l f . z e ro gene = N0

Compute the Gamma=e i g enva lue
s e l f . Gamma eig =
s e l f . new gene / s e l f . o ld gene

Compute the norma l i za t i on f a c t o r
f a c t = s e l f . z e ro gene / s e l f . new gene

#Compute the normal ized (’ f u tu r e old ’)
gene ra t i on and the e lements
f o r the Shannon entropy . Update
p o s i t i o n s , energy groups and d i r e c t i o n s
f o r the next random walks ; a l s o
compute d i f f e r e n t random number
genera to r f o r each new RW

s e l f . n ew born s i t e s = []
s e l f . new energy leve = []

Compute the C.O.M. (i f i t i s p o s s i b l e)
f o r the new gene ra t i on o f neutrons
s e l f .COM = 0

Normal izat ion and update o f p o s i t i o n
and energy group f o r the next RWs
f o r i i in range (s l abob j . num lay) :

201

f o r j j in range (s l abob j . d e t p e r r e g i o n) :

i f de t matr t [i i] [j j] == 0 . :
cont inue

Normalize each de t e c t o r source
s l abob j . norm matr t [i i] [j j] =
det matr t [i i] [j j] * f a c t
t o t n o r m s l o t =
i n t (
np . c e i l (
s l abob j . norm matr t [i i] [j j]))

l e f t e x =
s l abob j . m ends [i i] [0] +
j j * s l abob j . dx v [i i]
r i g h t e x =
s l abob j . m ends [i i] [0] +
(j j +1)* s l abob j . dx v [i i]

Update COM
s e l f .COM += ((l e f t e x + r i g h t e x)
* 0 .5 = s l abob j . xmid)
* t o t n o r m s l o t

Add the new p o s i t i o n s i n s i d e the de t e c t o r
s e l f . n ew born s i t e s =
np . append (
s e l f . new born s i t e s ,
seed . uniform (l e f t e x , r i gh t ex , t o t n o r m s l o t))

Before the normal i zat ion , in each
de t e c t o r the re was t h i s amount o f neutrons
t o t s l o t = det matr t [i i] [j j]

Before the normal i zat ion , in each de t e c t o r
there was t h i s amount o f f i s s i o n neutrons
f s l o t = s l abob j . de t mat r f [i i] [j j]

202

After the normal i zat ion , in each de t e c t o r
there must be t h i s amount o f f i s s i o n neutrons
f n o r m s l o t = i n t (np . c e i l (t o t n o r m s l o t * f s l o t /
t o t s l o t))

After the normal i zat ion , in each de t e c t o r
there must be t h i s amount o f s c a t t e r i n g neutrons
s no rm s l o t = t o t n o r m s l o t = f n o r m s l o t

Energy groups o f the new f i s s i o n neutrons ,
accord ing to the appropr ia t e cumulat ive
d i s t r i b u t i o n func t i on
i f f n o r m s l o t > 0 :

f o r kk in range (f n o r m s l o t) :
s e l f . new energy l eve = np . append (
s e l f . new energy leve ,
np . argmax (
np . where (
f l i b o b j . En f i s s cum = seed . random () < 0)))

How many s c a t t e r i n g neutrons
are the re in a c e r t a i n de t e c t o r ?
Of which energy group ?
l e v i n s l o t = []
f o r mm in range (l en (s c t c o o r d)) :

i f (s c t c o o r d [mm] [0] >= l e f t e x) and
(s c t c o o r d [mm] [0] <= r i g h t e x) :

l e v i n s l o t =
np . append (
l e v i n s l o t , s c t c o o r d [mm] [1])

I f the re i s no s c a t t e r i n g neutron in
t h i s de t e c t o r or t h e i r amount i s exac t l y
equal to the c o r r e c t normal ized
s c a t t e r i n g neut ron i c populat ion , the loop
w i l l cont inue with the a n a l y s i s o f the

203

next de t e c t o r a f t e r appending
the l e v i n s l o t vec to r to the one
of the gene ra l energy l e v e l s
i f (l en (l e v i n s l o t) == s no rm s l o t) or

