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Abstract 
Model-based Systems Engineering (MBSE) is a turning point for companies in the 
manufacturing and engineering sectors that in recent years have increasingly understood 
the need to digitize themselves, satisfy the growing demand to produce new technologies, 
supply quality products and services in a short time with low costs. Its use could also 
bring benefits to the development of CubeSat missions, which until now has been done 
through document-based approaches. This thesis aims to improve and enrich the first 
phases of the SROC (Space Rider Observer Cube) space mission project, a small satellite 
capable of rendezvous and docking, through the construction of models to describe its 
different areas and realize through reverse engineering an MBSE procedure for similar 
missions. To achieve this goal, an overview of the MBSE state of the art was initially 
outlined, researching the main methodologies, languages and tools, to understand what 
potential advantages or challenges could derive from this approach, focusing on the 
functionality of the software Capella, a tool that implements the Arcadia (Architecture 
Analysis and Design Integrated Approach) methodology and Valispace. These were 
selected after a simple trade-off study based on bibliography and practical experience 
and were used for the SROC mission. Capella was used to create models related to 
stakeholders and needs analysis, functional analysis, the construction of logical and 
physical architecture, Valispace, for the collection and management of requirements, to 
define the mission architecture, implementing the characteristics physical components, 
and to obtain, also thanks to the use of add-ons, mass, volume, power, energy and link 
budget. Finally, through a process of abstraction, a procedure was provided, usable as a 
guide, to carry out, in the best possible way, future model-based missions projects for 
small satellites. 
The systems engineer, following this guide, will be able to develop, in a simple, quick and 

intuitive way, by making the appropriate modifications, the initial phases of his interest 

space project. 
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1 Introduction 

1.1 Context, objectives and outline of the research project 

The thesis is carried out in the framework of the Space Rider Observer Cube (SROC) 

mission, funded by the European Space Agency (ESA) and by the Agenzia Spaziale 

Italiana (ASI). The mission consists of a CubeSat that will be carried into orbit stowed 

inside Space Rider (SR), new reusable ESA space transport, and will perform, after the 

deployment, formation flying, observation of the mothercraft, and at the end,  

rendezvous and docking with the mothercraft herself. 

The research aims at assessing whether and how the Model-Based Systems Engineering 
(MBSE) approach can help during the early design phases of a space mission. The thesis 
tries to achieve this through five chapters. 
 
The first chapter focuses on providing to the reader pieces of information relating to the 
context in which the thesis will be located, the world of CubeSats,  SR, SROC missions 
and systems engineering. 
 
The second chapter will show an overview of the main methodologies, languages, and 
tools that support MBSE, analysing what potential benefits or challenges might come 
from this approach. The environments that best fit the mission features to develop, after 
a trade-off study, based on bibliography and practical experience, will be selected. 
 
In the third chapter the thesis, furthermore, will focus on the development of an MBSE 
model, through the selected tools, for a rendezvous and docking mission between a small 
satellite (SROC), which will be the main character of the study, and an orbiting platform 
(SR). The system will be implemented considering requirements, operational, 
functional, and physical aspects. 
 
The fourth chapter will be based on the creation of a model-based procedure, provided 
through a process of abstraction from the previous model, that can be understood as a 
canvas or advice, to carry out in the best way future missions designs for small satellites 
during the first phases of the project. 
 
Finally, the fifth chapter will concern the conclusions that will be drawn from the work 
carried out. 

1.2 CubeSat 

A CubeSat is a miniaturized spacecraft belonging to the class of nanosatellites, born in 
1999 from the collaboration between Professor Jordi Puig-Suari, of California 
Polytechnic State University at San Luis Obispo, and Professor Bob Twiggs, of Stanford 
University, with the purpose of “creating a platform for education and space exploration” 
[1], [2]. For their construction, a standard is followed, called the “CubeSat standard”, 
which defines the external dimensions of the satellite within several cubic 𝑈 units of 
10 𝑐𝑚 𝑥 10 𝑐𝑚 𝑥 11.5 𝑐𝑚 [3]. Each unit has on average a mass that can reach up to 1.33 𝑘𝑔 
[1]. 
Today we can speak of a real “CubeSat movement” as universities and companies 
collaborate in the design of these satellites trying to integrate increasingly technological 
scientific payloads and to draw as much information as possible from the missions 
previously carried out [2]. 
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The CubeSats are modular and integrated systems whose components are constituted 
most of the time by COTS, which guarantee to access economically and in a simple way 
in space through small sizes, lower costs, lower production and development times [3], 
[4]. Generally, a project for CubeSats is carried out, according to ESA estimates, in two 
years. The entire mission, on the other hand, can have a cost ranging from fifty thousand 
dollars up to several million dollars depending on its complexity [2], [3]. 
Space agencies are investing in this class of vehicles as, in addition to the various benefits 
listed above, it allows to do in-orbit demonstrations of technological components and 
new flight techniques (formation flight, rendezvous and docking), to make scientific 
investigations, to lead to miniaturization of components and the creation of highly 
integrated subsystems, to carry out measurements and observations in the vicinity of 
other orbiting bodies, to increase the possibility of exploring the solar system and to 
generate redundancy of functionality when in the fleet, to be sent into orbit through 
containers inside a mothercraft reducing risks and increasing the chances of launch [1], 
[3]. 
The presence of many subsystems and payloads in small spaces, the need to limit 
consumption and the reduced budget means that systems engineering, also through the 
“model-based”, can be of great importance for the development of the mission [2], [4]. 

1.3 Rendezvous and docking 

The rendezvous and docking phases take place between a tracker satellite, which in most 

cases plays an active role, called “chaser”, and a satellite (usually passive) or a celestial 

body, which can be reached, called “target”, and are carried out through different orbital 

manoeuvres and controlled trajectories [5]. 

After having brought the chaser to the desired orbital plane (launching), to perform the 

rendezvous manoeuvre, a “phasing”, a far-range rendezvous, a close-range rendezvous 

and a final approach manoeuvre are usually accomplished. In most cases, a reference 

system centred on the earth is used for launching and phasing phases, while for the 

others a relative reference system Local-Vertical-Local-Horizontal (LVLH) is used, with 

the origin coinciding with the centre of mass of the target [6]. 

The phasing manoeuvre is realized by the chaser activating the navigation sensors. The 

goals of this phase are to adjust the phase angle between the two satellites, to start 

relative navigation by reducing any differences between the orbital planes and to 

decrease the difference in altitude between the two vehicles, at diverse altitudes at the 

beginning of the phase [6]. 

The far-range rendezvous manoeuvre, also known as “homing”, is necessary for the 

chaser to achieve the target orbit, reducing its relative speed and “trajectory dispersions”, 

“synchronizing the mission timeline” [6], [7]. At the end of this phase, an “hold point” is 

reached, a point in which the satellite can remain without consuming propellant. The 

distance between the two satellites and the position of the chaser in the hold point 

depends on the requirements imposed by the target [5]. 

The close-range rendezvous phase is performed to further reduce the distance between 

the two satellites, reaching a position, an attitude, a relative speed, and an angular rate 

necessary to execute the final approach. The main differences with the far-range 

rendezvous manoeuvre are related to the position and final speed. This phase can be 

carried out in different ways by manoeuvres along the V-bar or R-bar axes [5],[7]. 
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After these stages, the “final approach” begins, in which the chaser follows a straight or 

almost straight-line trajectory, using closed-loop controls, inside a safety conical region 

called “approach cone”, to reach the mating necessary conditions (position, speed, 

attitude and angular speeds) [6]. 

Depending on the satellites docking or berthing can be executed to mate the vehicles. 

Docking if the two vehicles come into contact with capture interfaces, berthing if the 

mating occurs thanks to a robotic arm, which one of the two satellites can be equipped 

with [5]. 

In the case of docking, any misalignments and rebound effects related to the impact 

between the two interfaces must be taken into account. When the satellites come into 

contact rightly, rigid mechanical and electrical connections can be made [5]. 

1.4 Space Rider 

Space Rider is an “automated”, “reusable”, “independent” and “economical” integrated 

space transport vehicle without a crew, with a load capacity of 800 𝑘𝑔, useful to reach 

low Earth orbit and return to Earth [8],[10].  

SR has been conceived as the heir of the IXV shuttle thanks to an agreement signed by 

ESA, Thales Alenia Space and the European Launch Vehicle consortium, of which Avio 

and ASI belong as well as manufacturers, research centres and universities [8], [9].  

SR will reach low Earth orbit through the ESA VEGA C vector starting from the Kourou 

Spaceport, located in French Guiana and will be able to remain in orbit for up to two 

months and then re-enter the Earth's atmosphere and land. The vehicle could be 

refurbished and used up to six times [8],[10].  

Following the “User Guide” released by ESA, the vehicle was designed to guarantee, for 

payloads in the cargo bay, “prolonged exposure to space environments in microgravity 

presence, an opening hold able to point payloads towards the Earth or deep space, very 

accurate pointing capability (Nadir and Zenith), reduced safety constraints with respect 

to manned operations, the possibility of using different flight and ground services, lower 

flight times and costs than competitors”. 

Furthermore, the main applications for which it has been designed are: 

• demonstration and validation of technology for robotic exploration, Earth 
observation, in-orbit infrastructure maintenance, telecommunications, and 

scientific studies; 

• experiments in the presence of microgravity for pharmaceutical, biomedical, and 

biological purposes; 

• satellite inspections; 

• educational missions; 

• inquiry on access to and return from space [8], [10], [11]. 
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Figure 1: Space Rider [9] 

1.5 SROC Mission 

The SROC (Space Rider Observer Cube) mission statement explains how this consists in 

the distribution and management of “a CubeSat in LEO to support Space Rider 

operations through multispectral and visual observations, taken in the vicinity of the 

vehicle, during the orbital phase” with the additional purpose of “improving the CubeSats 

capabilities in the domain of proximity operations”[7]. 

As highlighted in the document “Patrioli L., Corpino S., D1.1 Assessment of the SROC 

mission and preliminary functional specification, 2020”, the mission, therefore, has the 

following main objectives: observation through unprecedented images of SR and the 

demonstration of technologies and functions to carry out formation flight through a 

focus on “proximity navigation, guidance and control capabilities and communication 

architecture”. In addition, the mission proposes to achieve an optional objective which 

consists of the “ability to recover and reuse the CubeSat in orbit” [7]. 

In general, the concepts behind the SROC mission are the transport by Space Rider and 

the release of a 12U CubeSat equipped with multispectral cameras and advanced 

technology to carry out the mission safely, a subsequent phase of mothercraft 

observation and an optional phase of re-entry, through the use of a docking mechanism, 

into a dispenser installed on SR, called MPCD (Multi-Purpose CubeSat Dispenser), the 

return to the ground, avoiding any collisions throughout the mission [7]. 

The development plan for the entire project foresees a flight opportunity in mid-2023 

[12]. 

1.6 ECSS and SROC design phases  

Project planning and implementation encompass all the carried-out processes to plan 

and execute a space project from initiation to completion at all levels in the customer-

supplier chain in a coordinated, efficient, and structured manner. Usually, a space 

project involves several actors with different characteristics, and it lasts for many years. 

For these reasons, it is necessary to implement a structured process to execute the 

program [13]. 

The term “Systems engineering life cycle” is used in SE to describe all the processes 
involved in the evolution of a system, starting from its conception and ending with its 
disposal.  
The INCOSE SE Handbook defines a life cycle as “the series of stages through which 
something (a system or a manufactured product) passes”. “The life cycle of any system 
must encompass not only the development, production, utilization and support stages 
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but also provide early focus on the retirement stage when the decommissioning and 
disposal of the system occurs”[14]. 
 
Various life cycle models have been defined by key players like the European Space 
Agency (ESA), the National Aeronautics and Space Administration (NASA), the US 
Department of Defense (DoD).  
Following the ECSS-M-ST-10C_Rev.1 (6 March 2009) by ESA a life cycle mission is 

composed of seven phases, closely linked to activities on system and product level: 

• phase 0 – Mission analysis/needs identification; 

• phase A – Feasibility; 

• phase B – Preliminary Definition; 

• phase C – Detailed Definition; 

• phase D – Qualification and Production;  

• phase E – Utilization; 

• phase F – Disposal; 

As can be seen in Table 1 project phases include project reviews (e.g. MDR, PRR, etc.) 

that determine the readiness of the design to move to the next phase [15]. 

 

Table 1: Typical project lifecycle [15] 

Phases 0, A and B comprise the delineation of system functional and technical 

requirements and the identification of system concepts based on stakeholders' needs, an 

elaboration of initial risk assessments, the description of the activities and resources to 

be used, and the beginning of pre-development activities. 

Phases C and D are focused on the development and qualification of the space and 

ground segments. A key point of this stage is to implement and integrate the initial 

systems and verify and validate systems such that they can be produced. 

Phases E comprises the activities related to launching, commission, utilisation and 

maintenance of the orbital elements and associated ground segment elements. 
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Phases F comprises activities to safely dispose all products launched into space as well 

as ground segment [13]. 

The Vee model, defined in INCOSE SE Handbook as “a sequential method used to 
visualize various key areas for SE focus”, provides a useful illustration of the SE activities 
during the life cycle stages [14]. 
 
Phase 0/A studies have already been faced for the SROC mission. They were conducted 

with the objectives of “identifying the needs and requirements for a mission composed 

by one or more nanosatellites flying in the vicinity of a target vehicle, determining new 

technological solutions, architectures and mission concepts, defining the development 

plan of the project until completion” [12]. 

The entire work led to the definition of the mission and the system through the 

identification of the main challenges to realize (proximity navigation, propulsion, 

observation, deployment, and recovery mechanism) [12]. 

The thesis, instead, focuses on the new phases that must be developed by the project: a 

delta phase A and a phase B1, trying to propose “model-based” solutions for the 

management of data, files, requirements, interfaces, components and budgets.  

The main tasks that must be performed by the entire design team, considering the ECSS-
M-ST-10C_Rev.1 and the SoW published by ESA, are: 

• “Confirm technical solutions for the system and operations concepts and their 
feasibility with respect to programmatic constraints. 

• Conduct trade-off studies and select the preferred system concept, together with 

the preferred technical solutions. 

• Establish a preliminary design definition for the selected system concept and the 
retained technical solutions. 

• Determine the verification program including model philosophy. 

• Identify and define external interfaces. 

• Prepare the next level specification and related business agreement documents. 

• Initiate pre-development work on critical technologies or system design areas. 

• Conduct reliability and safety assessment. 

• Update the risk assessment” [12], [15]. 

The project reviews associated with Phase B are: 

• The SRR (System Requirements Review) where updated technical requirements 

specification will be released, the preliminary design definition and the 

preliminary verification plan will be assessed. 

• The PDR (Preliminary Design Review) where it will be verified that the 
preliminary design meets the project requirements and a series of deliverables 

are realized, such as system requirements and final management, engineering, 

and product assurance plans, product tree, WBS, the specification tree and the 

verification plan [15]. This review will be faced at the end of a subsequent phase 

of the project, other than the B1.                                                            
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1.7 Systems Engineering  

The INCOSE SE Handbook defines Systems Engineering (SE) as “an interdisciplinary 
approach and a means to enable the realization of successful systems” that “deals with 
designing and managing systems over their lifecycle, starting from the system 
conceptualization phase till its disposal. It focuses on defining customer needs and 
required functionality early in the development cycle, documenting requirements, and 
then proceeding with design synthesis and system validation while considering the 
complete problem: operations, cost and schedule, performance, training and support, 
test, manufacturing, and disposal. SE integrates all the disciplines and speciality groups 
into a team effort forming a structured development process that proceeds from concept 
to production and operation. SE considers both the business and the technical needs of 
all customers with the goal of providing a quality product that meets the user needs”[14]. 
 
Reading these sentences, it is necessary to clarify the term “system”. A “system” can be 
defined as a combination of different elements that work together, to perform a certain 
required function, producing results not obtainable by the single element. The aerospace 
systems, for example, are complex “machines” composed of thousands of parts with 
millions of interactions that operate to fulfil some necessary tasks for society (i.e. 
transmit messages, provide energy, transport people and cargo) [13], [16]. 
 
The origin of systems engineering is to be found in “systems thinking”, a matchless 
perspective of reality that leads to approaching a problem or a simple question as if this 
were a system.  A perspective thanks to which a “system thinker”, through discovery, 
learning, diagnosis, and dialogue, can identify and manage in everyday life the parts and 
the relationships that make up the present systems and also the systems as a whole [14], 
[16]. 
 
Systems engineering is therefore a holistic approach, based on tradeoffs, that wants to 
favour the optimization of the project as a whole and not one system rather than another, 
which aims to achieve the right balance between operational, economic, and logistical 
factors. And this happens to reach an economically advantageous and quality solution, 
respecting the imposed requirements, being able to satisfy the customer, not neglecting 
the business and technical needs [2], [16], [17]. 
As NASA Systems Engineering Handbook states, the contributions of various disciplines 
such as electrical engineering, structural engineering, energy engineering, mechanism 
design, human factors engineering, and others are evaluated and equilibrated “to 
produce a coherent whole that is not dominated by the perspective of a single discipline” 
[18]. 
 
Systems engineering consists, in the end, in a succession of phases that include 
numerous iterations of functional analysis, synthesis, optimization, definition, design, 
testing, and evaluation; to ensure the compatibility of the different interfaces between 
the various subsystems and between the system and the environment in which it will 
operate. 
 
Today SE is used in various fields and manages increasingly complex systems that, over 
the years, have required the use of a new formalized method, different from document-
based (where the leading actors are physical documents used to manage and pass system 
information), to carry out the activities: the model-based approach. A method that has 
its roots in software engineering and uses computerized documents rather than physical 
[16]. 
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2 Model-Based Systems Engineering 

In the last twenty years, the digitalization, the need to satisfy the technological demands 

of industries, the competition between different companies in the engineering and 

manufacturing sector have increasingly pushed the various organizations to improve 

themselves, to provide products and services of higher quality and to launch products on 

the market quicker reducing costs. These objectives have prompted system engineering, 

as previously mentioned, to invest in the advantages brought by the model-based 

approach rather than the traditional document-based one [19], [20]. 

The document-based method, in particular, focuses on the generation of information or 

specifications concerning the system in the form of documents, which can reach very 

large numbers for complex projects, i.e., a satellite design. The vastness of documents 

and the complexity of the pieces of information they contain lead in most cases to 

complications related to their management and their updating. Indeed, it is necessary to 

avoid different people working simultaneously on different update releases of the same 

document, eliminating communication problems [14], [21].  

As E. Burger, in his doctorate thesis “A conceptual MBSE framework for satellite AIT 

planning”, writes: “sometimes different documents carry the same information, and 

sometimes both pieces of information do not match, which may cause unexpected 

outcomes”.  

The model-based system engineering, instead, is defined by INCOSE Systems 
Engineering Vision 2020 as “the formalized application of modelling to support system 
requirements, design, analysis, verification, and validation activities beginning in the 
conceptual design phase and continuing throughout development and later life cycle 
phases”[14]. 
 
MBSE formalizes the practice of systems engineering using coherent, integrated, and 

complete computerized models [22] of physical systems and processes [23], that 

represent an abstract vision of reality [21] and lead to several improvements. 

The advantages associated with the MBSE are different, among them we can find: 
 

• the optimization of communication between designers with different 
backgrounds but also between designers and customers thanks to better data 
sharing and better exchange of information [14], [21]; 

• an improvement in the management of system complexity, with a consequent 
understanding of the impacts associated with any changes, minimizing the 
risks facing solution limitations [14], [21], [24]; 

• the possibility of providing a unique system model that guarantees higher 
product quality [14].; 

• an improvement of productivity, with a reduction in terms of time and costs, 
thanks to the recycling of the created models and the traceability of 
requirements [14], [24]; 

• the ability to teach and learn MBSE concepts more easily thanks to the use of 
standardized models [14]. 
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2.1.1 Definition of methodologies, process, tool, method 

The implementation of MBSE, to design successfully a project, is based on applying the 
right methodology, consisting of “processes”, “methods” and “tools”, for which, to 
understand the meaning, a clear definition of all these terminologies is needed. 
Indeed, with reference to the study by A. Albers and C. Zingel, “Challenges of model-
based systems engineering: A study towards unified term understanding and the state of 
usage of SysML”, it is essential to define the significance attributed to these terms as 
there are many “ambiguities” and “semantic discrepancies” between “academia” and 
“industry” [16], [25], [26]. 
Clear definitions of these terms are provided in J. Estefan, “Survey of Model-Based 
Systems Engineering (MBSE) Methodologies, 2008” according to which: 

• “A Process (P) is a logical sequence of tasks performed to achieve a particular 
objective. A process defines “WHAT” is to be done, without specifying “HOW” 
each task is performed. The structure of a process provides several levels of 
aggregation to allow analysis and definition to be done at various levels of detail 
to support different decision-making needs” [25]. 

 

• “A Method (M) consists of techniques for performing a task, in other words, it 
defines the “HOW” of each task. At any level, process tasks are performed using 
methods. However, each method is also a process itself, with a sequence of tasks 
to be performed for that particular method. In other words, the “HOW” at one 
level of abstraction becomes the “WHAT” at the next lower level” [25]. 

 

• “A Tool (T) is an instrument that, when applied to a particular method, can 
enhance the efficiency of the task; the purpose of a tool should be to facilitate the 
accomplishment of the “HOWs”. In a broader sense, a tool enhances the “WHAT” 
and the “HOW””[25]. MBSE is mainly based on tools, which in most cases are 
software, allowing creating models using appropriate languages. Today the 
market permits to select, given the great variety, the tool that best suits designers’ 
needs, considering the “strengths” and “weaknesses” of the software. It is 
fundamental to consider there is no possibility to adopt the MBSE without a 
specific tool [21], [27].                                                                                           

 
Thanks to these definitions, it is possible to characterize the methodology as the set of 
processes, methods and tools that allows model-based techniques to be applied in the 
different project phases. 
A methodology is defined as “a “recipe” to be applied to a class of problems that have 
something in common” [25]. 
J. Estefan also remembers how the concept of “environment” (E) is related to the 
definitions previously provided. The environment is understood as everything that 
surrounds us: “external objects”, “conditions” (i.e. “social”, “cultural”, “personal”, 
“physical”, “political”) and “factors” that can influence the choices of a community [25]. 
Therefore, the MBSE environment must allow the integration of the tools and methods 
used in a project, enabling the “WHAT” and the “HOW” [16], [25]. 
Figure 2 is a visual diagram showing the PMTE elements (process, methods, tools, 
environment) and their links with technology and people, elements to always consider in 
every project[25]. 
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Figure 2: The PMTE Elements and Effects of Technology and People [25] 

 

2.2 Methodologies, languages and tools 

After having made the necessary clarifications and definitions, it is now possible to 

describe the characteristics of the main methodologies, tools and languages present in 

the literature. 

2.2.1 IBM Harmony for SE 

IBM Harmony-SE is a “subset” of the broader software development methodology IBM 

Harmony. IBM Harmony-SE and IBM Harmony were created at I-Logix Inc., a brand 

now acquired by IBM Corporation, which was a leading provider of embedded modelling 

tools [25]. 

The key objectives of Harmony for Systems Engineering, following the manual “Systems 

Engineering Best Practices with Rational Solution for Systems and Software 

Engineering”, are: 

• “Identification and derivation of the required system functions”. 

• “Identification of the associated system modes and states”. 

• “Allocation of the identified system functions and modes/states to the 

subsystem structure” [28]. 

The modelling takes place through iterative cycles following the “Vee” life cycle model 

for the design of systems, carrying out phases of requirements analysis, functional 

analysis, and architectural design [25], [27]. 

The methodology modelling approach is based on the “service request” between blocks. 

