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Abstract

The aim of this work is to analyze the feasibility of Earth-Moon transfers using
weak stability boundary, in order to reach a Halo orbit around L2. The analysis
is firstly conducted in the CR3BP (Circular Restricted 3 Body Problem) and
afterwards perturbations are introduced.

The objective of such transfer is to reduce the mission cost by lowering the
propellant requirements compared to a traditional Hohmann transfer, aiming for a
ballistic capture at Moon arrival. Such capture is possible using a region in space
in which the gravitation forces of the influencing bodies tend to balance each other,
called weak stability boundary.

Firstly a suitable destination Halo orbit is computed using differential correction
in a single shooting method, with an attention to the stability of the Halo orbit
in order to reduce station keeping costs. Afterwards, with the aid of invariant
manifolds, the trajectory connecting a circular low Earth orbit to the selected
Halo is obtained in the CR3BP. Two trajectory are proposed, using weak stability
boundaries around L2 in the Earth-Moon system and around either L1 or L2 in
the Sun-Earth system in order to achieve the required transfer. The analysis is
conducted for different Moon phases at arrival.

Secondly perturbations to the baseline trajectory calculated are introduced and
a perturbed trajectory is computed, using multiple-shooting method, considering a
Moon arrival window of a year.

Lastly consideration on the effect of Moon phase are reported, followed by a
comparison of the two transfer options in the CR3BP and the perturbed system,
and on the variability of the transfer cost and time throughout an year. Finally
some conclusive remarks on the convenience of such transfer and the reliability of
the CR3BP model are presented.
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Chapter 1

Introduction

In this chapter an introduction to the problem in analysis and the theory utilised
are presented. Additionally some examples of notable missions are underlined.

1.1 Hohmann Transfer
The Hohmann transfer was first described by Walter Hohmann, a German scientist,
in 1925. It utilises an elliptical orbit to connect two circular orbits with different
radius around a central body in the same plane. Two maneuvers are required, one
at departing orbit and one upon arrival. An example of transfer is shown in figure
1.1. This maneuver is commonly used in space mission and is the base for the
standard transfer to the Moon.

Figure 1.1: Example of Hohmann Transfer [1]

For Earth-Moon Hohmann transfer the second manoeuvre is used to adjust the
velocity to the Moon velocity, therefore allowing capture. A ∆V different from
zero is always required (around 1 km{s) in order to achieve capture at destination.
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1.2 Low cost Transfer
Edward Belbruno in 1986 discovered a strategy to achieve ballistic capture, which
is an automatic temporary capture at ∆V “ 0, therefore without the need for
propulsion. A mathematical definition will be introduced in the following chapter
(see 2.5). The method allows for temporary capture, but a permanent capture, if
required, can be achieved with a extremely small ∆V , obtaining a big reduction in
required fuel. Such transfer utilise, what he defines, weak stability boundaries.

1.2.1 Weak Stability Boundaries
A good explanation of weak stability boundaries in the Earth-Moon system can
be found [2]: “Weak Stability Boundary (WSB) transfers are low energy transfers
that take advantage of regions where the gravitational attraction of the influencing
bodies tend to balance each other, to achieve ballistic capture at Moon”. While
different mathematical definitions where given throughout the years, the definitive
one can be found in [3] and will be introduced in the following chapter (see 2.6).

1.2.2 Theory Development and Important Milestones
The possibility of a ballistic capture was first introduced in 1986 by Belbruno. The
trajectory, utilised to achieve ballistic capture, was computed in the Earth-Moon
three body problem (see 2.2) and was unable to reach low Earth orbit arriving at
60000 km from Earth center. The trajectory was created with solar electric engines
as propulsive systems and was utilised in the 2003 SMART 1 mission by ESA. A
representation can be found in figure 1.2.

Figure 1.2: First Weak Stability Transfer [4]

Afterward in 1991, for the Japanese Hiten mission, Belbruno developed a second
weak stability transfer in the four body problem, considering two weak stability
boundaries: one in the Earth-Moon system and one in the Sun-Earth system.

2



Introduction

During this study the role of invariant manifolds (see 2.3) was firstly underlined,
but not utilized in trajectory calculation. The reference trajectory is reported in
figure 1.3.

Figure 1.3: Hiten trajectory [5]

In 2007 Garcia and Gomez [6] wrote an important article in which they introduced
a generalization of the algorithm developed by Belbruno, which included manifolds
in the trajectory calculation, and allowed for an updated definition of weak stability
boundaries, which is the one used today and will be presented in the following
chapter (see 2.6).

1.2.3 Comparison with the Hohmann transfer
Trajectories in weak stability allow for a reduction in transfer cost, especially at
moon arrival, with a slight increase in the cost for low Earth orbit departure
(usually around 0.2 km{s) and a consistent increase in travel time, from days in the
Hohmann transfer to months in weak stability transfers. In case of insertion into a
low Moon orbit the predicted reduction in ∆V at Moon arrival is 25% compared
to the Hohmann transfer. Weak stability transfer allows for direct transfer to halo
orbits around L2 in Earth-Moon system with even higher fuel saving compared to
traditional solutions. This second option will be investigated in this analysis.

1.3 Notable Missions
In this section import mission that utilised weak stability transfers are presented.

3
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1.3.1 SMART-1

SMART-1 was ESA’s first Moon mission, launched in 2003 from Kourou, French
Guiana. The objectives of the mission where to investigate the Moon, study
chemical elements in the lunar surface, and to demonstrate the use of advanced ion
propulsion for navigation and a number of innovative mission control techniques. It
was the first European mission to utilise electric-ion propulsion. The trajectory was
based on the developed by Belbruno in 1986, reported in figure 1.2. The mission
was successful and the spacecraft completed its mission with a controlled impact
with the Moon in 2006 [7].

Figure 1.4: SMART-1 spacecraft [7]

1.3.2 HITEN

It was the first Japanese lunar mission and also the first robotic lunar probe since
the flight of the Soviet Luna 24 in 1976. The objective of the two-module Japanese
spacecraft was to fly past the Moon and release an orbiter. Due to a problem with
the orbital injection burn, MUSES-A (Mu-launched Space Engineering Satellite),
renamed Hiten (“musical angel”) was released in a lower orbit than planed and,
after a number of subsequent maneuvers, Hiten reached its originally planned
nominal orbit. After the completion of its primary mission, which included the
release of a “grandchild” satellite named Hagoromo and test aerobreaking into
Earth’s atmosphere for the first time by any spacecraft, Hiten began an unexpected
extended mission to experiment with a novel method to enter lunar orbit utilising
the second weak stability trajectory developed by Belbruno, represented in figure
1.3 [8].
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Figure 1.5: HITEN spacecraft [9]

1.3.3 GRAIL

The Gravity Recovery and Interior Laboratory, or GRAIL, mission was designed
by NASA in order to create an accurate gravitational map of the Moon, which
when combined with topographic data, can provide insight into the Moon’s internal
structure, composition and evolution. The twin spacecraft (Ebb and Flow) of
NASA’s GRAIL mission where launched in 2011 from Cape Canaveral and concluded
their final rocket burns and impacted the Moon On December 17, 2012. NASA has
named the site in honor of the late astronaut Sally K. Ride, who was America’s first
woman in space and a member of the probes’ mission team. A low energy transfer
was selected in order to reduce the propellant mass and the longer transfer time
was beneficial to the mission since the on-board Ultra-Stable Oscillator needed to
be continuously powered for several months in order to reach a stable operating
temperature required for measurements [10].

Figure 1.6: SMART-1 spacecraft [10]
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1.4 Current interests
Part of NASA plan for the return to the Moon, the Artemis program, include a
lunar station, Gateway, that will be an outpost orbiting the Moon that will provide
vital support for a long-term human return to the lunar surface, as well as a staging
point for deep space exploration. The station will orbit a Near-rectilinear halo
orbit, a type of halo orbit.

Figure 1.7: Rendering of Gateway [11]
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Chapter 2

Theoretical Notions

In this chapter theoretical notions applied in the analysis will be explained. The
reference frame utilised for the first part of the analysis, CR3BP, will be presented,
together with the equations of motion. Then libration points and notable orbits
around such points are introduced, followed by some important tolls used: Manifolds
and Poincarè section. Finally mathematical definition for ballistic capture and weak
stability boundary, introduced in the previous chapter, is presented.

2.1 N-body problem
In order to describe the motion of a body, (i.e. a satellite, probe or celestial
body) in space it is necessary to take into account, among other phenomena, the
gravitational effect of surrounding bodies. Such problem can be modelled utilizing
the N-body problem, which allows for the calculation of the total force excited
on the probe by applying the Newton’s law of universal gravitation (described in
equation 2.1), which computes the attractive force between the bodies with masses
mi and mj and distance vector between the bodies rij defines as in equation 2.2;
while the system can be schematized as in figure 2.1.