(l en (l e v i n s l o t) == 0) :
s e l f . new energy l eve =
np . append (
s e l f . new energy leve , l e v i n s l o t)

cont inue

I f the re are s c a t t e r i n g neutrons in t h i s detec tor ,
the s c a t t e r i n g populat ion must be modi f i ed
in a p ro po r t i ona l
way accord ing to the percentage o f
the var i ous energy group o f the pre=normal ized
s c a t t e r i n g populat ion in t h i s
de t e c t o r
i f l en (l e v i n s l o t) != s no rm s l o t :

Def ine a vec to r whose e lements w i l l be
the number o f neutrons per each energy group
perc v = np . z e r o s (f l i b o b j . n gr)

Def ine a vec to r whose e lements w i l l be as much
as the normal ized s c a t t e r i n g
sourc e s in the de t e c t o r and
every element i s the energy group i t s e l f o f that
p a r t i c u l a r neutron (s i m i l a r to l e v i n s l o t)
l e v i n s l o t b = []

Def ine the cumulat ive o f perc v in order to
know which group has the
most neutrons in the de t e c t o r
and where to f i n d them in l e v i n s l o t b
cum v = np . z e r o s (l en (perc v) + 1)

Loop to f i l l up perc v
f o r ww in range (l en (perc v)) :

f o r r r in range (l en (l e v i n s l o t)) :

204

i f l e v i n s l o t [r r] == ww:
perc v [ww] += 1

Update cum v
cum v [ww+1] =
i n t (cum v [ww] + perc v [ww])

Update l e v i n s l o t b
nrm lev num =
i n t (np . c e i l (
(1 / l en (l e v i n s l o t)) * s no rm s l o t *

perc v [ww]))
l e v i n s l o t b =
np . append (l e v i n s l o t b , ww *

(np . ones (nrm lev num)))

The new number o f s c a t t e r i n g
neutrons (l e v i n s l o t b)
i s s u r e l y bigger , f o r rounding up ,
than the
c o r r e c t number (s no rm s l o t) :
The d i f f e r e n c e between
them (de l t a) i s c l e a r e d by k i l l i n g
de l t a neutrons from the most
repre s en ted energy group
cum v = np . d e l e t e (cum v , 0 , a x i s =0)

How many s c a t t e r i n g neutrons from the most
repre s en ted energy group must be de l e t ed ?
de l t a = i n t (l en (l e v i n s l o t b) = s no rm s l o t)

Which energy group has the b i g g e s t number
of neutrons ?
max ind = np . argmax (perc v)

Delete ’ de l ta ’ s c a t t e r i n g neutrons
from that energy group
f o r hh in range (de l t a) :

205

l e v i n s l o t b = np . d e l e t e (
l e v i n s l o t b , i n t (
cum v [max ind] = perc v [max ind]) , a x i s =0)

Append l e v i n s l o t b to
gene ra l energy l e v e l s vec to r
s e l f . new energy l eve = np . append (
s e l f . new energy leve , l e v i n s l o t b)

Update d i r e c t i o n s f o r the next RWs
s e l f . new cos ines =
seed . uniform (=1 , 1 , l en (s e l f . n ew born s i t e s))

Update the normal ized gene ra t i on counter
s e l f . norm new gene = len (s e l f . n ew born s i t e s)

Weighted average f o r C.O.M.
s e l f .COM /= s e l f . norm new gene

Compute S .E.
s e l f . Shannon en = 0

f o r i i in range (s l abob j . num lay) :
f o r j j in range (s l abob j . d e t p e r r e g i o n) :

i f s l abob j . norm matr t [i i] [j j] != 0 :
s e l f . Shannon en ==
(s l abob j . norm matr t [i i] [j j] /
s e l f . norm new gene) *

math . log2 (s l abob j . norm matr t [i i] [j j] /
s e l f . norm new gene)

