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Abstract

This thesis is about trajectory optimization for missions towards asteroids and
departure from Lagrangian points, by means of an indirect method, based on
optimal control theory.

Space exploration is constantly increasing and Lagrangian points proved to
be strategic locations for either unmanned scientific missions or human outposts,
thanks to the natural stabilization created by the balance of gravitational and cen-
tripetal forces. The study of optimal trajectories is therefore becoming increasingly
necessary.

A medium-size spacecraft was considered in the present study, whose final
objective is to maximize final mass of the spacecraft, thus reducing fuel consump-
tion as much as possible. 4-body gravitational influence with Solar Radiation
Pressure (SRP) as perturbation, is considered as dynamic model. JPL ephemeris
were used to track celestial body positions. The spacecraft is seen as a variable
mass point. EME2000 is adopted as reference frame. Optimization code exploits
Pontryagin’s Maximum Principle (PMP) and basically solve a Boundary Values
Problem (BVP): a solution compliant with external constraints is sought perturb-
ing the initial solution and adjusting values after error evaluation. The method
results to be very sensitive to trial solution used, enough to compromise conver-
gence if not scrupulously chosen.

A mission towards Near Earth Asteroids (NEA) (specifically asteroid 2016
TB57) was investigated in the study, analysing departure dates during October
and November 2025. Trajectory was divided into 2 parts: escape trajectory de-
parting from Earth-Moon Lagrangian Point 2 (EML2) (in a Geocentric reference
frame) and interplanetary arc (studied in a Heliocentric reference frame). Con-
sidering one-week apart starting times (during one Moon synodic period around
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Earth) and alternately imposing final time or final energy as constraints, optimum
was manually detected. Escapes were initially sought as 2-phase (single burn), but
4-phase (2 burns) approach was also used when needed in order to maximize final
mass.

The results showed that departure date, thus initial position of the spacecraft
with respect to the Sun, could have an influence on fuel consumption whether Sun
perturbation acts in a positive or negative way. Two families of solution were found;
optimal trajectory happened to belong to the second family of solutions, escaping
Earth SOI in the fourth quadrant (considering equatorial plane in a Geocentric
reference frame). As far as interplanetary trajectory is concerned, a local optimum
appeared among the initial times considered, on the 15th October 2025, having the
lowest fuel consumption.

Further studies should consider more departure dates in order to detect the
optimum in a more precise way; different asteroids should also be taken into ac-
count.
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Introduction

For the last two decades, asteroids have increasingly been chosen as destinations
for deep space exploration missions; firstly with the aim to investigate chemical
composition of the surface, more recently as target for planetary defence demon-
strations. The first actual mission towards a Near Earth asteroid was in 1996 when
NEAR Shoemaker (Near Earth Asteroids Randezvous), was launched from Cape
Canaveral. NEAR was designed to reach Eros and collect data and images from
a close orbit, in order to understand its characteristics. Since then, many other
missions were lead by major space agencies, involving asteroids as part or main
purpose of the mission. Amongst the most famous worth mentioning: Deep Space
1 (DS1) a probe performing a fly by on the Near-Earth asteroid 9969 Braille (for-
merly known as 1992 KD); Hayabusa (formerly Muses-C) in 2003 and Hayabusa2
(2014) the Japanese missions whose objective is primarily to collect and return a
sample of material respectively from the small asteroid 25143 Itokawa (1998 SF36)
and from Ryugu; Dawn (2007), the NASA orbiter of Ceres and Vesta and the re-
cent DART (Double Asteroid Redirection Test) mission: the first interplanetary
defence mission which aims to demonstrate the concept of the trajectory deviation,
protecting Earth from a potentially hazardous impact [10].

The open question in early phase of mission design always concerns the optimal
trajectory necessary to reach the desired arrival point in space. Lagrangian points
(or Libration point) revealed good starting positions for these types of mission [5].
They are unstable equilibrium points in binary systems, therefore a tiny amount
of ∆V (thus fuel) is needed in order to escape from the system Sphere of Influence
(SOI) and the cost of the mission is easily lowered. Moreover, gravitational and
centrifugal forces are balanced, so that the probe can stay in a sort of waiting orbit
around this particular point, where a good stability is guaranteed just with minimal
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thruster corrections for station keeping maneuver. The area around these points
in space has other interesting properties for a variety of missions. For example
there are missions like Planck, which maps relic radiations, trying to demonstrate
theories on the evolution of the universe and Gaia, which makes a survey of the
stars in our galaxy. Also the brand new James Webb Telescope is orbiting the
second Lagrangian point in Sun-Earth binary system and it’s provided with a
large Sun-shield designed to block light and heat from Sun, Earth and Moon,
preventing interference with the optic payload on the cold side.

As far as Earth-Moon system is concerned, cooperation of NASA, ESA, CSA
and JAXA led to a great international project called Deep Space Gateway: the
next human outpost orbiting around the Moon, which could be used as final or
intermediate way-point for the future human exploration missions towards Moon
and Mars. The space station will move on a Near-Rectilinear Halo Orbit (NRHO)
around Earth-Moon Lagrangian Point 2 (EML2), with a 7-day period. This orbit
is highly eccentric in order to guarantee passages nearby lunar surface as well as
orbit arcs closer to Earth, so that journey isn’t too expensive in terms of both time
and fuel or money expenses. It’s clear that this specific type of orbit, which draws a
sort of halo around the celestial body, has also been selected because the spacecraft
remains always visible from Earth: this is crucial for real time communications [5].

In this thesis a mission towards asteroid 2016 TB57 with departure point in
EML2 was investigated. More specifically, the use of an indirect optimization
method was studied. Implementing the method, the trajectory was divided into
2 segment: a geocentric phase (escape from Earth SOI) and an interplanetary
one (using heliocentric reference frame). The aim was to optimize the final mass,
thus minimize the fuel consumption for the mission. In the first chapter main
features of the Earth-Moon system will be pointed out. In the following chapters
optimization method will be explained, then dynamic system and reference frames
will be defined. Finally results will be presented and analyzed.
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Chapter 1

Earth-Moon-Sun system

1.1 The Earth-Moon system main features

Earth-Moon system is interesting to study, not only because it directly affect us in
everyday life or for the presence of two celestial bodies orbiting around one center
of attraction. It’s the scale of the two masses in the system to be unique: Moon
mass is about 1/80th the mass of Earth, which is a much larger ratio, compared
with every other binary system in the solar system. Its features can be considered
very similar to a double planet,that’s because "arise several irregularities in her
motion", as Sir Newtons wrote about the Moon in Book I of the Principia [1,
p. 321].

1.1.1 Center of mass

One first important notion worth to mention is that Earth and Moon revolve about
the whole system center of mass, meanwhile it revolves around the Sun. The mean
distance between the center of mass of Earth and the center of mass of the Moon
is 384400 km. Knowing this datum and the values of the gravitational constants
of the two bodies (µ$ = 4904 km3/s2 for Moon and µ♁ = 398000 km3/s2 for
Earth) it’s easy to derive the position of the Earth-Moon system center of mass,
through a simple proportion.
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Chapter 1. Earth-Moon-Sun system 1.1. Earth-Moon

x

µ

R− x

1− µO

C.M.♁

C
c.m.$

R

Figure 1.1: Earth-Moon mass center visualization (not in scale)

OC =
µ$ ·R
µ♁ + µ$

=
R

µ♁
µ$

+ 1
= 4671 km (1.1)

It is obtained that the binary system center of mass is 4671 km away from Earth
center of mass, at about 3/4th of the planet radius. For the sake of preciseness,
should be noted that the center of mass of the system arise from the Earth-Moon
conjunction line because of the tidal bulge caused by the oceans. The tidal coupling
is responsible for the increase of the distance between the two bodies: oceans
rotates with Earth creating a friction which slows down Earth angular velocity,
shortening terrestrial rotation by the amount of 1.46 ms per century.

1.1.2 Orbital parameter and their perturbations

Moon orbit viewed with respect to Earth, can be described by the classical or-
bital parameters, but the presence of the gravitational force of the Sun, causes a
continuous variation in their values. The main perturbations are listed below:

• Semi-major axis a has a 5% variation from the average, with a minimum of
363300 km to a maximum of 405500 km (with an average value of 384400
km as mentioned before).

• "Draconic period" T (i.e. the time taken for a complete revolution of Moon
around Earth) is 27.3166 hour long on average, with a variation of 7 hours.
It is equal the revolution period of the Moon about its axis, that’s why from
Earth we are able to see always the same side of the Moon.

