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“Science can amuse and fascinate us all,
but it is engineering that changes the world.”
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Abstract

A critical part of structural health monitoring is accurate detection of damages in the
structure. Simulation based optimization for damage detection and identification
requires numerous iterations with expensive simulated models which is impractical
for real-time assessment.
This thesis proposes a multi-fidelity Reduced Order Modeling (ROM) method based
on transfer learning, to develop an emulator for fast online data generation. The
online data are obtained using a machine learning algorithm trained with an offline
database which is the result of a transfer learning method. In this method, finite
element simulations with different fidelities are combined using Reduced Order
models and manifold alignment to determine a common space where the accuracy
of high fidelity simulations is fused with the spatial resolution of the low fidelity
simulations.
Then, it is proposed a comparison between the machine learning algorithms of
gaussian regression, cokriging, regression trees and Self Organizing Maps (SOMs)
to determine the most suited for cut damage detection in composite plates for
aerospace application.
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Chapter 1

Introduction

Structure’s health monitoring and damage detection has always been a fundamental
topic in aerospace design. Simulation based optimization for damage detection and
identification requires numerous iterations with expensive simulated models which
is impractical for real-time assessment.
At the moment, there are several studies which try to address this problem using a
vibration based approach [1] [2] or using a static response approach [3] [4], which has
become more interesting due to the introduction of real time structural monitoring.
This thesis proposes an original multi-fidelity Reduced Order Model (ROM) [5]
method based on transfer learning, to develop an emulator, or surrogate model, for
fast online data generation.
A surrogate model [6] can be thought as a black box function, tuned with the
information from the data considered the true response of the system to predict
the behavior of the simulation model as closely as possible while being computa-
tionally cheaper to evaluate [7]. The data obtained from the surrogate models are
approximate and intended to do first estimates of structure’s health.
To train the surrogate model is necessary to create a database of high fidelity
data which explores the full field of study of the phenomena and with an accuracy
similar to the real data. This high fidelity data usually are very expensive to
produce, in either time (computer simulation) or resources (experimental data), so
it is introduced a multi-fidelity approach. Multi-fidelity algorithms combine data
obtained from different sources: high fidelity data, which have high accuracy but
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Introduction

are extremely expensive to produce; and low fidelity data, which have low accuracy
but are cheap to produce and have better spatial resolution.
The case study is a small section of a representative composite wing which is mod-
elled as a composite plate made of four layers with a fiber-cut damage perpendicular
to the loading direction. Each specimen has a single cut localized in the third layer.
The first phase is based on creation of the database with three different levels of
fidelity: high, medium and low. The models were created using the software MSC
Patran and analysed with the software MSC Nastran. The high-fidelity models
were used as reference data because, due to Covid-19 epidemic, it was impossible
to access to the laboratory for the experimental data.
In the second/third phase, we initially tried to crate a surrogate model of the
original strain field using CoKriging [8]. This was very time-demanding due to the
high dimensionality of the data, so we determined a Reduced Order Model (ROM)
using a Proper Orthogonal Decomposition (POD) [9] and we determined a lower
dimensionality basis for each of three levels of fidelity.
In the fourth phase, to combine the information from the different levels of fidelity,
we projected the high and medium fidelity basis to the lower fidelity base (which
has the greater number of models and so, it has the best spatial exploration of the
model) with a manifold alignment algorithm [10] called Procrustes analysis [11]
and we determined the transformation matrices. This matrices are then used, in
the fifth phase, to obtain the unified basis coefficients of each fidelity model for the
low fidelity basis.
In the sixth phase, we tested the ability of different algorithms such as Gaussian
Process regression [12], CoKriging, Regression Trees [13] and Self Organizing Maps
(SOMs) [14], to estimate the damage position and its strain values.
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Chapter 2

Physics’s Based Model

In this chapter is described the development path of the model design. The case of
study is based on real specimens designed to simulate a damage, with fiber cut, in
a composite plate constituting the skin of a wing’s structure. The specimens are
modelled as composite plates with dimensions of 102 × 458 mm , shown in figure
2.1. They are constituted of four layers of plain weave fabric of carbon prepreg
(IM7/8552 AS4) laminated with the order [45°/0°/0°/45°].
The material properties are obtained from the data sheet published from NCAMP
(National Center for Advanced Material) [15] and they are summarized in table 2.1.
The specimen were designed to be tested using a uni-axial tensile load applied

E1 64121 MPa

E2 64121 MPa

G12 5722 MPa

ν12 0.031
ρ 1570 kg/m3

Table 2.1: Hexcel IM7/8552 AS4 properties

along the major dimension which represents a simplification of wing panel’s load
conditions during flight. In this case, the majority of the load is supported by the
0° layers, therefore layer 2 and 3 are the most critical, so the damage was inserted
in one of these layers, specifically the layer 3. The damage consist in a cut of the
fibers orthogonal to the major axis.
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Physics’s Based Model

Figure 2.1: Real specimen dimensions and sequence of lamination1

The experimental part of the thesis did not happen for Covid restrictions, so the
data from the real specimens were not available. Therefore, using the software
MSC Patran, were modelled three different FEM models and we will refer to them
as:

• high fidelity model

• medium fidelity model

• low fidelity model

These models are the source of information that will be combined to produce a
surrogate model using a multi-fidelity approach.

1the specimen illustrated in the figure were produced under the visiting professor project
"Multisource framework to support real-time structural assessment and autonomous decision
making" at Politecnico di Torino
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2.1 High Fidelity Model

The High fidelity model is used as reference model substituting the experimental
data, hence it has to be as closer to reality as possible. In order to create this
model are used 3D elements in particular HEXA [16] [17] elements (figure 2.5).
There are two common types of thees elements: HEXA8 and HEXA20.

Figure 2.2: Stress components on HEXA8 elements [18]

Figure 2.3: High fidelity model elements

HEXA8 elements are characterized by a linear shape function, hence the displace-
ments of the mesh region between the nodes vary linearly with the distance between
the nodes and they don’t capture bending. HEXA20 elements are characterized by
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a quadratic shape function and have more degrees of freedom (DOF) compared to
the previous which means that they are more expensive to calculate. In this thesis
the specimen is not subjected to bending loads so the we decided to use HEXA8
elements.
The dimensions of each element are fixed to 2 mm for the sides (x and y dimensions)
and the height of the element is determined as half the thickness of a single layer,
due to the necessity to fit two of them in each layer to achieve better results, hence
the height is 0.38 mm (figure 2.3).
Then, the model is created with slightly different dimensions from the real specimen
to simplify the creation of the mesh, the new dimensions are 104 × 456 mm, which
mean that are created a total of 94848 elements.
The cut damage can be considered as an area where the stresses are not transmitted
by the fibers but only by matrix, so it can be modelled with an area of only epoxy
resin, as shown in the right figure 2.4. The damage is discretized as a rectangular
of one element in the y-direction and n elements in the x-direction, depending on
its extension. The elements belonging to to the damaged area are associated with
an isotropic material with E = 4.6 MPa, ν = 0.3 and ρ = 1300 kg/m3, while the
other elements are associated to an orthotropic material with E1 = 64121 MPa,
E2 = 64121 MPa, E3 = 4.6 MPa, G12 = 5722 MPa, ν12 = 0.031 and ρ = 1570
kg/m3.
To simulate the load conditions of a universal testing machine (left figure 2.4) is
applied a clamped constrain (blue) to the lower border of the model, while on the
upper border is imposed a displacement (red).
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Figure 2.4: Load conditions (center) and damage model (right)
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2.2 Medium Fidelity Model