The system structure is described employing SysML “structure diagrams” where the 

blocks are the fundamental elements of the structure and the communication among 

them takes place via messages (“service requests”) [25]. An explanatory example can be 

seen in the next image (Figure 3). 
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Figure 3: OMG SysML™ Representation of Service Request-Driven Approach [25] 

“The main emphasis” of IBM Harmony-SE “is on the identification and allocation of a 
needed functionality and state-based behaviour, rather than on the details of its 
functional behaviour”. 
  
In the requirements analysis phase, the inputs provided by the stakeholders are 
transformed into system requirements that indicate what the system must do and how 
well it must work. The functional analysis phase has its focus on describing the 
operations that the system will have to carry out based on the functional requirements 
previously identified. The design synthesis, on the other hand, focuses on the definition 
of a physical architecture, which has to respect the imposed constraints and the 
requirements, performing the desired functions [28]. 
 
IBM Harmony was designed to be vendor and tool neutral, although the primary tool 
supporting this methodology is IBM Telelogic Rhapsody.  
To help systems engineers and project managers use this methodology, the developers 
have published a Harmony-SE / SysML Deskbook [25]. 
 
The tool supports UML and SysML languages and allows different organizations to 
manage the complexity in the design of models and systems. This opportunity is provided 
as it is possible to share the models, created during the entire life cycle, among all the 
designers and to validate them continuously, carrying out rapid simulations that can 
solve the produced errors. The tool also offers the possibility of integrating the 
MathWorks Simulink software. 
In general, the main functions offered by IBM Rhapsody products are: 

• the analysis and processing of design requirements using a low-cost 
environment that allows the creation of system specifications, parametric 
evaluations, interface design documents, and test cases; 
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• a rapid transition from the project to its implementation through the use of a 
graphic language and codes such as C++ and C or Java, providing the 
possibility of their reuse; 

• the automation of project reviews through a common repository between 
designers, suppliers and customers, speeding up “decision-making processes” 
and improving product quality; 

• the creation of prototypes and simulations to validate the requirements and the 
architecture; 

• a highly integrated environment [29]. 

2.2.2 Pattern-Based Systems Engineering (SystematicaTM 

Methodology) 

Following the description provided in the document “Model-Based System Patterns for 
Automated Ground Vehicle Platforms”, Pattern-Based Systems Engineering (PBSE) is 
an MBSE methodology capable of producing, through the use of complete and coherent 
models, systems ten times more complex with ten times less effort on modelling, through 
the work of a community of people ten times larger than that made up of systems experts 
alone. These advantages are possible because the PBSE uses the concept of “metamodel” 
which is “a model of other models, a framework or a plan governing the models it 
describes, which can be represented in SysML, database tables or other languages”. The 
used models refer to already existing models, previously made by users, which exploit a 
“learning curve” already underway, which always tends to improve thanks to the results 
learned over time. 
In particular, the SystematicaTM Methodology uses S* Metamodel (Figure 4), a model 
useful for the “description of requirements, projects and other information such as 
verification and failure analysis”, and S* Pattern, “formal” and “large scale” models 
which are based on S* Metamodel with the ability to be reusable and configurable [30]. 
 

 
Figure 4: A summary view of the S* metamodel  [30] 

2.2.3 Vitech Model-Based System Engineering (MBSE) Methodology 

The STRATA MBSE or Vitech MBSE is a methodology, developed by the company Vitech 
Corporation, offered and explained to the public, together with the CORE® product 
suite, through various tutorials produced by its CEO James E. Long [25]. 
This methodology focuses in the early phase on the analysis and comprehension of the 
more abstract levels of design by studying the interactions between the requirements, 
the system, the environment and, architecture, from which “functional behaviours” are 
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extracted. The latter are assigned to the physical components constituting the 
architecture that is tested to verify compliance with the requirements [16], [31]. 
The high-level vision allows defining the framework within which the project will evolve, 
providing to the team useful information for making intelligent detailed decisions [31]. 
Precisely, as Estefan writes, there are four primary areas of interest, contained in a 
common repository, which are simultaneously dealt with by STRATA MBSE: 

• functional/behavioural analysis; 
• analysis of origin requirements; 
• validation and verification of the project; 
• architecture/synthesis; 

And for each of these, it is possible to identify an associated domain of activities called 
“Process Domain” [25]. 
The artefacts of the model are managed in the Vitech MBSE methodology through a 
common structured language that deals with syntax and semantics: the MBSE System 
Definition Language (SDL). This helps improve models and documents traceability and 
also the communication between team members. 
A key concept for the Vitech methodology is how to carry out the project that shall be 
executed first horizontally and then vertically, by the means of a process called the 
“Onion Model”. An “incremental process” in which the different activities, through a 
simultaneous execution level after level, are gradually implemented passing from a 
maximum stage of abstraction to that of greater detail. 
This model takes this name precisely because every time “the SE team successfully 
completes one level of system design, they “peel off a layer of the onion” and start to 
explore the next layer, when the team reaches the desired level of detail (the centre), their 
design is complete” [25]. 
The fundamental characteristics of this approach are therefore completeness and 
convergence; when these are not achieved it is, in fact, necessary to review the work 
executed by the designers [25]. 
The STRATA Vitech methodology despite being considered “independent of the tools” 
can be implemented thanks to a set of tools included in the CORE® suite or Vitech 
Genesys [16], [25]. 
The CORE® suite integrates systems engineering along the entire life cycle of the project, 
starting from the collection of requirements up to the tests, identifying the present 
interfaces and managing the relationships between the system data. 
It provides a common place in which to group the various critical aspects of the 
engineering activity, i.e. requirements, architecture and tests, defining their behaviour, 
carrying out verifications and validations. The work through simulations, which can 
always be carried out, is subject to continuous reviews, more and more in detail during 
the life-cycle, capable to identify problems and errors at every level of the project. 
The tool is based on the “model-centric” idea, therefore all data and files are saved in a 
common repository, where users can collaborate on multiple platforms in real-time and 
can add different types of diagrams contained in a special library. These include, for 
example, activity diagrams, N2 diagrams or sequence diagrams as well as traditional 
diagrams and SysML graphs. 
CORE®, as the Vitech website specifies, was created specifically for systems engineers 
by systems engineers and is naturally geared towards their needs in model making. 
Furthermore, due to its simplicity, it is not necessary to refer to programming and 
modelling specialists [32]. 
 
Genesys is the latest tool produced by Vitech and is recommended for large 
organizations. This faces every aspect of systems engineering by exploiting connections 
with Microsoft Excel, Power Point and Project but also with industrial tools such as 
Matlab, Simulink, ModelCenter and DOORS to create a “connected engineering flow”. 
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Similarly to the CORE® suite, it allows performing V&V at every level of the project in 
order to limit and reduce risks and problems. It also lets to simulate the behaviour of the 
system and evaluate its performance. The tool “uses a full suite of nine SysML diagrams 
supported by a proven systems metamodel”, automatically generating and updating the 
diagrams [33]. 

2.2.4 NASA JPL State Analysis Methodology 

State Analysis is an MBSE methodology developed by the California Institute of 
Technology Jet Propulsion Laboratory (JPL) [27]. 
SA uses a control architecture based on model and state, in which the state is defined as 
“a representation of the momentary condition of an evolving system (the value of the 
state variables at a precise moment)” and the model as “the state evolution” [27], with 
the aim of producing system and software requirements “in the form of explicit models” 
that can reduce the gap between the requests made by software engineers and systems 
engineers [25]. 
The state and models together ensure system operation by predicting the future state, 
checking the desired state, and evaluating performance [25], [27]. 
As M.D. Ingham explains in “A Model-Based Approach to Engineering Behavior of 
Complex Aerospace Systems”, the SA allows rigorously and uniformly to discover and 
study the different states of the system, their behaviour, the different interactions 
between them to clearly describe the mission objectives through specific scenarios, how 
the objectives will be satisfied and to outline the constraints and rules that must be 
considered during the design [34]. 
The SA architecture can be represented by the “control diamond” shown in Figure 5 for 
it the key characteristics are described below: 
 

• The state is explicit and constantly evolving. The state to be described at any 
time is defined through a collection of state variables that vary according to 
continuous time state functions [34]. 

• The state estimation, a process based on making measurements to determine 
the real state, and the state control, a command useful for correcting the 
current state to achieve the desired state, are two separate acts of the 
methodology. This separation is useful as it simplifies software design, its 
implementation and allows for an “objective state assessment” [34]. 

• The only interfaces between the control system and the one under control are 
the hardware adapters and data collections. The former allow the various 
measurements to be made and the commands required for control to be 
provided, while the latter are viewed to determine the status of the system [34]. 

• Models are used for both “execution” and “higher-level planning” and are 
“ubiquitous” throughout the architecture. They can be documented in whatever 
form is most convenient for their application [34]. 

• The architecture of the methodology consists of a closed-loop that aims to 
achieve the desired behaviour of the system. The goals can be “the desired 
quality of knowledge of the state that the estimators must achieve”, “the 
operational constraints” and “the monitored conditions” [34]. 

• “The control diamond elements can be mapped directly into components in a 
modular software architecture” [34]. 
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Figure 5: The state-based control architecture [34] 

The State Analysis methodology is also based on three fundamental principles: 
• The distinction between the system under control and the control system is 

clear. All the aspects related to the functioning of the system constitute the 
control that can be exercised using models of the system under control [16], 
[25]. 

• All control system models must be explicitly identified and must be accepted 
by all systems engineers [16], [25]. 

• The understanding of system states is critical to modelling success [16]. 
 
The SA methodology defines an iterative process to iteratively characterize the model 
throughout the entire life cycle. The steps of this process are the identification of the 
high-level objectives, the identification of the state variables, the definition of the state 
models, the definition of the measures to be carried out to determine the state variables, 
the definition of measurement models, the identification of the commands for the control 
of the state variables, the definition of the command templates [34]. 
The tools that use this methodology are based on relational database systems, among 
these, we find, for example, Oracle® with a front-end interface. SpecTRM-RL and 
SpecTRM-GSC are also used for specification and requirements management [25]. 
 
SpecTRM focuses on the initial phases of the project related to system requirements and 

specifications where safety decisions are made. SpecTRM uses new languages called 

“intent specification languages” which explain the behaviour of system and software 

engineering activities, clarifying “the what”, “the how” and the logic followed. One of 

these languages is SpecTRM-RL to specify requirements, based on simple formalisms to 

carry out an automated analysis. SpecTRM is also characterized by an intuitive editor 

that can be used by non-experts [35]. 

2.2.5 The Systems Modelling Toolbox (SYSMOD) 

Weilkiens' System Modeling Toolbox (SYSMOD) is a methodology that uses the SysML 

modelling language for system architecture development and requirements traceability 

[16], [27]. Particularly, according to “Weilkiens T., Lamm J., Roth S., Walker M., Model-
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Based System Architecture, 2016”, it allows to perform the requirements identification 

and definition, to model the system context from which it is possible to derive the 

requirements, to define the system use cases, to describe the use case flows and to model 

the system domain [36]. 

The system architecture is defined by creating processes, internal structure and 

parameters useful for studying its behaviour [27]. The approach followed by the 

methodology is a top-down type where methods, products and roles of the players 

involved are the main artefacts [16].  

SYSMOD can be used with any modelling tool [16]. 

2.2.6 Object-Process Methodology 

Object-Process Methodology (OPM) is a methodology developed at the Massachusetts 

Institute of Technology by Dr. Dov Dori that represents a holistic approach to model 

natural or artificial complex systems [25], [37]. 

Dori describes OPM as “a formal paradigm for systems development, lifecycle support 

and evolution” [25], [38].  

The methodology is based on the concept according to which “the whole universe is an 

object or a process” and therefore it is possible to build any system through the 

relationships between three entities: objects, processes, and states [25].  

The object is defined as what exists or can exist in a physical or computerized way, the 

process is an object “transformation model” between one state and another, the state is 

the object condition in a given instant of time [16], [37].  

Objects and processes together are known as “things” and can be involved in the 

fundamental relations of the OPM “generalization, aggregation, instantiation and 

exposure”. OPM allows modelling a system from a “structural”, “functional” and 

“behavioural” point of view combining a graphic model called Object Process Diagram 

(OPD), able to represent the three entities described above and their relationships, and 

a language (a subset of the English language), consisting of bound sentences, known as 

Object-Process Language (OPL), capable of providing a textual duality to the created 

OPD [25], [37]. 

The models in OPM have a hierarchical structure, starting from the system diagram, a 

high-level diagram that represents the main functions of the system, up to increasingly 

complex and detailed OPDs. To pass from one level of detail to another, 

unfolding/folding mechanisms are used, necessary to “refine/abstract the structural 

hierarchy of a thing”, and zooming/out-zooming mechanisms to show or hide “internal 

details of one thing”. In this way, it is possible to define a system at any level of detail 

without ever losing sight of the “big picture” [25], [37]. 
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Figure 6: Zooming into System Developing [25] 

The image above (Figure 6) allows observing the development phases of the system used 

by the OPM methodology: 

• Requirements specification: managed by the system architect, through OPM, 

and by the customer, thanks to OPL, that work together creating a 

requirements document capable of identifying the problems to solve with the 

system. In order to reduce development and debug times, the methodology 

allows reusing the previously created requirements. 

• Analysis and design: in which the “skeleton” of the system architecture is 

created, taking the requirements document as input, identifying the 

behavioural and structural aspects. 

• Implementation: where a target language (i.e., Java, C++, SQL), the 

implementation profile and a directory for placing the artefacts are chosen. 

During this phase, the implementer can make changes to the behaviour and 

structure of the system. 

• Use and maintenance: where the system is checked against the requirements 

document, eliminating any discrepancies [25]. 

The methodology does not have a software-oriented linguistic semantics as it was 

intended for general use [37]. 

Today OPM can be used through the OPCAT tool that allows the management of 

artefacts, “system requirements management, including interconnections and 

traceability to model entities, animated model simulation, code generation and 

automatic document generation” [25], [37]. 

OPCAT supports the entire life cycle of the system step by step by “implementing, on a 

single repository, the graphic and textual bimodal expression of the OPM model”. The 

suite creates configurable models for the system's current state, future goals, project 

constraints and hardware and software requirements. It is also possible, as mentioned 

above, to produce animated simulations in order to manage requirements or other 

advanced features [39]. The tool generate also automatically documents. To model a 
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complex system, the user must first create an OPD that corresponds to the System 

Diagram, to which OPCAT will associate an OPL, secondly, he must define the type of 

project, physical or IT, and the origin, systemic or environmental. So he can progressively 

add new parts to the project by detailing it [39]. 

2.2.7 INCOSE Object‐Oriented Systems Engineering Method 
(OOSEM) 

The Object-Oriented Systems Engineering Method (OOSEM) was developed through a 

collaboration of Lockheed Martin Corporation and Software Productivity Consortium in 

the second half of the 1990s and since then, thanks to further refinements carried out by 

the INCOSE OOSEM Working Group, it has been applied for the development of 

hardware systems, software, databases and manual procedures [25], [40], using for 

modelling originally Unified Modeling Language (UML) and later Systems Modeling 

Language (SysML) [41]. 

From S. Friedenthal, A. Moore, and R. Steiner, “Residential Security System Example 

Using the Object-Oriented Systems Engineering Method”, it is clear that the 

methodology, by generating system models as output, has two main objectives: “to 

facilitate the integration of systems engineering with object-oriented (OO) software 

engineering”, integrating top-down concepts, in order to ensure greater product 

flexibility, and “apply OO modelling in a way that benefits the systems engineering 

process”. 

OOSEM allows the acquisition, analysis and specification of the system and its 

components guaranteeing a consistent visualization and ensuring the reuse of previously 

created models for future applications [25]. 

The development of the system takes place according to the following activities: 

• Stakeholder needs analysis: to identify the needs of interested parties to 

develop the requirements “which are specified in terms of mission/company, 

effectiveness measures and cases of superior use”. 

• System Requirements Analysis: to specify system requirements that support 

mission requirements. Functional, interface, data and performance 

requirements are identified for the system that is modelled as a black box 

capable of interacting with other systems and with different users. All the 

requirements are monitored through a database able to keep track of updates 

and to evaluate the impact of the changes. 

• Definition of Logical Architecture: an activity that includes breaking down and 

partitioning the system into logical elements which, performing the assigned 

functions, “interact” to satisfy the requirements. How the architecture is 

divided is decided by following the guidelines provided by the methodology 

according to criteria such as “cohesion, coupling, design for change, reliability, 

performance and other considerations”. 

• Synthesis of Candidate Physical Architectures: useful for expressing the 

relationships between the physical components of the system. These are 

represented as “system nodes” equipped with different features for the 

hardware, the software, data and procedures. 

• Optimization and evaluation of alternatives: an activity that, through different 

evaluation parameters, allows to make comparisons between different 

architectural alternatives to choose the best, always considering the 
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requirements imposed, the effectiveness of the solutions and the impact of the 

risks. 

• Requirements traceability management: always useful to have a total 

consideration of all mission and component requirements. 

• Verification and validation of the system: a final task that is carried out to verify 

that all the needs and requests of the stakeholders are met. “The verification 

system can be modelled using the same activities and artefacts used for 

modelling the operating system”. The outcome of the verification may lead to 

the need to change the requirements. To carry out this activity it is necessary 

to develop plans, procedures and verification methods (such as inspection, 

demonstration, analysis, tests), integrate the components, verify them and 

finally analyze the results, producing verification reports [25], [40]. 

In Figure 7 a summary graph of the various activities is shown. 

 

Figure 7: OOSEM Activities and Modeling Artifacts [25]  

These activities are performed during the project for each system individually and are 

applied recursively and iteratively in the different hierarchical levels in a similar way to 

a Vee development process [40]. Furthermore, for their execution, risk management, 

configuration management, planning, measurement and the use of multidisciplinary 

teams must always be considered [25]. 

A specific tool for OOSEM methodology does not exist but tools based OMG SysML can 

be used. These allow working on COTS and associated requirements [25]. 

2.2.8 The ARCADIA method 

Architecture Analysis & Design Integrated Approach (ARCADIA) is a methodology 

developed by Thales Airborne Systems in 2007 with the aim of “defining and validating” 

the architecture of complex multidomain systems, using engineering activities that are 

based on the formalization of needs and the functional analysis [16], [24]. 

ARCADIA is presented as a very flexible methodology that can be used according to top-

down, bottom-up or middle-out approaches, capable of providing support for the 

collaborative work of the various users, interested in the design, and stakeholders [16]. 
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In Thales it is used for the realization of complex systems in different fields, i.e. Defense, 

Space, Aeronautics, Land Transport, Security [24]. 

This methodology covers all project activities at different levels, allowing stakeholders to 

share the same information, integrates co-engineering by supporting the joint 

elaboration of models (“not only descriptive”), that can also interact with each other, and 

formalizes any type of specialist engineering concerning the requirements [24]. 

ARCADIA uses a series of diagrams with interconnected elements that create the 

structure of the system and its behaviour [16]. 

The ARCADIA work levels are: 

• Operational analysis: the actors are identified, and the problems of the users 

and their requests are analysed. It represents the highest level of the 

methodology and is necessary so that the system can be adapted to 

expectations. 

• System analysis: the functions, that the system must perform to meet the users' 

requests, are identified. 

• Logical architecture: the logical components that make up the system, their 

sub-functions, their relationships, and their content are recognized, 

considering any imposed constraints. 

• Physical architecture: the structure of the system is defined and how it will be 

executed. In this phase, behavioural components, that can perform the 

required functions, are identified. 

• End Product Breakdown Structure (EPBS): the design limitations of the 

architecture are established and the constraints to be met are deduced [24]. 

 

Figure 8: The main engineering levels of Arcadia [24] 

A peculiarity of the methodology is that not all the project levels must be performed: the 

Operational Analysis, the Logical Architecture and the EPBS are considered optional. 

These may or may not be implemented based on design difficulties [24]. 
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In conjunction with ARCADIA, Thales also developed the only modelling tool to work 

on, initially known as Melody Advance and after becoming open source as Capella. The 

latter is a modelling hybrid tool, strongly inspired by SysML, that allows tackling System 

Engineering and System Architecture problems. It lets to build seven types of main 

diagrams for each project level: “data flow diagrams, scenario diagrams, architecture 

diagrams, mode and state diagrams, distribution diagrams, class diagrams and capacity 

diagrams” [16], [24]. 

2.2.9 System Composer ™ 

System Composer ™ is an MBSE tool produced by MathWorks that executes 

“specification, analysis and design” of systems through one or more architectural models, 

consisting of “structural elements” characterized by “behavioural descriptions”, which 

can be presented in the form of diagrams to facilitate communication between interested 

parties. The diagrams can be “sequence diagrams, state charts, or Simulink models”. 

The tool consents to follow an engineering process, through the use of Simulink, which 

involves the identification of the stakeholders’ needs, the definition of requirements and 

“use cases”, the iterative design of the system through hierarchical structures, the 

definition of the performed functions and their execution order, the definition of 

interfaces, verification and validation of requirements [42]. 

Below (Figure 9) followed workflow it is shown. 

 

Figure 9: System Composer workflow [42] 

As we read on the MathWorks web page, the models can be created directly or can be 

imported from other tools, and “can be used to analyze requirements, capture properties 

via stereotyping, perform trade studies, and produce specifications and interface control 

documents (ICDs)”[42]. 

2.2.10 SYS-ML                                                                                                                                                                                           

As reported in “E. Cambulut, V. Aydingül, B.Yaglioglu, Application of Model-Based 

Systems Engineering with SysML in a small satellite project, 2019” “a modelling 

language specifies the elements that can be used in a system model and the set of possible 
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relationships between those elements. In the case of a graphical modelling language, the 

language defines the notations and symbology that should be used to present the 

elements of the model in diagrams” [4]. 

SysML is a graphical modelling language developed in collaboration between Object 

Management Group (OMG) and INCOSE, which derives, and at the same time seeks to 

enrich by adding new features, from the UML, used for software development and 

production [4]. 

SysML carries out, through a set of diagrams, activities related to the analysis, design, 

specification, validation and verification of complex “physical”, “technical” and 

“sociological” systems (for example hardware, software, data, personnel, procedure) [2], 

[4], [16], [37]. 

Estefan affirms that “UML and SysML together make it possible to bridge a 

communication gap between systems engineering and software engineering” [25]. 

SysML can represent systems, components and other entities as follows: 

• composition, interconnection and classification of the structure; 

• behaviour based on functions, messages and status; 

• constraints on physical and performance properties; 

• allocations between behaviour, structure and constraints; 

• requirements and their relationship, design elements and test cases [2]. 

Overall, SysML allows the creation of nine types of diagrams: four concern the 

“Structural Diagrams” structure, four concern the behaviour of the system and 

components “Behavioral Diagrams” and one the requirements. Parametric relations 

must also be considered [37]. 

The “Structural Diagrams” provide a static view of the system and characterize its logic 

and architecture, physical connections, content. The “Behavioral Diagrams”, on the other 

hand, describe the functionality and behaviour of the system under all conditions 

providing a dynamic view [4]. Requirements are entered in the text but can be observed 

in different formats (graphic, tabular, tree structure). Parametric relationships make 

available identifying links between system properties to analyze the performance and 

reliability of the system [37]. 

SysML inherited many ideas from UML that is an unintuitive language for engineers who 

have no knowledge in the field of software design. Furthermore, it does not provide a 

working guideline leading to ambiguity in modelling and therefore to a delay in learning 

how to use it [16]. 

2.2.11  Cameo System Modeler 

Cameo System Modeler is an MBSE platform that provides tools to create SysML models 

and allows to perform design decision analysis, requirements and model consistency 

verification, to track changes made. Artefacts are managed in remote repositories. 

The main peculiarities of Cameo are: 

• Requirements management: it is possible to create SysML templates for 

requirements, keep track of verification methods and their satisfaction, create 

prioritizations. 
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• Function traceability for Gap Analysis: it keeps track of the work among the 

different project levels easily finding specific elements through dependency 

matrices, allocation matrices, interaction matrices, traceability matrices of 

functions and activities. 