• Eccentricity e is 0.059 on average, oscillating from 0.044 to 0.067. This is
called the "evection" effect and it has a period of 31.8 days.
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Chapter 1. Earth-Moon-Sun system 1.1. Earth-Moon

• The line of nodes (i.e. intersection of Moon orbital plane and the ecliptic) is
subjected to the phenomenon of precession, rotating westward with a period
of 18.6 years and causing a decrease of RAAN parameter Ω (Right ascension
of ascending node).

• Inclination i (defined as the angle between the planes containing Moon equa-
tors and the ecliptic) changes during time, from a minimum of 4°59′, to a
maximum of 5°18′ (the average value is 5°9′). Considering the inclination of
Earth’s equator with respect to the ecliptic (23°27′), variations are between
a minimum of 18°19′ when the descending node of the Moon’s orbit coincides
with the vernal equinox, and a maximum of 28°35′, when ascending node is
at the vernal equinox.

• The line of apsides (i.e. the line joining apogee and perigee) also have a
precession of about 3°/rev. This results in a variation in the peri-apsis
argument ω, which completes a full revolution every 8.9 years.

1.1.3 Lunar librations

There is another type of perturbation: the Lunar libration, also called "rocking
motion", thanks to which it’s possible to observe more than exactly 50% of the
surface. It is due to two different causes: a geometrical one and a physical one.

• Geometrical Librations in longitude are caused by the fact that the Moon
increases its velocity around perigee and slows down near apogee, while an-
gular velocity around its axis is constant. This makes visible about 7.75°
more around the day-night line.

• Geometrical Librations in latitude is due to the tilt of the Moon’s rotation
axis of 6.5° that allows to see part of the surface beyond the poles, alternating
every half revolution.

• Physical Librations are due to the gyroscopic effect: the long diameter of
both Earth and Moon tend to align with the line joining the centers of mass,
this causes little daily oscillation. Also the tidal effect can be considered as
a cause of this perturbation
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Chapter 1. Earth-Moon-Sun system 1.2. Lagrangian points

1.2 Lagrangian points

1.2.1 Lagrangian points definition and characteristics

Binary systems are matters of interest because of properties they have in spe-
cial locations: the so called Lagrangian points. Lagrangian points are particular
locations in a binary system, where gravitational forces of two masses equal the
centripetal force of a small satellite orbiting with them, creating an equilibrium
point where a satellite is not subjected to any acceleration relative to the rotat-
ing frame. The spacecraft is ideally stationary, therefore fuel consumption around
these particular positions in space is reduced, this makes them an interesting ar-
riving point for several observing missions where stationarity is required (James
Webb Telescope is an example) as well as departure point in exploration missions.

1.2.2 Circular restricted 3-body problem in the Earth-Moon

system

In order to better understand a satellite motion near a Lagrangian point, a simpler
model is now taken into account: the restricted 3 body problem. Only gravitational
forces coming from two celestial bodies having a much greater mass than the third
one will be considered, neglecting any additional body; orbits will be assumed as
circular, hence with null eccentricity. The two massive bodies will be denoted with
m1 and m2, where m1 > m2, the third small body can be imagined as an artificial
satellite having no gravitational influence on m1 or m2, it will be denoted with m.
In order to simplify notation, let’s define the cumulative gravitational coefficient
µ =

m2

M
where M = m1 +m2. Now the two masses can be written only in terms

of the total mass of the system M and the ratio between the two massive bodies
µ:

m2 = µM m1 = (1− µ)M.

The center of mass position can be calculated with a proportion and will result at
a distance amounting to µR from m1 as represented in figure 1.2, where R is the
distance between m1 and m2.

A reference frame should also be defined,A rotating reference frame with an-
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Chapter 1. Earth-Moon-Sun system 1.2. Lagrangian points

µR

(1− µ)R

x

yz
ω

O

m1

m2

m

r⃗

r⃗1

r⃗
2

Figure 1.2: Earth-Moon rotating reference frame representation (not in scale)

gular velocity ω is defined: it has his origin at the center of mass of the system;
x-axis lying on the line joining m1 and m2; it considers as fundamental plane xy
the plane of motion, so where m1 and m2 orbits lie. Positions of the masses and
forces among them is displayed in figure 1.2 and written as vectors as follows:

m1 =


−µR
0

0

 m2 =


(1− µ)R

0

0

 m = r⃗ =


x

y

z


are the position of the three masses in the reference frame and

r⃗1 =


x+ µR

y

z

 r⃗2 =


x− (1− µ)R

y

z


are the position vectors of m seen respectively from m1 and m2.
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Chapter 1. Earth-Moon-Sun system 1.2. Lagrangian points

At this point, equation of motion for m with respect to the system center
of mass will be derived, remembering that the reference framer is not inertial,
hence centripetal and Coriolis acceleration must be taken into account. From the
Newton’s second law for the mass m:

ā =
F̄

m
.

Values of our interest are substituted:

r̈ + ω ∧ (ω ∧ r⃗) + 2ω ∧ ˙⃗r =
1

m
(F̄1 + F̄2) (1.2)

where every term in the equation should be spelled out in order to ease following
calculations:

• F̄1 = −G · m1m

r̄21

r̄1
|r̄1|

= −G ·m · (1− µ)M

r̄31
r̄1;

• F̄2 = −G · m2m

r̄22

r̄2
|r̄2|

= −G · m · µM
r̄32

r̄2 by Newton’s Law of universal

gravitation;

• ω ∧ r⃗ =

∣∣∣∣∣∣∣
î ĵ k̂

0 0 ω

x y z

∣∣∣∣∣∣∣ = ω̃


x

y

z

 =

0 −ω 0

ω 0 0

0 0 0



x

y

z

 =


−ωy
ωx

0

 by definition

of cross product;

• ω ∧ (ω ∧ r⃗) =


−ω2x

−ω2y

0

 following the same steps above;

• 2ω ∧ ˙⃗r =


−2ωẏ

−2ωẋ

0

 considering that ˙⃗r =


ẋ

ẏ

ż

.

Manipulating and separating into three components along the reference frame axis,
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Chapter 1. Earth-Moon-Sun system 1.2. Lagrangian points

equation of motion system below will be obtained:
ẍ− ω2x− 2ωẏ = −G ·M 1− µ

r31
(x+ µR)−G ·M µ

r32
[x− (1− µ)R]

ÿ − ω2y + 2ωẋ = −G ·M 1− µ

r31
· y −G ·M µ

r32
· y

z̈ = −G ·M 1− µ

r31
· z −G ·M µ

r32
· z

(1.3)

Solution in terms of position can be obtained by integration, keeping in mind that
equations are non linear, hence the process will be iterative. Furthermore the
choice of initial condition will affect the results, forcing us to proceed by trial and
error.

1.2.3 Potential function

Despite the complexity of the problem, a deeper study of space around Earth and
Moon can be made through the potential function. Its gradient which in the case
of three-body problem, is defined as

U = −G
(m1

r1
+
m2

r2

)
− 1

2
ω2(x2 + y2) (1.4)

Operating simple substitution, both equation of motion and potential function can
be turned into a non-dimensional form. Defining new variables

ρ =
r

R
; ξ =

x

R
; η =

y

R
; ζ =

z

R
; τ = t · ω

and consequently
d

dt
= ω

d

dτ

Substituting and manipulating, non-dimensional equation of motion depending on
potential function gradient will be derived:

∂2r⃗

∂t2
= −∇U − 2ω ∧ ∂r⃗

∂t
(1.5)
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Chapter 1. Earth-Moon-Sun system 1.2. Lagrangian points

The equation broken down into the three components along the non dimensional
reference frame axis is: 

∂2ξ

∂t2
− 2

∂η

∂t
=
∂U
∂ξ

∂2η

∂t2
− 2

∂ξ

∂t
=
∂U
∂η

∂2ζ

∂t2
=
∂U
∂ζ

(1.6)

where
U =

1− µ

ρ1
+
µ

ρ2
+

1

2
(ξ2 + ν2)

is the gravitational potential equation, written in a dimensionless form. From
the term above, some observations about the limits can be made: near m1 or m2

(thus with ρ1 or ρ2 near to zero) the potential will tends to infinity. On the other
hand the function potential approaches the equation of a circle as ρ1 or ρ2 tend to
infinity.