The medium fidelity model is designed to be a less accurate model but faster
to compute compared to the high fidelity. In order to do so, the specimen is
modelled as a 2D plate and then meshed with 2D elements in particular QUAD
[16] [17] elements (figure 2.5) which are less expensive to calculate compared to
HEXA because they have less DOF. There are two common types of these elements
QUAD4 and QUAD8, the former is a linear element while the latter is quadratic.
In this thesis the specimen is not subjected to bending loads so the we decided to

Figure 2.5: Stress components on QUAD 4 elements [19]

use QUAD4 elements with 1 mm side (figure 2.6. Then, the model is created with
the same dimensions of the high fidelity which means that are created a total of
47424 elements.
The cut damage is simulated the same way of the high fidelity with the only
difference being in the two rows of elements in the y-direction to model the same
damage of the high fidelity. The load conditions are the same of the high fidelity.
To the elements is assigned the property of laminate with the lamination stacking
of the layers and the mechanical properties resumed in table 2.1. The elements
belonging to the damage area are associated to the property of laminate with
the third layer assigned to the matrix material with E = 4.6 MPa, ν = 0.3 and
ρ = 1300 kg/m3.
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Figure 2.6: Medium fidelity model elements

2.3 Low Fidelity Model

The low fidelity model is designed to be the coarser model of the three but also
the fastest to compute. It is created the same way of the medium fidelity model
with the difference in dimension of the elements, which have a side of 4 mm. This
modification affects the extension of the damage in the y-direction from 2 mm to 4
mm, so the damage in low fidelity is overestimated. The number of elements in
this model are 2964.
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Chapter 3

Method at glance

In this chapter is resumed the original method developed in this thesis, see figure
3.1. The proposed method is divided in offline phase and online phase.

Figure 3.1: Method at glance
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3.1 Offline Phase

In the offline phase physic’s based models are used to obtain information about
the response of the system at the variation of the damage parameters and train a
surrogate model for fast data generation.

3.1.1 Design of experiment

The first step of the method is the generation of the design parameters

X = [x, y, δx] (3.1)

where x is the position of the lower angle of the cut in the x-axis, y is the position
of the lower angle of the cut in the y-axis and δx is the extension of the cut in the
x-axis, using the Latin Hypercube Sampling [20] (see section 4.2). This technique
allows the best spatial exploration in the range of the design parameters for the
given number of variables.
In this step are determined three different sets of design parameters

X = [X1, X2, ..., XN ] (3.2)

one for each fidelity model: Xh for high fidelity, Xm for medium fidelity and Xl

for low fidelity. The only constraint that must be respected is that each set must
have a number of common design parameters, in order to correlate the models
generated from different fidelities.

3.1.2 Physic’s Based Model

The second step of the method consist in the generation of the strain fields for each
fidelity using the Finite Element models designed in chapter 2.
For each triplet of design parameters it is automatically created a new Finite
Element model for the desired fidelity using a Matlab script. This script modifies
the session file that gives instructions to the software MSC Patran to produce
the information needed to the solver MSC Nastran. The output of the solver is
a file punch (.pch) containing the data about the strains of each element of the

13
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model. Lastly the punch file is read with another Matlab script to obtain the strain
field in the y-direction and saving it in the column vector Si called snapshot. The
snapshots are then collected it the snapshots matrix

S = [S1, S2, ..., SN ] (3.3)

In the end, from the three set of damage parameters Xh, Xm and Xl are obtained
the three snapshot matrices Sh, Sm and Sl.

3.1.3 Model Order Reduction

The third step of the method consist in the determination of POD expansions
(composed of the POD basis vectors and the POD modal coefficients) of the
snapshots matrices using the Proper Orthogonal Decomposition (POD) [9] via
Singular Value Decomposition (SVD) [21].
POD is a method for low-order approximation of some high dimensional processes. It
provides an efficient way of capturing the dominant components of high-dimensional
processes with a small number of basis Φ. It is widely used in the situations where
model reduction is required like study of turbulent flows [22], structural dynamics
[23] and thermal analysis [24].
For each snapshot matrix Sh, Sm and Sl, it is first subtracted their mean value (to
improve the numerical conditioning) and then is computed the SVD to determine
the dominant left singular vectors as the POD basis vectors

Φ = [Φ1,Φ2, ...,ΦN ] (3.4)

ranked in order of importance by the magnitude of their corresponding singular value.
Then through the singular values and the right singular vectors are determined the
POD modal coefficients

α = [α1, α2, ..., αN ] (3.5)

Afterwards, the POD basis are truncated evaluating to relative energy associated
in each mode in order to retain only the fundamental basis to describe the system.
The obtained POD basis vectors are Φh, Φm and Φl with the associated POD
modal coefficients αh, αm and αl.

14



Method at glance

3.1.4 Manifold Alignment

The fourth step of the method consist in the calculation, through Procrustes Anal-
ysis [25], of the transformation matrices that link high fidelity and medium fidelity
POD basis to the low fidelity POD basis.
Manifold alignment techniques are used to transfer information from multiple
sources to improve the learning process such as in robotics integrating data from
various robots [26], multi-fidelity modelling, automatic translation, image recogni-
tion [27] and biomedics [28]. In particular, Perron et al. [10] developed a method
for multi-fidelity modelling transonic airfoil based on information transfer from low
fidelity database to high fidelity database.
In this thesis we developed an original method, based on Procrustes Analysis,
to transfer information from the high and medium fidelity spaces into the low
fidelity space. The choice of using the low fidelity basis as the main basis is due to
the fact that it has been produced from the database with the highest number of
simulations. This translates in the best spatial investigation of the response of the
Physic’s based models through the range of the damage parameters.
After implementing this step we obtain the transformation matrices bhl, as the
scaling matrix, Thl, as the orthogonal rotation matrix, and chl, as the translation
matrix for the high fidelity POD basis Φh projected to the low fidelity basis Φl

and the transformation matrices bml, Tml and cml or the medium fidelity POD
basis Φm projected to the low fidelity basis Φl.

3.1.5 Synthesis Basis Coefficients

The fifth step of the method consist in the calculation of the unified basis coefficients,
which are the POD modal coefficients of the high and medium fidelity databases,
αh and αm, projected into the low fidelity POD basis Φl using the transformation
matrices b, T and c. This step is implemented using a mathematical function
developed during the the thesis, which returns the projected high fidelity POD
modal coefficients βh and the projected medium fidelity POD modal coefficients βm.
The βh, βm and αl lie in the same space, so it is possible to compare them each
other to determine the differences between the three fidelities. These differences
δhm between βh and βm, and δml, between βm and αl are used to correct the αl.
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3.1.6 Data Fit Surrogate Modelling

The sixth step of the method consist in training the surrogate models to obtain the
coefficients response surface. For each coefficient αli , δhmi

and δmli is determined
a different response surface using a machine learning algorithm trained with the
αl, δhm, δml which represent the training database. In literature there are several
methods to train a response surface, we decided to focus on four methods Gaussian
Process regression (GP) [29], CoKriging [8], Regression Tree [13] and Self Organiz-
ing Maps (SOMs)[3].
The results obtained from the trained models were not satisfactory for the localiza-
tion of the damage, so it is determined a fifth method based on Regression Trees
and SOMs which has given acceptable results.
In this method the αli response surfaces are obtained using Regression Trees, while
the corrective coefficients, δhmi

and δmli , response surfaces are produced using
SOMs. With this step is concluded the mapping of the Damage parameters to the
unified basis coefficients.