Fij “ ´G
mimj

rij
3 rij (2.1)

rij “ ri ´ rj (2.2)
In a N-body problem the total force applied to the body of interest mi is the

sum of the forces applied by the other N-1 bodies (mj with j ‰ i) in the system,
which, in summation notation, is explicated in equation 2.3.

F “ ´G
N
ÿ

j“1,j‰i

mimj

r3
ij

rij (2.3)

7
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For a more complete analysis other components can be added, for example the
solar radiation pressure, but will not be included in this work due to the additional
complications. In many occasions the resolution of the N body problem, even
considering only the gravitational effect, requires a high computational cost and
reducing the number of bodies considered allows to discover interesting proprieties
that can be afterward utilised in a complete force model with the appropriate
corrections. Therefore, at the beginning of the analysis a simplified model in used:
the three body problem.

Figure 2.1: N-body model representation [12]

2.2 Three Body Problem
The three body problem is a simplification of the N-body-problem with includes a
primary body m1, a secondary body m2 and a spacecraft (in general a body with
negligible mass compared to the other two bodies, therefore unable to affect their
motion). Furthermore, if the orbit of the two massive bodies, around their common
center of mass, is considered circular, the problem is called circular restricted
three body problem, usually referred as CR3BP. A schematic representation of the
problem can be found in figure 2.2.

8
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Figure 2.2: Three Body Problem [12]

2.2.1 Dimensionless Quantities
It is convenient to utilise dimensionless quantities in the analysis. Throughout the
analysis the following conversion are used:

• distance d1 “ Ld

• velocity s1 “ V s

• time t1 “ T
2π
t.

The primed quantities are dimensional while the unprimed ones are dimensionless.
L, V , T are the transformation parameters and correspond respectively: to the
distance between the center of m1 and m2, to the orbital velocity of m2 and to
the orbital period of the system. By utilizing dimensionless quantities the only
parameter of the system is the mass parameter which is described in equation 2.4.

µ “
m2

m1 ` m2
(2.4)

The mass parameters and transformation parameters uses in the following
chapter as summarised in table 2.1.

System µ L [m] V [km/s2] T [s]
Sun-Earth 3.036 ¨ 10´6 1.496 ¨ 105 29.784 3.147 ¨ 107

Earth-Moon 1.215 ¨ 10´2 3.850 ¨ 105 1.025 2.361 ¨ 106

Table 2.1: Mass parameters and dimensional values [13]
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2.2.2 Inertial and Rotating Reference System
For simplicity, the problem is usually described in a rotating reference system, as
described in the figure 2.3a. The relation between inertial and rotating reference
systems is illustrated in figure 2.3b. Where the capitol letters indicate the inertial
reference system and the lower case letters the rotating system.

(a) Rotating frame [13] (b) Inertial and Rotating frames [13]

Figure 2.3: Rotating frame and comparison with inertial [13]

Assuming the two reference frame coincide at t “ 0, transformation between the
two reference frames can be achieved as in equation 2.5, where At is as in equation
2.6.

¨

˝

X
Y
Z

˛

‚“ At

¨

˝

x
y
z

˛

‚ (2.5)

At “

»

–

cos t ´ sin t 0
sin t cos t 0

0 0 1

fi

fl (2.6)

Also the velocity components can be transformed deriving equation 2.5. Results
are reported in equation 2.7

¨

˝

9X
9Y
9Z

˛

‚“ 9At

¨

˝

x
y
z

˛

‚At

¨

˝

9x
9y
9z

˛

‚ (2.7)

2.2.3 Equations of Motion in Inertial Reference System
The equations of motion in the inertial reference frame can be found in equation
2.8. Ux, Uy, Uz are partial derivatives of the pseudopotential U defined in equation

10
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2.9, where r1 and r2 are the position of the spacecraft relative, respectively, to the
primary and secondary body, and are defined in equation 2.10 and 2.11.

:x “ ´Ux

:y “ ´Uy

:z “ ´Uz

(2.8)

U “ ´
1 ´ µ

r1
´
µ

r2
´

1
2µp1 ´ µq (2.9)

r1 “
a

pX ` µ cos tq2 ` pY ` µ sin tq2 ` Z2 (2.10)

r2 “
a

pX ´ p1 ´ µq cos tq2 ` pY ´ p1 ´ µq sin tq2 ` Z2 (2.11)
The pseoudopotential is a measure of the potential energy of the system and

it is always less than zero. Therefore to avoid dealing with negative numbers it
is common practise to define energy levels utilising the Jacobi integral C as in
equation 2.12.

Cpx, y, z, 9x, 9y, 9zq “ ´p 9x2
` 9y2

` 9z2
q ´ 2U (2.12)

2.2.4 Equations of Motion in Rotating Reference Frame
The equations of motion derived for the inertial reference frame 2.8 can be trans-
formed in the rotating reference system utilising the Euler-Lagrange equation (2.13).
Where L is the lagrangian (i.e the difference between the cinetic and potential
energy). For the inertial system the lagrangian (L) in reported in equation 2.14,
while in the rotating system 2.15 .

d

dt

BL

B 9qi
´

BL

Bqi
“ 0 (2.13)

LpX, Y, Z, 9X, 9Y , 9Z, t “
1
2p 9X2

` 9Y 2
` 9Z2

q ´ UpX, Y, Z, tq (2.14)

Lpx, y, z, 9x, 9y, 9zq “
1
2pp 9x ´ yq

2
` p 9y ` xq

2
` 9z2

q ´ Upx, y, zq (2.15)

In the rotation system the lagrangian (L) is time independent and is obtained
rewriting the kinetic and potential energy of the inertial frame Lagrangian L in
rotating coordinates. For the kinetic energy equation 2.7 is required, while, since
distances are invariant under rotation the pseudopotential maintains the same
formulation, with different expression for r1 and r2, defined in equation 2.16 and
2.17.

r1 “
a

px ` µq2 ` y2 ` z2 (2.16)

11
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r2 “
a

px ´ 1 ` µq2 ` y2 ` z2 (2.17)

The Euler-Lagrange equation can be obtained for the present case as 2.18. After
simplification the equations of motion in the rotating reference frame (in the future
refereed simply as equations of motion) can be found in equation 2.19.

d

dt
p 9x ´ yq “ 9y ` x ´ Ux

d

dt
p 9y ` xq “ ´p 9x ´ yq ´ Uy

d

dt
9z “ ´Uz

(2.18)

:x “ 2 9y ´ Ux

:y “ ´2 9x ´ Uy

:z “ ´Uz

(2.19)

Substituting (2.19) in (2.9) equations 2.20 are obtained:

:x “ 2 9y ´ p1 ´ µq
x ` µ

r3
1

´ µ
x ´ 1 ` µ

r3
2

:y “ ´2 9x ´ p1 ´ µq
y

r3
1

´ µ
y

r3
2

:z “ ´p1 ´ µq
z

r3
1

´ µ
z

r3
2

(2.20)

2.2.5 Libration Points
In the CR3BP it is possible to identify five equilibrium points, known as libration
points o Lagrangian points, where the gravitational forces acting on the third body
balance each other. By definition, in the equilibrium point the velocity components
in equation 2.20 are equal to zeros. The equilibrium point are therefore positioned
in the x-y plane and are obtained by solving equations 2.21.

x ´ p1 ´ µq
x ` µ

r3
1

´ µ
x ´ 1 ` µ

r3
2

“ 0

y ´ p1 ´ µq
y

r3
1

´ µ
y

r3
2

“ 0
(2.21)

By solving the second of the equations 2.21 the 3 collinear points are fond (L1,
L2, L3) and by solving the two equations coupled the saddle points are fond (L4
and L5). Their spatial location can be visualised in figure 2.4. Each equilibrium
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point has a particular energy level. The energy level determines the real of possible
motion of the spacecraft, defined as Hill’s region. Five basic configurations (figure
2.5) for the Hill’s region can be found comparing the spacecraft and the equilibrium
points energy. The energy of the spacecraft is therefore a measure of how far it can
travel and will be important in the trajectory definition.

Figure 2.4: Libration Points [13]

Figure 2.5: Hill’s Region: P represents the spacecraft, the inaccessible region is in
grey [13]

13
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2.2.6 Motion near Collinear Equilibrium Points
Equations of motion can be developed using Legendre polynomials Pn. The
existence of periodic solutions to the nonlinear equation can be deduced using the
linear part of such equations, reported in 2.22, with c2 defined as 2.23 and γ the
normalised distance between the equilibrium point and the secondary body (e.g. γ1
in Sun- Earth system is equal to 1.001090475 10´2 and is the normalised distance
between Earth and L1).