1.2.4 Derivation from potential equation

Keeping in mind the definition of Lagrangian points as locations in space where
gravitational forces are balanced, thus velocities and accelerations w.r.t. rotating
system are null, mathematical derivation could be made looking for these equilib-
rium points as minimum values of the potential function. This means solving the
equation

∇U = 0

or in an explicit form, the system of equations:

∂U
∂ξ

= 0

∂U
∂η

= 0

∂U
∂ζ

= 0

(1.7)

It is proved [5] that third equation, along the ζ axis, is verified when ζ = 0, this
means Lagrangian points are situated on the ξ − η plane, as in figure 1.3.
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Chapter 1. Earth-Moon-Sun system 1.2. Lagrangian points

Figure 1.3: Graphical representation of the five Lagrangian point and their distance
from Earth and Moon, expressed in terms of Earth-Moon distance R. Source: Ref
[8]

In order to analytically find Lagrangian point positions in this plane, ξ axis will
be analyzed separately. On ξ, axis joining the two bodies, Collinear Lagrangian
Points (L1, L2 and L3) will be found. Graphically, solutions are sought as sta-
tionary points of the function obtained intersecting the potential U with the plane
η = 0 or analytically solving equation:

ξ − 1− µ

ρ31
[ξ + µ]− µ

ρ32
[ξ − (1− µ)] = 0 (1.8)

Collinear Lagrangian points are finally defined as it follows:

• L1, also called Cis-lunar point, is found in the space between Earth and
Moon. Imposing ρ1 + ρ2 = 1) it is obtained that L2 is located at about
15.8% of Earth-Moon distance.

• L2, also called Trans-lunar, is 61500 km beyond Moon and it’s found impos-
ing ρ1 − ρ2 = 1

• L3, also called Trans-Earth, is on the opposite side from the Moon, on the
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Chapter 1. Earth-Moon-Sun system 1.2. Lagrangian points

same orbit.

There also are so called Equilateral points L4 and L5. They both are located in
such a place that a equilateral triangles forms between Lagrangian points, Earth
and Moon as in figure 1.3.

1.2.5 Jacobi’s integral

Applying a scalar multiplication by
∂r

∂t
, to equation 1.5 and manipulating, the

following equation is obtained

1

2

dV 2

dτ
=
dU
dτ

After integration, it becomes the so called Jacobi’s integral

V 2 = 2U − C (1.9)

where V is the spacecraft velocity relative to the rotating frame; it is function of
the potential U and Jacobi’s constant of integration C, depends on initial position
and velocity of the spacecraft.

This equation defines areas in space where motion is feasible: where the state-
ment V 2 > 0 stands, thus where C > 2U . Thanks to Jacobi’s integral, a simple
representation of fields of motion can be made: in fact they can be visualized by
a line on U − V 2 plane. Knowing both position and velocity, a bundle of lines will
represents all possibility of motion by varying C, which basically depends on ∆V

gained by the spacecraft at the beginning of the motion. In general a small value
of C means the area of motion is bigger, so the spacecraft can reach further points
in space.

Cases when 2U − C = 0 define the surfaces of zero velocity (or Hill surfaces),
a boundary for regions accessible for the spacecraft in exam. Making an example,
zero velocity surface passing by Lagrangian points are associated with a precise
potential (obtained knowing the position) and C values in table 1.1. This means
that one Lagrangian point can be reached only if C is smaller than the tabulated
ones. Zero velocity surfaces can also be visualized, as closed lines which form by
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Chapter 1. Earth-Moon-Sun system 1.2. Lagrangian points

Lagrangian point U C

L1 1.5942 3.1885
L2 1.5361 3.1723
L3 1.5061 3.0122
L4 1.4940 2.9880
L5 1.4940 2.9880

Table 1.1: Potential U and Jacobi’s constant C values for Lagrangian Points

intersection with horizontal planes xy as in figure 1.4.

Figure 1.4: Intersection of the zero-velocity surfaces with xy plane for various
values of C. Source: Ref [13]

Imagining to be in a precise point in space, with fixed U , some qualitative
considerations about fields of motions can be done, describing how they change
when C is varying:

• When C > CL1, two circles form around Earth and Moon. In this case a
spacecraft can move only near the celestial bodies around which it’s orbiting
and can not reach the region around the other body (figure 1.4-a).
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Chapter 1. Earth-Moon-Sun system 1.3. Interplanetary trajectories

• When C decreases, circles turn into ovals and expand. When C = CL1 they
meet at L1 and this means that a spacecraft orbiting around Earth can reach
at the Lagrangian point, but it will have a null velocity, without being able
to reach the field of motion around the Moon.

• When C < CL1 a spacecraft can move from the area around Earth to the
area around Moon (figure 1.4-b).

• When C < CL2 a spacecraft can escape from the system behind Moon (figure
1.4-c).

• When C < CL3 a spacecraft can escape from the system behind Earth and
inaccessible region shrinks only around L4 and L5 (figure 1.4-d).

1.3 Interplanetary trajectories

For first-order analysis, an interplanetary trajectory can be studied exploiting the
patched-conics approximation. This means considering the motion of the space-
craft as in a two-body problem, thus gravitationally influenced by just one main
celestial body. The spacecraft starts its journey under the influence of Earth, after
escape it’s under the influence of the Sun alone, until the arrival in proximity of
the final destination, where only the target body gravity is taken into account.

From the above mentioned assumption follows the need to define certain bound-
aries where the main body, from the spacecraft point of view, should switch. Intu-
itively, on the boundary surface, accelerations caused by the two bodies perturbing
the motion will be imposed as equivalent. To be rigorous, the final equivalence
derives from the equation of motion for the n-body problem. The step-by-step
derivation can be found in Cornelisse, Schöyer, and Wakker [5]. For the sake of
conciseness, a brief description of the reasoning will follow.

Considering for instance the above-mentioned case of a probe sent towards
deep space, it is possible to express its motion viewed from a fixed reference frame
centered in Earth, thus considering acceleration caused by the Sun as the only
perturbation:

A = Ae + Aps

14
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At the contrary, the probe can also be viewed from the Sun point of view, thus
considering Earth responsible for the only perturbing acceleration.

a = as + ape

The equivalence between the two equations of motion, which in fact describe the
same situation, results in:

ape
as

=
Aps

Ae

Calculations from this equivalence will lead to the definition of a rotationally sym-
metric surface about the line joining celestial body centers of mass will be obtained.
The surface encloses the so called Sphere of Influence (SOI) of the planet. Radius
can be easily derived from the expression suggested by Laplace:

Rs.i = D
(m
M

)2/5

where D is the distance between the two bodies considered; m is the smaller body
mass and M is the larger body mass [1, pp. 333–334].
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Chapter 2

Optimization method

2.1 Indirect method

An optimization problem by definition, aims to find the best solution among all the
feasible solutions; this is often done exploiting a numerical method consisting in
finding the right control law which maximizes or minimizes a specific performance
index. As far as orbital transfers are concerned, minimizing fuel consumption is
crucial in order to keep a low overall cost of the maneuver; that’s why optimization
purpose is to maximize the spacecraft final mass in the trajectories considered. As
can be easily imagined, analytical solution of such a optimization problem is only
possible for few simple cases, which are not interesting for the study, is therefore
necessary to seek approximate solution through numerical methods.

The numerical method chosen is an indirect optimization technique. They are
considered computationally very efficient, providing high accuracy with a good
theoretical insight, moreover they have relatively low computational cost and time.
On the other side, they result to be extremely sensitive to the guess values imposed
as tentative solution. For this reason, choosing the right inputs was a delicate step
in order to obtain the desired data and often required a long time both considering
the number of guesses and the compile time. In the first place, guesses used in this
analysis are from previous studies [9] analysing a similar problem. The hereafter
explained method, is fully described in Arthur E Bryson and Yu-Chi Ho. Applied
optimal control: optimization, estimation, and control. Routledge, 2018.
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Chapter 2. Optimization method 2.2. Optimal Control Theory (OCT)

2.2 Optimal Control Theory (OCT)

2.2.1 Theoretical approach

Optimal Control Theory (OCT) is based on the concepts of variational calculus
and it is applied to a generic differential equation system, having the form

dx

dt
= f (x,u, t) (2.1)

Equations above, also called state equations, describe state variables x evolution
from initial time to final time (external boundaries) as function of control variables
u.

A convenient practice for orbital maneuvers optimization is breaking down the
trajectory into several sub-ranges, called arcs, in which all variables are continuous.
It is a useful practice in order to avoid numeric instabilities and improve conver-
gence, providing high accuracy [11]. Notation adopted states that j-ism range
begins at t(j−1)+ and ends at tj− , while variables at its boundaries are x(j−1)+ and
xj− (where subscripts ’+’ and ’-’ refers to the values respectively, right after and
right before the point considered, so that any variable discontinuity can be ac-
counted). In the case studied, thrusted arcs and coasting arcs will be separated,
so there will be a velocity discontinuity at the ends of each range.

