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Sommario

L’obiettivo principale di questa tesi è sviluppare una metodologia per raccogliere
e analizzare un gran numero di dati provenienti da simulazioni CFD e FEM, al
fine di costruire una rete di sensori ottici il cui scopo è di monitorare i carichi
agenti sulla struttura alare per espletare funzioni di diagnostica e monitoraggio
real-time e per future applicazioni prognostiche.

Nel caso in esame, il metodo sarà applicato ad un prototipo di UAV alimentato
da pannelli solari sviluppato dal Team ICARUS del Politecnico di Torino, che
si presta bene a scopi sperimentali e potrebbe trarre grandi benefici da questa
metodologia, non solo per il monitoraggio strutturale ma anche per il monitoraggio
indiretto su altri sistemi.

Le Smart Structures offrono molti vantaggi nella manutenzione e nella sua
programmazione, sia in termini di tempi di ispezione necessari che di costi associati
alle procedure manutentive.

Sensori di tipo Fiber Bragg Grating (FBG) saranno utilizzati per questa ap-
plicazione, in collaborazione con Photonext Team.

Le simulazioni aerodinamiche (CFD) sono state realizzate utilizzando il soft-
ware Siemens Star CCM+, che consente il calcolo dei carichi aerodinamici in
diverse condizioni di volo.

I carichi ottenuti vengono quindi applicati al modello FEM strutturale dell’ala
e l’analisi sarà condotta utilizzando Altair Hyperworks. La post-elaborazione e
l’ottimizzazione dei dati verrà fatta tramite MATLAB.

Una rete neurale di tipo feedforward verrà in seguito addestrata utilizzando le
deformazioni misurate dai sensori posti all’interno della struttura alare.

Al fine di ottenere una rete ben addestrata, verranno eseguite diverse simu-
lazioni per costruire un set di dati significativo.





Abstract

The main goal of this thesis is to develop a methodology to collect and analyze
large number of data coming from CFD and FEM simulations, in order to build
an optical sensors network whose purpose is to monitor structural loads for future
prognostic applications and for real-time monitoring.

In this case study, the method will be applied to a solar panel powered UAV
prototype developed by the ICARUS Team, which is very suitable for experimental
purposes and could greatly benefit from this methodology, not only for structural
health monitoring but also for indirect monitoring on other systems.

Smart structures provide many advantages in maintenance, both in terms of
inspection time needed and costs.

Fiber Bragg Grating (FBG) sensors will be used for this application, produced
in collaboration with Photonext Team.

Aerodynamics CFD simulations are made using the software Siemens Star
CCM+, allowing the computation of aerodynamic loads in different flight condi-
tions.

The loads are then applied to the FEM structural model and the analysis will
be conducted using Altair Hyperworks. Data post-processing and optimization is
done with MATLAB.

A feedforward neural network is then trained using strains measured by the
sensors placed inside the wing structure.

In order to achieve a well trained network, several simulations will be carried
out to build a significant dataset.
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Chapter 1

Introduction

The high complexity and costs of aircraft structures combined with their high
operational reliability and safety needs results in increasing interest in structural
health monitoring systems. Fibre Bragg Grating (FBG) sensors are an interesting
tool for these applications.

The advantages of FBG sensors such as their small size, high multiplexing
capabilities, corrosion resistance and good compatibility with the most advanced
composite materials exploited in the aeronautics and aerospace fields made them a
good tool for measuring strain within structures using a non-destructive approach.

The development of integrated sensor networks for non-destructive testing
(NDT) is an essential part of the design and manufacture of composite aerospace
structures in aerospace, military, and civil applications.

The use of composite components requires regular maintenance and the use
of classical NDT techniques, such as ultrasonics, infrared thermography, laser ve-
locimetry, etc. These techniques evaluate the condition of the parts and document
the occurrence and in-service growth of defects in the lifetime of the parts, and
this allows a prediction of the useful lifetime of the part. However, these inspec-
tions are time-consuming and require both qualified personnel and appropriate
test equipment. In addition, there are difficulties in using traditional NDT tech-
niques such as the inability to inspect hard-to-reach components, and the fact
that in-service testing may be impossible.

Traditional strain-gauge sensors requires a dedicated electrical connection for
each sensor making the implementation difficult and are also susceptible to elec-
tromagnetic interference, corrosion and losses.

Real-time monitoring offers many advantages, such as the possibility to change
maintenance plan, replacing preventive maintenance for certain structures with
on-condition maintenance, allowing reduction in costs and operational downtime.
This will also increase safety as less maintenance operations are needed thus re-
ducing the possibility of human errors.
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Real-time monitoring also allows a fast identification of structural damage or
wear and enable an optimized use of the structures by measuring real-time loads.

This thesis is partly based on a previous thesis job written by Ing. Emanuele
Frediani, see bibliography for reference.

Fiber Bragg Grating sensors have been previously tested by the ICARUS Team
on ANUBI, a competition model aircraft developed in 2017. This made it possi-
ble to acquire the necessary experience and carry out many tests that showed the
feasibility and robustness of this type of system on a real context. The team thus
decided to develop and optimize a methodology both numerical and experimen-
tal to implement a sensors network capable of doing real-time structural health
monitoring and also to develop future prognostic applications for flight control
actuators.

1.1 Thesis objectives and structure

The main goal of this thesis is to develop a methodology to collect and analyze
large number of data coming from CFD and FEM simulations, in order to build
an optical sensors network whose purpose is to monitor structural loads for future
prognostic applications and for real-time monitoring.

The structure of the thesis is described below:

• Chapter 2: In this chapter optical fibers and Fiber Bragg Grating sensors
will be introduced, from a physical point of view and also from a technolog-
ical point of view

• Chapter 3: Brief description of the aircraft used for the simulations (Project
RA)

• Chapter 4: Overview of the CFD and FEM models used for aerodynamic
simulations and for finite elements structural analysis. In this chapter the
analyzed flight conditions will also be discussed

• Chapter 5: In this chapter the configuration of the sensors and their posi-
tioning inside the wing box will be briefly analyzed

• Chapter 6: Introduction to Artificial Neural Networks (ANNs) and appli-
cation to this case study

• Chapter 7: Conclusions and possible future developments

7



Chapter 2

Fiber Bragg Grating (FBG)
sensors

2.1 Optical fiber

The advent of low-loss optical fibers in the early 1970s was a major event in the
field of communication in the third quarter of the twentieth century. Since the
first low-loss optical fiber with less than 20 dB/km at 632.8 nm in 1970, optical
fiber loss has continued to evolve toward lower levels, their design and fabrication
techniques have shown exceptionally rapid progress, reaching 0.142 dB/km at
1560 nm as of today.

Engineers now believe that in the distant future the optical fiber will change
dramatically the entire aspect of communication.

In this chapter the theoretical basis of transmission characteristics of opti-
cal fibers will be described as well as the fabrication technologies to assist the
comprehension of Fiber Bragg Grating (FBG) sensors.

2.1.1 Optical fiber characteristics

An optical fiber is a cylindrical dielectric waveguide made of low-loss materials
such as silica glass. It has a central core in which the light is guided, embedded
in an outer cladding of slightly lower refractive index. Light rays incident on the
core-cladding boundary at angles greater than the critical angle undergo total
internal reflection and are guided through the core without refraction. Rays of
greater inclination to the fiber axis lose part of their power into the cladding
at each reflection and are not guided. The fiber also has an external protective
coating.
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Figure 2.1: Optical fiber structure

• Core: This central section, made of silica or doped silica, is the light trans-
mitting region of the fiber.

• Cladding: Around the core, this is the first layer. It is made of silica as
well, but not in the same way as the core. By total internal reflection at the
core-cladding contact, an optical waveguide is created, which confines light
in the core.

• Coating: Around the cladding, the coating is the first non-optical layer. The
coating is usually made up of one or more polymer layers that protect the
silica structure from physical and environmental degradation. When the
fiber is connectorized or fusion spliced, the coating is peeled off.

The strength member and outer jacket are situated outside of the coating and
help protect the fiber from breaking during installation and termination.

Depending on the application, single mode and multimode fiber structures are
employed in fiber optic communications. Light passes through multimode fiber in
different ”modes,” which are different light routes. Only one path is propagated
via the fiber in single mode fiber.

For this thesis single mode fibers will be used as there is no need to use
multimode.
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2.1.2 Operating principles

Optical fibers work on the principle of total internal reflection. Light reaching
the boundary between two materials is reflected such that it never leaves the first
material. In the case of fiber optics, light is reflected from the optical fiber core-
cladding interface in such a way that it propagates down the core of the fiber.
This can be explained by a brief discussion of Snell’s law of refraction and law of
reflection.

n1sin(θ1) = n2sin(θ2) (2.1)

In our case n1 is the refraction index of the core and n2 in the refraction index
of the cladding, with n1 > n2.

Light hitting the boundary or interface at angles greater than or equal to the
critical angle would never pass into the second material, but would rather undergo
total internal reflection, without losses.

θc = arcsin(n1/n2) (2.2)

Figure 2.2: Optical fiber signal propagation

Another phenomenon to consider is Fresnel reflection, it occurs at the air-glass
interfaces at the entrance and exit ends of an optical fiber. Resultant transmission
losses, on the order of 4% per interface, can be reduced considerably by the use of
index-matching materials. The coefficient of reflection depends upon the refractive
index difference and the polarization of the incident radiation. For a normal ray,
the fraction of reflected incident power is given by the following law:

R = (n1 − n2)
2/(n1 + n2)

2 (2.3)
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2.1.3 Signal Attenuation

Light is gradually attenuated when it travels through fiber. The attenuation value
is expressed in dB/km (decibel per kilometer). Attenuation is a function of the
wavelength (λ) of the light.

Figure 2.3: Optical fiber signal attenuation vs wavelength

Attenuation can be measured by the following coefficient:

α = − 10

z[km]
log

(
P (z)

P (0)

)
(2.4)

Where P(z) is the power measured in z position and P(0) is the source power.

There are several causes of attenuation in an optical fiber:

• Absorption: it is caused by the absorption of the light and conversion to
heat by molecules in the glass. Primary absorbers are residual OH- and
dopants used to modify the refractive index of the glass. This absorption
occurs at discrete wavelengths, determined by the elements absorbing the
light. The OH- absorption is predominant, and occurs most strongly around
1000 nm, 1400 nm and above 1600 nm.

• Scattering: occurs when light collides with individual atoms in the glass
and is anisotropic. Light that is scattered at angles outside the numerical
aperture of the fiber will be absorbed into the cladding or transmitted back
toward the source. Scattering is also a function of wavelength.

