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Abstract

The heart of this thesis consists of the trajectory optimization of a kinetic 

impactor spacecraft, which is sent to collide with a threatening near-Earth asteroid. As a 

result of the impact, the subsequent path of the asteroid is very modestly changed.  The 

goal is to maximize the perigee radius of the deflected asteroid at its closest approach to 

Earth, with the important variables such as the date of Earth departure, the direction of 

the departure, the thrust program for the low-thrust motor, and the date of the collision 

all being optimization parameters. This continuous optimal control problem has been 

transcribed into a nonlinear programming (NLP) problem and is solved in the 

MATLAB environment. This transcription required the development of a Runge-Kutta 

(RK) parallel shooting code - implemented in MATLAB for the first time. It was also 

necessary to solve the problem approximately using Particle Swarm Optimization 

(PSO) which solution then became the required initial guess for the NLP problem.



Abstract

[Italiano]

Il cuore di questa tesi consiste nell'ottimizzazione della traiettoria di un veicolo 

spaziale a impatto cinetico, inviato a scontrarsi con un minaccioso asteroide la cui 

orbita si avvicina a quella terrestre. Come risultato dell'intercettazione, il successivo 

percorso dell'asteroide viene modificato in modo molto modesto. L'obiettivo è la 

massimizzazione del raggio di perigeo dell’asteroide, il cui moto è stato deviato, in 

corrispondenza del suo passaggio più vicino alla Terra. Sono stati selezionati diversi 

parametri di ottimizzazione quali la data di partenza dalla Terra, la direzione della 

partenza, il programma di spinta per il motore a bassa spinta e la data della collisione. 

Tale problema di controllo ottimale continuo è stato trascritto in un problema di 

programmazione non lineare (NLP) e risolto in ambiente MATLAB. La trascrizione ha 

richiesto lo sviluppo di un codice “Runge-Kutta (RK) parallel shooting”, implementato 

in MATLAB per la prima volta. Inoltre, è stato necessario risolvere il problema 

approssimativamente tramite Particle Swarm Optimization (PSO), la cui soluzione è 

stata adottata come ipotesi iniziale richiesta dal problema NLP. 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Chapter 1: Introduction

1.1 Spacecraft Trajectory Optimization

Optimization problems have longly been a subject of interest, not only from an 

academic standpoint but also from a pragmatic point of view in several important 

scientific applications, such as trajectory optimization of space vehicles. Apollo 

missions (Figure 1.1) are an example of an actual numerical optimization study, 

conducted to investigate optimal performance limits considering maneuver capability 

and entry heating during lunar return [1]. These boundaries are useful as guides in 

vehicle and mission design studies.

A spacecraft trajectory optimization problem seeks a trajectory that fully 

satisfies some criteria, including specified initial and final conditions, within a required 

mission. Many factors contribute to the achievement of a successful solution, such as 

the mathematical modeling of the problem, the objective function definition, the 

development of a certain approach or the implementation of a method or an algorithm 

[2]. The objective function is a relevant numerical value to be minimized; in particular, 

the most frequent choices are the propellant minimization - which for continuous thrust 

applications is a synonym of minimizing the time of flight - or also the payload fraction 

￼1

Figure 1.1  Apollo 11 Flight Profile [Credit: NASA]



maximization. Therefore, lower and upper bounds usually delimit the domain of each 

optimization parameter in order to get practical solutions, e.g. time variables are limited 

by the date of the projected impact in the problem discussed in Chapter 3. 

The problem is usually a complicated continuous optimization problem [3], 

except in a few special integrable cases which reduce to parameter optimization 

problems. The complications mainly articulate in the non-linearity of the dynamical 

system, in possible discontinuities in the state variables (e.g. instantaneous velocity 

changes or “ΔV’s” from rocket motors usage or planetary flybys), non-explicit terminal 

conditions (function of optimization variables) or presence of time-dependent forces 

(e.g. planetary perturbations), and the initially unknown basic structure of the optimal 

trajectory. The latter is subject to optimization, for instance in this work the spacecraft 

is launched only when Earth and asteroid reflect the optimal “geometry” found by the 

optimization solver according to the objective function. Of course, to make the solution 

extremely accurate also perturbations and other minor effects should be considered.

1.2 Low-Thrust Trajectory Optimization

Even if the potential benefits of low-thrust electric propulsion have been largely 

known for many years, only since few decades this technology has been employed for 

space missions, in particular for asteroids and comets missions such as Deep Space 1 

(1998) [4] or NEAR in (2001) [5]. 

Low-thrust propulsion is advantageous for the propulsive mass required 

compared to the fuel that would be burned by a chemical rocket for a given mission; 

low-thrust electric motors, which provide a much higher specific impulse, are thus more 

efficient. Besides, Conway [6] inferred that the greater efficiency would yield a payload 

mass for the mission of approximately 12% of launch vehicle mass, instead of only 

about 3% using conventional chemical propulsion. However, since electric motors 

provide a much smaller thrust - typical spacecraft acceleration is on the order of ￼  g 

- they operate continuously or nearly so. Therefore, the general continuous thrust 

trajectory optimization problem differs qualitatively from the impulsive one, mainly 

because of the absence of integrable arcs and the continuous-time histories of the 

10−5
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controls themselves (e.g. the thrust pointing angles). Thus, there is no analytic solution 

and numerical methods must be employed. 

Since space trajectories are controlled by the thrust vector, maximizing a 

specific performance index - by satisfying the boundary constraints - is achievable by 

finding an optimal control law for the thrust magnitude and direction, especially in high 

power missions where the spacecraft is equipped with more than one electric thruster. In 

fact, the result is often significantly affected by how the thrust is exploited, both in 

terms of throttle adjustment and optimal power partitioning among the available 

thrusters. The latter aspect has been studied by Casalino and Vavrina [7] who, based on 

several methods (indirect, direct and evolutionary algorithms), have deduced that the 

optimal power partitioning strategy provides relevant savings in terms of propellant 

consumption for example in missions of large sample return from a near-Earth asteroid. 

A throttling parameter was not introduced in the present work, but certainly could be 

the subject of further future study. 

A low-thrust departure from Earth would require much time because of the 

many revolutions of the Earth needed. In this work, an instantaneous velocity change 

given by the upper stage of the launch vehicle (￼ ) at the initial departure is followed 

by continuous low-thrust propulsion. Based on initial intuition, the combination of the 

two could increase the spacecraft energy without exploiting any fuel, so without 

affecting its mass, which is more significant at the impact, and augmenting its speed of 

typically 1-2 km [6]. This could be very beneficial at the impact since it increases the 

momentum imparted to the asteroid by the interceptor spacecraft, but also because it 

could reduce the time and the consumed fuel, moving away from Earth faster than 

would be possible with only electric motors.

1.3 Optimization methods available

Trajectory optimization problems can be formulated as optimal control 

problems, described by a dynamical system of differential equations [3]:

￼ (1.1)

Δ ⃗v L

· ⃗x (t) = f ( ⃗x (t), ⃗u (t), t)

￼3



where ￼ , ￼  represents an n-dimensional state and ￼  an m-dimensional 

control. Both those vectors are problem dependent, so for example the type of 

coordinates is chosen according to the mathematical model used. The initial conditions 

are specified as

￼  given for ￼  with ￼ . (1.2)

The terminal conditions may be described implicitly:

￼ . (1.3)

The objective function to be minimized can be written in the Bolza form as

￼ (1.4)

where ￼  is a terminal cost function and the integral denotes a cost incurred during the 

whole trajectory. 

Only in simplified cases, e.g. impulsive-thrust or continuous-thrust orbit 

transfer, the optimal trajectory is an analytical solution. Most researchers rely on 

numerical optimization methods to solve continuous optimal control problems; these 

methods are classified as direct or indirect. Indirect methods utilize n-costate variables 

(or adjoint variables or Lagrange multipliers) and their governing equations in addition 

to analytical necessary conditions from the calculus of variations (COV) or 

Pontryagin’s Minimum Principle, consequently doubling the size of the dynamical 

system. Direct methods convert the continuous optimal control problem into a 

parameter optimization problem; the system equations are satisfied because of the 

stepwise integration according to implicit or explicit (e.g. Runge-Kutta) rules. The 

parameters represent a discretization of the state and control time histories and must 

satisfy the nonlinear constraint equations of the generated nonlinear programming 

problem (NLP) [3]. Both direct and indirect methods can converge only to locally 

optimal solutions, indeed they require an initial guess close to the global minimum. The 

improvement of the direct methods has led to the development of qualitatively different 

approaches, consisting of evolutionary and heuristic algorithms.

t0 ≤ t ≤ tf ⃗x ⃗u

xi(0) i = 1, 2, . . . , k k ≤ n

Ψ( ⃗x (tf ), tf ) = 0

J = ϕ( ⃗x (tf ), tf ) + ∫
tf

t0

L ( ⃗x , ⃗u , t) dt

ϕ

￼4



1.3.1 Analytical Methods

The original approach for space trajectory optimization was based on analytical 

methods, still used for elementary but useful examples as the Hohmann transfer. 

Sufficient and necessary conditions for optimality usually derive from the calculus of 

variations (COV). In order to derive the conditions for an extremum of (1.4) subject to 

the system (1.1) and the boundary conditions (1.3), a system Hamiltonian is introduced 

as ￼  , so that the necessary conditions become [3]

￼  with boundary condition ￼ (1.5)

￼ . (1.6)

where ￼ . If the final time is a variable to be optimized, a scalar equation is 

added to the system:

￼ . (1.7)

The set of equations (1.1) - (1.7) describes a two-point-boundary-value problem 

(TPBVP), which is solved analytically only in elementary cases, e.g. very low-thrust 

orbit raising even with some perturbations. Generally, those solutions are either very 

challenging or impossible, thus numerical solutions are adopted. Some improved 

analytical solutions rely on Lawden’s primer vector theory, shape-based trajectories [8] 

or Hamilton-Jacobi theory.

1.3.2 Numerical conversion to NLP problems

A numerical solution is a solution obtained not explicitly applying the analytical 

necessary conditions of the COV and, for instance, adjoint variables or the H-J 

equation. It is usually preferred to avoid the use of the necessary conditions, although 

they ensure that the optimal trajectory is a local minimum, are sensitive to terminal 

conditions and can guide to a better solution. The main reasons for the difficulties often 

H = L + λT f

·λ = − ( ∂H
∂x )

T

λ(T ) = [( ∂ϕ
∂x ) + νT ( ∂Ψ

∂x )]
T

t

∂H
∂u

= 0

t = {t0, tf}

[( ∂ϕ
∂t ) + νT ( ∂Ψ

∂t ) + (( ∂ϕ
∂x ) + νT ( ∂Ψ

∂x )) f + L]
t

= 0

￼5



encountered in the indirect approach lie in the lack of robustness in dealing with the 

nonlinearities of the problem and the lack of a systematic means of approximating the 

initial adjoint variables, which furthermore have not the physical significance of the 

state variables and may have discontinuities at the junctions of constrained and 

unconstrained arcs in the solution [3]. Hargraves and Paris (“Direct Trajectory 

Optimization Using Nonlinear Programming and Collocation”, 1987) proposed in 1987 

to remove the adjoint variables as long as discrete control variables were adopted as 

additional NLP parameters, improving the robustness of the solution and halving the 

problem size. Thereby, NLP solvers enable to efficiently solve larger problems.

The majority of optimal space trajectories are determined numerically through 

direct solution methods. They can parametrize in different ways the equation of motion, 

originally defined as function-space constraints; discretizing a continuous problem so 

that state and control variables are known in discrete times is probably the most 

successful approach. A stepwise explicit or implicit rule integrates the equations, which 

thus are satisfied; consequently, the NLP problem consists of a large number of 

nonlinear constraints. Canon et al. (“Theory of Optimal Control and Mathematical 

Programming”, 1970) named this approach direct transcription. Implicit integration 

rule constraints commonly used are the trapezoidal, Hermite-Simpson, higher degree 

rules of the Gauss-Lobatto family or Gauss-pseudospectral method.

Since the 1960s, many direct solutions were developed with the aim of 

converting the continuous problem into a parameter optimization problem and 

substituting the shooting approach with a method where all the free parameters are 

optimized contemporaneously; some of the most implemented direct transcription 

methods are the finite differences and especially the collocation [9] method. Collocation 

involves discretizing the state and control variables in a mesh; in its basic form, the 

state history between mesh points is represented by Hermite cubic polynomials, while 

the control history by a cubic polynomial function of time. The satisfaction of the 

system differential equation is assured by enforcing the equations of motion at the mesh 

points while minimizing the objective function at the same time, thanks to the NLP 

problem solver. This is also supported by the collocation scheme: a collocation point is 

placed at the center of each mesh segment, thus Hermite cubic polynomials are 

constrained to satisfy the set of equations at mesh points as well as between them. If 

￼6



these constraints are satisfied, the system is implicitly integrated. Other constraints, e.g. 

initial or terminal values of the state’s and control magnitudes, can be added. 

Another direct transcription method using implicit integration, but without 

assuming that state histories are described by polynomials, is the Runge-Kutta (RK) 

explicit integration using parallel shooting (Sect. 2.3.1 for insights) [9][10], very 

beneficial for cases where controls are allowed to change more rapidly than the states. I 

adapted this method for the MATLAB computing environment, testing its effectiveness 

with a simple optimization example (Sect. 2.3.2) and then employing it for the asteroid 

mitigation problem studied in this work (Sect. 2.3.3 and 3.4).

Direct transcription methods are advantageous since there are no costate 

variables, reducing considerably the problem size, and since the structure of the 

problem does not have to be specified in detail a priori, enabling to make fewer 

assumptions (e.g. the number of coast/thrust arcs needed, which if not used can be 

automatically removed). Moreover, these schemes are characterized by better 

robustness and the ability to converge to an optimal trajectory surprisingly when the 

initial guess provided to the NLP solver is a “worse” guess, compared to other 

numerical optimization methods. From personal experience, during the current research 

getting numerical solutions to problems has often been an "art" and not always a 

systematic, straightforward, logical process. Sometimes it is recommended to increase 

the number of nodes used or to re-evaluate the bounds of some parameters as a strategy 

to improve the problem solution.

Methods such as collocation have been particularly successful for space 

optimization problems, including low-thrust orbit raising, Earth-Moon transfer and 

interplanetary transfers. However, despite their robustness, a reasonable initial guess of 

the parameters has to be supplied in a discretized form of state and control time-

histories along the optimal trajectory to be found by the NLP solver. Evolutionary or 

heuristic methods can be efficiently used to generate a solution that will be employed as 

the initial guess of a much more accurate method (i.e. a direct transcription method).

￼7



1.3.3 Evolutionary and heuristic methods

Evolutionary and heuristic algorithms are structurally simpler and easier to learn 

than other extant methods, also they are better suited to locate global minima compared 

to conventional optimizers. The Genetic Algorithm (GA) and the Particle Swarm 

Optimizer (PSO) are respectively the most used evolutionary and heuristic methods.