State equations shall be complemented by boundary conditions, expressed in
the form

χ
(
x(j−1)+ ,xj− , t(j−1)+ , tj−

)
= 0 j = 1, . . . , n (2.2)

where n is the number of arcs. Optimal boundary condition, derived from optimal
condition imposition are expressed in equation 2.3.

σ
(
x(j−1)+ ,xj− ,λ(j−1)+ ,λj− , t(j−1)+ , tj−

)
= 0 j = 1, . . . , n (2.3)

They are usually non-linear expressions written for both state variables and in-
dependent time variable, at external boundaries and internal boundaries, among
arcs.

That being said, optimum problem is solved, finding maximum and minimum
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values of the functional J , which is defined, in his generic form, as in equation 2.4.

J = φ
(
x(j−1)+ ,xj− , t(j−1)+ , tj−

)
+
∑
j

∫ tj−

t(j−1)+

Φ (x(t),u(t), t) dt j = 1, . . . , n

(2.4)
The functional J is the sum of two parts: φ is function of the external values of
state variables and time variable at the boundaries of each range; function ϕ is the
integral over the whole trajectory and depends on variable values in every point.
Introducing new suitable variables: constant Lagrange multipliers µ for boundary
conditions and adjoint variables λ for state equations, the functional J can be
written in a simplier form, like in equation 2.5.

J∗ = φ+ µTχ+

∫ tj−

t(j−1)+

(
Φ + λT (f − ẋ)

)
dt j = 1, . . . , n (2.5)

Through this new set of variables it is always possible to obtain a simplified form
of the functional J∗: Lagrange formulation ( where φ = 0) or Mayer formulation
(where Φ = 0). After making all these substitutions, the two functional J and J∗

correspond, thus also their extremal values do, as long as boundary conditions and
state equations are satisfied (thus χ = 0 and f − ẋ = 0).

In conclusion, the optimal condition is obtained when the statement δJ∗ = 0

is true for any value of δx(j−1)+ , δxj− , δt(j−1)+ or δtj− ; thus imposing appropriate
values of µ and λ that make null δx and δt coefficients. Operating like said, two
differential sets of equations are obtained: Eulero-Lagrange equations for adjoint
variables

dλ

dt
= −

(
∂H

∂x

)T

(2.6)

and algebric equations for controls(
∂H

∂u

)T

= 0 (2.7)

where the function H is the Hamiltonian function, defined as

H = Φ+ λTf (2.8)
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The case with constraints on a control variable (for example when thrust mod-
ulus must be between 0 and Tmax) has a particular relevance because Pontryagin’s
Maximum Principle (PMP) applies: the optimal control value in every point of
the trajectory is the one which maximise the Hamiltonian (or minimize whether
J maximum or minimum values are searched), so it is obtained solving equation
2.7. To be precise, two situation are possible: if optimal values of the control, is in
the eligibility range, control is locally ’non-constrained’ ; if solution from equation
2.7 is out of the eligibility range, the control assumes a value at the edge and it’s
called ’constrained’ control. It’s worth noticing that if Hamiltonian is linear with
respect to one or more controls, it won’t appear in equation 2.7, subsequently the
so called bang-bang control will be applied. Considering the control coefficient in
equation 2.8: H is maximized with the maximum value of the control in case the
corresponding coefficient is positive, with the minimum value in case the coefficient
is negative.

2.2.2 Application to the case study

In the present study, state variable vector is defined by position and velocity in
polar coordinate and the mass of the spacecraft

x = {r θ φ u v w m}T

and adjoint variable vector will be

λ = {λr λθ λφ λu λv λw λm}T

while the only control variable is thrust vector T (its direction and magnitude).
Considering Mayer formulation, Hamiltonian becomes

H = λTx = H ′ +ΛT − λm

(
T

c

)
where H ′ is a term containing all parts without the control and

Λ = λui+ λvj + λvk
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the primer vector, is the adjoint vector to velocity.
It’s easy to note that Hamiltonian function is linear with respect to the control

variable T , thus the PMP is used, applying the before mentioned bang-bang control.
Stated that optimal thrust direction is parallel to λ, Hamiltonian can be rewritten
as

H = H ′ + T

(
Λ

m
− λm

c

)
(2.9)

where thrust coefficient is called Switching Function (SF) and Λ indicate the primer
vector magnitude. Optimal control values will subsequently be

T =

Tmax for SF > 0

0 for SF < 0

Since control value is discontinuous, division in arcs is applied when the SF sign
changes. The number and nature of trajectory arcs is assumed a priori, but cor-
respondence is checked and eventually modified, at the end of the numerical pro-
cedure.

2.3 Boundary Values Problem (BVP)

From Optimal Control Theory (OCT) application, it is understood that some
initial values of the variables are unknown, so optimization will come from the
solution of the Boundary Values Problem (BVP), which comprehends differential
equations 2.1 and 2.6, with controls determined by equations 2.7 and boundary
conditions from equations 2.2 and 2.3. The main difficulty in indirect methods
arises in the solution of the BVP: the above mentioned equations are adapted to
the type of problem and they are integrated by using a variable-order variable-
step scheme, based on the Adams-Moulton formulas. BVP is divided into several
Initial Value Problem (IVP) and it is solved using a Newton-like method, until
convergence, which occurs when initial values satisfy all boundary conditions. In
this section, implementation of indirect method for our analysis with the BVP
formulation as well as solving procedure will be explained.
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2.3.1 Formulation of the problem

State variables and adjoint variables are mashed together in one vector y = (x,λ),
creating one big 14 equation system:

dy

dt
= f ∗ (y, t) (2.10)

Initial values of the state variables is assigned, as well as the final radius (both in
the case of escape or interplanetary trajectory); instead the 7 adjoint variables and
the length of the burn and coast arc are unknown at the initial time. A replacement
for independent time variable is replaced by variable ϵ, so that internal and external
boundaries are fixed equals to progressive integer numbers like in equation

ε = j − 1 +
t− tj−1

τj
(2.11)

where τj = tj−tj−1 is the duration of the single range, which remain unknown. Now
applying the change of variable and separating variable and constant parameter
in y, what it is obtained is

dz

dε
= f (z, ε) (2.12)

where z = (y, c). Also boundary conditions (imposed and for optimality) are
gathered in a single vector:

Ψ(s) = 0 (2.13)

where vector s = (y0,y1, . . . ,yn, c) contains the values of all the variables at the
edges of every range. Finally p is defined as the vector of the unknowns, containing
all the initial values .

2.3.2 Numerical solution

Unknowns are find with an iterative process, starting from a guess solution p1

and integrating differential equations along the trajectory. At the end, the values
of the state variables at the boundaries are determined and placed in the vector
Ψr (where the apex r indicates the current iteration). Error on the boundaries
condition ∆Ψ can be evaluated, considering that a variation in initial conditions
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brings to a variation on boundaries, equals to

∆Ψ =

[
∂Ψ

∂p

]
∆p (2.14)

Since the aim is to nullify the error (having ∆Ψ = −Ψr), initial values must be
corrected in amount equals to

∆p = pr+1 − pr = −
[
∂Ψ

∂p

]−1

Ψr (2.15)

where the matrix
[
∂Ψ
∂p

]
can be obtained either solving the homogeneous problem

or numerically, firstly perturbing each Ψ component by a small amount and then
integrating equation 2.12.

At this point the initial condition vector for the following iteration can be
obtained:

pr+1 = pr +KR∆p (2.16)

where KR = 0.1 ÷ 1 is called relaxation fraction and it’s used for reducing the
correction and avoid to compromise convergence. The scheme is repeated until
error is lower than a certain threshold.

2.4 Structure of the code implementing the method

2.4.1 User interface

Optimization method explained in the previous section has been implemented in
a code written in FORTRAN language, a language designed for computationally
intensive applications in science and engineering. As above mentioned in our
problem the switching structure is decided a priori, for this reason different codes
were created according to different mission concepts. In particular three codes
were adopted in the present study:

• el2moon2ofc3 implementing a single-burn escape maneuver, divided into 2
phases;
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• el2moon4ofc3 implementing a double-burn escape maneuver, with 4 phases;

• esarv1 is the code used for the interplanetary maneuver, which is considered
as a single phase maneuver, even if the number of burns is more than one,
according to the Switching Function (SF) sign.