• Direct Web Publishing: where users can create customized reports guided by 

suggestions and can instantly check for errors. 

• Resolution of parametric models and MoE (Measure of Effectiveness) of the 

system: this allows to identify and establish the project constraints but also to 

carry out risk, performance, and reliability analysis. The Simulation Toolkit is 

used for these analyses, and it is possible to interface with other programs such 

as Excel, Matlab, Mathematica and OpenModelica. 

• Development and configuration management: that allows different users to 

work simultaneously on the same project through a single server connected to 

the internet. 

• Security: for which different users can access only the project levels for which 

they are enabled according to authorizations. 

• Interoperability: that gives the opportunity to interchange different UML, 

SysML and Unified Profile models and diagrams [43]. 

2.2.12 MagicDraw 

MagicDraw is a modelling environment that supports the UML 2 and UML metamodel, 

able to integrate different applications, thanks to an open API, consenting the creation 

of IDEs, requirements, tests, estimates, MDDs, databases and more. It offers various 

features such as the creation and editing of diagrams in a very short time, the automatic 

completion of attributes and parameters, the verification and validation of models. 

The environment enables following the entire life cycle of the project and provides a 

centralized, continuously verified, reference place in which to model the different 

processes. It automatically produces reports and documentation (in PDF, HTML, RTF 

format) on the requirements and the project. 

MagicDraw offers the possibility of approaching the project at any stage as it is not bound 

to a specific point of the architecture. It also allows multiple users to work simultaneously 

on the same model using the Teamwork Cloud functionality and ensures fast navigation 

within the models, thanks to hyperlinks. 

The platform is presented as an easy-to-access place where learning design methods is 

done easily through simple commands [44]. 

2.2.13 OCDT 

Open Concurrent Design Tool is a software package produced by ESA to manage and 

design a system, during the first phases of the life cycle, through a simultaneous sharing 

of the work done and the data produced. 

The platform was developed in conjunction with the ECSS-E-10-TM-25 Annex A 

standard which provides a semantic model to be followed as a guideline for design. 

ConCORD, the software user interface, is an Excel add-on and allows simultaneous 

access by twenty users with a data update every two minutes. OCDT also offers the 

possibility of integrating other tools to carry out analyzes and simulations [45].  
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On the whole, ConCORD enables the creation of parameters, elements or engineering 

models as “Things” to describe the product and carry out analyses. For each system, the 

category, its parameters type and unit measures can be defined. It is possible to reuse for 

different applications the created data [46]. 

The software is distributed by ESA as open-source [45]. 

 

Figure 10: OCDT Architectural Overview [47] 

2.2.14 Papyrus 

The Papyrus platform offers a methodology based on a corporate architecture that 

documents any type of process, for which objectives to be met are set using models. These 

processes create relationships between information, people, applications and can be 

easily designed by business experts thanks to the fact that Papyrus guides them in the 

definition of processes, taking into account the business rules and the achievement of the 

established goals. 

Papyrus is described on the company's website with reference to the following features: 

• Process analysis by the Executive: the executive defines the processes 

indicating the owners and objectives. Diagrams are used only for process 

dependencies. 

• Modelling by business users: through a web repository, users can model 

“entities” of data and content, which can be used to create “collaborative 

processes”. 

• Business rules: the platform defines rules for modelling using a “natural 

language”. 

• Company objectives: the objectives and their achievement are monitored 

during the process. 

• Process management: processes are described utilizing “execution chains” and 

not rigid flowcharts. 
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• Involvement and collaboration of users: Papyrus allows defining users and 

interfaces in order to have little limited “input forms”. 

• Social Networking: the platform offers chats, blogs, RIAs and wikis through 

which you can interact. 

• Portal applications: the offer includes an “integrated” and “powerful” server 

that does not require Java programming. 

• Monitoring and control: management has the opportunity to track 

performance indicators during work. 

• Reporting and optimization: thanks to digital registers, the server collects 

processes information in chronological order to subsequently create reports. 

• Execution: processes are run on multiple levels and multiple servers in case 

they are of large volume. 

• Content services: Papyrus provides the delivery of content of any type or format 

(e.g. print, e-mail, mobile, web, fax). 

• Incoming content: the platform manages to acquire and process all incoming 

content. 

• Outgoing content: documents and resources can be created for marketing or 

business purposes and can be provided through different channels. 

• Archiving: the files generated are placed and protected within secure servers. 

• Project management and implementation: all projects are implemented within 

the central repository called Papyrus WebRepository. 

• Infrastructure: which consists of eleven different operating systems installed in 

a cloud. 

• Integration: the platform allows easy integration of existing applications, 

devices and databases. 

• Privacy: the privacy of the products created is guaranteed [48]. 

2.2.15     Valispace  

Valispace is an intelligent browser platform that allows engineers to collaborate in real-

time during the realization of a project by making calculations, keeping track of changes 

throughout the project life cycle, storing, and analyzing the collected data [49], [50]. 

Valispace is now used for the construction of complex hardware systems such as satellites 

or aircraft since it easily integrates with engineering tools already in use “providing an 

API that makes available automation, scripting and optimization” [49], [50]. 

Among the interesting features proposed by Valispace are the change of running 

calculations in a single “container”, instead of using multiple Excel sheets, the 

opportunity to keep track of the chronology of the performed work, allowing a 

comparison with values or graphs of the past, the ability to receive alerts in case of 

changes [50]. 

The platform is based on the following modules: 

• Components: a section where “properties” that consist of elements constituting 

the system can be created. These can be ordered hierarchically through tree 

relationships and for them, the user can define different characteristics. For 

example, masses or volumes are implemented in this area, characterized by 

values, units of measure, margins, requirements of maximum and minimum. 

The properties can be used to obtain new ones through equations. 
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• Requirements: area in which the requirements are collected and managed in a 

“simple and efficient way”. Requirements can be divided into folders and can 

be linked to components or components values in order to be updated with 

every change and always have the correct version of the requirements. A 

hierarchy can also be defined for requirements through parent-child 

relationships. The verification method can be defined and the status can be 

tracked. 

• Analysis: a repository where reports, technical budgets and graphs can be 

stored. 

• Time Sequence: allow to make system time predictions based on changes over 

time of “variables” or “operating modes”. The latter let to create time sequences 

and monitor indicators for the system, while the former, on the other hand, 

represent the behaviour of the components in the different phases of the 

mission. 

• Simulations: it is a work region that allows, through the definition of inputs 

and outputs, to carry out calculations of greater complexity that cannot be done 

within the component area. The GNU Octave framework is used, which has a 

syntax similar to Matlab. 

• Tests: are procedures for verifying the requirements. Each procedure can be 

composed of different phases and sub-phases according to the needs that can 

be characterized by attached files and tags [50]. 

In general, as ESA states, “it aims to simplify the engineering process of hardware 

projects by allowing even small teams to design highly complex systems quickly and 

economically” [49].  

2.2.16 Choice of project implementation 

The thesis proposes an implementation procedure consisting of a combination of tools: 

Capella with the Arcadia methodology and Valispace. This choice was strongly guided by 

the possibility of being able to use methodologies and tools with a license already 

available to the project team or open source and the goal of moving from a document-

centric approach to a model-centric one. 

Capella has been used to define the SROC system with the operational analysis by 

identifying the stakeholders and their needs, the system analysis, the logical and physical 

architecture. Valispace has been taken into consideration to keep track of the 

requirements, to create a complete and extended mission architecture, to carry out 

mission budgets through specific add-ons, such as those for Matlab and STK, to keep 

track of the documents. 

The field of choice was initially restricted precisely due to the economic availability limit, 

the possibility of being able to implement large systems considering multiple levels of 

design and the availability of documentation to learn how to use the software. The area 

from which the tool was selected included Capella with the Arcadia methodology, 

Papyrus with the use of the SysML language and System Composer. 

The latter has not been evaluated because, unlike the other two, despite being able to 

keep track of the requirements, starting from the requests of the users, it does not allow 

to guarantee connected and unified modelling, for the stakeholders and their needs, with 

the rest of the system. 
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The choice thus fell on Capella since, compared to Papyrus, it offers a “modelling 

approach” that “guides” the user in designing the system at various levels of detail, 

through the “Activity Explorer” function, avoiding ambiguity. Such ambiguities can 

occur using, for example, tools that make direct application of SysML, where the user is 

free to choose the modelling strategy, freedom that could lead him to misunderstandings 

if he approaches the tool for the first time. The concept of “usability” was therefore 

evaluated, which is linked to the reduction of time and costs to learn how to operate the 

software and the possibility of being able to use the tool. Capella, in relation to this, 

presents an effective and efficient user interface and is equipped with numerous intuitive 

functions (e.g. automated transitions of elements from one project level to another or 

operational and functional chains that will be discussed later). 

           

 

Figure 11: Difference between classical MBSE with SysML (left) and MBSE with Arcadia/Capella (right) 
[24] 

Capella allows to clearly describe the design choices and to create constructs 

characterized by a close relationship between the architectural and behavioural aspects 

of the system, unlike SysML, as found by various bibliographic researchers, in which to 

describe the functions semantically ineffective blocks must be used.  

Requirements management can be carried out on Capella after downloading specific 

add-ons but it is not possible to create traceability matrices. This led to the use of the 

Valispace tool, which the project team already owned a license for. Valispace has a user-

friendly interface and allows to keep track of the requirements, carry out their 

verification, to be able to associate them with the various components inserted, create 

flags capable of indicating errors in non-compliance with them and indicate their status. 

The platform, as written in the previous paragraph, has great potential, allowing for 

example the creation of a mission architecture by implementing all the elements, that are 

part of it, with their characteristics, the traceability and collection of documents, the 

possibility of budgeting internally or through the function of “import” and “export” 

through links with other tools. 

It is therefore expected that the combination of the two tools will cover every aspect of 

project management in its early stages. 
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3 SROC 

We now move on to describe the work carried out for SROC in phase delta A and B, by 

analysing first what was carried out in phase 0/A of the project. 

3.1 Operational analysis 

The goal, that the systems engineer sets during the design, is to satisfy the stakeholders 
and their needs. Precisely for this reason in the planning phase of the project (Phase 0), 
it is necessary to carry out an analysis of the interested parties and needs to correctly set 
up the development of mission objectives, requirements, and constraints. 
In the following paragraphs, the process performed at the beginning of the SROC Phase 
0 study is described in detail. 

3.1.1 Stakeholders and needs phase 0/A 

The identification of stakeholders was carried out through brainstorming sessions trying 
to identify the figures able to play key roles in the project, for example, those who will 
pay for the execution of the mission, who will use the system, who will judge the 
suitability for the use of the system, who will take care of regulating the system to be 
implemented,  who is involved in the realization and construction of the system, who will 
study the data produced, which entities can be negatively affected by the mission and so 
on. 
Every stakeholder was identified as either a consumer, customer, or supplier.  
After these sessions, as shown in Figure 12 the identified stakeholders were subdivided 
into four categories and prioritized relying on their level of interest and power, and for 
each of them, it was investigated what it would expect by the mission in terms of needs 
to derive mission objectives, drivers, and constraints. 
 

 
Figure 12: Stakeholders’ mapping [7] 

The Governments, the European Space Agency, and the Space Industry understood as 
“suppliers” are classified as the most powerful and most interested in the SROC mission, 
so their needs must be managed closely. CubeSat developers, the research community, 
and the Space industry understood as “users”, should be informed about the SROC 
programme and mission outcomes, and their needs must be taken into account already 



 
 

29 
 

in the early phases to reduce design iterations in later stages. Regulators must be kept 
satisfied, developing the mission according to ECSS and international regulations. The 
general public and education community can be considered minimally. 
Table 2 summarises the SROC stakeholders and their needs.  
 

Stakeholder(s) Needs 

European Space 
Agency 
(Customer) 

To execute a CubeSat mission with limited risk for the Space Rider system 

To foster technology development for CubeSats and small satellites 

To enable innovative mission objectives with CubeSats and small satellites 
(e.g. inspection of orbiting objects) 
To enable reusable on-demand missions with CubeSats (SROC as 
demonstrator of a flexible reusable system) 
To involve general public and universities in ESA activities 

Space industry - 
SROC Developers 
(Supplier) 

To develop advanced technology for market competitiveness 

To keep production costs as low as possible 

To have a robust and effective development roadmap for innovative 
CubeSat applications 

Space industry - SR 
Developers 
(Supplier/Consumer) 

To have an independent source of information about SR effectiveness (e.g. 
health status during operations and before re-entry) (Consumer) 
To demonstrate SR as flexible payload delivery system in orbit (Supplier) 
To develop and assess safety constraints/requirements applicable to SROC 
mission (Supplier) 

Regulators 
(Supplier/Consumer) 

To fulfil European and international standards for space mission design 
(Supplier) 
To develop new standards for future missions (Consumer) 

Governments 
involved in SR 
programme 
(Customer) 

To limit risk for the SR programme due to SROC mission 

To enhance the potential of the SR programme 

To keep mission cost as low as possible 

To provide economic and industrial return to the country 

To provide visibility of national space activities with unprecedented 
mission 

CubeSat developers 
(Consumer) 

To enable new technologies for CubeSats applications 

To validate CubeSat concepts for advanced mission objectives 

To foster CubeSat applications for future space missions 

Research community 
(Consumer) 

To acquire new knowledge in all the areas involved in the SROC mission 

Education community 
(Consumer) 

To use SROC mission as case study for educational and outreach purposes 

General Public To be involved in space missions related activities 

To be informed about ESA space missions’ activities 

Table 2: Stakeholders' needs [7] 

In the next paragraphs, it will be explained initially the followed MBSE method for the 

implementation of SROC stakeholders and needs, and then through “reverse 

engineering” it will be given some tips or pieces of advice on a methodology that systems 

engineers could follow during the early phase of a project. 

 

 

 

 



 
 

30 
 

3.1.2 Operational Analysis: Capella architectural elements and 
diagrams 

This first phase of the project was implemented using Capella's “Operational Analysis” 

section following the Arcadia methodology, working at a higher level of abstraction, 

considering the project extent, rather than the examples shown on the website of the tool 

and the manual written by Pasqual Roques from which the work was inspired. As 

previously explained in the paragraph dedicated to the general description of the 

methodology, the “Operational Analysis” was conceived to study “what the users of the 

system need to accomplish” by identifying at first the actors who interact with the system 

and subsequently their requests. In general, the main architectural elements (Figure 13) 

that can be used in this phase are:     

• Operational Capabilities: the ability of an organisation to provide a service that 

supports the achievement of high-level operational goals. 

• Operational Activity: process step or function performed toward achieving some 

objective by “Entities” that could necessitate using the future system. 

• Operational Entity: a real-world entity (other systems, device, group or 

organisation), interacting with the system (or software, equipment, hardware) 

under study or with its users. 

• Operational Actor: a non-decomposable “Operational Entity”. 

• Operational Interaction: set of operational services invocations or flows 
exchanged between “Operational Activities”. 

• Operational Process: a logical organization of “Interactions” and “Activities” to 
fulfil an “Operational Capability”. 

• Operational Scenario: it describes the behaviour of a given “Operational 
Capability” [51]. 

From a graphical point of view, instead, the following diagrams have been utilized: 

• Operational Entity Breakdown (OEB): a breakdown diagram of the “Entities”. 

• Operational Capabilities Blank (OCB): it allows the creation of “Operational 
Capabilities”, “Operational Entities” and “Actors”, and the numerous relations 

between them. 

• Operational Activity Interaction Blank (OAIB): a diagram that shows a set of 

“Activities” linked together by “Interactions”. 

• Entity Scenario (ES): it shows the vertical sequence of the messages passed 

between “Capabilities”. 

• Operational Architecture Blank (OAB): graph useful to allocate the “Activities” 
[24], [51]. 

 

 

Figure 13: From the left symbols of “Operational Capabilities”, “Operational Activity”, “Operational 
Entity”, “Operational Actor”, “Operational Interaction”, “Operational Process” [51] 
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3.1.3 Operational analysis phases delta A/B1 

The chosen category, as previously discussed, to realize the stakeholders and needs 

analysis was the “Operational Analysis” of Capella.  

Following the previously phase work, the initial step was the representation of identified 

stakeholders, so the first graph created was the Operational Entity Breakdown (OEB) 

where the different stakeholders were created as “Operational Entities”. 

As shown in Figure 14 since two different kinds of stakeholders were identified for the 

Space Industry, i.e., SROC Developers (Supplier) and SR developers 

(Supplier/Consumer) it was mandatory to create two operational entities contained in 

the Space Industry one. 

 

Figure 14: OEB 

Later an Operational Capabilities Blank (OCB) diagram was realized, by inserting the 

operational entities previously added and creating operational capabilities. It was 

created to highlight high-level needs (“the capabilities”) common to the different 

stakeholders and their relationships with them. 

Five capabilities were recognized: 

• Development of key technology: in order to encompass needs related to the 

improvement or the production of new technology for space application; 

• Expand mission portfolio: to englobe the needs linked with the desire to 
innovate missions in the field of space exploration; 

• Safety up: to include the necessities connected to safety; 

• Cost down: to include the necessities connected to cost;  

• Dissemination: to include the needs of management, sharing, and distribution 
of data, documents, and deliverables among the various stakeholders. 

The diagram was then completed linking this high-level objective to the involved 

stakeholders (Figure 15) and creating for each of them an Operational Activity 

Interaction Blank (OAIB). 

Colours were used to identify entities with different interests and powers, in order to see 

the classification in the model (i.e., promoters, defenders, latentes, apathetics). 
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Figure 15: OCB 

OAIBs were created to locate the identified needs as Operational Activity and to identify 

the related interactions. 

                  

 

 

Figure 16: Expand CubeSat mission 
portfolio OAIB 

Figure 17: Development of key 
technology OAIB 
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In the images above (Figure 16, Figure 17) it is possible to observe examples of two OAIBs 

created, “Expand CubeSat mission portfolio” and “Developed of key technology”,  where 

it has been tried to assign a certain logical succession at the different needs.  

The stakeholders' analysis for the SROC project was then completed creating two other 

kinds of graphs: Entity Scenario (ES) and Operational Architecture Blank (OAB). 

The Entity Scenario diagrams have permitted to organize chronologically the operational 

activities, belonging to different operational entities, for the defined capabilities. In this 

case, it has been chosen to create one ES for the high-level need “Cost down”, one for 

“Safety up”, and to split up the “Dissemination” capability in order to consider separately 

the distribution of data for ESA and Governments. 

The next images, Figure 18 and Figure 19, show the ESs for the “Dissemination” 

capability. 

 

Figure 18: ESA Dissemination ES 

 

Figure 19: Governments Dissemination ES 
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The reasons that led to this separation are to be seen in the exclusive communication 

between the scientific community and the ESA, since the latter will not communicate 

directly with national governments, and also in the different necessities of the general 

public that in the first case would be involved in ESA space missions’ activities, otherwise, 

in the second case, it would be informed about national space missions activities. 

The OAB, Figure 20, was created to show in a single diagram all the identified 

stakeholders and their related needs. Therefore, it allows to see globally the logical 

interactions among the different needs and also to observe through “chains” 

(“Operational Processes”) how the needs of the different stakeholders are part of equal 

capabilities. 

 

Figure 20: OAB 
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3.2 System Analysis 

The stakeholders' needs identification with a subsequent definition of the mission 

objectives, the system, and the actors, led to determine, through a high-level functional 

analysis, which tasks they must perform, regardless of the physical components that will 

perform them, leading to the production of “concept of operations” and a high-level 

mission architecture where the functional interactions between the elements play a 

leading role. Thanks to the identification of the main characters, it is also possible to 

define the necessary interfaces. 

3.2.1 Concept of Operations, Mission Architectures and Functional 
Analysis phase 0/A 

During the 0/A phase, after defining the mission statement, the system, i.e., SROC, and 

the main actors involved in the mission, i.e., SR, the ground stations for communication 

with SROC and SR, the deployment, docking and retrieval mechanisms, were identified.  

From the mission statement: “To deploy a CubeSat in LEO to support operations of Space 

Rider through multispectral and visual observations taken in the proximity of the vehicle 

during the orbital phase. To enhance CubeSats' capabilities in the proximity operations 

domain”, the primary objectives of the mission have been derived: 

• To observe Space Rider with unprecedented imaging. 

• To demonstrate critical technologies and functions related to formation flight 
missions. 

And the optional secondary one: 

• To demonstrate CubeSats in-orbit retrieval and reuse capabilities [7]. 

The critical areas to face during the missions were subsequently identified. These were: 

• imaging capabilities; 

• guidance and control capabilities; 

• proximity navigation; 

• docking; 

• communication architecture; 

In these early stages, three mission concepts were developed: 

• “Observe & Retrieve mission (SROC baseline mission): the SROC CubeSat is 

deployed by the Space Rider and it is retrieved into its cargo bay before re-
entering Earth, pursuing both primary (observation of the vehicle and 
demonstration of technology for formation flight) and the secondary (testing 
retrieval and reuse capabilities) mission objectives”. 

• “Observe mission (SROC reduced mission): the SROC CubeSat is deployed by the 
Space Rider to pursue (only) the two primary mission objectives (observation of 
the vehicle and demonstration of technology for formation flight) without 
retrieval of the CubeSat into the Space Rider cargo bay” in which the most critical 
phase of the mission is therefore excluded. This concept of mission can be 

considered as an off-nominal condition, as it can be considered as a mission in 
which due to an unforeseen event it is not possible to carry out the recovery of the 
satellite. 
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• “Observe & Reuse mission (SROC enhanced mission): the Observe & Retrieve 
concept could be pushed further considering multiple deployment and retrieval, 
thus demonstrating the actual reuse of SROC within a single mission of Space 
Rider. The CubeSat is retrieved in the SR cargo bay, prepared for another 
observation mission, deployed and retrieved again a certain number of times 
before final retrieval/stowage/return to Earth” [7]. 

These different mission concepts were considered as incremental steps towards 

achieving the full capabilities of an RV&D mission between a CubeSat and a mothercraft. 

Table 3 shows an example of the first concept of operations with different mission 

phases, durations, and scenarios. 

Mission phase Duration Mission Scenario 

Deployment 
Phase 
(DEP) 

TBD hours SROC system preparation 
SROC spacecraft separation 

Early Operations 
Phase 
(EOP) 

5 days 
(best case) 
10 days 
(worst case) 

Link acquisition 
Detumbling 
Attitude acquisition 
Appendices deployment 
Checkout post-deployment 
Calibration of thrusters 
Calibration of cameras 
Test of critical equipment 

Holding phase 1 
(HOP1) 

4.5 hours SROC is in hold point 1 (HP#1) 

Rendezvous 
Phase 
(RVP) 

4.5 days 
(best case) 
9 days 
(worst case) 

SROC performs a series of 
manoeuvres to follow a safe path 
from HP#1 towards SR to get in 
the operative orbit 
Rendezvous from HP#1 to SR -> 
Out-Of-Plane trajectory from 
HP#1 

SR Observation 
Phase 
(SROP) 

8 days Insertion into the Walking Safety 
Ellipse (WSE) 
Observation in the Walking Safety 
Ellipse (WSE) 
Free Flight 
Approach to SR (except for the last 
Inspection cycle) 

Holding Phase 2 
(HOP2) 

4.5 hours SROC is in hold point 2 (HP#2) 

Docking & Mating 
Phase 
(DMP) 

10-15 hours Fly-around trajectory from HP#2 
to R-bar Close approach 
Mating 
  

Retrieval Phase 
(REP) 

5 hours Capture 
Post docking check out 
SROC Retrieval 

End of Life 
(EOL) 

TBD SROC is stored in the SR cargo bay 
and re-enters with SR 

Table 3: SROC Baseline Mission – ConOps 1 - Phases and Scenarios description [7]  

The mission architecture was outlined considering the previous steps by identifying: 

• subjects: SR and the retrieval mechanisms; 

• launch segment: Vega C; 

• space segment: the CubeSat SROC with its retrieval mechanism; 

• payload: a multispectral camera; 
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• orbit for formation flight: an SSO (Sun Synchronous Orbit) midday-midnight; 

• communication architecture: store & forward; 

• ground segment: the Ground station network and MCC; 

• operations: with professional operators of the CubeSat Control Center in Turin. 