• Macro-bending: it is the attenuation associated with bending or wrapping
the fiber. When the fiber is bent a percentage of the light is refracted out
of the waveguide, depending on the bending radius. This is caused by the
incidence angle being lower than the critical angle needed for total reflection.
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• Micro-bending: it is an attenuation increase caused by high frequency
longitudinal perturbations to the waveguide. The perturbations are nor-
mally considered as a set of very small radius bends of the fiber core. Phys-
ical irregularities on the surface in contact with the fiber perturb it into
small radius bends which can cause microbending.

Figure 2.4: Optical fiber bending attenuation

2.1.4 Main advantages

Fiber optics continues to be used in more and more applications due to its inherent
advantages over copper conductors.

• Increased bandwidth: The high signal bandwidth of optical fibers pro-
vides significantly greater information carrying capacity. Typical band-
widths for multimode (MM) fibers are between 200 and 600 MHz-km and
more than 10 GHz-km for single mode (SM) fibers. Typical values for elec-
trical conductors are 10 to 25 MHz-km.

• Electromagnetic Interference: Optical fibers are immune to electromag-
netic interference and emit no radiation.

• Decreased cost, size and weight: Compared to copper conductors of
equivalent signal carrying capacity, fiber optic cables are easier to install,
require less duct space, weigh 10 to 15 times less and cost less than copper.

• Lower loss: Optical fiber has lower attenuation (loss of signal intensity)
than copper conductors, allowing longer cable runs and fewer repeaters.

• No sparks or shorts: Fiber optics do not emit sparks or cause short
circuits, which is important in explosive gas or flammable environments.
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• Security: Since fiber optic systems do not emit RF signals, they are difficult
to tap into without being detected.

• Grounding: Fiber optic cables do not have any metal conductors; conse-
quently, they do not pose the shock hazards inherent in copper cables.

• Electrical Isolation: Fiber optics allow transmission between two points
without regard to the electrical potential between them.

2.1.5 Connectivity

Fiber optic links require a method to connect the transmitter to the fiber optic
cable and the fiber optic cable to the receiver. In general, there are two methods
to link optical fibers together.

• Fusion Splice: This operation consists of directly linking two fibers by
welding with an electric arc or a fusion splicer. The advantages of this
approach are that the linking method is fast and simple and there is very
little insertion loss. The disadvantages are that the link is relatively fragile,
is permanent, and the initial cost (of the fusion splicer) is high.

• Connectors: The second method involves the uses of fiber optic connectors.
A connector terminates the optical fiber inside a ceramic ferrule, using epoxy
to hold the fiber in place. The connectors can be mated and unmated at any
time. The advantages of this approach are that the connection is robust,
the connector can be chosen according to the application.

2.2 Fiber Bragg Grating sensors

The introduction of fiber-optic communication has transformed practically every
element of communication technology.

Optical fiber sensors have been extensively researched and used for a variety
of applications in recent decades, including strain measurement, refractive in-
dex measurement, vibration of structures and machines, electric current, voltage,
impedance measurement, temperature, pressure, humidity measurement, and so
on. Although there has been substantial progress in this sector, the integration of
optical mirrors, partial reflectors, and wavelength filters remains a difficulty since
it adds to the complexity and cost of the system.

This challenge has been solved by using a fiber Bragg grating, which can
perform all of the basic functions of reflection, dispersion, and filtering, making it
ideal for sensing applications.

Photosensitivity is the process of optical absorption of ultraviolet (UV) light
that affects the refractive index of the fiber core, resulting in a fiber Bragg grating
(FBG).
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Fiber Bragg grating was first discovered by Ken Hill in 1978 at Communication
Research Centre, Canada. Ever since its discovery, grating structures have gained
wide attention in the area of optical sensing due to their inherent advantages,
such as low cost, small size, real-time response, high accuracy, high sensitivity,
and immunity to electromagnetic interference.

There is great potential of sensing various parameters, such as temperature,
pressure, stress, and refractive index using grating-based devices.

Such measurements are very important for example in the field of smart struc-
tures where sensors have a key role to monitor the conditions and supply the
information to the control system that processes it and generate a useful effect,
thanks to the actuators, to vary or restore the working conditions. Another ad-
vantage of using optical fibre sensors is that they don’t need electrical power to
work. Power source is required to the expensive equipment needed to process the
measurement, but it can be installed far away from the sensor in remote places.
Optical sensors are integral part of the fibre, so they are very small and light
weighted, and it’s possible to equip a single fibre with multiple sensors.

Current applications of fiber Bragg gratings are found in high temperature sen-
sors, health and biomedical devices, structural engineering, industries, biochemical
applications, radioactive environment, aerospace, maritime and civil engineering,
and many other fields.

2.2.1 FBG Operating principles

Fiber Bragg grating sensors (FBG) consist of a series of reticular fringes, made
by photoengraving in the core of the fiber using UV light. The segments of fiber
that undergo this treatment behave intrinsically as sensors, maintaining the signal
transmission function.

Photoengraving cause a periodic modulation of the index of refraction of the
fiber core along the longitudinal direction, this allows the use of diffraction grating
principle. By grating, it is meant that there is a periodic change in the core’s
refractive index. When the light travels inside the grating structure, some portion
of light gets reflected back from each grating plane, so the FBG behaves like a
filter. Only a specific wavelength is reflected to the source, denominated Bragg
wavelength λB which corresponds to a peak in the reflected spectrum.
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Figure 2.5: FBG sensor

The value of λB can be estimated with the following equation:

λB = 2Λneff (2.5)

where Λ is the grating period that forms the distance between two adjacent

grating planes, neff is the effective core refractive index.

Figure 2.6: FBG sensor

When external conditions cause the material to expand or compress, the grat-
ing step length changes and consequentially the reflected wavelength change too,
allowing the measurements of relative deformations and temperature.

∆λB

λB

= kϵ∆ϵ+ kT∆T (2.6)
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Where the first term represents the strain effect on the fiber and the second term
represents the effect of temperature.

The coefficient kϵ is determined by the physical elongation of the grating pitch
and strain-optic coefficient of the fiber while the coefficient kT is determined by
the thermal expansion coefficient and the thermal-optic coefficient of the fiber.

The intensity of the sensor response, ie the intensity of the peak reflected by
the grating depends on the length of the FBG itself, as each fringe reflects a small
part of the incident signal which add up between them. Increasing the length of
the sensor increases the number of fringes and consequently the intensity of the
reflected wavelength.

Figure 2.7: Reflected power vs FBG sensor length

2.2.2 Fiber Bragg Grating (FBG) strain dependence

The strain dependence of a fiber Bragg grating can be determined by differenti-
ating the wavelength:
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∆λB

λB

= kϵ∆ϵ = (1 + pe)∆ϵ (2.7)

Where pe is the photoelastic constant (variation of index of refraction with axial
tension). For optical fiber pe ≈ −0.21, meaning that strain Sensitivity of a FBG
is given by the expression:

∆λB

∆ϵ
= kϵλB = 0.79λB (2.8)

2.2.3 Fiber Bragg Grating (FBG) temperature dependence

Similarly to the strain dependence of a fiber Bragg grating, the temperature de-
pendence can be determined by differentiating the wavelength expression:

∆λB

λB

= kT∆T = (α + ζ)∆T (2.9)

Where α is the coefficient of thermal expansion of the fiber and ζ is the thermo-
optic coefficient (dependence of the index of refraction on temperature).

For a temperature sensitivity approximation, we can assume that these values
are constant for the temperature range: α = 0.55·10−6/◦C and ζ = 5.77·10−6/◦C.
Meaning that the approximate thermal sensitivity is given by:

∆λB

∆T
= kTλB = 6.3 · 10−6λB (2.10)

Figure 2.8: Thermo-optic coefficient vs Temperature
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2.2.4 FBG Classification

The structure of the FBG can vary via the refractive index, or the grating period.
The grating period can be uniform or graded, and either localized or distributed
in a superstructure. The common structures for FBGs are the following:

• Uniform gratings: the modulation of the refractive index is constant in
amplitude and period. This type of FBGs will be used for this thesis.

Figure 2.9: Uniform FBG grating

• Apodized gratings: the refractive index modulation is defined by a cer-
tain function, typically a Gaussian function or a cosine function. Apodized
gratings offer significant improvement in side-lobe suppression while main-
taining reflectivity and a narrow bandwidth.

Figure 2.10: Apodized FBG grating
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• Phase-shifted gratings: the refractive index modulation has a phase-shift
(π) in the center of the FBG’s length. Phase-shifted FBGs have interest-
ing applications in optical communications and sensing due to their special
filtering characteristics

Figure 2.11: Phase-shifted FBG grating

• Chirped gratings: The amplitude of the refractive index modulation is
constant, but the period is variable along the length. The reflected wave-
length changes with the grating period, broadening the reflected spectrum.

Figure 2.12: Chirped FBG grating

• Tilted gratings: The refractive index modulation is tilted by a certain
angle to the optical axis. The angle of tilt in a TFBG has an effect on the
reflected wavelength, and bandwidth.

Figure 2.13: Tilted FBG grating
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2.2.5 FBG Fabrication

Grating inside the fiber can be formed using various methods. The writing process
is the process of creating gratings in the fiber core. Internal and external writing
are the two main types of writing. Hill was the first to demonstrate internal writing
with an argon ion laser, exposing the photosensitive fiber by coupling light in the
fiber core. Because the change in refractive index noticed is so slight, this style
of writing is ineffective and consequently rarely employed. The most frequent
approach is externally inscribed writing, which can be done in a variety of ways,
including the interfering beam method, phase mask technology, point-by-point
technique, and line-by-line technique.

• Interfering beam method: A prism or a beam splitter is used to divide
the light from a laser into two distinct beams. The two beams propagate
until they come into contact with two mirrors, which reflect them onto the
fiber. The writing process is carried out as the interference pattern on the
fiber is being generated. The wavelength of light and the half angle between
the interfering beams determine the period of the interference pattern. The
main disadvantage of this technology is that it is difficult to keep the laser
beam aligned for greater coherency.

Figure 2.14: Interfering beam method

• Phase mask technology: a laser is used as a source to the phase mask
layer, which is made using holographic technology or electron beam lithogra-
phy. The phase mask’s beam is diffracted into a number of different beams.
The interference pattern is created on the fiber that is near the phase mask
layer. A Krypton fluoride (KrF) excimer laser with a wavelength of 248 nm
is employed as a light source in phase mask technique for writing because
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UV radiation in the 228 to 253 nm spectral region is thought to be extremely
effective in causing change in refractive index of fiber.

Figure 2.15: Phase mask technology

• Point by point technique: This technique uses a highly focused femtosec-
ond laser system (FSL). The FSL sends highly energetic and high-precision
pulses directly into the optical fiber core. The narrow duration of the pulse
ensures that the permanent index change in the core remains confined. To
form grating, a mechanically controlled translation stage is involved that
repeats the same process every time.
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Figure 2.16: Point by point technique

2.2.6 Temperature effect compensation

FBG sensors measure both mechanical deformation and thermal expansion at the
same time; it is therefore necessary to decouple the contributions that the two
effects produce on the wavelength variation reflected.