The codes were used exclusively through user interface implemented on-screen
by an (.exe) extension application which can be opened with any Microsoft Win-
dows operating system. After initialization requests (integration step required and
maximum number of iteration), user shall manually enter all constraints values:
initial time t0, mission duration Dt, final energy c3 and final time for internal
boundaries between arcs (this is the only value always set as free). The possibility
to not constrain certain values remains available, simply by setting the value equal
to 0. With the strategy adopted, initial time was always constrained, while one
parameter between duration and final energy was left free.

2.4.2 Structure and subroutines

All the codes have a similar structure; with the aim to explain its functioning, we
divide the script into sections having different purposes. The main ones are briefly
explained below.

Initialization

First lines are meant to introduce the variables of the problem, initial conditions,
useful parameters and conversion constants used throughout the code to linearize
variables with respect to the current reference frame. In this part celestial bodies
positions are found with external function eph3d which uses JPL ephemeris to
calculate Moon and Sun positions with respect to Earth. Also perturbing acceler-
ations are calculated with the help of other function (such as geopot).

function BVNGL

This function has the task to calculate tentative solutions, necessary during inte-
gration phase; verify whether Pontryagin principle is accomplished and in case of
convergence, it saves the variables in the solution vector.
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subroutine FUNZ

In this part differential equation of the problem are implemented, setting up the
entire problem. It uses as inputs current phase index, independent variable time
and instantaneous state variable vector; providing derivative vector as output.

subroutine BOUND

This subroutine calculates error on boundary conditions, providing as output vec-
tor ER. External boundary condition vector, and current state variable vector are
the inputs.

24



Chapter 3

Dynamic model

3.1 Reference frames

3.1.1 Earth Mean Equator and Equinox of Epoch J2000

(EME2000)

J

I

K

r

θ

φ

i

j

k

Figure 3.1: EME2000 and topocentric reference frame

The reference frame adopted in this study is the Earth Mean Equator and
Equinox of Epoch J2000 (EME2000) (in figure 3.1) having its origin on Earth
center of mass; equator as fundamental plane and x-axis lying along the line created
by the intersection between Earth equator and the ecliptic. Its axes are denoted by
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unit vectors I,J,K, positions are described with polar coordinates radius r, right
ascension θ and declination φ:

r = r cos θ cosφI + r sin θ cosφJ + r sinφK

Velocities are defined in a topocentric reference frame, with components u along
the radial (or zenith) direction i, v pointing eastward along the j axis and w

pointing northward along k axis.
This local reference frame can be found by performing two simple rotations:

• the first around K by an amount equals to right ascension θ, will find a
back-up reference frame (tjK) where K remains the same;

rtjK =

 cos θ sin θ 0

− sin θ cos θ 0

0 0 1

 rIJK (3.1)

• a second rotation about j axis by an amount equals to declination (actually
a negative rotation, clockwise) will lead to the topocentric frame ijk

rijk =

cos−φ 0 − sin−φ
0 1 0

sin−φ 0 cos−φ

 rtjK (3.2)

Mathematically, these rotations are expressed by a chained matrix product, where
multiplying simple rotation matrices written above, the final transformation matrix
is found.

rijk = Lj
φ · LK

θ rIJK

= L rIJK
(3.3)
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or explicating vectors and matrix:
i

j

k

 =

 cos θ cosφ sin θ cosφ sinφ

− sin θ cos θ 0

− cos θ sinφ − sin θ sinφ cosφ




I

J

K

 (3.4)

It should be noted that geocentric reference frame has been used as far as es-
cape trajectories are concerned; instead for interplanetary trajectories analysis an
heliocentric reference frame has been deemed appropriate. Variables were subse-
quently normalized with respect to Earth radius (for geocentric reference frame)
and Sun-Earth distance (for heliocentric).

3.1.2 Equations of motion

The statement of the problem is the same described in previous analysis, as in
article by Lorenzo Casalino, Guido Colasurdo, and Dario Pastrone. “Optimal low-
thrust escape trajectories using gravity assist”. In: Journal of Guidance, Control,
and Dynamics 22.5 (1999), pp. 637–642. In the present study the spacecraft is
considered as a point-mass with variable mass and its motion is described by the
following equations:

dr

dt
= V (3.5)

dV

dt
= −µr

r3
+

T

m
+ ap (3.6)

dm

dt
= −T

c
(3.7)

where the effective exhaust velocity c is assumed constant and the perturbing
acceleration

ap = aJ + alsg + asrp

comprehends accelerations caused by Earth asphericity, Sun and Moon gravity
(lunisolar perturbation) and Solar Radiation Pressure (SRP). Position r, velocity
V and mass m described in the differential equations above, are the state variable
of the problem; thrust vector T controls the trajectory.
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3.2 State equations

Given the above mentioned reference frame, scalar state equations are easily de-
rived:

dr

dt
= u (3.8)

dθ

dt
=

v

r cosφ
(3.9)

dφ

dt
=

w

r
(3.10)

du

dt
= − 1

r2
+
v2

r
+
w2

r
+
T

m
sin γT +

qS

m

[
−CD sin γ+

+ CL cosσ cos γ
]

(3.11)

dv

dt
= −uv

r
+
vw

r
tanφ+

T

m
cos γT cosψT +

qS

m

[
−CD cos γ sinψ+

+ CL

(
− cosσ sin γ cosψ + sinσ sinψ

)]
(3.12)

dw

dt
= −uw

r
+
v2

r
tanφ+

T

m
cos γT sinψT +

qS

m

[
−CD cos γ sinψ+

+ CL

(
− cosσ sin γ cosψ + sinσ sinψ

)]
(3.13)

dm

dt
= −T

c
(3.14)

In equations above, perturbing acceleration are made explicit, bringing to light
new angles which have to be defined: γ is flight path angle, identified between
relative velocity vector Vr and the horizontal plane (with positive angles upwards,
moving away from origin); ϕ is heading angle measured between relative velocity Vr

projection on horizontal plane and j axis (with positive angles counterclockwise);
γT and ϕT are the same angles, for Thrust vector T ; σ is called roll angle or
bank angle, i.e. the angle between aerodynamic lift L and the trajectory plane
(identified by vectors r and V ) measured clockwise from radial direction.

It’s worth noting that γ and ϕ depend on state variables as in the following
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relations:

sin γ =
u

Vr
(3.15)

cos γ cosϕ =
v − ωr cosφ

Vr
(3.16)

cos γ sinϕ =
w

Vr
(3.17)

where Vr =
√
u2 + (v − ωr cosφ)2 + w2 is relative velocity modulus, which takes

account of Earth rotation velocity directed eastward.
Angles γT and ϕT define thrust direction, their optimal values are derived by

imposing equals to zero Hamiltonian partial derivatives:

sin γ =
λu
λV

(3.18)

cos γ cosϕ =
λv
λV

(3.19)

cos γ sinϕ =
λw
λV

(3.20)

where it’s worth remembering that primer vector modulus λV result parallel to
thrust optimal direction.

3.3 Perturbations

As mentioned before, a spacecraft motion in space, particularly in the 4-body prob-
lem here considered, is extremely complicated to describe because of the numerous
forces in action. The spacecraft position along the trajectory could be affected by
disturbing forces, causing a deviation from original path. That’s why perturba-
tions should be taken into account and a position control law it is always necessary.
Specifically, in the case studied, the only disturbance considered are J2 effect due
to Earth oblateness, Lunisolar perturbation and Solar Radiation Pressure (SRP).
Atmospheric drag is neglected because of the great distance of the spacecraft from
Earth atmosphere during the whole trajectory, as well as for Moon potential model
which can be implemented in future studies; other perturbations that affect the
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attitude aren’t obviously taken into account, considering a point-mass instead of
a dimensional spacecraft for this part of the study.

3.3.1 Earth Potential Model

Even though spacecraft trajectories investigated in this study are far away from
Earth, so its potential actually don’t affect the spacecraft position that much,
it was modeled anyway, for the sake of completeness and to ease future studies
which may include trajectories closer to Earth. The model considered is based on
Earth Gravitational Model 2008 (EGM2008) provided by the National Geospatial-
Intelligence Agency (NGA), which have a 2.5 minute height resolution (resulting
in 4.2 km at equator)[6] and depicted in figure 3.2. According to EGM2008, the

Figure 3.2: Geoid height, computed from the gravity field model EGM2008(Pavlis
et al., 2012). Source: Ref [2]

potential is calculated using the expression, where the number of harmonics N was
chosen equal to 8:

ΦEG = −µ♁r
N∑

n=2

(rE
r

)n n∑
m=0

(Cnm cosmλ+ Snm sinmλ)Pnm (sinφ) (3.21)
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where µ is Earth gravitational parameter; rE is the ellipsoid semimajor axis; φ and
λ are respectively latitude (equal to declination) and longitude (derived considering
Earth angular velocity) ; Pnm (sinφ) are the Legendre functions; Cnm and Snm are
the coefficients for spherical and sectorial or tesseral harmonics [11].