The next table details the mission architecture proposed during phase A. 

SROC proposed mission architecture – Phase A – Phase A 

Mission element Description Trade-offs/Add-on/Comment 

Subject Space Rider 
Observations 
 
CubeSat Retrieval 
capabilities 

Multi-spectral Observation of SR (or 
only visual or VIS+NIR observation, 
depending on SR needs) 
Single deployment and retrieval of SROC  

Space Segment 1 CubeSat 
 
1 Retrieval 
Mechanism 

12U form factor baseline  
Architecture is compliant with the 
application for the enhanced scenario 
(Observe & Reuse mission) 
Deployment and Retrieval Mechanism  

Payload Multispectral 
imager 

Multispectral imager, with increased 
FOV and adjusted wavelengths in the 
following bands: 
• Visual 
• Near InfraRed 
• Thermal InfraRed 

Orbit & 
Constellation 

Formation flying 
with respect to SR  

SSO midday-midnight assumed as the 
baseline 
Rendezvous trajectory: in-plane + out-
of-plane segments Walking Safety 
Ellipse with relative inclination change 
for observation 

Communication 
Architecture 

Store & Forward 
architecture 

Direct link to Earth  
 

Ground Segment Ground station 
network 
MCC 

Network of 6+ UHF ground stations, 1 S-
band main ground station (+ 1 S-band 
ground station back-up) Compatibility 
with Estrack network is guaranteed MCC 
in Torino. Link with SR MCC 

Operations Professional 
operators 

CubeSat Control Centre (C3) @Turin
  

Launch Segment Vega C Launch assumed Mid 2023 

Table 4: SROC mission architecture [7] 

In this phase, a high-level functional analysis was carried out through the creation of a 

functional tree (Figure 21: Functional tree phase 0/A [7]Figure 21), realized to satisfy the 

stakeholders' requests and identify the critical functions that must be enabled by the 

different elements of the proposed mission architecture. In particular: 

• To integrate SROC into the Space Rider cargo bay [Allocation to deployment 
mechanism]. 

• To deploy SROC without risk for the Space Rider [Allocation to deployment 
mechanism]. 

• To maintain formation with the Space Rider [Allocation to GNC subsystem] 
• To mate with the Space Rider [Allocation to retrieval mechanism and GNC 

subsystem]. 
• To demonstrate CubeSat reuse capabilities [Whole space segment is 

interested]. 
• To take multispectral observations [Allocation to observation payload] [7]. 
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Figure 21: Functional tree phase 0/A [7] 

3.2.2 System Analysis: Capella architectural elements and diagrams 

The functional analysis has been conducted using the Capella “System Analysis” section. 

According to the manual “Systems Architecture Modeling with the Arcadia Method”, this 

allows analysing “what the system has to accomplish for the users” by identifying “system 

functions needed by its users” [24]. 

From the examples provided in the book, it can be seen that between “Operational 

Analysis” and “System Analysis” there is a translation of some blocks, from one level to 

another, through the use of the “Transition” function. In our case, instead, we have 

chosen to keep the two levels separated, mainly using the first to define the high-level 

needs of the stakeholders and the second to identify the high-level functions that the 

system and the various involved actors must perform to satisfy the users’ requests [24]. 

The main elements of the architecture for functional analysis are: 
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• System: an organized set of elements functioning as a unit or an aggregation of 
end products, enabling products to achieve a given purpose. 

• System Actor: external actor interacting with the system via its interfaces. 

• System Mission: a high-level functionality of the system (system goal). 

• System Capability: the ability of a system to provide a service that supports the 
achievement of high-level goals. 

• System Function: an action, an operation or a service fulfilled by the system or by 
an actor interacting with the system. 

• Exchange and Port: an interaction between some entities such as actors, the 
system, functions or components, which is likely to influence their behaviour. The 
“connection point” of an “Exchange” on an entity is called a “Port”. 

• Functional Exchange: a piece of interaction between functions that is composed 
of data, events, signals, etc. 

• Component Exchange: that identifies the interactions between system 
components and/or system actors. 

• Physical Link: that allows depicting physical relationships between system 
components and/or system actors. 

• Functional Chain: element of the model that enables a specific path to be 

designated among all possible paths [51]. 

The charts used to outline the procedure and the purpose of their use are: 

• Contextual System Actor (CSA): to create and identify the “Actors”. 

• Mission Blank (MB): it allows creating system “Missions”, the involved “Actors” 
and the links between them. 

• Mission Capabilities Blank (MCB): to define “Functional Capabilities”, 
“Functional Mission” and “Actors”, and the numerous relations between them. 

• System Actor Blank (SAB): his main goal is to show the allocation of “Functions” 
to “Components”. In “System Analysis”, these diagrams contain a box that 
represents the “System” under study and the “Actors” surrounding it. 

• System Data Flow Blank (SDFB): it represents the information dependency 
network between “Functions”. These diagrams provide a diverse set of 
mechanisms for managing complexity: simplified links calculated between the 
“high-level Functions”, the “categorization of Exchanges”, etc. 

 
 

 
Figure 22: From the top left symbols of “System”, “System Actor”, “System Mission”, “System 

Capability”, “System Function”, “Functional Exchange”, “Component Exchange”, “Physical Link”, 
“Functional Chain” [51] 
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3.2.3 System analysis phases delta A/B1  

At the beginning of phase delta A, revisions were made that gave rise to the necessity to 

modify and enrich the previously systems analysis. In this regard, the use of Capella has 

allowed, retracing the steps taken in phase A, enlarging the vision and the links between 

the various analyses that can be performed. 

The first step was the definition of the main “System” and the “Actors” involved during 

the mission and their relationships, necessary for the mission architecture. A Contextual 

System Actor (CSA) graph was created in Capella (Figure 23). The identified system was 

SROC, instead, the actors, with whom it interacts, were SR, as the mean that carries and 

deploys the small satellite in orbit, the Space Rider MCC (Mission Control Center) and 

the SROC MCC, for operations, the MPCD dispenser, in which the CubeSat will be stowed 

during the launch and for the retrieve, and the docking device DOCKS, SROC subsystem 

that must be considered as a separate actor given its relevance for the mission objectives 

and its numerous interfaces. 

 

Figure 23: CSA 

This graph started the creation of the system analysis, as after it, through the use of a 

Mission Blank (MB) diagram, it was possible to implement the three “Missions” (in orbit 

goals) carried out by SROC, set out in the previous paragraph, and define the interactions 

with the involved actors to achieve them (Figure 24). One can observe how the mission 

“To demonstrate CubeSats in-orbit retrieval and reuse capabilities” has become a 

primary objective in the delta A phase. Using the “note creation” feature differentiation 

between the primary and secondary missions was carried out within the diagram, also 

through a play of colours. The diagram (Figure 24) was conceived considering that all 

missions are executed by SROC. Visible actors, on the other hand, as the subjects of the 

missions were considered. For this reason, the arrows go from missions to actors. 
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Figure 24: MB 

To carry out the missions it was considered appropriate to refer them to the phases 

within which they can be performed. The Mission Capabilities Blank (MCB) made it 

possible to define SROC nominal and off-nominal concepts of operations, the mission 

phases and to create the appropriate links with them. The phases were defined as 

“System Capabilities” that the satellite must be able to accomplish, through a set of 

combined functions, to achieve its purpose. For each of them, thanks to the “properties 

window”, the initial and final conditions for their development have been entered (Figure 

25). From an MBSE perspective, this functionality played a relevant role in summarizing 

all the relevant information in a single model. 

The images below show the two MCBs made. The first (Figure 26) is dedicated to the 

description of the nominal ConOps in which observation and retrieving are carried out. 

It comprises the “Capabilities”: 

• Launch and Early Operations Phase (LEOP); 

• Commissioning and Performance Verification Phase (CPVP); 

• Proximity Operations Phase (POP); 

• Docking and Retrieval Phase (DRP); 

• End of Mission (observe and retrieve) - Decommissioning (EOM); 

The second one (Figure 27) concerns the representation of ConOps considered off-

nominal, in which the retrieving is not done, consisting of: 

• Launch and Early Operations Phase (LEOP); 

• Commissioning and Performance Verification Phase (CPVP); 

• Proximity Operations Phase (POP); 

• End of Mission (observe) - Decommissioning (EOM); 

The main difference between the two graphs involves the distinct functions performed 

during the EOM phases. 
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Figure 25: LEOP Capability property window 

 

Figure 26: Observe and retrieve ConOps MCB 

 

Figure 27: Observe ConOps MCB 
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In a similar way to the Operational Analysis, to accomplish the Capabilities, functions 

were defined. 

The functions that form the capabilities have been grouped and arranged following an 

execution order using System Data Flow Blank (SDFB) diagrams. The same graphs let to 

identify the functional exchanges to accomplish the capabilities and show high-level 

functions (part of the mission phase) and subfunctions (the actual functions to be 

performed) in the same graph. Furthermore, functional chains with the name of the 

phase were created to be able to identify these sets of functions in other graphs. The 

SDFBs of the two EOM capabilities (with and without retrieve) are shown below to 

highlight their differences. The remaining graphs were placed in the annexes. 

 

Figure 28: End of Mission (observe and retrieve) - Decommissioning (EOM) SDFB 

 

Figure 29: End of Mission (observe) - Decommissioning (EOM) SDFB 
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The work was completed by designing two SABs (System Actor Blank). The first one was 

created to identify the interfaces for the system and the actors. In red “Physical 

Interfaces” have been represented, which correspond to tangible connections between 

the graph elements (e.g., cables, pins), instead, in blue “Component Interfaces”, to 

indicate certain detached constraints (e.g., performances, operational quantities etc.) 

(Figure 30). The second one was created to provide an overall view of the system and the 

actors involved, the functions that they perform, concerning the different capabilities 

(highlighted through functional chains), considering both the nominal and off-nominal 

conditions (Figure 31, Figure 32). 

Looking at the charts, it can be seen how the functional tree created in phase A has been 

broken down and addressed in this paragraph only as regards the functions relating to 

the mission, while it will be faced in the paragraph on logical architecture as regards the 

relative functions to subsystems. 

 

 

Figure 30: Interfaces SAB 
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Figure 31: Mission SAB (1) 
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Figure 32: Mission SAB (2) 
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3.3 Requirements  

Stakeholders’ requests collected at the beginning of the project are translated into system 

requirements that the system itself must comply with in order to fulfil their needs. These 

requests may initially be described by interested parties in non-technical language. The 

role of the systems engineer, in this case, is to transform the requests into sentences that 

respect certain rules (e.g., they must contain a single “shall” in the statements and must 

be verifiable) and organize them appropriately. Following the ESA ECSS standards, the 

requirements can be divided into the following categories: 

• Mission: requirements and constraints that derive directly from the mission 

objectives and answer the questions “Why?”, “When?”, “Where?”, “What?”, 

“How many satellites”, “For how long?”; for example, they deal with the orbit, 

duration, assembly, scientific objectives or mission success criteria. 

• System: requirements that affect the high-level characteristics of the system 

and derive in most cases from those of the mission. 

• Functional: they are obtained from the functional analysis and define how well 

the system must perform functions. 

• Environmental: requirements that take into account the environment in which 

the product acts, for example considering vibrations, radiation or temperatures 

during the life cycle. 

• Operational: they refer to the operation of the system, they include the different 

operating modes of the product (i.e. on the ground, in orbit) or general 

operations (i.e. communications, frequencies). 

• Interface: category of requirements that traces the requests relating to the 

interfaces between different components of the product or between the product 

and the external environment. 

• Physical: class of requirements deriving from requests regarding geometry, 

mass and inertia properties of the product, etc. 

• Configuration: requirements concerning the parts that make up the product, 

their assembly and their organization. 

• Product guarantee: class concerning product characteristics such as reliability, 

availability, maintainability, safety, quality. 

• Design: requirements design, material standards, safety margins. 

Requirements can be verified through testing, inspection, analysis, and demonstration 

[13]. 

3.3.1 Requirements phase 0/A 

The designers have derived the requirements considering, in addition to the analysis of 

the stakeholders, the mission objectives, functional analysis, identification of scientific 

objectives, the study of critical technologies, mission elements and specifications 

imposed by ESA. They intended to define high-level requirements by detailing those for 

critical subsystems and technologies. 

Already in the first phase of work, the Valispace tool was used for the collection and 

management of requirements, in order to take advantage of some model engineering 

features, such as the creation of Excel spreadsheets with the requirements to return to a 

document-centric approach. 
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During the writing the designers set, following ESA standard, that the requirements must 

be: 

• trackable backwards and forwards, to determine their parental relationship; 

• unique; 

• unequivocal; 

• verifiable; 

• expressed through a sentence containing a “shall” statement, as mentioned in 

the foregoing paragraph. 

The requirements were first organized through an ECSS-type subdivision, considering 

the different categories and then, when necessary, based on the product tree [52]. 

3.3.2 Valispace Requirements  

The Valispace requirements module allows managing the project requirements by 

archiving, organizing and keeping track of them. 

Several features can be exploited in this area, in particular, each requirement can be 

characterized through: 

• A section: within which, through a drop-down menu, it is possible to indicate a 

class of requirements to which it belongs. 

• A specification: to provide a further subdivision with respect to the section to 

which it belongs and identify a specific group. This is defined as “a type of 

dynamic document that contains and manages requirements” and can also be 

assigned to components. 

• An identifier: which consists of a unique name for the requirement usually 

composed of a group of letters useful to indicate the kind of requirement and 

three or more numbers. 

• A title: for briefly describing it. 

• The text: to describe the requirement. “Valis” can be inserted inside it, i.e., 

numerical values linked to the components properties that can be updated 

automatically in case of changes. 

• A rationale: to insert a comment or explanation. 

• An image or attachments: to insert additional information in image format and 

attach documents relating to the requirements. 

• Parent-child relationships: to indicate, utilizing lists, which requisites he 

derives from or to indicate which requisites derive from him. 

• Type: to identify an additional membership field with respect to the 

specification, it can be used to provide information about the characteristics of 

the requirement. 

• Status: to indicate whether the requirement is concluded, a draft or to be 

reviewed. 

• The verification status, the date of the event and the author: to see if and when 

the requirement has been verified and indicate the user who carried out the 

verification. 

• Verification methods: to indicate how the requirement is to be verified. The 

methods that can be selected are analysis, inspection, review, rules, tests. 

• Components: to which requirements can be linked to indicate their 

membership. 
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• Closeout reference: to create a check through numerical values  to report errors 

if not respected. 

• Tag: to indicate particular conditions of the requirement [50]. 

In phase 0/A the designers used: 

• title; 

• unique identifier (ID); 

• level (tree of requirements compliance); 

• statement (or text); 

• traceability (parent/children); 

• item (with respect to the product tree); 

• owner; 

• type; 

• verification level; 

• verification method. 

3.3.3 Requirements delta A/B phases 

The classification of requirements in the new phases has been changed from the previous 

ones. In this case, two folders were created through Valispace to identify the internal 

requirements, which are over the responsibility of the designer for the development of 

SROC, and external requirements, to be provided to external actors that are responsible 

for the MPCD, DOCKS, Vega and the MCC of SR. In this way, the subdivisions occur at 

the contractual level, facilitating the checks to be carried out. 

For both folders, “specifications” were created to represent elements of the mission 

architecture or the product tree that have already been identified or will be identified 

through subsequent analyzes (e.g., spacecraft, mission, propulsion, etc.). Subsequently, 

the “sections” were used to identify topics in order to classify the requirements (i.e., 

thermal, radiation, proximity operations, mechanical). The “types” were employed to 

indicate the classification of the requirement according to the ECSS regulation. The 

requirements were linked to the individual components thanks to Valispace 

functionalities. 

 

Figure 33: Requirements examples 
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Figure 34: Valispace organization and example of requirements 

3.4 Logical Architecture 

The goal of this project phase is to outline how the system will work to meet customer 

expectations. 

After defining the high-level functions through functional analysis, it is necessary to carry 

out a subsequent step and identify, by breaking them down into sub-functions, how they 

can be performed. These sub-functions are associated with logical components that 

interact through logical relationships and are independent of the physical components. 

This stage of work is necessary to move from the definition of the problem to that of the 

solution. 

3.4.1 Logical Architecture phase 0/A 

The designers in the initial phase of the project identified, considering the mission 

objectives, the outlined requirements and the functional analysis, the logical areas that 

SROC had to possess to carry out the mission. A list was created for them and then 

published in the document “D3.1 SROC Feasibility and Preliminary Specification” [52]. 

In particular, initially, the spacecraft was divided into two macro-regions, one dedicated 

to the payload and one to the support platform, subsequently, the logic components 

connected by electrical, data or mechanical interfaces were identified. 

The following elements have been recognized for the platform: 

• Command and data handling subsystem (CDH); 

• Attitude Determination & Control, and Navigation subsystem (ADCNS); 

• Propulsion subsystem (PROP); 

• Proximity Relative Navigation subsystem (PRNS); 

• Space to Earth communication subsystem; 
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• Space to Space communication subsystem; 

• Docking subsystem; 

• Power supply subsystem (EPS); 

• Thermal control subsystem (TCS); 

• Mechanical structural subsystem; 

For the payload area: 

• Primary payload; 

• Secondary payload (when applicable) [52]. 

3.4.2 Logical Analysis: Capella architectural elements and diagrams 

The logical architecture is defined by the Arcadia methodology with the statement “how 

the system will work to fulfil expectations”. 

The main elements for the definition of the architecture are: 

• Logical Component: a structural element that allows “a notional decomposition 

of the system independently of the technological solution”. The logical 

component can be divided into logical subcomponents and one or more logical 

functions can be associated with it. It can be linked to logical components and 

actors. 

• Logical Actor: any element that does not belong to the system but that interacts 

with it. 

• Logical Function: representing a “behaviour” or “service” provided by a logical 

component or actor. The user can connect it via the input/output flow ports to 

other logical functions and can be broken down into sub-functions. 

• Functional Exchange: element of the architecture that is created by connecting 

two logical functions and represents a “one-way” exchange of data or matter. 

• Component Exchange: that identifies the interactions between logical 

components and/or logical actors and allows “the circulation of functional 

exchanges”. 

• Logical Scenario: dynamic sequence diagram that “describes the interactions 

between logical components and logical actors in the context of a capability”. 

• Functional Chain: an element that, as seen in the system analysis, allows the 

identification of function paths [24], [51]. 

The logical architecture was realized through: 

• Logical Architecture Blank (LAB): an architecture diagram that shows the 

constituent elements of the system at a logical level and how the functions are 

allocated within the logical components, contained within the system or actors. 

Unidirectional or bidirectional components exchanges and function exchanges 

can be produced, always connecting one door to another, with the option of 

highlighting chains of logical functions. 
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Figure 35: From the left symbols of “logical function”, “logical component”, “functional exchange”, 
“component exchange” [51] 

3.4.3 Logical analysis phases delta A/B1  

The construction of the logical architecture in this second phase of the project was carried 

out with the aim of enriching and further deepening, through small conceptual changes, 

the analysis previously performed. 

In order to ensure continuity with the system analysis, Capella autonomously makes a 

“transition” to the new level of the SROC system. It is also possible to make a voluntary 

transition of the actors, with which the system interacts during the mission, but in this 

place, it was chosen to focus only on the CubeSat. 

The LAB diagram made it possible to define two logical macro-areas within the system: 

the payload and the platform. The first is necessary to achieve the objectives regarding 

the SR observation analysis and the second to support the functioning of the payload and 

the achievement of the remaining missions. 

The platform was subsequently broken down, after several brainstorming sessions, into 

further logical blocks capable of covering all fields of interest to complete the mission. 

They, differently from phase 0/A, have not been defined as “subsystems” to try, as much 

as possible, to remain free from the physical world. 

The identified blocks were: 

• “Power Collection and Control” to generate, regulate, store, and distribute 

power to the spacecraft. 

• “Command and Data Handling”, further divided into a part dedicated to the 

commands to receive, store, process, and distribute them and one to the 

management of data to collect, store, process and downlink the mission data 

and spacecraft telemetry. 

• “Attitude & Orbit Determination and Control”, to determine the spacecraft 

rotational and translational motion, to maintain and reorient the spacecraft or 

change the spacecraft orbit or trajectory. 

• “Structure and Mechanisms”, which contains both the structural function and 

the docking function considered separately in phase 0/A, to provide 

mechanical support and house spacecraft payloads and subsystems. 

• “Propulsion” to provide, monitor, and control spacecraft thrust. 

• “Proximity and Relative Navigation” in order to determine the spacecraft 

rotational and translational motion, maintain and re-orient the spacecraft and 

or change the spacecraft's orbit or trajectory with respect to SR. 

• “Thermal Determination and Control” to regulate spacecraft temperatures and 

ensure operability. 

• “Communication” to provide the communication link between the spacecraft 

and the ground system or with another spacecraft. 
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Subsequently, the logical functions performed were allocated within the different areas 

in order to have an overall view of the different roles. And finally, functional exchanges 

between the functions and the exchanges between the components were created. The 

former identifies the outputs of each logical region, the last describes the different types 

of interfaces between logical components. In general, three types of interfaces have been 

identified: mechanical support, energy and data. 

 

Figure 36: LAB 

3.5 Physical Architecture 

Physical architecture represents the physical elements that constitute the system and its 

physical interfaces. The designer in creating it aims to develop a technical solution to the 

logical architecture, remembering that, despite the physical components derived from 

the logical ones, very often a system function performed by a single logical component 

can be executed by one or more physical components.  

In the thesis, this architecture was created in both tools, on Capella to define the 

interfaces and the functions performed by the products, while on Valispace to implement 

the characteristics of the different components and to carry out evaluations and budgets. 
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3.5.1 Physical Architecture phase 0/A 

From a physical point of view, the designers, after assessing trade-off analyzes, created a 

“shopping list” of spacecraft components. 

For the bus, the following have been identified: 

• a self-standing avionics module, consisting of an on-board computer, a 

coprocessor for the ADCS, sensors and actuators to perform a fine control of 

the attitude (i.e. 3 reaction wheels, 2 star trackers, 1 triaxial IMU); 

• a backplane that constitutes the printed circuit board assembly (PCBA) to 

ensure the interconnection between the subsystems; 

• sensor modules arranged inside the spacecraft to measure temperatures and 

for the ADCS system (i.e. magnetometers and sun sensors); 

• a thrusters module to carry out the propulsion; 

• a set of cameras in the visible and infrared range to perform proximity 

detections, a proximity lidar and an Optical Navigation Board; 

• the GPS module, with a patch antenna; 

• a torque rods module consisting of 3 ferrite solenoids that operate as 

magnetorquers to desaturate the RWs and to accomplish an attitude control; 

• an LDR radio for TT&C satellite-earth communication with a UHF transceiver 

with L-dipole; 

• an HDR radio for earth satellite communication in S-band; 

• a battery module, consisting of 6 lithium ion cells managed by a control board; 

• a module dedicated to solar panels with an MPPT power controller; 

• 12U structure with aluminium panels; 

A Hyperscout 2 hyperspectral camera was chosen for the payload [52]. 

With the characteristics determined for the different components, different budgets have 

been made (i.e. power budget, energy budget, link budget, etc.) which will be shown later. 

3.5.2 Physical Analysis: Capella architectural elements and diagrams 

The physical architecture is defined in “P. Roques, Systems Architecture Modeling with 

the Arcadia Method, A practical guide to Capella, 2018” as “how the system will be 

developed and built” and allows defining, as previously written, the architecture of the 

system. 

The main elements to create this architecture are: 

• Physical component: artefacts that describe the structure of the physical 

system. There are two types of components in Capella: “behaviour physical 

components” to perform the assigned physical functions (i.e., operating 

software, radar antenna, etc.), “node physical components” which provide the 

material resources for the behavioural components (i.e., processor, router). 