:x ´ 2 9y ´ p1 ´ 2c2qx “ 0
:y ´ 2 9x ` pc2 ´ 1qy “ 0

:z ` c2z “ 0
(2.22)

c2 “
1
γ3

1

„

µ ` p1 ´ µq
γ3

1
p1 ´ γ1q3

ȷ

forL1,

c2 “
1
γ3

2

„

µ ` p1 ´ µq
γ3

2
p1 ´ γ2q3

ȷ

forL2

:z ` c2z “ 0

(2.23)

The eigenvalues of the system are: ˘λ, ˘iωp known as planar frequency, ˘iωv,
known as vertical frequency, reported in 2.24.

λ2
“
c2 ´ 2 `

a

9c2
2 ´ 8c2

2

ω2
p “

2 ´ c2 `
a

9c2
2 ´ 8c2

2
ω2

v “ c2

(2.24)

If the initial conditions are restricted so that only the non-divergent mode is
allowed the linearized equations have solutions of the form reported in 2.25, with κ
as in equation 2.26.

x “ ´Ax cos pωpt ` ϕq

y “ κAx sin pωpt ` ϕq

z “ Az sin pωvt ` ψq

(2.25)

κ “
ω2

p ` 1 ` 2c2

2ωp

(2.26)

The linearized motion will become quasi-periodic if the in-plane and out-of-plane
frequencies are such that their ratio is irrational. A simple example can be found
imposing ωp “ ωv. Different types of periodic or quasi-periodic orbits can be
identified:

14
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• Planar and Vertical Lyapunov orbits: which in limit have frequencies related
to both ωp and ωv. Both are periodic orbits that lie entirely in the plane of
the two primary bodies.

• Halo orbits: 3D periodic orbits (i.e. with an out of plane component not equal
to zero). They appear in two families, northern and southern, symmetric with
respect to the z “ 0 plane.

• Lissajous, quasi-periodic 3D orbits in between Lyapunov and Halo orbits

• Quasi-Halo orbits: quasi-periodic orbits around the halo orbits.

Figure 2.6: Poincarè section (see 2.4) at z “ 0 corresponding to the L2 point of
the Earth-Moon system for C “ 3.142003 [14]

2.3 Invariant Manifolds

2.3.1 Practical Definition
Manifolds are wildly used in different sectors from mechatronics to space trajectory.
In the space sector they are used to compute trajectory connecting bodies with
little to no use of propellant. In a simplistic way they can be defined as "tubes" that
allow low cost connections between region of space, in particular near equilibrium
points. Manifolds are directional and they depart or reach a halo orbit. If they
depart from a halo orbit they are defined as unstable manifolds, while if they reach
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a halo as stable manifolds. An example is presented in figure 2.7.

Figure 2.7: Example of Manifolds: The stable manifold is represented in blue, the
unstable manifold in red and the halo orbit in black [15]

Manifolds could be considered as separators between possible trajectories. A brief
description of the different case will now be presented in case of stable manifolds
using as reference figure 2.7. Trajectories can follow:

• The interior of the manifolds
In such case, if the spacecraft starts from the left side, it can enter the region
of space near the secondary body, or if the spacecraft starts from the right
side (i.e near the secondary body), it can depart from the body.

• The surface of the manifolds
In such case, starting from each direction, the spacecraft reaches the halo
orbit.

• The exterior of the manifolds
In such case the spacecraft is unable to reach the halo which acts as a barrier
impeding the passage from left to right or vice-versa. An example is presented
in figure 2.8.
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Figure 2.8: Example of Trajectory outside of Manifolds [13]

The description is analogue in case of unstable manifolds after taking into
account the opposite directionality.

2.3.2 Mathematical Background
Some basic definitions are now provided, but for more advanced theoretical notions
and rigorous mathematical definitions see [6].

Manifolds can be seen as an extension to higher dimensional systems of sepa-
ratrices in planar systems (i.e. boundary separating two modes of behaviour in a
differential equation), as shown in the previous section. Additionally the can be
seen as a way to extend the stability characterization of linear systems to nonlinear
ones.

Basic Notion of Stability Theory in Linear System

The stability of a generic linear system, as in equation 2.27, can be defined knowing
eigenvalues (λj “ aj ` ibj) and eigenvectors (Epλjq) of the matrix A.

9x “ Ax (2.27)
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Eigenvectors define stable (Es), unstable (Eu) and center (Ec) subspace of the
matrix A. The stable subspace is defined by the eigenvectors whose corresponding
eigenvalue has real part greater than zero (aj ą 0). Contrary the unstable subspace
is defined by the eigenvectors whose corresponding eigenvalue has real part less
than zero (aj ă 0). Finally the center subspace is defined by the eigenvectors whose
corresponding eigenvalue has real part equal to zero (aj “ 0)

Basic Definition of Manifolds [16]

A k-manifold is a subset S Ă Rn that can be locally represented as the graph of
a smooth function defined on a k-dimensional affine subspace of Rn. As in the
calculus of graphs, k manifolds have well defined tangent spaces at each point and
these are independent of how the manifolds are represented (or parametrized) as
graphs.

A k-manifold S Ă Rn is said to be invariant under the flow of a vector field X if
for x P S, Ftpxq P S for small t ą 0, where Ftpxq is the flow of X. One can show
that this is equivalent to the condition that X is tangent to S. One can thus say
that an invariant manifold is a union of (segments of) integral curves of X.

Firstly a definition on invariant manifolds associated with a fixed point xe, corre-
spond to the origin for a linear system, is presented and then extended to invariant
sets, such as period orbits. In a neighborhood of xe, the tangent spaces to the
stable, center, and unstable manifolds are provided by the generalized eigenspaces
Es, Ec, and Eu of the linearization A “ DXpxeq. For simplicity an hyperbolic
point (i.e. point where the linearization has no center subspace) is selected. The
dimension of the stable subspace be denoted k.

Theorem (Local Invariant Manifold Theorem for Hyperbolic Points). Assume
that X is a smooth vector field on Rn and that xe is a hyperbolic equilibrium point.
There is a k- manifold Wspxeq and a nk manifold Wupxeq each containing the point
xe such that the following hold:

i Each of Wspxeq and Wupxeq is locally invariant under X and contains xe.

ii The tangent space to Wspxeq at xe is Es and the tangent space to Wupxeq at
xe is Eu.

iii If x P Wspxeq, then the integral curve with initial condition x tends to xe as
t Ñ 8 and if x P Wupxeq, then the integral curve with initial condition x tends
to xe as t Ñ ´8
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iv The manifolds Wspxeq and Wupxeq are (locally) uniquely; they are determined
by the preceding conditions.

A graphic representation can be seen in figure 2.9. This theorem can be extended
to non hyperbolic points and is called Global Stable Manifold Theorem of Sample.

Figure 2.9: stable and unstable manifolds of a critical point with one eigenvalue
of the linearization [15]

Similar results can be obtained for invariant manifolds of periodic orbits. A
graphic representation is shown in figure 2.10.

Figure 2.10: stable and unstable manifolds of a periodic orbit [15]

2.4 Poincaré Section
The Poincaré section, named after Henri Poincaré, given a N dimensional space, is a
lower-dimensional subspace transversal to the flow of the system. The intersection
between a period orbit in the N dimensional space and the Poincaré section is
defined as Poincaré map. An example is presented in figure 2.11.

19



Theoretical Notions

Poincaré sections will be utilised in the analysis to compute the manifolds
intersection. The position can be arbitrary as long as it respect the definition re-
quirements. The case in analysis in 3-dimensional and therefore the poicare section
will be a plane. For simplicity a Poincaré section with x coordinate coinciding
with Earth position parallel to the y ´ z plane in the Sun-Earth CR3BP is utilised.
Further information and numerical demonstration can be found in [17].

Figure 2.11: Poincare Map [18]

2.5 Ballistic Capture
In a three body problem a body of negligible mass (i.e. spacecraft), called P3, is
ballistically captured at time t1 by a secondary body (P2) if its Kepler energy is
less than zero at t1. And it is temporary ballistically captured (or weak captured)
if its Kepler energy is less than zero for t1 ď t ď t2 and more than zero for t ă t1
and t ą t2, with t1 and t2 finite times and t1 ă t2 [3]. Definition of Kepler energy
is reported in equation 2.28, with µ gravitational parameter relative to a body, v
velocity in km{s relative to inertial reference frame centered in the same body and
r position vector relative to the same body in km.