3.3.2 Lunisolar Perturbation

Even though Earth is considered as main celestial body in the reference frame
adopted, also Moon and Sun gravity affect the motion of the spacecraft. Forces im-
posed on the spacecraft strictly depend on its relative position with respect to other
celestial: positions with respect to Earth are provided by DE430JPL ephemerides
database and expressed in the International Celestial Reference Frame (ICRF)
which can be considered the same as EME2000 thanks to minimal differences be-
tween them. The position of the body can be expressed as

rb = xbI + ybJ + zbK

where the subscript b varies whether Sun or Moon are considered. Generic accel-
eration to which the spacecraft is subjected, is expressed by

abg = −
( µb

R3

)
R−

(µb

r3b

)
rb (3.22)

where R = r−rb is the spacecraft relative position. The projection in the topocen-
tric reference frame, used in this study, it becomes:

(abg)u =
( µb

R3

)
[(rb)u − r]−

(µb

r3b

)
(rb)u (3.23)

(abg)v =
( µb

R3

)
(rb)v −

(µb

r3b

)
(rb)v (3.24)

(abg)w =
( µb

R3

)
(rb)w −

(µb

r3b

)
(rb)w (3.25)

They are function of the body positions, thus function of variables r, θ and φ.
Obviously, the total lunisolar perturbation is the sum of Moon perturbation and
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Sun perturbation:

(alsp)u = (alg)u + (asg)u (3.26)

(alsp)v = (alg)v + (asg)v (3.27)

(alsp)w = (alg)w + (asg)w (3.28)

3.3.3 Solar Radiation Pressure (SRP)

Solar Radiation Pressure (SRP) is a disturbing force coming from the pressure
variation due to photons impacting the spacecraft surface which is about 4.55682 ·
10−6N/m2 near Earth. It is a small value but can affect the spacecraft attitude
and position in the long period, even though its effect is not so important in the
trajectories studied, implementation of the disturbance is taken into account for
sake of completeness. Perturbing acceleration due to SRP is expressed in the
following equation:

asrp = (1 + η)
[ Ls

4πcR3

]( S
m

)
R (3.29)

where η is the reflectivity factor (assumed η = 0.7) which depends by the material
and orientation of the surface; Ls = 3.83 · 1026W is the total power radiated by
the Sun; S is the spacecraft perpendicular surface impacted by solar radiation; the
vector R indicate that this force act on the line joining the Sun and the spacecraft,
moving away from the Sun.
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Chapter 4

Procedure and results

In this chapter procedure adopted for this research will be explained and results will
be analyzed. The main steps of the work done include the definition of the mission
features considered suitable for the study; data collection for the phase concerning
escape from Earth SOI and finally data collection for the whole trajectory towards
NEA, thus the addition of the interplanetary part.

4.1 Definition of the case study mission

The mission profile considered, is a medium-size satellite placed in correspondence
of EML2, performing an escape maneuver till the boundary of the Earth SOI, then
connected with an interplanetary trajectory heading towards a specific asteroid
named 2016 TB57, belonging to NEA. Technical specifications are set according
to the previous studies concerning the same topic [9] and they can be found in
the first part of the code, as mentioned in section 2.4. Initial mass is mi = 850kg

(identified by the variable amrif), specific impulse is Isp = 2000s (variable aisp),
as a typical Hall effect thruster.

Five dates were selected for the analysis as departure time for the mission,
with a time span covering the synodic period of the Moon orbit (defined as the
time it takes for the Moon to rotate around Earth until the same relative position
among Moon, Earth and Sun is restored). Time is actually measured in as non-
dimensional, with such a conversion that zero instant is set, as epoch J2000, on
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1st January 2000 and the following days are obtained with a proportion, consid-
ering that 1year = 2π. In table 4.1 departure times considered are listed and the
corresponding day/month/year form is obtained. It is noteworthy that departure

Case Departure Time Departure Date

1 162.033 15/10/2025
2 162.153 22/10/2025
3 162.274 29/10/2025
4 162.394 05/11/2025
5 162.514 12/11/2025

Table 4.1: Time conversion at initial point of the maneuver

times are one week apart from each other so that an entire month it’s covered, this
is important because relative angle between the spacecraft and the Sun affect the
orbital motion, resulting either in a positive or negative perturbation.

4.2 Escape from Earth-Moon Lagrangian Point 2

(EML2)

The first part of the trajectory is the evasion from Earth SOI: initial point is
obviously EML2 position, instead final point of escape maneuver is set 3 million km
away from Earth, applying a constraint to the radial distance from the EME2000
reference frame origin.

The strategy consists in assuming two phases during escape: the first one is a
thrusted arc, tagged with letter "T"; second one is a coasting arc tagged with letter
"C". Solution is initially sought in this configuration, nevertheless, if optimization
process leads to a positive result, output file that contains Switching Function (SF)
values in every point will be checked. As mentioned in chapter 2, the SF is a crucial
element for the thrust control: a positive value means that the thruster is on,
instead with negative SF the thruster is off. That being said, in a T-C trajectory,
SF should change sign (from positive to negative) only once, on the contrary a
4-phase approach with two burns should be investigated and optimization results
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should be adjourned using the output given from the appropriate code.
Six different scenarios are taken into account for the analysis: the first three

with constrained duration for the escape maneuver (75 days, 80 days and 90 days)
and free final energy; the latter three with fixed C3 (0.2 km2/s2, 0.3 km2/s2 and
0.5 km2/s2) and free time to escape. The code solves Boundary Values Problem
(BVP) and finally finds the optimal trajectory, respecting the constraints.

4.2.1 Escape with constrained duration

The procedure which leads to produce the needed data, starts from solutions com-
ing from previous studies [9] having the same departure times. Specifically, so-
lutions closest to the sought cases are chosen as starting point, then the method
consists in changing the duration constraint, by a varying small amount of time
in order to reach, step by step, the solutions sought in the present study. The
number of steps it took to arrive to the desired final time, varied from case to
case, in general it was more difficult to reach the longer duration cases (90 days),
in particular for cases 2, 4 and 5 (see table 4.1); here one step could be as small
as 0.1 day, implying a few dozen optimizations until reaching the one with the
established constraints.

Solutions obtained in term of duration of the propelled arc and fuel mass con-
sumed, are listed in table 4.2 and depicted in the histogram graph in figure 4.1.

Must be highlighted that case 2 solutions (rows in bold type in table 4.2)
are calculated considering a 4-phase approach with two burns (T-C-T-C), for the
reason explained in this section. In this case the T arc duration is intended as
the sum of phase 1 and phase 3. For sake of preciseness the duration of the two
separated T-arc are made explicit:

• In the 75-day scenario, optimal trajectory beginning at t0 = 162.153 consists
in a first burn with duration of 1.87 days and a second one, approximately
one week later, with duration 0.37 days

• In the 80-day scenario, first and predominant thrust lasts 1.84 days then a
second tiny burn is given right after, but the duration results irrelevant, thus
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Departure Time Duration T arc duration Final c3 Fuel consumption
[days] [days] [kg2/s2] [kg]

162.033 75 1.79 0.35 2.111
162.153 75 2.25 0.15 2.647
162.274 75 5.90 −6.41 · 10−4 6.961
162.394 75 1.42 0.18 1.670
162.514 75 1.89 0.44 2.224

162.033 80 1.88 0.40 2.219
162.153 80 1.84 0.10 2.172
162.274 80 5.57 0.02 6.572
162.394 80 1.36 0.12 1.599
162.514 80 1.95 0.45 2.299

162.033 90 2.18 0.43 2.571
162.153 90 1.53 0.07 1.810
162.274 90 5.07 0.04 5.979
162.394 90 1.30 0.09 1.529
162.514 90 2.09 0.45 2.463

Table 4.2: Fuel Consumption for escape missions with constrained Dt and free c3

it’s approximately a single burn trajectory

• Also in the 90-day scenario beginning at the same time, almost the total
amount of thrust is given in the first burn.