Evolutionary algorithms (EA) optimize numerically a set of discrete parameters, 

relevant to the problem solution, by using mechanisms inspired by biological evolution. 

They randomly generate a population of initial solutions, so that an actual initial guess 

is not needed. Yet, the vector of parameters cannot be as large as it could using a 

nonlinear program. In a spacecraft optimization problem [3], this might be possible if, 

for instance, the trajectory is naturally described by a finite set (e.g. times, magnitudes 

and directions of the thrust for an impulsive trajectory). If the trajectory contains non-

integrable arcs (e.g. low-thrust arcs), a small number of parameters (e.g. departure and 

arrival times for each arc and polynomial coefficients for thrust pointing time-history) 

would be also sufficient to describe it. Another case is using a shape-based method 

(Sect. 3.3.1) [8], where the “shape” of the optimal trajectory is defined by few 

parameters which describe a solution of the system equations of motion; however, the 

thrust pointing history associated can be derived only a posteriori. So, an EA chooses 

the parameters that will satisfy the boundary conditions and will minimize the cost. If 

the result is not satisfactory enough, it might be used as the initial guess of a direct 

method for instance.

The genetic algorithm (GA), developed by John Holland in the 1960s [11][12], 

is a model of biological evolution based on Charles Darwin's theory of natural 

selection. In its simplest form, the parameters are defined as a sequence of numbers,  

representing a chromosome, but usually converted to binary form. Every string can be 

decanted yielding to a cost and corresponding trajectory. At first, an initial population is 

randomly generated and the costs may be really large or even infeasible. The main steps 

yielding to the solution consist of selection, combination and mutation. Through 

selection, the worst sequences are removed, but the élite sequence survives and is kept 

in the next iterations. The remaining sequences are the “parents” of “new individuals”, 

obtained by partially combining two parents’ sequences. Mutation requires that a  

randomly chosen bit be changed for a part of the population. The process is repeated 

until a termination condition, such as a fixed number of iterations or when the cost 
￼8



reaches a plateau. A great advantage of this method is that the objective cannot worsen 

since the best sequence is always preserved, and usually a rapid improvement can be 

experienced since the first generations. Although, those termination conditions do not 

ensure that a minimum has been found nor necessary conditions for optimality have 

been imposed or boundary conditions enforced. A “penalty function” is generally added 

to the cost because the GA (or PSO) has no direct way of accounting for constraints 

(e.g. rendezvous), unless the conditions are met. By including this additional term, the 

solution may be less accurate than in other conventional methods. Thus, GA may 

provide initial guesses for indirect or direct methods capable of more precise solutions. 

Furthermore, multi-objective GAs have been developed for solving multi-objective 

problems, where the purpose is to investigate a set of solutions that singularly satisfies 

the objectives at an acceptable level without being dominated by any other through 

specialized fitness functions and promoting solution diversity [13]. A GA routine is 

provided by MATLAB.

A qualitatively different method is the heuristic method called PSO. This 

method will be further explored in Chapter 2, where some simple examples will also be 

provided, and in Chapter 3, where it was employed for the final problem covered by this 

dissertation.

1.4 Objective

The present research has been developed starting from a very basic knowledge 

of numerical solutions for trajectory optimization, which has been improved 

progressively throughout this work. Simple optimization problems have been solved in 

order to learn step-by-step the orbital mechanics tools needed for solving more 

sophisticated problems. Direct transcription and heuristic methods have been deepened 

and implemented, as well as other required tools such as NASA’s Mice package, 

especially the SPICE routines. The ultimate objective of this dissertation is the full 

simulation of optimal asteroid mitigation (Apophis is the chosen asteroid) using a low-

thrust spacecraft and kinetic impact. The goal is to maximize the perigee radius of the 

deflected asteroid at its closest approach to Earth, and it is reached by optimizing 

important variables such as the date of Earth departure, the direction of the departure, 

the thrust program for the low-thrust motor, and the date of the collision. This 
￼9



continuous optimal control problem has been transcribed into a NLP problem, whose 

initial guess is provided by approximately solving an equivalent PSO program.

This project was developed in collaboration with L. Malagni, with whom I 

worked synergistically on the skeleton of the program before specializing in specific 

tasks. In terms of personal effort, particular attention will be paid to the Runge-Kutta 

(RK) parallel shooting code, developed for the first time in the MATLAB environment, 

and to the Particle Swarm Optimization (PSO) program. While I took care of these 

tasks, my colleague L. Malagni evaluated the use of the State Transition Matrix (STM) 

and implemented it for the asteroid trajectory propagation post-interception. A more 

detailed description of the full program will be provided in the next chapters.

1.5 Thesis Outline

Chapter 2 consists of the description of the numerical optimization methods 

implemented, which are the Particle Swarm Optimization (PSO) and two MATLAB 

NLP solver routines (fmincon, SNOPT) using different numerical integration methods 

(MATLAB ode45 and ode113, Euler step, 4th degree RK rule). The chosen methods are 

analyzed in detail through simple examples, approaching the final problem step by step. 

Chapter 3 is entirely dedicated to the optimal asteroid mitigation problem. At 

first, an overview of space missions towards asteroids, deflection strategies and prior 

work are shown. Then, the Chapter develops by getting to the heart of the problem 

subject of this dissertation, i.e. describing the simulation and the optimization 

parameters involved. Moreover, it is explained how the initial guess for the NLP 

problem was derived and the outcomes. Finally, the results of the global program are 

illustrated and commented on. 

The conclusive chapter is aimed at summarizing the main results obtained from 

this work and proposing possible further steps that could be considered in the future. 

￼10



Chapter 2: Numerical Optimization Methods

This chapter describes in detail the numerical optimization methods this work is 

based on, namely the PSO approach, the use of an NLP solver and the direct RK 

parallel-shooting method. Some applications for each solving method will be shown, as 

they have been developed to familiarize with these algorithms as well as to create the 

building blocks for the final problem.

2.1  Particle Swarm Optimization of a dynamic system

2.1.1  The PSO method

Particle Swarm Optimization (PSO) is a heuristic optimization technique 

developed by Eberhart and Kennedy [14] in 1995. PSO is inspired by the collective 

behavior of simple individuals interacting with their environment and each other. It is 

often referred to as swarm intelligence because it emulates the social pattern of bird 

flockings [3][15][16]. Regarding space trajectories, the interest is generally in 

minimizing a given objective function which depends on the time history of a 

dynamical system, ruled by differential or algebraic equations.

PSO is quite similar to evolutionary computation methods such as Genetic 

Algorithm (GA) (Sect. 1.3.3) in that the system is initiated with a population (e.g. 

￼  individuals) of solutions randomly distributed in a decision parameter space 

or, in some cases, given by the user - if a well-suited population is already known, for 

instance, from a similar case of optimization problem. However, unlike a GA, each 

potential solution i - called particle - is associated with a position vector ￼  and a 

velocity vector ￼ , with which it moves through hyperspace. The optimization 

process seeks the optimal values of ￼  unknown parameters, which constitute the 

elements of the position vector

￼ (2.1)

N = 100

⃗χ (i )
⃗w (i )

n

⃗χ (i ) ≡ [ χ1(i ) . . . χn(i )]T , with i = 1, . . . , N

￼11



constrained to their respective ranges

￼ . (2.2)

The velocity vector, defined similarly to the position vector, identifies the position 

update and is consequently bounded to suitable ranges

￼ . (2.3)

The PSO algorithm keeps track of the coordinates of the particles, which are 

assigned a fitness value derived from the objective function. If the position vector of 

particle i at the jth time step is denoted by  and the particles take a step  

in the parameter space, the new position of the ith particle becomes [15]

￼ (2.4)

with

￼ (2.5)

where  is the step for component k of the ith particle at the jth time step,  is 

the kth component of the position of the ith particle at the jth time step, and c’s values 

represent stochastic weights. ￼  is the “personal” best position, that is the best 

position that the ith particle has ever reached since its very first time step;  is the 

“global” best position, i.e. the best position that any particle of the swarm has ever 

detected so far. Three main components can be distinguished in equation (2.5): the first 

is the “inertia” which for each particle is proportional to its velocity in the preceding 

iteration, so as to drive the particle to move in the same direction in which it had 

previously been moving; the second is “cognitive” term that promotes the direction 

towards its own personal best; finally, the third is the “social” component which attracts 

the particle toward the most satisfying position ever experienced. The importance of 

each component is weighed by the inertial (￼ ), cognitive (￼ ) and social (￼ ) constants, 

assessed by experience or by conventional definitions. In particular, widely used 

definitions are [15][17]

￼            (2.6)

ak ≤ χk ≤ bk, with k = 1, . . . , n

−dk ≤ wk ≤ dk i f dk ≡ bk − ak, with k = 1, . . . , n

⃗χ ( j)(i ) ⃗w ( j+1)(i )

χ( j+1)
k (i ) = χ( j)

k (i ) + w( j+1)
k (i )

w( j+1)
k (i ) = cIw

( j)
k (i ) + cC [y( j)

k (i ) − χ( j)
k (i )] + cS [ ̂y( j)

k − χ( j)
k (i )]

w( j)
k (i ) χ( j)

k (i )

y( j)
k (i )

̂y( j)
k

cI cC cS

cI =
1 + r1(0,1)

2
cC = 1.49445r2(0,1) cs = 1.49445r3(0,1)
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where ￼ , ￼  and ￼ are independent random numbers uniformly 

distributed within the interval [0, 1]. In this work, the three constants were simply tuned 

to ￼  as they were proved effective. Moreover, if a particle hits a boundary, 

the ￼  value is either subtracted or added depending on whether the upper or the lower 

bound has been crossed. 

In general, space optimization problems involve equalities and/or inequalities 

related to the unknown parameters. Equality constraints are more difficult to deal with 

since the degrees of freedom of the problem are reduced by their number. Indeed, 

￼  are the admissible number of equality constraints

￼ . (2.7)

Usually, equality constraints are added to the objective function as a “penalty”:

￼ (2.8)

where the coefficients ￼  are problem-dependent. Instead, inequality constraints just 

reduce the search space of feasible solutions and, so, they are less troublesome; 

inequalities can be treated by assigning a fictitious infinite value to the fitness function 

if at least one of those constraints are not satisfied. Also, the corresponding velocity can 

be set to zero, so that the inertial term does affect the subsequent velocity update. The 

PSO algorithm can be terminated, as for GA, imposing a fixed number of iterations or a 

condition that stops it when the global best has not changed for several iterations.

Therefore, the PSO method is quite robust, simple and is particularly suited for 

locating global minima when the solution space contains many local minima.

2.1.2  Application of the PSO approach to the Hohmann transfer 

problem

Published in 1925, Hohmann’s conjecture concerns the two-impulse elliptical 

transfer between two coplanar circular orbits with the minimum fuel consumption [18]

[19][20]. Given the assumption of two-body-problem and absence of perturbations, the 

transfer is Keplerian and tangent to both of the terminal orbits in its periapsis (￼ ) and 

r1(0,1) r2(0,1) r3(0,1)

{0.65, 2, 2}
dk

m ≤ n

dr( ⃗χ ) = 0 with r = 1, . . . , m

J̃ = J +
m

∑
r=1

αr |dr( ⃗χ ) |

αr

r1
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apoapsis (￼ ). This trajectory is usually optimal because it requires the minimum 

￼ , except in cases of very large ratios of ￼ . 

Simply solving Lambert’s problem by inspection, the semimajor axis can be determined 

as

￼ . (2.9)

The transfer time is half of the Hohmann ellipse:

￼ .            (2.10)

The eccentric can also be easily calculated as 

￼ .            (2.11)

From the conservation of energy equation, the velocities of the transfer orbit at perigee 

and apogee are 

￼             (2.12)

￼            (2.13)

Given the velocities of the initial and final circular orbits ￼  and 

￼ , the required impulses and the perigee and apogee are respectively

￼            (2.14)

and

￼  .            (2.15)

r2

Δvtot = |Δv1 | + |Δv2 | R = r2 /r1 ( ≥ 1)

aH =
r1 + r2

2

tH = π ( a3
H

μ )
1/2

eH =
r2 − r1

r1 + r2

v2
p = μ ( 2

r1
−

2
r1 + r2 )

v2
a = μ ( 2

r2
−

2
r1 + r2 )

vc1 = μ /r1

vc2 = μ /r2

Δv1 = vp − vc1 =
μ
r1

2r2

r1 + r2
− 1

Δv2 = vc2 − va =
μ
r2

1 −
2r1

r1 + r2
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In the case chosen (Figure 2.1) the initial orbit has a smaller radius than the final orbit, 

but the same strategy can be followed if it were larger, adopting “negative” impulses 

(i.e. opposite to the direction of motion) first at apogee and then at perigee to decelerate 

the satellite. 

The equations of motion governing the dynamic system are formulated in polar 

coordinates as

￼             (2.16)

where ￼  is the state vector. The equations are integrated by the MATLAB 

solver ode45 for non-stiff differential equations, which is sufficiently accurate. The 

integration stops when the event of reaching the final orbit occurs.

Five parameters are optimized, i.e. the two ￼  magnitudes, their pointing angles 

(￼  and ￼ ) and the time of flight, according to the following cost function:

￼ with  ￼           (2.17)

·r = vr
·θ = vθ /r

·vr =
v2
θ
r − μ

r2

·vθ = −
vrvθ

r

{r, θ, vr, vθ}

Δv

β1 β2

J = Δv1 + Δv2 + c1 |ceq | ceq = |vr2 | + |vt2 − vc2 | + |r2 − r2* |
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where ￼  is the penalty function multiplied by a constant (￼ ) and represents the 

constraints to be satisfied. While the first two terms in the ￼  expression represent the 

radial and tangential velocity conditions for a satellite that is inserted in a circular orbit, 

the third righthand term is the difference between the final radius derived from the 

integration and the radius chosen for the final orbit.

This simple problem is implemented in normalized (or canonical) units (e.g. 

￼ , where DU is a distance unit and TU a time unit) since the PSO 

solver works better if its optimization parameters are of about the same order of 

magnitude. Velocities are normalized with respect to the circular velocity ￼ . Setting 

￼  and ￼ , ￼ , 100 swarm particles and 500 iterations, the results are 

shown in Table 2.1 - where they are compared with the analytical results - and in Figure 

2.2.

ceq c1

ceq

μ = 1 DU3/TU2

vc1

r1 = 1 DU R = 3 c1 = 200
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Figure 2.2 Hohmann Transfer Orbit resulting from PSO
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Table 2.1 Hohmann Transfer Orbit problem

Variable PSO result Analytical result

0.2247 0.2247

10-5 0

0.1691 0.1691

0.0079 0

time of flight 8.909 8.886

￼β2

￼Δv2

￼β1

￼Δv1



From the comparison, it is clear that the PSO solution is very encouraging; in 

fact, ￼  so that ￼ . The accuracy of the result can be 

improved, for instance, by increasing the number of iterations and adjusting the number 

of particles in the PSO algorithm.

