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Abstract

Real-world engineering optimization problems are often extremely complex and
onerous, in terms of time and computational costs. In aerospace engineering, these
problems may concern fluid dynamics analysis, structural and system design and in-
tegration, or their combination in a multidisciplinary context: multiple information
sources need to be optimally handled. Analysing the single discipline already re-
sults expensive, therefore, extending the analysis into a multidisciplinary framework
becomes frequently unaffordable. However, a trade-off among different configura-
tions of design is useful to guide the decision making in the preliminary stages of a
project. For these reasons, advanced methods to accelerate the assessment of design
alternatives are demanded. Possible approaches are based on the use of faster mod-
els, also called surrogates, that are employed to provide approximations of physical
responses to guide the design and optimization process. Within the context of using
faster and cheaper models, multifidelity methods act leveraging the representation
of the physics at different levels of abstraction. The main objective is the use of less
expensive models for a massive exploration of the design space and the reduction
of the high-fidelity evaluations to the minimum amount required to maintain an
adequate accuracy. Among the different methods that can be found in literature,
this thesis focuses on those which are also referred to as multifidelity surrogate based
optimization. They aim is to combine information from different level of fidelity into
a unique surrogate model which is used to guide the design optimization.
The particular goal of this thesis is to compare and assess different methods be-
longing to this specific class. The focus will be on methods based on adaptive
sampling techniques to improve the surrogate while searching for the optimum. We
refer to this as an active learning scheme and it has been implemented through a
Bayesian framework. Therefore, we will consider three implementations of multi-
fidelity Bayesian Optimization (MFBO) which differ for the acquisition functions,
that are: Multi-Fidelity Expected Improvement (MFEI), Multi-Fidelity Probability
of Improvement (MFPI) and Multi-fidelity Max-value Entropy Search (MFMES).
We demonstrate the performance of the three methods over benchmarks problems of
class L1 and L2 determined by an international community of experts and partition-
ers of multifidelity methods. They are set as standard test cases to assess different
multifidelity formulations and methodologies. We consider six L1 problems, which
are analytical functions cheap to evaluate and whose optimum is known; the L2
problem has relevance for aerospace applications and relates to the optimization
of an airfoil shape to minimize the drag coefficient in transonic conditions. Our
specific implementation of those methods leads to find the global minimum of the
objective function, by using just two different fidelity levels. For the L1 applications,
the low- and the high-fidelity models are formulated following the guidelines of the
international research group while, for the L2, the models differ for the coarseness



of the grid for the aerodynamic analysis. The refinement of the experiment setups
have been done by combining both the experts’ opinions and a trial and error ap-
proach. The results obtained demonstrate that the MFEI and MFPI have the best
performance, even with a narrow initial dataset, while the MFMES generally needs
a greater set.
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Chapter 1

Introduction

In aerospace industry, collecting data for design optimization can be very expen-
sive. This because, information from several fields need to be joined. Designing
an aircraft or a spacecraft, leads to the necessity to efficiently combine structural,
subsystems, aerodynamic, flight test data, just to name a few, to achieve the best
configuration. At the same time, comparing more than one configuration may result
interesting to select the optimal solution. It is really important for the early phases
of design, because it can guide the decision making towards a reduction of time and
resources required for the design cycle. However, handling this big amount of data
and their interconnections, may be impossible. Machine learning can help addressing
these problems for the possibility to learn a cheaper surrogate model. These tech-
niques have become popular after the greater computational performances achieved
by modern calculators and the investments made in this new field. Generally, they
pass through the realization of emulators capable to model accurately the problem,
combining different sources of information in a unique source, on the basis of the
available data, with the great advantage of saving resources. Building an emula-
tor, also called surrogate model, metamodel, response surface model, is useful to
replace traditional mathematical model in contexts like that mentioned before, in
which either a model may not be available or its analytical solution does not exist.
A surrogate is a simplified approximation model, built by observing the first data
collected at the initial set of points, randomly picked via Design Of Experiment
(DOE). In this way, it results capable to predict the outputs of the system of in-
terest at points not yet sampled, reducing the number of evaluations of the true
and expensive function. Once the surrogate is ready, the next step concerns solving
the optimization problem. The Surrogate Based Optimization (SBO) derives from
this framework, indeed, it adopts surrogates for quickly finding the global or local
optimum of a problem. The performance obtained from this process, depends on
the accuracy of the surrogate, which is improved by evaluating the true function in
points efficiently selected with a sampling strategy.
Sampling methods for data-driven optimization can be static or adaptive. The first
uses offline/online techniques, the latter is based on active learning (also called
adaptive learning). Offline/online techniques use a dataset, stored before the opti-
mization process starts, from offline information sources upon which they build the
surrogate online: the optimization is guided only by the surrogate, because a new
collection of data, to update it, is not generated during the current optimization.
Therefore achieving good performance lies on the reliability with which the surro-

2



1. Introduction 3

gate has been implemented [1]. The emulator can be, then, improved with data
stored offline from previous optimization processes. It may require a large amount
of training points to achieve the best solution and it may lead to onerous and un-
affordable computational costs [2]. Whereas, for what concerns active learning, it
builds an initial surrogate following the same algorithm of offline/online techniques,
but for the next iterations, it uses only the most informative data about the dif-
ference between model estimates and real objective function observations. These
data are progressively obtained during the sampling, to leverage the surrogate and
interactively guide the search path towards the optimal fitting. Hence, the surro-
gate model learns from observations, as they are collected. To summarize, adaptive
sampling implies predicting which are the most informative data and where they are
located in the design domain, on the basis of the objective observations assimilated
during the computation. The Bayesian Optimization (BO) implements the active
learning techniques via SBO. A Bayesian framework is suitable to evaluate black-
box functions: the objective functions have not a known mathematical formulation,
therefore, only their inputs and their outputs can be handled. Hence, BO assumes
the objective function as a random function and uses a prior distribution, combined
with the first data available, to predict a posterior distribution. Then, it is adopted
to build an acquisition function, that guides the algorithm research towards the
global optimum. A optimization manages adaptive response surfaces in order to
reduce the number of observations required. Superior performances can be achieved
modeling a surrogate with a combination of model with different fidelity levels, i.e.
with different degree of accuracy. This allows to reduce further the computational
efforts required for building the surrogate, mitigating the loss of accuracy introduced
with the use of a surrogate model in place of the costly high-fidelity representation.
In this case, we talk of Multifidelity Bayesian Optimization (MFBO).
This thesis focuses on this type of adaptive learning and aims to implement and
characterize three different multifidelity Bayesian methods that differ for the acqui-
sition functions implemented. Multifidelity Expected Improvement (MFEI), Mul-
tifidelity Probability of Improvement (MFPI) and Multifidelity Max-value Entropy
Search (MFMES), whereas Multifidelity Predictive Entropy Search (MFPES) is just
analysed, but has not been implemented, due to incompatibility with the Gaussian
Process model adopted. They are conceived with the aim to guide the selection
of the next point to better infill the design space, by maximizing the expectation
or the probability of improvement, i.e. the gain of information about the objective
function, or the maximum entropy variation, considering the current best prediction
assessed by the model.
Multifidelity methods, have been applied to different aerospace problems in the last
decades. They have been tested for optimization of airfoils aerodynamics, e.g. to
maximize the airfoil lift in transonic condition [3, 4]. Passing to wing design leads to
a multidisciplinary and interdisciplinary context, in which material science, struc-
tural, aerodynamic data for loads production, aeroelastic analysis (e.g. to control
flutter problems), or flight controls may affect each others, and constraints on ease of
manufacturing, weights or fuel to board, may require to be satisfied simultaneously.
About that, it is possible to name the work made by Mainini and Maggiore [5],
that follows a multilevel design architecture, capable to recognize the variables that
mostly affect the mission requirements, within each field of interest, namely aerody-
namics, structures, materials (metals and composites) and manufacturing costs, in
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order to use them for solving the optimization problem.
Implementations of multifidelity methods can be found for predicting the drag that
affects subsonic aircrafts with also a special attention dedicated to the use of compos-
ite structures, active control and new aerodynamic performance in order to mitigate
environmental impacts (noise, global emissions, local air quality) [6].
Again within the context of aerospace engineering, several applications concern High
Speed Civil Transports (HSCT) [7], from which derive the use of multifidelity sur-
rogate approaches for the optimization of wing structural weights of an HSCT [8,
9]. They also find out a way to reduce the loss of performance (i.e. accuracy and
costs) of the surrogates with increasing dimensionality (over 10-15D), identifying
reasonable design space within which to limit the response surface domain, so that
to preclude unreasonable designs. Then, other applications [10] adopted this strat-
egy for minimizing the take off gross weight of HSCT. Furthermore, to remain on
the high speed overview, it is possible to name also the studies [11, 12, 13], which
aim to optimally manage aerodynamic performance and the loudness of the sonic
boom at the ground. Also shaping of blended wing body Unmanned Aerial Vehicle
(UAV), using adaptive multifidelity methods, can be found in literature [14] with the
aim of reducing drag coefficient. Tappeta, Nagendra and Renaud [15] use surrogates
for emulating the different disciplines, with which they face, for the optimization of
aircraft engine components (e.g. turbines,compressors) exposed to high tempera-
tures. Other types of implementations can be found for rotorcrafts [16, 17], because
of the strong interdisciplinary of this sector, due not only to coupled aerodynamics,
dynamics and control systems, but also to the necessity to reduce vibrations.
For what concerns space design applications, multifidelity methods are adopted for
designing re-entry capsules [18], therefore in an unmanned mission background [19],
considering also the problem of building accurately a thermal shield and distributing
the mass to not affect aerodynamic performances [20], or adding the assessment of
optimal trajectories that could reduce the propellant mass required [21]. In litera-
ture, implementations on launch vehicles can be found [22], that also have to deal
with stages layout and mass partitioning.
However, to briefly expand the discussion beyond design problems, it is possible to
observe several other applications in aerospace, which may include remotely piloted
drones, diagnostic and prognostic, e.g., to name a recent work, controlling a space-
craft attitude stabilization in presence of actuator fault, parameter uncertainty and
external disturbances [23].
In this thesis the work is shaped around the aim of testing the methods selected
on benchmark problems, in order to characterize their mathematical features. The
purpose is to experimentally collect data about the methods performances. This
assessment is necessary, because the multifidelity formulation of these methods is
recent and has not yet been widely explored. The methods are applied to standard
problems proposed by a specialised international group. We will employ those which
are also referred to as L1 and L2 problems, that have aerospace relevance. The first
are simplified analytical problems with known mathematical behaviours, the last are
more articulate and expensive problems closer to real-life engineering applications.
These test cases are selected for stressing the methods on multimodal problems
and with increasing dimensionality, so as to evaluate their strengths or weaknesses.
Then, the methods are tested on a L2 aerodynamic problem concerning the shape
optimization of an airfoil in transonic regime, with the aim of minimizing the drag
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coefficient. The profile is modeled parametrically through an open source software,
which includes either the solver to use for Computational Fluid Dynamics (CFD),
SU2, or the mesh generator GMSH, which is called to run at every new airfoil design
found by the optimization algorithm.
Chapter 2 will show the landscape in which surrogate models, in single and mul-
tiple fidelity are developed, considering interpolation and regression methods to
construct them, and showing some sampling strategies that adopt DOE tools to
efficiently choose the starting dataset. Chapter 3 extends the use of the response
surfaces into a Bayesian framework, describing the advantages of this method and
focusing on the analysis of the single-fidelity acquisition functions. In Chapter 4,
these functions are extended to a multifidelity context. Therefore, it is showed how
the algorithms have been implemented. Chapter 5 includes a comparison among
the methods performance, thanks to the application on L1 problems that include:
Forrester function [24], Sinusoidal squared function, Clark and Bae 1D, 2D and 3D
functions [25], Rosenbrock 2D and 5D functions, Shifted-Rotated Rastrigin function
and spring-mass system 4D. Chapter 6 explores the methods performance on the
L2 aerodynamic problem, describing the physics of the problem, its formulation and
the setup (not trivial to select) for the experiments.



Chapter 2

Surrogate Based Optimization

Aerospace engineering often has to deal, even in the preliminary design stages, with
complex systems that neither can be easily computed with physical models, nor
with empirical tools. It is the case of aerodynamic shape optimization, structural
design and multidisciplinary optimization (MDO) [26, 27], which can simultane-
ously connect more disciplines, such as propulsion, flight controls, aerodynamics,
aeroacoustics and structures in a perspective of design of aircrafts or spacecrafts.
Furthermore, making a superior technological design can be a strategic advantage
in aerospace industries, whose development is also based on competitiveness. Espe-
cially in the preliminary phases of a project, and for guiding the decision making
process, it is essential the evaluation of numerous and innovative configurations to
extensively understand the complex phenomenology of a physical problem. All these
scenarios lead to manage a large amount of data and unknown variables interconnec-
tions. Experimental data are costly to obtain and complex behaviours are difficult
to characterize only by using an experimental approach. For these reasons, simu-
lations are used to translate, in digital world, the interdependence among physical
factors. Then, the optimizer aims to use these models to inform the design process.
It is not always possible to adopt models which can describe the reality with the
highest level of accuracy, even if they can provide a more reliable design. This is
due, not only to the lack of an analytical formulation of the problem, but also to the
non negligible computational costs of the high-fidelity models. They, indeed, may
encompass Computational Fluid Dynamics (CFD), finite-element structural models
or physical experiments, e.g. in wind tunnels. At the same time, it is not feasible to
simply replace the high-fidelity model with a low-fidelity one (i.e. with less accuracy
than the corresponding high-fidelity model), because it could lead to unsatisfactory
approximations and designs. Hence, different approaches exist to accelerate the com-
putation of the same output assessed by the high-fidelity function, via lower-fidelity
models also called surrogates, meta-models, response surfaces, emulators. They can
help in alleviating numerical noise or discontinuities in the objective function.
Different types of surrogate exist, in particular, according to Eldred et al. [28], they
are classified as: data-fit, hierarchical and reduced-order models.
The data-fit models are frequently computed to be computationally efficient, smooth
and as much as possible accurate, using the high-fidelity model as a guide to iter-
atively improve themselves. Data-fit surrogates are especially preferred, when the
high-fidelity function is a black box, whose structure is not known. Indeed, these
models can handle inputs and outputs of a black box function, that are its only

6
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available information. They describe analytically the data collected from the orig-
inal model, without providing a physical meaning. The coefficients of the linear
combination of data-fit models are evaluated via interpolation or regression tech-
niques. This choice affects the accuracy of the fitting. Polynomials or radial basis
functions are widely used methods. The latter can find efficiently these coefficients,
if they are based on the Gaussian density function [29]. Kriging (a stochastic process
approach to approximating functions) is a particular application of data-fit models.
More details about how to fit a model to data, can be found in Section 2.2.
Hierarchical models, also called multifidelity or variable fidelity models, employ the
strategy of simplifying high-fidelity models. The simplification can concern, for
example: neglecting nonlinear terms, reducing dimensionality, simplifying physics
models (e.g. the boundary conditions) or geometry, coarser grid discretization of
domains or implementing early stopping criteria, so as to settle for just partially
converged results [30]. They are still physics-based models [28].
Reduced-order models (ROM) [31], or projection-based models [29], aim to identify a
low-dimensional subspace which is representative of the main features of the system
of interest. It is, generally, an intrusive method, because employs a model reduction
to project the original high-dimensional system into lower-dimensional subspace.
In this framework, surrogate models can be useful to solve optimization problems,
because they can achieve reasonable approximations of the high-fidelity model, at
least locally, thus substantially reducing time and computational costs. Generally,
an optimization problem can be expressed in the form:

min
x∈A

f(x)

where x ∈ Rd denotes the input vector of dimension d, A is a set of possible inputs,
and f(x) ∈ R is the continuous objective function. Traditional optimization methods
evaluate the objective function at given points till a stopping criterion is met, but in
design contexts like that mentioned before, this computation can be really expensive.
These methods can become inefficient when a considerable number of evaluations
is required, so a Surrogate Based Optimization (SBO) approach is preferred. In
optimization contexts, the objective function may be a black-box, that is a nonlinear
and non-convex function f , whose derivatives are unavailable and whose closed-
form expression is unknown. Hence, basing the optimization process on the use of
a surrogate model, allows to synthesize sufficient information about the black-box
function and lowers the amount of required function evaluations thus saving time,
computational resources and costs. Surrogates can be built following an iterative
optimization process, active learning (or adaptive learning) technique which, at each
iteration, chooses the best informative points in which the high-fidelity model needs
to be evaluated to update the surrogate. Therefore, adaptive strategies dynamically
learn how to efficiently seed points into the design space, progressively training the
model. This learning strategy goes against the online/offline techniques, that use a
set of data collected previously offline, to build online the surrogate.
To summarize, the main steps of a surrogate-based optimization framework include:

1. Choose the variables to optimize, i.e. the design variables. It may not be
trivial for new design problems, therefore the choice may be guided by the
expert experiences or by the information obtained from the first experiments,
that can be used to iteratively improve the selection. However, the feasible
amount of variables is mainly influenced by the available resources.
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2. After the identification of the space of design, the interval within which the
design variables change needs to be set. The Design Of Experiment approach
is used to select a suitable sampling strategy for the initial points to query
with the surrogate.

3. A surrogate is built on the basis of the first observations.

4. A search for the optimum is run, by using the surrogate, and gives in output
new design points (infill points) at which to assess the objective function. In
this way, information are collected and are iteratively provided to the sur-
rogate, in order to validate and train it towards the best solution (adaptive
sampling) [32].

2.1 Design Of Experiment (DOE)

The selection of initial points (training dataset), at which the models will be eval-
uated, is computed using Design Of Experiment (DOE) tool. As a rule of thumb,
Morris and Mitchell proposed to approximately choose the number n of initial sam-
ples points, for the low- and high-fidelity models, according to: n = 10k, where k
represents the dimensionality (i.e. the number of variables) of the problem [33].
However, the particular choice of strategy to use for allocating samples in the design
space, lies on the number of samples affordable with the resources available and on
the technique selected to construct the model [34].
Design Of Experiment refers to the process of planning, implementing appropriate
choice of design and statistically analysing an experiment, in order to achieve valid
and objective conclusions, reducing the number of samples required. It is an es-
sential technique for quickly improving process performances [35], because it aims
to maximize the amount of initial information, thus creating the training data set
upon which the surrogate will be constructed [36].
Design of experiments is used to decide which observations provide more useful in-
formation to build a model; on the other hand, it is used to investigate the sensitivity
of output values with respect to the combination of inputs. This is also known as
sensitivity analysis. DOE allows to determine the data to use and improves the
quality of the information, while eliminating redundant data. This leads to improve
the construction of a model in a cost-effective and less time-consuming framework.
These statistical techniques start with a screening phase, which involves the identi-
fication of the most important input factors that may affect the system performance
and, then, end with an optimization phase (that may use Response Surface Method-
ology, RSM) [37]. Among the different design methods adopted for screening, it is
possible to include, just to name a few: the Full-Factorial Designs [38], which mea-
sure response variables using all possible combination of factor levels, so they collect
data at the vertices of a cube in k dimensions (k is the number of factors adopted);
Fractional-Factorial Designs which collect data from a specific subset of all possible
combinations, determining which factors or their combination, influence more the
output. Hence, it is used when there is a large amount of design variables. Also
Central Composite Design [39] is used, and is an extension of the design points that
can be selected with a fractional factorial design: new sampling points are added on
the faces of the hypercube and at its center.
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Figure 2.1: Latin hypercube design

Typically, when no prior knowledge is available about the objective function, e.g.
before building a surrogate, space-fillings designs are recommended, because they
can spread out the design points nearly evenly throughout the design domain, in
order to extract trend information and to reduce bias error (errors that arise when
a substantial difference between the trend estimated and the real one, is evaluated).
Therefore, they are able to capture the different behaviours of responses in different
regions of the experimental space, avoiding replicate runs and giving information
about the unknown form of the model.
A famous space-filling design is the Latin hypercube [40], proposed in 1979 and is,
even now, one of the most commonly used methods. It consists in a n x k matrix
in which, each column is a random permutation of the levels 1, 2, ..., n, where n rep-
resents the number of runs, i.e. the number of points to spread, for k factors x.
Hence, a level, or bin, indicates the n equally-spaced and non-overlapping intervals
by which, each factor is divided within its range [41]: so there are nk bins. Therefore,
a row contains specific values of each of the k-th variables to be used on the n-th
model run [42]. One value from each interval is randomly selected with respect to
the probability density in the interval, then the algorithm is repeated till all the n
values for each input variable k are selected. The n values thus obtained for x1, are
then randomly paired to that selected for the other variable x2. These n pairs are
combined with the n values sampled from x3, to form n triplets, and so on, until n
k-tuplets are formed. Essentially, it is a generalization, to a multidimensional space,
of a Latin square: each factor permutation is arranged in such a way that no or-
thogonal (row or column) contains the same number twice: for all one-dimensional
projection of samples and bins, there is only one sample in each bin [34].
There are many possible choices for Latin hypercube design, but results interesting
describe the method proposed by Morris and Mitchell [33], in 1995. It seems to be a
widely used technique for computer experiments, because of its simplicity and avail-
ability in software packages. The algorithm adopted to seed design points, pursues
the objective of maximizing the minimum distance between them, assuring a quite
evenly sampling. The criterion conceived by Morris and Mitchell, is the following:

min
D

{
n=1∑
i=1

n∑
j=i+1

1

dk(xi, xj)

}1/k
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where D = {x1 ...,xn} is the experimental design area and k is suggested to be cho-
sen in order to be the smallest value that gives a maximin distance design. Figure
2.1 shows an example of Latin hypercube design (LHS stands for Latin Hypercube
Sample) with ten runs and two and three factors. As explained before, it is possible
to notice how, each row and each column are filled with only one sample.
Randomisation is a powerful method for reducing the effect of experimental bias
[35]. Sometimes there could be particular situations where randomisation is difficult
to be performed due to cost and time constraints, so it might be more appropriate
to change that particular factor level less frequently than others. The restricted
randomisation can be adopted under these circumstances. Therefore, the Latin hy-
percube is a quasi-random method, which differs from a random sampling method.
It leads to point sets with a discrepancy (i.e. how much the distribution of samples
differs from an ideal uniform distribution [43]) smaller than that expected for a pure
random sampling, where all subsets of a sampling frame have an equal probability
of being selected. Also quasi-Monte Carlo sampling ascribes to this category, and
is also a space-filling design method. It uses deterministic algorithm to generate
samples into the design domain, in order to achieve a quite uniform sampling. It
differs from Pseudo-Monte Carlo, or just Monte Carlo, sampling, because this one
implements a pseudo-random points distribution.
Another sampling technique can be the D-optimal design where the design point
are selected by statistical methods. It seeks to minimize the covariance of the pa-
rameters for the current model analysed. Generally, it is used in substitution of
traditional methods, like that mentioned before (Full or Fractional Factorial De-
signs, Response Surface Designs). They are appropriate to calibrate linear models
in experimental problems which require sufficiently unconstrained factor in the de-
sign space. However, when the model is necessarily nonlinear or certain combination
of factors results particularly expensive or complex to be measured, the D-optimal
design is a powerful technique to choose, to override these problems.