Looking at the results obtained, it’s worth noting that even with the same
duration constraint, optimization leads to different solutions depending on the
departure date and the variation in fuel consumption draws a wave pattern if
imagined in a graph in a simple function of time. This is due to the relative
position of the spacecraft with respect to other celestial bodies and due to the Sun
perturbation which depends on the angular position between the spacecraft and
the Sun in the first part of the trajectory. Solar perturbation could accelerate or
slow down, acting whether in a positive or negative way depending on the situation
and the mission target. With the purpose to investigate this phenomenon, angles
between Moon and Sun at the initial point will be tabulated (table 4.3). Keeping
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Figure 4.1: graphical display of the amount of fuel consumed to escape having a
constraint in duration Dt

in mind that Earth, Moon and spacecraft in EML2 are aligned, thus angle θ$ Sun
and Moon position vectors corresponds to the angle of our interest. For helping
the visualization, relative positions of Moon, Earth and Sun are depicted in figure
4.2 (online 3D simulator was used for this purpose [12]).

Case Departure Time Moon angle [deg]

1 162.033 115.27
2 162.153 201.73
3 162.274 310.58
4 162.394 34.47
5 162.514 116.43

Table 4.3: Moon angle θ$ at departure time in EML2

Considering both histogram in figure 4.1 and data in table 4.2, best time for
departure to escape seems to be 5/11/2025 (case 4) when the obtained fuel con-
sumption results to be minimized. Probably in this case velocity direction at burn
out is in the same direction of the Sun perturbation.
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(a) 15/10/2025 (b) 22/10/2025

(c) 29/10/2025 (d) 5/11/2025

(e) 12/11/2025

Figure 4.2: Representation of Sun, Earth and Moon relative positions (not in scale)
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Other considerations can be made, looking at the variation of fuel required
in relation with duration. When solar perturbation has a negative effect on the
spacecraft (cases 2 and 3) fuel consumption decreases with the increasing of mission
duration. That’s because a longer time allows the spacecraft to reach a favorable
position during coasting arc. On the contrary, when departure date is favorable, a
longer time will force the spacecraft towards non convenient positions. Optimum
in this sense is guaranteed in case 4, as said before.

4.2.2 Escape with constrained final energy

Procedure to obtain solutions when final energy set as constraint, is basically
the same. In this case difficulties arose when seeking cases with low final energy
(c3 = 0.2 km2/s2 and c3 = 0.3 km2/s2), especially in case 3 (table 4.1), requiring
a 0.1 km2/s2 step. Again, solutions obtained in term of duration of the propelled
arc and fuel mass consumed, are listed in table 4.4. Also in this case, rows in bold
type are obtained with a four-phase approach (T-C-T-C trajectory). In particular:

• Case 2 has a 2.36 day long first burn, while the second thrust is almost 5
days later and lasts for about 1 hour 40 minutes;

• Case 3 has a 1.03 day long first burn and a 1.68 day long second burn 8 days
later.

From the histogram in figure 4.3 some observations can be made: once again, the
mean value of fuel required for escape seems varying depending on departure date
and for the majority of the cases considered, a greater amount of fuel is necessary
increasing the value of final energy c3 imposed as constraint. This happens because
a greater energy at the end of the maneuver means having a greater velocity,
which is granted by a greater thrust. It’s clear that case 3, with departure on
29/10/2025, is different: firstly it’s the one minimizing the overall cost, moreover
allows at the same time a great final energy with a low consumption, always
useful characteristic if the aim is to reach far objects in deep space. This justifies
the conclusion that there are different optimal trajectories on the basis of the
mission target chosen; departure time isn’t the only aspect to consider, but just
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Departure Time Final c3 T-arc Fuel consumption Total duration
[kg2/s2] [days] [kg] [days]

162.033 0.2 1.70 2.004 78.59
162.153 0.2 2.43 2.866 75.50
162.274 0.2 2.71 0.752 80.81
162.394 0.2 1.44 1.693 73.93
162.514 0.2 1.83 2.161 78.42

162.033 0.3 1.72 2.032 75.89
162.153 0.3 3.15 3.716 71.45
162.274 0.3 2.40 2.824 86.84
162.394 0.3 1.59 1.873 69.00
162.514 0.3 1.84 2.169 74.76

162.033 0.5 3.18 3.745 74.45
162.153 0.5 5.41 6.374 61.40
162.274 0.5 0.73 0.863 72.74
162.394 0.5 2.84 3.351 62.79
162.514 0.5 2.46 2.902 77.22

Table 4.4: Fuel Consumption for missions with constrained final energy c3 = 0.3

Figure 4.3: Graphical display of the amount of fuel consumed to escape having a
constraint in c3
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one variable which influences the behavior of a small spacecraft motion in the
complex Earth-Moon-Sun system.

4.2.3 Optimal escape trajectory analysis

With an overall view of the data obtained (visualized in figure 4.4), it is clear
that every departure date has local optimum, obtained with a precise combination
of duration Dt and final energy c3. These optimal trajectories were manually
detected by seeking the highest final mass, thus the lowest fuel consumption. Cases

Figure 4.4: Graphical display of the amount of fuel consumed to escape

considered, listed in table 4.5, are worthy of further analysis coming from a spatial
representation. Two cases were actually considered in cases 2,3 and 4, because
data with similar escape duration, showed discordant results in final energy.

Trajectory plots on xy plane in Geocentric Equatorial reference frame were
drawn, after a quick and easy data post-processing using MATLAB. By visualizing
the trajectory path, more than one family of solutions is distinguished. From
figure 4.5 (on the left) it is evident that 2 families of solutions are present with a
clear separation on departure date 29/10/2025 (case 3), having a first trajectory
pointing upwards in the second quadrant and the other one pointing downwards
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Departure Duration Final Energy Fuel consumed
[days] [kg2/s2] [kg]

15/10/2025 78.6 0.20 2.004
22/10/2025 90 0.07 1.810
22/10/2025 75.5 0.20 2.886
29/10/2025 80 0.02 6.572
29/10/2025 80.8 0.20 0.752
5/11/2025 75 0.18 1.670
5/11/2025 69 0.30 1.873

Table 4.5: Cases selected as local optimal for escape trajectories

(a) (b)

Figure 4.5: Optimal Escape trajectories and detail of initial positions

in the fourth quadrant of graph. The optimum is found with departure date on
29th October, duration 80.8 days and final energy c3 = 0.2 kg2/s2 belonging to
the second family, thus escaping Earth SOI in the fourth quadrant.

In the right hand of figure 4.5 there is a zoom-in of the previous image, in order
to show relative positions of Moon, Earth and spacecraft at the initial point: as
mentioned in section 4.1 starting dates are evenly separated through one period,
following Moon revolution around Earth. Obviously three object are aligned, since
EML2 is chosen as starting point.
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4.3 Trajectory towards asteroid 2016 TB57

In the present study, mission target was chosen from a 75 asteroid shortlist, useful
in this first part of the mission definition to offload operational overhead during
compiling. The database is the same used by European Space Agency (ESA)
mission analysts, during phase 0 of the mission called M-ARGO (Miniaturised
Asteroid Remote Geophysical Observers). M-ARGO is a scientific mission aiming
to bring a 12-U CubeSat to randezvous with multiple small and unknown Near
Earth Asteroids (NEA) in order to measure size and weight and analyze their
surface, collecting useful data for the scientific community.

Initially over 700 thousand small, spinning asteroids were screened by the mis-
sion analysis team, subsequently the above mentioned short-list was set, consider-
ing only reachable targets given electric propulsion capabilities and the pre-selected
launch window between 2024 and 2025. A further objective is to reduce the choice
to few target, taking into account differences in size, spin rate, distance from Earth
and amount of fuel required to reach them [7].

4.3.1 Global evaluation

As far as this thesis is concerned, asteroid 2016 TB57 has been chosen from the
shortlist, as test case for the mission of our concern; a single phase mission is
considered by the code and duration of the maneuver is fixed at 3 years. The pro-
cedure connecting escape with interplanetary trajectory was fairly straightforward:
the code uses as input the previously calculated position at the end of escape ma-
neuver, expressed in heliocentric coordinates, and gives as outputs, among other
data, the final mass of the satellite. Results are summarized with the help of a
histogram which displays the amount of fuel used for the maneuver.