E “
v2

2 ´
µ

r
(2.28)

2.6 Weak Stability Boundary
The region in which weak capture can occur is defined as weak stability boundary.
In order to define such region trajectories of P3 with the following initial conditions

20



Theoretical Notions

will be considered:
• The initial position of the trajectory is on a radial segment lpθq departing from
P2 and making an angle θ with the line connection primary (P1) and secondary
body (P2), relative to the rotating system. The trajectory is assumed to start
at the periapsis of an osculating ellipse around P2, whose semi-major axis lies
on lpθq and whose eccentricity e is held fixed along lpθq.

• The initial velocity of the trajectory is perpendicular to lpθq, and the Kepler
energy E of P3 relative to P2 is negative. The motion, for fixed values of the
parameters θ and e, and for a choice of direction of the initial velocity vector
such that a prograde osculating ellipse is achieved, depends only on the initial
distance r.

• The motion is said to be n-stable if the infinitesimal mass P3 leaves lpθq,
makes n complete turns about P2, and returns to lpθq at a point with negative
Kepler energy with respect to P2, without making a complete turn around P1
along this trajectory. The motion is otherwise said to be n-unstable. A visual
representation can be found in figure 2.12.

Therefore the motion of P3 is unstable either if P3 performs a full circle about
P2 and returns to lpθq with Kepler energy more then one (i.e P3 performs a ballistic
escape) or if P3 moves away from P2 and performs a full circle about P1.

Figure 2.12: Example of 1-stable and unstable trajectories relative to P2 [3]

The n-stability condition is an open condition, therefore the set of n-stable
points on lpθq is an open subset of lpθq, hence a countable union of open intervals
as in equation 2.29.

Wnpθ, eq “
ď

kě1
pr˚

2k´1, r
˚
2kq (2.29)
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The weak stability boundary of order n, denoted by BWn, can be defined as the
locus of all points r˚pθ, eq along the radial segment lpθq for which there is a change
of stability of the initial trajectory, that is, r˚pθ, eq is one of the endpoints of an
interval pr˚

2k1, r
˚
2kq characterized by the fact that for all r P pr˚

2k1, r
˚
2kq the motion

is n-stable, and there exist r R pr˚
2k1, r2kq, arbitrarily close to either r˚

2k1 or r˚
2k for

which the motion is n-unstable. The set notation of BWn is reporter in equation
2.30.

BWn “ tr˚
pθ, eq| θ P r0,2πs, e P r0,1qu (2.30)
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Chapter 3

Numerical Methods

In this chapter useful and recurring numerical methods utilised in the analysis
are presented, in particular: differential correction, multi-variable Newton method.
Furthermore a brief description of the integration specification of the differential
equations is provided.

3.1 Differential Correction
Differential correction is a numerical method used to modify the initial condition of
a problem in order to obtain, after a numerical integration, a desired final condition.
It is best described as a process of targeting. Lets suppose the equations of motion
of the system are described by a differential equation 3.1, where x represents the
state vector, which include position and velocity coordinates.

9x “ fpxq (3.1)

A generic trajectory originating in x0 propagated for a time t can be written as
ϕpt, t0q : xpt0q Ñ xptq. In other words ϕpt, t0q : xpt0q Ñ xptq denotes the flow map
of the dynamical system, mapping particles from their initial locationat time t0 to
their location at time t. In the future, for brevity, the flow map will be denoted
as ϕpt; x0q. It can be easily verified that the flow map satisfied the equations of
motion 3.1.

dϕpt; x0q

dt
“ fpϕpt; x0qq with ϕpt0,x0q “ x0

If a perturbation to the initial condition is introduced (x0`δx0) the displacement
at a time t1 can be described, utilising the flow map, as in equation 3.2. Which
expanded in in Taylor series yields equation 3.3.

δxpt1q “ ϕpt1,x0 ` δx0q ´ ϕpt1; x0q (3.2)
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δxpt1q “
dϕpt1; x0q

dx0
δx0 ` higher order terms (3.3)

Neglecting higher order terms, the matrix which satisfies equation 3.3 to fist-
order is called state transition matrix (STM, for brevity) and usually abbreviated
as Φpt1, t0q. This matrix gives the linear relationship between initial and final
displacements as in equation 3.4.

δxpt1q “ Φpt1, t0qδx0 (3.4)

The STM can also be seen as the solution to the variational equation 3.5, which
is a linearised differential equation that describes the evolution in time of the δx
variations. Apxptqq is the Jacobian matrix (i.e. matrix of all its first-order partial
derivatives) of the flow field f evaluated along the reference trajectory.

δ 9xptq “ Apxptqqδx (3.5)

Lets imagine a desired final state vector: xd “ xptf q and first guess initial
condition x0 “ xpt0q. The initial condition needs to be modified in order to obtain,
after a numerical integration of the system differential equations, the final condition
desired. Without any adjustment the solution of the integration is, in general,
equal to x1 “ xd ´ δx1. Knowing the δx1 and utilising equation 3.4 a suitable δx0
can be found and the initial condition modified. The process in repeated iteratively
till δx1 is within a desired tolerance.

In order to apply differential correction the state transition matrix needs to be
computed by solving the differential equation 3.6 utilising as initial condition a
identity matrix (In).

d

dt
Φpt, t0q “ AptqΦpt, t0q with Φpt0, t0q “ In (3.6)

3.2 Multi-Variable Newton Method
Generally, trajectory design in multi-body dynamical regimes ultimately requires
obtaining the solution to a two-point boundary value problem (TPBVP). Differ-
ent strategies can be applied for the resolution of such problem. In this study a
shooting algorithm solved with a multi-variable Newton method. There are many
ways to implement a multi-variable shooting scheme, but the one presented is
a straightforward extension of the simple root-finding procedure using Newton’s
method.
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The n free variables of the system are collected in a vector X “
“

X1 . . . Xn

‰

,
which, in the multi-body trajectory design, usually includes state vectors, integra-
tion times and epochs. A number m of constraints are applied to the free variables
and they are collected in a vector FpXq “

“

F1pXq . . . FmpXq
‰

“ 0. A first time
guess vector X0 is also known, but, in general, it does not satisfy the constraints,
therefore: FpX0q ‰ 0.

The constraint function is first expanded about an the initial guess for the free
variable vector as in equation 3.7. Where DFpX0q is a m ˆ n Jacobian matrix
that represents the partial derivatives of the constraints with respect to the free
variables and is evaluated at X0 as in equation 3.8. The system is solved and a
new guess solution is found. The process is repeated iteratively till a X˚ solution
is found for which FpX˚q » 0 with a desired tolerance.

FpXq « FpX0
q ` DFpX0

qpX ´ X0
q (3.7)

DFpX0
q “

BFpX0q

BX0 “

»

—

–

BF1
BX1

. . . BF1
BXn... . . . ...

BFm

BX1
. . . BFm

BXn

fi

ffi

fl

(3.8)

Frequently, multi-body trajectory design problems involves a greater number of
free variables than constraints, that is n ą m. Therefore, between all the possible
solutions to equation 3.7, the minimum norm solution is usually selected, which is
obtained by solving equation 3.9

Xj`1
“ Xj

´ DFpXj
q

T
rDFpXj

q ¨ DFpXj
q

T
s

´1FpXj
q (3.9)

Two different implementations of the multi-variable Newton method will be
applied: single shooting and multiple shooting. Both will be described in the
following chapters utilising practical examples since their formulation in problem-
dependent.

3.3 Differential Equations’ Integration
In order to solve the differential equations utilised in the analysis (e.g. equations
of motion) the DOP853 algorithm was used, which is an explicit Runge-Kutta
method of order 8. Such algorithm is recommended for solving with high precision,
as required in this analysis. Further information can be found in the scipy docu-
mentation [19].
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Chapter 4

Transfer in CR3BP

In this chapter the transfer will be computed in the circular restricted three body
problem starting from a low Earth circular parking orbit and reaching an halo orbit
around L2 for the Earth-Moon system. The transfer will make use of two manifolds:
the exterior of the unstable manifolds around L2 in the Sun-Earth system and the
surface of the stable manifolds around L2 in the Earth-Moon system. The two
manifold will be intersected at a suitable Poincaré section. A reference baseline
trajectory is presented in figure 4.1. An alternative solution utilising L1 Sun-Earth
libration point will also be investigated.

Figure 4.1: Baseline trajectory in Sun-Earth system [13]
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4.1 Halo Orbits
Two different halo orbits are required in the analysis. A generic case is here
presented, that can be applied from both calculations.