• Physical port: called “connection port” when it belongs to a “node physical 

components” or “structural port” when created on a behavioural component. 

• Physical function: “function applied at a physical level”. 

• Physical connection: a non-oriented physical connection between components 

of the architecture (e.g., ethernet cable, USB cable, etc.). 

• Physical path: an “organized set of physical links” between several different 

components [24], [51]. 
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The modelling of the architecture took place through the use of the following diagram: 

• Physical Architectural Blank (PAB): similar to the previous cases, this 
architecture diagram allows associating the performed functions with each 

component, to create component exchanges and functional exchanges. It also 

offers the capability to allocate behaviour physical components within node 

physical components and create functional chains. 

 

Figure 37: From the left symbols of “physical function”, “behavioral physical component”, “node 
physical component”, “physical connection”, “physical path”[51] 

3.5.3 Valispace components module 

The system architecture can be also defined in Valispace “components” module to elicit 

numerical values. 

Components, as indicated in the tool documentation, are “final product elements” which 

can be physical parts, such as solar panels, or logical parts, such as operations or orbits. 

The user can hierarchically structure them in a components tree, identifying the superior 

system and the sub-components of which it is composed. 

A section is dedicated to each component defining details such as the “Id”, which let the 

tool uniquely identify it, an image and documents, for which different versions can be 

loaded based on the update, a tag, a part number and properties. 

The latter can be of different types: 

• “Vali”: properties containing a single value, such as mass or volume; 

• “Vali matrices”: groups of Vali arranged in rows and columns, e.g., used for 

components with multiple operating modes, such as power consumption; 

• “Textvali”: property for inserting text; 

• “Datevali”: that stores information about the date; 

• “Dataset”: property to import or add a set of values and create a chart. 

Furthermore, for the different Valis, users can define the unit of measurement, the type, 

a formula, the description, margins of error on the value, add the minimum and 

maximum requirements, which cause an error message to appear if they are exceeded. 

Within the component section, thanks to various mathematical functions, it is possible 

to perform calculations of various kinds. 

Valis are called Valitypes if they are defined as default properties in a section dedicated 

to the setting of the tool. 

In the initial stages of the project, users may have to make comparisons between different 

components, to choose a suitable solution. For this reason, Valispace allows the user to 

create and compare alternatives through the “alternative container” function and see 

how they would affect the project. Every time a different solution is chosen, the 

calculations are carried out again. 
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The user can also use the “copy-paste” function to create multiple similar components or 

the “copy and connect” function for identical components, to update them all at the same 

time in case of changes. 

When a Vali is changed, it is saved in a database that can be accessed for a possible restore 

using the “Time machine” function. When changes are made by different users, a user 

can receive notifications to stay informed. 

An important functionality offered by Valispace in the components section is to be able 

to create operating modes. A satellite can face different mission phases within which 

some components may have diverse operating modes (active, off, energy saving). When 

this happens, therefore, some properties will not remain constant throughout the 

mission but will vary according to the modes. 

The tool thus allows the creation of the operating modes for the individual components 

and to associate them with the properties that can vary, to generate the operating modes 

of the overall system and to implement connection matrices through which to indicate 

the states of the components in the different system modes. Thanks to these matrices 

and to the “SOC” (sum of children) function, which make a summation of all the same 

type properties in an equal level architecture, it is possible to identify the overall value of 

that Vali for a given system mode in the whole. 

“SOC” function allows making budgets that can be viewed not only through numerical 

values but also through pie charts and tables [50]. 

3.5.4  Physical architecture phases delta A/B1  

The physical architecture was modelled in Capella only partially by re-proposing what 

was done in the work phase 0/A since there had been no changes from a physical point 

of view compared to the previous phase and no new components or interfaces had been 

defined. 

The model was built by designing a product tree thanks to the possibility of creating 

“behaviour components” and “node components” that helped to distinguish subsystems 

from equipment. The construction of the tree made it possible to translate the work on 

the Valispace tool where the different physical characteristics, useful for carrying out the 

budgets, were inserted. 
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Figure 38: PAB 

The work on Valispace was organized to reflect what was done in Capella and to do this 

the product tree was created through hierarchical relationships. The latter has thus 

allowed through the “SOC” function to create volume and mass budgets at each 

hierarchical level. 
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Figure 39: Valispace physical tree (left), satellite mass and volume budget (right) 

3.6 Budgets 

After considering the components that make up the system from a physical point of view, 

thanks to their characteristics it was possible to calculate different types of budgets. This 

study describes the power, energy and link budgets for the SROC satellite, implemented 

during the first project phase and the changes and improvements made by moving to an 

MBSE approach in delta A and B1 phases. The objective of this last phases was, indeed, 

to move from an approach document-centric, centred on many worksheets on which to 

make the desired estimates, as done in the previous phase of the project, to a model-

centric one, where a single platform is used, within which several users simultaneously 

have the possibility of carrying out calculations, storing data and results. 

Following this objective it will be possible to see how, the power budget, an evaluation of 

the total power produced by the CubeSat during the mission, and the link budget, “the 

capability of the communication system to guarantee an effective communication 

between space segment and ground segment by defining the relationship among data 

rate, antenna size, propagation path length, and transmitter power”, have been fully 

computed on Valispace while the energy budget, “the balance of energy income against 

energy expenditure”, has been implemented on Matlab connected via an appropriate 

add-on to Valispace which, in this case, has been used as a repository to export and 

import data [53].  
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3.6.1 Power budget and Energy budget phase 0/A 

In phase 0/A of the SROC mission, the power and energy budgets were treated together 

through calculations made on Excel worksheets. 

Following the ESA regulations, a margin error of 20% was considered for the system, 

while for the individual components margins of 5%, 10% or 20% were implemented; the 

first for components with flight heritage, the second for components that needed small 

changes and the last for components that needed major changes. 

The designers to develop the analysis considered seven operating modes: safe, 

Sunpointing, downlink, free flight, observation, manoeuvres and docking, for which they 

evaluated the powers required by the individual components and their sum, in order to 

obtain a subtotal value, and the duty cycles (the operating percentage duration with 

respect to the total) of the components and of the individual modes.  

On the subtotal power consumptions values, they applied the ESA margin to determine 

the power required during the various modes. Finally, through a sum-product operation 

between the values of the required powers and the modes duty cycles, they obtained an 

“average required power”. 

The energy budget, instead, as reported in the document [52], was carried out, in a 

preliminary way, for the different operating modes, including Sunpointing, considering 

the degradation of the solar cells, their efficiencies and any misalignments, the effects of 

eclipses and an average incidence of the solar angle of the panels. The engineers chose to 

place the solar panels directly on the body, in order to reduce complexity, by arranging 

them on 3 faces. In general, in this phase, thanks to the parameters listed above, the 

designers evaluated the power generated in Sunpointing and the “orbital average power” 

OAP  generated in the other modes, obtained by multiplying the power generated in 

Sunpointing by a parameter capable of considering any losses, known as the “rule of 

thumb”, and thanks to these they obtained the “average generated power” equal to 𝑃𝐸𝑂𝐿 ∙

𝑑𝑢𝑡𝑦𝑐𝑦𝑐𝑙𝑒𝑆𝑢𝑛 𝑝𝑜𝑖𝑛𝑡𝑖𝑛𝑔  +  𝑂𝐴𝑃 (1 − 𝑑𝑢𝑡𝑦𝑐𝑦𝑐𝑙𝑒𝑆𝑢𝑛 𝑝𝑜𝑖𝑛𝑡𝑖𝑛𝑔). This value was thus compared 

with the satellite “average required power” and with those required during the different 

modes in order to identify the parameters to be modified. 

 

Figure 40: Example of Tyvak Power Budget during Downlink orbits phase 0/A [52] 
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3.6.2 Link budget phase 0/A 

In the first phase of work, Tyvak international designers calculated the link budgets, 

considering both the UHF and S bands, for communications between SROC and ground 

stations. The evaluations were performed using the 𝐸𝑏/𝑁0 method, in which this ratio 

corresponds to the energy required to transmit a bit (𝐸𝑏) in presence of white noise (𝑁0), 

choosing a link margin threshold of 3 𝑑𝐵 and assuming link-related losses. The Carrier 

to Noise ratio, which indicates the receiving quality of the antenna was also considered. 

All calculations were done on different Excel worksheets. 

For the UHF band, both downlink and uplink link budgets have been computed. The 

considered ground stations were Tyvak UHF stations equipped with Yagi antennas with 

outputs of 120 𝑊 RF and gain of about 16 𝑑𝐵𝑖. The antenna considered for the spacecraft 

was instead an omnidirectional V-dipole transceiver with 1 𝑊 RF power. The 

assumptions related to the losses concerned: the atmospheric losses of 2 𝑑𝐵, the 

polarization losses of 3 𝑑𝐵 and the losses due to misalignment of 3 𝑑𝐵. 

For the S-band, the budget was made considering only the downlink toward KSAT 

ground stations capable of receiving on dishes with a G/T (gain over equivalent 

temperature) of 12.5 𝑑𝐵/𝐾, and a satellite antenna with a transmitter output of 2 𝑊 RF 

power and 7 𝑑𝐵𝑖 gain. In this case, an atmospheric loss of 2 𝑑𝐵, a polarization loss of 3 𝑑𝐵 

and a misalignment loss of 6 𝑑𝐵 were considered. 

The other parameters used for the calculations were derived from the components' 

technical specifications. 

The designers obtained margin values higher than 3 𝑑𝐵𝑖, for the UHF band, already 

considering 2° of elevation and an orbit of 500 𝑘𝑚, conservative compared to the nominal 

one of 400 𝑘𝑚, for the S-band, instead, an elevation of 15° and orbits of 500 𝑘𝑚. 

The procedure carried out for making the budget in UHF band is explained below, 

considering the same equations for the downlink and the uplink by changing in the two 

cases the reference values for the transmitter and receiver, in the first case the 

transmitter for the spacecraft and the receiver for the ground station, in the second case 

the opposite condition. In the equations, the subscript “𝑡” will be used to indicate the 

transmitter and the subscript “𝑟” for the receiver. 

The following data were used for the transmitter: the bandwidth in 𝑘𝐻𝑧, the gain 𝐺𝑡 in 

𝑑𝐵, the transmission power (𝑇𝑥) 𝑃𝑡 in 𝑊, the signal frequency 𝑓 in 𝑀𝐻𝑧, the data rate in 

𝑏𝑝𝑠, the losses along the transmission line between transmitter and antenna 

(proportional to the length of the cable and the type of cable) 𝐿𝑡 in 𝑑𝐵, the noise 

bandwidth of the transmitter calculated as 𝑁𝑜𝑖𝑠𝑒 𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ = 10 log10 𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ𝑡   and 

the Effective Isotropic Radiated Power (𝐸𝐼𝑅𝑃𝑡) equal to 10 log10(𝑃𝑡)  − 𝐿𝑡 + 𝐺𝑡. 

For the receiver, instead, the following were considered: a reference temperature 𝑇0 in 

𝐾, its actual temperature 𝑇𝑟𝑎  in 𝐾, the noise figure in 𝑑𝐵, the gain 𝐺𝑟 in 𝑑𝐵, the line loss 

𝐿𝑟 in 𝑑𝐵, an additional loss called 𝐼𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 𝑙𝑜𝑠𝑠𝑒𝑠 in 𝑑𝐵 (i.e., component 

efficiencies), a noise figure 𝐹 in 𝑑𝐵 and the required ratio 𝐸𝑏/𝑁0, determined by Bit Error 

Rate (𝐵𝐸𝑅 that defines the probability that a wrong transmission of a bit occurs), 

modulation and the coding if any. 
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Other parameters useful for the calculations were the atmospheric losses 𝐿𝑎 in 𝑑𝐵, the 

polarization losses 𝐿𝑝in 𝑑𝐵, the losses due to misalignment 𝐿𝑚 in 𝑑𝐵, the elevation angle 

δ in 𝑟𝑎𝑑, the radius of the earth 𝑅𝐸𝑎𝑟𝑡ℎ in 𝑘𝑚, the average distance of the satellite from 

the ground station during communications ℎ in 𝑘𝑚, the Boltzmann constant 𝑘 =

−228.6 𝑑𝐵𝑊/𝐻𝑧𝐾, the slant range calculated with the following equation: 

𝐿𝑖𝑛𝑘 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝑆 = 𝑅𝐸𝑎𝑟𝑡ℎ (√(
(𝑅𝐸𝑎𝑟𝑡ℎ+ℎ)2

𝑅𝐸𝑎𝑟𝑡ℎ
2 ) − (𝑐𝑜𝑠𝛿)2 − 𝑠𝑖𝑛𝛿). 

In order the following parameters were computed: 

• 𝐹𝑟𝑒𝑒 𝑆𝑝𝑎𝑐𝑒 𝑃𝑎𝑡ℎ 𝐿𝑜𝑠𝑠 = 20 log10 𝐿𝑖𝑛𝑘 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 + 20 log10 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦𝑡 + 32,4 

that represents the sum of the link distance and the transmitter frequency in 𝑑𝐵; 

the 32,4 𝑑𝐵 value is linked in this case to the unit of measurement used for the 

frequency; 

• The total loss due to the link 𝑃𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛 𝑙𝑜𝑠𝑠 = 𝐹𝑟𝑒𝑒 𝑆𝑝𝑎𝑐𝑒 𝑃𝑎𝑡ℎ 𝐿𝑜𝑠𝑠 + 𝐿𝑎 +

+𝐿𝑝 + 𝐿𝑚; 

• The isotropic receive level 𝐼𝑅𝐿𝑟𝑎
= 𝐸𝐼𝑅𝑃𝑡𝑎

− 𝑃𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛 𝑙𝑜𝑠𝑠 which 

corresponds to the power level it would expect to achieve using an isotropic 

antenna (uniformly omnidirectional antenna with 0 𝑑𝐵 gain) [54]; 

• The signal level of the receiver 𝑅𝑥 𝑠𝑖𝑔𝑛𝑎𝑙 𝑙𝑒𝑣𝑒𝑙 = 𝐼𝑅𝐿𝑟𝑎
+ 𝐺𝑟 − 𝐿𝑟; 

• The equivalent temperature 𝑇𝑒 = 𝑇𝑟𝑎
+ 𝑇0(10

𝑁𝑜𝑖𝑠𝑒 𝑓𝑖𝑔𝑢𝑟𝑒

10 − 1); 

• The ratio between gain and equivalent temperature 𝑇𝑒 of the receiver in 𝑑𝐵        

𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟 𝑎𝑛𝑡𝑒𝑛𝑛𝑎
𝐺

𝑇
=  𝐺𝑟 − 10 log10 𝑇𝑒; 

• The white noise 𝑁0 = +𝑘 + 10 log10 𝑇𝑒; 

• The energy per bit equal to 𝐸𝑏 = 𝑅𝑥 𝑠𝑖𝑔𝑛𝑎𝑙 𝑙𝑒𝑣𝑒𝑙 − 10 log10 𝐷𝑎𝑡𝑎 𝑟𝑎𝑡𝑒𝑡; 

• The budget total noise as 𝑇𝑜𝑡𝑎𝑙 𝑁𝑜𝑖𝑠𝑒 𝑃𝑜𝑤𝑒𝑟 = 𝑁0 + 𝑁𝑜𝑖𝑠𝑒 𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ, 

considering the bandwidth for the noise bandwidth in 𝐻𝑧; 

• The ratio 
𝐸𝑏

𝑁0
= 𝐸𝑏 − 𝑁0; 

• The carrier to noise density ratio, that determines if the receiver can lock on to 
the carrier and if the information encoded in the signal can be retrieved, 

considering noise presence in the received signal, 
𝐶

𝑁0
= 𝐼𝑅𝐿 +

+𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟 𝑎𝑛𝑡𝑒𝑛𝑛𝑎 𝐺/𝑇 − 𝑘; 

• The Carrier to Noise ratio 
𝐶

𝑁
=

𝐶

𝑁0
− 𝑁𝑜𝑖𝑠𝑒 𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ, with 𝑁 received noise 

power after filters; 

• The 𝐿𝑖𝑛𝑘 𝑀𝑎𝑟𝑔𝑖𝑛 =
𝐸𝑏

𝑁0
− (

𝐸𝑏

𝑁0
)

𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑
− 𝐼𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 𝐿𝑜𝑠𝑠𝑒𝑠. 

In the S-band downlink communication, instead, were used for the transmitter: the 

bandwidth in 𝑘𝐻𝑧, the gain 𝐺𝑡 in 𝑑𝐵, the transmission power 𝑃𝑡 in 𝑊, the signal frequency 

𝑓 in 𝑀𝐻𝑧, the data rate in 𝑏𝑝𝑠, the line losses 𝐿𝑡 in 𝑑𝐵, the noise bandwidth in dB and the 

𝐸𝐼𝑅𝑃𝑡 in 𝑑𝐵𝑊. 

For the receiver: the required ratio 𝐸𝑏/𝑁0 and the implementation loss in 𝑑𝐵. The 

designers considered, furthermore, as mentioned before, the receiver antenna ratio G/T 

of the ground station as known. 
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The link parameters used have been described previously. 

In this case, to determine the link margin the 𝐺/𝑇 ratio was exploited through the 

following operations:  

• 𝐹𝑟𝑒𝑒 𝑆𝑝𝑎𝑐𝑒 𝑃𝑎𝑡ℎ 𝐿𝑜𝑠𝑠 = 20 log10 𝐿𝑖𝑛𝑘 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 + 20 log10 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦𝑡 + 32,4; 

• 𝑃𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛 𝑙𝑜𝑠𝑠 = 𝐹𝑟𝑒𝑒 𝑆𝑝𝑎𝑐𝑒 𝑃𝑎𝑡ℎ 𝐿𝑜𝑠𝑠 + 𝐿𝑎 + 𝐿𝑝 + 𝐿𝑚; 

• 𝐼𝑅𝐿𝑟𝑎
= 𝐸𝐼𝑅𝑃𝑡𝑎

− 𝑃𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛 𝑙𝑜𝑠𝑠; 

• 𝐸𝑏

𝑁0
= 𝐺/𝑇 + 𝐼𝑅𝐿𝑟𝑎

− 𝐿𝑟 − 10 log10 𝐷𝑎𝑡𝑎 𝑅𝑎𝑡𝑒 − 𝑘; 

• 𝐶

𝑁0
= 𝐸𝐼𝑅𝑃 − 𝑃𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛 𝑙𝑜𝑠𝑠 + 𝐺/𝑇 − 𝑘; 

• 𝐶

𝑁
=

𝐶

𝑁0
− 𝑁𝑜𝑖𝑠𝑒 𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ; 

• 𝐿𝑖𝑛𝑘 𝑚𝑎𝑟𝑔𝑖𝑛 =
𝐸𝑏

𝑁0
− (

𝐸𝑏

𝑁0
)

𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑
− 𝐼𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 𝐿𝑜𝑠𝑠. 

 

Figure 41: Tyvak link budget phase 0/A [52] 

3.6.3 Power budget phases delta A/B1 

The power budget was implemented on Valispace retracing the work done by Tyvak 

designers. 

The assessments previously created on Excel were easily reproduced on the new platform 

by exploiting the different potentials. 

In detail, the possibility of creating modes was initially used both for the mission, 

considering its different phases, and for the components, for the different consumptions, 

and subsequently, according to the operating mode of the different parts, the sum of the 

involved powers was made through the “SOC” function. 
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3.6.4 Energy budget phases delta A/B1 

The energy budget, as said before, was realized through a connection between Valispace 

and Matlab considering, not only an average solar incidence angle on the panels, as 

hypothesized in the preliminary study by the Tyvak designers, but different inclinations 

(different cosine losses) as the orbit varies thanks to the matrices imported from STK. 

The latter, called Sun Vectors matrices, in detail, contained the cosines of the sun angle 

incidences 𝜃𝑖 with respect to the satellite reference axes changing along the orbits. 

Valispace was used as a “warehouse” from which to draw and deposit data, the 

mathematical operations, on the other hand, were carried out on Matlab. This was 

possible thanks to a Matlab Valispace add-on that allows logging into the repository, to 

select, through an associated identification code, one or more component Valis, in the 

form of value, dataset, or matrix, to import them and in the same way to export the 

desired values. 

The complete procedure for carrying out the computations is reported in the next chapter 

in the ModelSat energy budget paragraph (4.7) in which it is generalized. Unlike that 

version, however, in the case of SROC, the panels’ disposition was already chosen for the 

faces so it cannot be changed and only the characteristics of the panels or their number 

can be modified. 

This evaluation has generally made it possible to study various parameters including the 

power generated by the panels or the depth of discharge during critical operating modes 

and to verify the feasibility of the desired tasks over time. An example version of the code 

can be viewed in the annexes while below it can be possible to observe a flow chart that 

summarizes the operations carried out for the specific case (Figure 42). 
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Figure 42: SROC flow chart for energy budget phase delta A/B1 
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3.6.5 Link budget phase delta A/B1 

In order to move in a model-based orientation the link budget, in the new work phases, 

has been performed inside the “components” section of Valispace. The areas of the 

mission architecture involved for its realization were: the ground station where the 

characteristics of the transmitter and the antenna for the bands S and the UHF have been 

inserted, the communication subsystem of the spacecraft, to place the data relating to 

the transceivers for the two bands, and the “operation” area in which two sub-areas have 

been created, one linked to the constants, distances and communication losses and one 

to carry out the calculations of the link budget. 

Compared to phase 0/A in order to comply with the manual “Satellite communications 

systems engineering atmospheric effects, satellite link design and system performance” 

[55] and with the “Space Systems” lectures slides [53] and therefore facilitate the 

understanding, equations similar to the previous ones were used for the estimates but 

with slight differences in terms of nomenclature and parameters. 

These differences are: 

• the use of the “Total Space Losses” 𝐿𝑇𝐿𝑆 terminology instead of “Propagation 

Loss” within which losses related to rain 𝐿𝑟 are also considered, hence                                          

𝐿𝑇𝐿𝑆 = 𝐹𝑟𝑒𝑒 𝑆𝑝𝑎𝑐𝑒 𝑃𝑎𝑡ℎ 𝐿𝑜𝑠𝑠 + 𝐿𝑎 + 𝐿𝑝 + 𝐿𝑚 + 𝐿𝑟; 

• the introduction of the parameter “System Noise Temperature” linked to the 

noise generated by the components 𝑇𝑠 = 𝑇𝑟𝑎
+ 𝑇0 (

1−𝐿𝑟

𝐿𝑟
) + 𝑇0 (

𝐹−1

𝐿𝑟
) , inside which 

it can be observed the presence of the term  𝐹 “noise figure”, that indicates the 

noise growth starting from a reference temperature 𝑇0 = 290𝐾, the temperature 

of the antenna 𝑇𝑟𝑎
 and the losses of the receiver cables; 

The System Noise Temperature wad used in the equations to replace the 

“Equivalent Temperature” thanks to the relation 10 log10 𝑇𝑒 = 10 log10 𝑇𝑠  − 𝐿𝑟, 

that leads for example to write the gain over temperature ratio as                                                    

𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟 𝑎𝑛𝑡𝑒𝑛𝑛𝑎 𝐺/𝑇 =  𝐺𝑟 − (10 log10 𝑇𝑠  − 𝐿𝑟). 

These changes, thus, allow writing the 𝐸𝑏/𝑁0 as 

 
𝐸𝑏

𝑁0
= 𝐸𝐼𝑅𝑃𝑡 − 𝐿𝑇𝐿𝑆 + 𝐺𝑟 − 𝑘 − 10 log10 𝑇𝑠 − 10 log10 𝐷𝑎𝑡𝑎 𝑅𝑎𝑡𝑒𝑡. 
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4 ModelSat 

After having described the work for the SROC satellite, it is now possible to generalize 

what has been done through reverse engineering for similar mission models. 