2.1.3  Low-thrust problem of final energy maximization using PSO

The example under investigation is a continuous low-thrust orbit transfer 

problem, where the acceleration (i.e. the thrust divided by the mass of the spacecraft) 

imparted to the spacecraft is constant and with a magnitude equal to 

￼ . The objective is to maximize the final energy of the satellite in a 

specified time, ￼ , starting from an orbit with a radius ￼ . The only 

control variable is the thrust angle (￼ ), measured from the local horizontal. The 

equations of motion that describe the dynamical system are the same as in Sect. 2.1.2 

(equations (2.16)) - so written in polar coordinates and their origin is located at the 

center of mass of the attracting body -, but with the addition of the thrust component:

￼  .            (2.18)

The cost function is formulated as 

￼            (2.19)

where the negative sign is put so that the expression in the parenthesis is maximized. In 

this example, there are no particular constraints to be enforced in the objective function.

The optimal control variable can be parameterized in different ways. The 

strategy adopted is to discretize the trajectory into (e.g. 17) control points, to which a 

ceq ≈ 10−17 J = 0.3939 ≈ Δvtot

A = 0.025 DU/TU2

tf = 16 TU r1 = 1.1 DU

β

·r = vr
·θ = vθ /r

·vr =
v2
θ
r − μ

r2 + Asin(β )

·vθ = −
vrvθ

r + Acos(β )

J = − ( V 2

2
−

1
rf )
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certain ￼  value is associated, and then observe the time trend to approximate it with a 

function; in particular, the following sinusoidal waveform has been used:

￼             (2.20)

where ￼ , ￼ , ￼  and ￼  are the new optimization parameters. Although the function (2.20) 

does not exactly correspond to the optimal evolution of the thrust pointing angle - 

which could be obtained by increasing the number of points of the trajectory 

discretization -, it gives an idea of its trend with fewer parameters, allowing the PSO 

solver to work more efficiently (it works well up to about 30 parameters) as well as 

providing a smoother representation than in the case with a few points.

The programs are written in normalized units and the results are compared in 

Figures 2.3, 2.4 and 2.5. The PSO uses 100 particles and 500 generations.

Figure 2.3 shows the spacecraft trajectory that results from the case using 

equation (2.20) to approximate the thrust pointing angle time-history. The result of the 

other case is essentially the same as that shown in Figure 2.3, but the trajectory is 

segmented due to poor discretization of ￼  (only 17 control points); by increasing the 

number of points the solution approaches that shown.

β

β = (a + bt) ⋅ sin(ωt + ϕ)

a b ω ϕ

β
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Figure 2.3  Low-thrust trajectory for final energy maximization



In Figures 2.4 and 2.5, the left side shows the result derived from linear 

interpolation between the control points, while the right side shows the result obtained 

from using the sinusoidal waveform (2.20) to describe ￼ . In Figure 2.5 the flat segment 

depends only on how the control variable is parametrized. The second case well 

approximates the first one, indeed the objective functions are respectively equal to 

￼  and ￼ .

In order to check the validity of the results, a code has been developed to solve 

the opposite problem, that is to find the minimum final time corresponding to the value 

of final energy previously obtained; indeed, the resulting final time is ￼  

with the energy constraint satisfied to the order of ￼ .

β

|J | = 0.1403 |J | = 0.1396

tf = 15.9998 TU

10−6
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Figure 2.4  Thrust pointing angle trend for final energy maximization using PSO
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Figure 2.5  Spacecraft energy trend
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2.2  Optimization of a dynamic system using NLP solver

Although the PSO solver ensures the achievement of the optimal solution by 

keeping the best swarm score at each iteration, the validity of the solution strongly 

depends on how the objective function has been formulated. In order to force the 

satisfaction of the equations of motion and constraints, it is necessary to introduce a 

nonlinear solver. Such an optimization problem can have extreme accuracy but needs an 

initial guess close to the global minimum. This initial guess can be obtained, for 

example, from a PSO problem.

2.2.1  Nonlinear optimization programs

The main nonlinear programming solver employed is the MATLAB function 

fmincon [21], which finds the minimum of a constrained nonlinear multivariable 

function as

￼            (2.21)

where ￼  and ￼  are vectors, ￼  and ￼  are matrices, ￼  and ￼  are constraint 

functions that return vectors, and ￼  is a function that returns a scalar. Moreover, ￼ , 

￼  and ￼  can be nonlinear functions, whereas the solution ￼ , the lower bounds  

￼  and the upper bounds ￼  can be passed as vectors or matrices. Fmincon is expressed 

in MATLAB as

￼      (2.22)

where ￼  is the result of the objective function specified in an m-file ￼ , ￼  is the 

initial guess vector, ￼  is an m-file that defines the minimization to the nonlinear 

inequalities ￼  or equalities ￼ . Specific ￼ , such as display features, can 

be set.

min
x

f (x) such that

c(x) ≤ 0
ceq(x) = 0
A ⋅ x ≤ b
Aeq ⋅ x = beq
lb ≤ x ≤ ub

b beq A Aeq c(x) ceq(x)

f (x) f (x)

c(x) ceq(x) x

lb ub

[x, f val ] = f mincon( f un, x 0,A, b, Aeq, beq, lb, ub, nonlcon, opt ions)

f val f un x 0
nonlcon

c(x) ceq(x) opt ions
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Among the outputs, it may be useful to visualize the "feasibility", which 

represents the satisfaction of the constraints and therefore must be as small as possible. 

Another typical output that must be small is the "first-order optimality," which is a 

measure of how close the solution is to the optimum.

This routine has the disadvantage of not being able to manage a huge amount of 

parameters (just up to about 400), since the computational speed would slow down a lot 

and it would lose precision. This is the reason why another nonlinear programming 

solver is investigated, namely snsolve [22][23] (i.e. the implementation of the program 

SNOPT in the MATLAB environment) which can handle thousands of parameters. 

SNOPT is a general-purpose routine for constrained optimization, suitable 

especially for nonlinear programs. In particular, SNOPT uses a sequential quadratic 

programming (SQP) algorithm on problems where the goal is to minimize a linear or 

nonlinear function subject to bounds on the variables and sparse linear or nonlinear 

constraints:

￼  

  ￼ ￼ ￼            (2.23)

where ￼ and ￼  are constant lower and upper bounds, ￼  is a smooth scalar function, 

 represents any linear constraints, and  is the set of smooth nonlinear 

constraint functions. In general, the solutions found are locally optimal, and for any 

nonlinear function a gradient should be explicit; otherwise, unknown gradients are 

estimated by finite differences. QP subproblems provide the search direction so as to 

minimize a quadratic model of the Lagrangian function subject to linearized constraints; 

in addition, an augmented Lagrangian merit function is reduced along each search 

direction to ensure convergence from any starting point. On large problems, SNOPT 

can be more efficient if many constraints are active. Indeed, unlike fmincon, SNOPT 

requires relatively few evaluations of problem functions, hence number of iterations, 

and is particularly efficient if the objective or constraint functions (and their gradients) 

are expensive to evaluate. On the other hand, from experience, it can be inferred that the 

initial guess chosen has even a more important role in locating the global minimum than 

using fmincon. 

Minimize J(P)

subject to l ≤
P

f (P)
AL(P)

≤ u

l u J(P)
AL(P) f (P)

￼21



SNOPT can be called from a driver program in MATLAB and the call 

expression is quite the same as for fmincon. SNOPT functioning was further explored 

by my colleague L. Malagni.

2.2.2  Low-thrust problem of final energy maximization using 

MATLAB fmincon routine

The same problem of Sect. 2.1.3 about final energy maximization with low-

thrust in a specified time may be solved through the MATLAB NLP solver, fmincon. 

The equations of motion (2.18) - integrated with ode45 - and the objective function 

(2.19) are still employed, but the control variable ￼  is discretized into 100 points along 

the trajectory, linearly interpolated two by two. The trajectory and the energy pattern 

appear as in Figures 2.3 and 2.5, while the thrust pointing angle trend, shown in Figure 

2.6, is smoother compared to the PSO result with only 17 points but at the same time, 

no prior assumptions have been made on its evolution. In particular, the last segment of 

the plot that tends to zero depends only on how the interpolation has been executed.

β
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Figure 2.6  Thrust pointing angle trend for final energy maximization 
using fmincon and ode45
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A local minimum is found for ￼ , which is quite close to the 

solution found previously (Sect. 2.1.3) so that it might be a global minimum. The 

solution is found faster than in the PSO case since fmincon does not need a termination 

condition, indeed it stops when the constraints are satisfied and a minimum is located if 

the number of iterations or evaluations of the function does not exceed the imposed 

upper limit.

Since fmincon allows the use of more parameters, this problem has also been 

implemented with another integration rule, which is the Euler step rule:

￼            (2.24)

where ￼  is the state vector, ￼  the control vector and ￼  the time-step. Euler's step rule 

replaces the simple call to ode45 to integrate the EOM, leading to a very different 

structure of the problem. Therefore, the equations of motion are formulated in terms of 

the rule (2.24) as if they were constraints to be satisfied. Thus the number of NLP 

optimization parameters increases from 100 to 500, in this example, as four state 

variables computed at each control point are added to the thrust pointing parameters. 

This method is quite rough but it provides a good solution for simple problems where 

the step size is small enough. On the other hand, ode45 is step-variable and much more 

accurate than Euler’s method, which is generally only first-order accurate and may 

require several more simulation time-steps to get the same accuracy. The most 

significant plot to be shown is the thrust pointing angle over time in Figure 2.7; given 

|J | = 0.1395

xk+1 = xk + f (xk, uk)Δt for the (k + 1)th step

x u Δt
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Figure 2.7  Thrust pointing angle trend for final energy maximization 
using fmincon and Euler step



the same number of discretization points, the following graph is much smoother 

because the time step is constant and therefore it is not necessary to describe the 

behavior of the variable between two nodes with, for instance, a linear interpolation. 

The minimum is located at ￼ , with the feasibility of the order ￼  

and the first-order optimality of ￼ .

2.2.3  Fictional asteroid interception problem in 2D coordinates

The problem under consideration introduces the issue of the interception of an 

asteroid by an Earth-launched spacecraft. The program can choose the optimal time-

variables for the launch and interception events - thus waiting for the optimal 

"geometry" of the Earth and asteroid in the heliocentric reference - as well as the 

pointing angles for the low-thrust propulsion of the spacecraft.

The system of units used is based on a two-body problem where the Sun is the 

central body and the reference orbit is a circular orbit whose radius is the mean distance 

f r o m t h e E a r t h t o t h e S u n , t h a t i s o n e a s t r o n o m i c a l u n i t 

(￼ ) [19][20]. Instead, time variables are given in terms of 

time units, so that ￼  is about the time employed by the Earth to revolve around 

the Sun:

￼ .            (2.25)

Velocities are expressed in ￼  (￼ ) and the Sun 

g r a v i t a t i o n a l p a r a m e t e r u s e d a s r e f e r e n c e r e s u l t s e q u a l t o

￼ . No perturbation is yet taken into account 

and planetary orbits are Keplerian. For this initial program, Earth's orbit is assumed to 

be circular - the mean motion is ￼  -, but this approximation is 

acceptable given Earth's small eccentricity (￼ ).

The asteroid that needs to be impacted is non-hazardous and fictional, so its 

semi-major axis and its eccentricity are arbitrarily assigned as ￼  and 

￼ . In this example, the asteroid is at its perihelion at the opening of the launch 

|J | = 0.1419 10−15

10−6

a⊕ ≈ 1 AU ≈ 1.496 ⋅ 108 k m
2π TU

2π TU = 2π
a3
⊕

μ☉
⇒ 1 TU ≈ 5.02 ⋅ 106 sec

AU/TU 1 AU/TU ≈ 30 k m /sec

μ☉ ≈ 1.327 ⋅ 10−11 k m3/s2 ≈ 1 AU3/TU2

n⊕ = 1 rad /TU

e⊕ = 0.0167

a = 2.5 AU

e = 0.2

￼24



window), forming an angle of 30° to the Earth-Sun radius vector at that time. In order 

to propagate the position of the asteroid, the Kepler equation is applied [18]:

￼            (2.26)

where ￼  is the mean anomaly, ￼  is the eccentric anomaly at a time ￼ and ￼  is the 

time required to reach the position corresponding to the angle ￼  from the periapsis. This 

equation is implemented through Newton's method, whereby at the (k+1)th time-step

￼ ￼ .            (2.27)

In particular, the mean anomaly can be rewritten as

￼            (2.28)

where ￼  is the eccentric anomaly at the time ￼  (in this case ￼ ). Given ￼  at a 

certain time ￼, the inverse Kepler problem is solved by calculating the correspondent 

true anomaly (￼) and radius (￼ ) as follows:

￼            (2.29)

￼  .            (2.30)

The equations of motion that govern the spacecraft dynamics are the same 

described in Sect. 2.1.2 (2D polar equations (2.18)), with a constant acceleration of 

magnitude ￼ . Regarding the objective function, priority has been 

reserved to minimizing the time required to intercept the fictional asteroid that might 

pass close to or impact the Earth; therefore, post-interception events are not accounted 

for. However, minimizing the time could result in the asteroid coming even closer to 

Earth rather than intercepting the asteroid in the direction that will deflect it away from 

it. The interception event is guaranteed by a specific constraint on the position:

￼ .            (2.31)

M = E − esin(E ) = (t − tp)
μ
a3

M E t (t − tp)

E

Ek+1 = Ek −
F(Ek) − M

F′￼(Ek)
with Ek=1 = M, F(E ) = E − esin(E )

M = (E0 − esinE0) + (t − t0)
μ
a3

E0 t0 E0 = 0 rad E

t

f r

cos( f ) = −
e − cos(E )

1 − ecos(E )
⇒ f (t)

r =
a(1 − e2)

1 + ecos( f )

A = 0.05 AU/TU2

ceq = (x⎈ − xs/c)2 + (y⎈ − ys/c)2 + (z⎈ − zs/c)2 |t=tI

￼25



This simple problem is solved using the fmincon routine and the Euler step 

integration rule, so that, as previously stated, interpolation between nodes where the 

thrust pointing angles are optimized is not required as it would occur using ode45; 

therefore, also the states become optimization parameters. An initial guess is easily 

found through a converted PSO program, which, instead, employs ode45. The trend of 

the pointing angle is described by a sine function (2.20) whose coefficients constitute 

the optimization parameters along with the launch and interception time; reasonable 

bounds and the shape of this function were established through a trial-and-error process. 

A guess for the states is provided by the output of the ode45 routine for the ultimate 

time variables and thrust pointing angles. Results are shown in Figures 2.8 and 2.9, 

where the trend of the guess is compared to the final result. In particular, in order to get 

the following outcomes, 200 particles and 500 iterations were used in the PSO 

algorithm and the continuous history of ￼  was discretized into 100 points.