2.2 Fitting a Response Surface

After selecting the DOE technique to sample the training set, it is necessary to
choose a fitting strategy to model the surrogate (Response Surface Methodology,
RSM). It generally lies on two basic assumptions [32]:

1. The surrogate models a continuous function. This is a founded assumption,
even if in aerodynamic contexts it may fall. For example, in region of shocks,
it is well known the presence of sudden discontinuities. This can be avoided
by using a combination of multiple surrogates (e.g.[44]) or adding different
assumptions.

2. The objective function needs to be smooth.

Further assumptions may concern the shape of the objective function, but especially
in presence of black-box functions, it is not trivial.
Generally two branches can be found in building a surrogate model: regression and
interpolation techniques. The first includes polynomial regression and neural net-
works, the latter involves the use of splines (or radial basis functions) and Kriging-
based models.
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2.2.1 Regression based models

For polynomial regression models [45], the first step requires to find a suitable ap-
proximation for the relationship between response (i.e. the output of the system
of interest) and independent variables (the factors): a polynomial equation is used.
The simplest way to adjust a response surface to data is adopting a linear regression.
Assume that yi = y(x(i)) represents the function value computed at the sampled fac-
tors x(i) for i = 1, . . . , n, where n is the number of points selected and K the amount
of polynomial basis functions fh. The observations of the objective function, can be
expressed as:

y(x(i)) =

K∑
h

βhfh(x
(i)) + ϵ(i) (2.1)

where the βh’s are the unknown regression coefficients to be estimated, and the
ϵ(i)’s are error terms, observed in the response, which are supposed to be normally
distributed, with mean zero and variance σ2. The function fh(x

(i)) can be a linear
function of the independent variables, so in this case, the function that approximates
the response, is a first-order model; whereas it can be a nonlinear function, such as
a second-order model or higher degree, and the response will be modeled with a
curved surface. Almost all RSM problems use first-order, second-order model or
both, but is is important to emphasize that it is unlikely that a polynomial model
will be a perfect-suited approximation of the true functional relationship among the
factors. It can work quite well on a relatively small region of design [36]. Therefore,
polynomial surrogates are not employed for high-dimensional, highly multi-modal
and non linear problems, also because it is not affordable to evaluate the great
amount of data necessary to estimate the terms of the polynomials [32].
Furthermore, choosing the order K of the polynomial approximation is not trivial,
because even if selecting greater values of K (i.e. expanding further the Taylor
series) yields to more accuracy, at the same time the problem of over fitting the
data, including any noise, arises. Several techniques lead to adequately choose the
order of approximation K, however further information can be found in [46]
The parameters of the approximating polynomials, can be estimated by the method
of least squares. By introducing matrix form to Equation 2.1, what is obtained is
f = Xβ, with f = [f(x(1)) f(x(2)) . . . f(x(K))]T , β = [β1 β2 . . . βK ]T . According
to least squares approximation, β can be found as :

β = (XTX)−1XTf (2.2)

which represents the maximum likelihood estimate of β.
However, one of the most used technique to model the response of a determinis-
tic experiment is a Gaussian Process (GP). Deterministic models may require high
order terms so, the number of parameters to estimate can be large. A Gaussian
Process allows to reduce the number of parameters to evaluate, because it becomes
equal to the number of factors. Statistical surrogate models are frequently imple-
mented in the form of a GP, that tries to find a response surface with stochastic
processes. Fitting a stochastic process to data, essentially means making a model
that summarizes how the function behaves and its properties (e.g. the smoothness)
in the design domain and then predicting, with uncertainty, its behaviour at un-
sampled points, on the basis of the first estimation [47]. These statistical models
are preferred precisely for their capability to model complex functions with also an
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assessment of their own uncertainty.
Generally, in complex problems, data-driven surrogates are lacking of generalization
for the data that are distant from the training dataset. Therefore, Artificial Neu-
ral Networks adopt regression models associated to deep learning, thus providing a
technique for reducing the amount of objective observations required to make the
model more general. The term refers to a system composed of several simple process
units, the so called neurons, that work in parallel to perform a particular task. The
computational parallelism makes the network really efficient. Hence, a neuron is the
basic structure of the network, in which the n inputs x are computed, via non linear
operations, in outputs y. A single-layer formulation is showed:

y =
1

1 + exp(−η/T )

where η = w1x1 + ... + wnxn + γ with w1x1 + ... + wnxn as the weighted inputs, γ
as the bias value of the neuron, and T as a parameter, selected by the user, that
determines the shape of the function in terms of more or less steep slope [34]. Among
the different ways in which neurons can be combined, one of the most commonly used
architecture is that of multi-layer feed-forward network [48]. Modeling a surrogate
by means of neural network, requires a first step in which there is the selection of
the appropriate architecture, to approximate a set of functions, and a second step
in which there is the network training. The last can be handled as a nonlinear
least-squares regression problem for a given set of training points [34].

2.2.2 Interpolation based models

In a deterministic problem, the assumption of independent errors, seen before for
the least squares estimations, is false because, any lack of fit of the regression model
with respect to the data, is due only to modeling errors (incomplete set of regression
terms), not measurement error or noise [47]. So, it is more reasonable to assume
that error terms are correlated with a weighted (not Euclidean) distance function
(Equation 2.3) between the corresponding points x(i) and x(j) as:

d(x(i),x(j)) =

k∑
h=1

θh|x(i)h − x
(j)
h |ph (θh ≥ 0, ph ∈ [1, 2]) (2.3)

where θh measures the ‘activity’ of the variable xh. It aims to show if a variable
is more or less active with respect to the correlation behaviour, that will drops off
more or less rapidly. The other parameter, ph, represents the smoothness of the
function along the coordinate direction h. A ph = 2 corresponds to a function with
a higher smoothness than a function with value set to one.
The correlation between the errors is:

Corr[ϵ(x(i)), ϵ(x(j))] = exp[−d(x(i),x(j))].

Therefore, when the distance between x(i)and x(j) is small, the correlation tend
to one; whereas it will approach to zero. Thanks to this approximation of the
correlation, it is possible to dispense with the regression terms. They can be replaced
with a constant term, so what is obtained is:

y(x(i)) = µ+ ϵ(x(i)) (i = 1, ..., n)
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where µ is the mean of the stochastic process and ϵ(x(i)) is N (0, σ2). The term
stochastic derives from the error term ϵ(x(i)) that, indeed, is a stochastic process
[47]. This is the basis upon which Kriging is built, therefore, it is a combination
of a linear regression and a stochastic model fitted to the residual errors, that are
modeled following a Gaussian process [49]. It can measure the uncertainty of its
prediction, that is approximated with a Gaussian random variable with mean and
standard deviation. This uncertainty (i.e. the standard error) is zero, where the
high-fidelity function values are already known (i.e. in an already sampled point),
whereas it rises with the distance from these known observations.
Hence, while regression models make simplistic assumptions about the independence
of the errors, in order to focus on the regression coefficients estimation and to com-
pletely describe the function, interpolation models prefer to simplify the assumptions
about the regressors and their coefficients. They consider the regressors just as con-
stants, but give greater importance to the evaluation of the errors correlation, which
allows to describe just the typical behaviour of the function [47].
Splines are also a set of interpolation functions, i.e. they are piecewise polynomials
that approximate functions over large intervals where single polynomial could lose
performance. The most commonly used method is that of cubic splines, because
it allows to obtain smoother functions that fit the data, reducing the oscillatory
behaviour that could result from higher-order degree polynomials [50].
Radial basis functions belongs to this category too [51, 32, 34]. They belong to a
class of functions whose response changes monotonically with the distance from a
central point [45]. This type of approximation employs the combination of K basis
functions ϕ as:

f̂(x) = wTϕ =

K∑
i=1

wiϕ(∥x− c(i)∥) (2.4)

where w is the vector that contains model parameters and that can be evaluated as
for regression parameters (Equation 2.2), c is the vector of the known basis function
centres. Therefore, the functions ϕ are computed considering the Euclidean distances
between the prediction site x and the centres c(i) [32]. Typical choices for the basis
functions are: ϕ(r) = r (linear), ϕ(r) = r3 (cubic), or ϕ(r) = r2ln(r) (thin plate
spline). Adopting these functions as fixed bases, reduces the number of weights
to determine, to just one. They are used for higher-dimensional problems than
that in which it is preferable to use polynomial models, but for simple landscape
and cheap analysis [32]. On the other hand, using more complex parametric basis
functions, allows to achieve more flexibility, even if it leads to parameters harder to
estimate. Examples of these basis functions are: ϕ(r) = exp(−r2/2σ2) (Gaussian),
ϕ(r) = (r2+σ2)1/2 (multi-quadric) or ϕ(r) = (r2+σ2)−1/2 (inverse multi-quadric) [34].
Also Kriging is part of basis function models, but it differs from a spline interpolation
model, because the latter uses basis functions prefixed in advance, whereas the
first, can tune them, with respect to the data (changing θh, ph parameters), so it is
more accurate but requires lengthier time [47]. Another advantage of Kriging, with
respect to other basis functions, is the possibility to also compute the uncertainty
of the prediction it makes. Therefore, Kriging and parametric basis functions allow
to reach greater accuracy, but in low-dimensional spaces, because of the resources
expense needed to train the model [32].
The accuracy of the approximation achieved for reproducing training data, lies on
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the best choice of w, while an adequate estimation of the new parameters that the
particular basis function brings along (e.g. σ for Gaussian basis functions), affects
the generalized model error.

2.3 Multifidelity surrogates

Combining models with varying degrees of accuracy (fidelity), can result in a satis-
fying representation of the reality, without exceeding the available resources, thanks
to a further reduction of the amount of high-fidelity evaluations required. A mul-
tifidelity surrogate, indeed, is built taking into account the data available from a
narrow number of high-fidelity model evaluations. For what concerns low-fidelity
models, if they are cheap enough, building a surrogate may not be necessary. The
advantage achieved by using multifidelity methods is that multifidelity problems
can be handled keeping the system bias with the use of low-fidelity approaches,
and refining key performances (unbiased) with the call of high-fidelity models. The
challenge lies into the comprehension and implementation of the best strategy to
combine different fidelities.
According to Peherstorfer et al. [29], the management strategies (i.e. decide which
model to evaluate and when) to combine more fidelities without losing accuracy, are
distinguished in three types: fusion, adaptation and filtering. Surrogates belong to
the fusion category. Fusion approach, merges low- and high-fidelity model outputs.
Cokriging, which is a multiresponse extension to kriging, is part of these techniques.
Response surfaces and kriging surrogates are the most used methods belonging to
the class of surrogate models. Therefore, data-fit models and projection-based mod-
els, previously described in section 2, can be included in this category of modeling
techniques [30]. For what concerns the adaptation strategy, it updates and enriches
the low-fidelity model with information gained from the high-fidelity model, while
the computation goes on and more reliable high-fidelity data become available. An
example is the EGO algorithm for efficient global optimization, where the adaptation
process is applied to a kriging model in each iteration of the optimization. Other
examples of applications are: the work of Kennedy and O’Hagan [52], where the
correction (calibration) of low-fidelity model outputs is based on the employment of
Gaussian process models, which have better performances in predicting the output
of the high-fidelity model; adopting the strategy of comparing the low-fidelity out-
puts, with the high-fidelity model updates, in order to define the correction to apply
to low-fidelity model [53, 54]. Filtering technique tends to invoke the high-fidelity
model only when indicated by a low-fidelity filter: for example, it can be called
when the low-fidelity results particularly inaccurate. This strategy can be adopted
in a stochastic approach in order to choose, with the low-fidelity model, candidate
sample points at which the high-fidelity model has to be evaluated.
However, there are alternative methods that hierarchically combine different fidelity
levels through adaptive sampling, without explicitly merging fidelities in a unique
surrogate. Those are also referred to as multifidelity hierarchical methods and fre-
quently combine the data from the source models through adaptation and/or filter-
ing approaches [29, 30]. It is important to notice that, even if multifidelity methods
have been advancing considerably for more than two decades, some important chal-
lenges still remain. Almost all the methods are based on the assumption that the
high-fidelity model represents the ‘truth’, whereas it is an approximation of reality.
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The relationships assumed by multifidelity methods over different fidelity models can
be underestimated and excessively simplified with respect to the reality. Therefore,
techniques for understanding model adequacy, that is, for quantifying the difference
between experimental data and model outcomes, should encompass both expert
opinion and statistical criteria for a better overview of the problem [55]. Another
important challenge is to try to implement methods which can combine a wider
range of information sources, such as experiments, lookup tables, computational
models and experts’ opinions [29]. Studies about the fusion of different information
sources (Multi-Information Source Optimization, MISO) are those study made by
Poloczek et al. [56] and Ghoreishi et al. [57]. They provide multifidelity Bayesian
methods to handle the discrepancies of different information source bias.

2.4 Multifidelity Optimization

The literature [29] proposes to classify the problems to be solved using multifidelity
methods, into three categories: optimization, uncertainty quantification and statis-
tical inference problems. Hereafter, it will be a focus on optimization applications.
Multifidelity optimization is an iterative process which aims to find the optimum of
the high-fidelity function. Typically, the first step involves the realization of a sur-
rogate model, then the method leverages the surrogate for searching the optimum.
Optimization is distinguished in global and local approaches. The first searches the
optimum over the entire domain, whereas the latter narrows the research locally,
around the current best design point. Global multifidelity optimization has the ad-
vantage of overriding the evaluation of the gradient of the high-fidelity function.
This is useful when the gradient cannot be evaluated accurately (e.g. it may be af-
fected by noise). It can be the case of a black-box function. However, global search
requires a higher amount of high-fidelity function evaluations than local optimization
methods.

2.4.1 Global Multifidelity Optimization

Global multifidelity optimization methods search for a minimizer taking into account
an iterative upgrade and enhancement of low-fidelity models. Typically, they do not
employ gradient-based optimizers, whereas they prefer to build a cheap global sur-
rogate of the high-fidelity model. Then, this surrogate replaces the original model
and is adopted for optimization purposes. The resulting optimal solution will be
also a minimizer of the high-fidelity model, to the extent that the level of accuracy
has been achieved by low-fidelity model. It is important to select appropriately the
assumptions on which the surrogate model lies, because if the problem cannot sat-
isfy them, the accuracy of the surrogate may suffer [30].
Cokriging surrogate models are used in global multifidelity optimization processes.
Updating iteratively Cokriging models in these contexts, allows to find the global
optimum more quickly and accurately than other methods because, from the fusion
of different fidelity model, the accuracy of the surrogate model increases. However,
it may become more expensive with increasing dimensionality [24, 58].
Weakness of these optimization methods is the necessity to make an adequate trade-
off between exploitation and exploration. Promoting only exploration leads to spread
a large amount of points over the domain of design, improving the accuracy of the
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model, but spending resources in an inefficient way; on the other hand, preferring
only an exploitation approach, that tries to search in an almost good point, leads
to the possibility to not catch the optimum location if an appropriate exploration
has not been set before. However, this problem will be widely discussed in Chapter
3. It is to highlight that when using surrogate-based optimization, ill conditioning
of the correlation matrices may arise, especially when the algorithm is close to con-
vergence, because sampled points are close together: an appropriate convergence
criteria needs to be set to override the problem [58].
Also EGO belongs to this category of optimization methods. It is frequently chosen
to model the low-fidelity model with a Kriging model. After fitting the response sur-
face, maximizing the expected improvement (i.e. maximizing the difference between
the best current evaluation of the high-fidelity model and the mean of the Gaus-
sian random variable), leads to select the next point to query with the high-fidelity
model. The Kriging model is updated with information derived from this new eval-
uation, and the optimization process restarts iteratively [59]. The EGO algorithm
was extended to a multifidelity context, thanks to Kennedy and O’Hagan. They
fitted Gaussian process models to lower-fidelity models, in order to best predict
the output of high-fidelity ones [52]. Therefore, several Bayesian-based methods
arise from EGO approach with the purpose of driving an adaptive sampling in a
goal-driven perspective.

2.4.2 Local Multifidelity Optimization

Local multifidelity optimization, typically uses trust-region methods. They imple-
ment quadratic approximations of the high fidelity model at the center of the trust
region. This approximation is computed by evaluating gradient and Hessian of the
high-fidelity model. The quality of the approximation determines the size of the
trust region and so, the allowable step length: the optimization can be done only
within the portion of the domain in which the local approximation is valid. To ac-
celerate a provably convergent local optimization method, response surfaces result
useful, because require less high-fidelity evaluations. It is preferred to implement
response surfaces which interpolate the data available with a linear combination of
basis functions that can be fixed or can have parameters to be tuned (e.g. Kriging).
An example of local multifidelity optimization method that chooses surface responses
is that proposed in [60]. They use Kriging response surface to predict the function
value at points closed to that currently sampled, reducing substantially the num-
ber of high-fidelity function evaluations. Then, also Alexandrov et al. [61] adopt
response surfaces. They build surrogate models by improving low-fidelity models,
thanks to information about functions observations and their gradients that derive
from the high fidelity. Hence, response surfaces result more accurate in finding
the next point to evaluate, than minimizing Taylor-series approximation within the
trust region. Their greater accuracy allow to take longer steps, making the algorithm
faster. Forcing the surface and the high-fidelity function to have equal gradient at
the current iteration in the trust region, is an essential requirement for convergence.
The selection of the next point to query is made optimizing the surface within a
trust region. If the point just selected, does not lead to the objective function re-
duction, then the trust region is updated and narrowed. In this way, the method
can converge to a critical point of the high-fidelity function, which not necessarily
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coincides with a global optimum or a local one, but can be a saddle point or a point
in which the function results flatter. It strongly depends from the initial set of high-
fidelity samples adopted for all these methods [59, 29]. When gradients cannot be
easily evaluated or result inaccurate (e.g. in case of black-box functions), gradient-
free multifidelity trust-region approaches can be adopted. For example, March and
Willcox [62] have developed a method that allows to achieve a first-order optimality
using information from iteratively calibrated low-fidelity function to high-fidelity
one. This method is built referring either to Conn et al. [63, 64] or to Wild et
al. [51, 65, 66]. The first proved that using polynomial interpolation models, can
lead to a fully linear model (which assures smoothness of surrogate models of high-
fidelity function) without requiring to estimate any high-fidelity gradient; the latter
demonstrated that a radial basis function interpolation is also efficiently adaptable
to Conn’s method. Therefore, March and Willcox, generalize this method to a mul-
tifidelity optimization framework.
Comparing gradient-free and gradient-based methods, shows that the first starts
rapidly and then, slows down in proximity of the best solution; whereas the latter,
assumes an opposite behaviour (as Hessian becomes more accurate).