Here are some methods for compensating for the temperature effect:

• Mechanical insulation by lead-through capillary pipe: It consists of
inserting two FBG sensors close together, inside a rigid pipe. The first sensor
is bonded to the pipe using epoxy, so as not to undergo deformation and to
only detect the thermal expansion. The second sensor, on the other hand,
is free to deform with the structure under examination, so as to detect both
effects. By comparing the measurements of the two sensors it is possible to
isolate the effect of deformation.

This method involves some problems, such as high intrusiveness (which un-
dermines the ease of integration into composite materials), and the relative
difficulty in creating the rigid bond between the first FBG and the walls of
the capillary tube.
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Figure 2.17: Mechanical insulation by lead-through capillary pipe

• Mechanical insulation by non-lead-through capillary pipe: Com-
pared to the previous method, in this case the capillary pipe is located at
the end of the fiber and a single sensor is placed inside of it. Similarly to the
previous case, this sensor is constrained to the walls of the pipe using epoxy,
so as to only detect the thermal expansion. A second FBG, positioned along
the fiber, measures the two coupled contributions. From the comparison of
the two measurements, the deformation can be isolated.

The capillary pipe is still intrusive but this method is easier to be inte-
grated into a composite structure, although it may involve a non-optimal
arrangement of the fiber.

Figure 2.18: Mechanical insulation by non-lead-through capillary pipe

• Thermal expansion coefficient modification: This method involves a
direct compensation of temperature effect. This can be achieved by the
elimination of the kT coefficient in equation 2.9, thus making the grating
of the fiber temperature invariant. To obtain this compensation, the FBG
sensor has to be incorporated in a crystalline liquid polymeric material with
a thermal expansion coefficient equal and opposite to the one of the fiber.
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Figure 2.19: Thermal expansion coefficient modification

• Overwritten FBGs: This method consists of writing two different grat-
ings with different λB on the same segment of the fiber, in order to obtain
different values of kT and kϵ (equations 2.7 and 2.9).

The wavelengths of the two gratings should be sufficiently spaced (∆λB >
200nm) to obtain a well-posed system.{

∆λB1

∆λB2

}
=

[
kϵ1 kT1

kϵ2 kT2

]{
∆ϵ

∆T

}
(2.11)

The downside of this method is that two light sources are necessary to cover
both wavelengths, increasing the costs.

Figure 2.20: Overwritten FBGs
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2.2.7 Data acquisition system

In order for the sensors to work properly a data acquisition system is necessary,
which comprises an optical interrogator (such as a Single Board Interrogator SBI),
a processing module (PM), a power supply and acquisition software.

The core component for the data acquisition system is the Optical FBG Inter-
rogator which is capable of emitting light signals inside the fiber and also receives
the reflected signals coming from the sensors and turns them into current.

Figure 2.21: Data acquisition system layout (SmartScan interrogator)

The optical interrogator is made by the following parts:

• Light source: which can be either LED (light emitted diode), SLED (su-
perluminescent LED) or LD (laser diode).

• Wavelength filters: used to select the specified wavelength

• Optical isolator: it is an optical component which allows the transmission
of light in only one direction. It is used to prevent unwanted feedback.

• Photodetector: a p–n junction that converts light photons into current.

• Circulators: used to direct the source and the reflected signals to the right
ports.
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As said before, we can place multiple sensors on the same fiber channel as
long as every sensor has a different characteristic wavelength λB, in order for the
measurement to be associated to the right sensor. It is thus important to have
wavelength filters for this purpose.

During the set-up phase, the interrogator perform a tuning process, identifying
the correct λB for each sensor on each channel.

This allows the interrogator to select a specific FBG sensor by its wavelength.

Figure 2.22: SmartScan SBI

The aircraft equips a SmartScan SBI interrogator with the following specifics:

Wavelength Number of Max Number of
Range Optical Channels Sensors per Channel

1528-1568 nm 4 16

Scan Frequency Scan Frequency
(all sensors simultaneously) (per each sensor in turn)

2.5 kHz 25 kHz

Table 2.1: SmartScan SBI specifics
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Chapter 3

ICARUS Team and project RA

3.1 ICARUS Team

ICARUS PoliTO is a student team of the Polytechnic of Turin. Of a purely
aerospace nature, the ICARUS Team has more than 90 members, working on 3
different projects in 5 areas.

• ACC: design and construction of a competition UAV for a two-year univer-
sity competition (Air Cargo Challenge) organized in Europe.

The ACC Team division develops and builds an UAV with specific charac-
teristics to race in the competition, which develops on kilometer and hourly
efficiency, in addition to the transport of a defined payload. During the last
edition (Stuttgart 2019) the Team placed 6th;

• DART: design and construction of a rocket model with solid propellant.
The ultimate goal of the project is to break the record of 2500m of apogee
for an amateur carrier. DART is equipped with a solid propellant engine
consisting of 65% of KNO3 and 35% of sorbitol, capable of generating up to
1500 [N] with a maximum chamber pressure of 10 [Mpa].

• RA: Design and construction of a UAV powered solely by solar panels,
allowing a virtually unlimited range. The ultimate goal of this project is to
complete a trans-oceanic flight in complete autonomy.

For this thesis the sensors will be applied to project RA inside the wing struc-
ture, it is thus important to introduce the aircraft, paying particular attention to
the wing geometry and structure.

27



3.2 Project RA

Figure 3.1: Render of RA aircraft

Record Aircraft (RA), born in 2017, is an ambitious project that is part of the
current industrial and energy development. Its ultimate goal is to create a UAV
entirely powered by solar energy.

The aircraft will be equipped with solar panels with virtually unlimited au-
tonomy. The long-term goal is to fly across the Atlantic Ocean.

The aircraft, therefore, shall not be bound to meet particular speed require-
ments neither the ability to perform complicated maneuvers, but, rather, must
have high aerodynamic efficiency, simple controllability and possibly the ability
to carry small payloads of various types (cameras, sensors, telecommunication
systems ...). It will therefore have the characteristics and appearance of a glider.

3.2.1 Aircraft Description

The aircraft will have a conventional high-wing configuration, with a span of
approximately 5 meters, tear drop-shaped fuselage, just over two meters long and
a T-tail about half a meter high.

The main landing gear is a single wheel on the fuselage centerline, with un-
sprung tailwheel and dolly system for taxiing phases.

A brushless electric engine will be mounted on the nose, equipped with a
propeller of 50 centimeters in diameter.

Access to the internal compartment is possible through an opening on the top
of the fuselage.
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The external surfaces and the main structural components will be built in
carbon fiber composite material and will be manufactured internally by the team.

The battery pack (Li-ion batteries) will be allocated inside the wing structure.
The solar panels will be mounted on the top of the wing surface. Gallium ar-

senide (GaA) panels will probably be used with a power density of approximately
250 W/m2 and a power-to-weight ratio of 1 W/g (estimated).

Figure 3.2: CAD model of RA aircraft

Estimated mass 15 [kg]
Cruise speed 15 [m/s]

Maximum aerodynamic efficiency 25
Wing surface 1.5 [m2]
Wing span 5 [m]

Mean aerodynamic chord 0.3 [m]
Fuselage length 2 [m]
Engine power 1650 [W ]

Propeller diameter 46 [cm]

Table 3.1: General characteristics (RA aircraft)
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3.2.2 Wing aerodynamic and geometry

Figure 3.3: CAD model (top view) of the wing

In order to complete an endurance mission, such as that of the Record Aircraft
(RA), it is strictly necessary that the aircraft soars in the air as efficiently as
possible; because of this reason, the aerodynamic aspect is certainly among the
top priorities of the project.

The planform of the wing is a derivation of Schumann’s wing, widely used for
gliders for its aerodynamic efficiency, allowing a drastic reduction in induced drag.
Changes have been made to the sweep angle along the span, in order to optimize
lift distribution and obtain an almost elliptical configuration. The wing also has
a bit of twist near the tip region while dihedral angle is zero.

The wing can also mount wing-tip devices in order to minimize the interaction
between upper and lower part of the wing to improve efficiency.

The chosen airfoil is the Selig 3002-099-83, a profile for low Reynolds number
with a limited camber on the top in order for the solar panels to work efficiently,
capturing solar rays at an ideal angle, without compromising aerodynamic effi-
ciency.

Figure 3.4: Airfoil - Selig 3002-099-83
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The following tables contain the characteristics of the airfoil and the main
coefficients obtained through CFD analysis.

Max thickness Max camber Root chord Tip chord
9.9% at 30.6% chord 2.3% at 49.8% chord 0.372 [m] 0.146 [m]

Table 3.2: Airfoil characteristics

CLmax CL0 CLα CM0 CD0 CDmin

1.24 0.34 5.39 -0.078 0.016 0.014

Table 3.3: Aerodynamic coefficients (V = 15m/s)

The mobile surfaces are on the trailing edge: flaps near the fuselage and two
ailerons per each wing.

3.2.3 Wing structure

Unlike the conventional half-shell configuration with spars along the span and ribs,
for RA aircraft a different configuration has been chosen which is more similar to
a shell configuration.

This choice has been made in order to obtain as much free volume as possible
inside the wing to allow the allocation of the batteries and other subsystems and
also to reduce structural weight.

Since the battery packs are the heaviest elements on-board, their placement on
the wing is fundamental for flight mechanics. In this configuration it is possible to
obtain a high moment of inertia on the roll axis, making the response to commands
or disturbances slower, and therefore predictable and easily manageable.

The wing structure has been designed to transfer almost the entire load on
a closed section that traces the shape of the airfoil, cutting off leading edge and
trailing edge area.

An external skin is then glued to the wing box to restore the airfoil shape and
fulfil the aerodynamic functions.

This type of structure was feasible thanks to the high aspect ratio of the wing
and the small size.

The structure will be manufactured using carbon fiber composite materials.

31



Figure 3.5: Wing structure CAD

The structure consists of these main components:

• Wing box: This element contributes to the bending and torsional stiffness
of the wing. The vertical faces are positioned approximately at the fore-
quarter and hindquarter of the profile and virtually fulfil the spar’s function
while the upper and lower faces traces the airfoil shape and close the load
paths. The component is realized through in-mold lamination and vacuum
forming with two layers of carbon fiber oriented ±90◦.

• Skin: The external skin allows to maintain the right aerodynamic shape.
Foam is used to fill areas subject to high aerodynamic loads or exposed to
the risk of accidental damages. The component is realized through in-mold
lamination and vacuum forming with two layers of carbon fiber oriented
±45◦.