4.1.1 Halo Orbits Computation
Firstly a family halo orbits, from which the desired orbits will be selected, need
to be computed starting from the planar Lyapunov orbit. In particular a starting
point and a guess period are needed. As a starting point the Lyapunov orbit’s
x ´ z plane crossing is selected (where the y coordinate is zero), which will have
the following form:

p “ px0, 0, 0, 0, 9y0, 0q
T

A z displacement (δz0) is applied, positive for southern halos and negative for
northern halos. If the displacement is excessively high, convergence is not reached
(in Earth-Moon system a maximum step of 0.1 is admissible, while in the Sun-Earth
system the maximum is equal to 0.001). The initial condition will now have the
following form:

p0 “ px0, 0, δz0, 0, 9y0, 0q
T

A single shooting differential correction method is utilised. As suggested by
the name, a single correction in applied to the starting point in order to obtain a
desired final condition. Which, for halo orbit computation is another x´ z plane
crossing, which occurs after half a period. Therefore a state vector, at half period,
will have the following structure:

pT {2 “ pxd, 0, zd, 0, 9yd, 0q
T

Due to the selected initial condition the free variables in the problem are the non
zero components of the state vector and the period T (i.e. X “ px0, z0, 9y0, T q) .
While, since the objective is to obtain a state vector as pT {2, the target condition
at tf (where the zero crossing occurs) are 9xf “ 0, 9zf “ 0 and yf “ 0. The target
condition can be translated in constraints: FpXq “ p 9xf ´ 9xd, 9zf ´ 9zd, yf ´ ydqT “

p 9xf , 9zf , yf qT “ 0. Constraints and free variables in the system are linked by
the Jacobian Matrix DFpXq as in equation 3.7. DFpXq is composed by the time
derivatives of the state vector at tf and the components of the STM that link free
variable and target conditions:

DFpXq “

»

–

Φ41 Φ43 Φ45 :xf

Φ61 Φ63 Φ65 :zf

Φ21 Φ23 Φ25 9yf

fi

fl
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DFpXq is not a squared matrix, which implies that the number of free variables
is greater than the constraints. In order to solve a squared system, and therefore
reducing the computational cost, one free variable is fixed, either x0 or z0, elimi-
nating the corresponding column in the DFpXq. In the following the method with
z0 fixed is presented, but an analogue method can be obtained in the other case.
The system in equation 4.1 is solved iteratively modifying the initial condition,
recomputing the STM and the final state vector until the norm of the variations of
the final state is below a desired value.

¨

˝

δ 9xf

δ 9zf

δyf

˛

‚“

»

–

Φ41 Φ45 9xf

Φ61 Φ65 9zf

Φ21 Φ25 yf

fi

fl

¨

˝

δx0
δ 9y0
δT

˛

‚ (4.1)

At each iteration step the equations of motion 2.20 and the differential equations,
that yield the STM 3.6, need to be solved with the new initial condition as starting
point. It can be shown that the Jacobian matrix in equation 3.6 for the CR3BP, is
as in equation 4.2, where U99

are the second partial derivatives of the pseudopotential.

A “

»

—

—

—

—

—

—

–

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
Uxx Uxy Uxz 0 2 0
Uyx Uyy Uyz ´2 0 0
Uzx Uzy Uzz 0 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(4.2)

In order to compute a family of halo orbits the process is repeated applying a
δz to the starting point (p0) of the previously computed halo orbit. For a cleared
explanation it is advised to check the block diagram in Appendix A.

4.1.2 Monodromy Matrix
After the correct starting point is obtained the monodromy matrix (M) of the
halo orbit can be computed. Its eigevalues and eigenvectors contain important
information on the halo stability and for the calculation of the associated manifolds.
The monodromy matrix is defined as the STM computed over a period as in
equation 4.3, where T represents a period.

M “ Φpt0, t0 ` T q (4.3)

For halo orbits the monodromy matrix has two eigenvalues (λ3, λ4) equal to one
and the remaining four eigenvalues include one real pair (λ1, λ2) and one complex
pair (λ5, λ6). In summary:

λ1 ą 1, λ2 “
1
λ1
, λ3 “ λ4 “ 1, λ5 “ λ6, |λ5| “ 1
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4.1.3 Halo Orbit Stability
The two pairs of eigenvalues not equal to unity are used to determine the stability of
the halo orbits. Stable halo orbits are less subject to perturbations and diverge more
slowly from the reference trajectory, therefore requiring less propellant for station-
keeping. Two stability indices can be defined from the two pairs of eigenvalues as
in equation 4.4 [20]. If the are both less than 1 the orbit is stable.

νi “
1
2

ˆ

λi `
1
λi

˙

i “ 1{2,5{6 (4.4)

A halo with stability index close to unity should be selected as destination orbit
in order to reduce the station-keeping costs and extended the mission life.
In figure 4.2 a family of northern halo orbits in presented which the stable ones are
in green. While in figure 4.3 the selected halo for the analysis in presented.
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Figure 4.2: Northern Moon L2 Halo Family
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Figure 4.3: Selected Moon L2 Halo
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4.2 Manifolds

Stable and unstable manifolds can be computed from a reference halo orbits and
are associated with real eigenvalues of the monodromy matrix. The eigenvector
associated to the real eigenvalue greater than 1 is used to obtain the unstable man-
ifold, while the eigenvector associated to the real eigenvalue less than 1 the stable
one. The procedure will be described for the construction of a stable manifold, but
a similar procedure can be implemented for the computation of the unstable one
by simply changing the eigenvector utilised.

The starting point for the integration is obtained applying a displacement to the
state vector at the halo at t0 as in equation 4.5, where Y spp0q is the normalized
eigenvector associated with the stable eigenvalue (with module less then unitary).
Suitable values of ε correspond to position displacements of 200 km (1.3 ¨ 10´4

dimensionless) in the Sun-Earth system and 50 km (1.3 ¨ 10´4 dimensionless) in
the Earth-Moon system. Plus and minus sign correspond to the due branches
(from outside to halo and from secondary body to halo). The correspondence is
not univocal, but depends on the orbit dimension.

ps
pp0q “ p0 ˘ εY s

pp0q (4.5)

For the manifold associated with a halo point at t ‰ t0 one can simply use the
state transition matrix to transport the eigenvectors from t0 to t as in equation 4.6.
An example of manifolds in the Earth-Moon system is presented in figure 4.4.

Y s
ppptqq “ Φpt, t0qY s

pp0q (4.6)
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Figure 4.4: Stable Earth-Moon L2 Manifold
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4.3 Manifolds intersection
The stable manifold in the Earth-Moon system (in green in figure 4.1) and the
unstable manifold in the Sun-Earth system (in red in figure 4.1) intersect at a
Poincaré section, which is chosen coinciding with the Earth’s x coordinate for
simplicity.

4.3.1 Coordinate transformation
In order to find an intersection between the manifolds they both need to be written
in Sun-Earth coordinates. Therefore a coordinate transformation for the Earth-
Moon manifold is required. In the transformation the moon inclination is considered
negligible.

The time transformation in given by equation 4.7, where ωS and ωm are the
angular velocity of the two systems and t represents the quantity in the Sun-Earth
system.

t “
ωS

ωM

t (4.7)

The transformation of position is represented in equation 4.8. Cptq is the rotation
matrix as in equation 4.9, aM the average distance between Earth and Moon, aS

the distance between the Sun and the center of gravity of the Earth-Moon system,
θM represent the angle between the x and x axis as in equation 4.10 and θM0 is
the starting angle between the axis and coincides with the phase at arrival in the
analysed trajectory. A schematic representation of the system in analysis, defined
ad bicircular model, can be found in figure 4.5

¨

˝

x
y
z

˛

‚“

¨

˝

1 ´ µS

0
0

˛

‚`
aM

aS

Cptq

¨

˝

x
y
z

˛

‚ (4.8)

Cptq “

»

–

cospθM q ´ sinpθM q 0
sinpθM q cospθM q 0

0 0 1

fi

fl (4.9)

θM “

ˆ

1 ´
ωM

ωM

˙

t ` θM0 (4.10)

Ones the two halo orbits and the respective manifolds are selected the free
variable of the system is the phase (θM0) at Moon arrival. Usually a vast range of
phases produce a suitable solution with similar results in terms of ∆V , but slightly
different transfer times.
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Figure 4.5: Bicircular Model

4.3.2 2D intersection

In the 2D intersection the z coordinate is neglected, therefore intersection between
manifolds can be researched in the y ´ vy plane, with the goal of minimizing ∆V
required. An example of manifolds intersection in y ´ vy plane at Poincaré Section
is presented in figure 4.6.
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Figure 4.6: Intersection Manifolds in y ´ vy plane

However the z coordinate can not always be neglected and therefore in the
majority of cases a 3D intersection in required.
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4.3.3 3D intersection

In 3D intersection the goal is to guarantee the position continuity of the trajectory
rather then minimizing the ∆V required. Therefore the intersection is found in
the y ´ z plane at the Poincaré section and normally two solutions are possible.
If a stable halo orbit is selected the Moon phase does not influence significantly
the manifolds intersection. An example of manifolds intersection in y ´ z plane at
Poincaré Section is presented in figure 4.7.
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4.4 Targeting LEO

In order to obtain a trajectory departing from a low Earth circular orbit the exterior
of the unstable manifold is utilized. Therefore the velocity at Poincaré section is
slightly modified and the trajectory is integrated backward iteratively till a solution
reaching the desired LEO orbit is obtained. The function fmin in the scipy.optimize
package for Python is used in order to complete the local optimization. Such
function utilise a Nelder-Mead simplex algorithm [21] to find the minimum of
function of one or more variables. In this case all three velocity components at
Poincaré section are allowed to vary.