Chapter 3

Active learning via Bayesian
Optimization

It is possible to choose between two methods, for evaluating multifidelity surrogates
parameters: deterministic or non-deterministic methods. First takes advantage of
assuming known basis functions, whose coefficients are found by minimizing dis-
crepancy between the data and the function [67, 68]. The latter, assumes that the
function or its coefficients are uncertain [69]. This uncertainty requires to be quanti-
fied and minimized via statistical inference methods, like Bayesian framework, which
results less expensive than other techniques, such as Monte Carlo simulations. Non-
deterministic methods result to be more accurate than deterministic ones [70, 71].
This chapter, drawn from [49], will focus on Bayesian Optimization (BO), that are
machine learning methods for optimizing black-box functions based on stochastic
processes. The goal of these methods is to find the global optimum of an objective
function, whose behaviour is not known a priori, reducing considerably the num-
ber of expensive or unfeasible evaluations required. They inscribe into the category
of SBO, because they model the unknown function with a surrogate model, whose
characteristics are computed via Gaussian processes. Furthermore, they use an ac-
quisition function for deciding where to sample next the objective function. They
implement the active learning schemes to leverage the data dynamically collected
during the optimization process, thus providing a technique for finding the most
relevant regions of the domain.
In Chapter 2, we have assessed how to build a surrogate. The following step, in a
Bayesian optimization process, focuses on the research of figures of merit that try to
balance local and global search for where to take next evaluations [47]. This means
adopting an acquisition function that makes a trade-off between a global exploration
and a local exploitation of the surrogate model, in order to minimize the number of
objective function evaluations. The term ‘exploration’ means adding input points to
query, in order to gain information where the objective function is really uncertain,
whereas ‘exploitation’ means choosing points to guide a further improvement of the
GP belief at an already good point. This is the reason why there is interest not only
for the maximization of the acquisition function, but also for learning its overall
behaviour over the entire search domain. Therefore, the acquisition function guides
the surrogate model along the search path of promising candidates. Typically, ac-
quisition functions are defined in order that, when they assume high values, they
correspond to potentially high values of the objective function, whether because the

18
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prediction is high, the uncertainty is great, or both. Then, the evaluation of the
objective function is computed at that selected point xt+1 ∈ A, and the model is
updated with the corresponding function value: the process repeats. The optimiza-
tion ends after a maximum number of iterations, or a stopping criterion, such as
spending all the available budget, is met. Figure 3.1, easily explains the concept

Figure 3.1: Example of BO application proposed by Brochu et al. [49]

of BO applied to a 1D design problem. For the first iteration, two initial samples
are selected. At each iteration, the acquisition function, in green, is maximized to
determine where next to sample the objective function. This function takes into
account the mean and variance of the predictions over the space of design. It is high
where the GP predicts a high objective (exploitation) and where its uncertainty is
high (exploration). The next evaluation of the objective function will be in cor-
respondence of the argmax of the acquisition function. After the addition of this
new point to the initial sampling, the GP is uploaded. The area on the left of the
figure, remains unsampled because of the high uncertainty that cannot offer a useful
information gain about the optimum. In this way, it is demonstrated how, adopt-
ing the appropriate acquisition function, helps to minimize the number of objective
function evaluations. It is called ‘Bayesian’ because it uses the ‘Bayes’ theorem’,
which states that the posterior probability of a model M, given evidence (or data,
or observations) E, is proportional to the likelihood of E, given M , multiplied by
the prior probability of M as follows [49]:

P (M |E) ∝ P (E|M)P (M)
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where the prior distribution represents what (i.e. which properties) it is supposed
to know (before looking at the observations) about the space of possible objective
functions, in order to make some functions more plausible than others. Therefore,
assuming, for example, that the prior belief is a very smooth objective function,
data with high variance should be considered less than that barely deviate from the
mean [49]. On the basis of what has just been explained, it is possible to find out
the posterior distribution as:

P (f |D1:t) ∝ P (D1:t|f)P (f)

The posterior captures the updated beliefs about the unknown objective function.
This step can be seen as an estimation of the objective function with the use of
a surrogate function (response surface) with the posterior mean function of a GP.
As the observations are accumulated D1:t = {x1:t, f(x1:t)}, the prior distribution
P (f) is combined with the likelihood function P (D1:t|f) to produce the posterior
distribution P (f |D1:t) ∝ P (D1:t|f)P (f).
Summarizing, BO uses the prior and evidence to define a posterior distribution over
the space of the functions. Prior can describe the attributes of the unknown objective
function, such as smoothness or the most likely location of the maximum. Then,
the optimizing step, allows to decide where to sample next the surrogate model.
The choice is guided by the utility function u(·) adopted. It is selected in order to
be easy to evaluate, and with the aim of optimizing its expectation with respect to
the posterior distribution of the objective function. Following the implementation

Figure 3.2: Bayesian Optimization Algorithm [49].

of a Bayesian Optimization, given by [49], the first assumption is that the problem
is concerned as a maximization one: x∗ = argmaxxf(x). Obviously, it can be
changed into a minimization problem, transforming the function as : g(x) = −f(x).
Then, it is assumed that the objective is Lipschitz-continuous, i.e. there exists some
constant C, such that: for all x1,x2 ∈ A, ∥f(x1) − f(x2)∥ ≤ C∥x1 − x2∥, though
C may be unknown. The problem can be made more narrow by defining it as
one of global optimization, rather than local one. Furthermore, another assumption
can be done: consider that all the dimensions have bounds, on the search space,
that are all axis-aligned. In this way, the search space becomes a hyperrectangle
of dimension d. Despite the simplifications, the number of the objective function
evaluations f needed for guaranteeing the best observation f(x+) ≥ f(x∗)− ϵ, may
be as large as (C/2ϵ)d where the Lipschitz constant C, generally, is a large number.
The reason for that, lies in the idea of achieving a prefixed accuracy taking, at
the same time, into account the possibility of occurrence of the worst possible case.
Usually such worst case, quite never occurs in the practice, so the idea of taking care
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only of cases that have a non negligible chance to occur, arises. For this purpose,
the global optimization problem should be reformulated superimposing, to the class
of problems to be considered, a probabilistic structure and an accuracy criterion
is set consequently. The Bayes theorem provides the basic tool for adapting the
probabilistic structure to the information gained about the problem through function
evaluations [72]. The goal is to use evidence and prior knowledge to maximize the
posterior at each step, in order that each new evaluation can decrease the distance
between the true global optimum and the expected one given by the model.

3.1 Bayesian statistical model: Gaussian Process

3.1.1 Priors

Generally, the prior distribution is based on a Bayesian approach which employs a
Gaussian Process Regression (GPR) and needs to satisfy the following conditions,
so that the optimization method will converge to the optimum: i) the acquisition
function has to be continuous and has to minimize the risk (i.e. the expected
deviation from the global minimum at a fixed point x); ii) the conditional variance
has to converge to zero if and only if the distance to the nearest observation is
zero [73] iii) the objective function has to be continuous; iv) the prior has to be
homogeneous; v) the optimization has to be independent of the mth differences.
However, it is important to emphasize that the priors are probabilistic assumptions
about the data, so they have to be set carefully, avoiding to employ priors which are
too narrow and that can rule out reasonable explanations of the data [74]. Močkus
[73] showed that, with these assumptions, the GP prior is well-suited to the task.
It is known that a Gaussian process is a collection of random variables (in this
case, the values of the unknown function f(x) at location x), that have a joint
Gaussian distribution. Hence, a Gaussian Process is used to describe a distribution
over functions: just as a Gaussian distribution is a distribution over a random
variable, completely expressed by its mean and covariance, a GP is a distribution
over functions, completely described by its mean functionm, and covariance function
k : f(x) ∼ GP(m(x), k(x,x′)). So a GP returns the mean and variance of a normal
distribution over the possible values of f at x (Figure 3.3). It is assumed, for
simplicity, that the prior mean is the zero function m(x) = 0. With the addition
of more datapoints to the posterior distribution, the mean function adjusts itself
to pass through these points, in order that the posterior uncertainty would reduce
close to the observations.

3.1.2 The covariance function

The key factor that controls the properties of a Gaussian process is the covariance
function k. It is also called kernel, because it is a function of two arguments that
maps a pair of input xi,xj ∈ X into R. The most widely-used kernel, in these
contexts, is the squared exponential function:

k(xi,xj) = exp

(
−1

2
∥xi − xj∥2

)
. (3.1)
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Figure 3.3: 1D Gaussian process with three observations (Brochu et al. [49]). The solid
black line is the GP surrogate mean prediction of the objective function and the shaded
area represents the mean plus and minus the variance. The superimposed Gaussians
correspond to the GP mean and standard deviation µ(·) and σ(·) of prediction at the
points x1:3.

The function results infinitely differentiable, which means that the GP that adopts
it, has mean square derivatives of all orders, making it very smooth [74]. It is
possible to recognize, in this formulation, a linear regression model, however, it can
also derive from a linear combination of basis functions assuming Gaussian shapes.
The choice of a covariance function implies a distribution over functions and is a
crucial ingredient in a Gaussian process predictor, as it encodes the assumptions
made about the function that has to be learnt: it determines properties of samples
drawn from it, such as their smoothness or their characteristic length scale (short
length scale means rapid variation of the function). It is a basic assumption that
points, with close inputs x, are likely to have similar target values y. In the same
way, training points, that are near to a test point, should provide information about
the prediction at that point. It is just the covariance function that defines nearness
or similarity [74]. Therefore, the function tends to the unity, as values get close
together, and decreases, tending to zero, as they get further apart into the input
space. For this reason, two points that are close together can be expected to have a
large influence on each other, whereas distant points have almost none. It represents
a necessary condition for convergence under the assumptions of Močkus [73] made
before. In the case in which, it is to sample from the the prior, then, it is necessary
to choose {x1:t}, thus that f1:t = f(x1:t) will be the function values assessed at that
points. They are drawn according to a multivariate normal distribution N (0,K)

(i.e. a generalization of the univariate normal distribution to two or more variables,
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i.e. dimensions), where the kernel matrix is given by:

K =

k(x1,x1) . . . k(x1,xt)
...

. . .
...

k(xt,x1) . . . k(xt,xt)


The diagonal values are 1, only in a noise-free environment, such that each point
is perfectly correlated with itself. However, in these engineering optimization tasks,
the observations {x1:t,f1:t} are obtained from previous iterations on an external
model. Here, it is assumed to already know these early observations. The next
point to be considered, xt+1, is chosen with a BO and the value of the function at
this point is ft+1 = f(xt+1), so, by the properties of Gaussian processes, f1:t and ft+1

are jointly Gaussian: [
f1:t

ft+1

]
∼ N

(
0,

[
K k

kT k(xt+1,xt+1)

])
where

k = [k(xt+1,x1) k(xt+1,x2) . . . k(xt+1,xt)].

Using the Sherman-Morrison-Woodbury formula (also known as matrix inversion
lemma), the predictive posterior distribution can be expressed as:

P (ft+1|D1:t,xt+1) = N (µt(xt+1), σ
2
t (xt+1))

where:

µt(xt+1) = kTK−1f1:t

σ2t (xt+1) = k(xt+1,xt+1)− kTK−1k.

A multitude of possible families of covariance functions exists (e.g. squared ex-
ponential, polynomial, neural network), each of them typically have a number of
free (and sometimes adjustable) parameters, called hyperparameters, whose values
need to be determined. Choosing a covariance function, for a particular applica-
tion, thus comprises both selecting hyperparameters within a family, and compar-
ing them across different families [74]. It is assumed that both of these problems
will not change inside the same method. Hence, the model selection embraces also
the choices made for setting up adequately and accurately the continuous hyperpa-
rameters of the covariance function. A Gaussian process model is a non-parametric
model, so it may not be trivial to recognize what the parameters of the model are.
Among the methods known for selecting a Bayesian model, the cross-validation is
considered as an example. It involves splitting a training set into two sets: the first
one is used for training, the second one for validation or testing. In this way, the
accuracy of the model can be assessed without sampling any points beyond those
previously used to fit the model. The method is based on the idea to leave out one
observation (evaluated at the point that belongs to the test set), and then predict
it back on the basis of the n− 1 remaining points [47].
Typically, it is necessary to generalize the squared exponential kernel, described
above (3.1), by adding θ, which can be a vector containing all the hyperparameters,
if it is contemplated in an anisotropic model; whereas, in an isotropic one, when the
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Figure 3.4: Covariance function as a distribution over functions (Williams et al.[74]).
Given a number of input points, panel(a) shows three functions drawn from a GP prior.
The dots indicate the current y evaluations, whereas the other two functions have been
drawn by joining a large number of evaluated points. Panel(b) displays three random
functions taken from the posterior, i.e. the prior conditioned on the five noise-free obser-
vations indicated as crosses. The shaded area represents the mean plus and minus two
times the standard deviation for each input value, for the prior and posterior, respectively.

covariance function is invariant to all rigid motions, θ can be a single hyperparam-
eter, which controls the width of the kernel.
In an isotropic case, it can be expressed as:

k(xi,xj) = exp

(
− 1

2θ2
∥xi − xj∥2

)
.

Whereas, for anisotropic models:

k(xi,xj) = exp

(
−1

2
(xi − xj)

Tdiag(θ)−2(x− x′)

)
.

where diag( θ) is a diagonal matrix with d entries θ along the diagonal. Intuitively,
if a particular component θl, of the vector θ, has a small value, the kernel becomes
independent of that l−th input, effectively removing it from the inference. Generally,
these values are learnt by ‘seeding’ with a few random samples and maximizing the
likelihood of the samples given θ [47, 74].
Another kernel function commonly used for BO, is the Matérn kernel [75, 76]. It
has a smoothness parameter ζ that assures greater flexibility in modelling functions:

k(xi,xj) =
1

2ζ−1Γ(ζ)
(2
√
ζ ∥xi − xj∥)ζ Hζ (2

√
ζ ∥xi − xj∥)

where Γ(·) and Hζ(·) are respectively the Gamma function and the Bessel function of
order ζ. As ζ → ∞, Matérn kernel reduces to the squared exponential one. However,
numerous other covariance functions have been examined in the machine learning
literature for adapting to different problems [74].
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3.1.3 Noisy environment

Even if previously the covariance function has been assumed to be set in a noise-free
environment, more realistic modelling situations look different. It cannot be possible
to have access to function values themselves f(x), but only noisy versions thereof.
The noise measurement is assumed, for simplicity, to be Gaussian: ϵ ∼ N (0, σ2noise).
If the noise distribution is additive, it can be easily added to the Gaussian distribu-
tion N (0,K) and it is obtained: yi = f(xi) + ϵi which shows the noisy observation
of the objective function at the i− th sample xi. Since the mean is zero, the kernel
k is replaced as:

K =

k(x1,x1) . . . k(x1,xt)
...

. . .
...

k(xt,x1) . . . k(xt,xt)

+ σ2noiseI

This yields the predictive distribution:

P (yt+1|D1:t,xt+1) = N (µt(xt+1), σ
2(xt+1) + σ2noise),

and the statistics:

µt(xt+1) = kT [K+ σ2noiseI]
−1y1:t

σ2t (xt+1) = k(xt+1,xt+1)− kT [K+ σ2noiseI]
−1k.

3.2 Acquisition Functions for BO

Once a statistical model to represent the unknown function has been implemented,
it is necessary to choose a sampling strategy for selecting a new query point. The
selection technique takes advantage of the posterior distribution to guide the search
and usually provides to the maximization of a quantity that measures the amount
of information the new current query will provide (its expected utility). Therefore,
maximizing the acquisition function means finding the next candidate at which to
evaluate the unknown objective function. Hence, the role of the acquisition function
is to guide the search for the optimum. Commonly-used acquisition functions are:
the Expected Improvement (EI) [47] and the Probability of Improvement (PI), which
measure the expected amount by which an improvement can be made over the
current best solution; Predictive Entropy Search (PES) [77], Entropy Search (ES)
[78], Max-value Entropy Search (MES) which aim to approximate the information
gain or the expected reduction in the posterior entropy of the global optimizer of the
objective [79, 77, 78]. Hereafter their single-fidelity implementations are showed.

3.2.1 Probability of Improvement

The PI criterion attempts to find the location, where the probability of improving
the objective function, based on the current surrogate model, is the highest [59].
Kushner, in 1964, [80] suggested to maximize the probability of improvement over
the incumbent f(x+), where x+ = argmax

xi∈x1:t

f(xi), so that:
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PI(x) = P (f(x) ≥ f(x+))

= Φ

(
µ(x)− f(x+)

σ(x)

)
where Φ(·) is the normal cumulative distribution function, f(x+) is the current op-
timal solution of the surrogate model, µ(x) and σ(x) are the mean and standard
deviation of a Gaussian distribution. With this formulation, the acquisition function
results a pure exploitation. Points that have a high probability of being infinitesi-
mally greater than f(x+) will be preferred to points that offer major gain but less
certainty: it is required to modify the PI formulation in order to set properly a
trade-off parameter ξ ≥ 0.

PI(x) = P (f(x) ≥ f(x+) + ξ)

= Φ

(
µ(x)− f(x+)− ξ

σ(x)

)
Kushner recommended to start adopting a high ξ in the early stages of the opti-
mization, in order to drive exploration, and then suggested to decrease its value
toward zero as the algorithm continues. The exact choice of ξ is left to the user.
Studying this approach, Jones [59] noticed that the method is extremely sensitive
to the choice of the target. If the desired improvement results too small, the search
will tend to be mainly local and will only move on to search globally, after searching
exhaustively around the current best point. On the other hand, if the ξ selected is
too high, the search will be excessively global, making the algorithm slower.

3.2.2 Expected Improvement

An alternative to this utility function, is the Expected Improvement (EI). It takes
into account not only the probability of improvement, but also the magnitude of the
improvement a point can potentially yield. The goal is to minimize the expected
deviation from the true maximum f(x∗), when choosing a new trial point:

xt+1 = argmin
x

E(∥ft+1(x)− f(x∗)∥ |D1:t)

= argmin
x

∫
∥ft+1(x)− f(x∗)∥P (ft+1|D1:t) dft+1.

This formulation considers one-step ahead choices and, even if it can be easily and
recursively extended for as many steps ahead as desired, it can become really expen-
sive. Močkus [73] proposed the alternative of maximizing the expected improvement
with respect to f(x+) as:

I(x) = max{0, ft+1(x)− f(x+)}. (3.2)

That is, I(x) models the uncertainty about the function value at x and is positive,
when the prediction is higher than the best value known thus far, otherwise it is set
to zero. This expression is a random variable, because ft+1(x) is a random variable
too. The new query point is found by maximizing the expected improvement:

x = argmax
x

E (max{0, ft+1(x)− f(x+)} |Dt)



3. Active learning via Bayesian Optimization 27

Figure 3.5: Probability of Improvement depiction [49].
The figure shows the region of probable improvement. The maximum observations is at
x+, the green area above the dashed line can be seen as a measure of improvement I(x).
The model predicts a major possibility of improvement by observing at x3 rather than at
x1 or x2 .

The likelihood of improvement I(x), on a normal posterior distribution, character-
ized by µ(x) and σ2(x), can be computed from the normal density function:

1√
2πσ(x)

exp

(
−(µ(x)− f(x+)− I)

2

2σ2(x)

)
. (3.3)

Therefore, the expectation is calculated by integrating, by parts, over this function:

E(I) =

∫ I=∞

I=0

I
1√

2πσ(x)
exp

(
−(µ(x)− f(x+)− I)

2

2σ2(x)

)
dI

= σ(x)

[
µ(x)− f(x+)

σ(x)
Φ

(
µ(x)− f(x+)

σ(x)

)
+ ϕ

(
µ(x)− f(x+)

σ(x)

)]
In closed form, the expected improvement becomes:

EI(x) =

{
(µ(x)− f(x+)) Φ(Z) + σ(x)ϕ(Z) if σ(x) > 0

0 if σ(x) = 0

Z =
µ(x)− f(x+)

σ(x)

where ϕ(·) and Φ(·) represent the Probability Density Function (PDF) and the Cu-
mulative Density Function (CDF) of the standard normal distribution.
In a noisy environment, the expression of PI and EI acquisition functions has to
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be changed. Instead of using the best observation as incumbent, it is used the dis-
tribution at the sampled points, and then it is selected the point with the highest
expected value:

µ+ = argmax
xi∈xi:t

µ(xi).

This formulation helps to avoid attempting to maximize probability or expected
improvement over an unreliable sample.

3.2.3 Predictive Entropy Search

Entropy search methods find a query point that maximizes the information about
the location of the target maximizer x∗ = argmaxx∈X f(x) whose value y∗ = f(x∗)

represents the global maximum of the function f , which is a function sampled from
GP(µ, k). PES adopts the following acquisition function that uses a negative differ-
ential entropy of p(x∗|Dt) to characterize the uncertainty about x∗ [81]:

αt(x) = I({x, y};x∗|Dt)

= H(p(y | Dt,x))− E[H(p(y | Dt,x,x∗))].

Unfortunately, whether p(x∗|Dt) or its entropy are not analytically feasible and need
to be approximated with expensive computations. Furthermore, the optimum may
not be unique, making the evaluation more complex.