• Sandwich ribs: Sandwich ribs helps against contact pressure loads and
contributes to the torsional stiffness of the wing. They also support the
battery packs. The ribs are realized with three layers of carbon fiber and
Rohacell foam core. A total of five ribs are placed along the span for each
half-wing.
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Figure 3.6: Wing structure detailed CAD

FBG sensors will be integrated inside the wing box during the lamination
process, allowing a direct monitoring of strain and protecting the fibers against
accidental damage.

The wing has been divided into three parts in order to easily transport and
disassemble the aircraft. This requires a joint between the external and the central
parts. The joint will be realized using a bayonet mechanism, a reinforcement
integrated inside the central wing box is inserted in the external wing box.

It is important to note that the presence of the joint interrupt the optical fiber
lines, it is thus necessary to have connectors to ensure the continuity of the fiber
lines.
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Figure 3.7: Wing joint detail

The mobile surfaces are installed on the trailing edge of the wing by cutting
the rear part of the skin from the rest of the structure. This part of the skin will
rotate and act as a mobile surface.

There are no hinges that connect the mobile surfaces to the structure, duct
tape will be used to allow the rotation of the parts.

This architecture is simple but it’s important to note that aerodynamic loads
will be transferred to the structure exclusively through the servo-actuators con-
nected to the mobile surfaces.

Each half-wing has a flap on the inner part near the fuselage and two ailerons.
For each mobile surface there is a single servo-actuator connected in the centre

of it and fixed to the wing box.
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Figure 3.8: Flap mechanism (Sample from ANUBI (2017) model)
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Chapter 4

Flight conditions, FEM and CFD
models

4.1 CFD model

For this thesis a CFD model developed by ICARUS has been used in order to
compute aerodynamic loads and hinges moment to varying of flight conditions
and mobile surfaces deflection.

CFD analysis are based on highly non linear equations that are solved by high
performance computing. The software used for the solution is Siemens Star ccm+.

4.1.1 Introduction to Computational Fluid Dynamics

The technique of mathematically modeling a physical event involving fluid flow
and solving it numerically utilizing computing power is known as computational
fluid dynamics (CFD).

The investigation of fluid flow in terms of physical parameters such as velocity,
pressure, temperature, density, and viscosity is carried out in a CFD software
analysis. Those features must be examined simultaneously in order to effectively
develop an accurate solution for a physical phenomenon linked with fluid flow.

To study the fluid flow, a CFD software tool employs a mathematical model
of the physical case and a numerical algorithm.

The mathematical model must be verified in order to establish an accurate
case for solving the problem. Furthermore, determining appropriate numerical
methods is essential for generating a solid result.

The main framework of the thermo-fluids analysis is guided by governing equa-
tions based on the conservation law of fluid physical characteristics. The basic
equations are the three laws of conservation:

• Conservation of Mass: Continuity Equation
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• Conservation of Momentum: Newton’s Second Law

• Conservation of Energy: First Law of Thermodynamics or Energy Equation

Figure 4.1: RA - Wing vorticity distribution (α = 10◦)

The equation for the Conservation of Mass is specified as:

Dρ

Dt
+ ρ(∇ · v⃗) = 0 (4.1)

where ρ is the density, v the velocity and ∇ the gradient operator.
Conservation of momentum is given by:

∂(ρv⃗)

∂t
+∇ · (ρv⃗v⃗) = −∇p+∇ · (τ) + ρg⃗ (4.2)

where p is the static pressure, τ is the viscous stress tensor and ρg⃗ is the gravita-
tional force per unit volume.

Conservation of Energy is the first law of thermodynamics which states that
the sum of the work and heat added to the system will result in the increase of
the energy in the system:

dEt = dQ+ dW (4.3)

where dQ is the heat added to the system, dW is the work done on the system
and dEt is the increment in the total energy of the system.
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4.1.2 Model geometry

A CAD model has been prepared for the analysis and then imported on star
ccm+. The CAD model consists of the right half of the aircraft, cut from the
longitudinal plane of symmetry, this allows to obtain the results using half of the
processing power.

The geometry has been lightly modified in order for the analysis to run smoothly.
Trailing edges of the wing and tail and some other sharp edges have been rounded
a little, so as not to cause any problem during the solution phase. Surfaces are
then meshed inside star ccm+ and the values for flight speed, angle of attack and
mobile surfaces deflection are set for every flight condition analyzed.

The simulation domain is a semi-sphere of 20 m radius with the aircraft posi-
tioned on the centre.

Figure 4.2: RA - Longitudinal symmetry plane velocity distribution
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4.1.3 Simulation parameters and boundary conditions

The flow model used for the simulations has the following characteristics:

• Steady: Steady-state flow refers to the condition where the fluid properties
at a point in the system do not change over time.

• Compressible: Density is considered a function of temperature and pres-
sure.

• Turbulent: Flow above a certain Reynolds number is considered as turbu-
lent. Turbulent flow is characterized by recirculation, eddies, and apparent
randomness.

The solution is obtained through separated flows model, which uses decoupled
equations to calculate velocity and pressure. This is possible only with low Mach
numbers, to reduce simulation time and complexity, maintaining accurate results.

Boundary conditions are defined as follows:

• Free stream condition: on the domain edges

• No-slip condition: on the aircraft surfaces

• Symmetry condition: on the xz plane

Turbulence is simulated using SST k-omega method with γ − Reθ transition
model, this method uses different equations depending on the distance of the flow
from the walls, allowing an appropriate modeling for the whole domain.

The following set of equations are then used to run the simulations:

• Reynolds-Averaged Navier-Stokes equations (RANS): are time-averaged
equations of motion for fluid flow. The idea behind the equations is Reynolds
decomposition, whereby an instantaneous quantity is decomposed into its
time-averaged and fluctuating quantities.

• Partial differential equations (PDE) for turbulence: either Wilcox
k-omega (boundary layer) or k-epsilon (free stream). Both are composed by
two PDE and are used to simulate turbulence by the rate of dissipation of
turbulent kinetic energy.

• Blending function: it allows to use the correct turbulence model depend-
ing on the distance of the flow from the walls.
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Figure 4.3: Wing pressure distribution

4.1.4 Mesh

The solution domain is divided into several sub-domains, known as cells, in order
to conduct an analysis. Mesh refers to the combination of these cells in the
computational framework.

Mesh is the technique of breaking down a domain into small cells or parts in
order to apply a mathematical model based on the premise that each cell is linear.
This means that within each cell, the behaviour of the variables that need to be
solved must be assumed to be linear. This necessitates the use of a finer mesh in
places where the physical attributes to be predicted are thought to be extremely
variable.

Mesh structure errors are a common problem that leads to simulation failure.
This could be because the mesh is too coarse, and instead of covering all effects
that occur in a single cell element one by one, it covers numerous effects that
change as the mesh gets finer. The mesh structure has a huge impact on the
precision of the solution.

For the model used in this thesis, mesh is composed by polyhedral cells.
Polyhedral cells have multiple exchange interfaces between them, and are

therefore more suitable for analyses in which it is not easy to predict the direction
of the flow.

Considering the complexity of the model, polyhedral cells allows a reduction
in the iterations needed to reach convergence, thus decreasing the simulation time
and also obtaining lower values of residuals and a more precise solution. As
said before it is necessary to have different cells size for areas where the physical
properties are suspected to be highly variable.

For this reason larger cells are found in the periphery of the domain and a
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finer mesh is adopted in areas with rapid changes in flow characteristics, such as
the aircraft surfaces, the wake region and even smaller cells on the wing leading
edge and trailing edge.

Figure 4.4: CFD mesh around wing profile

The mobile surfaces were placed in regions of space separated from the rest of
the domain via interface elements.

In this way they can be rotated in the pre-processing phase and, then, divided
into cells with a dedicated mesh, which interfaces with the global mesh, so that
the entire mesh does not have to be recalculated at each simulation.

Figure 4.5: CFD wing mesh

In order to properly simulate the boundary layer region, twenty-five prismatic
cells layers have been generated parallel to the surfaces. The height of the cells
increases with the distance from the wall.
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Inside the boundary layer the effects of viscosity prevail over inertial forces.
The thickness of this layer is estimated through preliminary simulations of a

hundred iterations, and then be set correctly in the final mesh.

Figure 4.6: Prismatic layers detail

4.1.5 Limitations and assumptions of the model

As in every modeling problem, assumptions have to be made in order for the
model to be as simple as possible, representing the physical phenomenon with the
desired level of accuracy.

The separated flows model loses accuracy for high Mach numbers or high
density, the flight conditions analyzed in this thesis never exceed those limits.

For the CFD model of this thesis, two main assumptions are made:

• Steady-state flow: in reality the flow around the aircraft is not steady,
the physical quantities of the flow changes over time and interact with the
aircraft dynamically. This means that the aerodynamic loads calculated
with the analysis refers to an equilibrium condition and are therefore static
loads.

This represents the main limitation of the model, even though the aircraft
will perform very slow maneuvers in most of the cases.

For the objective of this thesis, that is building a sensors network, working
with static loads is acceptable, even though for a more precise positioning
of the sensors a dynamic model shall be used in the future.

• Lack of propeller: As said before, the aircraft is equipped with a propeller
driven by an electric motor to provide the necessary thrust. To reduce the
complexity of the model and the resources needed for the simulation the
propeller has not been considered. In reality the propeller adds a rotational
component to the flow which is highly asymmetric, leading to a different
angle of attack between the two half-wings and between the right and left
side of the elevator.
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Protruding elements such as landing gear, antennas, external sensors are not con-
sidered by the model, neither do superficial defections and other small openings.
These elements adds complexity to the model without significantly affecting the
results.

4.1.6 CFD analysis input and output

Before running each simulation, the model receives a set of inputs that contain the
value for velocity, angle of attack, mobile surfaces deflections (ailerons, elevator)
and environmental conditions.

The simulations were run with the same environmental conditions to have data
consistency in order for the sensors network to be developed properly.

ISA (International Standard Atmosphere) model at sea-level was used:

• Temperature: 15 ◦C

• Pressure: 101325 Pa

• Density: 1.225 kg/m3

Figure 4.7: Pressure distribution (V = 15m/s)

The velocity can be modified in the physics section of the software.
The angle of attack can be changed by modifying the free stream direction

using three unit vectors. This is made possible by the use of a spherical domain
and does not require mesh recalculation after angle of attack changes,

Surfaces deflection can be modified in the geometry section of the software,
mesh recalculation is necessary after the changes.

The mobile surfaces were placed in regions of space separated from the rest of
the domain via interface elements.
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In this way they can be rotated in the pre-processing phase and, then, divided
into cells with a dedicated mesh, which interfaces with the global mesh, so that
the entire mesh does not have to be recalculated at each simulation.