The final trajectory requires one correction in velocity at Poincaré section ∆V2
and in order to obtain a total transfer cost also the ∆V1 for LEO departure can be
calculated.
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4.5 L1 ´ L2 and L2 ´ L2 trajectories

Shane Ross et al [13] solution utilises the exterior of the L2 manifold in the Sun-
Earth system to reach the Poincaré section and the intersection found in the positive
y direction. Such solution will be referred in the future as L2 ´ L2 solution. As
underlined by Han-qing Zhang and Yan-jun Li [22] it is also possible to obtain a
weak stability transfer utilising the exterior of the L1 manifold in the Sun-Earth
system, referred in the future as L1 ´ L2 solution. In this case intersection at
Poincaré section in found for negative y values. An example of such transfer is
shown in figure 4.8.

Figure 4.8: Example of L1 ´ L2 trajectory

Han-qing Zhang and Yan-jun Li [22] suggest that utilising L1 ´ L2 transfer can
reduce travel time and costs compared to the L2 ´ L2 solution. Both solutions will
be investigated in this analysis and results will be confronted in order to verify
such claim.

4.6 Examples of Baseline Trajectories

Two examples of computed L1 ´L2 and L2 ´L2 trajectories are presented in figure
4.9.
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Chapter 5

Transfer in Perturbed J2000

In this chapter the limits of the CR3BP are underlined and a more realistic model is
introduced. In such model planetary ephemerides are included and they are obtained
utilising a python implementation for SPICE toolkit, which will be briefly described.
Finally the trajectory correction implemented to compute a perturbed solution is
illustrated.

5.1 Limits to the CR3BP
The CR3BP model predicts the motion of a body of negligible mass under the
influence of the gravitation field produced by primary and secondary bodies that
orbit in a circular path around the center of gravity of the three mass system. The
motion in the system is considered planar. Such model produces a preliminary
approximation of the reality, but a good number to hypothesis are made and
phenomena are neglected, that could have a significant impact on the solution. In
particular:

• Planetary trajectories are not planar and orbits have eccentricities not equal
to zero. In particular Earth eccentricity is equal to 0.0167, while the Moon
eccentricity is 0.0549. Furthermore the inclination of the Moon, with respect
to the ecliptic, in variable throughout the year, ranging from a minimum of
4˝591 to a maximum of 5˝181 in the positive or negative direction depending
on the position of the line of nodes with respect to the reference system. An
many other phenomena occur that create divergences from the CR3BP

• Each celestial and artificial body’s motion is influenced by every other body
in the system. A notable example of this phenomena if the fact that the
existence of Neptune was hypothesised before its actual discover, due to the
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perturbation it produced on the orbit of Uranus, which could not be explained
otherwise.

• Other perturbing phenomena are present, such as solar pressure, due to photons
pressing on celestial and artificial bodies. Generally, a part from satellites
in which the ratio volume mass is high, this phenomena can be neglected.
The acceleration produced on a body is reported in equation 5.1, where p
is the solar pressure, which decreases as distance from the Sun increases (in
proximity of Earth is equal to 4.5 10´6 N{m2).

asr “ p
S

m
(5.1)

Therefore an analysis relaxing some constraints was conducted and the results
compared with the baseline solution.

5.2 Applied Model
In the analysis conducted only some of the previously introduced effects are
considered, but further components can be easily added in the future. In particular:

• Solar pressure was not considered due to the low contribute compared to the
complexity introduced in the STM matrix calculation needed for trajectory
correction.

• Bodies included in the analysis are: Sun, Earth and Moon. No additional
body was included since their effect is expected to be negligible and would add
additional term in the equation of motion with the risk of higher computational
cost.

For the considered bodies the actual position in space in required, since the
removal of the hypothesis of circular planar orbit. Position are provided by
ephemerides, which are tables that provide trajectory of naturally occurring as-
tronomical objects as well as artificial satellites in terms of position and velocity
over time [23]. Analysis that include ephemerides are inevitably dimensional,
therefore all quantities and equations introduced from this moment onward will be
dimensional, with time in seconds part the J2000 epoch and distance in kilometers.

5.2.1 Equation of motion
The equation of motion are obtained from the N-body problem force equation 2.3
and are reported, in vector notation, in equation 5.2.

a “ ´
Gm@

r3
@i

r@i ´
GmC

r3
Ci

rCi ´
GmK

r3
Ki

rKi (5.2)
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The position of correct bodies is needed and can be obtained from planetary
and lunar ephemerides utilising the SPICE toolkit.

5.3 SPICE Toolkit

SPICE is an observation geometry information system, provided by NAIF (Naviga-
tion and Ancillary Information Facility), acting under the directions of NASA’s
Planetary Science Division, to assist scientists and engineers in planning and
interpreting scientific observations from space-based instruments and planetary
exploration missions. Nowadays it is regularly used in mission design, mission
operations, and observation planning [24].

The SPICE project start in 1982 in responds to a report detailing problems with
and providing recommendations for the archival treatment of data returned from
NASA’s Space Science Missions. The first efforts where made during the Voyager
mission, but the first real use of SPICE technology occurred on the Magellan
mission to Venus; here the Navigation Team produced spacecraft orbit data in the
SPICE SPK format that is still in use today.

Important data set in SPICE, such as navigation and other ancillary information
providing precision observation geometry, are included in kernels. Different types of
kernels exist, but in this analysis the mainly used one is the SPK kernel, containing
space vehicle or target body trajectory (i.e. ephemerides).

Different reference frames can be utilised in SPICE, both defined by users and
already implemented, but calculations are computed in J2000 and if required
translated in other reference frames. Therefore, in order to reduce computational
cost, in it convenient to work in J2000.

5.3.1 J2000 Reference System

The definition of the J2000 reference frame is based on the Earth’s equatorial plane
and on the Ecliptic plane, determined from observations of planetary data. The
X-direction is given by the intersection of equatorial and ecliptic planes, called
vernal equinox. The Z-direction is normal to the mean equator of date at epoch
J2000 TDB, which is approximately Earth’s spin axis orientation at that epoch.
The Y-direction complete the set of three. A schematic representation can be found
in figure 5.1.
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Figure 5.1: J200 reference system [24]

5.3.2 Three body Problems Reference Frames
Reference frames such as the one used in the CR3BP are not present in the SPICE
toolkit, but can be easily added as a Two-Vector Frame. Further information can
be found in SPICE Toolkit Documentation [25].

5.3.3 Used functions
The functions SPICE functions utilised in the analysis are:

• bodvrd: supplies physical data, radius and gravitational parameter values, of
celestial bodies;

• spkezr: return the state vector, position and velocity, of a target body relative
either to an observing body or a specific point, at a specific time for a defined
reference system.

• sxform: returns state transformation matrix between two defined reference
frames;

• str2et: return second past J2000 epoch from a date in a string;

• et2utc: opposite to str2et

5.4 Baseline Trajectory
The CR3BP trajectory needs to be transformed in dimensional quantities and
rotated to J2000 reference system in order to obtain the baseline trajectory. An
example of baseline trajectory is represented in figure 5.2.
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Figure 5.2: Baseline trajectory

5.5 Trajectory Correction
By simply integrating the starting point of the baseline trajectory in the perturbed
equations of motion a deeply different trajectory is found. Therefore slight correc-
tion to the reference trajectory need to be computed in order to obtain convergence
in the ephemerides model. Such correction are computed utilising the multiple
shooting method.

5.5.1 Multiple Shooting Differential Correction
Multiple shooting method can be considered an extension of the single shooting
method presented in 4.1.1, where more than 2 nodes are included in the analysis.

The first step is the nodes’ definition. Since a DOP853 method was utilised for
integration, without constraints on time evaluation, the number of points utilised
in the baseline trajectory definition is limited (less then 200 for each segment) and
more dense in critical part of the trajectory. Therefore they can be utilised as
nodes for the multiple shooting differential correction since they provide a good
compromise between accuracy and computational cost requirements. In the analysis
conducted the following constraints are imposed:

• Nodes can vary in position between baseline and perturbed trajectory, but
not in time. Therefore corresponding nodes in the two trajectories occur at
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the same time and the transfer time between two consecutive nodes does not
vary between baseline and perturbed trajectory.