Figure 2.8 shows that since the launch window opened, the Earth travels for 

about four-fifths of an orbit before the spacecraft is launched. The flight time is

￼  according to the PSO guess, while it is equal to ￼  in the final 

solution. Observing Figure 2.9, the trend found with the NLP program (green) deviates 

quite significantly from the evolution of the guess (red), especially in the second half, 

and then it converges at the end. In particular, the constraints are satisfied in the PSO 

problem to the order of ￼ , while the ultimate feasibility is about ￼ . It can be 

inferred that the PSO guess is very different from the final solution, but it is "good 

enough" to allow fmincon to converge.

β

9.7815 TU 9.1866 TU

10−6 10−8

￼26

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2
X

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Y

Trajectory

Earth at T0
Earth at Ti
Asteroid at T0
Asteroid at Ti
Sun
S/C trajectory
Interception

Figure 2.8  Fictional asteroid interception 2D: trajectories
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2.2.4  Fictional asteroid interception problem in 3D coordinates

The problem of the 3D interception of a fictional asteroid by a low-thrust 

spacecraft is analogous to that discussed in Sect. 2.2.3. In fact, the chosen fictional 

asteroid is the same as well as the objective function; only the out-of-plane thrust 

pointing angle is added to the optimization parameters. The orbit of the Earth lies in the 

ecliptic, whereas the asteroid orbit has an inclination of 10° with respect to it. In 

particular, in this 3D version, the orbital parameters of the asteroid are shown in Table 

2.1. The motion of the asteroid is propagated through Kepler’s equation and its 

cartesian coordinates are derived through Proper Euler transformation as follows [20]:

 ￼             (2.32)

where ￼ . Furthermore, the spacecraft equations of motion (EOM) are 

formulated both in cylindrical and cartesian coordinates. 

x = r (cos(Ω)cos(θ ) − sin(Ω)sin(θ )cos(i ))
y = r (sin(Ω)cos(θ ) + cos(Ω)sin(θ )cos(i ))
z = rsin(θ )sin(i )

θ = ω + f

￼27

5 6 7 8 9 10 11 12 13 14 15
TIME

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

 [r
ad

]

Control variable

0

Figure 2.9  Fictional asteroid interception 2D: 
thrust pointing angle

β (t) = (− 0 . 5131 + 0 . 0352 ⋅ t) ⋅ s in(0 . 5121 ⋅ t − 0 . 2537 )



The EOM in cylindrical coordinates are formulated as

￼ .                        (2.33)

Using the cylindrical coordinates, it might be possible to exploit the 2D solution as a 

starting point to construct the initial guess of the 3D problem by gradually increasing 

the inclination of the asteroid's orbit. This method is called homotopy and basically 

consists in using an already satisfactory solution to generate a convergent series of 

solutions for nonlinear systems by slightly changing certain parameters of the problem. 

In this case, the homotopy approach was not sufficient as the solution struggled to 

converge; therefore, a PSO program with the same principle as in the 2D example was 

employed. In particular, in the non-linear program, the Euler step method is 

implemented (eq. (2.24)); consequently, the states also are optimization parameters and 

the EOM become constraints in addition to the interception event (2.34) expressed as

￼            (2.34)

·r = vr
·θ = vθ /r
·z = vz

·vr =
v2
θ
r − μ☉r

(r2 + z2)3/2 + Asin(β )cos(γ)

·vθ = −
vrvθ

r + Acos(β )cos(γ)
·vz = − μ☉z

(r2 + z2)3/2 + Asin(γ)

ceq = (x⎈ − xs/c)2 + (y⎈ − ys/c)2 + (z⎈ − zs/c)2 |t=tI
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Symbol Description Value

semi-major axis 2.5 AU

eccentricity 0.2

inclination 10°

argument of periapse 90°

longitude of 
ascending node 

(RAAN)
300°

true anomaly function of time￼f

￼Ω

￼ω

￼i

￼e

￼a

Table 2.1 Fictional Asteroid Orbital Elements 



The results illustrated in Figures 2.10, 2.11 and 2.12 were obtained setting 200 particles 

and 400 iterations in the PSO program, and discretizing the thrust pointing angles with 

100 points in the NLP program using fmincon.
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Figure 2.11  Fictional asteroid interception 3D - cylindrical coordinates case: 
in-plane thrust pointing angle

β (t) = (0 . 023 − 0 . 0247 ⋅ t) ⋅ s in(− 0 . 0722 ⋅ t − 0 . 0722)

Figure 2.10  Fictional asteroid interception 3D - cylindrical coordinates case: 
trajectories



Figure 2.10 shows the trajectory of the Earth, the asteroid and the spacecraft, 

resembling the 2D result found in Sect.2.2.3. Indeed, the launch and interception times 

of the final solution are quite close to the previous outcomes, leading to a flight time of 

￼  - which is not too much higher - and a feasibility of ￼ . The in-plane 

thrust pointing (Figure 2.11 - green) angle has also a trend similar to the 2D one and, 

like the trend of the out-of-plane thrust pointing angle (Figure 2.12 - cyan), deviates 

considerably from the guess (red).

On the other hand, 3D cartesian coordinates are preferred to construct the final 

problem, where the SPICE routines will be employed to find ephemerides, velocities 

and perturbing accelerations of celestial bodies within the Solar System. In this second 

version, a few additional factors increase the complexity of the problem. Firstly, the 

equation of the variation of the spacecraft mass is added to the EOM describing the 

dynamics in 3D cartesian coordinates as follows:

9.6319 TU 10−7
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Figure 2.12  Fictional asteroid interception 3D - cylindrical coordinates case: 
out-of-plane thrust pointing angle

γ (t) = (0 . 0614 + 0 . 0928 ⋅ t) ⋅ s in(− 0 . 0517 ⋅ t − 0 . 0449)



￼            (2.35) 

where the exhaust velocity of the thrusters is set to ￼  

and the maximum thrust available to ￼ , with ￼ . The 

thrust components - ￼ , ￼  and ￼  - are calculated as functions of the pointing angles ￼  

and ￼ :

￼

￼            (2.36)

￼

￼            (2.37)

￼

￼            (2.38)

Secondly, an impulse ￼  delivered by the upper 

stage of the launch vehicle is considered as a contribution to the initial velocity 

conditions; therefore, the corresponding in-plane (￼ ) and out-of-plane (￼ ) pointing 

angles become part of the set of optimization parameters. These modifications bring the 

problem closer to the final one making it more realistic, but the number of variables is 

significant so the snsolve solver is preferred. Results of this version are illustrated in 

Figures 2.13, 2.14, 2.15 and 2.16.

·x = vx
·y = vy
·z = vz

·vx = − μ☉x

r3 +
Tx
m

·vy = − μ☉y

r3 +
Ty

m

·vz = − μ☉z

r3 +
Tz
m

·m = −
Tmax
cexh

cexh = 1 AU/TU ( ≈ 30 k m /s)

Tmax = 0.05 ⋅ m0 m0 = 1 ≡ 100 %

Tx Ty Tz β

γ

Tx =
Tmax x

r
sin(β )cos(γ) +

Tmax

r2v
[(z2 + y2)vx − x (z vz + y vy)]cos(β )cos(γ)+

+
Tmax

r v
[y vz − z vy]sin(γ)

Ty =
Tmax y

r
sin(β )cos(γ) +

Tmax

r2v
[(x2 + z2)vy − y(x vx + z vz)]cos(β )cos(γ)+

+
Tmax

r v
[z vx − x vz]sin(γ)

Tx =
Tmaxz

r
sin(β )cos(γ) +

Tmax

r2v
[(y2 + x2)vz − z (y vy + x vx)]cos(β )cos(γ)+

+
Tmax

r v
[x vy − y vx]sin(γ)

Δv = 0.06 AU/TU ( ≈ 1 − 2 k m /s)

βL γL
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Figure 2.14  Fictional asteroid interception 3D - cartesian coordinates case: 
in-plane thrust pointing angle

β (t) = (− 0 . 0659 − 0 . 0104 ⋅ t) ⋅ s i n (0 . 0864 ⋅ t + 0 . 0137 )

Figure 2.13  Fictional asteroid interception 3D - cartesian coordinates case: 
trajectories



The spacecraft trajectory in Figure 2.13 starts later than the previous case; in 

particular, in the NLP solution, it is launched when the Earth has travelled for about one 

orbit from its perigee. Nonetheless, the flight time is reduced to ￼  (with 

feasibility￼ ) due to the beneficial effect of the initial impulse (optimal values: 

￼ , ￼ ). Thrust pointing angles (Figure 2.14 and 2.15 - 

6.5114 TU

∼ 10−8

βL = − 3.1352 rad γL = 0.8539 rad
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Figure 2.15  Fictional asteroid interception 3D - cartesian coordinates case: 
out-of-plane thrust pointing angle
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respectively green and cyan for the final solution, while red is always used for the PSO 

solution) have a similar pattern compared to the first case, thus analogous observations 

can be inferred. Figure 2.16 shows that the mass of the spacecraft is decreased by about 

33% at the interception with the asteroid, consequently its acceleration augments by 

about 50%. The momentum possessed at the impact is 56% lower than at launch.

2.3  Optimization with a more sophisticated direct solver

Previous examples of optimization problems have employed the MATLAB 

ode45 algorithm and the Euler step method to propagate the spacecraft trajectory while 

satisfying the equations of motion and the constraints. The 3D asteroid interception 

problem is the basis from which to build the final problem, so given the increasing 

number of variables to be handled and the overall complexity, the use of a more 

sophisticated direct solver using Runge-Kutta parallel shooting method is suggested. 

Like Euler’s method, the RK rule involves a fixed time-step but has an accuracy 

comparable to ode45. Some of its advantages are further discussed in Sect. 2.3.1, 

including a favorable reduction in computational cost.

2.3.1 The 3-Step RK Parallel Shooting method

Direct transcription with Runge-Kutta (RK) integration and parallel shooting [9] 

[10] is a direct method that converts the optimization problem into a NLP. It is a 

beneficial choice for low-thrust trajectory optimization problems, which are 

characterized by a more rapid evolution of the controls than of the states. The time-

continuous optimal control problem is discretized into a series of h-long segments, so 

that ￼  and ￼  for ￼  (Figure 2.17). Generic 

nodes ￼ , namely the mesh points, define a segment. Each segment is usually 

divided into multiple integration steps and, in this case, the number of steps (p) is three 

as shown in Figure 2.18. The state variables (x) are approximated by a parameter at 

each node, while the control variables (u) are specified at the nodes, at the center points 

and a t the edges of each in tegrat ion s tep - ￼  for 

￼  and for ￼ .

t0 < t1 < . . . < tN hi = ti − ti−1 i = 1, 2, . . . , N

[ti−1, ti]

νij = u(ti−1 + jh /2p)

j = 1, 2, . . . 2p − 1 i = 1, 2, . . . , N
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In order to get a feasible solution, both the states and the controls must satisfy 

the governing equations. Instead of using explicit numerical integration across the 

problem, implicit integration is used so that the computational cost is less demanding. 

Therefore, an analytical set of constraints is generated integrating forward the state 

variables across each time step and exploiting the five interior control points ￼ , in 

compliance with the equations of motion. The 3-steps adopted formulation performs the 

integration following the 4th order Runge-Kutta rule. Considering for instance the 

leftmost step of a segment - from ￼  to ￼  using the controls ￼ , ￼  and ￼  -, 

the equations of such process can be written as below:

νij

ti−1 ti−1 + h /p ui−1 νi1 νi2

￼35

Figure 2.18  3-step RK parallel-shooting integration rule 
for one time segment [9]

Figure 2.17  DTRK scheme



￼         (2.39)

where ￼  refers to the system of equations of motion of the dynamical system. 

Every following step employs the results provided by the equation (2.39) corresponding 

to the previous step as its initial states and initial controls. Accordingly, the second step 

integrates from ￼  to ￼  using the controls ￼ , ￼  and ￼ , then the 

third one executes the integration from ￼  to ￼  using the controls ￼ , ￼  and ￼  

yielding an approximation of the state (￼ ) at the rightmost node (￼ ) of the segment. 

Nonlinear constraints equations derive from the difference between the 

integrated state at the right node of each time step ￼  (i.e. ￼ ) and the NLP parameter ￼  

representing the state at the left node of the following segment. Thus, these defects 

equation can be expressed as follows:

￼ ,  for ￼ .                       (2.40)

If satisfied, i.e. ￼  for ￼ , the equations of motion are successfully 

integrated across the whole problem using the 4th order Runge-Kutta method.

The advantage of this method lies in the fact that (p-1)-estimates of the state 

vector are computed within each segment but, since these variables are not saved as 

NLP parameters, the size of the problem is significantly reduced without any loss in 

accuracy and actually increasing speed in solution achievement. It is notable that 

system controls are much more frequently specified than system states, therefore 

different timescales typical of low-thrust problems are well represented.

y1
i1 = xi−1 + 1

2p h f (xi−1, ui−1)

y2
i1 = xi−1 + 1

2p h f (y1
i1, νi1)

y3
i1 = xi−1 + 1

p h f (y2
i1, νi1)

y4
i1 = xi−1 + 1

6p h[ f (xi−1, ui−1) + 2f (y1
i1, νi1) + 2f (y2

i1, νi1) + f (y3
i1, νi2)]

f (x, u)

ti−1 + h /p ti−1 + 2h /p νi2 νi3 νi4

ti−1 + 2h /p ti νi4 νi5 ui

x*i ti

x*i y4
i3 xi

Δi = x*i − xi i = 1, . . . , N

Δi = 0 i = 1, . . . , N
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2.3.2  The development of the RK code in MATLAB

In order to implement the RK parallel shooting method in MATLAB, the usual 

problem of final energy maximization in a specified time (￼ ) using low-thrust 

propulsion is used as a simple example, since the validity of the results can be verified 

by comparing them to the previously discussed codes (Sect. 2.1.3 and 2.2.2). 

Examining the variables, the problem consists of four states - ￼  - 

and one control (￼ ). If the RK parallel shooting rule is applied, then each segment has 

two states and two controls at the edge nodes, and five controls at five equally space 

intermediate points; so, considering that the rightmost node represents also the starting 

node of the fo l lowing segment , the to ta l number of var iab les i s 

￼ , given 34 

points. In fact, fewer points can lead to the same accuracy as the previous cases because 

of the structure of the RK parallel shooting method. The constraints are calculated 

through the defects equation (2.40), where the ￼  vector results from integrating the 

equations of motion ￼  (2.18) with the RK rule.