This chapter deals with the concept of ModelSat, which consists in the creation of an 

MBSE procedure to which the systems engineer can refer in the definition of the first 

phases of the project, consisting of advice, modelling proposals and calculation methods 

for the determination of budgets on Capella and Valispace, which can be also reproduced 

on different tools. ModelSat also includes a dynamic database modelled on Valispace, as 

will be shown later in the physical architecture, in which different alternatives products 

have been collected for the same component that the user can choose for the design of 

CubeSat. 

In the following paragraphs, the previous chapter will be retraced, proposing solutions 

for determining stakeholders and their needs, functional analysis, requirements, logical 

and physical architecture, technical budgets. 

4.1 Advice for MBSE stakeholders and needs identification  

The project phase of the management and identification of the stakeholders and their 

needs can be modelled, as mentioned in the previous chapter, using the “Operational 

Analysis” section of Capella. 

The first action of the analysis consists precisely in determining the stakeholders through 

brainstorming sessions. In this phase it is essential to distinguish the different figures 

interested in the project and to consider any subgroups with different interests and needs 

among them, moreover, it is appropriate to classify them based on their power and 

interest in the mission. The use of MBSE tools such as Capella, defining the stakeholders 

as “Operational Entities”, allows representing them in a single framework using OEB 

graphic. 

To optimize the organization of work, after having conducted interviews to define all 

interested parties’ needs, it would be appropriate to include them within “high-level 

topics” in which the various entities are interested, such as safety, costs, the development 

of innovative missions, the increase of knowledge, dissemination of data. This could be 

useful for the systems engineer to create a hierarchical order of implementation before 

even studying the requests in detail. 

The “high-level topics” can be defined as “Operational Capabilities”, the real needs, 

instead, as “Operational Activities” to be respected in order to satisfy the parties involved. 

Capella's OBC graphs consent to observe which stakeholders are interested in the 

identified operational capabilities and at the same time to create, following the MBSE 

logic, collections of operational activities associated with them (OAIB and ES graphs). 

Within the OAIB and ES graphs, which allow evaluating the relationships with 

stakeholders, when possible it is advisable to arrange the needs in a logical sequence to 

facilitate, in a later stage, how to satisfy them and create input/output exchanges. At this 

level, the exchanges can be conceived as “values” that represent what the interested 

parties want to achieve with their requests. 
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The example described by Pascal Roques in the manual “Systems Architecture Modeling 

with the Arcadia Method” identifies them as the product of activities. 

In this case, there are no differences with respect to his proposal except in the design 

level of detail. 

Finally, to make the most of the model-based and tool potential, it is worthwhile to create 

a graph capable of collecting all the models created (in this case OAB) and providing an 

overview of the needs, the stakeholders, the interactions identified and highlighting the 

different “high-level topics” to which they belong through chains of activities. This chart 

allows having an immediate, dynamic, complete and rich view of the general picture 

unlike the simple lists produced on Excel. 

A flowchart designed to summarize the recommended procedure is shown below (Figure 

43). 

 

Figure 43: Flow chart general procedure stakeholders and needs analysis 
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4.2 Advice for MBSE Concept of Operations 

The system analysis in the early stages of the project involves the creation of diverse types 
of graphics. A document-centric approach could lead to referring to a large number of 
files located in different directories, to be updated individually every time a change is 
made to the identified concept of operations, mission architecture or functional analysis. 
Model-based systems engineering, on the other hand, make available to manage them all 
in one place, as already highlighted, and always staying up to date on any changes, 
producing model results not obtainable by the graphs alone. The value added by MBSE, 
beyond that contributed independently by the graphs, is, indeed, primarily created by 
the relationships and interconnections among the graphs or graphs’ elements. This 
behaviour could retrace the role of the system in SE. Indeed, for the system it is possible 
to write: 

𝑆𝑦𝑠𝑡𝑒𝑚 𝑣𝑎𝑙𝑢𝑒 ≫ Σ 𝑃𝑎𝑟𝑡 𝑣𝑎𝑙𝑢𝑒 
𝑆𝑦𝑠𝑡𝑒𝑚 𝑣𝑎𝑙𝑢𝑒 = Σ 𝑃𝑎𝑟𝑡 𝑣𝑎𝑙𝑢𝑒 + 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝𝑠 𝑣𝑎𝑙𝑢𝑒. 

 
And similarly for the model-based: 

𝑀𝐵𝑆𝐸 𝑚𝑜𝑑𝑒𝑙𝑠 ≫ Σ 𝑔𝑟𝑎𝑝ℎ𝑠 
𝑀𝐵𝑆𝐸 𝑚𝑜𝑑𝑒𝑙𝑠 = Σ 𝑔𝑟𝑎𝑝ℎ𝑠 + 𝑖𝑛𝑡𝑒𝑟𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠. 

 
To perform a complete analysis, the systems engineer must first identify the main system 
that will carry out the missions and the actors with whom it will interact. This distinction 
lets high-level functions be correctly associated with the various involved entities. Using 
the Capella “System Analysis” section these considerations can be made by creating a 
CSA chart. 
Once the system has been identified, the next step is to define the objectives, “Missions” 
in Capella, that the satellite must fulfil based on the requests made by the stakeholders. 
Since each mission has a subject, it would be advisable to build a specific graph to 
highlight this, the chosen tool permits the creation of a graph (MB diagram) in which 
arrows indicate the connection between the mission carried out by the system and the 
actor subject. Within the same graph, the designer can also organize missions in order of 
importance, taking advantage of the ability to enter comments, identifying, for example, 
primary and secondary missions. 
 
Similarly to the operational analysis, it is possible to define “Capabilities” for the 
missions, which in this case can be used to describe the different mission phases, that 
the satellite must carry out to complete the missions. An MCB chart could help the 
systems engineer, thanks to model-based logic, to better orientate within the project as 
it associates capabilities with missions and creates additional graphics for each capability 
(SDFB) collecting groups of functions useful for their performance. The difference with 
respect to the previous phase lies precisely in the level of the project referred to, which 
now concerns greater detail and an approach to carrying out the mission. 
 
The creation of different MCB charts can be useful for the designer to represent different 
concepts of operations considering for example nominal or off-nominal conditions. 
Furthermore, the user can enter the initial and final conditions of the phase under 
analysis. 
As previously mentioned, each capability (mission phase) through SDFB graphs can be 
associated with functions and sub-functions, which can be understood as tasks that the 
system and the actors must perform within phases in order to be declared completed. 
The MBSE approach in this case facilitates the understanding and assignment of 
functions as it allows to distinguish those performed by the system and those performed 
by the actors. Within the SDFB it is possible to define functional exchanges, which 
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indicate the condition or an event to switch from one function to another, to arrange 
them in order of execution, similarly to an FFBD chart, and create functional chains to 
identify these sets of functions in other types of graphs. 
 
The mission architecture can be created by inserting the actors and the system in a graph, 
associating each of them with the functions performed, with the appropriate exchanges. 
A complete view, also including the mission phases to which the functions belong, using 
the functional chains created for the SDFBs, can be realized thanks to the SAB chart of 
Capella. This also allows defining interfaces through component or physical connections 
between actors and the system, that, at this level, can be useful for the engineer to 
facilitate the definition of requirements, to have a preliminary view with respect to the 
physical or logical architecture and to determine, according to ECSS-E-ST-10-24C, who 
will be in control of the interfaces, distinguishing between internal (“under the control 
of a given actor”) or external (“outside the control of a given actor”) [56]. 

4.3 Advice for MBSE requirements management 

Based on what has been shown in the previous chapter, it is now possible to provide some 

advice regarding the modelling phase of the requirements that should be applied, as 

already done for SROC, for similar missions. 

In general, to start drawing up a list of requirements, it is necessary to take into account 

inputs from mission objectives, system analysis, scientific and technological objectives 

and any constraints imposed by stakeholders. 

At first, the identification of the requirements must be carried out in such a way as to 

remain at a high level of the project, identifying all the “subdivision branches”, and 

subsequently after several iterations, it is possible to go down a level by finely detailing 

and expanding them, determining “requirements children”. 

To better manage the requirements, it is advisable to use platforms that take advantage 

of model-based systems engineering, such as Valispace, as it is possible to keep track of 

changes or updates over time and to be able to exploit clear and well-organized graphics 

and tabular representations, to establish their uniqueness and unambiguity, to verify 

them. The traceability of the requirements is one of the peculiarities of the MBSE tools 

since given the temporal extension of the projects it is very often necessary to make 

changes following the onset of new requests and create discussions between the different 

users. Precisely, for this reason, it is necessary over time to know when a requirement 

was changed and the reasons that led to the modification. 

Valispace lets to organize the requirements according to different classifications and 

standard formats, such as the ECSS one or following the product tree or through a hybrid 

classification. And it enables to insert “Valis”, already described above, which will help 

the manager to verify the requirements even before the actual verification. 

In the phase of writing it is always necessary to already think about the final product and 

the verification phase, for this purpose it can be essential to create a link between the 

requirement and the component, as Valispace allows to do, as this consents to have many 

more information on how to carry out the verifications. 

A fundamental rule, however, is that requirements must be written positively using a 

complete sentence containing a “shall” statement. 
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The requirements management platform must also interface with the project modelling 

tool, in our case Capella. 

When classifying and organizing the requirements, the designer should take into account 

various information: who is in charge of product development and its verification, the 

component or subsystem to which the requirement refers, the level within a 

requirements tree, the classification according to the ECSS regulation, the area of 

competence of the requirement. The latter can be mechanical, thermal, electrical, 

radiation, AIV, operational, performance, safety. Depending on the mission, the designer 

can add other categories. 

The organization of the requirements can take place in different ways depending on the 

needs of the engineer. Three organizational proposals produced on Valispace are 

described below. 

The first proposal organizes the requirements by dividing them into “folders” following 

the ECSS classification, in which some nomenclature changes are made when necessary. 

Within them, classification takes place using “specifications”, dynamic folders to which 

details can be added to characterize them, which represent the different subsystems or 

some parts of the satellite mission architecture. Finally, the requirements are associated 

with “sections” that are created inside the various “specifications” to indicate sub-

categories of common topics. The requirements can then be linked, thanks to the 

Valispace functionalities, to the individual components. This proposal can be considered 

as a hybrid between classification by ECSS and product tree (Figure 44). 

The second proposal involves the creation of a structure in “folders” that include two 

areas, following the ECSS-E-ST-10 24 C, for internal requirements, to identify requests 

of competence, and for external requirements, to consider interfaces of external 

competence with respect to who will develop the other areas of interest, so that they can 

be easily transmitted to the entities involved. This has been designed in order to visualize 

subdivisions that occurred at a contractual level and to apply a point of view oriented 

towards who will have to carry out the verifications. For both folders, “specifications” 

which, in this case, represent elements of the mission architecture or the product tree 

(e.g., spacecraft, mission, propulsion, etc.), and subsequently “sections”, to identify 

topics useful to classify the requirements (i.e., thermal, radiation, proximity operations, 

mechanical), can be created. The “types” have been used to indicate the classification of 

the requirement according to the ECSS regulation. Whenever possible, the requirements 

can be subsequently linked, as mentioned above, to the individual components. The 

second proposal, however, causes the designer to lose the information relating to the 

level of the mission architecture to which reference is being made (Figure 44).  

The third classification proposes a distribution of the requirements that slavishly follows 

the mission architecture. In this case, the “specifications” can be used to recreate the first 

level branches of the architecture and, within them, the lower branches of the 

architecture can be created through the “sections” and “subsections”. However, this 

classification presents problems concerning the location of the interface requirements 

and the possibility of being able to easily share them with other entities and redundancy 

in the creation of the “sections” linked to the components, as the assignment of the 

requirement to the component can be carried out through the functionalities already 

present in Valispace. The type in this proposal can be used to indicate the kind of 

requirement (e.g., mechanical, thermal, operational, performance) in order to present a 
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totally product-oriented vision. Furthermore, this classification does not allow to have a 

visualization of the requisites according to ECSS (Figure 44). 

The requirements can be identified by a code: XXX-YYY-ZZZ-NNN. 

For the first two proposals, the three letters XXX represent an abbreviation of the project 

name, YYY indicates the name of the “folder”, ZZZ the “specification” name and NNN a 

number to put them in order. For the third, XXX represent the name of the project, YYY 

the “specification”, ZZZ an abbreviation for the section name and NNN the number of 

the requirement. 

 

Figure 44: From the left Valispace organization of proposal 1, proposal 2 and proposal 3 

4.4 Advice for MBSE logical analysis 

What can be abstracted from the construction of the logical architecture for the SROC 

mission concerns the need for designers to remain free from physical products, so it is 

necessary to stay on the level of ideas. 

In general, the construction of the architecture by the system engineer can take place by 

creating, using the chosen tool, only a single graph in which all the different components 

and interactions can be represented. This is a benefit of the MBSE that dynamically 

represents what happens to the system, maintaining a link with previous analyses. 

The graph in question is the LAB, where the logical areas that allow to carry out the 

mission can be placed, usually the payload and the support platform, which includes 

areas related to data and command handling, communication, thrust generation, 
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determination and control of position and attitude, structural support, generation and 

supply of energy, maintenance of a thermal environment. Within these, to be able to 

identify the physical components in the next design phase, it is advisable to insert the 

logic functions and sub-functions performed, drawing whenever possible on those 

obtained in the functional analysis. 

Through these organizational pieces of advice, it will be easy for the designer to identify 

the exchanges between functions and components that will make available defining the 

interfaces. Mainly the logical interfaces between the components that can be identified 

are of three types: data, energy, mechanical. 

4.5 Advice for MBSE physical analysis  

The physical architecture must be defined after the logical one. The use of Capella allows 

these analyses to be created in the same environment, ensuring that the designer is 

always updated on any changes affecting the functions that the components must 

perform. The architecture can be defined using a PAB diagram reproducing a container 

structure, in which it is important to distinguish all the different components and parts 

that make up the subsystems, connecting them via physical links (i.e., cables). 

In parallel to the physical architecture built on Capella, it is advisable to implement one 

on a tool in which the components can be characterized in a simple way. 

In this case, from a ModelSat perspective, it was decided to create a model on Valispace 

that considered not only the physical architecture but the entire mission architecture, 

including budgets, which can be reused by engineers for the future CubeSat projects 

through small modifications and adaptations to their missions. 

The mission architecture was built considering five areas: 

• Ground segment: to detail and describe the characteristics of the stations and 

their communication devices. 

• Launch segment: to consider the vector capable of bringing the satellite into 

orbit. 

• Operations: an area dedicated to the calculation of the link budget and to the 

collection of constants or parameters. 

• Orbit: section on which to import the characteristics of the orbits performed by 

the satellite. 

• Space segment: to characterize the payload and the satellite support platform 

by building a product tree. 

In addition to the link budget, power, energy, mass and volume budgets have been 

implemented. The first three will be explained in detail in the following paragraphs, while 

the last two have been easily created on Valispace using the “SOC” function previously 

explained. 

In general, in the initial phases of the project, it is necessary to make tradeoffs to choose 

the best component, considering the needs of the designer, that best suits the mission. 

For this reason, for the ground segment, the launch segment and the components of the 

subsystems of the space segment, alternatives were considered to be chosen, through the 

“alternative container” function, creating a database of components available on the 

market. 
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Taking into consideration the space segment, the following have been implemented 

hierarchically: 

• the payload with different types of solutions; 

• the AODCS subsystem containing actuators, sensors and thrusters, in which 

control moment gyroscopes, magnetic torques, momentum wheels, reaction 

wheels were considered for the actuators, earth sensor, gyroscope, IMU, star 

tracker and Sun sensors were included for the sensors, finally, the thrusters 

have been divided into electrics and cold gasses; 

• the onboard computer for command and data handling; 

• the communication system contains two-way radios of different bands; 

• the subsystem of the electric power divided into batteries and solar panels; 

• the subsystem dedicated to the structure; 

• the thermal control subsystem. 

The user for his project can then choose whether to keep the inserted components and 

select the desired alternative from the present ones or delete the component he will not 

use. The possibility of choosing among the alternatives allows, once the selection has 

been made, to automatically update all the calculations to which the characteristics of 

the component are linked. In fact, through the functions of Valispace, it is possible to 

connect to the calculations not only the values of the single component but also those of 

the element selected at a given moment among the proposals present. 

                                   

Figure 45: Valispace mission architecture (left) and thruster alternative container (right) 

This lets to use a biunivocal approach, such as for thrusters, for which the designer can 

implement a top-down approach by first choosing the type of propulsion (between cold 

gas and electric) and then the product on the market through comparisons or a bottom-

up approach by selecting initially the component that best suits its needs, between the 

two classes of engines, and then making a trade-off among the best of the two groups. 

Thanks to its model-based approach, Valispace has also been granted the ability to create 

document folders, reproducing the product tree, to store the datasheets relating to the 

various components or systems implemented. 
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Figure 46: Electric cold gas thrusters alternatives 
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Figure 47: Cold gas and Electric thrusters comparison  

4.6 Power budget 

The Power Budget has been fully implemented on Valispace. 

The platform owns the potentiality to create “operating modes”, for each subsystem 

component, that a user can associate to a certain property whose value varies according 

to the operating states of the mission. This is the case of “power consumption”. 

In the ModelSat, indeed, three different operating modes have been created for the 

components’ power consumption: a maximum condition, when the consumption is at 

the peak, an average condition, to consider when the component operates nominally, and 

a minimum one, to select when the device is off or in a non-operating mode but with an 

operative integrated thermal control system. 

Whenever the user wants to create a power consumption property, he can select the 

associated mode and a vector will be automatically generated, with the related number 
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of rows, in this case, three as the operating modes, and the linked different fields names 

(i.e. max, avg, min). 

 

Figure 48: Mode example for components (left) and mission phases (right) 

Similarly, a power consumption vector, corresponding to the one required by subsystems 

during the various hypothesized mission phases, was created for the satellite as a whole. 

The implemented phases were: deployment, manoeuvres, observation, safe, Sun 

pointing, downlink and docking, for which modes have been created and powers 

calculated. 

In this way, the user will obtain the power budget for the different mission phases by 

choosing the desired components mode (Figure 49). The platform will make a sum of the 

powers involved for the specific phase and return the requested value. 

 

Figure 49: Mode selection matrix 

A preliminary check was also implemented to verify that the power produced by solar 

panels during orbit was able to meet the demands of the subsystems. 

This check took place through the following steps: 

• creation of a duty cycle vector, associated with mission phases modes, for which 

the user must enter their percentage duration; 

• creation of the “average required power” vector through a sum-product 

relationship between the duty cycle vector and the satellite power consumption 

vector; 

• obtaining of the power generated in Sun Pointing 𝑃𝐸𝑂𝐿, the sum of those created 

by the panels arranged on the different faces, whose calculation steps are 

explained in the paragraph for the determination of the energy budget (4.7); 

• creation of the “orbital average power” OAP property by multiplying the rule of 

thumb, parameter estimated from experience, and the 𝑃𝐸𝑂𝐿; 
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• calculation of the “average generated power” through the equation                                                                  

𝑃𝐸𝑂𝐿 ∙  𝑑𝑢𝑡𝑦𝑐𝑦𝑐𝑙𝑒𝑆𝑢𝑛 𝑝𝑜𝑖𝑛𝑡𝑖𝑛𝑔  +  𝑂𝐴𝑃 (1 − 𝑑𝑢𝑡𝑦𝑐𝑦𝑐𝑙𝑒𝑆𝑢𝑛 𝑝𝑜𝑖𝑛𝑡𝑖𝑛𝑔); 

• comparison between the “average generated power” and the power consumption 
in the different phases. 

Based on the results, the user can evaluate the need to vary some EPS parameters. 

The designer can implement the duty cycles vector in several ways. He can create a single 

vector, indicating in the description the reference orbit, and update the values and 

description when the orbit under study changes, create as many duty cycle vectors as 

there are phases to be analysed (e.g., duty cycle downlink, duty cycle observation), create 

a matrix in which different duty cycles are implemented for each column (useful when 

the mission phases are definitively specified, given the impossibility of changing the 

dimensions of the matrices in Valispace) or create a fictitious component containing 

alternatives to be select for duty cycles. 

4.7 Energy budget 

This paragraph describes the process for evaluating the spacecraft energy budget, which 

was partly used for the SROC mission. As seen previously, it is implemented using 

Valispace to import and export the data, Matlab to perform the calculations and graphs, 

and STK to import the Sun Vector matrices containing the cosines of the Sun angles 

incidences for the three Cartesian axes. 

The creation of the Matlab code took place through separation into sections, where 

various operations to be executed were realized. The user will have to launch them, from 

time to time, to arrive at the final result. The equations used are taken from energy 

budgets made by Tyvak International and from the Wertz manual. The basic steps of the 

code (complete version in the annexes) and the user's tasks will be explained below. 

The first actions that the user must carry out consist in importing one “Sun Vector” 

matrix on Matlab containing all different mission phases or different “Sun Vector” 

matrices for the different phases, consisting of three columns, one for each axis of the 

reference system (𝑥, 𝑦, 𝑧), and a number of lines equal to the diverse instants of time for 

which the values are estimated, and one or more matrices containing the dates of the 

measurements in the form of “day, month, year, hours, minutes, seconds” (Figure 50). 

In the event that the user imports a single matrix for the Sun Vector, it will be separated 

for the various mission phases. 

 

Figure 50: Import data from STK (Matlab script)  
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The user must assign a numerical identification code to each of these matrices (Figure 

51), necessary, by entering from the “command window”, to select the phase to be 

analysed. If he enters a wrong code, an error sentence will be returned. These operations 

were implemented through vector comparisons made with “𝑖𝑓” and “𝑒𝑙𝑠𝑒𝑖𝑓” statements 

(Figure 52).  

 

Figure 51: Example codes for vector selection (Matlab script) 

 

Figure 52:  Comparisons for vector selection  (Matlab script) 

Once these steps have been carried out, if a single matrix, containing the dates, is initially 

entered, the code lets to create from it, through comparisons and “while” loops, a matrix 

containing only the dates of the case study. It changes its format for programming 

purposes and produces graphs from which to observe the change over time of the Sun 

Vector for the three axes. 

The script also offers the possibility, through an implementation similar to the previous 

ones, to reduce the length of the matrices under study (time and Sun Vector), by entering 

from the command window the deadline or the number of rows of the matrix for which 

the user wants to perform the analyses. It also allows performing calculations by 

considering all the faces on which solar panels can be arranged (+𝑥, +𝑦, +𝑧, −𝑥, −𝑦, −𝑧). 

The connection to Valispace takes place in a special section, where the command for the 

connection, “ValispaceInit(“https://demo.valispace.com”, “username”, “password”)”, is 

found (Figure 53). To create the link, the user must first launch the appropriate add-on 

from the “Matlab app” tab and then “Run” it.  

 

Figure 53: Valispace connection 

In this way, the data can be imported using the commands “ValispaceGetValue(“ ”, value 

name)”. In order to do the energy budget, the script imports: 

• for solar panels the area of the solar cells 𝐴𝑠𝑐 in 𝑚2, the number of solar cells 

for the different faces 𝑁𝑠𝑐𝑖
, in which the index “𝑖” is inserted to consider the        
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i-th face, the Solar Irradiance 𝑃𝑆𝑢𝑛 in 𝑊/𝑚2, the efficiency of the solar cells at 

the beginning of life 𝜂, the efficiency at Maximum Power Point Tracker (𝑀𝑃𝑃𝑇) 

𝐼𝑑, the degradation per year; 

• for batteries the time step data in 𝑠𝑒𝑐𝑜𝑛𝑑𝑠, the initial battery capacity 𝐼𝐵𝐶 in 

𝑊ℎ, the initial battery energy 𝐼𝐵𝐸 in 𝐽, the battery charge efficiency 𝐵𝐶𝐸, the 

battery discharge efficiency 𝐵𝐷𝐸, the minimum imposed value that the state of 

charge of the battery must have 𝑆𝑂𝐶𝑙𝑖𝑚𝑖𝑡  as a percentage; 

• for the satellite the “Power Consumption” in 𝑊 and the satellite life in 𝑦𝑒𝑎𝑟𝑠. 