Figure 4.8: Velocity distribution around wing profile (V = 15m/s)

The output of the simulation contains the following information:

• Pressure distribution on the wing

• Pressure distribution on the mobile surfaces (inner ailerons, outer ailerons,
elevator)

• Pressure distribution on the fuselage and tail

• Hinges moment on the inner and outer ailerons

• Forces and moment coefficients (cx, cz, cm) needed for the calculation of aero-
dynamic derivatives on the longitudinal plane

• Forces and moment coefficients (cy, cn, cr) needed for the calculation of aero-
dynamic derivatives on the lateral-directional plane

• Various graphic representations

For this thesis only some of the outputs are needed, in particular wing pressure
distribution (static pressure) and hinges moments that will be applied to the FEM
model.
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4.2 FEM model

The aerodynamic loads obtained through CFD analysis are then applied to a
FEM model developed internally in order to perform the structural analysis on
the wing, obtaining stress and strain distribution that will be used by the sensor
network.

The software used for the FEM analysis is Altair Hyperworks suite that con-
tains Hypermesh to handle the geometry and Optistruct which is the solver part
of the suite.

4.2.1 Introduction to Finite Element Method

The finite element method (FEM) is a numerical approach for performing finite
element analysis (FEA) on any physical phenomenon.

To fully comprehend and quantify any physical phenomenon, such as structural
or fluid behaviour, thermal transfer, wave propagation, and biological cell growth,
mathematics is required. Partial differential equations are used to describe the
majority of these processes (PDEs). Numerical algorithms have been developed
over the last few decades to allow a computer to solve these PDEs, and one of the
most popular today is the finite element method.

The finite element approach looked promising in the modelling of a variety
of mechanical applications in aerospace and civil engineering at the outset. The
finite element method’s applications are only now beginning to realise their full
potential.

The FEM approach is based on PDEs such as elliptic, hyperbolic, and parabolic
PDEs. Boundary and/or initial conditions must be specified while solving these
differential equations. The required inputs can be determined based on the type
of PDE.

Finite difference methods (FDM) and variational (or energy) methods are the
two basic approaches to solving elliptic PDEs. FEM belongs to the second group.
The notion of energy minimization underpins most variational techniques.

The principle of energy minimization is the primary backbone of the finite
element method; it states that when a boundary condition (such as displacement
or force) is applied, only the configuration with the least total energy is chosen
out of the numerous possible configurations that the body can take.

The domain is divided into small parts known as ”elements,” with each ele-
ment’s corner point referred to as a ”node.” At the nodal positions, the unknown
functional u(x) is determined. For each element to interpolate, nodal values are
used to construct interpolation functions for values within the element. Shape
functions are another name for these interpolation functions.

The equations are supplied to a solver to solve the system of equations once the
matrix equations have been established. Direct or iterative solvers are commonly
utilised, depending on the nature of problem.
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4.2.2 FEM analysis overview

When importing a CAD model for a FEM structural analysis a few steps are
required before the model is ready:

• Geometry cleanup: This step can be done either through a CAD software
or directly inside a FEM pre-processsor software like HyperMesh. In many
cases, the imported geometry is not ready for meshing. It is important to re-
move ”broken” surfaces, redundant surfaces, surfaces which are not stitched
together and surfaces which are too small to be meshed in a reasonable way.
In many cases it also useful to remove features that are not necessary for
the FEM analysis, like antennas, sensors and everything that gives little to
no contribution to the results.

• Meshing: Once the geometry is in an appropriate state, a mesh will be
created to approximate the geometry. Either a beam mesh (1-D), shell mesh
(2-D) or a solid mesh (3-D) will be created. This meshing step is crucial to
the finite element analysis as the quality of the mesh directly reflects on the
quality of the results generated. At the same time the number of elements
(number of nodes) affects the computation time but also the accuracy of the
results, that is why choosing the right element size is important.

• Reference frame: It is important to define a global reference frame as
well as check that local reference frames created for the various elements are
coherent.

• Defining materials and properties: After meshing is completed, mate-
rial (e.g. Young’s Modulus, Poisson coefficient) and property information
(e.g. thickness values) are assigned to the elements. The material can be
defined as isotropic, orthotropic or anisotropic and laminates or composites
can also be defined in this step.

• Loads and boundary conditions: Various loads and constraints can be
added to the model to represent the loading conditions the part is sub-
jected to. Different load cases can be defined to represent different loading
conditions on the same model.

Connectivity matrices that links nodes to Degree of Freedoms (DOFs) for each
element are computed.

Rotation matrix are then calculated in order to link the local reference frames
to the global reference frame.{

qL(e)
}
=

[
Λ(e)

] {
qG(e)

}
(4.4)

Where qL(e) is the local DOFs vector, Λ(e) is the rotation matrix and qG(e) is
the global DOFs vector.
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The same process is repeated for stiffness matrices K(e) and loads and con-
straints vectors F (e). [

KG(e)
]
=

[
Λ(e)

]T [
KL(e)

] [
Λ(e)

]
(4.5)

{
FL(e)

}
=

[
Λ(e)

] {
FG(e)

}
(4.6)

Matrices and vectors are then expanded and assembled in order for them to
contain all the DOFs of the structure.

Assembling is the same as imposing the following conditions:

• Congruence of nodal displacements

• Balance of nodal forces

Finally a matrix system is obtained, which can be written as follows:[
KG(e)

] {
qG(e)

}
=

{
FG(e)

}
(4.7)

The output requested by the FEM analysis in this thesis are stresses and
strains.

Von Mises criterion is used for the analysis. Von Mises stress is a value used
to determine if a given material will yield or fracture. It is mostly used for ductile
materials, such as metals. The von Mises yield criterion states that if the von
Mises stress of a material under load is equal or greater than the yield limit of
the same material under simple tension then the material will yield.

The maximum distortion energy theory originated when it was observed that
materials, especially ductile ones, behaved differently when a non-simple tension or
non-uniaxial stress was applied, exhibiting resistance values that are much larger
than the ones observed during simple tension experiments. A theory involving
the full stress tensor was therefore developed.

1

6
[(τ11 − τ22)

2 + (τ22 − τ33)
2 + (τ33 − τ11)

2 + 6(τ 212 + τ 223 + τ 213)] =
S2
y

3
(4.8)

Where τ is the stress tensor and Sy is the tension elastic limit.
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4.2.3 Model geometry

The geometry of the model consists of the CAD model of the wing, with some
modifications in order to eliminate all unnecessary features. Only the right half-
wing is contained in the model to take advantage of symmetry, allowing to halve
the computational cost.

Aerodynamic loads will be applied as a pressure field while hinges moment are
modeled as concentrated loads.

Figure 4.9: CAD model imported for FEM analysis

CAD model is composed by the wing box, 5 ribs and the skin.
To reduce computational costs the mesh is made using bidimensional elements,

either quad or tria. Thickness is then added with the material properties through
lamination where each layer of carbon fiber has a certain thickness value. These
parts are imported into Hyperworks as bidimensional surfaces, passing through
the mean plane of each component.

As said before some features have been removed from the original CAD model
either because they are not necessary for the FEM analysis or add superfluous
complexity:

• Filling foam (Rohacell) has been removed as its contribution to structural
strength is negligible

• Openings to the various systems have been removed

• Batteries and servo-actuators have been removed

• The joint between the two parts of each half-wing has been removed

• Mobile surfaces have been removed as they do not contribute to structural
strength. Loads exchanged with mobile surfaces will be added through
hinges moment.
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Figure 4.10: FEM model

4.2.4 Mesh

Meshing the wing in an appropriate way is an important step to obtain accurate
results, the mesh has to be smooth and regular and has to use the simplest element
type suited for the problem. The element size is a key parameter as coarse meshes
require less computing resources but can sometimes return inaccurate results while
a finer mesh is more accurate but is not always needed.

For the present case a bidimensional mesh has been chosen, using quad or tria
elements. 2D elements are used when two of the dimensions are very large in
comparison with the third dimension.

Quite often the geometry of thin walled 3D structures is simplified to a ge-
ometric model with lower dimensionality. This is typically called a mid-surface
model. The mid-surface model is then meshed with 2D elements. Thus, there is
no need for a detailed volume mesh as the thickness of the geometry is virtually
assigned to the 2D elements. Mathematically, the element thickness is assigned
with half in the + Z direction (element top) and the other half in the – Z direction
(element bottom).

Using the software Hypermesh, size and bias mode has been used. This mode
allows to set a base element dimension (3 mm in this model) and then the biasing
function allows to obtain a finer mesh near the edges.

This setting is particularly useful for the leading edge and trailing edge and
also near the tip region where the curvature of the skin requires a finer mesh to
accurately follow the geometry.

The bias factor can be expressed as the ratio of the maximum element length

49



divided by the minimum element length.

Figure 4.11: FEM bias setting towards the center hole (example)

As said before, the mesh uses both quad and tria elements:

• Quad elements: The strain in the x-direction is a linear function of its
y-value. Quad elements produce more accurate results but meshing complex
geometry can be difficult.

• Tria elements: The triangular element is called as a constant strain tri-
angle (CST) element. Value of the stress tensor in the whole element will
be constant . This may not be true in the real situation and may produce
inaccurate results. The advantage of triangular elements is that they can
better approximate complex geometry.

The combination of both elements allows better mesh flow, helps with mesh
transition from a coarse mesh to a finer mesh and helps with meshing sharp areas
while maintaining good accuracy.
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Figure 4.12: FEM ribs mesh

Figure 4.13: FEM skin mesh

4.2.5 Materials

Materials characterization has been made by ICARUS team recently with a series
of tensile, compression and bending tests on various specimens. However, when
Ing, Emanuele Frediani did his thesis job these data were not available and a
different approach was used for his simulations.

The objective of this thesis is to develop a sensors network and increase the
available dataset of simulations in order for the network to work properly.

For this reason, to have consistency in the simulations between the already
analyzed flight conditions and the new ones that will be simulated in this thesis,
it has been chosen to use the same approach used by Ing. Emanuele Frediani in
his thesis job.

Otherwise all of the simulations had to be made again with the updated ma-
terials properties with little to no gain regarding the pursued objective.

In a future job, when the implementation of the system starts, it might be
useful to update the FEM model with experimental materials data.
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The approach used to estimate the material properties is based on literature
data combined with the software Altair Multiscale Designer.

Multiscale Designer is a comprehensive framework for the development of
highly predictive and computationally efficient material models for all material
behaviors ranging from homogeneous isotropic to heterogeneous anisotropic. Mul-
tiscale Designer reduces the time and cost associated with the development of
highly predictive material models with minimal experimental data requirements.

The fabric used for the wing is TeXtreme Carbon fabric 80g/m2 that will be
combined with epoxy resin SX10 EVO, with the following proportions: 40% epoxy
and 60% carbon fiber.