As an initial guess, the solution from the same problem solved by Euler’s step 

method (2.24) can be used; for this purpose, it is sufficient to assume constant controls 

and states within each segment. The resulting trajectories, trends of spacecraft energy 

and thrust pointing angle derived from the fmincon solver are shown in Figure 2.19, 

2.20 and 2.21. The final energy of the spacecraft (2.19) is equal to ￼  with 

about ￼  of feasibility of and ￼  of first-order optimality. The fitness function 

assumes a lower value with respect to the solution achieved with the method of Euler 

steps and this is noticeable also observing the different final position reached by the 

spacecraft, while the trend of ￼  follows that obtained previously but is slightly less 

smooth. Both differences can be improved by increasing the number of points of 

discretization - thus using the snsolve solver - but despite this, an excellent accuracy has 

been achieved with significantly fewer segments. Frequently, nonlinear programming 

solvers - such as those presented in Sect. 2.2.1- work best when the initial solution is 

not too close to the optimum.

tf = 16 TU

{r, θ, vr, vθ}
β

n = (nstates + 6 ⋅ ncontrols) ⋅ nsegments + (nstates + ncontrols) |last node = 335

x*i
f (x, u)

J = 0.1349
10−12 10−8

β
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Figure 2.19  Low-thrust trajectory for final energy maximization 
- fmincon + DTRK
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Figure 2.20  Spacecraft energy trend - fmincon + DTRK
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2.3.3  Asteroid interception program using the RK code

The problem of intercepting the fictional asteroid (referred to in Sec. 2.34) via 

spacecraft impact was solved via the nonlinear solver fmincon and the DTRK method. 

The orbital elements of the asteroid are the same as listed in Table 2.1 and its 

unperturbed motion is propagated thanks to Kepler’s equation (2.26); the eccentric 

anomaly of the asteroid at the time ￼  is assumed to be ￼ , but the mutual angular 

position between the Earth and the asteroid at the time ￼  is not established a priori since 

the Earth ephemerides are obtained from SPICE routines. Additionally, in order to use 

such libraries for celestial bodies, Julian days were introduced, converted into seconds 

or canonical time units as needed. Therefore, given the same optimization parameters 

chosen earlier - directional angles of the initial impulse given by the launcher, thrust 

pointing angles, the launch and interception events - the temporal variables were 

considered from a certain date. For this example, the selected epoch for ￼  is October 

12, 2024 (￼ ).

As aforementioned, the choice of the coordinate system strongly influences the 

optimization process [9]. Although cartesian coordinates are the most intuitive choice 

for a two-body problem, with the origin of the reference system located at the center of 

mass of the main body, they are not generally the most suitable for describing a 

t0 E0 = 45∘

t0

t0
≈ 155.7782 TU
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Figure 2.21 Thrust pointing angle trend for final energy maximization 
using fmincon and DTRK
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trajectory found using a direct transcription and NLP approach. The reason is that NLP 

solvers are more robust and efficient when the state variable parameters change slowly 

and within a limited range. Polar or cylindrical coordinates allow for this slow evolution 

since the radius is always positive and, like angular position, does not change suddenly 

but in a predictable pattern; angular velocities also do not generally change rapidly and 

thrust pointing direction controls are primarily tangential, hence small in size. Thus, 

control parameters maintain, or may even improve, the robustness of the NLP solution. 

On the other hand, the precision in position, velocity and acceleration provided by the 

SPICE routines, which work in cartesian coordinates, is a huge advantage, whereby the 

choice has fallen on the coordinate formulation that conforms to them. This allows to 

avoid the conversion, which would not affect the accuracy of the results but would 

increase the complexity of the problem; moreover, the program at issue was found to 

work well even in the absence of the advantages of spherical or cylindrical coordinates. 

Therefore, the EOM for this problem are expressed as

￼   .            (2.41) 

with ￼ , ￼  with ￼ and ￼ . 

A generic planetary perturbing acceleration (￼ ) can be determined as [19]

￼            (2.42)

where ￼  is the position vector of the vehicle relative to the planet and ￼  is the 

position vector of the planet relative to the Sun. In this program, the differential 

equations governing the dynamical system include perturbations due to the presence of 

the gravitational bodies of Venus, the Earth-Moon system, Mars and Jupiter, whose 
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perturbing accelerations are also computed using SPICE routines. In particular, the 

effect of the Earth-Moon system is considered only when the distance of the spacecraft 

from its barycenter is greater than ￼ , which is about four times the average 

distance between the center of mass of the Earth and the Moon.

The objective function to be minimized is denoted as follows:

￼            (2.43)

meaning it consists of maximizing the momentum possessed by the spacecraft when it 

impacts, which is equivalent to maximizing the momentum transferred to the asteroid. 

This implies that the optimizer can choose whether to prioritize the mass or final 

velocity of the spacecraft, as well as evaluate which launch and interception time 

variables are most functional for the most effective momentum exchange. However, this 

objective compared to the minimization of the flight is not necessarily closer to our goal 

- which is to have the maximum useful effect when the asteroid will move toward the 

closest point of its orbit to the Earth - as the direction in which the impulse is given 

could lead to a large deflection but bring the asteroid closer to Earth. As for the 

boundary conditions, the constraints are given by the defects equation (2.40) and the 

definition of the asteroid-spacecraft missing distance which must be zero at the 

interception (2.34).

In order to formulate an initial guess, as operated previously, a PSO-based 

program has been written, equivalent to the nonlinear program in terms of parameters, 

equations, fitness function, etc… However, this program is different from the other 

examples of asteroid interception because it reproduces more faithfully the nonlinear 

program without assuming a priori a certain function for describing the trend of the 

thrust angles. Indeed, the initial guess strongly influences the result, so in the absence of 

a rigorous method to estimate the evolution of these parameters a linear interpolation 

between the optimal points is the choice with fewer assumptions, although ode45 does 

not always work efficiently with this type of interpolation. The thrust pointing angles 

were discretized only to 14 points each in this example, for a total of 32 optimization 

parameters; the RK parallel shooting method was not applied in the PSO program 

because it would have yielded too many parameters to handle, so that the optimization 

algorithm would not have worked optimally. The PSO algorithm employed 200 

particles and 500 iterations, while 29 segments were used in the nonlinear program so 

that the total number of variables amounted to ￼ , generally quite high for it to be 

0.01 AU

J = − (ms/cvs/c) |tI

n = 564
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handled by the fmincon routine but, instead, the fitness value of x was found with good 

feasibility (￼ ) and first-order optimality (￼ ). Results are shown in Table 

2.2 and Figures 2.22, 2.23, 2.24 and 2.25.

As can be seen from Table 2.2 and Figure 2.22 representing the trajectories, 

launch conditions that allow optimization of momentum exchange occur about two 

Earth years from ￼ , after which the spacecraft travels for about a year and a half before 

impacting it. The flight time is equal to ￼ , but this result is influenced by the 

value set for ￼ . In particular, the presented example has the minimum flight time; 

instead, in the other examined cases the flight time could be greater than ￼  

compared to the result presented.

∼ 10−7 ∼ 10−3

t0
9.5183 TU

E0

1 ÷ 2 TU
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Variable Description Value

- 49.7911°

 45.7506°

launch time 168.1725 TU
October 2, 2026

interception time 177.6908 TU
April 7, 2028

￼γL

￼βL

￼tI

￼tL

out-of-plane ￼  
pointing angle

ΔvL

in-plane ￼  
pointing angle

ΔvL

Table 2.2 Asteroid interception problem - results

Figure 2.22  Fictional asteroid interception - DTRK + fmincon: 
trajectories



From Figures 2.23 and 2.24, it can be noted that the angles are in a range of 

￼  to ￼ ; moreover, their trend is very different from that encountered in the 

previous examples that aim to minimize the flight time. The final thrust pointing angles 

are those associated with the collision, which allow the asteroid to be impacted in the 

optimal direction: the in-plane angle measures just over ￼  while the out-of-plane 

angle is less than half a degree.
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Figure 2.23  Fictional asteroid interception - DTRK + fmincon: 
in-plane thrust pointing angle

169 170 171 172 173 174 175 176 177
time

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

 [r
ad

]

Out-of-plane thrust pointing angle

Figure 2.24  Fictional asteroid interception - DTRK + fmincon: 
out-of-plane thrust pointing angle



Figure 2.25 shows that the mass was reduced by about 48% at impact compared 

to initial conditions, while the acceleration increased by 90%. The momentum at impact 

is 0.4535, which is about 53% lower than the value assumed at the start. Comparing the 

results with the Cartesian case examined in Sect. 2.2.4, obviously here the flight times 

have been penalized in favor of momentum at the interception and acceleration, which 

has undergone a significant gain.

The fictitious asteroid interception problem described above is the most 

complete version that is being presented, while the next chapter will analyze the overall 

problem including a real hazardous asteroid and the second, so far neglected, phase of 

evaluating the deflection resulting from the impact at the closest approach to Earth. 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Chapter 3: Optimal asteroid mitigation using a low-

thrust kinetic impactor

3.1  Near-Earth-crossing asteroids 

Asteroids are remnant debris from the solar system formation process and, 

therefore, potential molecular precursors to the origin of life. Recently more than ever, 

these space objects have arisen the interest of the space community for scientific, 

technology demonstration, human spaceflight and planetary defense purposes. Indeed, 

Near Earth Asteroids (NEAs) represent an opportunity to uncover the mysteries of the 

formation, evolution and composition of the solar system being the easiest celestial 

bodies to reach from Earth, but also a risk since a potential impact could result in 

catastrophic consequences. 

Our solar system bears the marks of asteroids impacts: the spectacular event 

observed in 1994, when the comet Shoemaker-Levy 9 smashed into Jupiter, is an 

example [6][24]. All along with its history, Earth has experienced many ground and air 

impacting events. An asteroid with a diameter of less than 100 m is estimated to impact 

the Earth every several hundred years, while asteroids greater in size pass once every 

10,000 years [25] and may cause local damage, earthquakes and tsunamis. Asteroids 

with a diameter larger than 1 km are considered to be global killers; in fact, 

approximately 66 million years ago a kilometer-sized object hit a gypsum deposit near 

today’s Yucatan, in Mexico, and three-quarters of all species went extinct in what is 

called the K-T extinction event. The largest impact event recorded in Earth’s history is 

the Tunguska event, where a meteor airburst involving a stony meteoroid about only 60 

meters in size in 1908 released tens of megatons of TNT equivalent energy [6].

US Government sensors keep track of fireballs and bolides (i.e. exceptionally 

bright meteors) spectacular enough to be seen over a very wide area. The world map 

shown in Figure 3.1 provides a chronological data summary of those events reported 

between the 15th October 1988 and the 29th September 2021. Each event has a 

corresponding total impact energy and, among those, the Chelyabinsk Event that 
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occurred in 2013 stands out. It involved the largest known natural object (measuring 

about 20 meters in diameter) to have entered Earth's atmosphere since the 1908 

Tunguska Event. The superbolide disintegrated before reaching the ground, yet the 

large shockwave that followed had an estimated total kinetic energy before atmospheric 

impact greater than the energy released from the atomic bomb detonated at Hiroshima. 

Each of these impacts poses risks to our ecosystem and the growing awareness marked 

the urgency for the international community to detect and track asteroids and comets 

that constitute a hazard, as well as test technologies to mitigate these events and thus 

provide planetary protection. 

3.1.1  A planetary defense challenge

Although the probability of a massive collision is low, the potential damage is 

too high to be neglected. Important planetary defense resources have been devoted to 

hazard detection and possible impact interdiction [26]. NASA’s Near-Earth Object 

(NEO) Observations Program channel its efforts in finding, tracking and characterizing 

NEOs. NEOs refer to asteroids and comets with a heliocentric orbit that can bring them 

into Earth’s proximity, that is within 30 million miles of Earth’s orbit. Currently, the 

objective is to identify and define at least 90% of the predicted number of NEOs that 

have a dimension greater than or equal to 140 meters in size and to define a subset 

representative of the entire population. Despite the low chance to hit the Earth for the 

next 100 years, this class of objects could cause concerning devastation and that is why 
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it is the main focus of global interest. The Planetary Defense Coordination Office 

(PDCO) [27] is responsible for coordinating global defense and in particular it provides 

early detection of potentially hazardous objects (PHOs), i.e. a subset of NEOs with a 

predicted orbit that passes within 5 million miles of Earth’s orbit and large enough 

(30÷50 meters) to cause significant damage on Earth. Furthermore, the European Space 

Agency (ESA) has built up the Space Situational Awareness (SSA) system, which 

tasked a specific NEO segment to support the protection of European critical space and 

ground infrastructure from threats by potential asteroid impacts [28]. 

Close-up observations of these objects may drastically increase our knowledge 

about the NEA population and their characteristics, indeed many space missions of 

international engagement have been aiming at asteroid exploration in the last decades. 

In 1999, Deep Space 1 accomplished its primary mission goals of new technologies 

testing flying by the asteroid 9969 Braille and comet Borrelly [4]. In 2001, the NEAR 

Shoemaker spacecraft was the first to successfully orbit and land on an asteroid, the 

near-Earth asteroid Eros [5]. The Dawn spacecraft reached the giant asteroid Vesta and 

the dwarf planet Ceres in 2011, becoming the first spacecraft to orbit two extraterrestrial 

bodies [29]. During the same year, Stardust spacecraft was the first to return 

extraterrestrial material from outside the orbit of the Moon to Earth, in particular a 

sample belonging to the comet Tempel 1, already visited in 2005 by the Deep Impact 

spacecraft which released an impactor on its surface [30]. In 2014, ESA’s Rosetta 

mission was the first to rendezvous with a comet, follow it on its orbit around the Sun 

and deploy a lander to its surface [31]. 

After the rendezvous with a NEO, some spacecraft are aimed to collect a sample 

of the object they encountered and then return it to Earth. The ongoing OSIRIS-REx 

NASA mission [32] has been intended to study the near-Earth asteroid Bennu, in 

particular the spacecraft has captured a regolith sample from Bennu’s surface and in 

May 2021 has started its return back to Earth. Since asteroid samples may record the 

earliest history of our planets, collecting them could be the key to knowing more about 

their natural resources, which in future may be exploited to fuel space exploration. 

Moreover, the asteroid Bennu is classified as one of the most potentially hazardous 

asteroids for its high probability of impacting the Earth late in the 22nd century and 

determining now its characteristics may be essential in the event of an impact 

mitigation mission. 
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Several studies have been investigating how to perform an asteroid deflection 

mission (Figure 3.2). Already in 2004, ESA presented a mission concept called Don 

Quijote [28], testing the capability to deflect the course of an asteroid with a high-

velocity impact which would be monitored by an observing spacecraft. This study 

evolved to a NASA/ESA international cooperation mission called AIDA (Asteroid 

Impact & Deflection Assessment), consisting of two mission elements: the NASA 

Double Asteroid Redirection Test (DART) mission [33] and the ESA Asteroid Impact 

Mission (AIM) rendezvous mission, now redesigned as Hera mission. The AIDA 

mission is the first planetary defense technology demonstration for asteroid impact 

mitigation via a kinetic impactor (Sect. 3.1.2), that is, the modification of the orbit 

through momentum transfer; moreover, it will characterize the physical properties of its 

target and measure the deflection caused by the impact [34]. The target is Dimorphos, 

the small moonlet (160-m) of the asteroid Didymos (800-m), which will be intercepted 

in fall 2022. This near-Earth (65803) binary asteroid system has been chosen because it 

passes close to Earth but it is not an actual threat. In late 2024, Hera will carry two 

CubeSats that will fly around before touching down; their main goals are to map the 

impact crater and measure the asteroid’s mass. 