3.2.4 Max-value Entropy Search

To avoid the problems just exposed about the PES, Wang and Jegelka [81] propose
to measure the information about the maximum value y∗ = f(x∗), making the
search path one-dimensional. The acquisition function becomes the gain in mutual
information between the maximum y∗ and the next candidate point, which can be
approximated analytically, by evaluating the entropy of the predictive distribution:

αt(x) = I({x, y}; y∗| Dt)

= H(p(y | Dt,x))− E[H(p(y | Dt,x, y∗))] (3.4)

≈ 1

K

∑
y∗∈Y∗

[
γy∗(x)ψ(γy∗(x))

2Ψ(γy∗(x))
− log(Ψ(γy∗(x)))

]

where ψ is the PDF, Ψ is the CDF of a normal distribution and γy∗(x) =
y∗−µt(x)
σt(x)

.

The expectation, here, is over p(y∗|Dt), which is much easier to compute with re-
spect to ES and PES, and is approximated using Monte Carlo estimation, by sam-
pling a set of K function maxima. Furthermore, the probability on the left side
of the Eq.(3.4), p(y|Dt,x) is a Gaussian distribution with mean and variance that
are, respectively, µt(x) and kt(x,x). Whereas, the probability on the right side,
p(y|Dt,x, y∗) is a truncated distribution, so that, given y∗, the distribution of y
needs to satisfy y < y∗. To sample y∗, Wang and Jegelka show two strategies:
sampling from an approximation via a Gumbel distribution; or sampling by max-
imizing functions from the posterior Gaussian distribution. Adopting the Gumbel
Sampling approach, means to sample from the approximation p̂(y∗|Dn) via its CDF
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P̂ r[y∗ < z] =
∏

x∈X̂ Ψ(γz(x)), where X̂ is a discrete subset of representative points
that replaces, for simplicity, the continuous set X. This means that it is necessary
to sample r uniformly from [0,1] and find z, such that Pr[y∗ < z] = r. This search
can take time, so a more time-strategic computation is showed, by approximating

the CDF by a Gumbel distribution: P̂ r[y∗ < z] ≈ G(a, b) = e−e−
x−a
b . This choice is

motivated by Fisher-Tippett-Gnedenko theorem [82], which states that the maxi-
mum of a set of i.i.d. ( Independent and Identically Distributed random variables)
Gaussian variables is asymptotically described by a Gumbel distribution. Sampling
from the Gumbel distribution is made via the Gumbel quantile function, and the
appropriate set of parameters a and b is obtained by percentile matching. An alter-
native method, is that of sampling a set of function f̃ , drawn from the GP posterior,
and then maximize them in order to get samples of y∗ = maxx∈X f̃(x). However,
further information can be found in [81, 77].



Chapter 4

Active learning via multiple
sources: Multifidelity Bayesian
Optimization

More efficiency, with respect to the Bayesian Optimization just showed, can be
achieved in a multifidelity framework (Multifidelity Bayesian Optimization, MFBO),
where having cheaper level of approximations of the objective function, provides less
costs and more useful information to assist and accelerate the search of optimum.
In a multifidelity approach, the optimization process has to choose either the next
iterates, or which fidelity model to adopt for that evaluation, simultaneously. There-
fore, an adjustment to multiple fidelities is required in the definition of Gaussian
Process Regression (GPR) prior seen in section 3.1.1. Consider that y(1)x , . . . , y

(M)
x

are the observations at x ∈ X , where X is the space of design andM are the different
fidelities expressed in ascending order for m = 1, . . . ,M . Each observation is mod-
eled as y(m)

x = f
(m)
x + ϵ, where ϵ represents the measurement noise, which is assumed

to have equal distribution over the different fidelities, ϵ ∼ N (0, σ2noise). The training

data set Dn = {(xi, y(mi)
xi ,mi)}i∈[n] consists of n inputs xi, fidelity mi and output

y
(mi)
xi , which is the observation at that n-th point. The querying cost is λ(m), where
λ(1) ≤ λ(2) . . . ≤ λ(M). Following an autoregressive scheme [52], the lowest fidelity
function is modeled with a GP prior f (1) ∼ GP (0, k1(x,x

′)), where k1 : Rd×d → R is
the kernel function. The higher fidelities are defined recursively, as:

f (m)(x) = ρf (m−1)(x) + δ(m)(x) m = 2, . . . ,M

where ρ is a constant term used for scaling the contribution of the previous fidelity
to the following one, and δ(m) ∼ GP (0, km(x,x′)) models the bias between fidelities.
According to the autoregressive formulation:

cov[f (m)(x), f (m−1)(x′)|f (m−1)(x)] = 0 ∀x ̸= x′

This can be interpreted as a Markov property, so that nothing more can be learnt
about the current evaluation f (m)(x) from any other previous model evaluation
f (m−1)(x′), for x ̸= x′. Therefore, the expensive simulation is assumed to be correct
and any inaccuracies lie in the cheaper models.
Fitting a GPR to a multifidelity context, the so called MF-GPR, allows to define a
kernel matrix K ∈ Rn×n in which K(i, j) = k((xi,mi), (xj ,mj)) for a pair of training

30
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points (xi, y
(mi)
xi ,mi) and (xj , y

(mj)
xj ,mj) and all the fidelities are unified into a GPR

model, where the predictive distribution is defined by predictive mean and variance
[83]:

µ(m)
x = k(m)

n (x)T [K + σ2noiseI]
−1y

σ2(m)
x = k((x,m), (x,m))− k(m)

n (x)T [K + σ2noiseI]
−1k(m)

n (x).

where:

I = is the identity matrix,

y := (y(m1)
x1

, . . . , y(mn)
xn

)T ,

k(m)
n (x) := (k((x,m), (x1,m1)), . . . , k((x,m), (xn,mn)))

T .

4.1 Analysis of Multifidelity acquisition functions

Hereafter it is presented an extension, to the multifidelity framework, of all the
single-fidelity acquisition functions just debated in Chapter 3.

4.1.1 Multi-Fidelity Expected Improvement

In the case of multiple fidelities, Huang et al. [84], in 2006, proposed to extend the
Expected Improvement, implemented by Jones [47] in a single fidelity context, as
follows:

MFEI(x,m) ≡ E
[
max

(
f (M)(x)− f (M)(x+), 0

)]
· α1(x,m) · α2(x,m) · α3(m) (4.1)

where
E
[
max

(
f (M)(x)− f (M)(x+), 0

)]
(4.2)

is the expected improvement evaluated at the highest fidelity function (i.e. the
current best prediction response of the high-fidelity objective function, f (M)(x+))
and f (M)(x) denotes the posterior mean; whereas, the other terms appearing in the
formula, are utility functions:

α1(x,m) = corr
[
f (m)(x), f (M)(x)

]
, (where corr stands for correlation)

α2(x,m) = 1− σϵ√
σ2(m)(x) + σ2ϵ

, where σ2(m)(x) = cov[f (m)(x), f (m)(x)]

α3(m) =
λM
λm

The term α1(x,m) takes into account the reduction in reward when a lower-fidelity
evaluation is used. When m = M , the term is equal to one; whereas, it should
be zero when already exists an evaluation at (x,m) and there is not random error,
because replicates bring no additional information. It represents the correlation be-
tween the posterior estimate of systems m and M at the same point x. It can be
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seen as the fraction of uncertainty that can be deleted from the high-fidelity system
M, once m is known.
The term α2(x,m) helps to adjust EI, when noise is found in system m outputs. It
allows to reduce the addition of replicates as the prediction becomes more accurate,
therefore this factor is equal to one when the variance of the random error is zero.
The term α3(m) identifies the ratio between the cost-per-evaluation on the higher
fidelity system with respect to that on th m-th system . With equal expected gains,
the algorithm will prefer to choose a cheaper datapoint to a more expensive one.
To summarize, the presence of the first term is necessary to avoid choosing always
the cheaper low-fidelity system; the second factor allows to eliminate unnecessary
replicates that could arise when random errors exist; excluding the last term could
bring to always select the highest-fidelity. The expectation can be analytically com-
puted by integrating over the distribution f (M)(x), with f (M)(x+) as a fixed value:

E
[
max

(
f (M)(x)− f (M)(x+), 0

)]
=

(f (M)(x)− f (M)(x+))Φ

(
f (M)(x)− f (M)(x+)

σ(m)(x)

)
+ σ(m)(x)ϕ

(
f (M)(x)− f (M)(x+)

σ(m)(x)

)
4.1.2 Multi-Fidelity Probability of Improvement

MFPI is here implemented, according to [85] that developed this method in 2019.
Always is a maximization problem, it is formulated as:

MFPI(x,m) = PI(x)× Corr(x,m)× CR(m)× η(x,m) (4.3)

where

PI(x) = Φ

(
f (M)(x)− f (M)(x+)

σ(M)(x)

)
(4.4)

Corr(x,m) = Corr
[
f (M)(x), f (m)(x)

]
(4.5)

CR(m) =
λM
λm

(4.6)

η(x,m) =

n∏
i=1

[
1−R

(
x,x

(m)
i

)]
. (4.7)

The term Corr(x,m) represents the posterior correlation between m-th and M -th
fidelity models evaluated at the same input point. It reaches, indeed, its maximal
value of one, when a high-fidelity sample is added to the setpoint, so that the PI
cannot be reduced at the current iteration: it quantifies the penalty connected to
the selection of the lower-fidelity function.
The term CR(m) stands for Cost Ratio and is only function of the fidelity level,
because is the computational cost ratio between high- and low-fidelity model. It
assumes the same expression previously seen for MFEI.
The term η(x,m) is the sample density function, whose assessment has been drawn
from [86]. It describes the density of datapoints from the fidelity level m and helps
to prevent their clustering. Its formulation derives from the computation of the
spatial distance between the sequential point and observed samples, made by using
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the Gaussian correlation model. Therefore, its contribution within the formulation,
drops rapidly when the sample x is close to a previously evaluated point. This

happens because, the correlation function R
(
x,x

(m)
i

)
converges from zero to one,

as the spacial distance decreases. This is an essential requirement to avoid wasting
resources on unnecessary samples.

4.1.3 Multi-Fidelity Predictive Entropy Search

According to [87], Multi-fidelity Predictive Entropy Search (MFPES) facilitates the
non trivial trade-off between exploitation and exploration over the objective and the
auxiliary functions. The index t represents the target function, whereas x∗m is the
maximizer of the m-th function. The aim is to maximize information gain of only
the global target maximizer x∗t, on the basis of next input observation ⟨x,m⟩.

MFPES(yx, ⟨x,m⟩) = H(ym(x)|yX)− Ep(x∗t|yX)[H(ym(x)|yX , x∗t)]

where

H(ym(x)|yX) ≜ 0.5 log(2πe(σ2⟨x,m⟩ |X + σ2nm))

Ep(x∗t|yX)[H(ym(x)|yX , x∗t)] ≈ − 1

2S

S∑
s=1

log
(
v
(s)
fm

+ σ2nm

)
with σ2⟨x,m⟩ |X ≜

∑
{⟨x,m⟩}{⟨x,m⟩}|X .The vector yx collects the observed noisy outputs

The first term H(ym(x)|yX) is the Gaussian predictive/posterior term and can be
computed analytically.
The second term represents the predictive entropy conditioned on target maximizer
and is calculable only through approximations that are widely described in [87].

4.1.4 Multi-Fidelity Max-value Entropy Search

Multi-fidelity Max-value Entropy Search (MFMES) is an acquisition function based
on the information-gain criterion: it aims to maximize the mutual information be-
tween the queried points and the location of the global optimum of the highest
fidelity function, in order to select the next iterate. MFMES acquisition function
adopted in this thesis, refers to that proposed in 2020 [83], which is inspired by
the single fidelity formulation made by Wang and Jegelka in 2017 [81], explained
in the previous chapter. This method aims to facilitate the computation, making
reliable the evaluation of the entropy. MES measures the information gain about
the maximum value f∗ := maxxf(x) which is in one-dimensional space: this facil-
itates the estimation of the mutual information and reduces computational costs.
This is the main advantage of the method with respect to other information-gain
and entropy search-based methods, such as Entropy Search and Predictive Entropy
Search. They are based on the information maximization about the optimal solution
x∗ := argmaxxf(x) of the unknown function, that is a multidimensional domain.
They can identify a good query point with few iterations, but this involves expensive
computations. For this reason, in high dimensions, where a large number of initial
samples are required, they become quickly inefficient. Furthermore they character-
ize the uncertainty about x∗ with a formulation analytically intractable, which has
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to be approximated via expensive computations. Moreover, the optimum may not
be unique, adding further complexity to this d -dimensional distribution [83]. There-
fore, MES merges the ease of ES and PES of finding the next query points, with the
reduced computational cost of its innovative formulation. Its performance is showed
in terms of total cost of functions evaluations, but future works are necessary to
evaluate performances based on wall-clock time. Furthermore, unlike classical eval-
uation measures such as expected improvement, it promises a measure of global
utility which does not require any additional exploit-explore trade-off parameter
[81]. Since objective functions have a variety of sampling costs, in a MFBO con-
text, queries occur asynchronously. While developers of the method propose both
Sequential and Parallel Querying approaches, in this thesis only the first one is
implemented. It considers the case that a query is sequentially issued after the pre-
vious one is observed. We assume the formulation expressed at the beginning of the
chapter. Given a training data set Dt, the acquisition function is defined as:

MFMES(x,m) := I(f∗; f
(m)
x |Dt)/λ

(m)

where I(f∗; f
(m)
x |Dt) is the mutual information between f∗ and f

(m)
x . Maximizing

MFMES(x,m), allows to obtain a pair of the input x and the fidelity m, which
maximally gains information about the optimal value f∗ of the highest fidelity func-
tion per unit cost. The mutual information can be written as the difference of the
entropy:

I(f∗; f
(m)
x |Dt) = H(f (m)

x |Dt)− Ef∗|Dt
[H(f (m)

x |f∗, Dt)] (4.8)

where H(·|·) is the conditional entropy of p(·|·). The first term on the right, can be
derived analytically for any fidelity m :

H(f (m)
x |Dt) = log (σ(m)

x

√
2πe) (4.9)

where e := exp(1). The second term takes the expectation over the maximum f∗.
An analytical formula for this expectation is not available, so it is approximated
using Monte Carlo estimation by selecting F∗ , that is a set of function maxima f∗
sampled from the GPR:

Ef∗|Dt
[H(f (m)

x |f∗, Dt)] ≈
∑
f∗∈F∗

H(f
(m)
x |f∗, Dt)

|F∗|

Actually, when this function has been implemented in the optimization algorithm
adopted for this thesis, that solves a minimization problem, and not a maximization
one, F∗ is a set of function minima.
Monte Carlo simulations are here adopted because they can sample from probability
distributions to study phenomena that do not have direct analytical solutions.
As said before, two strategies are proposed by Wang & Jegelka to sample the max
value: sampling from a Gumbel distribution or sampling the highest fidelity function
from a posterior Gaussian distribution (Random Feature Map, RFM). Here, the
second choice is preferred due to the GPR model implemented in previous works.
For a sampled f∗, it is necessary to calculate the entropy of p(f (m)

x |f∗, Dt) in equation

(4.8) as p(f (m)
x |f (M)

x ≤ f∗, Dt), in order to condition only on the given x rather than

requiring f (M)
x ≤ f∗ for ∀x ∈ X . This simplification makes the computation more

tractable, leading to superior performances, and has been employed by most of the
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other entropy-based BO methods [77, 81].
For any ζ ∈ R, define

γ
(m)
ζ (x) := (ζ − µ(m)

x )/σ(m)
x (4.10)

as a function for scaling.
When m = M , the density function p(f

(m)
x |f (M)

x ≤ f∗, Dt) is a truncated normal
distribution, whose entropy can be represented as [88]:

H(f (M)
x |f (M)

x ≤ f∗, Dt) = log
(√

2πeσ(M)
x Φ(γ

(M)
f∗

(x))
)
−
γ
(M)
f∗

(x)ϕ(γ
(M)
f∗

(x))

2Φ(γ
(M)
f∗

(x))
(4.11)

where ϕ and Φ are the probability density function and the cumulative distribution
of the standard normal distribution.
For the information gain from a lower fidelity, when m ̸=M , the entropy cannot be
calculated by representing a conditional distribution of f (m)

x given f∗ as a truncated
normal distribution. The joint conditional distribution p(f

(M)
x |f (m)

x , Dt), which is

constructed from the two dimensional GPR predictive distribution p(f (M)
x , f

(m)
x |x, Dt),

can be obtained as:

f (M)
x |f (m)

x , Dt ∼ N (u(x), s2(x))

where

u(x) = σ2(mM)
x (f (m)

x − µ(m)
x )/σ2(m)

x + µ(M)
x

s2(x) = σ2(M)
x − (σ2(mM)

x )2/σ2(m)
x (4.12)

so the entropy of p(f (m)
x |f (M)

x ≤ f∗, Dt) can be written as:

H(f (m)
x |f (M)

x ≤ f∗, Dt) = −
∫
ZΨ(f (m)

x ) log
(
ZΨ(f (m)

x )
)
df (m)

x (4.13)

where

Z := 1/σ(m)
x Φ(γ

(M)
f∗

(x))

Ψ(f (m)
x ) := Φ((f∗ − u(x))/s(x))ϕ(γ

(m)

f
(m)
x

(x)). (4.14)

In this way, the entropy is represented through a one dimensional integral over f (m)
x

and standard numerical integration techniques can be used to approximate it with
simple computations. For a given f∗, the integral can be computed as O(1).

4.2 Numerical implementation

This section describes the implementation in Matlab of the multifidelity optimiza-
tion algorithm, which is then used for all the test cases, subjects of this thesis.
The optimization solves a minimization problem. Following the flowchart in Figure
4.1, it is possible to summarize the main steps of the algorithm. The first step
provides for setting up the structure opt, that represents the optimization setup,
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and the structure fun, that collects objective function modeled with different in-
creasing fidelities m = 1, . . . ,M . The structure Opt includes: the dimension of
the design space X , the range in which the design variables change, the maximum
number of iterations, the maximum budget geared for all the optimization process,

Start

Set up optimization settings

Seed initial samples from a
Latin hypercube sampling

Compute the objective function with the
m-th level of fidelity at the corresponding
initial points selected for that fidelity level

Gaussian process posterior evaluation

Evaluate the acquisition function

Maximize the acquisition function

Next candidate to query and
with which m-th fidelity level

Update arrays of minimum values
and corresponding minimum samples

Is the budget
terminated ?

Stop

yes

no

Figure 4.1: MFBO algorithm implemented
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the size of the grid which discretizes the space of design, the number of different
fidelities used and the corresponding cost λ(m) for each call (generally, the cost to
evaluate the high-fidelity objective function is one, whereas lower-fidelities costs are
set proportionally), the number of initial design points and how they are divided
among the different fidelity levels, the amount of Monte Carlo simulations to use
(it is necessary only if the selected acquisition function is MFMES), the number of
tests to run for statistical purposes and the type of multifidelity acquisition func-
tion (MFEI,MFMES or MFPI). Then, a Latin hypercube sampling (lhs) method
is adopted for spreading the sample points into the design domain and an initial
grid of candidates is drawn from it randomly. After selecting the initial points,
the m-th functions are computed and their outputs are collected in the array y(m).
Successively, the minimum value, minvalues, and its corresponding sample point x,
minsamples, of the high-fidelity function are evaluated. Before starting the iterative
process of optimization, the budget that concerns the initial points evaluation, is
computed. Then, a for cycle is set to start the optimization until the end of bud-
get is met or, eventually, the maximum number of iterations is achieved (generally,
the budget limitation is selected to be more restrictive than the limitation on the
iterations). Within the for loop, the surrogate model is built, on the basis of the
first iterations, and progressively updated. The surrogate is set up by fitting a Mul-
tifidelity Gaussian Process regression model (MFGP), in order to have a prediction
for unsampled points. It is trained using samples and response values, computed at
previous iterations, made on all the m-th fidelities. It adopts a squared exponential
kernel function. Therefore, the posterior is obtained in terms of mean function µ(m)

and variance σ2(m) from the Gaussian process. Successively, the acquisition function
is computed and maximized: the next point to query x(m)

i+1 and with which fidelity
function, are so determined and, then deleted from the initial design space, avoiding
replicates. A description of the algorithms implemented for each acquisition func-
tion, can be found in tables (4.3, 4.1, 4.2). Then, minvalues and minsamples arrays
are updated and budget too. The cycle restarts.
For all the experiments runs that will be shown in the next chapters (Chapters 5 and
6), computational resources were provided by HPC@POLITO (http://hpc.polito.it).