3.2 Online Phase

In the online phase the surrogate model is used for estimate a strain field related
to input damage parameters.
The Damage parameters are given to the surrogate model determined in section
3.1.6 which estimates the POD modal coefficients. These coefficients are then
multiplied to the low fidelity POD basis vectors and then is added the mean value
of the low fidelity database to estimate the Strain field associated to the new
Damage prameters.

16





Chapter 4

Design Of Experiment

In this chapter we determined the Damage parameters for the creation of the
databases to implement a multi-fidelity approach.
The choice of the Damage parameters is a decisive factor for the creation of the
surrogate model. In [6], are described various critical issues which may arise if the
sampling process is done incorrectly.
Firstly, the surrogate models depend on the observations used to build them, so a
sampling plan must take in account a possible critical behavior of studied system
and must explore all the design parameters selected range.
Secondly, the number of design variables must be selected accurately to avoid
variables that have little to none impact on the response of the model.
Thirdly, the number of variables also affects the number of samples needed to build
an accurate prediction, as example, if a certain prediction accuracy for one design
variable is obtained using N samples, then for k variables are necessary Nk samples.
This is referred as"dimensionality course". Taking into account these problems we
preceded into the selection of the Damage Parameters.

4.1 Damage Parameters

During the development of the thesis, have been tested three combinations of
Damage parameters.
At the beginning, we created models with 5 design parameters, which were:
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• x, representing the position of the lower left angle of the matrix region in the
x axis;

• y, representing the position of the lower left angle of the matrix region in the
y axis;

• δx, representing the extension of the cut in the x axis;

• layer, representing the number of layers affected by the cut from the first
layer to the fourth;

• displacement, representing the displacement imposed;

Therefore the input vector was in the form of

X = [x, y, δx, layer, displacement] (4.1)

The results obtained from the first model were not satisfactory because it was
possible to localize the cut damage in the validation models however the values
of the strains in that area were underestimated by a magnitude of 50 ∼ 100 .
This issue was brought back to the displacement variable, it introduced elevated
variability in the peak strains’ values which were not possible to characterize with
the number of models created. So we incurred in the dimensionality course.
Thus, a new model was designed with 4 parameters, leaving the displacement fixed
at 5 mm.

X = [x, y, δx, layer] (4.2)

In this case, with the results it was possible to recreate the cut with the appropriate
values of strain. However, this model was useful only for exposed cut damages,
because the layers affected started from the outer and increased up until the other
outer.
To recreate a model able to estimate the internal damages of the structure, the
layer variable was fixed, positioning the cut only in the third layer. With this
update, there were maintained 3 design parameters:

• x, with a range of [0 : 104 − δx] mm;

• y, with a range of [60 : 394] mm;
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• δx, with a range of [10 : 48] mm;

The displacement was maintained at 5 mm. In the end, the input vector representing
the Damage parameters for each simulation is created as

X = [x, y, δx] (4.3)

4.2 Latin Hypercube Sampling

In this section is illustrated the implementation of the Latin Hypercube Sampling
(LHS) as the sampling plan used for the creation of the Damage parameters.
LHS[20] is a statistical method to generate quasi-random samples of parameters
values. It is widely used in Monte Carlo simulations ( which utilize randomized
variables to statistically analyze the outputs of the problem and analyzing its
trends) to reduce the number of runs necessary to achieve a reasonably accurate
result.
LHS is based on the Latin square design (figure 4.1), which has a single sample
in each row and column, and is generalized to an arbitrary number of dimensions
(hyper-planes).

Figure 4.1: Example of Latin square design [30]

To perform the sampling, the cumulative probability (100 %) is divided into n
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(number of samples) segments, then a probability is randomly picked within each
segment using a uniform distribution, and then mapped to the correct representative
value in the actual distribution.

4.3 Database Generation

The generation of the various databases is done automatically exploiting the
advantages of using MSC Patran, which integrates a proprietary programming
language called Patran Command Language (PCL). Starting from the physics’s
based models session files (.ses), which contain the instructions to create the models
in PCL, we parametrized the commands in order to automatically generate a new
model for every Damage parameter used as input.
In order to generate the models it is implemented a Matlab script which determines
the various Damage parameters using Latin Hypercube Sampling (LHS) space
filling. Then it updates the parameters of the session files, maintaining constant the
others parameters (geometry,materials and constrains). Afterwards, the generated
models are analyzed with the program MSC Nastran. The time required for each
simulation is summarized in table 4.1.
The results of the analysis are collected in a punch file (.pch), which is parsed

Time
High fidelity 1615 s

Medium fidelity 175 s
Low fidelity 20 s

Table 4.1: Fem analysis time with chipset Intel 7700HQ and 16 GB of RAM

using another Matlab script to obtain the value of the strains in each layer for each
element, in the y-direction, and saving them in the columns S of the snapshots
matrix (see chapter 5).

S = [S1, S2, ..., SN ] (4.4)

A snapshot example is shown in figure 4.2. The snapshots obtained from different
fidelity have different dimensionality due to the variation of the dimensions and
the type of the elements, hence, to compare them, it is necessary to manipulate

21



Design Of Experiment

layer 1

20 60 100

X [mm]

0

50

100

150

200

250

300

350

400

450
Y

 [
m

m
]

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05
layer 2

20 60 100

X [mm]

0

50

100

150

200

250

300

350

400

450

Y
 [
m

m
]

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05
layer 3

20 60 100

X [mm]

0

50

100

150

200

250

300

350

400

450

Y
 [
m

m
]

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05
layer 4

20 60 100

X [mm]

0

50

100

150

200

250

300

350

400

450

Y
 [
m

m
]

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

Figure 4.2: Example of High fidelity model snapshot

the data as follows:

• in the high fidelity snapshot, it was taken the average value between the upper
and lower element of the same layer;

• in the medium fidelity snapshot, for every layer, it was taken the average
value between the four elements corresponding to the same element in the
high fidelity grid;

• in the low fidelity snapshot, for every layer, every element was split in four
elements and its value has been assigned to all of them;

The Normalized Root Mean Squared Error (NRMSE) between the three fidelities
for 100 samples, calculated as

NRMSE =

ñqne
i=1 (Sh − Sm)2

√
ne (Shmax

− Shmin
) (4.5)

where Sh and Sm are the strain values form the high fidelity and the medium
fidelity and ne is the number of elements of each snapshot. The NRMSE of layer 3
between the high and medium snapshots (left and between the medium and low
snapshots (right) is displayed in figure 4.3.
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Figure 4.3: RMSE between high and medium fidelity (left) and between medium and low
fidelity (right)

Using the described automatic scripts are created a training and a validation
database. The former is composed by:

• NH = 100 high fidelity simulations;

• NM = 200 medium fidelity simulations, with NH simulations made with the
same parameters of the high fidelity ones;

• NL = 1500 low fidelity simulations with NM simulations made with the same
parameters of the medium fidelity ones;

While the validation database is made with only NHV = 100 high fidelity simula-
tions.
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Chapter 5

Model Order Reduction

After the creation of the database with all the simulations, the issue of finding a
method to create the data for different inputs emerged. In fact it wasn’t feasible to
train an accurate machine learning method with an input of only three variables
and an output of over ten thousand. So, it was necessary to find a Reduction
Method to decrease the information needed to reconstruct every model. In the
next section there is a brief introduction to these methods.