Set the seeds f o r next RWs
ext r = i n t (np . c e i l (seed . random ()*1 e8))
s e l f . rnd sd v = seed . permutation (
np . random . d e f a u l t r n g (i) f o r i in range (
ext r * s e l f . norm new gene , (ex t r +1)* s e l f . norm new gene)])

Assemble these 4 new vec to r s in a matrix

206

s e l f . new gen matrix =
np . c [s e l f . new born s i t e s , s e l f . new energy leve ,
s e l f . new cos ines , s e l f . rnd sd v]

General algorithm - γ0- Multi-thread case

import matp lo t l i b . pyplot as p l t
import mu l t i p ro c e s s i ng as mp
import numpy as np
import sys
sys . path . append (’ . ’)
from Read data import Data s e t o rgan i z e r
from s l ab import Domain assembler
from cont ro l 1 import P o p u l a t i o n c o n t r o l l e r
from c o n t r o l 1 s import Populat ion contro l l e r symm
from postproc import S t a t i s t i c s e x e c u t o r
from primasource import I n i t i a l s o u r c e s e t t e r
from images import R e s u l t s v i s u a l i z e r
from f u n c t o o l s import p a r t i a l
import time

de f main () :
Def ine the domain : a multi=l a y e r s l ab
made o f a l t e r n a t i n g t h i c k n e s s e s o f f u e l
and moderator / r e f l e c t o r with t h e i r
r e s p e c t i v e l eng th s (expres sed in cm) .
Def ine the number o f d e t e c t o r s in the
every r eg i on and t h e i r t o t a l i n i t i a l amount .
The d e f i n i t i o n o f other inputs are wr i t t en in
c l a s s f i l e s (Domain and Mater ia l data ; s e e the re)

D e t e c t o r p e r l a y e r = 100
Neut or ig = 10000

State the seed f o r the pseudo=random genera t i on
of numbers f o r the MC
s imu la t i on (to be passed to every func t i on

207

and c l a s s)
rng = np . random . d e f a u l t r n g (81)

Reactor = Domain assembler ([’ Moderator ’ , ’ Fuel ’ , ’ Moderator ’] ,
[5 . 6 30757 , 9 .726784 , 5 . 630757] , De t e c t o r p e r l a y e r , rng)

Read the data from the given f i l e s and organ i z e
them accord ing to the chosen number o f energy groups
Num en group = 2
Comb =
Data s e t o rgan i z e r (’ s o o d f u e l . txt ’ , Num en group)
Moder =
Data s e t o rgan i z e r (’ s o o d r e f l e c t o r . txt ’ , Num en group)

Symmetry f l a g
flag symm = 0

I s the s l ab symmetric ? Def ine the number
of i n i t i a l neutrons in each de t e c t o r .
Spec i f y the geometry , the
neut ron i c d i s t r i b u t i o n and the
angular d i r e c t i o n o f the source
i f Reactor . i s symmetr ic () == True :

Gen zero = I n i t i a l s o u r c e s e t t e r (
Comb, Reactor , Neut or ig , rng , ’ Symmetric ’ ,
’ F i s s i on=source=l i k e ’ , ’ S tochas t i c ’)
flag symm = 1

e l s e :
Gen zero = I n i t i a l s o u r c e s e t t e r (
Comb, Reactor , Neut or ig , rng ,
’Non=symmetric ’ , ’ Uniform ’ , ’ S tochas t i c ’)

Get the p o s i t i o n s o f the 0=th gene ra t i on o f
neutrons (f i r s t column o f the source matr ix) , t h e i r energy
groups (second column) and t h e i r d i r e c t i o n s
(th i rd column) from the ob j e c t de f ined above ;
Generate one random number genera to r seed

208

per s t a r t i n g neutron to avoid sampling the same
neutrons mu l t ip l e t imes
ext r = i n t (np . c e i l (rng . random ()*1 e8))
rngs = rng . permutation (
[np . random . d e f a u l t r n g (i) f o r i in range (
ext r *Neut or ig , (ex t r +1)*Neut or ig)])
s t a r t i n p u t s = np . c [
Gen zero . s t a r t p o s i t i o n s , Gen zero . s t a r t e n e r g i e s ,
Gen zero . s t a r t d i r e c t i o n s , rngs]