38 4.2. Numerical implementation

Algorithm: MFEI

1. for i=1: maximum number of iterations (or end of budget)

2. function[xi+1,M,X ]= MFEI(µ
(m)
x , σ

(m)
x , f (M),X , λ(m))

3. Compute f (M)(x+) = min(f (M)(x))

4. for m = 1 :M − th fidelity level

5. Compute α1(x,m) = corr
[
f (m)(x), f (M)(x)

]
6. Compute α2(x,m) = 1− σϵ√

σ2(m)(x)+σ2
ϵ

7. Compute α3(m) = λM

λm

8. end for

9. Calculate EI= E
[
max

(
f (M)(x+)− f (M)(x), 0

)]
(Eq.4.2)

10. Calculate MFEI(x,m) = EI · α1(x,m) · α2(x,m) · α3(m) (Eq.4.1)

11. [xi+1,M ] = argmax(MFEI)

12. Remove the new point selected, from the space of design X

13. end function

14. Update the surrogate by evaluating the M-th model at xi+1

15. Evaluate the current minimum of the objective function (minsamples,
minvalues)

16. end for on i

Table 4.1: MFEI algorithm
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Algorithm: MFPI

1. for i=1: maximum number of iterations (or end of budget)

2. function[xi+1,M,X ]= MFPI(µ
(m)
x , σ

(m)
x , f (M),X , λ(m))

3. Compute f (M)(x+) = min(f (M)(x))

4. for m = 1 :M − th fidelity level

5. Compute Corr(x,m) = Corr
[
f (M)(x), f (m)(x)

]
Φ
(

f (M)(x+)−f (M)(x)

σ(M)(x)

)
(Eq.4.5)

6. Compute CR(m) = λM

λm
(Eq.4.6)

7. end for

8. Compute η(x,m) =
∏n

i=1

[
1−R

(
x,x

(m)
i

)]
(Eq.4.7)

9. Calculate PI(x) = Φ
(

f (M)(x+)−f (M)(x)

σ(M)(x)

)
(Eq.4.4)

10. Calculate MFPI(x,m) = PI(x)×Corr(x,m)×CR(m)× η(x,m) (Eq.4.3)

11. [xi+1,M ] = argmax(MFPI)

12. Remove the new point selected, from the space of design X

13. end function

14. Update the surrogate by evaluating the M-th model at xi+1

15. Evaluate the current minimum of the objective function (minsamples, min-
values)

16. end for on i

Table 4.2: MFPI algorithm
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Algorithm: MFMES

1. for i=1: maximum number of iterations (or end of budget)

2. function[xi+1,M,X ]=MFMES(µ
(m)
x , σ

(m)
x , f

(m)
x ,X , λ(m))

3. Calculate H0 = log (σ
(m)
x

√
2πe) (Eq.4.9)

4. for m = 1 :M − th fidelity level

5. for j = 1 : number of Monte Carlo simulations

6. Compute F ∗ = min(f
(M)
∗ )

7. Compute γ
(M)
f∗

(x), ϕ(γ
(M)
f∗

(x)), Φ(γ
(M)
f∗

(x)) (Eq.4.10)

8. if m=M

9. Calculate H1 =
∑
f∗∈F∗

H(f
(M)
x |f (M)

∗ ≤ f∗, Dt)

|F∗|
(Eq.4.11)

10. else

11. Compute Z, σ2mM
x , u(x), s2(x), γ

(m)

f
(m)
x

,Ψ(f
(m)
x ) (Eq.4.12,4.14)

12. Calculate H1 =
∑
f∗∈F∗

H(f
(m)
x |f (M)

∗ ≤ f∗, Dt)

|F∗|
(Eq.4.13)

13. end if

14. end for on j

15. end for on m

16. MFMES= (H0 −H1)/λ
(m)

17. [xi+1,M ] = argmax(MFMES)

18. Remove the new point selected, from the space of design X

19. end function

20. Update the surrogate by evaluating the M-th model at xi+1

21. Evaluate the current minimum of the objective function (minsamples,
minvalues)

22. end for on i

Table 4.3: MFMES algorithm



Chapter 5

Applications to L1 problems

In this chapter L1 problems, proposed as standards by dedicated working groups of
the international community, are used for the assessment of the previously described
multifidelity methods. The term L1 represents the simplest category of problems,
that is analytic functions, which have exact evaluations, negligible computational
costs and a little engineering utility [89], because they exemplify mathematical prop-
erties and behaviours of real engineering applications. Nevertheless, they are useful
to stress and characterize the methods employed in terms of strengths and weak-
nesses, and to demonstrate proof of concept.
L1 benchmarks are selected with the aim to capture fundamental mathematical
aspects and behaviours. The selected set of functions comprises: the Sinusoidal-
squared function, the Forrester function, the Rosenbrock function, the Rastrigin
function shifted and rotated, the Clark and Bae function and the coupled Spring-
Mass System. They allow to test the multifidelity methods in context that include
multimodal problems with local optima and increasing dimensionality of the objec-
tive function: key features of design and optimization engineering systems.
For each function, it will be a mathematical description of the models and then an
analysis of the results obtained from their implementations.
Two fidelity levels will be adopted, the best and the worst model presented in the
guidelines proposed by NATO STO, where m = 1 stands for the highest fidelity, and
m = 2 for the lowest one. A table will summarise the initial settings used for the
experiments, such as the initial budget, the evaluation costs of each function and
the number of initial samples for each fidelity model.
A budget is used as a termination criterion for simulating resource constraints that
affect real-world design problems. It is set proportionally to the dimensionality D,
as: Budget = 100D; the fidelity cost assignment is determined considering λ1 = 1

for all the high-fidelity functions. Therefore, the cost assigned to the low-fidelity
function is a fraction of the computational cost of f1(x). The amount of Monte
Carlo simulations, required by the Multifidelity Max-value Entropy Search, is set
up to 10 for all the benchmark problems, following the developers’ settings [83].
The optimization performances of the methods are, then, evaluated in terms of func-
tion relative error with respect to the objective function (i.e. normalized difference

in the function space) ∆f . It is computed as: ∆f =
f(g)−f∗

min

f∗
max−f∗

min
where f(g) is the

minimum found by the algorithm, f∗min is the analytical minimum and f∗max is the
analytical maximum of the function f(x) in the domain of design. Then, the me-
dian of ∆t and the median of the total costs are evaluated. The values are computed

41
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taking into account ten tests, for each method and for each benchmark problem for
statistical purposes (except for the Rosenbrock 5D function and the spring-mass
system, where the tests are reduced to just five). The global performance of the
methods ∆t are assessed to take into account not only the error about the function,
but also that about the location of the optimum found:

∆t =

√
∆2

x +∆2
f

2

∆x =

√√√√ 1

N

N∑
j=1

(
gj − x∗j,min

Zj

)2

represents the normalized Euclidean distance between the location of the global
optimum found with the optimization process (g) and the analytical minimizer x∗min,
with Zj = |uj − lj | is the range within the j-th variable changes.
Furthermore, also the Confidence Interval (CI) is computed. It represents a limited
interval in which it is possible to find the true value, with a certain likelihood
(confidence grade). The bounds are set to 25 % and 75% percentile of the Gaussian
distribution over the median so all the observations that are part of this interval are
accepted, while the others are excluded in order to avoid outliers.

5.1 Forrester function

The Forrester function [90] is a 1D non linear function over the domain [0,1]. The
following equations describe the high- and low-fidelity functions:

f1(x) = (6x− 2)2 sin(12x− 4)

f2(x) = 0.5f1(x) + 10(x− 0.5)− 5.

Its minimum is f(x∗) = −6.0207 and is located at x∗ = 0.7572. The function stresses
the research for the minimum, thanks to its multimodality. It helps to check if the
methods tend to stop in a local minimum.

Function Dimension Budget HF cost LF cost HF samples LF samples

Forrester 1 100 1 0.05 2 5

Table 5.1: Forrester experiment setup



5. Applications to L1 problems 43

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

-10

-5

0

5

10

15

20

f m
(x

)

Forrester function

High-fidelity

Low-fidelity

Figure 5.1: Forrester function

5.1.1 Results

Figure 5.2: Comparison of MFEI, MFMES and MFPI on Forrester function.

The figure above is a representation of the median values, along with all the other
object observations falling into the confidence interval (shaded areas), evaluated by
the three different methods. It is possible to observe that MFPI, initially decreases
the error more rapidly than the other methods but, at around budget=8, its perfor-
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mance reduces and swings between a better and a worst behaviour than the MFEI.
However, on the population of tests executed, the minimization of the error takes
place with a budget of around 16.3 for the MFEI, and 23 for the MFPI. The error
can be reduced quickly, thanks also to the great accuracy of the surrogate, which,
with low dimensionality, can achieve high performances, even with a narrow num-
ber of initial samples. For what concerns MFMES, the error cannot be minimized
beyond the value of 0.002, that is achieved with a budget of approximately 47.4.
The minimum x∗ = 0.7572 is approximately reached after 52 iterations of MFEI,

(a) Complete (b) Until the optimum

Figure 5.3: Distribution of MFEI samples over x till the optimum.

with the use 213 and 306 patterns of high- and low-fidelity, respectively. The quite
low number of iterations required is due to the great surrogate accuracy on a 1D
problem. This allows to find rapidly the global optimum. Later, the behaviour
of the algorithm is that to analyse the design domain with both exploration and
exploitation purposes, but preferring exploration: a quite uniform distribution of
low-fidelity samples is spread over the domain. Therefore, the number of LF sam-
ples (8965) is much greater than that of high-fidelity (561).
Multifidelity Probability of Improvement, finds the global optimum after around

24 iterations, by means of 137 HF calls and 98 LFs. This great performance is still
due to the good approximation of the objective function. Then a cone of points
clusters around x∗, because this acquisition function tends to prefer exploitation,
therefore the algorithm continues to seed points in an already good region, in order
to continuously try to find a better point. The total number of high-fidelity samples
used, is substantially greater than that of MFEI (around twice as much), with a
greater concentration at the first 200 iterations, always with the aim to give more
importance to the exploitation towards the optimum, than to the exploration to
refine an already accurate surrogate.
Multifidelity Max-value Entropy Search, reaches the optimum location almost around
the 104-th run, by calling quite an equal number of high- and low-fidelity functions.
In particular the method employs 506 and 505 samples of HF and LF. After finding
the minimum, the space of design is discovered by sampling also HF samples, but
mainly LF ones, along some trajectories. The preference of the LF patterns, is due
to the great amount of budget consumed in the first 230 iterations on high-fidelity.
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(a) Complete (b) Until the optimum

Figure 5.4: Distribution of MFPI samples over x.

(a) Complete (b) Until the optimum

Figure 5.5: Distribution of MFMES samples over x.

5.2 Sinusoidal squared 1D function

The function [91] domain lies in the interval [0,1]. The high- and low-fidelity func-
tions are defined respectively as:

f1(x) = (x−
√
2)(f2(x))

2

f2(x) = sin(8πx).

Therefore, the high-fidelity objective function is a non linear function of the low-
fidelity counterpart. The minimum is f(x∗) ≃ −1.35201 at x∗ ≃ 0.0619147. This
problem has been set as a benchmark, because it allows to evaluate the responses
of the methods when subjected to a 1D multimodal problem.
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Figure 5.6: Sinusoidal squared 1D function

Function Dimension Budget HF cost LF cost HF samples LF samples

Sinusoidal sqrd 1 100 1 0.05 2 5

Table 5.2: Sinusoidal squared 1D experiment setup

5.2.1 Results

Figure 5.7: Comparison of MFEI, MFMES and MFPI on Sinusoidal squared 1D func-

tion.
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All the methods present a typical error reduction by steps. It is due to the main
characteristic of this problem. It employs a low-fidelity function that starts nearly
in opposition of phase with the high fidelity, thus stressing the method to check
if it rests trapped in a local minimum. MFPI results the method with the best
behaviour, indeed, it allows to reduce the function error with a budget of 37, while
MFEI employs a budget of 32, but stopping with a residual error of 0.003. Whereas
MFMES cannot reduce the error beyond 0.004 achieved with budget 92.
Multifidelity Expected Improvement initially chooses to use the low-fidelity function
above all. Then, between the 8-th run and the 50-th, it places a higher amount of

(a) Complete (b) Until the optimum

Figure 5.8: Distribution of MFEI samples over x.

HF calls. A slight thickening of HF points can be seen around x=0.2, that is the
location of the greater local minimum. Then, the search space is fulfilled of LF calls,
and trajectories of mainly low-fidelity samples can be found around the other local
minima of the objective function (at x=0.56 and x=0.8), with a greater extension
towards the target location x∗.
MFPI starts selecting a higher number of LF samples, then a concentration of HF
patterns can be found until the location of the optimum is reached. The Probability
of Improvement, employs 41 runs to achieve the optimum, by seeding 302 high-
fidelity samples and 107 low-fidelity. Then, the samples cluster around the x∗ and
both high and low-fidelity functions are widely called. As said, this method tends
to adopt a higher amount of high-fidelity samples, in order to promote exploitation.
Remembering its analytical formulation, the term Corr(x,m) introduces a penalty
when calling the low-fidelity function, that is a removal from the aim of maximizing
the acquisition function for finding the optimum location.
The MFMES first calls the low-fidelity function, then the algorithm focuses on the
selection of nearly only high-fidelity. It seems that the method tends to spread
points following search paths, especially for drawing the objective function local
minima at x = 0.8, x = 0.7 and towards x = 0.6: there is a thickening of samples
from both the right and the left limits of these minima. The convergence towards
the global minimum is found with 92 iterations and with around 10 times more HF
samples than the LF ones. After reaching the optimum, a dense amount of points
is present towards the greater local minimum in x=0.2. Then, after around 110
iterations, the acquisition function places quite constantly the points, even by using
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(a) Complete (b) Until the optimum

Figure 5.9: Distribution of MFPI samples over x.

the low-fidelity function. The Max-value entropy Search, is the method that tries
to reduce, as much as possible, the total number of calls (1057 calls with respect to
the 3310 and the 1608, respectively of the MFEI and MFPI). Indeed it spends more
budget by using the HF function.

(a) Complete (b) Until the optimum

Figure 5.10: Distribution of MFMES samples over x.
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5.3 Rosenbrock 2D function

It is D-dimensional [92] non-convex function with domain in [−2, 2]D, where D is
the dimensionality chosen. It is defined as:

f1(x) =

D−1∑
i=1

100(xi+1 − x2i )
2 + (1− xi)

2

f2(x) =
f1(x)− 4−

∑D
i=1 0.5xi

10 +
∑D

i=1 0.25xi

The low-fidelity is obtained from a transformation of the high-fidelity function eval-
uations by linear additive and multiplicative factors [93]. It is a unimodal function
whose global minimum is f(x∗) = 0 at x∗ = (1, ..., 1). Even if its global behaviour
results easy to be approximated, the research of the minimum is not trivial, because
it is located in a typical steep and narrow valley, with a slight gradient, in which
the surrogate may be trapped [94].

Figure 5.11: Rosenbrock 2D high-fidelity function

Function Dimension Budget HF cost LF cost HF samples LF samples

Rosenbrock 2 200 1 0.1 5 10

Table 5.3: Rosenbrock 2D experiment setup

5.3.1 Results

The Expected Improvement eliminates rapidly the error, spending a budget of 28.5.
MFMES and MFPI both stop with a residual of one order of magnitude greater
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Figure 5.12: Rosenbrock 2D low-fidelity function

Figure 5.13: Comparison of MFEI, MFMES and MFPI on Rosenbrock 2D function.

than MFEI. It is achieved respectively, with a budget of 72 and 62. However, it
is possible to observe that, even if MFPI starts with a better sampling, it then
loses this advantage, so that the MFMES results more direct towards the optimum,
starting from budget 26.
MFEI needs about 24 runs for finding x∗, thanks to the 128 HF patterns and the 122
ones of LF. Once the minimum is correctly located, the algorithm searches into the
domain, first by calling the high-fidelity, because sufficient budget is still available;
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(a) Complete (b) Until the optimum

Figure 5.14: Distribution of MFEI samples over x.

then, by using only LF: the number of LF patterns is about 13 times greater than
that of HF. It is possible to notice that, from around the 100-th iteration, a series
of sampling seems to keep happening every 100 iterations, thus searching within the
valley of the minimum.
MFPI uses a mean of about 197 runs to find the two coordinates of the optimum.
It especially employs LF samples: they amount to 1600 points, with respect to the
370 points of high-fidelity. The first iterations see a cluster of HF points towards
the extremes of the search space, probably because of the initial lack of accuracy of
the surrogate due to a disadvantageous initial sampling. Then, the method proceeds
collecting samples above the zero coordinates, by calling essentially the low-fidelity
model. Here the low-fidelity function assumes values very close to the minimum.
The acquisition function spends the greatest part of the budget by using LF samples,
indeed, the total number of low-fidelity patterns result about 15.5 times greater than
the high-fidelity ones.
The less significant set of total patterns is adopted by the MES acquisition function,
because it employs a greater number of HF patterns than the other two methods.
It is possible to observe a net change of strategy of sampling: for the first ten runs,
it implements the low-fidelity model, then it starts giving greater importance to
the high-fidelity model allowing to achieve the optimum. After the convergence, it
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focuses only on the usage of the low fidelity and a repetition of the sampling strategy
can be found, as seen with the MFEI. As for MFPI, even in this case, a thickness
of points is located near x=(0,0). Also a cluster of points on the extremes can be
found. Max-value Entropy Search takes about 52 iterations to catch the coordinates
of the optimum, by means of 226 HF samples and 294 LF ones.

(a) Complete (b) Until the optimum

Figure 5.15: Distribution of MFPI samples over x.
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(a) Complete (b) Until the optimum

Figure 5.16: Distribution of MFMES samples over x.
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5.4 Rosenbrock 5D

Extending the corresponding unimodal 2D function to higher dimensionality, con-
verts the function in a multimodal one. This happens for 4 ≤ D ≤ 7, where there
is a local minimum located near x = (1, 1, ..., 1). Generally, by increasing further
the dimensionality of the problem D ≥ 3, more local minima can be found, but a
theoretical analysis to evaluate them, has not yet been provided [95]. However, an
analytical method to accurately approximate these values is experimentally imple-
mented by Shang and Qiu [95].

Function Dimension Budget HF cost LF cost HF samples LF samples

Rosenbrock 5 500 1 0.1 15 30

Table 5.4: Rosenbrock 5D experiment setup

5.4.1 Results

Figure 5.17: Comparison of MFEI, MFMES and MFPI on Rosenbrock 5D function.

In this case, only five tests have been run because of limited resources. Further-
more, even if Figure 5.17 is depicted till the end of budget, the following figures about
the x spreading, are narrowed to the optimum achievement, because the correspond-
ing total figures do not provide useful information. The Multifidelity Probability
of Improvement initially is able to reduce more rapidly the error ∆t than the other
methods, but from budget 25, the Expected Improvement becomes more efficient
and, indeed, it reaches the minimization of the error with a budget of 101. It is the
only method that reaches the best residual error minimization, thus demonstrating
that, even if the surrogate may loss efficiency with dimensionality, it still remains
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efficient when guided by the appropriate acquisition function. Whereas, the MFPI,
cannot improve beyond a residual error of 0.0078 that achieves at budget 43. On
the other hand, MFMES starts with the worst behaviour, dealing with a greater
confidence interval, and stops with a residual ∆t of 0.003, that is a lower value than
that obtained by the MFPI. MFEI method starts with an initial sampling of HF
points, then, from the 6-th to the 44-th run, adds also LF points, but beyond the
45-th iteration, it is possible to observe a greater spread of high-fidelity patterns
especially towards the zero coordinates. However, towards x∗ there is not a slightly

Figure 5.18: Distribution of MFEI samples over x.
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cluster of points: it means that few tests were able to achieve the global minimum.
For the first iterations, MFPI prefers to exploit the space of design by using the

high-fidelity model, then a greater amount of low-fidelity samples is employed till
the iteration number 44. Later, more high-fidelity calls are present, with a tendency
to sample near the zero coordinate. Also in this case, not all the tests reach the
minimum, but it is possible to notice that it uses a smaller number of total samples
than the MFEI, to achieve its optimum.
MFMES results the method that uses the greatest amount of total samples, to dis-

Figure 5.19: Distribution of MFPI samples over x.
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cover the space of design. It employs from 7 to 10 times more points than the other
methods. The first iterations widely use the low-fidelity model and a clustering of
points can be found towards the extremes of the domain. At around the 400-th
run a net increase of high-fidelity points is placed, with still a greater concentration
towards the extremes. Even in this case, not all the tests reach the optimum.

Figure 5.20: Distribution of MFMES samples over x.
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5.5 Shifted-Rotated Rastrigin function

This function is selected as benchmark for its marked multimodal behaviour. It
is useful to approximate real problems, such as aeroelastic flutter. The function is
shifted, to change the position of the minimum, and rotated, to change its properties
within the variable domain. It is defined as:

f1(z) =

D∑
i=1

(z2i + 1− cos(10πzi))

where

z = R(θ)(x− x∗) with R(θ) =

[
cos θ − sin θ

sin θ cos θ

]
where R is the rotation matrix in a 2D framework, but can be extended to nD
dimensions. The variables range within the interval x = [−0.1, 0.2]D, the rotation
angle θ = 0.2. The optimum is f(x∗) = 0 at x∗ = (0.1, . . . , 0.1). Due to difficulties
found in MFMES computation, because of the ill conditioning of the problem, a
medium fidelity is selected to replace the lowest one. Hence, the cost to call this
function, with respect to the HF, is set to 0.5, instead of the 0.0039 value proposed
by the guidelines of the international group of work, and ϕ2 is increased from 2500
(worst approximation function) to 5000. Hence, the medium-fidelity function is
expressed as:

fm(z, ϕm) = f1(z) + er(z, ϕm) m = 1, 2

with

ϕ1 = 10000

ϕ2 = 5000

er(z, ϕm) =

D∑
i=1

a(ϕm) cos
2(w(ϕm)zi + b(ϕm) + π)

a(ϕm) = Θ(ϕm)

w(ϕm) = 10πΘ(ϕm)

b(ϕm) = 0.5πΘ(ϕm)

Θ(ϕm) = 1− 0.0001ϕm.