Density Fiber diameter Young’s Modulus Tensile Strength
1.79 [g/cm3] 7 [µm] 240 [GPa] 4800 [MPa]

Table 4.1: TeXtreme Carbon fabric characteristics

Viscosity Density Young’s Modulus Glass Transition
1200 [mPas] 1.1 [g/cm3] 3000 [N/mm2] 55 [◦C]

Table 4.2: SX10 EVO epoxy characteristics at 20 ◦C

The carbon fiber laminate’s characteristics obtained through Multiscale De-
signer are shown in the table below.

Ex Ey Gxy

8.5× 104[MPa] 8.5× 104 [MPa] 1.156× 104 [MPa]

Density Kinematic Viscosity
1.55× 10−3 [g/mm3] 4.268× 10−2

Table 4.3: Estimated carbon fiber laminate’s characteristics

The lamination sequence that will be used for the various components is as
follows:

• Wing box: 2 layers with ±90◦ orientation

• Skin: 2 layers with ±45◦ orientation

• Ribs: 8 layers each, 4 of them at +45◦ orientation and the other 4 at −45◦

orientation
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The FEM model also requires a connection between the skin and the wing
box, this has been modeled using rigid elements (RBE) to simplify the model.

In reality a layer of glue (approximately 200g, with a density of 1150 kg/m3)
will be used between the skin and the wing box.

Figure 4.14: FEM model view

4.2.6 Loads and Boundary Conditions

The last step before running the analysis is to assign loads and constraints to the
model, either applying them to the geometry or to the mesh.

• Aerodynamic Loads: Aerodynamic loads are obtained through CFD anal-
ysis described earlier. They consists of a pressure field applied to the wing
and concentrated loads due to the forces exchanged between the ailerons
and the structure.

• Inertial Loads: the weight of the structure is automatically calculated by
Hypermesh using the materials data. Battery pack’s weight is then added
manually.

• Constraints: The half-wing contained in the model is integral with the
other half-wing and is fixed to the fuselage body using an aluminium insert.

Pressure loads are saved by the CFD analysis in the form of coordinates (x,
y, z) in mm and the corresponding pressure in that particular point in MPa.
They’re then applied to the model using a pressure field. The software computes
and applies a normal vector to the surface of each element of the mesh, averaging
its value to respect the relationships between the coordinates of the field and the
position of each element.
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Figure 4.15: Pressure loads and concentrated loads

Forces exchanged with the mobile surfaces are applied using concentrated
loads. In fact, there are no hinges connecting the ailerons to the wing box and
loads are transferred only through the servo-actuators arms fixed to the wing
structure. For this reason it has been decided to apply two concentrated loads in
correspondence of the center of each aileron.

The servo-actuator arms are considered as rigid beams.
In the figure below the orange arrows on the right represents the hinges moment

computed by the CFD analysis and they are then transposed and applied to the
servo-actuator as shown.
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Figure 4.16: Concentrated loads detail

Regarding the battery packs, they’re allocated inside the wing box and a
linearly distributed load was applied to simulate their weight. The table below
shows the applied weights in Maximum Take-off Weight (MTOW) condition.

Mass per Battery pack Total weight
unit length length

Internal pack 2.5[Kg/m] 0.8 [m] 2 [Kg]
External pack 2.5[Kg/m] 0.65 [m] 1.625 [Kg]

Table 4.4: Battery packs weight
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Figure 4.17: Battery pack distributed loads (in red)

Continuity between the two half wings is granted by fixed joint applied on
each node that lays on the symmetry plane (x-z plane). Constraints are applied
to the nodes of both the skin and the wing box.

Wing-fuselage joint is modeled by fixing the nodes where the aluminium insert
described before will be located, which are the first 5 cm along the y direction as
is visible in the image below.

The insert is quite thick compared to the rest of the structure, for this reason
fixed nodes had been used, considering an infinite stiffness of this area.

The aluminium insert is integrated inside the wing box and is necessary to
joint the wing to the fuselage as it is not possible to use screws or bolts with
carbon fiber composites.

Figure 4.18: Constraints
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4.2.7 Limitations and assumptions of the model

The FEM model has many simplifications and assumptions, some of them have
been made to simplify the model from features that do not influence the results
that much and others have been made because some phenomenons are very com-
plex to model and require much more time than what is available for this thesis.

In future works many of the aspects addressed in this section could be devel-
oped and implemented in the model.

Accessibility openings on the wing are not considered by the model, these can
slightly lower bending stiffness and torsional stiffness and most importantly fiber
optic lines can not pass in these areas so no sensors can be placed there.

One of the most important limitations is the joint between the two sections of
each half-wing, in fact the wing has been divided into three parts in order to easily
transport and disassemble the aircraft. This requires a joint between the external
and the central parts. The joint will be realized using a bayonet mechanism, a
reinforcement integrated inside the central wing box is inserted in the external
wing box and fixed in place.

The FEM model does not consider this joint, as its modeling requires time
and also tests are needed to verify that the joint model sets out the real situation.
The joint model is being developed by the team internally.

Another difference is the ribs modeling, their shape is identical to the real
case but the real ribs will be realized using a sandwich structure to reduce weight,
while in the FEM they are modeled as laminates.

The model is valid in static conditions and can’t be used for dynamic analyses.

Figure 4.19: Sandwich ribs
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4.2.8 Results and data post-processing

The solution is obtained through Optistruct software and data post-processing
has been made with the software Hyperview.

Optistruct output a .h3d file that contains the results and is then opened
through Hyperview to plot strain, stresses and displacements and export them for
later use.

FBG sensors will be placed only in specific regions of the wing box, as shown
in the image below, it is thus important to export the desired results only in those
regions.

Figure 4.20: Regions where FBG sensors installation is possible

It has been chosen to export elements strain in combination with elements
ID and elements centroid coordinates to have all the information needed for the
sensors network.

• Element ID: integer number that identifies the element inside the mesh

• Element centroid coordinates: x,y,z coordinates of each element

• Composite strain: strain of each element using Von Mises criterion
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Figure 4.21: Composite strains on skin (V= 15 m/s, α = 1◦)

Strains distribution depends on the pressure field obtained through CFD anal-
ysis and shows higher strains near the root of the wing, as expected.

Concentrated loads due to the mobile surfaces also cause high strain on the
contact points.

4.3 Flight conditions

CFD and FEM analysis are quite burdensome in terms of computing performance
and thus require time and resources.

It is important to choose the right flight conditions that allows a good training
of the network, minimizing the requested resources.

For this thesis 45 flight conditions have been analyzed, 12 of them had already
been studied by Ing. Emanuele Frediani in his thesis.

ISA standard model has been used for all the analyses with the following
values, referring to sea level conditions:

• Pressure: 1 atm

• Temperature: 15 ◦C

• Air density: 1.225 kg/m3

Cruise conditions for the aircraft analyzed in this thesis are shown below.

Velocity Angle of attack Ailerons deflection
15 [m/s] 3 [deg] 0 [deg]

Table 4.5: Cruise conditions
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In order to build a useful and robust sensors network it has been chosen to
pick flight conditions near the cruise design point.

The choice is also justified by the fact that this type of aircraft will rarely
perform maneuvers that are far from the cruise point.

Flaps deflection will not be considered as they are only used during take-off
and landing.

Ailerons (inner and outer) will be operated with the same deflection.
The table below shows the analyzed flight conditions:

Velocity 10 | 12.5 | 15 [m/s]

Angle of attack 1 | 2 | 3 | 4 | 5 [deg]

Ailerons deflection -5 | 0 | +5 [deg]

Table 4.6: Flight conditions

Ailerons deflections for the aircraft object of this analysis have been studied
in Ing. Francesco Bellelli’s thesis, in which the typical mission profile for RA led
to defining turn requirements.

In his work, the hardest manoeuvre at 15 m/s requires a turn radius of 100 m
in 0.25 s time, which is obtainable with a deflection angle of 18◦.

However a deflection of -5◦ to +5◦ has been chosen because it represents the
majority of the maneuvers that the aircraft will make during its mission and is a
good interval for the sensors network validation.
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Chapter 5

Sensors placement and
configuration

In order to obtain a sensors system capable of performing real-time structural
health monitoring and possible prognostic applications, it is important to define
a proper configuration and placement of the sensors and optical fibers inside the
wing box structure.

The configuration chosen has been extensively studied by Ing. Emanuele Fre-
diani in his thesis (see reference in bibliography) and will be briefly illustrated in
this chapter as it is a mandatory step for the introduction of the neural network
in the next chapter.

FEM data will be used for the evaluation of the best possible configuration
as well as important considerations about the structure behaviour, the prototype
characteristics and other design constraints.

5.1 Requirements and constraints

As said before, the sensors system will be used for structural health monitor-
ing, prognostic applications on ailerons actuators and possibly aeroelastic effects
monitoring and attitude optimization.

The design of the sensors configuration follows specific requirements and con-
straints as described below.

Requirements:

• Sensitivity to hinge moment variation

• Sensitivity to global strain field and torsional modes

• Reliability of the system

• Preserving the integrity of the wing structure
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• Temperature effect compensation

• Preventing signal attenuation

Sensitivity requirements are satisfied by placing the sensors in high strain
variation points, among the analyzed flight conditions. Torsional sensitivity is
obtained by placing some sensors far from the torsion axis.

Reliability of the system is obtained by using high quality sensors and a rela-
tively low number of them, minimizing the probability of faults while maintaining
an acceptable accuracy overall.

As described in Chapter 2, signal attenuation is avoided by choosing the right
wavelength and by avoiding macro-bending, while temperature compensation can
be achieved with the use of dedicated sensors (see Chapter 2).

Constraints:

• Openings along the wing structure

• Wing joints

As said before when describing the FEM model, only some areas of the wing
box are eligible for the placement of the sensors, this is due to the presence of
openings, especially on the bottom side of the wing, to access other systems. The
vertical faces of the wing box are also excluded as they provide an important
contribution to structural stiffness and fiber integration could result problematic.

Wing joints also impose the interruption of optical fiber lines and the use of
connectors at joint intersection.

5.2 Final configuration

Final configuration is obtained through a Matlab script that divides the eligible
wing box surface into 100 subdomains and compares elements strain between the
different flight conditions, finding the element with the higher strain variation in
each subdomain, to satisfy the sensitivity requirements.

The results are then filtered in order to find a limited number of sensors, in
order to fulfill the reliability requirement.

As expected, a certain number of sensors should be placed near the ailerons
actuators and near the ribs, as there is a high strain variation in those regions.

Ailerons actuators are directly connected to the wing box and exert a force
on a relatively small area due to the aerodynamic hinge moment and thus are
subjected to higher strains. Placing sensor near the actuators is also important
for future prognostic applications.

Ribs act as a constraint for the wing box carbon fibers causing high strain
variations, especially on the corners.
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Wing joint area has been excluded to prevent placing sensors in this area which
is not present in the FEM model and should be studied separately.