State the number o f i n a c t i v e c y c l e s f o r the
Monte Carlo computation o f e i g enva lue Gamma and
the Shannon entropy o f the neut ron i c sources ,
a l s o the ve c t o r s f o r random v a r i a b l e s
I n a c y c l e s = 0
I n a c y c l e s s h = 0
Gamma vect = []
S en t r g = []
COM vec = []

Impose the e r r o r s and the r e l a t i v e t o l e r a n c e s
f o r Gamma and Shannon entropy
e r r o r 1 = 1
e r r o r 2 = 1

t o l 1 = 0.00001
t o l 2 = 0.001

I n i t i a l i z e the populat ion and the matrix f o r the MC
c a l c u l a t i o n updates (1 s t row Sample average ,
2nd row Second order moment , 3 rd row Variance ,
4th row RSD, 5 th row e r r o r bar)
f o r Gamma and Shannon entropy ,
the t o t a l number o f c y c l e s aand the number o f
a c t i v e c y c l e s f o r MC computation (f o r Gamma and Shannon entropy)
c y c l e = 0
Act cyc l e s = 0
MC Gamma matr = np . empty ((5 , 1))

209

MC Shan matr = MC Gamma matr . copy ()

I n i t i a l i z e the ’ old ’ populat ion and the time
needed f o r complete the reques ted c a l c u l a t i o n
old popu = Neut or ig
t ime to t = 0

State the minimum number o f a c t i v e
c y c l e s and the maximum one
min n = 200
max n = 250

Modify the f u n c t i o n s o f random walk and f i s s i o n
in order to have only a v a r i a b l e input (the i t e r a b l e f o r
the p a r a l l e l i z a t i o n)
i f flag symm == 1 :

Random walk f i s s s ca t g par = p a r t i a l (
Random walk g symm , f l i b o b j = Comb, ml ibobj = Moder)

e l s e :
Random walk f i s s s ca t g par = p a r t i a l (
Random walk g , f l i b o b j = Comb, ml ibobj = Moder)

State the number o f p r o c e s s o r s invo lved in the p a r a l l e l i z a t i o n
omp = mp. cpu count ()

Star t the whi l e loop f o r Gamma=e i g enva lue c a l c u l a t i o n
whi le ((e r r o r 1 > t o l 1) or (Ac t cyc l e s < min n)) and

(Ac t cyc l e s < max n) :

Star t the t imer
t1 = time . time ()
c y c l e += 1
pr in t (’ Cycle number ’ , c y c l e)

For the S .E. every c y c l e i s a c t i v e
A c t c y c l e s s h = c y c l e

Random walk beg ins and then t a l l y i n g

210

i f f lag symm == 1 :
P a r a l l e l i z a t i o n o f the ’ Symmetric ’ RW func t i on
pool = mp. Pool (omp)
o1 , o2 , o3 = z ip (
*pool .map(
Random walk f i s s s cat g par , s t a r t i n p u t s))

Tal ly ing , Sor t ing and c o n t r o l l i n g
the neut ron i c populat ion
Computing the Gamma=e igenva lue ,
S .E. and other q u a n t i t i e s
r e s u l t s =
Populat ion contro l l e r symm (
o1 , o2 , o3 , Comb, Reactor , old popu , Neut or ig , rng)

e l s e :
P a r a l l e l i z a t i o n o f the RW func t i on
pool = mp. Pool (omp)
o1 , o2 , o3 = z ip (
*pool .map(
Random walk f i s s s cat g par , s t a r t i n p u t s))

Tal ly ing , Sor t ing and c o n t r o l l i n g
the neut ron i c populat ion
Computing the K=e igenva lue ,
S .E. and other q u a n t i t i e
r e s u l t s =
P o p u l a t i o n c o n t r o l l e r (
o1 , o2 , o3 , Comb, Reactor , old popu , Neut or ig , rng)