It is the formulation proposed by [96], where er(z, ϕm) is the resolution error.

Function Dimension Budget HF cost LF cost HF samples LF samples

Rastrigin 2 200 1 0.5 10 20

Table 5.5: Shifted-Rotated Rastrigin experiment setup
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Figure 5.21: Shifted-Rotated Rastrigin high-fidelity function

Figure 5.22: Shifted-Rotated Rastrigin medium fidelity function

5.5.1 Results

The behaviour of the methods is comparable with that previously seen for the sinu-
soidal squared function. Therefore, for what concerns the Expected Improvement
and the Probability of Improvement functions, the median efficiently decreases, by
steps, spending until the 34% of the budget.
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Figure 5.23: Comparison of MFEI, MFMES and MFPI on Shifted-Rotated Rastrigin

function.

The initial speed of convergence of the MFPI, is then recovered by the MFEI.
The last one, reaches zero with a budget equal to 60, in contrast with the MFPI,
that converges with a value of budget equal to 68. MFMES cannot reduce the error
more than 0.029, that is achieved with a budget of 124, but it is possible to notice
that there are also some tests that were able to reach a minor error: the shaded area
of the confidence interval extend beyond 0.013. Hence, the median remains constant
because, as the iterations proceed, the acquisition function tends to call especially
LF samples to save budget.
MFEI uses about 51 iterations, 109 HF and 146 LF calls, to find the optimum lo-
cation, generally using the low-fidelity function. Then, because the optimization
process has still budget to employ, high fidelity samples are spread over the domain,
especially at the extremes. This is always attributable to the surrogate accuracy.
From the 90-th run till the end, especially LF patterns are used. After the conver-
gence, a slight cluster of point is visible towards the local minimum in x=(-0.05,0.05).
MFPI, does not converge until the 62-th iteration is passed. The method employs
around 166 and 144 high- and low-fidelity points. It is possible to see a cluster
of LF and HF samples towards x=(0,0), in which there is a local minimum, and
towards the extremes of the search space. MFEI and MFPI uses nearly an equal
number of total samples to discover the space of design, with a ratio between HF
and LF patterns of about 1:4 and 1:3, respectively. However, to find the optimum,
the MFPI uses more the high-fidelity model than the MFEI.
Also MFMES, tends to collect HF samples towards the local minimum, and moves
close to the global optimum at the 139-th run, by using 331 and 364 high- and low-
fidelity patterns. The Max-value Entropy Search uses a total of about 700 points
less than the other two methods, with a difference between low- and high-fidelity
samples of about 100 points. Hence, with a total of around 1095 points selected,



5. Applications to L1 problems 61

about the 63% of them is spent to move close to the optimum. Then the method
tends to cover the upper extreme of the domain especially with the high-fidelity
model. Later it searches in the lower part of the space of design, by using especially
the low-fidelity function.

(a) Complete (b) Until the optimum

Figure 5.24: Distribution of MFEI samples over x.
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(a) Complete (b) Until the optimum

Figure 5.25: Distribution of MFPI samples over x.
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(a) Complete (b) Until the optimum

Figure 5.26: Distribution of MFMES samples over x.
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5.6 Clark and Bae 1D function

This is a heterogeneous and non-polynomial function defined on unit cubes in one
dimensions (then, it will be defined also in two and three dimensions), in order to
assess the effectiveness agglomeration of locally optimized surrogates. The domain
is within [0,1] and, in one-dimensional space, the minimum is f(x∗) = −0.6250

at x∗ = 0.2753. High fidelity function is taken from [25], whereas the low-fidelity
version is obtained by scaling. Clark and Bae functions are useful to assess the
goodness of the surrogate model. The two fidelity models are computed as:

f1(x) = sin[30(x− 0.9)4] cos[2(x− 0.9)] + (x− 0.9)/2

f1(x) = (f1 − 1.0 + x)/(1.0 + 0.25x).
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Figure 5.27: Clark and Bae 1D function

Function Dimension Budget HF cost LF cost HF samples LF samples

Clark and Bae 1 100 1 0.2 2 5

Table 5.6: Clark and Bae 1D experiment setup

5.6.1 Results

The results indicate better performances of the MFEI, in reducing the median, but
from budget=44, the MFPI dominates achieving a residual error lower than that of
MFEI. Max-value Entropy Search reduces the error more slowly and stops with a
residue of one order of magnitude greater than the other methods.
The samples distribution computed by the MFEI, employs an initial set of LF sam-
ples, and then leads to the analysis of the design domain, by increasing the HF
patterns till the 40-th run. The method converges after about 93 iterations, thanks



5. Applications to L1 problems 65

Figure 5.28: Comparison of MFEI, MFMES and MFPI on Clark and Bae 1D function.

to 192 HF samples and 733 LF ones. Hence, it is possible to see that after achieving
the optimum, the algorithm does not search anymore towards x∗. A cluster of points
towards the extremes of the domain can be found, also in the first iterations, then
the samples are widely spread across all the domain by employing especially the LF.
MFPI reveals a clear initial distinction between low- and high-fidelity functions
calls. After seeding the first samples using the low-fidelity model and not finding a
reasonable minimum, it focuses on the usage of high-fidelity till budget= 110. Then
it looks around by allocating low-fidelity samples. About 90 iterations are required
to catch the global optimum, with 771 HF and 124 LF points. It is the method that
employs the greatest number of HF points, so the smallest amount of total samples.

(a) Complete (b) Until the optimum

Figure 5.29: Distribution of MFEI samples over x.
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MFMES finds the global minimum with 143 iterations and using a high amount of
HF patterns: 590 samples with respect to the 478 LF. Then a great density of HF
points is located towards x∗, within a budget that ranges from 60 to 80. Search
paths towards the extremes can be seen, and are essentially made of LF patterns.

(a) Complete (b) Until the optimum

Figure 5.30: Distribution of MFPI samples over x.

(a) Complete (b) Until the optimum

Figure 5.31: Distribution of MFMES samples over x.
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5.7 Clark and Bae 2D function

According with [25], in two-dimensional space, Clark and Bae high- and low-fidelity
functions become respectively:

f1(x1,x2) = sin[21(x1 − 0.9)4] cos[2(x1 − 0.9)] + (x1 − 0.7)/2 + 2x2
2 sin(x1x2)

f2(x1,x2) = (f1 − 2.0 + x1 + x2)/(5.0 + 0.25x1 + 0.5x2).

The minimum is f(x∗) = −0.5627 at x1 = 0.0395 and an isominimum along x2. Its
presence inhibits the possibility to compute the error as ∆t, thus in this case it is
assessed just as ∆f .

Figure 5.32: Clark and Bae 2D high-fidelity function

Function Dimension Budget HF cost LF cost HF samples LF samples

Clark and Bae 2 200 1 0.2 5 10

Table 5.7: Clark and Bae 2D experiment setup

5.7.1 Results

Being a projection to higher dimensionality of the Clark and Bae 1D, this function
tends to be really flat, thus providing a strong ill conditioning of the covariance
matrix, that does not make possible to execute the Cholesky factorization to build
the Gaussian Process: therefore, it is possible to notice that, as the number of it-
erations increases, the thickness of points reduces, because more tests stop before
reaching the end of budget. In this case, the MFPI results the method that reduces
the function error more rapidly than the others, however the minimization of the



68 5.7. Clark and Bae 2D function

Figure 5.33: Clark and Bae 2D low-fidelity function

Figure 5.34: Comparison of MFEI, MFMES and MFPI on Clark and Bae 2D function.

median is reached with a budget of 53, in contrast with the budget spent, for the
same purpose, by the MFEI (around 38). MFMES, whereas, shows a slower reduc-
tion of the error and stops this tendency, when achieves a budget of 152.
The Expected Improvement employs, in mean, 28 iterations looking for the opti-
mum, with 120 HF and 155 LF patterns. It generally uses a higher amount of high
fidelity calls: 704 with respect to the 203 calls of the low-fidelity function. However,
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to achieve the convergence, more LF, than HF points, are employed. It is possible
to notice a light tendency to spread points over the extremes of the domain by using
the high-fidelity model.
The Probability of Improvement uses 74 iterations to find the global optimum, with

(a) Complete (b) Until the optimum

Figure 5.35: Distribution of MFEI samples over x.

450 and 284 high- and low- fidelity calls. In this case, a greater thickening of points,
than what has been seen for MFEI, is located towards the extremes of the space of
design. Once x1 finds the zero, any other point selected along the x2 coordinate is
acceptable, because of the isominimum presence in this function. Hence, along x2,
is it possible to observe a quite uniform sampling all over the space of design, espe-
cially using LF points. The reduced thickening of points as the iterations increase,
is due to the ill conditioning of the covariance matrix that not allows to take all the
tests till the end of the budget.
The Max-value Entropy Search, uses 173 iterations, 1158 HF and 478 LF sam-

ples for the optimum. The first iterations tend to call especially the low-fidelity
function, but after achieving the 10-run, an increasing amount of HF samples are
adopted. Therefore, around 678 HF extra points are used with respect to the LF
ones. Sampling seems to cluster towards a local minimum of the high-fidelity func-
tion, approximately at x = (0.24, 0.7), and then, it tends to follow a trajectory,
especially of low-fidelity points, towards the upper limit of the domain.
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(a) Complete (b) Until the optimum

Figure 5.36: Distribution of MFPI samples over x.
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(a) Complete (b) Until the optimum

Figure 5.37: Distribution of MFMES samples over x.
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5.8 Clark and Bae 3D function

An extension to three dimensions of the previous Clark and Bae functions is com-
puted following the formulation below:

f1(x1,x2,x3) = sin[21(x1 − 0.9)4] cos[2(x1 − 0.9)] + (x1 − 0.7)/2+

+ 2x2
2 sin(x1x2) + 3x3

3 sin(x1x2x3)

f2(x1,x2,x3) = (f1 − 2.0 + x1 + x2 + x3)/(5.0 + 0.25x1 + 0.5x2 − 0.75x3).

The minimum is f(x∗) = −0.5627. Therefore, also in this case, the presence of an
isominimum leads to compute the error as ∆f .

Function Dimension Budget HF cost LF cost HF samples LF samples

Clark and Bae 3 300 1 0.2 10 20

Table 5.8: Clark and Bae 3D experiment setup

5.8.1 Results

The MFPI allows to reduce more rapidly the error, but from budget 31, it loses
this great advantage and is passed by the MFEI, which minimizes the error with a
budget of 33.6, with respect to its counterpart that spends a budget of 103. The
MFMES requires always more budget, but cannot reach the annulment of the error:
it stops at 216, with a residual error of 0.025 and a confidence interval quite large.
MFEI adopts about 25 runs to achieve the optimum, by means of 107 HF and

Figure 5.38: Comparison of MFEI, MFMES and MFPI on Clark and Bae 3D function.
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140 LF samples. Indeed, a cluster of point is visible towards the zero of the x1
coordinate, while a quite uniform diffusion of points is showed for the remaining two
coordinates (isominimum). The method starts by using HF patterns, then between
the 10-th and the 20-th iteration prefers the LF, but from this point to the end,
adopts essentially high-fidelity points. The reduction of points from the 60-th run,
is due to the impossibility to spend all the budget available, for the same problem
of ill conditioning described for the Clark and Bae 2D function.

(a) Complete (b) Until the optimum

Figure 5.39: Distribution of MFEI samples over x.
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Also MFPI shows a behaviour that tends to sample initially by using the low-fidelity,
and then clustering especially HF points towards the extremes, whereas, low-fidelity
is called for spreading points over the remaining domain. It employs 76 runs to reach
the target with 533 HF and 224 LF patterns. It uses a total number of samples nearly
eight times greater than that used by MFEI. Furthermore, it needs more high-fidelity
calls to achieve the optimum, with respect to the Expected Improvement.
For what concerns the MFMES, the optimum is reached by means of 275 runs, 590

(a) Complete (b) Until the optimum

Figure 5.40: Distribution of MFPI samples over x.
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HF and 584 LF points. There is not a clear tendency to exploitation or exploration,
indeed, it is important to highlight not only the inherent characteristic of the method
to build a trade-off between the two approaches, but also the loss of accuracy of
the surrogate with increasing dimensionality that encourages a wide search path
throughout almost the entire domain. Therefore, until the 200-th run, a combination
of high- and low- fidelity calls is showed, then the high-fidelity function is preferred.

(a) Complete (b) Until the optimum

Figure 5.41: Distribution of MFMES samples over x.



76 5.9. Spring-Mass System 4D

5.9 Spring-Mass System 4D

The system is composed of two masses attached to each other by two springs. It is
useful to evaluate the method behaviours with increasing dimensionality, indeed, it
is trivial to add more masses and springs.
The masses m1,m2 are assumed to be concentrated at their center of gravity, so
they are constant, while the mass of each spring is considered negligible. They
follow the Hooke’s law, therefore, k1, k2 denote the Hooke’s constants. The springs
return to their initial position, after compression and extension. The first and
last spring are attached to fixed walls. The mass positions along the horizontal
surface, in a frictionless condition, measured from their equilibrium positions, are
indicated as x1(t), x2(t) and assume positive values when the movement is towards
right, otherwise they have negative values.
The equation of motion are:

m1ẍ1(t) = (−k1 − k2)x1(t) + k2x2(t)

m2ẍ2(t) = k2x1(t) + (−k1 − k2)x2(t).

The system can be written as:

M ẍ(t) = Kx(t) (5.1)

where x is the displacement, M the mass matrix and K is the stiffness matrix:

x =

(
x1
x2

)
M =

(
m1 0

0 m2

)
K =

(
−k1 − k2 k2

k2 −k1 − k2

)
Therefore, it is a constant-coefficient homogeneous system of second-order ODEs,
whose analytical solution is:

x(t) =

2∑
i=1

[ai cos(ωit) + bi sin(ωit)]vi

where ωi =
√
−λi and λi are the eigenvalues of the matrix M−1K; vi are their eigen-

vectors. The constants ai and bi are determined by the initial conditions x(t = 0) =

x0 and ẋ(t = 0) = ẋ0. Its minimum is f(x∗) = −1 at x∗ = (1.000, 3.946, 4.000, 3.286).
However, it is possible to convert the Equation (5.1) into a system of first-order
ODEs that can be solved using the fourth-order accurate Runge-Kutta time-marching
method and varying the time-step ∆t between the two fidelity levels. It is adopted
a ∆t = 0.01 for the high-fidelity model and a ∆t = 0.6 for the low-fidelity model.
The initial condition are set to: x0 = (1 0)T and ẋ0 = (0 0)T . Masses and springs
range within the interval [1,4].

Function Dimension Budget HF cost LF cost HF samples LF samples

Spring-Mass 4 400 1 1/60 4 10

Table 5.9: Spring-Mass experiment setup



5. Applications to L1 problems 77

Figure 5.42: Comparison of MFEI, MFMES and MFPI on Mass-Spring system function.

5.9.1 Results

As previously explained for the Rosenbrock 5D function, also in this case only five
tests have been run due to narrow resources. Moreover, the following figures will
show only the seeding behaviour till the optimum found by the algorithms, because
no further interesting information can be drawn from the observation of all the
iterations till the end of budget. Comparing all the methods, it is possible to notice
that the MFMES starts with a better sampling than the others, but then it cannot
lead to reduce the residual error beyond 0.082. Whereas, MFPI, that starts with a
grater residual error, is able to achieve a reduction till the value of 0.012, while the
MFEI can further decrease until 0.008.
The MFEI widely employs the low-fidelity model, thus preferring an exploration
approach, therefore 530 LF points are used with respect to the 150 HF ones. Just
from the 80-th run a greater amount of high-fidelity patterns is used. A total of 136
iterations results useful to provide information about the area in which the optimum
is placed. However, not all the tests find the optimum, indeed in Figure 5.42, there
is not an annulment of the error.
The MFPI uses a greater number of total points to discover the domain, than the
MFEI. It prefers to adopt the low-fidelity model, but a good trade-off between
exploration and exploitation can be found all over the space of design. A cluster of
points is visible at the extremes. Although the major number of samples, especially
HF, and iterations, the multifidelity Probability of Improvement cannot reach better
performances than the Expected Improvement, as seen in Figure 5.42.
The MFMES employs the narrowest set of points than the other methods, thus
preferring to call the high-fidelity model. A wide range of samples is placed between
the coordinates 2 and 3.5, while few points are spread near x∗. Indeed, this explains
the worst performance of the MFMES method with respect to the others.
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Figure 5.43: Distribution of MFEI samples over x.
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Figure 5.44: Distribution of MFPI samples over x.
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Figure 5.45: Distribution of MFMES samples over x.
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5.10 Results overview

Comparing the three methods, the Multifidelity Expected Improvement results as
the acquisition function with the best performance of all, because it generally re-
quires the narrowest number of iterations and budget. Generally, in terms of min-
imization of the error ∆t, both MFEI and MFPI functions have comparable be-
haviours, and tend to work efficiently to reduce it. Even if the Probability of
Improvement may have a faster start, thus tending to converge more rapidly as
seen for the Forrester, the Rastrigin and the Clark and Bae 3D functions, then the
residual error reached may be slightly greater than that achieved by the Expected
Improvement. At the same time, it is possible to obtain a lower residue by using the
Probability of Improvement function on Clark and Bae 1D and Sinusoidal function,
even if it took a worse initial dataset than the Expected Improvement. Also when
applied to the Clark and Bae 2D function, the MFPI shows an improvement with
respect to the MFEI, thanks to the higher amount of HF calls. This is an inher-
ent characteristic of the MFPI formulation that uses a penalty to reduce the PI
function when calling the low-fidelity model. This behaviour results useful for low-
dimensional problems, because makes the surrogate more accurate via a stronger
exploitation. Whereas, the exploration technique is preferred by the MFEI, even
after finding the optimum location. This is advantageous also for higher dimen-
sional problems (e.g. Rosenbrock 5D function), because thanks to the exploration
with the LF model, the method can reduce the initial set of HF samples required.
The Multifidelity Max-value Entropy Search, instead, needs always more budget,
iterations and points to spread for converging. This is due to the Monte Carlo sim-
ulations employed to compute the expectation over the minimum, that add another
stochastic ingredient to the optimization process. Hence, by comparing the three
methods in terms of ∆t and budget, the confidence interval of the MES is always the
larger of all and reduces more slowly. Generally, it tries to decrease as possible the
number of total calls of the models, so it is more open to discover the space of de-
sign with the high-fidelity model. However, for the Forrester, the Rastrigin and the
Clark and Bae 3D functions, there is not a significant difference between high- and
low- fidelity samples used, thus demonstrating a trade-off between exploration and
exploitation. The method shows better performance than the MFPI when applied
to the Rosenbrock 2D function. In this case, after the convergence, both the MFEI
and MFMES demonstrate a repetition of sampling paths that can suggest possible
improvements in the stopping criterion to use. It is important to highlight that the
number of Monte Carlo simulations to use for MFMES has been set to 10, taking
into account the settings employed in [83], also because no better performance have
been observed by increasing this number with the dimensionality of the problems.
Anyway, Takeno et al. used a greater set of initial points that can advantage the
computation, so further tests may be useful to clearly understand this correlation,
in order to notice if a bad setting has influenced the performance of the method.
For what concerns the problems with higher dimensionality, such as the Rosenbrock
5D and the Spring-mass System 4D, the lowest performance arise: a narrow number
of test is able to reach the optimum, but all of them moves towards it. This may be
due to the loss of accuracy of the surrogate, with increasing dimensionality, as well as
the narrower number of statistical tests run, thus probably providing unfavourable
sets of initial points.