Among other papers, Housen and Holsapple [35] have proposed a theoretical 

model to predict the momentum transfer efficiency of kinetic impacts, but the AIDA 

mission will provide for the first time measurements of momentum transfer, crater size 

and morphology, and the evolution of an ejecta coma causing a substantial advance in 

the understanding of asteroid impact processes. In particular, the momentum transferred 
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to the target body will be determined using ground-based telescopic observations of the 

orbital period change of Didymos and imaging of the DART impact ejecta plume by the 

Italian LICIACube CubeSat - embarked as a piggyback on the DART vehicle -, along 

with modeling and simulation of the DART impact [36].

3.1.2  Deflection strategies

Asteroids posing a threat to Earth may be deflected off of an Earth-impacting 

trajectory by different strategies. The methods considered by the scientific community 

differ in the type of asteroid-spacecraft interaction [34][37]. The most studied 

techniques are based on the impulsive change in the linear momentum of the asteroid; 

examples are kinetic impactors and nuclear blast interceptors. The former relies on a 

hypervelocity collision with a spacecraft to transfer momentum to the impacted asteroid 

and deflect its motion; the latter consists of a nuclear device that vaporizes part of the 

asteroid's surface when it detonates, producing an impulsive change in velocity due to 

the momentum imparted to the ejected mass. A multi-impulsive change in the linear 

momentum of the asteroid can also be produced by the ejection of surface material, 

such as a mass driver. Other techniques of interest actively produce controlled 

continuous low thrust, e.g. propulsion devices - such as electric/chemical motors and 

solar sails [38] - or gravitational tugs (i.e. gravity tractors). Moreover, there are ways to 

generate passive low thrust via an induced change in the thermo-optical properties of 

the asteroid surface, exploiting the Yarkovsky effect or the emissivity via white paint. A 

controlled thrust can also be achieved through the ablation of an asteroid surface by 

irradiating it with laser beams or solar collectors, which avoid a catastrophic 

fragmentation of the asteroid and eliminate the need to physically land onto its surface 

[25].

The effectiveness of various techniques was assessed by Sanchez et al. [37] 

through a multi-criteria quantitative comparison. This analysis was conducted by 

considering a collection of NEOs with different physical characteristics and employing 

different mitigation strategies evaluated in terms of four figures of merit, i.e. the 

achievable miss distance at Earth, the warning time, the total mass into orbit and the 

current technology readiness level, that is the estimated time to develop the technology 

required to implement a given mitigation strategy. The first three criteria quantitatively 
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express the ease of deflecting an asteroid by a given method and whether current launch 

capabilities allow implementation of that strategy. In particular, the warning time not 

only provides information on how long in advance the impact information is needed to 

respond, but it is also an indication of the time available to repair a failed deflection 

operation. The results of this study show that the solar collector and nuclear interceptor 

options achieve the best results in terms of deflection, mass in space, and warning time, 

but are strongly influenced by the level of technological readiness, which is subject to 

current and future political and economic situations. In contrast, the kinetic impactor 

and low thrust devices both show excellent performance for deflecting asteroids with a 

mass less than 1010 kg and are the most technologically mature, as discussed in the 

National Research Council report (2010). As for the mass driver, it shows an 

intermediate performance between the two pairs.

In addition, when evaluating strategies to deflect an incoming asteroid, it is 

critical to know about the NEO’s size, physical properties, probability of striking the 

Earth and the impact hazard zone. Especially for NEAs defined as potentially hazardous 

asteroids (PHAs), chemical, physical, and mineralogical composition as well as orbital 

properties play a key role in the success of a deflection or sample return mission. 

However, often exhaustive characterization - such as that in situ - may not be feasible 

due to insufficient timing (a few years to a decade), hence causing uncertainty in those 

properties [38]. Short timescales certainly limit some deflection options, whereas 

mischaracterization can significantly alter the effectiveness of a certain strategy. 

Sugimoto et al. [39] studied the relationship between the need to accurately define the 

composition of the target asteroid (i.e. porosity, surface materials, precise shape, etc.) 

and the deflection that a certain method yields. Although there are methods to deal with 

uncertainties in the composition of NEAs (e.g. via the Dempster-Shafer theory, i.e. the 

Evidence Theory [39]), deflection methods that have a strong interaction with the target 

object - e.g., nuclear interceptor or kinetic impactor - are more strongly affected than 

others. The study by Sugimoto et al. compared the effect of such uncertainties on 

kinetic impact, nuclear interceptor, and solar sublimation. Among the three deflection 

methodologies, kinetic impact is superior in robustness and reliability, while nuclear 

interceptor and solar sublimation, although potentially achieving greater deflection 

distances, are more dependent on epistemic uncertainty in the composition of the 

asteroid.
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Among the range of concepts for asteroid threat mitigation, it is to be remarked 

that impulsive methods obtain immediate effects, while the non-impulsive methods may 

take years of operation to accumulate sufficient deflection and thus require the 

hazardous object to be discovered multiple years in advance of its threatened collision 

with Earth [34]. In this light, nuclear devices are probably the only viable option for 

preventing large or detected asteroids from impacting the Earth at short notice; 

otherwise, kinetic impact is generally the preferred strategy. Full-scale experiments to 

test the effectiveness of kinetic impactors have been rare (Sect. 3.1.1); NASA's Deep 

Impact spacecraft adopted it, but the mission was not intended to cause an observable 

orbit deflection. Indeed, its main goal was to investigate the nature of the comet, 

whereas the feasibility of the kinetic impactor technique is going to be demonstrated 

with the AIDA mission (Sect. 3.1.1) which will provide the first quantitative test of 

asteroid deflection. These valuable opportunities need to be complemented by a broad 

numerical treatment of the problem; in fact, future missions focused on asteroid defense 

will aim precisely at directly measuring the momentum transfer imparted by kinetic 

impactors. 

Given current limitations on spacecraft masses (no more than a few tens of 

tons), asteroid deflection from kinetic impacts is considered feasible for asteroids up to 

1 km in diameter. Assuming that the spacecraft (￼ , ￼ ) impacts in line with the center of 

mass of an asteroid (￼ ), it will transfer all of its momentum ￼  to the body, 

changing the asteroid's translation velocity by 

￼  .  (3.1) 

Additional momentum transfer occurs in the cratering process, as material is ejected 

beyond the escape velocity. This additive effect to the momentum transfer can be 

expressed as [36][34][35]

 ￼  .  (3.2)

In the collision, the total momentum of the material is conserved. Therefore, the change 

in the asteroid's momentum is the sum of the momentum of the impactor and the 

momentum contained in the material ejected permanently backward from the impact 

site. The amount of ejected material is typically many times the mass of the impactor 

and has initial ejection velocities greater than the escape velocity. Consequently, the 
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momentum transferred to the target asteroid can be significantly greater than the 

momentum of the incoming spacecraft. The ratio of the momentum imparted to the 

asteroid to the momentum of the impactor (￼ ) is commonly referred to as ''momentum 

multiplication factor'' and is actually a measure of the deflection efficiency of the impact 

[35]. The ejecta of the crater are the source of ￼  which depends on the properties of the 

impactor and the size and composition of the asteroid. The mechanics of mass ejection 

in an impact is extremely complicated and not yet well known; in particular, for small 

events, the ejection process is driven by the strength of the surface material, while for 

larger impacts the gravitational field of the asteroid determines the outcome. The basic 

approach is to sum the momentum of all ejecta that escape the asteroid, considering that 

if the material falls back on the asteroid there is no contribution to the momentum, 

whereas if it escapes the asteroid's gravitational field it is necessary to estimate its 

velocity and direction at infinity. The ejecta acts like a rocket engine, pushing the 

asteroid away; this availability of “free thrust” may seem an advantage in terms of 

maximizing the deflection from the asteroid’s path, hence the resulting missing 

distance, but it is important to verify that changing the asteroid's path will not expose 

the Earth to a new impact hazard after a certain period of time.

The kinetic impactor technique is the strategy chosen in this work, where the 

target is a PHA (Sect. 3.2.2). Quantifying the change in the trajectory of an asteroid 

post-impact is relevant both in terms of studies of asteroid evolution and in preventing a 

potential asteroid impact on the Earth. Therefore, a trajectory optimization problem 

must be numerically solved to obtain feasible trajectories for spacecraft equipped with 

the chosen propulsion system. However, at first approximation, the ejecta process will 

not be taken into account as a contribution to the momentum of the asteroid, but future 

work may certainly develop this aspect based on literature.

3.1.3  Prior work

Optimal control theory has frequently been applied to the problem of PHO 

interception and deflection. Indeed, a numerical study of kinetic impact deflection can 

provide guidelines for the design of kinetic impact missions, including pre-impact 

reconnaissance of a threatening asteroid. In addition, performing numerical simulations 

β

β
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for a range of conditions can help define the current limitations of the kinetic impact 

approach. 

A hazardous asteroid deflection mission includes two consecutive phases, the 

rendezvous or interception phase and the deflection phase. Previous numerical studies 

of kinetic impact deflection have focused on simulating impacts, such as the one 

envisioned by the AIDA mission (e.g. Cheng et al. [34]), at relatively low velocities (∼6 

km/s) and using modest impactor masses (300-400 kg). In particular, the work of Syal 

et al. [40] attempted to address the limitations of the kinetic-impactor approach by 

modeling asteroid bodies and properties in more detail and using impact masses at the 

limit of the current launch vehicle technology (1000-10,000 kg).

However, the majority of published articles in this field focus on deflection 

strategies and analysis of mitigation effectiveness (e.g. Peloni et al. [38], Sanchez et al. 

[37], Gibbings et al. [25]). Whereas, few have focused on the optimized design of the 

low-thrust interception trajectory that is a prerequisite for successfully implementing 

potentially dangerous asteroid deflection strategies. Among them, Conway has 

successfully solved the problem of such low-thrust trajectories aimed at minimizing the 

time-of-flight [6] or maximizing the deflection imparted by the spacecraft to the asteroid 

[41], via collocation method and nonlinear programming. Instead, relying on analytical 

formulae derived from proximal motion equations, Vasile et al. [42] addressed the 

problem of increasing the minimum orbit intersection distance of the asteroid due to an 

impact with a spacecraft in order to establish the optimal direction of the deviating 

impulse transferred to the asteroid. Casalino and Simeoni [43] also addressed the 

problem of optimizing a kinetic impact mission to deflect an Earth-crossing asteroid; 

they applied an indirect method based on optimal control theory and numerical 

integration of the spacecraft and asteroid equations of motion, providing an exact 

solution of the dynamical model. The considered objective is the maximization of the 

miss distance at the closest approach of the asteroid to the Earth. Furthermore, a 

procedure is developed to find mission opportunities considering both ballistic and 

electric trajectories, given a certain departure date. The results, in particular, show that 

electric propulsion is more advantageous.

The design of low-thrust rendezvous trajectories generally requires the solution 

of an optimal control problem, which has no general closed-form solution; moreover, 

the problem formulation depends on which deflection strategy is chosen. A versatile 
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approach for rapid design and optimization of the low-thrust rendezvous/intercept 

trajectory, applicable to future asteroid deflection missions, has been developed by Li et 

al. [24]. The proposed problem implements a shape-based method in combination with 

the genetic algorithm (GA) as the initial guess to the next most accurate optimization; 

then, the low-thrust trajectory optimization problem, converted into a discrete nonlinear 

programming problem, can be solved using the pseudospectral Radau method via 

already developed nonlinear optimization (NLP) algorithms. In particular, sequential 

quadratic programming (SQP) - exploited in solvers such as snsolve (Sect. 2.2.1) - is 

used to solve the nonlinear programming problem and obtain the optimal trajectories 

sought.

Having provided some examples of the state of the art in optimizing low-thrust 

trajectories for Earth-crossing asteroid interception and the deflection strategies 

currently under study, here follows an in-depth discussion of the project carried out by 

this thesis. The originality of this work lies in not selecting a priori what is more 

functional to optimize, but the optimal solution is generated from a tradeoff between 

impacting the asteroid as early as possible, impacting with a high velocity, impacting 

from the optimal direction, and impacting with a large enough mass to significantly 

affect the asteroid, starting from as few assumptions as possible. The explanation of the 

objective and how it was determined will be further analyzed in Sect. 3.2.3. Moreover, 

this research takes inspiration from the Master's thesis research of Jacob Englander 

(2008) [44], who had already addressed this issue in a different way. His conceptual 

work was revisited for developing the final program from scratch. For instance, 

Englander used MATLAB GA along with the 2D shape-based trajectory approximation 

(Sect. 3.3.1) to find a suitable initial guess for the accurate DTRK solver, whereas the 

present work explored the use of PSO for that purpose. Also, the DTRK method is 

developed here in MATLAB. Furthermore, the final problem applies also a piece of the 

code developed by another Master student, Andrew Koehler, for his project. From its 

code, the propagation of an asteroid's trajectory was extrapolated, including the change 

in coordinates from heliocentric to planet-centric flight and vice versa, if the asteroid 

enters or leaves a planet's sphere of influence. 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3.2  The simulation of asteroid mitigation

This section discusses in detail the final complete problem of asteroid mitigation 

using a low-thrust kinetic impactor. First, the scenario is presented, then the asteroid 

taken as an example is introduced, and finally, the objective is thoroughly described. 

The previous sections introduce the parameters, equations, constraints, integration 

methods, and solvers as building blocks of the final program, and are key to interpreting 

it. 

3.2.1  The scenario

The problem of asteroid mitigation through a low-thrust kinetic impactor is 

depicted in Figure 3.3 (note that it is not in scale). The scenario consists of two main 

parts, the spacecraft trajectory toward a hazardous asteroid and the deflected motion of 

that asteroid after its interception. By setting a time ￼  of initial observation of the 

asteroid, the program can choose the best time (￼ ) to launch the spacecraft; including ￼  

as an optimization parameter allows to wait for the geometry between the Earth and the 

asteroid corresponding to a future optimal at ￼ , which is also to be optimized. 

The upper stage of the launch vehicle propels the spacecraft out of low Earth 

orbit with an initial impulse (￼ ), burning all its fuel. The ￼  magnitude is 

t0
tL tL

tI

Δ ⃗v L Δ ⃗v L
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Figure 3.3 Scenario of the final problem 



constant and its direction angles ￼ , in-plane, and ￼ , out-of-plane, are values to be 

optimized. Then, the spacecraft switches to low-thrust electric propulsion to travel to 

the asteroid, assuming that the empty launch vehicle upper stage is carried along to the 

target asteroid to provide additional impact mass. 

Imagining to follow the spacecraft from the first leg of the mission to the impact 

of the target, its motion is described by equations (2.41), integrated using the RK 

parallel shooting method (Sect. 2.3.1). The spacecraft is provided with a low-thrust 

propulsion system, with a fixed maximum thrust magnitude ￼ , an 

exhaust velocity of ￼  and in-plane (￼ ) and out-plane ( ￼ ) pointing angles 

to be optimized along the trajectory.