5.1 Introduction

Computational modelling and simulation of nonlinear complex systems with millions
of degrees of freedom (DOFs), like finite elements or finite difference, are in high
demand with computational and storage resources. When multiple analysis are
required to investigate the behaviour of a system, to reduce the computational time
minimizing the information losses, it is necessary to condense the information in
lower order models that can serve as the basis for additional analysis. These lower
order models are called reduced order models (ROMs). The ROMs capture the
essential behaviour of the phenomena reducing the DOFs. The high-dimensional
solution of a given model is thus reduced to a linear combination of few dominant
modes.
In [31] and [32], is proposed a classification between Model Order Reduction
methods which can be divided in two categories: methods for linear systems
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Figure 5.1: Model Order Reduction classification

(Control Theory methods, moment matching via Krylov subspaces and hybrid
Krylov-SVD methods) and for non-linear systems (Empirical Balanced Truncation,
Proper Orthogonal Decomposition, Trajectory Pieswise-Linear and Volterra Series).
Control theory methods can be used to reduce complex systems matrices to lower
rank matrices using their singular values to determine the dimension of the reduced
model. They are difficult to implement with high rank problems due to the necessity
of calculation of the SVD (computational complexity of n3).
Krylov subspaces moment matching methods [33] are implemented in reductions of
large quantity of data. The moments are defined as the coefficients of the Taylor
series expansion of the transfer function around a certain complex frequency and
the reduction is performed eliminating the higher order components. The main
advantage of this approach is that it involves the solution of sparse linear systems
of equations and so results require low computational effort and small memory
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requirements. The main disadvantage of Krylov methods is that they do not have
a global error estimate.
In case of non-linear dynamic systems, the field of model reduction remains a big
challenge mainly because the reduction of the non-linear system approximates the
original for a single input and the calculation of the reduced order model requires
the simulation of the original model. So, the calculation of the ROM can require
more time than the original, hence it’s utilized for re-obtaining the data already
calculated.
The Proper Orthogonal Decomposition (POD) [9] is a very popular method, which
projects the original system into a basis subspace with smaller dimension. In this
thesis we will focus on the Proper Orthogonal Decomposition (POD) method, so a
detailed explanation will be given in the next chapter.

5.2 Proper Orthogonal Decomposition

Proper Orthogonal Decomposition was first introduced by Pearson in 1901 [9] and
then revised by Lumley [34] and Sirovich [35]. POD is an efficient way to reduce
system complexity, it can capture the essential behaviour of the studied phenomena
using a database of already known solutions and identify a lower order subspace
composed by orthonormal basis.
A generic vector S which can be written as a linear combination of some basis

S =
NØ

i=1
αiϕi = αΦ (5.1)

whereα is the coefficients vector and Φ is the basis matrix such as Φ = [φ1, φ2, ..., φN ],
where φi are the basis vectors called Proper Orthogonal Modes (POMs). From 5.1,
a reduced version of the model can be represented with

S ≈
nØ

i=1
αiϕi = αnΦn (5.2)

where n < N . The Φn matrix is composed by the most representative POMs for the
reconstruction of the system and grants the approximation to the original model
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through the lest mean square

min

.....S −
nØ

i=1
αiϕi

.....
L2

(5.3)

The issue is the determination of the basis which create the matrix Φ . We can
introduce the auto-correlation matrix C ∈ RN×N such as

C =
NØ

i=1
SiS

T
i (5.4)

which is symmetric, positive definite with real positive eigenvalues sorted according
to λ1 ≥ λ2 ≥ λ3 ≥ ... ≥ λN > 0 called proper orthogonal values (POVs). To
obtain the eigenvectors associated to the reduced model, it is necessary to solve
the problem

Cϕi = λiϕi i = 1, ..., N (5.5)

Solving the eigenvalue problem 5.5 is in general computationally intractable because
the dimension of the matrix C is usually large and this matrix is usually dense.
So, it was developed the snapshots method [35]. Where the response of the system,
for each input, is collected in a column vector Si (called snapshot) and collected in
the snapshots matrix S ∈ RN×Nsnap

S =
è
S1, S2, ..., SNsnap

é
(5.6)

where usually Nsnap ¹ N . Then C can be replaced with the covariance matrix
C ∈ RN×N

C = SST (5.7)

The non-zero eigenvalues of C are the same of those of the matrix

ãC = STS (5.8)

with significant lower dimension ãC ∈ RNsnap×Nsnap . So, the eigenvectors (POMs)
can be obtained solving

STSϕi = λiϕi i = 1, ..., Nsnap (5.9)
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5.3 Singular Value Decomposition

Singular Value Decomposition (SVD) [21] is one of the most used methods to
obtain orthonormal basis. The SVD factorizes the matrix S into three matrices

S = UΣV T (5.10)

where U ∈ RNsnap×Nsnap is the left singular vectors matrix, V ∈ RN×N is the right
singular vectors matrix and Σ ∈ RNsnap×N is the singular values (σ) diagonal matrix.
The auto-correlation matrix C and the covariance matrix C can be written as

C = SST = UΣV TV ΣTUT = U
1
ΣΣT

2
UT (5.11)

ãC = STS = V ΣTUTUΣV T = V
1
ΣTΣ

2
V T (5.12)

Hence, from the SVD is possible to determine U as the left eigenvectors of C, V
as the right eigenvectors of ãC and Σ2 as the eigenvalues of S.
A relevant characteristic of the SVD is the determination of relative importance of
the ith POM in the approximation of the matrix S. It is determined by the relative
energy of that mode ([36],[37])

Ei = σ2
iqN

i=1 σ
2
i

= λiqN
i=1 λi

(5.13)

and it is possible to determine the relative energy maintained during the kth

reduction of the original basis as

Eretained =
kØ

i=1
Ei (5.14)

Typically, the number of modes required to capture all of the energy is very large
and it does not result in a significant dimensionality reduction. However, it is
possible to accurately approximate a matrix to 99% of its energy by using a
significant lower number of POMs .
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5.4 Implementation

To obtain the ROM of the snapshots matrix S = [S1, S2, .., SN ], where Si is the
column vector containing the strain data of every element for a single simulation,
at the start S is centered subtracting the row vector Sm containing its the average
value âS = S − Sm (5.15)

Then, the SVD of âS is calculated (see table 5.1) to obtain U (left eigenvectors
matrix), Σ (eigenvalues matrix) and V (right eigenvectors matrix). Afterwards,