Updating inputs f o r the next i t e r a t i o n
old popu = r e s u l t s . norm new gene
s t a r t i n p u t s = r e s u l t s . new gen matrix

Add the r e s u l t s o f the running loop
to the r e s p e c t i v e ar rays
Gamma vect =
np . append (
Gamma vect , r e s u l t s . Gamma eig)

211

S en t r g =
np . append (
S entr g , r e s u l t s . Shannon en)
COM vec =
np . append (
COM vec , r e s u l t s .COM)

pr in t (’Gamma: ’ , r e s u l t s . Gamma eig)
p r i n t (’ S .E . : ’ , r e s u l t s . Shannon en)

Set de t e c t o r matr i ce s to zero
f o r the next i t e r a t i o n
i f flag symm == 0 :

Reactor . de t matr s =
np . z e r o s ((Reactor . num lay ,
Reactor . d e t p e r r e g i o n))
Reactor . de t mat r f =
Reactor . de t matr s . copy ()

e l s e :
Reactor . d e t m a t r s s =
np . z e r o s (
(Reactor . num lay s , Reactor . d e t p e r r e g i o n))
Reactor . d e t m a t r f s =
Reactor . d e t m a t r s s . copy ()

Compute the update o f the s t a t i s t i c a l
measurements and add them to the
appropr ia t e array (S .E .)
sh prc =
S t a t i s t i c s e x e c u t o r (
S entr g , Ac t cyc l e s sh , I n a c y c l e s s h)
MC Shan matr =
np . append (
MC Shan matr , sh prc . MC update , a x i s =1)

i f sh prc . MC update [2] > 0 . :
Update the value o f the e r r o r (S .E .)
e r r o r 2 = sh prc . MC update [3]

212

pr in t (’ Error o f S .E . : ’ , e r r o r 2)

i f (e r r o r 2 > t o l 2) or (c y c l e <= 1 0) :
Build up the number o f i n a c t i v e
c y c l e s u n t i l the appropr ia t e
cond i t i on i s not s a t i s f i e d
I n a c y c l e s += 1

Since at the f i r s t i t e r a t i o n s the e r r o r can
randomly f l u c t u a t e below the to l e rance ,
a minimum number o f c y c l e
i s needed to avoid t h i s
i f (e r r o r 2 <= t o l 2) and (c y c l e > 1 0) :

Updating o f the number o f a c t i v e c y c l e s
Ac t cyc l e s = c y c l e = I n a c y c l e s

Compute the update o f the s t a t i s t i c a l
measurements and add them to the
appropr ia t e array (Gamma=e i g enva lue)
p prc =
S t a t i s t i c s e x e c u t o r (
Gamma vect , Act cyc l e s , I n a c y c l e s)
MC Gamma matr =
np . append (
MC Gamma matr , p prc . MC update , a x i s =1)

i f p prc . MC update [2] > 0 . :
Update the value o f the
e r r o r (Gamma=e i g enva lue)
e r r o r 1 = p prc . MC update [3]
p r i n t (’ Error : ’ , e r r o r 1)

Stop the t imer
t2 = time . time ()
p r i n t (” This c y c l e took ” , (t2 = t1) ,” seconds ”)
p r i n t (’\n ’)

213

Increment o f the time
needed to run the ope ra t i on s
t ime to t += (t2 = t1)

Tot cyc l e s = c y c l e
MC Gamma matr =
np . d e l e t e (MC Gamma matr , 0 , a x i s =1)
MC Shan matr =
np . d e l e t e (MC Shan matr , 0 , a x i s =1)

Print the s i g n i f i c a n t r e s u l t s
p r i n t (” Total number o f c y c l e s : ” , Tot cyc l e s)
p r i n t (’\n ’)
p r i n t (”Number o f a c t i v e c y c l e s : ” , Ac t cyc l e s)
p r i n t (’\n ’)
p r i n t (”Number o f i n a c t i v e c y c l e s : ” , I n a c y c l e s)
p r i n t (’\n ’)
p r i n t (” Total durat ion : ” , t ime tot , ” seconds ”)
p r i n t (’\n ’)
p r i n t (” Average c y c l e durat ion : ” , t ime to t / Tot cyc l e s , ” seconds ”)
p r i n t (’\n ’)
p r i n t (”Gamma=e i g enva lue : ” ,
MC Gamma matr [0] [=1] , ”+=”, MC Gamma matr[=1] [=1])