• Perturbed trajectory is continuous in position always and in velocity expect
for one point, where the ∆V2 occurs in the baseline trajectories. Therefore no
more correction are introduced compared to the CR3BP.

• The two legs of the trajectory are treated separately with additional constraints
imposed at beginning and end. The trajectory from Earth to Poincaré section
will be refereed as Earth leg and the trajectory from Poincaré section to Moon
as Moon leg.

With this consideration in mind free variables and constraint vector for the multi-
variable Newton method can be defined. For both legs the free variables’ vectors
X are 6N vectors composed by the state vector at each node (with N number of
nodes), as in equation 5.3.

X “ rx1 x2 ...xi ..xns
T with xi “ rxi yi zi ui vi wis

T (5.3)
While FpXq constraints vector is comprised by:

• A core vector of dimensions 6pN´1q including constraints of internal continuity
in position and velocity as in equation 5.4. Where the primed components are
the solutions of integration of the perturbed equation of motion 5.2 (e.g. x1

3 is
the state vector resulting from integration of 5.2 from time t2 to t3 with x1

2 as
starting point);

• Up to 6 additional elements can be included as additional constraints, usually
at the start or end of the trajectory.
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(5.4)

The Jacobian matrix DFpXq is defined as in equation 3.8 (where I is an identity
matrix). For the core components of the constrain vector the corresponding
elements of the DFpXq are as in equation 5.5. While components due to additional
constraints may vary depending on the constraint imposed.

DFpXq “

»

—

—

—

–

ϕpt2,x1q ´I 0 0 0 ¨ ¨ ¨ 0
0 ϕpt3,x2q ´I 0 0 ¨ ¨ ¨ 0
... . . . ...
0 ¨ ¨ ¨ 0 0 0 ϕptN ,xN´1q ´I

fi

ffi

ffi

ffi

fl

(5.5)
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5.5.2 Moon Leg
The moon leg is the first leg to be corrected. As additional constraint, the position
at Halo arrival (i.e. at end) is required to be equal to the baseline trajectory one.
Consequently DFpXq is a non square r6pN ´ 1q ` 3 X 6N s matrix and therefore
the minimum norm solution needs to be calculated as in equation 3.9. Convergence
usually occurs in a limited number of iterations. An exaple of comparison between
baseline and perturbed trajectory is presented in figure 5.3.
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Figure 5.3: Comparison baseline and perturbed trajectory for Moon leg

5.5.3 Earth Leg
For the second part convergence is more complex to achieve and multiple steps are
required increasing computational time. Firstly a multiple shooting procedure is
implemented with additional constraints at end position (i.e. at Poincare section),
forcing it to be coincident to the start position of the perturbed Moon trajectory.
Convergence is fast, but the starting point of the perturbed Earth leg is usually
far from the desired one. Therefore additional corrections are required. This
first solution is then utilised as baseline trajectory for a second multiple shooting
algorithm where constraints are: on end position as before and on the radius at
start position, which is required to be equal to desired LEO altitude. This second
requirement is usually not met, but a lower starting orbit in reached. Consequently
a third step is required. In this case a procedure analogue to the one used in the
CR3BP to target the LEO orbit (see section 4.4) is implemented, with starting
vector coinciding with the previously achieved state vector at Poincaré section.
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This procedure allows for good convergence also for the Earth leg, but usually
modifies the transfer time compared to the CR3BP. An example of the convergence
process, including the different stages, is reported in figure 5.4.
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(c) Second step. Achieved radius “ 12721 km
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5.5.4 Example of Perturbed Trajectory
An example of perturbed trajectory, after correction, with used the baseline trajec-
tory in figure 5.2 is represented in figure 5.5
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Chapter 6

Results and Conclusions

In this chapter results are presented, final conclusion are drawn and future devel-
opment possibilities are underlined. A comparison between trajectories that utilise
L1 and L2 Sun-Earth libration points will be conducted as well as a comparison
between the solutions obtained in the CR3BP and the ephemerides model.

6.1 Effect of Moon Phase

Since the objective of the transfer is insertion in a halo orbit, orbit stability is an
essential parameter in order to limit station-keeping costs. Therefore a limited range
of halo orbits can be selected, those with stability index close to one. For such orbits
the Moon phase impacts transfer time but does not produce significant variation in
transfer cost. Such behaviour can be linked to the different manifold configuration:
fixing time of integration, for a stable halo the manifold is confined near the halo
orbit and its section does not increase excessively, while a manifold, departing from
less stable orbits, reaches greater distances and its section dimensions increases
with distance. An example of comparison is show in figure 6.1

For each phase, two intersections are possible, but usually one has a lower cost
compared to the other, due to the higher ∆V at Poincare Section (refereed as
∆V2).

Example of trajectories with different arrival phases are presented in figure 6.2
and the transfer costs and times are summarised in table 6.1 for a L2 ´ L2 transfer
in the CR3BP.
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Figure 6.1: Comparison between Manifolds of stable and unstable Halo

6.2 Comparison Between L2 ´ L2 and L1 ´ L2
Transfers in CR3BP

As previously explained, in order to reach an halo orbit around L2 in Earth-Moon
system, both the L1 and L2 unstable Earth manifolds can be utilised. Both options
produce viable transfers with comparable costs (marginally higher for L1 ´ L2
option in the CR3BP), but the L1´L2 solutions have lower transfer time by 10 days.
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Example of L2 ´ L2 trajectories are presented in figure 6.2 and the transfer costs
and times are summarised in table 6.1, while example of L1 ´ L2 trajectories are
presented in figure 6.3 and the transfer costs and times are summarised in table
6.2.

Solution Phase ∆V1 ∆V2 ∆Vtot Time
km{s km{s km{s [days]

1 ´70˝ 3.195 0.150 3.345 113.411
2 ´70˝ 3.191 0.637 3.828 115.956
1 ´80˝ 3.191 0.149 3.340 114.725
2 ´80˝ 3.195 0.633 3.828 120.899
1 ´100˝ 3.191 0.149 3.340 112.354
2 ´100˝ 3.192 0.633 3.825 114.833
1 ´110˝ 3.195 0.147 3.342 116.409
2 ´110˝ nc* nc nc nc
1 ´120˝ 3.197 0.147 3.344 115.602
2 ´120˝ nc nc nc nc

Table 6.1: Cost And Transfer Times for different phases transfer L2 ´ L2
*nc=not possible to reach desired LEO altitude

Solution Phase ∆V1 ∆V2 ∆Vtot Time
km{s km{s km{s [days]

1 ´30˝ 3.192 0.626 3.818 100.305
2 ´30˝ 3.191 0.238 3.429 105.372
1 ´40˝ 3.194 0.532 3.726 106.114
2 ´40˝ 3.191 0.191 3.382 103.122
1 ´50˝ nc* nc nc nc
2 ´50˝ 3.193 0.265 3.458 106.040
1 ´70˝ nc nc nc nc
2 ´70˝ 3.193 0.231 3.424 101.779

Table 6.2: Cost And Transfer Times for different phases transfer L1 ´ L2
*nc=not possible to reach desired LEO altitude
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Figure 6.2: Transfer L2 ´ L2 comparison between phases
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Figure 6.3: Transfer L1 ´ L2 comparison between phases

6.3 Effects of Perturbations

The introduction of planetary and lunar ephemerides produces a deviation from
the ideal solution obtained in the CR3BP, but the two trajectories are not that
dissimilar graphically (in figure 6.4 a comparison between baseline trajectory,
obtained with the CR3BP, and the perturbed trajectory in the ephemerides correct
inertial Earth Moon system is presented).
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Figure 6.4: Comparison between baseline trajectory and the perturbed trajectory
in the GEM

This is especially true for the transfer from Poincaré section to Moon Halo,
therefore no high cost maneuver is required for halo insertion. However a slight
variation in the transfer cost and time occurs. Part of transfer cost variation can
be traced back to the correction due to Moon’s inclination (not considered in the
CR3BP). Furthermore the variation of the perturbing bodies position throughout
the year causes differences in the transfer cost depending on the starting date.
While flexibility in departure time from LEO is an essential requirement for conver-
gence with the maximum admissible variation set by the user, producing solutions
with a difference is of at least a couple of hours from the baseline.

Example of L2 ´ L2 and L1 ´ L2 trajectories are presented respectively in figure
6.5, 6.6 and 6.7, 6.8 , while the transfer costs and times are summarised respectively
in table 6.3 and 6.4, utilising data considering possible arrival dates in 2024 and a
phase of ´70˝ for both trajectory.