Time
layer 1 layer 2 layer 3 layer 4

High fidelity 39.5 s 40.9 s 43.4 s 36.6 s
Medium fidelity 35.4 s 36.2 s 37.5 s 33.9 s
Low fidelity 29.5 s 30.3 s 26.9 s 20.6 s

Table 5.1: SVD time with chipset Intel 7700HQ and 16 GB of RAM

using

Eretained =
kØ

i=1

A
λiqN

i=1 λi

B
(5.16)

it is possible to determine the number of POD modes k necessary to preserve a
determinate relative energy . An example is shown in figure 5.2, where are displayed
the POD eigenvalue spectra, and in figure 5.3, where the dimensionality reduction
to retain the 99% in the third layer for the high fidelity database is only of 10
modes, however in the low fidelity database the reduction is more than half of the
total modes.
In table 5.2 are displayed the number of POD modes retained for each fidelity

model.
Finally it is possible to reconstruct the reduced snapshot as

S̃i(x) = Sm +
kØ

j=1
αi

j(x)ϕi
j i = 1, ...,M (5.17)
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Figure 5.2: POD eigenvalues for the computed modes in the 3rd layer for high fidelity
models left and low fidelity models right
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Figure 5.3: Cumulative energy retained in the 3rd layer for high fidelity models (left) and
low fidelity models (right)

where M is the number of elements of the model, αi
j is the POD modal coefficient

for the ϕi
j component of the POD basis vector and x is the vector of the design

variables. Figure 5.4 and 5.5 display the truncation error for the three fidelities
calculated as

NRMSE =

òqne
i=1

1
S̃ − S

22

√
ne (Smax − Smin) (5.18)

ne is the number of elements of each column. For each model the error is comprised
between 0 and 1 % with a mean value lower than 0.5%.
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POD modes
layer 1 layer 2 layer 3 layer 4

High fidelity 88 90 90 89
Medium fidelity 259 261 261 259
Low fidelity 657 637 626 598

Table 5.2: POD modes retained

Figure 5.4: Normalized rms error (NRMSE) for 99% of cumulative energy retained in the
3rd layer for high fidelity models (left), medium fidelity models (center) and low fidelity
models (right)

Figure 5.5: Normalized rms error (NRMSE) for 99% of cumulative energy retained in the
4th layer for high fidelity models (left), medium fidelity models (center) and low fidelity
models (right)

Despite the determination of Φ as the POD basis matrix which describe the
entire phenomenon as

Φ = [ϕ1, ϕ2, ..., ϕk] = U [: ,1 : k] (5.19)
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it is possible to directly determine POD modal coefficients

α = [α1, α2, ..., αk] =
1
ΣV T

2
[1 : k, :] (5.20)

only for the x inputs of âS. Hence, it is mandatory to determine a regression model
to obtain correct α for a random input in the allowed range (see chapter 7).
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Chapter 6

Manifold Alignment

POD modal coefficients matrices obtained in the previous chapter for each fidelity
database are not compatible with each other because they lay in different spaces.
So, to transfer information from different fidelity models we must first find a method
to determine how the basis that characterize each of them are connected.
As described in [38], in mathematics, "a manifold is a topological space that
locally resembles Euclidean space near each point". Manifolds can be many types,
and euclidean space is an example of a particular kind of manifold. Hence, the
POD basis can be considered manifolds and, to connect them, exist a family of
machine learning methods called manifold alignment algorithms which produce
projections between two sets of data, under the assumption they are correlated.
Manifold alignment methods are used to accelerating learning in robotics integrating
data from various robots [26], multi-fidelity modelling [10], automatic translation,
image recognition and biomedics. In [28] is proposed a classification in these
methods. In particular, Perron et al. [10] developed a method for multi-fidelity
modelling transonic airfoil based on information transfer from low fidelity database
to high fidelity database.
In this thesis we developed an original method, based on Procrustes Analysis, to
transfer information from the high and medium fidelity spaces into the low fidelity
space. The choice of using the low fidelity basis as the main basis is due to the
fact that it has been produced from the database with the highest number of
simulations. This translates in the best spatial investigation of the response of the
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Physic’s based models through the range of the damage parameters.
In this thesis we will focus on Procrustes analysis.

Manifold
Alignment

One-step Two-steps

Diffusion map-
based alignment

Procrustes analysis

Semi-supervised
alignment

Manifold projections

Semi-definite
alignment

Figure 6.1: Manifold Alignment classification

6.1 Procrustes Analysis

The name Procrustes refers to a bandit from Greek mythology who made his
victims fit his bed either by stretching their limbs or cutting them off. Similarly
the Procrustes analysis [25] determines a linear transformation, shown in eq 6.1,
composed of translation c, orthogonal rotation T and scaling b of the points in
the matrix Y to best conform them to the points in the matrix X. In [11] are
presented the steps to apply the method.

X Ä bY T + c (6.1)
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In the first step is performed the translation of the matrices to a common centre.
Hence is calculated the centroid of every column as

X =
è

1
n

qn
i=1 ϕ1i . . . 1

n

qn
i=1 ϕmi

é
(6.2)

where Φ ∈ Rn×m, and it is subtracted from each element in the matrix U . Consid-
ering the truncated basis obtained in chapter 5:

• Φh, representing the basis of the high fidelity database;

• Φl, representing the basis of the low fidelity database;

the centered basis are

Φh = Φh −


Xh

...
Xh

 Φl = Φl −


X l

...
X l

 (6.3)

In the second step is performed the scaling of the matrices using the Frobenius
norm such as

âΦh = Φh...Φh

...
F

âΦl = Φl...Φl

...
F

(6.4)

where the Frobenius norm is calculated with

...Φ...
F

=
öõõô nØ

i=1

mØ
j=1

---ϕij

--- (6.5)

The translated and scaled basis are then rotated. In this step, firstly is determined
the matrix A ∈ RNl×Nl , where Nl is the number of retained modes in Φl, to
maximize the correlation between the two matrices.

A = âΦT
l
âΦh (6.6)

Must be noted that the âΦh has been extended with columns of zeros to match the
columns of âΦl. Then, in eq 6.7 is calculated the SVD of the matrix A to obtain
the left singular vectors matrix L, the right singular vector matrix M and the
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singular values diagonal matrix D.

[L,D,M ] = svd(A) (6.7)

From this decomposition it is possible to obtain the rotation matrix T

T = MLT (6.8)

the scaling matrix b

b =
A

nlØ
i=1

Dii

B ...Φl

...
F...Φh

...
F

(6.9)

and the translation matrix c

c =


X l

...
X l

−


Xnew

...
Xnew

 (6.10)

where Xnew is obtained from

Xnew = bXhT (6.11)

The same steps are also performed between Φm, representing the basis of the
medium fidelity database and Φl.

6.2 Synthesis Basis Coefficients

After obtaining the relations between the POD basis of the three fidelities, it is
possible to project the high and medium POD modal coefficients into the low
fidelity POD basis. Starting from

Φl = bΦhT + c Φlβh = Φhαh (6.12)

where β ∈ RNl×Nsnap is the matrix composed by the high fidelity POD modal
coefficients matrix in the low fidelity POD basis. By substituting the left equation
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into the right we obtain

(bΦhT + c)βh = Φhαh (6.13)

Both terms are then multiplied with ΦT
h . Since Φh is an orthogonal matrix,

ΦT
hΦh = I, where I is the identity matrix, the equation 6.13 can be written as

1
(bT ) +

1
ΦT

hc
22
β = αh (6.14)

Finally, by solving the linear system in equation 6.14, it is possible to obtain β.
The obtained POD modal coefficients are:

• βh, obtained transferring αh from the high fidelity basis into the low fidelity
basis;

• βm, obtained transferring αm from the medium fidelity basis into the low
fidelity basis.