Plot a l l the char t s
p k = R e s u l t s v i s u a l i z e r (COM vec , Gamma vect ,
MC Gamma matr [0] ,
MC Gamma matr [1] ,
MC Gamma matr [2] , MC Gamma matr [3] , MC Gamma matr [4] ,
I n a c y c l e s , Tot cyc l e s , ”\u03B30 Eigenvalue ”)
p s = R e s u l t s v i s u a l i z e r (COM vec , S entr g ,
MC Shan matr [0] , MC Shan matr [1] ,
MC Shan matr [2] , MC Shan matr [3] , MC Shan matr [4] ,
I n a c y c l e s s h , Tot cyc l e s , ”Shannon Entropy ”)

p l t . show ()

214

i f name == ” main ” :
main ()

215

Bibliography

[1] Haghighat A. Monte Carlo Methods for Particle Transport. 2nd ed.
Boca Raton, Florida: CRC Press, Taylor & Francis Group, 2021.

[2] Burrone M. Study of eigenvalue formulations in the PN approximation
of the neutron transport equation. Master Thesis, Politecnico di Torino,
2018.

[3] Courant R. and Hilbert D. Methods of Mathematical Physics vol.1. New
Rochelle, New York: Interscience Publishers, Inc., 1953.

[4] Abrate N. et al. “On some features of the eigenvalue problem for the
PN approximation of the neutron transport equation”. In: Annals of
Nuclear Energy 163.108477 (2021), pp. 3–10.

[5] Montgomery D.C. and Runger G. C. Applied Statistics and Probability
for Engineers. 3rd ed. New York, New York: John Wiley & Sons, Inc,
2003.

[6] Ross S. M. Introduction to probability and statistics for engineers and
scientists. 3rd ed. Burlington, Massachusetts: Elsevier, 2004.

[7] Dulla S. Lecture notes in Monte Carlo Methods. 2019-2020.

[8] Kuhlman D. A Python Book: Beginning Python, Advanced Python, and
Python Exercises. MIT Press, 2013.

[9] von Mises R. and Pollaczek-Geiringer H. “Praktische Verfahren der
Gleichungsauflösung, (German) [Practical methods of solving equa-
tions]”. In: Zeitschrift für Angewandte Mathematik und Mechanik, (Ger-
man) [Journal of Applied Mathematics and Mechanics] 9.58–77 (1929),
pp. 152–164.

[10] Sood A., Forster R. A., and Parsons D. K. “Analytical Benchmark Test
Set For Criticality Code Verification”. In: Progress in Nuclear Energy
42.1 (2003), pp. 55–106.

216

[11] Wulandari H., Jochum J., and von Feilitzsch. “Neutron flux at the Gran
Sasso underground laboratory revisited”. In: Astroparticle Physics 22.3–
4 (2003), pp. 313–322.

[12] Spanier J. and Gelbard E. M. Monte Carlo Principles and Neutron
Transport Problems. Reading, Massachusetts: Addison-Wesley Publish-
ing Company, 1969.

[13] Kindler E. and Krivy I. “Object-Oriented Simulation of systems with
sophisticated control”. In: International Journal of General Systems
40.3 (2011), pp. 313–343.

[14] Montagnini B. Appunti del corso di Trasporto dei neutroni. 1999-2000.

[15] Nowak M. et al. “Monte Carlo power iteration: Entropy and spatial
correlations”. In: Annals of Nuclear Energy 94 (2016), pp. 856–868.

[16] Brown F. et al. “Reactor Physics Analysis with Monte Carlo”. In: ANS
PHYSOR-2010 Conference Workshop, 9 May 2010, Pittsburgh, PA.
2010.

217