Further filtering to the eligible points has been made to consider that optical
fiber lines can’t have high turning angles as they would cause macro-bendings and
signal attenuation.

The final configuration consists of 18 sensors for each half wing, arranged in
3 optical fibers lines, two on the top and one on the bottom of the wing box, as
shown in the image below.

Coordinate system is centered on the wing root, in correspondence of the
leading edge, with x axis towards the tail, y axis towards the outer wing and z
axis pointing upward.

Figure 5.1: FBG sensors configuration - Top View

Figure 5.2: FBG sensors configuration - Bottom View
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Figure 5.3: FBG sensors configuration - Isometric View

Top rear optical fiber line (Channel A)

Sensor Element ID X [mm] Y [mm] Z [mm] ∆Strain[µϵ]

1A 169770 165.7 143.4 29.11 241.8

2A 175150 170.48 266.75 28.59 314.3

3A 126600 197.37 556.74 25.96 239.6

4A 101779 231.6 765.89 21.93 219.1

5A 219579 241.05 1192.97 19.17 150.8

6A 222104 216.51 1361.18 21.13 13741

7A 106565 210 2067.62 15.85 697.5
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Top front optical fiber line (Channel B)

Sensor Element ID X [mm] Y [mm] Z [mm] ∆Strain[µϵ]

1B 171021 84.17 213.89 28.41 315.7

2B 174731 118.1 371.57 29.48 319.5

3B 127402 100.01 595.04 28.64 279

4B 128597 124.15 744.78 28.52 234.9

5B 223152 125.7 1241.76 26.46 183.7

6B 224760 115.31 1533.24 24.39 142

Bottom optical fiber line (Channel C)

Sensor Element ID X [mm] Y [mm] Z [mm] ∆Strain[µϵ]

1C 157536 118.32 266.75 -6.67 255.4

2C 157032 115.68 448.43 -6.54 234

3C 141938 113.81 598.53 -6.46 203.5

4C 161011 110.99 1238.26 -6.46 107.2

5C 167499 105.32 1533.24 -6.75 101.7

Table 5.1: FBG sensors details

As described in Chapter 2, the interrogator used for this project has 4 channels. It
has been decided to use 3 channels and leave the other channel for the temperature
effect compensation.
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Chapter 6

Artificial Neural Network

6.1 Introduction

Artificial Neural Networks (ANN) are one of the most rapidly-evolving artificial
intelligence (AI) systems, driving the growth of nearly every industry. Engineer-
ing is experiencing additional opportunities as well as challenges as a result of
neural networks and big data. Given the large number of complex problems en-
countered in engineering applications, it is critical to develop a tool that can effec-
tively replace the large number of complicated computations required by existing
approaches. Researchers, on the other hand, hope to uncover more valuable or in-
triguing information hidden beneath the physical phenomenon and experimental
data. As a most promising data-driven technique, ANN is of significant interest,
and it has been shown to be successful and reliable in a variety of academic areas
and projects.

An Artificial Neural Network is a parallel computational model inspired in the per-
formance of the human brain that consists in an arrangement of interconnected
information processing units (called neurons), used for tasks such as function ap-
proximation, filtering, control, time series analysis, signal processing, and pattern
association or recognition. To accomplish these assignments, ANNs have to per-
form a process of learning (training) in which they adapt the characteristics of
their interconnections to attain a desired objective.
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Figure 6.1: Artificial Neural Network diagram

The human brain is capable of quickly recognising complex non-linear problems.
Three simple layers are responsible for the computation’s speed. The first phase
involves obtaining information, which can be done through sight or other senses.
This data is subsequently passed on to the neurons that have been trained. The
activation of a trained conglomeration of neurons facilitates the use of stored
algorithms, allowing recognition of, for example, the shape of a letter or number,
in stage three.
Artificial neural networks follow the same three-layer logic. The artificial neural
network’s initial layer is the input layer, where known data is sent into the system.
The proper input variables are chosen based on the parameters to be predicted.
After data is entered into the input layer, it is sent to the hidden layer, which
is the algorithm-storing counterpart of the human brain. Certain nodes become
active as a result of the network’s learning in response to the input layer nodes.
Depending on the amount of data and the quality of the prediction, the hidden
layer might be made up of numerous layers of nodes.
The last layer is the output layer, which predicts the desired variable based on
the input variables as well as the hidden layer containing the trained knowledge.

The internal structure of an ANN is an array of neurons. These neurons are
grouped in layers depending on the type of network and its components are:

• Inputs signals si: They are the inputs of the problem or the outputs of
neurons in a previous layer.

• Synaptic weights wki: They measure the contribution of each input to the
neuron and might take positive or negative values.
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• Summing junction Σ: It constitutes a linear combiner of the weighted input
signals uk =

∑n
i=1 si · wki where i indicates the corresponding input or

synaptic weight of the k neuron.

• Bias bk: They increase or lower the input of the activation function, resulting
vk = uk + bk

• Activation function φ: It limits the amplitude of the output of the neuron
described by yk = φ(vk)

• Output yk: It can be an output or input of the model for the following layer
of neurons.

Figure 6.2: Neuron model (Perceptron)

The model in the figure above is also known as ’Perceptron model’ which is the
basis of the early Artificial Neural Networks.
The training of an ANN model requires:

• Training function: which depends on the type and characteristics of the
network

• Learning rate: that indicates how fast the weights wki and biases bk change
in each iteration

• Performance parameter: that measures the precision of the ANN model
and stops the training when the desired tolerance is reached.
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6.2 Classification

According to network architecture, ANNs can be classified into the following three
major types:

• Multi-layer Perceptron Neural Network (MLPNN): it consists of one
input layer, at least one hidden layer and one output layer. The MLPNNs
involving more than two hidden layers are usually called ’Deep Neural Net-
works’. It has been established that increasing the number of hidden layers
improves the ability of the network (in terms of capturing the non-linear
dependencies between the inputs and outputs), especially in the case when
there is a large number of network inputs. The nodes in each layer are fully
connected to the nodes in the adjacent layers through weights. The train-
ing approach will update the weights between the nodes until the model
error is as low as possible. For efficient training, there are a variety of
training methods to choose from, including the gradient descent algorithm,
stochastic gradient descent algorithm, Levenberg-Marquardt algorithm, and
others. The difference between the target and prediction can be assessed
using the loss function during the training process. Different loss functions,
such as mean-squared loss, cross-entropy loss, and dice coefficient loss, can
be used to fit the target for different prediction tasks. The output of the
MLPNN model can be described by a specific mathematical formula once
the MLPNN model has been trained.

• Recurrent Neural Network (RNN): MLPNNs can explain complex non-
linear relationships between inputs and outputs, but they neglect interde-
pendencies among input variables. RNN was created with this goal in mind,
and it was created to solve time series problems like weather forecasting and
text processing. The neurons in the hidden layer of an RNN not only receive
the current input information, but they are also influenced by previous in-
formation. Each layer of RNN unrolling has the same weight values, which
are trained at different times with time-related inputs.

• Convolutional Neural Network (CNN): It was developed to extract
features from two-dimensional (2D) data, such as images, efficiently. To
build feature maps that reflect the main information in the images, CNNs
use a sequence of convolution and down-sampling layers. CNNs have made
significant progress in the fields of computer vision and image identification
over the last decade.
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The benefits that may accrue via the use of multi-layer feedforward artificial neural
networks (MLPNN) include the following:

• With the availability of data, feedforward networks could be used for mod-
eling a broad spectrum of systems.

• Feedforward neural networks could be useful for applications where analyt-
ical methods are yet to be discovered.

• Using a suitable neural network size, it is possible to capture the non-linear
dependencies between the input and outputs to a reasonable degree of ac-
curacy.

6.3 Learning

There are three major learning paradigms: supervised learning, unsupervised
learning and reinforcement learning.
Usually they can be employed by any given type of artificial neural network ar-
chitecture. Each learning paradigm has many training algorithms.

• Supervised learning: it is a methodology in data science that creates a
model to predict an outcome based on labeled data. Labeled data contains
a collection of variables (inputs) and a specific output that we are trying to
predict. The task is to produce a correct output given a particular input.
These paradigm is effective when dealing with problem related to classifica-
tion, regression and function fitting.

The assumption behind supervised learning is that future data would behave
similarly to previous data. The algorithms ”learn” from a given dataset,
fitting a model based on previous behaviours and labels. When these models
are exposed to new data, they may not perform as well. When this happens,
the model is said to be ”overfit,” or overly tuned to the past data.

• Unsupervised learning: it is a technique that determines patterns and
associations in unlabeled data. This technique is often used to create groups
and clusters. In unsupervised learning we seek to determine how the data
is organized, as no information label is present.

Unsupervised learning is frequently used for exploratory analysis and
anomaly identification since it allows users to observe how data segments
relate to one another and what trends may exist. They can be used to
preprocess data before using a supervised learning algorithm or other AI
approaches.
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• Reinforcement learning: it is a technique that provides training feedback
using a reward mechanism. The learning process occurs as a machine, or
Agent, that interacts with an environment and tries a variety of methods to
reach an outcome. When the Agent reaches a desirable or undesirable state,
it is rewarded or penalised. The Agent learns which conditions produce pos-
itive results and which should be avoided. So that the Agent can iteratively
learn to acquire a better score, success is quantified using a score (denoted
as Q, so reinforcement learning is sometimes referred to as Q-learning).

No dataset is usually given, it is generated by interactions with the envi-
ronment. Some applications of reinforcement learning are in the field of
robotics and autonomous driving.

In order to better understand how the learning process work it is important to
introduce some key concepts:

• Cost function: A cost function (also called ’Loss function’) is a measure of
the error in prediction committed by an algorithm. It indicates the difference
between the predicted and the actual values for a given dataset. Closer the
predicted value to the actual value, the smaller the difference and lower the
value of the cost function. Lower the value of the cost function, the better
the predictive capability of the model.

• Learning rate: it is used to control the rate at which an algorithm updates
the parameter estimates or learns the values of the parameters. Higher
values of learning rate means a faster learning process, however using high
values can cause low accuracy as the cost function could saturate at a value
higher than the minimum value.

• Backpropagation: this learning algorithm is popular with supervised
learning paradigms and has proven to be useful for solving a spectrum of
practical problems. The algorithm involves the forward propagation of in-
put signals, computing the cost function and backpropagating the error until
the cost function is minimized for a number of training iterations or epochs.
The algorithm minimizes the sum of squared approximation errors using a
gradient descent technique.
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6.4 Training and Validation

Training is the process of computing the appropriate weights of the neural connec-
tions inside the ANN, by receiving feedback from the backpropagation described
in the previous section.
Some of the most used training algorithms are:

• Gradient descent (GD): it is a first order method and is the most straight-
forward training algorithm. The parameters are updated at each epoch in
the direction of the negative gradient of the cost function. The learning rate
can be constant or updated after each iteration.