In table 6.1 is resumed the calculation time for the Procustes analysis and the
coefficients β.
Figures 6.2 and 6.3 show the NRMS error between the original database and

Time
layer 1 layer 2 layer 3 layer 4

βh 0.682 s 0.571 s 0.7 s 0.588 s
βm 0.942 s 0.717 s 0.761 s 0.832 s

Table 6.1: Procrustes Analysis and Coefficients alignment time with chipset Intel 7700HQ
and 16 GB of RAM

the database reconstructed using the β coefficients and the low fidelity basis. The
error maintains values in the order of the 10% and it is higher for the high fidelity
snapshots because they have greater value difference with the low fidelity compared
to the low fidelity. The coefficients αh for the high fidelity database can also be
projected to the low fidelity basis with an intermediate projection to the medium
fidelity basis. This two-step projection should have the same mean error compared
to the the one-step method but, as shown in figure 6.4, the mean error is higher
due to loss of information in the iterative methods used during the projection.
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Figure 6.2: 3rd layer Normalized rms error (NRMSE) for high fidelity models (left) and
medium fidelity models (right) using POD coefficients projected into the lower basis

Figure 6.3: 4th layer Normalized rms error (NRMSE) for high fidelity models (left) and
medium fidelity models (right) using POD coefficients projected into the lower basis

Figure 6.4: Normalized rms error (NRMSE) for high fidelity models 3rd layer (left) and
4th layer (right) using POD coefficients with two-step projection

40





Chapter 7

Data Fit Surrogate
Modelling

In this chapter are trained the surrogate models, created with different Machine
Learning (ML) algorithms to obtain the coefficients response surfaces of the unified
basis coefficients. ML algorithms are algorithms which can improve automatically
through experience and by the use of data [39]. Basically they determine a model
using a set of input data, which tries to predict or exploit the behavior of the
studied phenomena. These methods can be divided in supervised and unsupervised
learning.
In supervised learning, a model is trained to obtain the desired outputs using as
set of input data, training data, through the iterative optimization of an objective
function. Supervised learning can be further divided in classification and regression,
in the former the outputs are limited to a finite number of values, while, in the latter
the outputs can assume any value in a certain range. Some examples are Gaussian
Process regression, CoKriging, Regression Trees, Support Vector Machines and
linear regression.
In unsupervised learning, a model is trained to extract patterns or structures
from a set of input data. Some examples are self organizing maps and k-means.
In this thesis is done a comparison between Gaussian Process regression, CoKriging,
Regression Trees and Self Organizing Maps to determine the most suitable, in
terms of training time and NRMSE, to be used in non-smooth problems such ours.
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To integrate the multi-fidelity information are implemented two machine learning
models:

• the first model M1 is trained with the αl because it has the most number of
variables and so the best spatial exploration of the variables;

• the second model M2 is trained with the difference δ between the α of two
different fidelities for the snapshots obtained with the same design variables.

The idea is to improve the online values of α obtained from M1 with the δ obtained
from M2 as

αh = αl + δhm + δml (7.1)

with δhm and δml defined as

δhm = βh − βm (7.2)
δml = βm −αl (7.3)

respectively obtained from M2hm and M2ml.

7.1 Gaussian Process Regression

A Gaussian Process can be considered a generalization of a Gaussian probability
distribution over infinite possible functions that fit a set of points [29] [12] [40]
[41]. It is a supervised non-parametric technique, which means that nearly no
assumptions about the mapping function are made. Compared to parametric
algorithms, non-parametric algorithms learn more from data. This is because the
learning of parametric algorithms may be limited by the assumptions that they
make. A Gaussian process is completely defined as a random Gaussian function
with a mean function m(xi) and a covariance function k(xi, xj) as

f(x) ∼ GP (m(xi), k(xi, xj)) (7.4)

The mean functionm(x) is usually assumed to be zero, while the covariance function
k(xi, xj) can be any function. The choice of k() make implicit assumptions on the
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data modelled, a popular choice is the squared exponential covariance function

k(xi, xj) = σ2
f exp

C
−(xi − xj)2

2l2

D
(7.5)

where σf is the maximum allowable covariance which should be high for functions
that cover a big interval in the output data. The reliability of the regression
model depends on how is fitted the covariance function k(xi, xj). This function
is parameterized by a set of hyper-parameters, θ, which in this case are σf and l.
To determine this hyper-parameters it is necessary to maximize the log marginal
likelihood

log p (y|x,θ) = −1
2y

TK−1y − 1
2 log |K| − n

2 log 2π (7.6)

K is the covariance matrix as k(x,x). The problem of learning with Gaussian
processes is exactly the problem of learning θ. This can be done with a standard
gradient based technique as long as in 7.6 is possible to determine the partial
derivatives.
To predict the output y∗ from a new input x∗, it is possible to represent the problem
as a Gaussian distribution with mean zero y

y∗

 ∼ G

0,
 k(x,x) k(x, x∗)
k(x∗,x) k(x∗, x∗)

 (7.7)

From it is possible to obtain 7.8 which returns the estimated output mean value y∗

y∗ = k(x, x∗)Tk(x,x)y (7.8)

An important result of this method is the estimation of the variance of the prediction
which is shown in figure 7.1.
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Figure 7.1: Example of variance prediction obtained with GP [42]

7.2 CoKriging

CoKriging [8] is an interpolation model, based on Kriging [43], which correlates
two sets of data (high fidelity and low fidelity). In this thesis, it is implemented the
auto-regressive CoKriging [44], which assumes that the information of low fidelity
model can not improve the high fidelity data for the high fidelity design variables.
The inputs of the model are the design variables Xk and the training variables αk

Xk =
 Xl

Xh

 αk =
 αl
βh

 (7.9)

Creating a CoKriging model can be interpreted as constructing two Kriging models
in sequence, the first is constructed with the low fidelity data (Xl,αl), while the
second is constructed with (Xh,αd), calculated as

αd = βh − ρα̂l (7.10)

where α̂l is the estimated mean of the low fidelity Kriging model. The prediction
can be written as

α̂ = Mγ + r(x)Ψ−1(αk − Fγ) (7.11)
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where r(x) is
r(x) =

è
ρσ2

l rl(x) ρ2σ2
l rl(x,Xh) + σ2

drd(x)
é

(7.12)

Ψ is

Ψ =
 σ2

l Ψl ρσ2
l Ψl (Xl,Xh)

0 ρ2σ2
l Ψl (Xh,Xh) + σ2

dΨd

 (7.13)

and F is the regression basis function matrix.
The correlation matrices Ψl and Ψl are obtained from

ψ(x1,x2) = exp

A
−

dØ
i=1

θi|xi
1 − xi

2|p
B

(7.14)

where σ is the process variance; θ and p are the hyper-parameters of the correlation
function and are obtained estimating the Maximum Likelihood of the function.
In 7.11, M is the model matrix of the predicting point x and γ is the matrix of
interpolation coefficients.