When the spacecraft impacts the asteroid, it transfers momentum, yielding a 

small change in the asteroid velocity, ￼ . Using a modified code based on A. 

Koehler’s (Sect. 3.1.3), the asteroid motion is propagated with MATLAB ode113 solver 

- similar to ode45 in operation but it can obtain a solution faster and with fewer function 

evaluations - starting from the interception time (￼ ), and stops if the event of entering 

the Earth's sphere of influence occurs within a certain time period (e.g. three years). The 

asteroid equations of motion are

￼    (3.3)

where the perturbing accelerations - defined by equation (2.42) - are generated 

respectively by Venus, the Earth-Moon system (when the spacecraft is farther than 

￼  with respect to the system’s barycenter), Mars and Jupiter. The positions and 

velocities of asteroids and planets - including Earth - are found through SPICE routines 

as usual. The State Transition Matrix (STM) is then used to find the perturbation in 

position (￼ ) and velocity (￼ ) of the asteroid as a result of the initial impulse (￼ ) 

βL γL

Tmax = 0.05 ⋅ ms/c,0
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δ ⃗v I

tI
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provided by the spacecraft, at the time of the entry to Earth’s sphere of influence (￼ ). 

The STM is expressed as [18]

￼ ￼ ￼  (3.4)

where ￼  and ￼  are respectively the perturbation in position and in velocity 

experienced by the asteroid at the impact site, and the matrix is time-dependent. In 

particular, the ￼  is calculated assuming that the occurred impact is analogous to an 

inelastic collision, then considering the conservation of the total momentum:

￼  .  (3.5)

 Since ￼ , the perturbed position and velocity vectors at a time ￼ can be found as

￼  (3.6)

with

￼   (3.7)

￼   (3.8)

￼  (3.9)

￼            (3.10)

￼            (3.11)

￼            (3.12)
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￼                       (3.13)

where ￼ , ￼  and ￼  are the asteroid orbital elements at ￼ , ￼  at ￼  and ￼  

are the universal functions described by Battin [18]. The code implementing the STM 

has been developed by L. Malagni, as aforementioned. The resulting ￼  and ￼  are 

added to the position and velocity of the asteroid at the time ￼ , then the integration of 

its EOM continues according to the modified Koehler’s code, particularly identifying 

the asteroid closest approach to Earth (at ￼ ). Maximizing the perigee radius of the 

asteroid is the goal of the problem and will be further investigated in Sect. 3.2.3.

To summarize, the optimization parameters are the pointing angles of the ￼  

provided by the upper stage launcher vehicle (￼  and ￼ ), the continuous thrust pointing 

angles (￼ , ￼ ) of the spacecraft propulsion system, the launch time (￼ ) and the 

interception time (￼ ). The initial time ￼  is set to a specific date, chosen by knowing the 

predicted date of the closest approach of the unperturbed asteroid to Earth. The 

constraints that the NLP solver must satisfy relate to the defects equation (2.40) and the 

interception event (2.34), where the asteroid and the spacecraft position must match.

 

3.2.2  Apophis

The potentially hazardous asteroid chosen for the final problem is (99942) 

Apophis (2004 MN4), discovered on July 19th, 2004 by astronomers Roy Tucker, David 

Tholen, and Fabrizio Bernardi at the Kitt Peak National Observatory in Tucson, Arizona 

χ = a(E − Eo)

a e E t = tSoI E0 t0 = tI Uk( χ, a)
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tf
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Figure 3.4  Apophis asteroid and Earth at the time of 
the asteroid's closest approach



[45]. It is a near-Earth asteroid (NEA) more than 1000 feet (over 300 meters) in size, 

with a mass of ￼  kg and it passes close to Earth every seven years. 

Upon its discovery, Apophis was briefly estimated to have a 2.7% chance of 

impacting the Earth on April 13th, 2029 which was the highest impact probability ever 

recorded (Figure 3.4 - the blue dots are man-made satellites; credit: NASA/JPL-

Caltech). Later astronomical observations and measurements predicted that the asteroid 

will harmlessly pass about 19,800 miles (31,900 kilometers) from our planet’s surface 

[46], appearing brightly to the naked eye for several hours as its moves rapidly across 

the sky, over the Atlantic Ocean at its closest approach. Although it is considered a safe 

distance, Apophis will pass close enough to be between Earth and our Moon; in 

particular, the flyby will be within 0.1 times the lunar distance which is only a few 

Earth radii above the Earth's surface, so it will also travel within the orbits of some 

spacecraft revolving around the Earth [47]. An Earth encounter was also supposed to 

happen in 2036, but a research refinement in 2013 confirmed that in that year Apophis 

will quietly pass at a distant 0.388 au (about 150 lunar distances) from Earth [48]. There 

is still an impact probability in 2068, which is estimated to be low; in particular, the 

uncertainties that shift probabilities are dominated by non-gravitational perturbations 

such as the Yarkovsky effect and solar radiation pressure [49].

Smaller asteroids, on the order of 10 meters, flying by Earth at a similar distance 

are much more common to spot, whereas asteroids the size of Apophis are rarer and do 

not pass this close to Earth as often. Therefore, Apophis flyby is an incredible 

opportunity for science, in order to learn about an asteroid’s interior and to help gain 

important scientific knowledge that could one day be exploited for planetary defense. 

Apophis has been classified as a "Potentially Hazardous Asteroid" (PHA) by the 

International Astronomical Union (IAU) Minor Planet Center [47][49]. Even though 

Apophis is no longer a threat to Earth, it is a valid example of a PHA to study. The final 

problem focuses on its closest approach on April 13th, 2029 with the goal of increasing 

its missing distance. This requires only a very small change in Apophis' actual orbital 

elements, since the 31900 km missing distance is the distance Earth travels in 18 

minutes along its orbit. Apophis’ orbit elements for the date of its closest approach to 

the Earth are given in Table 3.1.  

2.1 ⋅ 1010
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3.2.3  The objective function

If a dangerous object was crossing Earth’s trajectory, the main focus would 

intuitively be the prevention of the catastrophic impact intercepting the asteroid at the 

earliest possible time [6] and then applying a countermeasure that requires its deflection 

or destruction (Sect. 3.1.2). However, the ideal objective function of the optimal control 

problem under consideration is not a simple function of the path as it would be 

minimizing the interception time or maximizing the spacecraft final mass or velocity. 

The actual focus should be on deflecting the asteroid in the direction that most rapidly 

moves the impact point off of the surface of the Earth. In this regard, in his early work 

[41] Conway was interested in the maximization of the deflection magnitude, calculated 

using the state transition matrix (STM); this is not the best approach since, if the closest 

approach were near the eastern edge of the Earth, a large deflection that moves its 

location westward, but still on the Earth, is not as useful as a small deflection that 

moves it further east and off the Earth's surface (Figure 3.5). A slightly different idea 

was investigated by Englander and Conway (Sect. 3.1.3) [44] and is implemented in 

this work, that is maximizing the distance of the asteroid impact from the center of 

Earth but in terms of the difference between the “unperturbed” asteroid’s perigee radius 

(￼ ) and its value post-interception (￼ ). The STM method is also applied 

(Sect. 3.2.1). Also Vasile and Colombo [42], among others, considered the problem of 

optimal impact strategies to deflect potentially dangerous asteroids, but by maximizing 

the minimum orbit intersection distance between the asteroid and the Earth, so 

differently than maximizing the asteroid’s closest approach distance on the projected 

date of the impact.

rp, unpert rp, pert
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Symbol Description Value

semi-major axis 0.9214 AU

eccentricity 0.1957

inclination 3.42°

argument of 
periapse

126.62°

longitude of 
ascending node 

(RAAN)

203.79°

true anomaly 232.78°￼f

￼Ω

￼ω

￼i

￼e

￼a

Table 3.1 Apophis Orbital Elements at Epoch April 13th, 2029 



Therefore, the cost function of the problem, formulated as an NLP, is

￼  .            (3.14) 

3.3  PSO solution as the initial guess for a direct transcription 

solution

Given the overview of the problem outlined above, this section will go into the 

initial guess sought for the final NLP program. 

3.3.1   Initial guess for the NLP problem

The DTRK method employed within the final NLP problem is effective for 

computational speed and robustness. However, the problem of the asteroid deflection is 

complex and thus a valid initial guess is not obvious. Creating an initial guess means 

obtaining a vector containing the discrete-time histories of the state and control 

parameters, which are necessary for solving NLP problems by direct transcription 

methods [9]. As a general guideline, a "reasonable candidate" satisfies, at least at the 0th 

iteration, the EOM so that the initial nonlinear defects are all very small. It should also 

satisfy all constraints, initial and terminal, and boundary conditions related to the upper 

and lower bounds of the parameters of the NLP problem. The inherent difficulty in 

J = rp, unpert − rp, pert
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Figure 3.5 Deflection of the closest approach to Earth



finding such an initial guess makes evolutionary or heuristics methods the ideal 

candidates. 

Prior works (Sect. 3.1.3) investigated, for instance, the use of GA combined 

with a shape-based method, which did not succeed in locating a global minimum for 

this problem, emphasizing that the solution is very sensitive to the initial guess and 

multiple locally optimal solutions exist. The shape-based approach approximates the 

shape of a low-thrust trajectory typically with a 5th or 6th
 
degree inverse polynomial in 

terms of polar or cylindrical coordinates; this method works very well for example for 

rendezvous missions [8]. For the case of this dissertation, it may not be much suited 

since it requires detailed knowledge of the states at the initial and terminal conditions 

(e.g. interception point).

The strategy finally adopted was the conversion of the NLP problem of asteroid 

mitigation into a PSO problem (Sect. 3.3.2). The PSO solution is then provided as an 

initial guess to the NLP problem. However, the DTRK approach cannot be adopted 

within the PSO solver because it implies a large number of controls, so the total amount 

of parameters would be too high for the PSO optimizer to work effectively unless a few 

segments are used for trajectory approximation, which would lead to poor accuracy. 

The Sims-Finlayson method [50] was also examined; it basically involves dividing of 

the trajectory into “legs” and “control nodes”, similarly to the RK parallel shooting 

approach, and a “match point” is associated with each leg. The trajectory is propagated 

forward in time from the previous control node of the leg to the match point and 

backward from the following control node of the leg to the match point. This multiple 

shooting technique with intermediate control nodes is simple, has robust convergence 

and can handle many intermediate encounters. This approach would not really solve the 

problem of handling several parameters, indeed it is better recommended for NLP 

solvers. Thus, the choice falls into the MATLAB function ode45 for the integration of 

the equations of motion, so that the tradeoff between the number of points of the 

trajectory discretization and the smooth operation of PSO is reasonable.

Another possibility for an initial guess is the homotopy approach (Sect. 2.2.4) 

[6]. This method is less robust compared to the other presented. However, from 

experience, an initial guess that allows the optimizer to converge to an optimal 

trajectory may be exploited in other cases with different initial and/or terminal 
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conditions from the desired case; therefore, new optimal trajectories can result starting 

from the converged solution as the new initial guess. This approach might be applied in 

future work for analyzing how the solution evolve if one or more of the fixed 

parameters change.

3.3.2  Conversion to a PSO problem

The PSO methodology has been proved effective and reliable in optimizing 

space trajectories, in fact it does not require either differentiability or continuity of the 

objective function, does not need any initial guess to generate the solution, is accurate 

in locating global minima and is intuitive to program. Everything mentioned above 

renders it a good choice for generating an initial guess for the complete NLP problem. 

An equivalent PSO problem of asteroid deflection is thus needed; in particular, two 

different versions were developed. Of course, in both of them, the spacecraft dynamics 

is governed by the equations of motion (2.41).

At first, only the spacecraft trajectory until the interception event was modeled 

and the objective function was focused on maximizing the momentum transfer from the 

spacecraft to the asteroid at the impact, in terms of maximum spacecraft momentum at 

the collision time

￼            (3.15)

where ￼  is the interception constraint (eq in Sec. 2.2.3) and ￼  is tuned to 500. This 

version is derived from the PSO program used to develop an initial guess for the 

asteroid interception problem described in Section 2.3.3, which was adapted for the 

asteroid Apophis. Incorporating the initial guess thus constructed into the full program 

resulted in a convergent solution (using the SNOPT solver).

The second PSO version was programmed as a complete conversion of the full 

NLP problem, including the objective function (3.14) which becomes

￼            (3.16)

where ￼  is the interception constraint (2.34) and ￼  is set to ￼ .

J = − ms/c,Ivs/c,I + c1 |ceq |

ceq c1

J = (rp, unpert − rp, pert) + c1 |ceq |

ceq c1 104
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The asteroid mitigation problem is a constrained optimization problem, and 

despite its simplicity and efficiency, the PSO technique can experience difficulties when 

dealing with the constraints of the problem, particularly equality constraints. Especially 

in the case of the more complex version using equation (3.16) as the fitness function, 

the coefficient that multiplies the equality constraints in absolute value must be chosen 

carefully to assess how much weight that term has with respect to the one representing 

the change in the perigee radius of the asteroid at ￼ . Indeed, a small value may lead to 

excessive constraints violations, whereas a high value yields an ill-conditioned problem. 

In this work, ￼  was selected through a coarse but satisfactory trial-and-error approach.

On the other hand, inequalities are here handled similarly as it is explained in 

Sect.2.1.1: a high value is assigned to ￼  if an inequality constraint is violated so that, 

among the other particles, the one corresponding to such a value will be discarded in 

favor of a more suitable “global best”, which is saved until a better solution is 

encountered by some particle. This approach has been adopted in order to help the 

algorithm to consider as optimal only feasible values of ￼  and therefore to avoid the 

above-mentioned consequences - especially the one for which the first term of the 

expression (3.16) takes over the second. This inequality condition was selected by 

reasoning on orders of magnitude, i.e. assuming a ￼  of the order of 

￼  and that the ￼  between interception (￼ ) and asteroid reaching 

perigee (￼ ) is of the order of ￼ , the STM could result in a deflection of the order of 

￼ . Consequently, an “if statement” was placed setting ￼  to ￼  when the first term 

of equation (3.16) resulted greater than ￼  or positive - so that the perturbed 

asteroid would pass even closer to Earth. Furthermore, another "if statement" in the 

code prevents absurd values of ￼  by bypassing the integration of ode45 and setting 

the variables of final position and final spacecraft mass to zero, so that the interception 

constraint is not satisfied and a value destined to be discarded is associated with J. 

3.3.3  PSO solution

The optimization parameters of the PSO program are the in-plane and out-of-

plane thrust pointing angles, the ￼  pointing angles, and the time variables 

corresponding to the launch and interception events. The launch window opens (￼ ) on 

January 1, 2026 (￼ ). Other dates for ￼  (e.g., January 1, 2023) were 

tf

c1

J

J

δv0

[10−6, 10−5] k m /s Δt tI
tf 10 TU

102 k m J 104

1000 k m

tL > tI

ΔvL

t0
≈ 163.4543 TU t0
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tested to assess whether a different and/or better result could be achieved. Yet it was 

observed that the spacecraft would have waited about the same date for the launch. 