• Newton’s method (NM): it is a second-order algorithm because it uses
the Hessian matrix. This method’s objective is to find better training direc-
tions by using the second derivatives of the cost function. Newton’s method
requires fewer steps than gradient descent to find the minimum value of the
cost function, however, Newton’s method has the difficulty that the exact
evaluation of the Hessian and its inverse are pretty expensive in computa-
tional terms.

• Conjugate gradient (CG): in this training algorithm, the search is per-
formed along with conjugate directions. They generally produce faster con-
vergence than gradient descent directions. These training directions are
conjugated concerning the Hessian matrix. It can be regarded as something
intermediate between gradient descent and Newton’s method. It is moti-
vated to accelerate the typically slow convergence associated with gradient
descent. This method also avoids the information requirements associated
with the Hessian matrix’s storage, evaluation, and inversion, as Newton’s
method requires.

• Levenberg-Marquardt (LMA): it is designed to work specifically with
cost functions which take the form of a sum of squared errors. It works
without computing the exact Hessian matrix but has the speed of a second-
order method. Instead, it works with the gradient vector and the Jacobian
matrix.
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Figure 6.3: Training algorithms comparison

Validation

In order to test the neural network a small sample of data is extracted from the
training dataset and used for the validation to assess the accuracy of the network
and avoid overfitting.
Overfitting describes the situation in which the model is over-optimized to accu-
rately predict the training set, at the expense of generalizing to unknown data.
This can happen because the model greatly twists itself to perfectly conform to
the training set, even capturing its underlying noise.
The simplest solution is to split the dataset into a training set and a test set.
The training set is used for the training procedure as described above, but the
accuracy of our model is evaluated by forwarding the test set to the trained model
and measuring its accuracy. During training, it is possible to monitor the accuracy
of the model on the training set and test set.

Regularization

Regularization is a set of strategies used in Machine Learning to reduce the gen-
eralization error, aiming at reducing overfitting and keep, at the same time, the
training error as low as possible.
One way overfitting occurs is when the magnitude of the weights grows too large,
one way to regularize is to modify our objective function by adding an additional
term which penalizes large weights (L1-L2 regularization).
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Other effective regularization methods are Dropout and Bayesan regularization.
Dropout consists of randomly deactivating some neurons in a certain layer, in
order to reduce the network’s tendency to come to over-depend on some neurons.
Bayesan regularization can be used to convert a nonlinear regression into a ”well-
posed” statistical problem in the manner of a ridge regression.

6.5 Neural network implementation

Neural Network implementation has been done in MATLAB using the Deep Learn-
ing Toolbox.
It has been decided to use a feedforward neural network, as it is adequate for the
complexity of the problem; using a more advanced network does not bring any
substantial benefit for this case study.

Network Topology

The neural network topology is defined using the function feedforwardnet([n]),
where n is a vector defining the number of neurons for each hidden layer.

Figure 6.4: Feedforward Neural Network scheme

• Input: 18 FBG sensors as described in previous chapter and 3 flight con-
ditions (velocity, angle of attack and ailerons deflection), for a total of 21
inputs.

• Output: Ailerons hinge moment, for both outer and inner ailerons.

Different configurations have been tried, using a single hidden layer or two hidden
layers and changing the number of neurons for each layer. Results will be shown
later in this chapter.
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Training Function

Using the parameter net.trainFcn it is possible to define the training function,
choosing between the ones available in the Deep Learning Toolbox.

trainlm: This function uses the Levenberg-Marquardt algorithm. It works with-
out computing the exact Hessian matrix but has the speed of a second-order
method. Instead, it works with the gradient vector and the Jacobian matrix,
expressed as follows:

H = JTJ g = JT e (6.1)

where e is a vector containing network errors and J is the Jacobian matrix that
contains the derivatives of the network errors calculated in respect to the weights
and biases.
Weights and biases are then updated after each iteration using a Newton-like
method:

xk+1 = xk − [H + µI]−1g (6.2)

The difference between the Newton method is the parameter µ, when it is equal
to zero the method is equal to the classic Newton method, whereas when µ is
large the method is similar to a gradient descent.
The goal is to lower µ after each successful iteration, as Newton method is gener-
ally faster, while having the possibility to increase it when error increase.
traibr: this training function uses Bayesan regularization. It is based on
Levenberg-Marquardt algorithm but aims at reducing the generalization error,
reducing overfitting and keeping, at the same time, the training error as low as
possible. Bayesian regularization minimizes a linear combination of squared errors
and weights.
Bayesan regularization can help with reducing overfitting especially in networks
with a low number of samples.

Activation Function

The activation function limits the amplitude of the output of the neuron and
is defined using the parameter transferFcn. It is possible to define a different
activation function for each layer.
The most used activation functions are ’saturated symmetrical linear’ (satlins)
and ’hyperbolic tangent sigmoid’ (tansig), shown in the image below.
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Figure 6.5: Common activation functions

Performance Function

It is defined using performFcn. Common performance functions are ’mean
squared error’ (mse) and ’mean absolute error’ (mae).
For this network mean squared error has been used. It calculates the average
squared difference between the estimated values and the actual value and has
the advantage of not working with absolute values that can be problematic when
working with data with different magnitude.

Network Parameters

• Training Goal: it defines the overall accuracy of the network, it is set
using trainParam.Goal. For this network it has been set to 1e−8 as this
gives very good accuracy without impacting performance as the dataset is
not large.

• Epochs: One epoch is when an entire dataset is passed forward
and backward through the neural network once. It is defined with
trainParam.Epochs and for this network it has been set to 1e2 as it is
not necessary to use a greater number to reach the desired accuracy.

• Maximum validation checks: it is the maximum number of validation
checks before training is stopped. It is basically a stopping criteria. It is set
by trainParam.max_fail.
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MATLAB code

1 %% Neural network c r e a t i on
2 net = feed fo rwardnet ( [ 1 3 ] ) ; format shor t ;
3

4 %% Training
5 net . t ra inFcn = ’ t ra in lm ’ ;
6 net . trainParam . showCommandLine = true ;
7 net . trainParam . epochs = 1e2 ;
8 net . trainParam . goa l=1e−9;
9 net . trainParam . max fa i l = 10 ; % Val idat i on checks

10 net . trainParam . l r = 0 . 0 0 1 ; % Learning ra t e
11

12 net . l a y e r s { : } . t r ans f e rFcn = ’ s a t l i n s ’ ;
13

14 net . performFcn=’mse ’ ;
15

16 net = t r a i n ( net , i nput r e t e ’ , H’ , ’ u s ePa r a l l e l ’ , ’ yes ’ , ’
showResources ’ , ’ yes ’ ) ;

17

18 %% Ve r i f i c a t i o n
19

20 v e r i f i c a t i o nOu t = net ( va l i d ne t ’ ) ’
21

22 abse r r = ( va l id H − v e r i f i c a t i o nOu t )
23 format bank
24 r e l e r r = 100∗( va l id H − v e r i f i c a t i o nOu t ) . / va l id H
25 format shor t
26 pe r f = perform ( net , val id H , v e r i f i c a t i o nOu t )
27 moderr = abse r r .∗ r e l e r r ;
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6.6 Results

Different network configurations have been tested in order to find the optimal
setup.
Most of the configurations tested are feedforward networks with one hidden layer.
A two hidden layer network (Deep) has also been tested and results will be de-
scribed later in this section, although from first analyses it emerged that is not
necessary for the examined problem to have more than one hidden layer.
As said before, the network has 21 inputs and 2 outputs, so the first parameter
that needs to be chosen and optimized is the number of neurons in the hidden
layer.
For this type of network, usually, the number of neurons is between the number
of inputs and the number of outputs. A few tests have been run in order to find
the best value.

Figure 6.6: Network Performance vs Number of neurons
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The image above shows network performance for a number of neurons in the
hidden layer between 9 and 12 for two different training algorithms.
With a lower number of neurons we can see that the Bayesan regularization algo-
rithm performs better than the Levenberg-Marquardt.
Increasing the number of neurons reduce this performance difference and for a
value of 12-13 the best performance index is reached as shown in the image below.
Further increasing the number of nodes does not offer any significant advantage
in terms of network performance and errors.

Figure 6.7: Network Performance vs Number of neurons

The next two images show the training performance for a single hidden layer
network with 13 neurons and for a two hidden layers network with 13 neurons
in the first layer and 5 on the second one. Progressively reducing the number of
neurons is important to gradually reach the output layer configuration that has
fewer nodes.
There is a slight improvement both in performance and training times using two
layers but considering also the high accuracy already obtained with the single
layer configuration it has been decided to use the latter one.
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Figure 6.8: Training Performance - One hidden layer

Figure 6.9: Training Performance - Two hidden layers
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Chapter 7

Conclusions

In this work, an Artificial Neural Network for structural health monitoring pur-
poses has been applied to a sensors network integrated in the wing structure.
The obtained results shows the feasibility and effectiveness of this concept.

In order to simulate the real strains that would be measured by the sensors a
Computation Fluid Dynamics (CFD) model has been first used to compute the
aerodynamic loads for different flight conditions.
These loads are then applied to a Finite Element model (FEM) that computes
the elastic response of the structure and from which strains are derived.
For this reason the accuracy and complexity of the models has to be reviewed
with real data to validate the results.
As of today, project RA prototype is still in development and many tests have to
be carried out to validate the aerodynamic model (in-flight tests or wind tunnel)
and the structural model (materials characterization and static tests).

Sensors network is then defined using the configuration described in Chapter 5.
CFD and FEM data is post-processed and organized to be inserted in the neural
network.
A feedforward Neural Network has been trained using the strains simulated in 18
Fiber Bragg Grating (FBG) sensors distributed inside the wing structure and in
various flight conditions near the design point as well as ailerons hinge moment
derived from CFD simulations.
Many different configurations and algorithms have been tested as better described
in Chapter 6.
The trained network is capable of computing ailerons hinge moment starting from
wing box strains, with a relatively high accuracy.
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These data allows real-time structural health monitoring, as well as enhanced
diagnostic.
Future prognostic applications on other systems are also possible and interest-
ing, such as prognostic on Flight Control System actuators, positioned near the
ailerons and attached to the wing box structure.
The next step would be the validation of CFD and FEM models with real data
and their correction and update following the development of the prototype.
CFD model lack of automatic hinge axis correction when changing angle of attack.
FEM model also needs to be reviewed to add materials real data and to model
the joint in each half-wing as well as adding accessibility openings.
An other interesting study would be to analyze the behaviour of the network to
different atmosphere conditions, introducing altitude, pressure and temperature
variation to the parameters.
Regarding the FBG sensors, temperature compensation effect should also be im-
plemented as described in Chapter 2.
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