7.3 Regression Trees

A Regression Decision Tree [13] is a statistical non-parametric supervised technique
based on recursive partitioning. Decision Trees are simple to interpret, they can
be trained well with large data sets, they don’t make assumptions on the type
of phenomena analyzed, they are fast in making predictions and they can handle
non-smooth problems (like a cut damage models); on the other hand, they can grow
to an over complex structure and they have difficulties to represent linear problems.
In a decision tree, the training data, also called parent node, is split between two
child nodes using the boolean response to a threshold k (like is X > k?), as shown
in figure 7.2, until obtaining the values τ , called leaves, which are the output of
the function.
To build a Regression tree, is applied the approach top to down, starting with

grouping all the training data into the same partition. The algorithm then begins
allocating the data into every possible threshold in the variables range. The
algorithm selects the split that minimizes the sum of the squared deviations R
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Figure 7.2: Regression Tree example

from the mean in the two separate partitions, R1 and R2, calculated as

R =
nnØ
i=1

(yi − y)2 (7.15)

where nn is the number of observations from the training data which fall in the
evaluated branch and y is the mean value of the observations in the branch. This
process continues until each node reaches a specified minimum node size and
becomes a leaf or the sum of squared deviations is zero.

7.4 Self Organizing Maps

A Self Organizing Map (SOM), or Kohonen Map [14], is a non-supervised non-
parametric clustering (set of techniques used to group elements with similar features
and separate them from other elements) technique used to group a higher dimen-
sional data set in a low-dimensional representation preserving the topological
structure of the data.
SOMs are neural networks [45], they try to replicate the structure and function
of human brains using a set of nodes, connected to each other, called artificial
neurons. Each neuron, like the synapses of a brain, can transmit a signal to the
other connected neurons. The output signal of a neuron is obtained using its
inputs processed by some function. Neurons have a weight that adjusts as learning
proceeds which increases or decreases the strength of the output signal(figure 7.3).
SOMs are trained using competitive learning, in which the neurons compete

amongst themselves to be activated, with the result that only one is activated at
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Figure 7.3: Example of weight distances for a trained SOM

any one time. This activated neuron is called best matching unit (BMU).
All the SOMs have four common steps [46]:

1. initialization, the weights are initialized with small random values.

2. competition, for each training input, the neurons compute the value of the
discriminant function, which assume the highest or the lowest value (depending
of the function) in the neuron most similar to the input vector. This neuron
is called BMU.

3. cooperation, the BMU determines the spatial location of a topological
neighbourhood of excited neurons, which can cooperate.

4. adaptation, the excited neurons alter their discrimination function value
through the tuning of the weights in relation to the input vector.

In the training phase, the input matrices T = [t1, ..., tNs ] are created as

TL =
 xL
αL

 THM =
 xH

δHM

 TML =
 xM

δML

 (7.16)
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and 30 weight vectors wj with the dimensions of a column of T (Nc) to fit a grid
map 6 × 5. Then, an input vector is introduced to determine the value of the
discriminant function [3] for every neuron j as

dj = ëtj − wjëΛ =
ñ

(tj − wj)T Λ (tj − wj) j = 1, ..., D (7.17)

where D is the number of neurons, M is the input dimension and t is the input
vector. To highlight the first 6 values of tj, is created the diagonal matrix

Λ = diag
35

0,06 · ones(1,6) ,
1 − 0,36
Nc − 6 · ones(1, Nc − 6)

64
(7.18)

The unit with the minimum d is the winner (BMU) and the input is assigned to it
(figure 7.4). Then, the weights of the BMU and neurons close to it in the SOM
grid are adjusted towards the input vector. The magnitude of the change decreases
with time and with the grid-distance from the BMU.
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Figure 7.4: Example of Sample Hits for a trained SOM

49





Chapter 8

Results

The estimated coefficients, obtained from the trained surrogate models of chapter 7
with inputs the validation Damage parameters, are used to calculate the estimated
snapshots

S = Φl (αl + δml + δhm) +meanl (8.1)

where Φl is the low fidelity POD basis and meanl is the mean value of the low
fidelity training database. The estimated snapshots are then confronted with the
validation set, of which example is presented in figure 8.1, where are only displayed
the third and the fourth layer to have a better presentation of the results. Also the
time records are obtained using a chipset intel 7700HQ and 16 GB of RAM.
The evaluation error for the ML methods considered is calculated as

NRMSE =

ñqne
i=1 (Sh − Sestimate)2

√
ne (Shmax

− Shmin
) (8.2)

Sh are the strain values for the high fidelity snapshot in the validation set, Sestimate

are the estimate strain values with the ML algorithm and ne is the number of
elements of each column.
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Figure 8.1: High fidelity validation snapshot

8.1 GP Results

Using as inputs αl, δhm and δml for the models M1, M2hm and M2ml and combing
the results with the equation 8.1 are predicted the snapshots for the validation
data inputs.
In table 8.1 is summarized the training time of the GP for the three models and
the time necessary for a new prediction, cumulative of the three parameters. It is
possible to observe the training time which is approximately ten times compared
to high fidelity FEM analysis, however with an evaluation time of ∼ 0.26 s in just
ten iterations in it more time efficient than the high fidelity.

Time
layer 1 layer 2 layer 3 layer 4

Training αl 13980 s 12905 s 13380 s 13015 s
Training δhm 35 s 31 s 31 s 33 s
Training δml 167 s 150 s 140 s 161 s

Evaluation new α 0.2594 s 0.2554 s 0.2930 s 0.2455 s

Table 8.1: GP training and evaluation time

The snapshot displayed in figure 8.2 shows on the evaluated snapshot with
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the GP. In layer 4 there isn’t any cut damage however in layer 3 there is the
opposite situation, there is too much background noise and the damage can be
barely detected. The NRMSE (using as reference data the validation data set)
displayed in figure 8.3, is less than 10% in both cases.
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Figure 8.2: High fidelity snapshot obtained with GP

Figure 8.3: NRMSE High fidelity snapshot obtained with GP
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8.2 CoKriging Results

Using as inputs αl and βh for the CoKriging model are predicted the snapshots for
the validation data inputs. In table 8.2 is summarized the training time and the
time necessary for a new prediction. In this case the training time is not negligible
expecially for layer 2. The snapshot displayed in figure 8.4, shows a plate filled with

Time
layer 1 layer 2 layer 3 layer 4

Training 77974 s 426089 s 11811 s 147469 s
Evaluation new α 11.43 s 11.15 s 9.14 s 10.23 s

Table 8.2: CoKriging training and evaluation time

cuts due to the excessive noise and the difficulty of determinate a small localized
discontinuity using an interpolation model. The NRMSE (using as reference data
the validation data set) displayed in figure 8.5 is highest of the four models, with
peaks of over the 80% for the layer 4.
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Figure 8.4: High fidelity snapshot obtained with CoKriging
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Figure 8.5: NRMSE High fidelity snapshot obtained with CoKriging

This results demonstrate that the CoKriging is not suitable for the reproduction
of data with small localized perturbations.