Therefore, it is assumed that a kinetic impactor is available at the time ￼ ; a warning 

time of at least 1 to 2 years is typically required for smaller asteroids, hence a departure 

in 2026 is preferred. In general, having available time could also enable a previous 

mission to study the asteroid up close and send information back to Earth, greatly 

increasing the chance of success of an asteroid mitigation mission.

The number of particles of the population is set according to the complexity of 

the problem to be optimized [15]. Generally, a greater number of particles can better 

handle several unknown parameters, since a higher density of particles allows the 

search space to be better explored, enhancing the probability of detecting the global 

optimal solution when multiple local minima exist. In the cases examined, the former 

used 100 particles, while the latter used only 30 particles because the process was 

facilitated by inserting the best particle resulting from the first version - containing the 

optimal parameters to maximize the momentum exchanged at the intercept - into the 

population of the PSO algorithm of the second version, hence reducing the processing 

time. The results of the two versions of the program are compared in Table 3.2.

It can be observed that the interception event occurs with a few days difference 

in the two cases, while the launch event happens with a little more than two months 

t0
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Variable Description 1st version
(momentum max)

2nd version
(deflection max)

- 138.5641° - 52.6949°

104.2669° 25.4336°

launch time 171.7158 TU
April 26, 2027

172.9019 TU
July 4, 2027

interception time 176.8390 TU
February 18, 2028

176.4785 TU
February 21, 2028

0.0672 AU/TU2 0.0609 AU/TU2spacecraft 
acceleration at ￼tI

￼0.74 ms/c,0￼ms/c,I

￼tL

out-of-plane ￼  
pointing angle

ΔvL

￼βL

￼0.82 ms/c,0

￼as/c,I

spacecraft mass at 
￼  (￼ )tI ms/c,0 = 104 kg

￼tI

￼γL

in-plane ￼  
pointing angle

ΔvL

Table 3.2 Apophis mitigation problem - PSO results



difference so that in the first case the flight time will last longer. The directional angles 

of the impulse given by the upper stage of the launcher are very different, but indeed at 

launch the Earth is located at a different point with respect to the asteroid in the two 

cases. The thrust pointing angles along the trajectory are discretized at 14 points, hence 

their trends are not smooth, therefore not very indicative, and only the results from the 

second version were chosen to be reported (Figure 3.6).

The number of iterations also plays a role in achieving the optimal solution 

(here 100 iterations were used). Generally, increasing their amount can only yield an 

unchanged or improved result, given the nature of particles behavior. However, given 

the complexity of the “complete” PSO program and the inherent difficulty of the PSO 

algorithm in handling equality constraints, a worsening of the solution, involving a 

huge distance between Earth and Apophis, has also been experienced. This result is 

insignificant since the constraint is violated and thus the interception event does not 

even occur: the second term of expression (3.16) is relaxed in favor of the first one, 

which is more easily prioritized by the PSO algorithm. In addition to the 

countermeasures explained above (Sect. 3.3.2) - such as inequality constraints and a 

proper tuning of the constant ￼  -, a further modification can be made to the program 

and, in particular, to the optimizer algorithm, thus solving this drawback. It consists in 

inserting the same "if statement" of inequality related to the feasible deflection range 

(￼ ) in the calculation of the function ￼ , so that when it is not satisfied the 

inertial term of the particle velocity (eq. (2.5)) becomes zero and the particle tends to 

pursue only the directions of "personal best" and "global best". This modified version 

employed an increased number of particles (100) and iterations (200), setting the value 

of the constant ￼  to ￼ . This value is not too high considering that the real deviation 

c1

[−1000, 0] k m J

c1 105
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Figure 3.6 Apophis mitigation problem - PSO program: thrust pointing angles



has been expressed in kilometers, while the constraint is in astronomical units. The 

perigee deflection value closest to the NLP program result (Sect. 3.4) was obtained from 

this last modified version: the solutions are ￼  in the first case and 

￼  in the second. In fact, the ￼  are respectively of the order of ￼  

and ￼ , reflecting that the last version is closer to the searched optimum. The pointing 

angles of the ￼  differ by 2°￼ 3° from one other, also the time variables to be 

optimized are quite close (few days of difference) and the trends of the thrust pointing 

angles are superimposable to a certain degree of accuracy. However, no convergent 

solutions were found by the NLP solver that uses the modified PSO result as the initial 

guess, while a local minimum was located with the other, less accurate version. Often, 

nonlinear solvers enable a smoother resolution of an optimization problem when the 

initial guess is not too close to the optimal solution, indeed they tend to move away 

from it especially in the first iterative steps. 

3.4  Optimal Solution

The complete Apophis deflection program includes spacecraft states as 

optimization parameters, as well as controls on pointing angles and time variables. The 

initial guess for the states, which is necessary to use the DTRK method, is derived from 

the output of ode45 in the PSO program. The two initial guesses, previously illustrated 

in Table 3.2, were inserted in the NLP program using the fmincon optimizer leading to 

two converged solutions (shown Table 3.3).

The number of segments used is respectively 13 and 29, thus the total number of 

variables is 260 in the first case and 564 in the second case. The constraints to be 

satisfied are typically the defects equations (2.40) of the DTRK method and the 

interception condition (2.34). It can be observed from Table 3.3. that the optimal launch 

date occurs in late April and the asteroid-spacecraft impact takes place about 8 months 

later, with a shorter flight time in the second case. Moreover, the feasibility in both 

versions is very satisfactory, as well as the deflection magnitude which is more effective 

in the second case. 

However, because the second phase of deflection was not accounted for in the 

PSO maximum momentum solution, the initial guess experienced gave a deflection in 

the wrong direction bringing Apophis closer to Earth in the very first iterations. 

−316.6405 k m

−337.4335 k m ceqs 10−3

10−7

Δ ⃗v L ÷
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Probably, under the conditions that were set, the optimal direction of interception that 

maximizes momentum does not correspond to the one that moves the asteroid as far 

away from Earth as possible. Therefore, the NLP solver had difficulty locating a local 

minimum, in fact the solution was obtained by stopping processing at an iteration 

associated with a good output that was then given as input to the same program.

The graphs resulting from the second version of the PSO program (Table 3.3) 

are shown in Figures 3.7 - 3.12.

The semi-major axis (￼ ) during the low-thrust arc (Figure 3.11) has been 

calculated through the vis-viva equation, also referred to as the orbital energy 

invariance law, describing the motion of orbiting bodies:

￼ .            (3.17)

a

−
μ☉
2a

=
v2

2
−

μ☉
r
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Variable Description 1st version
(max momentum guess)

2nd version
(max deflection guess)

-137.0425° - 113.0090°

21.4447° 36.1682°

launch time 171.6186 TU
April 20, 2027

171.7292 TU
April 27, 2027

interception time 176.1818 TU
January 10, 2028

175.9608 TU
December 29, 2027

0.0648 AU/TU2 0.0634 AU/TU2

Deflection of 
Apophis at perigee

- 414.0499 km - 599.4544 km

Feasibility

spacecraft 
acceleration at ￼tI

￼0.77 ms/c,0￼ms/c,I

￼tL

out-of-plane ￼  
pointing angle

ΔvL

￼βL

      ￼∼ 7 ⋅ 10−9

￼0.79 ms/c,0

￼as/c,I

spacecraft mass at 
￼  (￼ )tI ms/c,0 = 104 kg

￼tI

￼γL

in-plane ￼  
pointing angle

ΔvL

      ￼∼ 3 ⋅ 10−8

Table 3.3 Apophis mitigation problem - NLP results
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Figure 3.7 Apophis mitigation problem - NLP program: trajectories
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Figure 3.8 Apophis mitigation problem - NLP program: 
in-plane thrust pointing angle



￼70

171.5 172 172.5 173 173.5 174 174.5 175 175.5 176
t [TU]

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

 [r
ad

]

Out-of-plane thrust pointing angle

Figure 3.9 Apophis mitigation problem - NLP program: 
out-of-plane thrust pointing angle
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Figure 3.10 Apophis mitigation problem - NLP program: 
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Figure 3.12 Apophis mitigation problem - NLP program: 
Earth-centered frame



Perturbed Apophis would pass at ￼  from the Earth surface (considering 

the equatorial radius of ) on the 13th April, 2029. Figure 3.12 zooms in on the 

closest approach of Apophis to Earth in a geocentric reference. The trajectory of the 

asteroid within the Earth's sphere of influence is considered to be a planetary flyby, so 

the miss distance from the Earth's center could be calculated through the characteristic 

equations of such a hyperbolic trajectory:

￼            (3.18) 

where 

￼            (3.19)

with the hyperbolic approach velocity given by

￼            (3.20)

and the eccentricity is expressed as

￼            (3.21)

with the turning angle found as

￼ .            (3.22)

The quantity maximized in this study is exactly ￼ .

Once the asteroid has been deflected, it is necessary to verify that the Earth is 

not again exposed to an impact or excessively close encounter in subsequent years. The 

perturbed motion of Apophis is then propagated as was done previously for the 

deflection phase assessment. This verification was initially performed over the next two 

to three years, as some time would be required to prepare for a new mission. Having 

secured this time frame, a simulation was performed over multiple years. Considering 

that a low probability of impact of the unperturbed asteroid in 2036 had been found, a 

time frame of eight years after the closest approach in 2029 was selected. The minimum 

32355 k m

6378 k m

rmiss = af/b(1 − ef/b)

af/b = −
μ⊕
v2
∞

v∞ = ⃗v ⎈(t∞) − ⃗v ⊕(t∞)

ef/b = csc(δ /2)

δ = 2 tan−1 μ⊕
⃗r⎈(t∞) − ⃗r⊕(t∞) ⋅ v2

∞

rmiss
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approach was measured in September 2037 but close to the boundaries of Earth's 

conventional sphere of influence (￼  radius).

The results seen were obtained via the nonlinear solver fmincon, which 

performed better than snsolve. SNOPT is a "sparse" optimizer, but it was used in a non-

sparse fashion, numerically determining the Jacobian matrix of the very large system. 

Better performance could be achieved by providing only the few non-zero elements of 

the Jacobian. 

∼ 106 k m
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Chapter 4: Conclusions

4.1  Summary

Building the final program step by step allows focus to be placed on one key 

element at a time, as well as ensuring that each building block works by itself, avoiding 

carrying around errors that are difficult to identify in a larger and more complex 

problem. The asteroid hazard mitigation program was developed using this approach to 

maximize the perigee radius of the Apophis asteroid at its closest approach to Earth by 

intercepting it with a low-thrust kinetic impactor, so that an eventual impact or less 

catastrophic, but equally undesirable, consequences are more likely to be avoided. 

The problem under consideration is formulated as a nonlinear program using the 

RK parallel shooting method. The spacecraft was assumed to be ready for launch on 

January 1, 2026. From this date on, the optimizer can choose when to perform it. The 

modeled spacecraft has a mass of ￼ , and can provide a maximum thrust of 

￼  and an exhaust velocity of ￼ ; an additional 

contribution to the impactor trajectory is made by the ￼  provided by 

the upper stage of the launch vehicle. The optimal launch occurs in late April 2027 and 

the interception event at the end of December 2027. A deviation of about ￼  is 

found with respect to the miss distance of the unperturbed asteroid on April 13, 2029. 

Furthermore, it has been shown that the perturbed asteroid would not become a threat 

until at least the year 2037.

The solution method is very sensitive to the initial guess. A sub-optimal solution 

close to the previous one with a deviation of about -400 km was also found using a 

different initial guess. The initial guesses provided were derived from a program similar 

to the main one, but employing the heuristic Particle Swarm Optimization algorithm. 

Two main versions were developed, the first optimizing the momentum exchanged at 

the spacecraft-asteroid interception and the second maximizing the deflection of the 

asteroid at perigee, as in the main program. The latter case has been shown to be 

effective and to have good potential for improvement.

104 kg
Tmax = 0.05 ⋅ m0 cexh = 1 AU/TU

Δv = 0.6 AU/TU

−600 k m
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4.2  Future work  

The presented results might serve as a guide for future work. The main areas 

that could potentially be improved are the fidelity of the model, the solution space by 

further working on the initial guess, testing the model on different targets, and paying 

more attention to the user interface. In particular, the accuracy of the model can be 

improved by incorporating more details about the asteroid (e.g. shape, composition, 

internal structure), the spacecraft (e.g. propulsion system), the launcher (e.g. 

characteristics of a chosen vehicle) and the kinetic impact itself (i.e modeling the ejecta 

process and estimate its contribution on the momentum transfer). More perturbations 

might be considered such as the effect of Earth's non-sphericity (J2 effect), the effect of 

other planetary gravities, solar radiation pressure and the solar wind. The exit of the 

spacecraft from the Earth's sphere of influence might be an additional feature of the 

scenario model.

Currently, the spacecraft uses thrust continuously, as it is assumed that adding an 

acceleration parameter would not significantly affect the results: the urgency of 

reaching the asteroid could justify exploiting all available thrust. Future work could 

evaluate whether using both low-thrust and coasting arcs would ultimately lead to a 

better solution. For example, it could be the case that, by burning less fuel, the 

spacecraft possesses more mass at the time of collision with the asteroid, and this 

feature may be assessed as advantageous by the optimizer. Moreover, future work could 

incorporate planetary flybys, so that the spacecraft could choose whether to make a 

close approach to Venus or Mars to gain speed and significantly change its trajectory 

without expending any propellant. As a result, new optimal interception geometries 

could result.

The methodology adopted in the Apophis asteroid detour program can lead to 

several optimal solutions depending on the quality of the initial guess. Indeed, in this 

type of problem there are several local minima that can be found by an NLP solver. In 

future work, parameters such as mass, maximum thrust, associated spacecraft discharge 

velocity, intensity of ￼  provided by the launcher, or a combination of these could be 

set differently in order to analyze how the solution, if any, is varied. In addition, the 

versatility of the model could be tested by changing targets. Low-inclination asteroids 

with Earth-like orbits, such as Apophis, are the most likely threat because they spend a 

Δv
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lot of time in the vicinity of Earth, but they would impact Earth at a lower relative 

velocity than a high-inclination asteroid or a short- or long-period comet, which would 

release more energy on impact and cause more damage. 

Finally, the initial guess obtained by exploiting the PSO heuristic algorithm has 

been shown to be quite effective in solving this type of problem and has a good 

potential. The performance obtained by the PSO algorithm could be improved in 

several ways; for example, the number of particles and iterations could be modified to 

obtain a more satisfactory result, or the weighting coefficients in the velocity update 

formula (2. - Sect. 2.1.1) could be adjusted more finely, or some experimental definition 

(e.g., eq. 2. in Sect. 2.1.1) could replace the value given to them. However, it should be 

noted that, contrary to intuition, an initial guess closer to the optimum does not always 

produce a better or even convergent solution. Thus, it is inferred that obtaining optimal 

solutions numerically is not straightforward and deterministic but is still something of 

an art requiring experience and patience. 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