Looking at the results, it is immediately noticed that departure times with the
lowest amount of fuel required aren’t the same of the escape trajectory, and that’s
obviously because these trajectories also depends on the orbital parameter of the
asteroid chosen as target of the mission. Thus, spacecraft position and velocity at
the end of optimal escape maneuver could not be so convenient in order to reach
the selected target for interplanetary trajectory. As before, a new analysis is done
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Figure 4.6: Graphical display of the amount of fuel consumed in the interplanetary
maneuver to Asteroid 2016 TB57.

considering the most convenient combinations in term of mission duration and
final energy c3 at the end of escape maneuver. Cases are listed in table 4.6 where
case with departure on 12 November wasn’t considered because relative position
among the spacecraft, Moon and Earth is approximately the same if compared
with 15th October, just after one synodic period.

Departure Duration c3 after escape Fuel consumed
[days] [kg2/s2] [kg]

15/10/2025 75 0.35 72.178
22/10/2025 71.5 0.30 74.806
29/10/2025 80 0.02 93.685
5/11/2025 90 0.098 144.845

Table 4.6: Case selected as optimal for interplanetary trajectories

The amount of fuel required has a local minimum in case 1 (departure on
15/10/2025) leading to think that optimization can be reached around this date.
It’s noteworthy that an additional date was investigated (18th October) but the
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optimization technique brought a higher fuel consumption. This means that the
sought minimum could be on a prior date; this possibility was not investigated in
this study but could be worth studying in the future.

(a) (b)

Figure 4.7: Semi-major axis variation during time for interplanetary trajectories,
compared with c3 development

To better understand and review the results provided by the optimization
method, a graphical display of orbital parameters during time have been deemed
as appropriate. Looking specifically at semi-major axis, compared with the final
energy c3 during time, the same structure is clearly visible. Constant (or almost
constant) lines representative of coasting arcs (with thrusters in off-mode), are
joint through ramps which are the parts of the trajectory where the propulsion
system is active, thus when a variation in orbital parameters occurs.

Right after escape, there is a first long thrust which brings the spacecraft
to reach an elliptic orbit with a greater energy; one (cases 1,2 and 3) or two
(case 4) adjustments are subsequently made in order to intersect the target orbit;
then another long burn, represented with a negative slope, substantially brakes
the spacecraft until the insertion in the target orbit. As mentioned before, this
structure is essentially the same for every trajectory considered; furthermore, a
parallelism between energy and semi-major axis developments is justified by the
direct relation between energy, velocity and semi-major axis

(
c3 = − µ

2a

)
. Should

be noted that the trajectories having the minimum request of fuel, are the one
where the path from initial energy (or semi-major axis) to the final energy is the
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most direct, without waste of fuel. Furthermore, the best case is also the one with
the greatest energy after escape, a crucial condition when the target is far from
Earth. Case 1 and 2 (blue and yellow lines) are substantially overlapped, but with
a closer look yellow line is slightly above the blue one, leading to a consequently
higher use of fuel due to the longer breaking burn.

(a) (b)

Figure 4.8: Peri-apsis (a) and apo-apsis (b) development during interplanetary
trajectories

In figure 4.8 peri-apsis (a) and apo-apsis (b) are depicted: the same structure
is present, validating the logic explained before.

Further data about starting points of interplanetary trajectories could be help-
ful to better analyze the situation, position and velocity component in heliocentric
reference frame at the end of the escape are summed up in table 4.7. Data in the

Case Position Velocity
r θ φ u v w

[A.U.] [deg] [deg] [km/s] [km/s] [km/s]

1 1.0034 97.439 0.046868 0.66917 30.388 -0.0072972
2 1.0033 100.93 0.039992 0.67099 30.38 -0.012778
3 1.0036 117.09 -0.00045837 0.73479 30.128 -0.022726
4 0.96566 134.26 0.013465 -0.27164 30.32 0.028534

Table 4.7: Position and velocity components in heliocentric reference frame at the
end of escape
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previous table confirm the position of the spacecraft in Earth proximity: r ≃ 1AU
while right ascension θ and eastward component of the velocity v are concordant
with Earth motion on its orbit around the Sun. Orbital parameters at the begin-
ning of the interplanetary maneuver are listed in table 4.8.

From the values below we can conclude that the spacecraft enters an elliptic
orbit having a much greater Semimajor Axis, if compared with mean values for
the asteroid belt, between 3.1416 · 108 km and 5.3855 · 108 km (2.1 and 3.6 AU).
The trajectory intersects asteroid 2016 TB57 orbit and the spacecraft performs a
maneuver which results to be faster, optimizing also the duration of the mission.

Case Semimajor Periapsis Apoapsis Inclination Eccentricityaxis radius radius
[km] [km] [km] [deg]

1 1.3943 · 1011 1.3246 · 1011 1.464 · 1011 2.796 0.05
2 1.3932 · 1011 1.3242 · 1011 1.4621 · 1011 2.6757 0.0495
3 1.3696 · 1011 1.3192 · 1011 1.42 · 1011 2.4752 0.0368
4 1.2825 · 1011 1.271 · 1011 1.294 · 1011 3.1856 0.009

Table 4.8: Orbital parameters at the end of escape.

4.3.2 Optimal interplanetary trajectory

By extracting the most convenient trajectory, a further graphical display can be
considered: comparison between energy and Switching Function (SF) sign over
time. Both the curves are represented in figure 4.9; the overlapping proves once
again that SF (red curve) is high, thus propulsion is on exactly where an increasing
in energy is depicted, while where there are horizontal lines, SF is low, meaning
for the control that thrust isn’t active.
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Figure 4.9: Energy and switching function comparison during time
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Chapter 5

Conclusions

This thesis aims to study the use of an indirect method, exploited for missions to-
wards Near Earth Asteroids (NEA), starting from Lagrangian points. Specifically,
a mission towards asteroid 2016 TB57 departing from Earth-Moon Lagrangian
Point 2 (EML2) was considered. Trajectory was divided into 2 parts: escape from
Earth SOI (Geocentric phase) and interplanetary phase (Heliocentric).

The study is intended as a test-case, thus evaluates the feasibility of the ma-
neuver in the wider context of mission analysis for a possible scientific mission
towards NEA, such as M-ARGO by ESA. The optimization method takes into
account perturbing accelerations on the spacecraft due to Earth oblateness, grav-
itational forces applied by Sun and Moon and Solar Radiation Pressure (SRP);
four departure dates were considered throughout a month: a period of revolution
of the Moon around Earth.

Starting with imposed switching structure (i.e. number of phases and burns
during the trajectory), an optimal solution was obtained by integrating and solving
the boundary value problem. Switching Function (SF) sign is checked at the end
and switching structure is eventually modified in case it doesn’t match with the
one settled at the beginning. Algorithm proved to be relatively fast and reliable,
however the outcome of integration procedure is strongly dependent on initial
solution. In some cases, when external constraints were too far from the initial
guess, convergence didn’t occur, thus some adjustments on the above mentioned
constraints had to be done, forcing the user to proceed with small steps towards
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the actually result sought.
Once optimum for escape maneuver was found, the algorithm optimizing in-

terplanetary trajectories proved to be highly reliable and faster than before. In
this case constraints weren’t changed and starting position and velocity came from
solution of the previous analysis.

Escape maneuver analysis highlighted that fuel consumption depends on de-
parture date (other than imposed constraints), which is strictly connected with
relative position between the Sun and the spacecraft. In fact perturbing gravi-
tational force of the Sun could affect the trajectories whether in a favourable or
unfavourable way depending on the direction of application.

Plotting the best trajectories found on equatorial plane (Geocentric reference
frame), the presence of two different trajectory families is clear: the first family
escape earth SOI in the second quadrant, the second one in the fourth quadrant.
Optimal trajectory found in this study belongs to the second family.

As far as interplanetary trajectories are concerned, optimum was found with
different departure date and different combination of constraints. A rising fuel
consumption was registered throughout the month, placing the optimum on the
first date considered.

Considering orbital parameter values, it is understood that the spacecraft enters
a high energy elliptic orbit in order to reach the asteroid belt in a short period, but
it is forced to a break (burn in direction opposite to velocity) in order to enter an
orbit around the selected target. By analysing orbital parameter variations during
interplanetary trajectories, was found that smaller variation in orbital energy lead
to smaller amount of fuel consumed.

Further studies about this topic certainly need to be done: first of all, analysis of
trajectories towards other possible asteroids is necessary in order to pick the most
convenient target to reach for the mission; in second place some improvements in
terms of dynamic model could lead to more precise results, useful in the following
steps of mission analysis: all perturbing forces should be considered and starting
point should be set in orbit around EML2 (for example on a Halo orbit or Lissajous
orbit). Furthermore, the interplanetary trajectory under the influence of the target
asteroid should be considered and add to the heliocentric arc analyzed in this
thesis.
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