8.3 Regression Trees Results

Using as inputs αl, δhm and δml for the models M1, M2hm and M2ml and combing
the results with the equation 8.1 are predicted the snapshots for the validation
data inputs. In table 8.3 is summarized the training time of the Regression tree
and the time necessary for a new prediction which is extremely lower compared to
high fidelity FEM analysis and the other methods in this comparison.

Time
layer 1 layer 2 layer 3 layer 4

Training αl 5.98 s 6.31 s 6.57 s 5.38 s
Training δhm 2.10 s 1.97 s 1.94 s 1.91 s
Training δml 2.30 s 2.10 s 2.19 s 2.15 s

Evaluation new α 0.34 s 0.34 s 0.34 s 0.29 s

Table 8.3: Regression Trees training and evaluation time

The snapshot displayed in figure 8.6, shows a light evidence of the cut in layer 4,
while in layer 3 there is to much noise. Compared to the GP, the NRMSE (using
as reference data the validation data set) displayed in figure 8.7 is greater but this
model can localize the damage in the layer 4.
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Figure 8.6: High fidelity snapshot obtained with Regression Trees

Figure 8.7: NRMSE High fidelity snapshot obtained with Regression Trees

8.4 SOMs Results

Using as inputs αl, δhm and δml for the models M1, M2hm and M2ml and combing
the results with the equation 8.1 are predicted the snapshots for the validation
data inputs. In table 8.4 is summarized the training time of the SOM and the time
necessary for a new prediction which is extremely lower compared to high fidelity
FEM analysis. The high training time it is a consequence of the 1000 training
epochs.
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Time
layer 1 layer 2 layer 3 layer 4

Training αl 20193 s 2074 s 2147 s 2903 s
Training δhm 46 s 46 s 80 s 54 s
Training δml 160 s 160 s 235 s 184 s

Evaluation new α 0.0153 s 0.0163 s 0.0354 s 0.0174 s

Table 8.4: SOM training and evaluation time

The snapshot displayed in figure 8.8, doesn’t show a evidence of the cut in the
layers. In fact, it is impossible to determine the cut damage in the layers, even
thought the NRMSE (using as reference data the validation data set) displayed
in figure 8.9 is low. The low error is a consequence of the snapshots strains being
nearly zero.
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Figure 8.8: High fidelity snapshot obtained with SOMs
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Figure 8.9: NRMSE High fidelity snapshot obtained with SOMs

8.5 Mixed method

The ML models from chapter 7 are unsatisfactory due to their the poor capacity
to reproduce a localized damage so it is proposed a method to improve the results.
Starting for the table 8.5, the best performances in terms of training time and

ML method NRMSE Training Time Evaluation Time
GP 3.659 % 13551 s 0.2930 s

CoKriging 13.59 % 11811 s 8.14 s
Regression Tree 8.238 % 10.7 s 0.34 s

SOM 4.006 % 2462 s 0.0174 s

Table 8.5: Mean results comparison

localization of the cut are represented by the Regression Trees while the best
evaluation time is represented by the SOMs. So, it was thought to combine the
two methods to achieve better overhaul results and improve the quality of the
snapshots obtained through the surrogate model.
Firstly the Regression Trees are trained for the model M1 using as inputs αl in
order to reduce the training time, then two SOMs are trained for the modelsM2hm

and M2ml using as inputs, respectively, δhm and δml. Afterwards to predict the
new snapshots, the results are combined using the equation 8.1.
In table 8.6 is summarized the training time and the time necessary for a new
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prediction. The training time for each model is comparable with the previous result
however the evaluation time for a new snapshot is reduced tenfold compared to
Regression tree.
The major improvement of the method is highlighted in the snapshot displayed in

Time
layer 1 layer 2 layer 3 layer 4

Training αl 13 s 7.7 s 9.6 s 8.1 s
Training δhm 72.5 s 64.5 s 78.4 s 89 s
Training δml 228.7 s 207.5 s 235.6 s 214 s

Evaluation new α 0.0229 s 0.0218 s 0.0257 s 0.0236 s

Table 8.6: Regression Tree and SOMs training and evaluation time

figure 8.10. The damage is clearly visible in layer 4 and layer 3, even if the latter
maintains a false detection in the lower right of the plate. Also, in layer 3, judging
from the intensity of the colour, the results are underestimated.
Considering the NRMSE (using as reference data the validation data set) displayed
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Figure 8.10: High fidelity snapshot obtained with Regression Trees and SOMs

in figure 8.11, the error has decreased to a value comparable to the SOMs with
snapshots that can effectively represent the damage.
Comparing the results obtained with the combination of the two methods to a

59



Results

Figure 8.11: NRMSE High fidelity snapshot obtained with Regression Trees and SOMs

snapshot created only with a Regression tree trained with the high fidelity database,
the multi-fidelity method improves the localization of the damage, decreasing the
false positive occurrences.
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Chapter 9

Conclusions

In this thesis is proposed an original surrogate modelling strategy for the determi-
nation of the strain field in a cut damaged structure. This method make use of
different sources of information consisting of three finite element model simulations
with different approximations of the real world case of study, with the objective of
improving the final estimates via transfer learning. The approach to develop the
surrogate combines POD , Procrustes Analysis and a combination of Regression
Trees and SOMs.
The thesis work started with the creation of three physic’s based models, called high
fidelity, medium fidelity and low fidelity, from a common specimen with dimensions
of 104 × 456 mm made of four carbon fiber plain-weave prepreg plies stacked with a
lamination sequence of [45°/0°/0°/45°]. The different models vary from each other
due to the different discretization of finite elements.
Afterwards are created the training databases constituted of the strain fields of
100 high fidelity simulations, 300 medium fidelity simulations and 1800 low fidelity
simulations. Afterwards, it is calculated the POD to determine the truncated
POD basis and POD modal coefficients in order to retain a 99% of the original
cumulative energy. The ROM introduced a truncation mean NRMSE in the third
layer of ∼ 0.05% compared to the simulations.
Then, implementing a Procrustes analysis algorithm, we determined the transforma-
tion matrices to project the the high and medium fidelity POD modal coefficients
into the low fidelity basis. This step introduced a mean NRMSE in the third layer
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of ∼ 5% compared to the simulations.
Finally, we trained three surrogate models, one for the low fidelity POD modal
coefficients estimation based on Regression Trees and two the correction coefficients
based on SOMs. The results are confronted to a high fidelity validation set of 100
simulations. We obtained a mean NRMSE in the third layer of ∼ 4% and we were
able to correctly estimate the damage in terms of position and strain values.
This strategy can be adapted to fit different structural problems varying the training
database and fine tuning the data fit algorithm of the surrogate model.

9.1 Future Developments

In this section are presented possible future developments of the thesis, which could
be the improvement of the database using experimental data.
The test process will involve placing the test specimen in a universal testing
machine and slowly extending it to a displacement value of 5 mm (in order to
remain consistent with the simulation data), the values of the strain field are then
collected using several strain gauges mounted on the fourth layer of the specimen.
The experimental data will be used to validate the physic’s based models and to
improve the surrogate model training process.
Another possible future development is the development of a real-time structure
integrity assessment configuration for non exposed damage detection using data
obtained from aircraft sensors [3] by linking the surrogate models of each layer.
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