Chapter 6

Application to L2 problem

In this chapter, the multifidelity methods are applied to a L2 problem. This is a
category of intermediate-complexity problems, which are more realistic and detailed
in representing real engineering problems than L1 problems. Therefore, their com-
putational costs results greater than L1 problems.
Hereafter, an aerodynamic problem is depicted. The goal is to globally optimize the
shape of a wing profile, that is managed parametrically, in order to reduce the drag
rise and improve the stability of the airfoil when it approaches transonic regimes.
The software adopted is developed by NATO-AVT-252 [89]. It is an open source
code, written in bash and awk languages, and is made for UNIX operating systems.
For this reason, it is to report that, at the current state of the art, several portabil-
ity problems for Microsoft Windows operating system have been arising, thus the
final choice to use the original configuration. The software package can also run
on a Linux based virtual machine but, we install it by using a dual boot due to
incompatibilities found about the communication between the virtual machine and
the hardware to use. For what concerns the entire optimization process, it has been
run on the academic cluster (HPC) that is Linux based.
The software takes in input the baseline airfoil shape, the design variables, the flow
working conditions and the settings for a parallel Reynolds-Averaged Navier–Sto-
kes (RANS) computation. Eventually, it can be set up also for handle Uncertainty
Quantification shape parameters, but in this thesis this option is not adopted.
Then, the shape handler WG2AER uses these inputs to realize the new airfoil design
(here, only single-component airfoils are implemented). WG2AER accepts in input
a set of design variables that are:

1. the starting airfoil shape, (x0(s), y0(s)), which by default is a NACA 2412, but
another airfoil can also be chosen by the users;

2. the modification functions, yi(s) selected among a set of 32 function types
that include 6 polynomials, 12 Hicks-Henne, 2 Wagner and 12 user defined
functions given by points;

3. the weights wi to assign at each modification function.

Therefore, WG2AER code parametrizes the airfoil using a linear combination of an
initial geometry and the shape modification functions chosen yi(s). In the case in
which it is necessary to describe also geometry uncertainties, they can be added to

82
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the formulation as Hicks-Henne bumps functions, zi(s). So, the formulation is:

y(s) = k

(
y0(s) +

n∑
i=1

wiyi(s)

)
+

m∑
j=1

Ujzj(s)

x(s) = x0(s)

zj(s) = sin3
(
πs

log 0.5
log sbj

)

where k is the scale factor that controls the shape modification functions, and Uj

are random variables that control Hicks-Henne bumps, and describe the uncertainty
on shape and thickness of the airfoil.
Therefore, the run solver.sh script, which wraps WG2AER, uses this formulation
to build a parametric airfoil, whose aerodynamic performances are, then, analysed
by means of the solver selected. It can be SU2, which is matched with the mesh
generator GMSH, or XFOIL. SU2 is a free open-source software, written in C++,
whose initial features have been developed by the Department of Aeronautics and
Astronautics of Stanford University, but then, it has been updated with further
capabilities also from all the community. It can solve optimization tasks and partial
differential equations (PDE) and PDE-constrained optimization problems [97, 98].
This skill can be extended to solve multiphysics analysis and design problems and to
realize a RANS solver which simulates the compressible, turbulent flows with which
often aerospace engineering has to deal. Furthermore, SU2 is a suite of different
modules, each of them can be used separately or combined. Hereafter, SU2 CFD
module is adopted with the version 6.2.0 and has been coupled with the open source
mesh generator GMSH. In context of optimization, it is necessary to generate a mesh
with a peculiar grid for each geometry evaluated. For this purpose, an automatic
procedure that calls GMSH at every new geometry to evaluate, is implemented and
coupled to SU2. This is built taking into account a trade-off among calculation
accuracy, fast CFD computation and the robustness of the procedure to minimize
possible errors that may arise during the grid generation. The automated mesh
generator takes in input the airfoil coordinates, some flow data as the dimensions of
the fluid domain, the Reynolds number and a reference length, and the grid control
parameters. It then returns a grid suitable for SU2, composed of triangles and
quadrilaterals [89]. The parametric mesh generation is able to manage cell sizes and
to refine accurately the wake, the corner points and the boundary layer by clustering
grid points in these regions characterised by high gradients.
XFOIL, instead, implements a second order panel method, which depicts the airfoil
surface with panels consisting of sources or vortex, coupled to a boundary layer
integral module. The transition point from laminar to turbulent is determined
using the eN formulation [99]. The selection between the two solvers, is made on the
basis of the working conditions chosen. The problem of interest is set in a transonic
regime, so XFOIL has been excluded: it loses performances for M > 0.5.
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6.1 Physics of the problem

6.1.1 Governing equations

The governing equations of a viscous fluid flow are the Navier-Stokes. Viscous flows
are characterised by dissipative transport phenomena of friction, thermal conduc-
tion and mass diffusion, and so, by significant gradients of temperature, velocity
and chemical composition. Navier-Stokes equations include the equation of the con-
servation of the mass, the momentum equation and the energy equation. For a
compressible flow (i.e. a flow characterised by density variations not negligible)
they are, respectively [100]:

∂ρ

∂t
+∇ · (ρV ) = 0

∂(ρV )

∂t
+ ρ(V · ∇V ) = −∇p+∇ · τ + ρf

∂

∂t

[
ρ

(
e+

V 2

2

)]
+∇ ·

[
ρ

(
e+

V 2

2

)
V

]
= ρq̇ +∇ · (k∇T )−∇ · (pV )+

+∇ · (τ · V ) + ρf · V

where: ρ is the density; V is the vector of velocity; e is the internal energy per unit
mass, so e + V 2

2 is the total energy; k is the thermal conductivity and is related to
the Fourier’s law (which relates the heat flux, due to thermal conduction, to local
temperature gradient); q̇ is the heat flux (the heat transferred by conduction into
the fluid); τ is the stress tensor, which contains shear and normal stresses both
related to velocity gradients; ρf and ρf · V are the body forces (e.g. weight due to
gravitational force) and the rate of work they do on the fluid element.
These equations are a strongly coupled system of nonlinear PDEs: it results very
difficult to solve analytically, indeed, a close-form solution has not been found.
The reachable accuracy, with Navier-Stokes, depends on the prediction accuracy
adopted for describing the main characteristics of a turbulent flow. For this purpose,
the RANS equations are the most commonly used. Therefore, they derive from a
time averaging of the Navier-Stokes equations and approximate the exact equations.
They are obtained starting from the Reynolds decomposition of the flow variables
into mean and fluctuating parts, and then inserting these decomposed variables into
the Navier-Stokes equations and averaging the equations [101]. This produces the
Reynolds-stress tensor τi,j = −ρu′iu′j (for newtonian fluids, shear stresses are consid-
ered proportional to the velocity gradients [100]).
However, employing the RANS also means to find a way to close these equations,
by computing the components of the unknown Reynolds stress tensor: this is the
task of a turbulence model [102]. Hence, this computation is not trivial to handle
numerically and may require very high computational costs to solve the transport
equations. The turbulence model allows to assemble a simplified way to compute
the transport equations of the Reynolds-stress tensor. The choice of the turbulence
model is important because affects the computational time required for the aero-
dynamic simulation. Following the problem settings implemented in [89], here a
Spalart-Allmaras model [103] is adopted. It is a one-equation linear model. The
term ‘one-equation’ indicates that only one turbulent scale, or a combination of



6. Application to L2 problem 85

them, is evaluated by means of the solution of a transport equation. Therefore, only
an additional eddy viscosity transport equation (a PDE) is added to be computed
in conjunction with the RANS.
The model provides an empirical equation that describes the evolution of the turbu-
lent kinematic viscosity, νt = µt/ρ, in order to model production, transport, diffusion
and destruction of νt. According to Boussinesq hypothesis, the turbulence can be
described as an increased viscosity. The total viscosity can be divided into a lam-
inar, µdyn, and a turbulent one µt, but while the first is evaluated by using the
Sutherland’s law, the latter µt, is computed following the turbulence model chosen
[104]. For Spalart-Allamaras, it is:

µt = ρν̃fν1, fν1 =
χ3

χ3 + c3ν1
, χ =

ν̃

ν
, ν =

µdyn
ρ

where cν1 is the heat capacity at constant volume. The additional transport equa-
tion, can be expressed as:

∂ρν̃

∂ρ
+

∂

∂x
· (ρν̃u) =M(ν̃)ν̃ + P (ν̃)ν̃ −D(ν̃)ν̃

where M(ν̃)ν̃, P (ν̃)ν̃ and D(ν̃)ν̃ are respectively the diffusion term, the production
source term and the wall source destruction term by which the ν̃ is modeled, thus
providing the eddy viscosity µt evaluation that has to be inserted in equation (6.1),
in order to solve the governing equations [105].

τi,j = (µdyn + µt)

([
∂u

∂x

]
+

[
∂u

∂x

]T
− 2

3

[
∂

∂x
· u
]
I

)
(6.1)

The same procedure is to apply to the other components of velocity, in order to
describe all the tensor τ .

6.1.2 Transonic regime and supercritical airfoils

In the preliminary phase of design, it is important to analyse the pressure field
around an airfoil, because it aims to evaluate aerodynamic performances, structural
loads and stability problems with which a full vehicle design needs to deal.
Assessing the pressure distribution over the surface is essential to compute the corre-
sponding force. It is divisible in two components that are parallel and perpendicular
to the flow stream (V∞): they are, respectively, drag D, and lift, L. The resultant
force generate also a moment, the pitching moment M , with respect to a point lo-
cated along the chord. It assumes positive values when tends to increase the angle
of attack α. Therefore:

Cp =
p− p∞
1
2ρ∞V

2
∞

Cl =
L

1
2ρ∞V

2
∞l

Cd =
D

1
2ρ∞V

2
∞l

Cm =
M

1
2ρ∞V

2
∞l

2
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where Cp stands for the pressure coefficient, p and p∞ are, respectively, the pressure
evaluated at a generic point of the surface, and the freestream static pressure. At
the denominator, there is the dynamic pressure, that is function of the density ρ

and of the velocity V of the undisturbed stream. For the lift, drag and pitching
moment coefficients, the denominator present also a reference surface S of the body
of interest (also multiplied for the arm of the force M , in the case of Cm). In a 2D
context like that of an airfoil, it can be expressed as S = l× 1, where l is a reference
length, generally the chord c for an airfoil. Integrating the Cp, allows to evaluate
lift and drag forces, indeed, the area marked by the pressure coefficient, represents
the resultant force coefficient.
The pressure distribution is characterised by pressures lower than that of the

Figure 6.1: Aerodynamic resultant force and its resolution into lift and drag [106].

freestream, on the upper surface of the airfoil, and higher pressures on the lower
surface. This is produced by the greater curvature of the upper surface, that accel-
erate the flow around the leading edge, leading to a reduction of the static pressure
(i.e. expansion waves). Then, moving from the point of maximum thickness to the
trailing edge, increasing pressures arise to match with the pressure at the trailing
edge. For these reasons, the flow on the top side of the airfoil runs faster than that
on the bottom side. For what concerns the lower surface, a stagnation point is here
located, and represents the point in which the pressure is the highest of all the dis-
tribution. The local velocity here is zero, because all the kinetic energy is converted
into static pressure isentropically. Moving about the trailing edge, a reduction of
the pressure can be observed. Hence, a pressure coefficient equal to zero, represents
the condition in which the pressure over the airfoil matches the undisturbed flow
pressure. Since the suction force on the upper surface is greater than the pushing
force on lower one, the first contributes more on the lift generation.
The pressure field is also function of α, indeed, if larger values of the angle of attack
are used, a strong reduction of pressure can be seen on the upper surface, nearby
the leading edge, whereas a strong increase can be found on the lower surface. This
produces an increase of the lift, but, for high α, can lead to the boundary layer
separation, and so, the stall (a rapid drop of lift).
According to Anderson [106], a transonic regime represents a flow condition in
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Figure 6.2: Pressure distribution over an airfoil with α = 0° [107].

which the Mach of the freestream flow is subsonic, but really near to the unity (gen-
erally 0.8 ≤M∞ ≤ 1.2), thus allowing that a flow expansion, over the upper surface
of the airfoil, can make the flow locally supersonic. It is a regime characterised by a

Figure 6.3: Transonic regime [106].

mix of subsonic and supersonic zones. Figure 6.3 summarizes the main features of a
transonic regime, in which it is possible to observe the Mach reduction to subsonic
conditions, after the generation of the shock wave.
As said, towards the upper surface of the leading edge, there is the acceleration of
the flow by means of an infinite series of expansions. When sonic Mach is achieved
locally (i.e. it means that the freestream exceeds the critical Mach number), the
expansion waves tend to reflect on the sonic line (Figure 6.4), moving back towards
the surface as compression waves (i.e. with increased temperature, pressure and den-
sity), thus decelerating the flow. Then, they are reflected again by the surface, as
still more compression waves [108]. The presence of waves with opposite behaviours
(deceleration and acceleration), can induce the deceleration of the flow that, up to
this point, have been accelerating. This yields a gradual packing of perturbations,
leading to the production of a shock wave. Across it, discontinuities and irreversible
changes in flow properties are generated. It is a homoentalpic phenomenon, i.e. it
does not induce a variation of the total temperature between the upstream and the
downstream of the wave. However, the total pressure downstream reduces, because
of the dissipative nature of the wave (presence of viscous effects and heat fluxes).
At the same time, a shock wave produces high and sudden gradients, which increase
all the static physical quantities (e.g. pressure, density, temperature) downstream.
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Figure 6.4: Transonic flow over supercritical airfoil [109].

Adverse gradients of pressure (dp/dx > 0) arise after the shock wave to match, more
or less gradually, the pressures at the trailing edge (Kutta-Joukowski condition).
In transonic conditions, trying to balance the influence of expansion and compres-
sion waves is essential to minimize the drag rise after a shock wave, without losing
performance in subsonic regime. Managing appropriately the geometry of the profile
is the solution to improve the location of the shock wave, thus reducing its strength.
This is the reason why supercritical airfoils are used. Their advantages lie in the
ability to improve the aerodynamic efficiency also for Mach greater than the critical
Mach number. Figure 6.5 shows the greater weakness (i.e. reduced leap of pressure)
of a shock wave over a supercritical airfoil with respect to a conventional one, be-
cause of the reduced curvature of the upper surface. Hence, weakening a shock wave
can limit the interaction between the increased pressure, due to the shock wave,
and the adverse gradient pressure of the trailing edge. It is important to limit this
phenomenon, because it could lead to the boundary layer separation, providing an
increase of drag, buffeting and stability problems [108]. Studying this flow regime is
of practical interest for both military and commercial aircrafts, because it is impor-
tant to handle the instability produced by the rapid increase of drag at transonic
speeds. In this flight regime, the better performances of a supercritical airfoil, with
respect to a conventional one, arise from its rounder leading edge, its reduced curva-
ture, the maximum thickness retreat towards the aft, and its substantial aft camber.
In this way, it can increase the drag divergence Mach number and the critical Mach
number, move more aft the location of the shock wave, while keeping acceptable
value of maximum lift at low speed and predictable stall characteristics [108]. Ac-
cording to Harris [108], the large leading edge can produce stronger expansions, in
order to be reflected back as compression waves to limit the flow acceleration both
over the upper and lower surface. At the same time, this allows to minimize the
surface curvature. A flatter upper surface leads to a reduction of the flow accelera-
tion over it, thus maintaining a quite constant supersonic flow (a pressure plateau).
In this way, there is the generation of weaker shock waves, because the compression
waves have to overcome a narrower amount of expansion waves. Thanks also to
the maximum thickness retreat, the shock is delayed more afterward, thus reducing
the airfoil section in which a separation could arise. However, this region of low
curvature cannot be extended excessively because, towards the aft, it could create a
great trailing edge slope, thus increasing an adverse pressure gradient. The lift lost
through the flatter upper surface, is recovered by means of a greater curvature on
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Figure 6.5: Comparison between conventional and supercritical airfoils in transonic

regime [109].

the rear portion of the airfoil [110]. A thick trailing edge is used to retard, or avoid,
flow separation by reducing the difference between the pressure coefficients of upper
and lower surface, near the aft. Indeed, the cusp at the aft lower surface leads to a
rapid increase of pressure that, then, becomes more smooth. This design is selected
following the Stratford criteria [111], and allows to increase lift, while energizing the
flow to impede a boundary layer separation. It can increase the circulation over the
airfoil, thus providing a smaller incidence to satisfy lift constraint. The trailing edge
presents quite the same slope, i.e. a small angle, on both upper and lower surface,
in order to minimize the pressure recovery of its upper surface.

6.2 Problem settings

After describing the flow conditions in which the L2 problem is set up, and the im-
proved performances of supercritical airfoils in these regimes, it is necessary to tune
conveniently the software settings. This concerns: the formulation of the optimiza-
tion problem, whose aim is to minimize the drag coefficient Cd subject to previously
discussed constraints on the geometry; the selection of the modification functions
to shape the profile, the choice of CFD solver, and so grid generator, the settings
and the adoption of the best suitable setup for the multifidelity optimization process
with respect to time and computational resources available.
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The optimization problem is formulated as [89]:

min
w∈W⊆Rn

Cd

subject to : Cl = 0.824

− 0.1 ≤ Cm ≤ −0.01

t/c = 0.1211

r ≥ 0.007c

τ ≥ 5°

τ85/c ≥ 0.02

where: t/c is the maximum airfoil thickness fixed to 12.11% of the chord c; r is the
radius of the leading edge, expressed as function of the chord; τ is the trailing edge
angle and t85/c is the thickness of the airfoil at 85% of the chord. However, the
equivalent unconstrained formulation is implemented:

min
w∈W⊆Rn

Cd + k1p
+(Cm,−0.1) + k1p

−(Cm,−0.01) + k2p
+(r/c, 0.007)+

+ k3p
+(τ, 5) + k4p

+(τ85/c, 0.02)
(6.2)

where, the quadratic penalty definition is used:

p+(x, y) =

{
0 if x ≥ y

(x− y)2 if x < y

and

p−(x, y) =

{
0 if x ≤ y

(x− y)2 if x > y

with k1 = 1000, k2 = 5000, k3 = 10 and k4 = 30. This formulation is missing of the
constraint on the thickness, because it is automatically satisfied scaling the airfoil
after its parametric modification. The CFD simulations run with a fixed Cl, there-
fore, this constraint can be satisfied because the angle of attack, α, is set up as a free
parameter. The bounds on the pitching moment are necessary because, to converge
towards the prefixed Cl, the optimization process will tend to strongly change the
camber of the trailing edge, so as to not affect meaningfully the drag. This causes
a nose-down pitching moment, thus providing the possibility to increase the trim
drag, a problem that can affect the stability in a full aircraft design context [112].
These constraints derive from the necessity to obtain a nearly supercritical airfoil
because, even if it may result more complex to design by a structural point of view,
it is the most suitable shape for transonic conditions. This explains the choice of
the supercritical airfoil, RAE 2822, as baseline. Furthermore, it is an airfoil widely
employed for validating turbulence models.

6.2.1 Low- and High-fidelity model setup

Before describing in depth the main settings of the shape optimization process, the
features of the two different fidelity model are depicted.
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The difference between the high- and low-fidelity models (HF and LF) lies in the
grid coarseness. The grid density parameter is tuned through the input factor ELE-
MENT SCALE : the larger this value is, the coarser the grid will be. It was first set
to 2.5 for the high fidelity function, and to 12 for the low-fidelity but, due to limited
time and resources, the coarseness of the high-fidelity grid has been then increased
to 5.5. Comparing the pressure distribution over the airfoil by means of the Pres-

(a) ELEMENT SCALE = 5.5: around
82000 elements

(b) ELEMENT SCALE = 12: around
43000 elements

Figure 6.6: Comparison of the two different grids chosen for HF and LF

sure Coefficient (Figure 6.7), the difference between the two level of fidelity can be
noticed. In particular, an increase in the suction force on the upper surface of the
airfoil arises in the low-fidelity model, with a peak at the leading edge that is moved
more forward. Due to this higher expansion over the top of the airfoil, it is showed a
change of position of the shock wave: the low-fidelity model anticipates (along x/c)
the perturbation, that is at about the 50% of the chord, while the high-fidelity model
places it at roughly the 55-60% of the chord. A thickening of the boundary layer at
the shock foot can be observed, due to the abrupt pressure rise, and larger wake is
visible in the LF model. Indeed, the figures 6.7b and 6.7d show an increase of the
eddy viscosity µt value in the LF. After the pressure leap, the low-fidelity model de-
picts a lesser recompression than the high-fidelity model, and a major pressure load
on the upper surface of the aft. Whereas on the aft lower surface, a slightly lower
pressure load is evaluated by the LF than the real one. A summary can be made by
analysing the Mach distribution: LF model concentrates the Mach rise in a more
forward region than the HF model, thus providing an anticipation of the thickening
boundary layer. The bottom side of the airfoil sees an acceleration, but without
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reaching sonic Mach, therefore no shock waves arise. From the CFD analysis of the
original RAE 2822, it is possible to notice that the convergence towards the same Cl

is obtained through an increase of the angle of attack, in the case of the low-fidelity
model, therefore, a gain of Cd is visible and a corresponding loss of efficiency too.

eval obj.out HF model LF model

Mach 0.734 0.734

α 2.9121° 3.5244°

Cl 0.8239 0.8241

Cd 0.0226 0.0343

Cm -0.0955 -0.0834

Efficiency, E = Cl/Cd 36.4742 24.0055

Max thickness, t/c 0.1211 0.1211

Leading edge radius, r 0.0079c 0.0079c

Trailing edge angle, τ 8.6808° 8.6808°

Thickness at 0.85c, τ85/c 0.0318 0.0318

Table 6.1: Output file of the analysis on RAE 2822 with two different fidelity levels.