Similar results can be found for both L2 ´ L2 and L1 ´ L2 trajectories, but in
the L2 ´ L2 the difference in ∆V between the CR3BP and the perturbed trajectory
is greater. In the L1 ´ L2 trajectories the ∆Vtot is within a 200 m{s of difference
from the CR3BP results and in some cases also the mission costs decreases with
the introduction of perturbation as well as travel time, dropping below 100 day at
times. While in the L2 ´ L2 the difference between the CR3BP trajectory and the
perturbed one can reach up to 300 m{s and, with one exception for the considered
case, while travel time increases of up to 21 days. However travel time and cost
can be slightly influenced by the flexibility allowed in the LEO orbit altitude.
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Moon Arrival rLEO ∆V1 ∆V2 ∆Vtot Time ∆t
km km{s km{s km{s [days] [hours]

CR3BP 6571.051 3.195 0.150 3.345 113.4119 0
19/01/24 6571.049 3.210 0.300 3.510 113.816 9.710
18/02/24 6571.105 3.190 0.4006 3.590 114.178 18.407
18/03/24 6571.123 3.210 0.390 3.600 113.584 4.133
17/04/24 6570.971 3.200 0.240 3.440 114.373 23.079
17/05/24 6570.774 3.240 0.210 3.450 120.752 176.183
16/06/24 6571.196 3.190 0.220 3.410 122.833 226.113
15/07/24 6570.978 3.200 0.260 3.460 113.447 0.847
14/08/24 6570.911 3.190 0.330 3.520 113.168 -5.833
12/09/24 6571.001 3.210 0.360 3.570 115.330 46.048
12/10/24 6571.033 3.220 0.410 3.630 114.908 35.928
10/11/24 6571.021 3.200 0.350 3.550 114.752 32.164
10/12/24 6571.057 3.220 0.330 3.550 114.474 25.5070

Table 6.3: Cost And Transfer Times for different launch dates transfer L2 ´ L2

Moon Arrival rLEO ∆V1 ∆V2 ∆Vtot Time ∆t
km km{s km{s km{s [days] [hours]

CR3BP 6570.929 3.193 0.231 3.424 101.779 0
19/01/24 6570.998 3.210 0.190 3.400 96.944 -116.045
18/02/24 6570.952 3.200 0.220 3.420 98.475 -79.306
18/03/24 6570.531 3.190 0.220 3.410 98.349 -82.322
17/04/24 6570.627 3.190 0.230 3.420 97.811 -95.241
17/05/24 6571.092 3.200 0.280 3.480 96.778 -120.027
16/06/24 6571.079 3.200 0.330 3.530 105.160 81.149
15/07/24 6571.044 3.220 0.360 3.580 102.016 5.680
14/08/24 6570.542 3.240 0.360 3.600 104.518 65.739
12/09/24 6571.565 3.200 0.320 3.520 110.947 220.024
12/10/24 6944.166 3.110 0.280 3.390 100.742 -24.882
10/11/24 7064.008 3.080 0.230 3.310 100.367 -33.896
10/12/24 6571.037 3.200 0.200 3.400 99.729 -49.198

Table 6.4: Cost And Transfer Times for different phases transfer L1 ´ L2
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Figure 6.5: Transfer L2 ´ L2 comparison between arrival dates, Part 1
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Figure 6.6: Transfer L2 ´ L2 comparison between arrival dates, Part 2

55



Results and Conclusions

−1.2 −1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4

x ×106

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2
y

×106 With ∆V1=3.21 km/s and∆V2=0.19 km/s
Trajectory from Earth to halo with departing date: 2023 OCT 14 19:37:37

(a) Arrival at halo: 2024 JAN 19 18:17:00

−600000 −400000 −200000 0 200000 400000 600000

x

−1.2

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

y

×106 With ∆V1=3.2 km/s and∆V2=0.22 km/s
Trajectory from Earth to halo with departing date: 2023 NOV 11 19:26:26

(b) Arrival at halo: 2024 FEB 18 06:50:10

0 200000 400000 600000

x

−1.2

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

y

×106 With ∆V1=3.19 km/s and∆V2=0.22 km/s
Trajectory from Earth to halo with departing date: 2023 DEC 11 13:10:51

(c) Arrival at halo: 2024 MAR 18 21:33:36

−0.2 0.0 0.2 0.4 0.6 0.8 1.0

x ×106

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

y

×106 With ∆V1=3.19 km/s and∆V2=0.23 km/s
Trajectory from Earth to halo with departing date: 2024 JAN 10 18:39:00

(d) Arrival at halo: 2024 APR 17 14:06:37

−0.25 0.00 0.25 0.50 0.75 1.00 1.25

x ×106

−400000

−200000

0

200000

400000

y

With ∆V1=3.2 km/s and∆V2=0.28 km/s
Trajectory from Earth to halo with departing date: 2024 FEB 10 13:05:10

(e) Arrival at halo: 2024 MAY 17 07:45:37

−0.50 −0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50

x ×106

−100000

0

100000

200000

300000

400000

500000

600000

y

With ∆V1=3.2 km/s and∆V2=0.33 km/s
Trajectory from Earth to halo with departing date: 2024 MAR 02 21:36:06

(f) Arrival at halo: 2024 JUN 16 01:27:08

−0.50 −0.25 0.00 0.25 0.50 0.75 1.00 1.25

x ×106

−200000

0

200000

400000

600000

800000

y

With ∆V1=3.22 km/s and∆V2=0.36 km/s
Trajectory from Earth to halo with departing date: 2024 APR 04 17:42:55

(g) Arrival at halo: 2024 JUL 15 18:05:49

−400000 −200000 0 200000 400000 600000 800000

x

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

y

×106 With ∆V1=3.24 km/s and∆V2=0.36 km/s
Trajectory from Earth to halo with departing date: 2024 MAY 01 20:32:27

(h) Arrival at halo: 2024 AUG 14 08:58:52

Figure 6.7: Transfer L1 ´ L2 comparison between arrival dates, Part 1
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Figure 6.8: Transfer L1 ´ L2 comparison between arrival dates, Part 2

6.4 Conclusive Remarks

It has been shown that both trajectories can reduce the transfer cost if compared
to the traditional Hohmann transfer. Between L2 ´ L2 and L1 ´ L2 trajectories
the second option is more convenient since the transfer time and cost is lower, but
some exceptions are present. For example, if an arrival at halo orbit in July is
required, then a L2 ´ L2 transfer has a lower cost but maintains a higher travel
time. Anyhow, due to the high degree of non linearity in the problem, it is always
advisable to test both strategies and it is difficult to make any prevision.

Additionally, the CR3BP models the reality with a good degree of approximation
and with the correct margins the ∆V and travel time estimated can be utilised in
the preliminary design stages, drastically reducing the computation time required.
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6.5 Future Work
This tool provides a preliminary estimate of the transfer cost, with a relatively
short computation time. Further refinements can be applied both in the form
of better trajectory optimization and of additional constraints, especially in the
perturbed trajectory calculation. In particular :

• A fixed time multiple shooting method was implemented. Therefore corre-
sponding nodes in the CR3BP and the ephemerides model may have different
position but their time does not vary as well as the transfer time between two
consecutive nodes. Allowing for greater flexibility may lead to better solutions
or faster convergence.

• Only Earth, Moon and Sun were included as perturbing bodies and no effect
of the solar pressure was included. Therefore adding other celestial bodies’
contributes and the effect of solar pressure may vary the final trajectory, even
though no major variation is expected.

• Only the departing point’s altitude is imposed and ∆V is calculated considering
a circular parking orbit. Imposing additional constraints could limit the number
of available dates or increase the transfer cost, but would allow more control
by the user on departure conditions.

• More refined intersection methods for manifolds intersection can be imple-
mented, increasing computational time, but obtaining lower cost transfers, at
least in the CR3BP. An example can be found in the Ph.D. dissertation by
Elisabet Canalias Vila [26]
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Appendix A

Halo Computation

Start

Starting Point p0 “ px0, 0, 0, 0, 9y0, 0qT

Guess period T Ñ tf “ T {2
Halo number n out of total required N

Add δz0 Ñ

p0 “ px0, 0, δz0, 0, 9y0, 0qT

Compute State vector (pf ) at tf
(integration trajectory between t0 and tf with starting vector p0)

∥pδ 9xf , δ 9zf , δyf qT ∥ ă tol

is n ă N
Compute STM Φpt0, tf q

Compute acceleration components pax, ay, azq

Ñ Construction of DF matrix

Invert system 4.1 to obtain pδx0, δ 9y0, δt{2qT

p0 “ p0 ` pδx0, 0, 0, 0, δ 9y0, 0qT

tf “ tf ` δtf

Stop

yes no

yes

no
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