The code using these values determines: 

• the area of each solar array for the different faces 𝐴𝑠𝑎𝑖
 =  𝐴𝑠𝑐  𝑁𝑠𝑐; 

• the power generated by the solar arrays for each face at the beginning of life 𝑃𝑠𝑐𝑖
=

= 𝐴𝑠𝑐𝑁𝑠𝑐𝑖
 𝑃𝑆𝑢𝑛 𝜂 𝐼𝑑; 

• the life degradation 𝐿𝑑  =  (1 − 𝑑𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛/𝑦𝑒𝑎𝑟)𝑠𝑎𝑡𝑒𝑙𝑙𝑖𝑡𝑒 𝑙𝑖𝑓𝑒; 

• the power generated at the end of life by the solar arrays for each face               

𝑃𝐸𝑂𝐿𝑖
= 𝑃𝑠𝑐𝑖

 𝐿𝑑. 

These variables can also be exported directly from Valispace but it has been chosen to 

carry out the operations on the platform to give the user a clear and complete view of the 

various values and mathematical relations. 

Thanks to these parameters, in a specific section, it is possible to identify the attitude of 

the vehicle, in “Sun Pointing”, for which the greatest overall input power is obtained, or 

to load the Sun Vector matrix for the “Sun Pointing” phase.  In detail for the evaluation, 

two satellite faces, selected from time to time and perpendicular to each other, are made 

to rotate around the inertia axis that does not intersect them, starting from the condition 

in which a face is perpendicular to the sun's rays (𝜃 = 0° and cosine loss 𝑐𝑜𝑠𝜃 = 1) and 

the other parallel (𝜃 = 90° 𝑎𝑛𝑑 𝑐𝑜𝑠𝜃 = 0), until gradually reaching the opposite 

condition (Figure 54). In this way, for each angle of rotation, the sum of the powers 

absorbed by the single faces under study is evaluated 

𝑃𝑆𝑈𝑁𝐼𝑁𝑠𝑝𝑖
 =  𝑃𝐸𝑂𝐿𝑖

 𝑐𝑜𝑠𝜃. 

to identify the maximum total input power and the associated attitude (Figure 55). By 

evaluating this value, the user will be able to verify whether the satellite can produce the 

necessary power, after a comparison with imported power consumption, to carry out the 

operations required in that given set-up and therefore decide to maintain or modify the 

panels' disposition, the number of solar cells or their characteristics.  

 

Figure 54: Cosine loss variation and Sunpointing input power computation (Matlab script) 
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Figure 55: Maximum Sunpointing input power computation (Matlab script) 

The code focuses also on “Nadir Pointing” layouts. To the latter and the Sun Pointing 

setup, the same equations are implemented. For each face equipped with panels, a vector 

of the power produced is created, with “𝑁” number of rows (Figure 56).  

 

Figure 56: Nadir pointing input power computation (Matlab script) 

The vectors of the faces with a positive sign (+𝑥, +𝑦, +𝑧) take on values other than zero 

only when the values of the column of the Sun Vector concerned are greater than zero, 

while the vectors with a negative sign (−𝑥, −𝑦, −𝑧) when the values of the Sun Vector 

column are less than zero. For rows with non-zero values, the estimate is made using the 

relationship:  

𝑃𝑆𝑈𝑁𝐼𝑁𝑖
= 𝑃𝐸𝑂𝐿𝑖

 𝑆𝑢𝑛 𝑉𝑒𝑐𝑡𝑜𝑟𝑥𝑦𝑧 

that consists, as done before, in the product between the power produced by the satellite 

at end of life and the Sun Vector, that is the cosine loss. Furthermore, comparison graphs 

are generated between the power produced in nadir pointing and in Sun pointing, to 

provide the possibility of analysing the trend and values over time, and the 𝑂𝐴𝑃 is 

calculated by means of an average of the powers produced along the orbit considering 

differing incidences. The latter represents a detailed version of the 𝑂𝐴𝑃 determined as  

𝑃𝐸𝑂𝐿 ∙ 𝑟𝑢𝑙𝑒 𝑜𝑓 𝑡ℎ𝑢𝑚𝑏, used to estimate the power produced by the satellite during orbit 

and make first verifications, in which the rule of thumb consists of a constant parameter 

based on previous experiences. 

Within the same section, the calculations of parameters vectors useful for the realization 

of the energy budget are carried out. For the faces under analysis, they are: 

• the energy produced for the different times in 𝑊𝑠,                                                  

𝐸𝑛𝑒𝑟𝑔𝑦𝑖𝑛𝑖
(𝑁) = 𝑃𝑆𝑢𝑛𝑖𝑛𝑖

(𝑁) 𝑡𝑖𝑚𝑒 𝑠𝑡𝑒𝑝; 

• the total accumulated energy, estimated considering the energy value at the 

given instant plus the sum of the previous values, 𝐸𝑛𝑒𝑟𝑔𝑦 𝑆𝑢𝑚𝑥𝑖
(𝑁) =

𝐸𝑛𝑒𝑟𝑔𝑦𝑖𝑛𝑖
(𝑁) + 𝐸𝑛𝑒𝑟𝑔𝑦 𝑆𝑢𝑚𝑥𝑖

(𝑁 − 1); 
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• the total energy in 𝑊ℎ determined by the relationship                                               

𝐸𝑛𝑒𝑟𝑔𝑦𝑊ℎ𝑖
(𝑁) =  

𝐸𝑛𝑒𝑟𝑔𝑦 𝑆𝑢𝑚𝑥𝑖(𝑁)

3600
; 

For the satellite: 

• the subtraction between the summation of the power generated by the faces 

and the power consumption of the spacecraft; 

• the variation of the average energy obtained multiplying the previous result for 

the time step, Δ𝐸𝑛𝑒𝑟𝑔𝑦𝑡𝑜𝑡(𝑁) = (Σ𝑃𝑆𝑢𝑛𝑖𝑛𝑖
(𝑁) +

−𝑃𝑜𝑤𝑒𝑟 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛) 𝑡𝑖𝑚𝑒 𝑠𝑡𝑒𝑝; 

• the initial energy supplied by the batteries in 𝑊𝑠, calculated for the first row as  

𝐸𝑡𝑜𝑡 = (Δ𝐸𝑛𝑒𝑟𝑔𝑦𝑡𝑜𝑡 + 𝐼𝐵𝐸) when (Δ𝐸𝑛𝑒𝑟𝑔𝑦𝑡𝑜𝑡 + 𝐼𝐵𝐸) < 𝐼𝐵𝐸 or 𝐸𝑡𝑜𝑡 = 𝐼𝐵𝐸 

when (Δ𝐸𝑛𝑒𝑟𝑔𝑦𝑡𝑜𝑡  +  𝐼𝐵𝐸) ≥ 0 and for the subsequent rows as                                                      

𝐸𝑡𝑜𝑡(𝑁) = Δ𝐸𝑡𝑜𝑡(𝑁) + 𝐸𝑡𝑜𝑡(𝑁 − 1) when Δ𝐸𝑡𝑜𝑡  (𝑁)  +  𝐸𝑡𝑜𝑡(𝑁 − 1) < 𝐼𝐵𝐸 or 

𝐸𝑡𝑜𝑡(𝑁) = 𝐼𝐵𝐸 if  Δ𝐸𝑡𝑜𝑡(𝑁) + 𝐸𝑡𝑜𝑡(𝑁 − 1) ≥ 𝐼𝐵𝐸; 

• the batteries state of charge in 𝑊ℎ as 𝑆𝑂𝐶𝑡𝑜𝑡 = 𝐸𝑡𝑜𝑡/3600; 

• the batteries state of charge percentage 𝑆𝑂𝐶𝑝𝑒𝑟𝑐𝑡𝑜𝑡
= 100 𝑆𝑂𝐶𝑡𝑜𝑡/𝐼𝐵𝐶; 

• an average value across the state of charge vector; 

• the depth of discharge 𝐷𝑂𝐷𝑡𝑜𝑡 = 100 (1 −  𝑆𝑂𝐶𝑡𝑜𝑡/𝐼𝐵𝐶); 

• the maximum value of the depth of discharge vector. 

Thanks to these results it is possible to generate graphs (Figure 57) that allow the user to 

see the trend of the state of charge as time changes and to identify, also via a message 

from the command window, the moment in which the state of charge falls below the limit 

imposed. The user can thus choose whether to repeat the calculations by modifying some 

parameters or whether to export the data.  

 

Figure 57: Total state of charge plot (Matlab script) 

The script exports the desired data to Valispace using the “ValispacePull ()” commands 

to select the parameters and “ValispacePushValue (“ ”, value name)” to make the transfer 

(Figure 58). 

 

Figure 58: Valispace parameters export (Matlab script) 

Key data exported are the maximum depth of discharge vector value, the average state of 

charge and the OAP. 

Figure 59 shows a flowchart that summarizes the process.   
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Figure 59: Flow chart for energy budget determination 
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4.8 Link budget 

The link budget was implemented in the ModelSat using exclusively the “components” 

section of Valispace, offering to the end-user the possibility of inserting one or more 

antennas for communication both on the ground and on the spacecraft. In particular, the 

following elements of the mission architecture were involved: Ground Segment, 

Operations and Space Segment. 

The section relating to the ground station was created considering two macro-groups 

separately: the antennas (including receivers) and the transmitters. For each of these, in 

order to speed up the link budget calculations, various ground stations with different 

types of antennas and transmitters and their corresponding properties have been 

inserted hierarchically, using the “alternative container” function. This function allows 

to compare the properties of the different solutions and to choose the favourites that will 

be used for the calculations. It was implemented, for this section, first to select the station 

and then to select the antenna (e.g. UHF-band antenna, S-band antenna). The user could 

subsequently insert alternatives for the single antenna considering, for example, 

different models or manufacturers. 

The space segment data have been placed in the spacecraft Comsys section where 

different types of antennas can be selected for bandwidth and characteristics. 

 

Figure 60: Example of Valispace architecture for the ground segment (left), space segment (centre), 
operations (right) 

The operations compartment, on the other hand, was built considering an area dedicated 

to collect values, for example, losses, and constants to use in the various calculations, and 

an area to execute the link budget determination, both for the downlink and the uplink 

case. 

The separation between transmitter and receiver in the ground segment has been carried 

out as the user can choose whether to select the uplink or downlink mode. In this way, 

he will have to select hierarchically, among the various alternatives, the ground station 

to which that receiver or transmitter belongs, the antenna band on which to operate and 

then the component among the various offers with the preferred characteristics. 
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Similarly, he will have to act for the spacecraft in which transceivers of different bands 

have been implemented, so he will have to choose the component with the desired 

characteristics among the different alternatives for the transceiver band. 

By varying the selected elements and implementing the disturbances related to the links, 

the user can obtain different link budgets for the transmission bands.  

Mixed equations and nomenclatures were chosen to execute the budgets, taking into 

consideration the slides of Professor Sabrina Corpino's “Sistemi aerospaziali” lectures 

and the link budgets made for the SROC satellite by Tyvak International in phase 0/A of 

the project. 

As described in the previous chapter calculations were performed using the 𝐸𝑏/𝑁0 

method, considering the same equations for the downlink and the uplink. In the 

equations, the subscript “𝑡” will be used to indicate the transmitter and the subscript “𝑟” 

for the receiver. 

As for the UHF band in phase 0/A, the following data have been used. 

For the transmitter: the bandwidth in 𝑘𝐻𝑧, the gain 𝐺𝑡 in 𝑑𝐵, the transmission power 𝑃𝑡 

in 𝑊, the signal frequency 𝑓 in 𝑀𝐻𝑧, the data rate in 𝑏𝑝𝑠, the losses along the 

transmission line 𝐿𝑡 in 𝑑𝐵, the noise bandwidth estimated as 10 log10 𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ𝑡 and 

the 𝐸𝐼𝑅𝑃𝑡 equal to 10 log10 𝑃𝑡 − 𝐿𝑡 + 𝐺𝑡. 

For the receiver: the reference temperature 𝑇0 in 𝐾, the actual temperature 𝑇𝑟𝑎  in 𝐾, the 

gain 𝐺𝑟 in 𝑑𝐵, the line loss 𝐿𝑟 in 𝑑𝐵, the implementation losses in 𝑑𝐵, the noise figure 𝐹 

in 𝑑𝐵, the required ratio 𝐸𝑏/𝑁0. 

For the link the atmospheric losses 𝐿𝑎, the polarization losses 𝐿𝑝, the losses due to 

misalignment 𝐿𝑚, the rain losses 𝐿𝑟𝑎𝑖𝑛 , all in 𝑑𝐵, the elevation angle δ in 𝑟𝑎𝑑, the radius 

of the earth 𝑅𝐸𝑎𝑟𝑡ℎ in 𝑘𝑚, the average distance of the satellite from the ground station 

during communications ℎ in 𝑘𝑚, the Boltzmann constant 𝑘 = −228.6 𝑑𝐵𝑊/𝐻𝑧𝐾, the link 

distance or slant range equal to 𝑅𝐸𝑎𝑟𝑡ℎ (√(
(𝑅𝐸𝑎𝑟𝑡ℎ+ℎ)2

𝑅𝐸𝑎𝑟𝑡ℎ
2 ) − (𝑐𝑜𝑠𝛿)2 − 𝑠𝑖𝑛𝛿). 

The calculation was carried out starting from the determination of the total losses by 

means of the relationship: 

𝐿𝑇𝐿𝑆 = 𝐹𝑟𝑒𝑒 𝑆𝑝𝑎𝑐𝑒 𝑃𝑎𝑡ℎ 𝐿𝑜𝑠𝑠 + 𝐿𝑎 + 𝐿𝑝 + 𝐿𝑚 + 𝐿𝑟𝑎𝑖𝑛, 

whit the Free Space Path Loss in 𝑑𝐵 was: 

𝐹𝑟𝑒𝑒 𝑆𝑝𝑎𝑐𝑒 𝑃𝑎𝑡ℎ 𝐿𝑜𝑠𝑠 = 20 log10 𝐿𝑖𝑛𝑘 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 + 20 log10 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦𝑡 + 32,4. 

Subsequently, the temperature disturbance in communication called “System noise 

temperature” was computed: 

𝑇𝑠 = 𝑇𝑟𝑎
+ 𝑇0 (

1−𝐿𝑟

𝐿𝑟
) + 𝑇0 (

𝐹−1

𝐿𝑟
). 

And the ratio 𝐸𝑏/𝑁0 in 𝑑𝐵 as the sum of the previously determined or collected values: 

𝐸𝑏

𝑁0
= 𝐸𝐼𝑅𝑃𝑡 − 𝐿𝑇𝐿𝑆 + 𝐺𝑟 − 𝑘 − 10 log10 𝑇𝑠 − 10 log10 𝐷𝑎𝑡𝑎 𝑅𝑎𝑡𝑒𝑡 
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with 𝐸𝑏, energy signal associated with each user data bit, equal to 𝐸𝐼𝑅𝑃𝑡 − 𝐿𝑇𝐿𝑆 + 𝐺𝑟 and 

𝑁0, noise power spectral density corresponding to the noise power in a 1 𝐻𝑧 bandwidth, 

equal to −𝑘 − 10 log10 𝑇𝑠  − 10 log10 𝐷𝑎𝑡𝑎 𝑅𝑎𝑡𝑒𝑡. 

Thanks to this last equation, the link margin is obtained considering also the required 

𝐸𝑏/𝑁0 and the receiver additional losses in order to determine if the link is absent (when 

the threshold is less than zero), marginal (when between zero and six) or closed (when 

greater than six): 

𝐿𝑖𝑛𝑘 𝑀𝑎𝑟𝑔𝑖𝑛 =
𝐸𝑏

𝑁0
 − (

𝐸𝑏

𝑁0
)

𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑
− 𝐼𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 𝐿𝑜𝑠𝑠𝑟. 

In addition, intermediate values have been determined that can be useful for evaluating 

the goodness of communication, these are: 

• the isotropic receive level 𝐼𝑅𝐿𝑟𝑎
= 𝐸𝐼𝑅𝑃𝑡𝑎

− 𝐿𝑇𝐿𝑆; 

• the signal level of the receiver 𝑅𝑥 𝑠𝑖𝑔𝑛𝑎𝑙 𝑙𝑒𝑣𝑒𝑙 = 𝐼𝑅𝐿𝑟𝑎
+ 𝐺𝑟 − 𝐿𝑟; 

• the 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟 𝑎𝑛𝑡𝑒𝑛𝑛𝑎 𝐺𝑇 =  𝐺𝑟 − (10 log10 𝑇𝑠  − 𝐿𝑟) in 𝑑𝐵 with 𝑇𝑒 = 10 log10 𝑇𝑠 +

−𝐿𝑟; 

• the carrier to noise density ratio 
𝐶

𝑁0
= 𝐸𝐼𝑅𝑃𝑡 − 𝐿𝑇𝐿𝑆 + 𝐺𝑟 − 𝑘 − 10 log10 𝑇𝑠 + 𝐿𝑟; 

• the Carrier to Noise ratio 
𝐶

𝑁
=

𝐶

𝑁0
− 𝑁𝑜𝑖𝑠𝑒 𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ. 
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5 Conclusions 

The general objective of the thesis was to develop, through the use of MBSE tools, a 

procedure, useful for systems engineers, to be applied in the early stages of a small 

satellites project. 

Within the thesis, after introducing the context in which it was carried out, a careful 

analysis of the literature was made to identify the state of the art of the main 

methodologies, tools and languages to highlight their characteristics. 

One of the main problems still present for these topics is the lack of uniformity in the 

terminology between the different authors, probably linked to the relatively young age of 

the model-based world, for which it was necessary to uniquely define the terms: 

methodology, tool, procedure and environment. Despite this, there are several benefits 

that it has been possible to draw from the bibliographic searches: the presence in the 

market of a great variety of software and platforms capable of satisfying the different 

requests of project teams or companies, the optimization of communication thanks to a 

better data sharing and a better exchange of information, an improvement in the 

management of complexity, an higher product quality, the possibility of reusing 

previously created models reducing time and costs, increasing productivity, the 

opportunity to manage, define and unambiguously trace the requirements, the ease in 

learning the different concepts thanks to the use of standardized models. 

The set goal was achieved through reverse engineering of ESA's SROC rendezvous and 

docking mission. For it, the project was modelled in an MBSE environment, choosing the 

tools based on the needs of the moment: being able to use methodologies and tools with 

a license already available to the project team or open-source, being able to implement 

large systems considering multiple levels of design, the need to learn how to use them in 

the shortest time possible, also taking advantage of user friendly and easy to understand 

interfaces, the presence of documentation to learn how to use the software. The choice 

fell on Capella with the Arcadia methodology and Valispace, which have been explored 

in the course of the thesis. 

Capella has been used to define the SROC stakeholders and their needs, the concept of 

operations by implementing different scenarios, the logical and physical architecture for 

which different kinds of graphs were created to carry out the analysis in detail. Valispace 

has been taken into consideration to keep track of the requirements and the documents 

used, to create a mission architecture and budgets. 

In parallel to the modelling that took place for the delta A and B1 phases of the project, 

the work carried out in the previous phases was also described, which in most cases 

presented a document-based approach. Finally, through a work of abstraction, a 

generalization was made for the different levels of design and the computation of 

budgets, to be able to create a high-level guide, through a series of tips and codes to be 

modified, to design a CubeSat mission. In this second phase, a database of components 

has been also created on Valispace, to guide the designer in their selection by offering 

different solutions on the market, and a list of three proposals for organizing the 

requirements. 

From the parallelism between the work carried out in phase 0/A and that in delta A/B1, 

which consists in the transition from a document-based to a model-based approach, it 
was possible to observe how this variation does not only constitute a transition from the 
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use of tables to the use of graphics, able to communicate the various information more 

effectively, but also to manage them all in one place, therefore a greater mental order, 

and always staying up to date on any changes, producing model results not obtainable by 

the graphs alone.  

Thanks to this functionality, the project team, even during this period in which work in 

presence and smart-working were alternated, was able to complete the various pre-set 

tasks without slowing down due to updating errors. 

It was also noted that the real power of MBSE consists in the relationships and 

interconnections among the graphs or graphs' elements to ensure the conduct of the 

various analysis by addressing them from different points of view, highlighting the 

different facets and increasing the designers' visions. All this perfectly reproduces the 

role of the system and its value which is greater than the single parts that compose it 

thanks to the different relationships. 

𝑀𝐵𝑆𝐸 𝑚𝑜𝑑𝑒𝑙𝑠 ≫ Σ 𝑔𝑟𝑎𝑝ℎ𝑠 
𝑀𝐵𝑆𝐸 𝑚𝑜𝑑𝑒𝑙𝑠 = Σ 𝑔𝑟𝑎𝑝ℎ𝑠 + 𝑖𝑛𝑡𝑒𝑟𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠 

One of the examples that can be made to corroborate the thesis of the different points of 

view is, for example, that of the organization of the requirements that despite they are 

ordered following a proposal can be viewed according to different criteria, based on: the 

folder, the specification, the section, the identification code, the associated components, 

the type, etc. 

The thesis in addition to the modelling of the analysis also considered the calculation of 

the budgets because they are part of the data that the systems engineer must pay 

attention to during the design phase, therefore it was decided to create budget models 

that the future designers can use by making small changes. Confirmation of this is also 

given by the possibility of the Valispace tool to compute them internally or thanks to the 

Excel and Matlab add-ons and to be able to store the different results in one place. If in 

the early stages it is possible to carry out high-level evaluations by moving forward in the 

project, it is necessary to consider the greatest number of data by increasing the 

calculation precision. 

The work gave the opportunity to understand that to learn how to use a tool and master 

it, it is necessary to invest a lot of time, it is, therefore, necessary to choose the tool wisely 

to tackle the project, the less intuitive it will be, the greater will be the learning time. This 

from a business perspective could lead to an increase in costs related to staff training and 

an extension of project times. 

What can be said in the long term is that the use of MBSE, and in this case the 

combination of Capella and Valispace cover every aspect of project management and 

design, facilitates the work and makes it more understandable. 

In a future perspective, the work on Capella could be expanded by defining in the 

subsequent phases of the project what the functional exchanges between components 

represent, identifying interface values between the parts. The logical and physical 

architecture will also have to be expanded by considering the subsystems, components 

and final connections to be used to complete the mission. 

Additional graphs can be created to define the operating modes of the components. 
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On Valispace, on the other hand, the ModelSat database can be expanded by adding 

components on the market and other proposals for the classification of requirements. 

All this could then be further increased by connecting as many instruments as possible, 

such as STK to have information on the orbits and always enrich any numerical 

evaluations, providing a 360° view. 