6.2.2 L2 software package setup

It is decided to implement a problem that concerns 20 design variables, that are ten
modification functions (polynomials, Hicks-Henne and Wagner) for both upper and
lower airfoil surface (see Figure 6.9). The related weights range within the interval
[−0.5, 0.5]D and are picked by the Latin Hypercube of the optimization algorithm
described in Section 4.2. This range has been found with a trial and error method.
It was initially assumed to vary within the interval [−1, 1]D, according to experts’
opinions, but a great amount of non converging configurations were found with this
particular combination of settings. For this reason, the necessity to narrow the in-
terval of interest arises.
The software that manages the entire L2 package, takes in input a file (called eval -
obj.in) that includes several parameters to tune: they concern the starting geometry
and the weights of the modification functions, the working conditions, the GMSH
and SU2 setup (i.e. its configuration file) and the number of CPUs and node size
adopted for a parallel computation. The last are selected on the basis of the com-
putational resources available on the academic computing service of Polytechnic of
Turin, HPC.
For what concerns the flow conditions, in addition to the lift coefficient and the
Mach number of the freestream, they are also expressed by the Reynolds number.
Here, it is adopted a value of 6.5 millions, so it is a fully turbulent regime, whose
typical features are non stationary and messy fluctuations that affect the wake. In
this framework, inertial effects dominate on viscous effects, skin friction increases,
and stall and separation are delayed and sufficiently inhibited. However, increasing
the angle of attack may lead the separation point on the upper surface (nearby the
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Figure 6.7: Cp and µt comparison, over the original RAE 2822, with HF and LF models.
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Figure 6.9: Modification functions adopted

trailing edge) to move towards the leading edge, thus bringing forward the separa-
tion and making the wake larger.
The grid generator settings include the parameter Farfield which sets the farfield
boundary location (measured in chords) in order to delete edge effects. The farfield
extension measures how much influence the boundary has on computation of forces
(i.e. on the numerical solution). Farfield grid size is set by means of the parameter
Grid size. Then, it is adopted by SU2 for setting the boundary conditions.
For what concerns the solver setup, it is necessary to choose: the maximum number
of iterations needed to stop the simulation MAX CFD ITER; the convergence crite-
rion, which is determined by the residual evaluated on the density RES RED CFD,
so that the solver will stop when a residual reduction of three order of magnitude
is found, with respect to the initial value; the CL drive definition, that is the se-
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lection of a fixed lift mode, the corresponding number of times the angle of attack
is updated within a fixed CL problem (i.e. between two angle of attack updates)
UPDATE ALPHA and the number of iterations to evaluate dCl/dα at the end of
the fixed CL simulation, ITER DCL DALPHA.
The flow is considered fully turbulent and the Spalart-Allmaras model is used, with
a II order Monotone Upstream-Centered Scheme for Conservation Laws. It is a finite
volume discretization method (FVM) that improves the accuracy of the numerical
solutions till the second-order, in order to be able to capture also discontinuities and
high gradients. The finite volume method (that aims to replace the partial deriva-
tives contained in governing equations) is used to discretize in space the RANS.
Furthermore, SU2 allows to decouple the integration in time and space of the gov-
erning equations, thus providing the possibility to choose two different integration
methods. Hereafter FVM is used for spatial integration, whereas Euler implicit is
chosen for time integration, by using Generalized Minimal Residual method (GM-
RES) with a minimum error set up to 10−6, as a linear system solver.
An adaptive CFL number is set up, starting from an initial value of 2.5, where CFL
stands for Courant-Friedrichs-Levy criterion. It can improve convergence, taking
into account the time step adopted for the implicit/explicit numerical method (in
this case, Euler Implicit) with respect to the distance between mesh elements. It
establishes that the information acquired from a given mesh element, during the
timestep length, must be limited only to immediately close cells. The output file,
eval obj.out, contains: possible errors arisen during the processing of GMSH or SU2;
the Mach value at which the computation is run; the angle of attack that satisfies
the constraint on Cl, the actual lift coefficient, its average over the last iterations (it
should be nearly equal to Cl) and its standard deviation σ; the drag and pitching
moment coefficients; the aerodynamic efficiency Cl/Cd; the residual reduction and
the geometrical parameters adopted for the minimization problem, previously de-
scribed (i.e. r, t/c, τ, τ85/c).
To incorporate the performance of the software just described within the optimiza-
tion process already applied to L1 problems in Chapter 5, two Matlab functions for
the low- and high-fidelity models are implemented.
They write, on the input file, the initial design points (weights) picked from the do-
main, then they launch the script run su2.sh and, when the aerodynamic simulation
is completed, read the outputs from the related file eval obj.out to compute the drag

Working conditions

CL=0.824 Mach=0.734 Reynolds=6.5millions T=216.65K

Shape definition

Baseline=RAE 2822 Max thickness=0.1211
W(0),...,W(19)=provided

by the optimization process
U(0),...,U(19)=0

Grid generator setup

Lref.=1.0
ELEMENT SCALE=5.5 HF

ELEMENT SCALE=12 LF
Grid size=5 Farfield=40

SU2 solver setup

MAX CFD ITER=20000 RES RED CFD=3 UPDATE ALPHA=20 ITER DCL DALPHA=500

Table 6.2: L2 problem settings
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coefficient, following the minimization problem in Equation 6.2. This value is the
m-th observation that is used into the optimization process (Section 4.2). However,
a brief summary of this algorithm can be found in Figure 6.10, while the optimiza-
tion setup is described in Table 6.3, remembering that ‘MC’ stands for the number
of Monte Carlo simulations used for the Multifidelity Max-value Entropy Search.

Figure 6.10: L2 problem integrated into the optimization process.
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Function Dimension Budget HF cost LF cost HF samples LF samples MC

L2 20 300 1 0.46 50 250 10

Table 6.3: L2 experiment setup

Following the guidelines of the international research group, the budget is to set
up proportionally to the dimensionality of the problem but, due to narrow time and
inadequate computational resources, it is preferred to reduce it to just 300, in order
to save time for computing more tests with statistical purposes. The evaluation cost
for the low-fidelity is obtained as a ratio between the grid coarseness of the high- and
low-fidelity functions. The number of Monte Carlo simulations for the Multifidelity
Max-value Entropy Search, follows the indication given by its developers.
The number of initial low- and high-fidelity samples has been found by means of a
trial and error process: first, 10 HF and 250 LF samples were selected, but because
of the lack of improvement of the Multifidelity Max-value Entropy Search method,
the high-fidelity dataset has been increased to 50 samples.
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6.3 Results

This section first shows the analysis run by using 10 initial HF samples and 250 LF
ones starting from the same initial dataset, then demonstrates the results obtained
by using the final setup concerning 50 initial HF samples and 250 LF.
All the methods, belonging to the same test case, share an equal set of initial points
thus avoiding to facilitate a method more than the others.
In the case of 10 initial HF samples, this set results already advantageous with
respect to the baseline, thus providing an improvement formerly from the first it-
erations. The objective function found with the MFEI reaches the lowest value of

Figure 6.11: Comparison of MFEI,MFMES,MFPI on the modified airfoil with 10 HF

and 250 LF initial samples

Cd, 0.0162, by using 129 HF samples and 372 LF (including the initial sampling),
whereas that one found with the MFPI achieves a minimum value of 0.0169 by
spreading 170 and 283 high- and low-fidelity points respectively. MFPI uses about
50 total samples less than the MFEI, while the last employs the greatest amount
of total points with respect to all the other methods. The greater performance of
the MFEI are also due to the major exploration made through the employment of
the low-fidelity model: in high dimensional problems, it allows to improve more the
surrogate, before starting the exploitation. MFMES airfoil, whereas, does not show
any improvement from the values observed after the initial sampling, that is 0.0195,
and employs around 153 and 320 LF patterns.
About the airfoil shape, MFEI obtains a profile with a slender aft with respect to
that depicted by the MFPI. A greater trailing edge radius and a lower τ85/c are
evaluated with respect to the MFPI airfoil and, so, to the baseline. Due to a weaker
shock, the loss of pressure is reduced downstream of the shock wave and a major lift
is developed, thus requiring a minor incidence angle to satisfy the constraint on the
Cl. For this reason, the efficiency increases. By comparing the magnitude of the real
drag coefficient evaluated with SU2 (Table 6.4) and the objective function of Equa-
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tion 6.2, is possible to notice that no penalties are applied to the Cd computed over
the MFEI and MFPI airfoils, because all the parameters respect the constraints.
Whereas, the leading edge radius of the MFMES profile is slightly below the cor-
responding constraint. However, this geometry has been selected by the optimizer
because, also thanks to the improved τ and τ85/c with respect to the baseline, it
allows to reduce the Cd. MFMES airfoil respects the constraint on the lift coefficient
with a superior angle of attack than the other methods, thus providing more drag,
as it is possible to see from the eddy viscosity representation (Fig.6.13f), therefore
less efficiency is reached. The geometry identified by the MFMES depicts a slight
shape reduction on the upper surface, with respect to the baseline, indeed it shows
the smaller leading edge radius; whereas, the lower surface is increased with respect
to the baseline and the aft provides a greater lift, thus increasing a diving pitching
moment.

Figure 6.12: Airfoils shaping with MFEI, MFMES, MFPI and 10 initial HF samples

eval obj.out MFEI MFPI MFMES Baseline

Mach 0.734 0.734 0.734 0.734

α 2.7415° 2.7900° 3.2247° 2.9121°

Cl 0.8239 0.8243 0.8243 0.8239

Cd 0.0162 0.0169 0.0209 0.0226

Cm -0.0880 -0.0989 -0.0821 -0.0955

Efficiency, E = Cl/Cd 50.8096 48.7175 39.2823 36.4742

Max thickness, t/c 0.1211 0.1211 0.1211 0.1211

Leading edge radius, r 0.0112c 0.0074c 0.0063c 0.0079c

Trailing edge angle, τ 9.1072° 6.2157° 9.2562° 8.6808°

Thickness at 0.85c, τ85/c 0.0313 0.0323 0.0354 0.0318

Table 6.4: Output file of the analysis on modified airfoil obtained with MFEI, MFPI,

MFMES and 10 initial HF samples.
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The pressure coefficient distribution shows the greatest peak at the leading edge,
that means a strong acceleration, inducing an anticipation and a more intense shock
wave at around the 55% of the chord. A greater pressure load is applied to the aft,
with respect to the baseline. For what concerns the bottom side, the profile depicts
a pressure that substantially retraces the baseline.
Also the Probability of Improvement finds an airfoil that moves slightly backward
the peak of pressure, towards the leading edge, but with a smaller magnitude. It
anticipates less the location of the shock wave, with respect to the MES profile,
because of a smoother pressure recovery on the upper surface. It provides a greater
pressure load on the aft and a major expansion on the bottom side, than the other
geometries, due to its greater curvature downward at about the 35% of the chord.
The Expected Improvement delays, but augments, the peak of pressure at the lead-
ing edge with respect to the baseline. Then provides a greater compression on the
upper surface, and extends the shock wave towards the 60% of the chords, slightly
more aft than the original RAE 2822. This is the location of the bump over the foil,
that allows to reduce the wave drag: the nearly normal shock wave of the baseline
may be replaced by a near lambda wave. It is possible to notice how the pressure
coefficient drops less rapidly downstream, because the bump can smear the strong
initial shock wave. Hence, a considerable eddy viscosity reduction can be seen with
respect to the MES profile, even if both the profiles show a slight anticipation of the
region in which the boundary layer starts to thicken, with respect to what can be
seen in the MFPI geometry. The multifidelity Expected Improvement airfoil reduces
the load on the aft. On the bottom side, there is a smaller rise of pressure at the
leading edge. It then increases near the 30% of the chord.
Figure 6.14 summarises what just said: MFEI provides a profile that has a wider
region in which the Mach increases, on the top side of the airfoil, and an acceleration
zone on the bottom side, which is moved more afterward; MFPI depicts a foil which
anticipates the shock wave on the upper surface, and the expansion area over the
lower surface; MFMES narrows towards the leading edge the surface over which the
Mach increases.
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(a) Cp with MFEI (b) Eddy viscosity µt with MFEI

(c) Cp with MFPI (d) Eddy viscosity µt with MFPI

(e) Cp with MFMES (f) Eddy viscosity µt with MFMES

Figure 6.13: Cp and µt comparison, over the modified airfoil with 10 HF and 250 LF initial
samples.
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(a) Mach number with MFEI (b) Mach number with MFPI

(c) Mach number with MFMES

Figure 6.14: Mach number comparison, over the modified airfoil with 10 HF and 250

LF initial samples.
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In the test case which employs 50 HF and 250 LF initial samples, the method that
provides the best result is the Multifidelity Probability of Improvement, which can
reduce the Cd till a value of 0.0151 by using 179 HF patterns and 262 LF ones. The
Expected Improvement, whereas, employs 166 high- and 292 low- fidelity samples
to reach a minimum value of 0.0178. The Multifidelity Max-value Entropy Search,
provides a slight, but not satisfying, improvement achieving a value of 0.0182 with
respect to the initial observation value of 0.0183 and employs 177 and 269 high- and
low fidelity function calls. It leads to conclude that the MFMES method requires a
greater amount of initial high-fidelity samples to be efficient, but the magnitude of
this set of samples needs to be evaluated accurately, because extending excessively
the initial sampling contrasts the aim of reducing the expensive HF observations.
For what concerns the shape modeling, PI provides the largest leading edge, while

Figure 6.15: Comparison of MFEI, MFMES, MFPI on the modified airfoil with 50 HF

and 250 LF initial samples.

the MFEI the narrowest one. MFPI depicts a bump on the upper surface and a
thickening on the lower surface of the profile, approximately near the 60% of the
chord: it reaches a τ85/c = 0.0335. While the MES tends broadly to follow the
baseline, the Expected Improvement computes an airfoil with a larger extension
downward of the bottom side, near the 30% of the chord. The geometries selected
by the optimizer respect the constraints, so the real Cd and the objective function,
computed following Equation 6.2, coincide.
Analysing the pressure distribution over the airfoils, it is possible to notice that

all the profiles present a higher acceleration at the leading edge than the baseline,
especially the MFEI profile, which also anticipates it. Then, a pressure increase is
showed, due to adverse pressure gradients, thus resulting in a shock wave antici-
pation for all the three geometries. All the airfoils demonstrate a reduction of the
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Figure 6.16: Airfoils shaping with MFEI, MFMES, MFPI and 50 initial HF samples

eval obj.out MFEI MFPI MFMES Baseline

Mach 0.734 0.734 0.734 0.734

α 3.2274° 2.8452° 3.2247° 2.5895°

Cl 0.8241 0.8239 0.8243 0.8241

Cd 0.0177 0.0153 0.0181 0.0226

Cm -0.0784 -0.0856 -0.0821 -0.0869

Efficiency, E = Cl/Cd 46.4817 53.8781 39.2823 45.454

Max thickness, t/c 0.1211 0.1211 0.1211 0.1211

Leading edge radius, r 0.0073c 0.0110c 0.0084c 0.0079c

Trailing edge angle, τ 7.7695° 10.0508° 8.3629° 8.6808°

Thickness at 0.85c, τ85/c 0.0321 0.0335 0.0285 0.0318

Table 6.5: Output file of the analysis on modified airfoil obtained with MFEI, MFPI,

MFMES and 50 initial HF samples.

pressure leap with respect to the baseline, hence the shock produced is weaker. A
greater improvement is introduced by the MFPI profile: maybe a lambda shock
wave (in-depth analysis could be useful to confirm this hypothesis) is produced,
near the bump, that allows to reduce efficiently the drag over the profile, because of
its major weakness. The pressure leap after the shock, near the 60% of the chord,
results particularly smooth. By observing the Mach distribution in Figure 6.18,
the difference among the airfoils result more evident: the profile depicted by the
MFMES shows supersonic Mach numbers more forward on the upper surface than
the others, thus reflecting the major pressure gradient of a stronger shock wave than
the other profiles.
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(a) Cp with MFEI (b) Eddy viscosity µt with MFEI

(c) Cp with MFPI (d) Eddy viscosity µt with MFPI

(e) Cp with MFMES (f) Eddy viscosity µt with MFMES

Figure 6.17: Cp and µt comparison, over the modified airfoil with 50 HF and 250 LF initial
samples.
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(a) Mach number with MFEI (b) Mach number with MFPI

(c) Mach number with MFMES

Figure 6.18: Mach number comparison, over the modified airfoil with 50 HF and 250

LF initial samples.

Therefore, by comparing the two test cases it is possible to observe that MFEI
provides useful improvements of the objective function: it can reduce the baseline
till 28%, with the narrow initial dataset and till 22% for the extended one. MFPI
shows the best performance when the initial set of HF points is increased, providing
a reduction of around 32%, with respect to 25% obtained with a smaller set. For
what concerns MFMES, in the first test case it allows to decrease the objective
function of only 7,5%, while in the last case it can reduce the Cd till 20%.



Chapter 7

Conclusions

The aim of this thesis is to implement and assess three multifidelity Bayesian meth-
ods. They employ a surrogate model and a particular acquisition function. The first
has been previously built in the context of multifidelity surrogate based optimiza-
tion, and is iteratively trained via active learning techniques; the latter guide the
surrogate through the identification of the next points to query. The surrogate we
use combines information collected with just two different fidelity models, while three
different acquisition functions distinguishing the methods employed: Multi-Fidelity
Expected Improvement (MFEI), Multi-Fidelity Probability of Improvement (MFPI)
and Multi-fidelity Max-value Entropy Search (MFMES).
For demonstration purposes, the methods have been applied to simplified problems
that trace real aerospace engineering design challenges. Those are benchmarks prob-
lems of L1 and L2 class, determined by an international research group, to evaluate
multifidelity methodologies. The first class represents problems with a well known
analytical formulation; the second one includes more complex engineering problems
that are closer to real-life applications.
By assessing the methods over the L1 problems, the Multifidelity Expected Im-
provement results as the method which assures the best performance. Its advantage
lies on a first exploration, that allows to improve the accuracy of the surrogate by
reducing the initial HF calls, and on the following exploitation. This behaviour al-
lows to reach the optimum also in a higher dimensionality problem like that of the
Rosenbrock 5D, where the other methods run out all the budget leaving a greater
residual error. Hence, the exploration technique of the MFEI allows to narrow the
initial dataset. The Multifidelity Probability of Improvement, generally shows an
initial acceleration towards the optimum with respect to the MFEI, especially when
a higher set of initial HF samples is used, thus leading to a greater improvement of
the surrogate. Therefore, it has a tendency to call the high-fidelity model for ex-
ploitation purposes, thus resulting more expensive. Multifidelity Max-value Entropy
Search appears as the method with the lowest performance, because it seems to min-
imize the objective function more slowly than the others. It is due to the Monte
Carlo simulations that add stochasticity to the optimization process. The method
shows a general tendency to decrease the total amount of samples to query, by using
especially the high-fidelity model. After finding the optimum, both the MFEI and
the MFMES demonstrate a particular tendency to repeat the same search paths in
some functions. In-depth studies can result useful to understand if this behaviour
could lead to a better definition of the optimization stopping criteria.

107
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Among the second class of problems, the methods have been tested on an aerody-
namic L2 problem, whose aim is to parametrically shape an airfoil that can minimize
the drag rise in transonic regime. The high- and the low-fidelity models are discerned
for the grid coarseness of the mesh, so that the low-fidelity model provides a reduc-
tion of the computational time of around the 46% with respect to the HF one. A
first test case employs a narrow initial set of high-fidelity samples. It shows that the
amount of samples is excessively small to assure an improvement with the MFMES,
while the MFEI confirms to be able to effectively reduce the objective function even
with few initial points. Then, it has been selected a HF set five times greater. High
performances have been showed by the MFPI that, as seen in the L1 problems,
acts to minimize the objective function especially by calling the high-fidelity model;
also the MFEI leads to an improvement, but with a greater residual error than the
MFPI; the MFMES slightly reduces the objective function, but is not satisfying
as the other methods. Increasing the number of initial high-fidelity samples could
improve the performance of the methods, but this set needs to be chosen carefully
in order to not make the computation excessively expensive.
L1 and L2 problems are preparatory to extend the use of the methods on L3 prob-
lems, that are more complex, expensive and near-reality challenging than the pre-
vious classes of problems. In particular, the geometry found with the MFPI, that
allows to reduce the objective function till the 32% with respect to the original RAE
2822, can be effectively tested in wind tunnel, and then can be inserted in wing and
aircraft contexts. Therefore, these methods allow to analyse in wind tunnel only the
most promising configurations, avoiding to spend time and resources, during the
phase of design, on unfeasible geometries.
Future developments may concern also the study of the surrogate accuracy achieved
at the end of the L1 optimization processes, in order to determine thoroughly limits
and advantages of the acquisition functions and to define how the quality of the
surrogate changes with increasing dimensionality, thus getting slower the optimiza-
tion algorithm. Furthermore, it may be interesting to evaluate an accurate fitting of
the Monte Carlo simulation, required for the MFMES, with respect to the problem
dimensionality. This parameter influences the performance of the MFMES in terms
of time and computational costs.
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