Considering the various benefits of MBSE listed, in the future, it should always be used 

by exploiting its potential and overcoming the document-based approach that until now 

preceded it within project teams and above all to manage large missions size. 
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Annex A: Capella diagrams  
 

 

Figure 61: Cost down OAIB 

 

 

 

Figure 62: Dissemination OAIB 
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Figure 63: Safety up OAIB 

 

 

Figure 64: Cost down OES 
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Figure 65: Safety up OES 

 

 

Figure 66: Launch and Early Operations Phase (LEOP) SDFB 
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Figure 67: Commissioning and Performance Verification Phase (CPVP) SDFB 
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Figure 68: Proximity Operations Phase (POP) SDFB 

 

Figure 69: Docking and Retrieval Phase (DRP) SDFB 
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Annex B: Energy budget script 
clc 

clear all 

%% IMPORT DATA FROM STK  

load('Date_sun_vector_time')% Dates matrix 

Total_Date_sun_vector_time=Date_sun_vector_time; 

load('Sun_vector')% Sun Vector matrix 

Total_Sun_vector=Sun_vector; 

load('Sun_vector_ff_1')% mission phase zero 

load('Sun_vector_ob_1')% mission phase one 

load('Sun_vector_ff_2')% mission phase two 

load('Sun_vector_ob_2')  

load('Sun_vector_ff_3') 

load('Sun_vector_ob_3') 

load('Sun_vector_ff_4') 

load('Sun_vector_ob_4') 

load('Sun_vector_ff_5') 

load('Sun_vector_ob_5') 

load('Sun_vector_ff_6') 

load('Sun_vector_ob_6') 

load('Sun_vector_ff_7') 

%% Vector selection (launch this section to study separately a 

phase) 

% matrix      code  

% ff1          0 

% ob1          1 

% ff2          2 

% ob2          3 

% ff3          4 

% ob3          5 

% ff4          6 

% ob4          7 

% ff5          8 

% ob5          9 

% ff6         10 

% ob6         11 

% ff7         12 

  

n_check=input('Write the phase number : '); 

if n_check==0 

    Sun_vector=Sun_vector_ff_1; 

elseif n_check==1 

        Sun_vector=Sun_vector_ob_1; 

       elseif n_check==2 

        Sun_vector=Sun_vector_ff_2; 

        elseif n_check==3 

        Sun_vector=Sun_vector_ob_2; 

       elseif n_check==4 

        Sun_vector=Sun_vector_ff_3; 

        elseif n_check==5 

        Sun_vector=Sun_vector_ob_3; 

       elseif n_check==6 

        Sun_vector=Sun_vector_ff_4; 
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        elseif n_check==7 

        Sun_vector=Sun_vector_ob_4; 

       elseif n_check==8 

        Sun_vector=Sun_vector_ff_5; 

        elseif n_check==9 

        Sun_vector=Sun_vector_ob_5; 

       elseif n_check==10 

        Sun_vector=Sun_vector_ff_6; 

        elseif n_check==11 

        Sun_vector=Sun_vector_ob_6; 

       elseif n_check==12 

        Sun_vector=Sun_vector_ff_7; 

else 'error' 

end 

%% Date - subdivision of date vector in subvectors for the 

different phases 

  

i=1; 

j=1; 

Date_sun_vector_time=[]; 

while i<=size(Sun_vector,1) && j<=size(Total_Sun_vector,1) 

    if Total_Sun_vector(j,:)==Sun_vector(i,:) 

        

Date_sun_vector_time(i,:)=Total_Date_sun_vector_time(j,:); 

        i=i+1; 

    end 

    j=j+1; 

end 

%% Format change  

  

Date_v=Date_sun_vector_time; 

Date_v(:,1)=Date_v(:,3); 

Date_v(:,3)=Date_sun_vector_time(:,1); 

time=[1:size(Date_v,1)];% vector of seconds based on dates 

%% x y z plot all phases  

  

figure(1) 

plot(time,Sun_vector(:,1),time,Sun_vector(:,2)) 

xlabel('time [s]') 

ylabel('Sun vector') 

legend('x','y') 

%% DATE SELECTION 

  

yyyy=input('write the year yyyy of the data for which you want 

to end the rows of the coloums (else write 0): '); 

mm=input('write the month mm of the data for which you want to 

end the rows of the coloums (else write 0): '); 

dd=input('write the day dd of the data for which you want to end 

the rows of the coloums (else write 0): '); 

HH=input('write the hour HH of the data for which you want to 

end the rows of the coloums (else write 0): '); 

MM=input('write the minutes MM of the data for which you want to 

end the rows of the coloums (else write 0): '); 
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SS=input('write the seconds SS of the data for which you want to 

end the rows of the coloums (else write 0): '); 

Stop_date=[yyyy,mm,dd,HH,MM,SS]; 

if Stop_date==[0,0,0,0,0,0] 

    N_rows=input('write the numbers of rows you want consider: 

'); 

else 

    N_rows=0; 

end 

i=1; 

while N_rows ==0 

    if Date_v(i,:)== Stop_date 

        N_rows=i; 

    else i=i+1; 

    end 

end 

% date vector reduction 

for i=1:N_rows 

    Date_v_rid(i,:)=Date_v(i,:); 

end 

%Sun vector nadir pointing reduction 

Sun_vector_rid=[]; 

for i=1:N_rows 

    Sun_vector_rid(i,:)=Sun_vector(i,:); 

end 

time_rid=[1:N_rows]; 

%% VALISPACE CONNECTION 

%Open Valispace addon in APPS and then run this section 

ValispaceInit("https://demo.valispace.com","usurname","password) 

%% ==========================================> VALISPACE ADDON 

<=========================================== 

% Thank you for using Valispace: the best place for your 

engineering data. 

%   

% Example Usage: 

%   

% 1)  

ValispaceInit("https://demo.valispace.com","username","password"

) % Valispace Login 

% 2)  ValispacePull()                                                  

% optional: pull all Valis for faster access or access via name 

% 3a) ValispaceGetVali("MySat.Mass")                                  

% get Vali as a struct 

% 3b) ValispaceGetValue("MySat.Mass")                                   

% get Value 

% 4)  ValispacePushValue("MySat.Mass",value)                            

% push Value to Valispace 

% 4b) ValispacePushDataset("MySat.Mass",dataset)                        

% push Dataset to Valispace  

% 4b) Note: The first row is x value and the second row is y 

value 

% 5)  ValispaceGetMatrix(217)                                           

% get Matrix Values 
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% 6)  ValispacePushMatrix(217,[2,3;4,5])                                

% push Matrix Values 

%   

% Please note: Until you run "clear all" the Values be used from 

your last ValispacePull() call. 

%   

% ValispaceGetVali() / ValispaceGetValue() / 

ValispacePushValue() work with the argument as a string (name) 

or integer (id) 

% i.e. ValispaceGetValue("MySat.Mass") and 

ValispaceGetValue(217) 

% When using these functions with an integer id, step 2) can be 

skipped. 

% In this case the WebInterface will be accessed with every 

individual call 

%   

% Both ValispacePushValue() and ValispacePushMatrix() can also 

push formulas (e.g. $MySat.Mass*5) instead of values 

  

%% IMPORT DATA FROM VALISPACE Solar panel sizing parameters 

  

A_sc=ValispaceGetValue();%[m^2]area solar cell 

N_sc_x=ValispaceGetValue();%number solar cell 

N_sc_y=ValispaceGetValue();%number solar cell 

N_sc_xneg=ValispaceGetValue();%number solar cell 

  

P_Sun=ValispaceGetValue();%1367;%[W/m^2] Solar irradiance 

eta=ValispaceGetValue();% Solar cell efficiency BOL 

Id=ValispaceGetValue();%MPPT efficiency 

Theta=ValispaceGetValue();%[deg] sun angle incidence 

Sat_life=ValispaceGetValue();% year 

degrad_year=ValispaceGetValue(); 

rule_of_thumb_k=ValispaceGetValue();%number in %/100 

  

% Battery data 

time_step=ValispaceGetValue();%[sec] 

S_C_Power_consumption=ValispaceGetValue();%[W]  

IBC=ValispaceGetValue();%[Wh] initial battery capacity 

IBE=ValispaceGetValue();%[J] initial battery energy 

BCE=ValispaceGetValue();% [%] battery charge efficiency 

BDE=ValispaceGetValue();% [%] battery discharge efficiency 

SOC_limit= ValispaceGetValue();% [%] 

%% OPERATION 1 

  

%Solar panel sizing parameters 

P_sc_x=A_sc*N_sc_x*P_Sun*eta*Id;%[W] generated power BOL 

P_sc_y=A_sc*N_sc_y*P_Sun*eta*Id; 

P_sc_xneg=A_sc*N_sc_xneg*P_Sun*eta*Id; 

 L_d=(1-degrad_year)^Sat_life;%life degradation 

  

P_EOL_x=P_sc_x*L_d;%[W] generated power EOL per square meter  

P_EOL_y=P_sc_y*L_d; 

P_EOL_xneg=P_sc_xneg*L_d; 
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OAP_SA_x=P_EOL_x*rule_of_thumb_k;%[W]OAP 

OAP_SA_y=P_EOL_y*rule_of_thumb_k; 

OAP_SA_xneg=P_EOL_xneg*rule_of_thumb_k; 

  

A_sa_x=A_sc*N_sc_x;%[m^2] area solar array 

A_sa_y=A_sc*N_sc_y; 

A_sa_xneg=A_sc*N_sc_xneg; 

  

degrad_year=0.015; 

L_d=(1-degrad_year)^Sat_life;%life degradation 

%% SUN POINTING ATTITUDE EVALUATION 

% attitude identification in Sun Pointing 

flag_sun_pointing=input('Would you like to load the Sun Vector 

Matrix? If yes insert 1,If no insert 0: '); 

if flag_sun_pointing==0 

  

t=[0:0.01:1];%cosine loss cos(theta) 

l=length(t); 

Cosine_loss_matrix=zeros(l,6);%coloumn: x y z -x -y -z  

P_SUN_IN_sp_matrix=zeros(l,6); 

P_SUN_IN_sp_matrix_tot=[]; 

for i=1:(l) 

    Cosine_loss_matrix(i,2)=t(i); 

    Cosine_loss_matrix(i,4)=1-t(i); 

    P_Sun_IN_sp_matrix(i,1)=0; 

    P_Sun_IN_sp_matrix(i,2)=P_EOL_y*Cosine_loss_matrix(i,2); 

    P_Sun_IN_sp_matrix(i,3)=0; 

    P_Sun_IN_sp_matrix(i,4)=P_EOL_xneg*Cosine_loss_matrix(i,4); 

    P_Sun_IN_sp_matrix(i,5)=0; 

    P_Sun_IN_sp_matrix(i,6)=0; 

     

    P_SUN_IN_sp_matrix_tot(i,1)= P_Sun_IN_sp_matrix(i,1)... 

        +P_Sun_IN_sp_matrix(i,2)+P_Sun_IN_sp_matrix(i,4);     

end 

  

[P_SUN_IN_sp_max,row_index_max]=max(P_SUN_IN_sp_matrix_tot); 

  

Sun_p_vec=ones(size(Date_v,1),6); 

for i=1:6 

    

Sun_p_vec(:,i)=Sun_p_vec(:,i)*Cosine_loss_matrix(row_index_max,i

) 

end 

% Sun pointing vector reduction 

Sun_p_vec_rid=[]; 

for i=1:N_rows 

    Sun_p_vec_rid(i,:)=Sun_p_vec(i,:); 

end 

%creation of P SUN IN sun pointing  

P_Sun_IN_sp=zeros(size(Sun_vector_rid,1),6); 

for j=1:N_rows 
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%Sun pointing 

%+x 

if Sun_p_vec_rid(j,1)>0 

   P_Sun_IN_sp(j,1)=P_EOL_x*Sun_p_vec_rid(j,1); 

else 

   P_Sun_IN_sp(j,1)=0; 

end 

  

%+y 

if Sun_p_vec_rid(j,2)>0 

   P_Sun_IN_sp(j,2)=P_EOL_y*Sun_p_vec_rid(j,2); 

else 

   P_Sun_IN_sp(j,2)=0; 

end 

  

%-x 

if Sun_p_vec_rid(j,4)>0 

   P_Sun_IN_sp(j,4)=P_EOL_xneg*Sun_p_vec_rid(j,4); 

else 

   P_Sun_IN_sp(j,4)=0; 

end 

  

end 

  

else Sun_p_matrix=load('Sun_Vector_Sun_pointing') %values from 

STK N_coloumns=3 

    % Sun pointing vector reduction 

Sun_p_vec_rid=[]; 

for i=1:N_rows 

    Sun_p_vec_rid(i,:)=Sun_p_matrix(i,:); 

end 

  

%creation of P SUN IN sun pointing  

P_Sun_IN_sp=zeros(size(Sun_vector_rid,1),6); 

for j=1:N_rows 

     

%Sun pointing 

%+x 

if Sun_p_vec_rid(j,1)>0 

   P_Sun_IN_sp(j,1)=P_EOL_x*Sun_p_vec_rid(j,1); 

else 

   P_Sun_IN_sp(j,1)=0; 

end 

  

%+y 

if Sun_p_vec_rid(j,2)>0 

   P_Sun_IN_sp(j,2)=P_EOL_y*Sun_p_vec_rid(j,2); 

else 

   P_Sun_IN_sp(j,2)=0; 

end 

  

%-x 

if (-1*Sun_p_vec_rid(j,1))>0 



 
 

100 
 

   P_Sun_IN_sp(j,4)=P_EOL_xneg*(-1*Sun_p_vec_rid(j,1)); 

else 

   P_Sun_IN_sp(j,4)=0; 

end 

end 

end 

P_sun_IN_sp_TOT=mean(P_Sun_IN_sp(:,1)+P_Sun_IN_sp(:,2)+P_Sun_IN_

sp(:,4)); 

%% OPERATION 2 Sun pointing 

% operation to calculate OAP using an average value 

P_Sun_sp_IN_reduced=[]; 

for i=1:6 

    for j=1:N_rows 

        P_Sun_sp_IN_reduced(j,i)=P_Sun_IN_sp(j,i); 

    end 

end 

OAP=mean(P_Sun_sp_IN_reduced); 

  

  

  

%nadir pointing  

%+x 

Energy_IN_sp_x=[]; 

 for i=1:N_rows 

        Energy_IN_sp_x(i,1)=P_Sun_IN_sp(i,1)*time_step; 

 end 

  

Energy_SUM_sp_x=[]; 

Energy_SUM_sp_x(1,1)=Energy_IN_sp_x(1,1); 

for i=2:N_rows 

        

Energy_SUM_sp_x(i,1)=Energy_IN_sp_x(i,1)+Energy_SUM_sp_x(i-1,1); 

end 

  

Wh_sp_x=[]; 

for i=1:N_rows 

        Wh_sp_x(i,1)=Energy_SUM_sp_x(i,1)/3600; 

end 

  

%y 

Energy_IN_sp_y=[]; 

 for i=1:N_rows 

        Energy_IN_sp_y(i,1)=P_Sun_IN_sp(i,2)*time_step; 

 end 

  

Energy_SUM_sp_y=[]; 

Energy_SUM_sp_y(1,1)=Energy_IN_sp_y(1,1); 

for i=2:N_rows 

        

Energy_SUM_sp_y(i,1)=Energy_IN_sp_y(i,1)+Energy_SUM_sp_y(i-1,1); 

end 

  

Wh_sp_y=[]; 
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for i=1:N_rows 

        Wh_sp_y(i,1)=Energy_SUM_sp_y(i,1)/3600; 

end 

  

%-x 

Energy_IN_sp_x_neg=[]; 

 for i=1:N_rows 

        Energy_IN_sp_x_neg(i,1)=P_Sun_IN_sp(i,2)*time_step; 

 end 

  

Energy_SUM_sp_x_neg=[]; 

Energy_SUM_sp_x_neg(1,1)=Energy_IN_sp_x_neg(1,1); 

for i=2:N_rows 

        

Energy_SUM_sp_x_neg(i,1)=Energy_IN_sp_x_neg(i,1)+Energy_SUM_sp_x

_neg(i-1,1); 

end 

  

Wh_sp_x_neg=[]; 

for i=1:N_rows 

        Wh_sp_x_neg(i,1)=Energy_SUM_sp_x_neg(i,1)/3600; 

end 

  

%tot 

  

Pin_Pmedium_sp_tot=[];% power subtraction 

for i=1:N_rows 

    

Pin_Pmedium_sp_tot(i)=(P_Sun_IN_sp(i,1)+P_Sun_IN_sp(i,2)+P_Sun_I

N_sp(i,4))-S_C_Power_consumption; 

end 

  

delta_Energy_sp_tot=[]; 

for i=1:N_rows 

    delta_Energy_sp_tot(i)=Pin_Pmedium_sp_tot(i)*time_step; 

end 

  

E_sp_tot=[]; 

if (delta_Energy_sp_tot(1)+IBE)<IBE 

            E_sp_tot(1)=(delta_Energy_sp_tot(1)+IBE); 

   else  

            E_sp_tot(1)=IBE; 

end 

for i=2:N_rows 

 if (delta_Energy_sp_tot(i)+E_sp_tot(i-1))<IBE 

            E_sp_tot(i)=(delta_Energy_sp_tot(i)+E_sp_tot(i-1)); 

    else  

            E_sp_tot(i)=IBE; 

     end 

 end 

  

SOC_Wh_sp_tot=[]; 

for i=1:N_rows 
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    SOC_Wh_sp_tot(i)=E_sp_tot(i)/3600; 

end 

SOC_perc_sp_tot=100*SOC_Wh_sp_tot/(IBC); 

SOC_perc_sp_tot_mean=mean(SOC_perc_sp_tot); 

DOD_sp_tot=100*(1-SOC_Wh_sp_tot/(IBC)); 

MAX_DOD_sp_tot=max(DOD_sp_tot) 

  

%% OPERATION 3 nadir pointing 

  

% x y z -x -y -z creation of P SUN IN for nadir pointing 

P_Sun_IN=zeros(size(Sun_vector_rid,1),6); 

for j=1:N_rows 

%Nadir pointing 

%+x 

if Sun_vector_rid(j,1)>0 

   P_Sun_IN(j,1)=P_EOL_x*Sun_vector_rid(j,1); 

else 

   P_Sun_IN(j,1)=0; 

end 

%+y 

if Sun_vector_rid(j,2)>0 

   P_Sun_IN(j,2)=P_EOL_y*Sun_vector_rid(j,2); 

else 

   P_Sun_IN(j,2)=0; 

end 

  

%-x 

if (-1*Sun_vector_rid(j,1))>0 

   P_Sun_IN(j,4)=P_EOL_xneg*(-1*Sun_vector_rid(j,1)); 

else 

   P_Sun_IN(j,4)=0; 

end 

  

end 

  

% +x P_SUN_IN 

figure (2) 

plot(time_rid,P_Sun_IN(:,1),time_rid,P_Sun_IN_sp(:,1)) 

xlabel('time[s]') 

ylabel('Sun Power In +x [W]') 

title ('Power produced by solar panels') 

legend ('Nadir pointing','Sun pointing') 

hold on  

% +y P_SUN_IN 

figure (3) 

plot(time_rid,P_Sun_IN(:,2),time_rid,P_Sun_IN_sp(:,2)) 

xlabel('time[s]') 

ylabel('Sun Power In +y [W]') 

title ('Power produced by solar panels') 

legend ('Nadir pointing','Sun pointing') 

hold on 

% -x P_SUN_IN 

figure (4) 
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plot(time_rid,P_Sun_IN(:,4),time_rid,P_Sun_IN_sp(:,4)) 

xlabel('time[s]') 

ylabel('Sun Power In -x [W]') 

title ('Power produced by solar panels') 

legend ('Nadir pointing','Sun pointing') 

hold on 

  

% operation to calculate OAP using an average value 

 P_Sun_IN_reduced=[]; 

for i=1:6 

    for j=1:N_rows 

        P_Sun_IN_reduced(j,i)=P_Sun_IN(j,i); 

    end 

end 

OAP=mean(P_Sun_IN_reduced); 

  

%nadir pointing  

%+x 

Energy_IN_x=[]; 

 for i=1:N_rows 

        Energy_IN_x(i,1)=P_Sun_IN(i,1)*time_step; 

 end 

  

Energy_SUM_x=[]; 

Energy_SUM_x(1,1)=Energy_IN_x(1,1); 

for i=2:N_rows 

        Energy_SUM_x(i,1)=Energy_IN_x(i,1)+Energy_SUM_x(i-1,1); 

end 

  

Wh_x=[]; 

for i=1:N_rows 

        Wh_x(i,1)=Energy_SUM_x(i,1)/3600; 

end 

  

%y 

Energy_IN_y=[]; 

 for i=1:N_rows 

        Energy_IN_y(i,1)=P_Sun_IN(i,2)*time_step; 

 end 

  

Energy_SUM_y=[]; 

Energy_SUM_y(1,1)=Energy_IN_y(1,1); 

for i=2:N_rows 

        Energy_SUM_y(i,1)=Energy_IN_y(i,1)+Energy_SUM_y(i-1,1); 

end 

  

Wh_y=[]; 

for i=1:N_rows 

        Wh_y(i,1)=Energy_SUM_y(i,1)/3600; 

end 

  

%-x 

Energy_IN_x_neg=[]; 
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 for i=1:N_rows 

        Energy_IN_x_neg(i,1)=P_Sun_IN(i,2)*time_step; 

 end 

  

Energy_SUM_x_neg=[]; 

Energy_SUM_x_neg(1,1)=Energy_IN_x_neg(1,1); 

for i=2:N_rows 

        

Energy_SUM_x_neg(i,1)=Energy_IN_x_neg(i,1)+Energy_SUM_x_neg(i-

1,1); 

end 

  

Wh_x_neg=[]; 

for i=1:N_rows 

        Wh_x_neg(i,1)=Energy_SUM_x_neg(i,1)/3600; 

end 

  

Pin_Pmedium_tot=[];% power subtraction 

for i=1:N_rows 

    

Pin_Pmedium_tot(i)=(P_Sun_IN(i,1)+P_Sun_IN(i,2)+P_Sun_IN(i,4))-

S_C_Power_consumption; 

end 

  

delta_Energy_tot=[]; 

for i=1:N_rows 

    delta_Energy_tot(i)=Pin_Pmedium_tot(i)*time_step; 

end 

  

E_tot=[]; 

if (delta_Energy_tot(1)+IBE)<IBE 

            E_tot(1)=(delta_Energy_tot(1)+IBE); 

   else  

            E_tot(1)=IBE; 

end 

for i=2:N_rows 

 if (delta_Energy_tot(i)+E_tot(i-1))<IBE 

            E_tot(i)=(delta_Energy_tot(i)+E_tot(i-1)); 

    else  

            E_tot(i)=IBE; 

     end 

 end 

  

SOC_Wh_tot=[]; 

for i=1:N_rows 

    SOC_Wh_tot(i)=E_tot(i)/3600; 

end 

SOC_perc_tot=100*SOC_Wh_tot/(IBC); 

SOC_perc_tot_mean=mean(SOC_perc_tot); 

DOD_tot=100*(1-SOC_Wh_tot/(IBC)); 

MAX_DOD_tot=max(DOD_tot) 

  

%% plot spacecraft 
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figure(5) 

plot(time_rid,SOC_perc_tot) 

xlabel('time') 

ylabel('Total SOC percentage') 

title('Total SOC') 

hold on 

  

i=1; 

while  SOC_perc_tot(i) > SOC_limit && i< N_rows 

        SOC_perc_tot_pos_v(i)=SOC_perc_tot(i); 

        time_pos_v_tot(i)=time_rid(i); 

        i=i+1; 

end 

data0tot=Date_v(i,:); 

'the solar panels do not generate power in date ' 

datestr(data0tot) 

  

figure(6) 

plot(time_pos_v_tot,SOC_perc_tot_pos_v) 

xlabel('time') 

ylabel('Total SOC percentage') 

title('Total SOC till 75%') 

hold on 

  

i=1; 

while  SOC_perc_sp_tot(i) > SOC_limit && i< N_rows 

        SOC_perc_tot_sp_pos_v(i)=SOC_perc_sp_tot(i); 

        time_pos_v_sp_tot(i)=time_rid(i); 

        i=i+1; 

end 

data0tot=Date_v(i,:); 

'the solar panels do not generate power in date ' 

datestr(data0tot) 

  

figure(7) 

plot(time_pos_v_sp_tot,SOC_perc_tot_sp_pos_v) 

xlabel('time') 

ylabel('Sun Pointing Total SOC percentage') 

title('Total SOC till 75% for Sun Pointing') 

hold on 

 

%% EXPORT DATA IN VALISPACE 

  

ValispacePull()                                               

ValispacePushValue("",MAX_DOD_tot) 

ValispacePushValue("",SOC_perc_tot_mean) 

ValispacePushValue("",OAP) 
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