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ABSTRACT  

Road traffic crashes result in the deaths of approximately 1.3 million people around the world 

each year and leave between 20 and 50 million people with non-fatal injuries. Due to 

insufficient physical protection in the event of a collision, more than half of all road traffic 

deaths are among vulnerable road users (VRU), i.e., pedestrians, cyclists, and motorcyclists.  

The urban road environment poses a high risk to VRU.  However, traffic crashes can be 

reduced by using appropriate safety countermeasures on “hazardous road locations” (HRL) 

where higher collision frequency are observed with respect to the average expected level. It 

is important to highlight that evaluating each sub-category of VRU separately plays a key role 

to find the most effective countermeasures for each specific VRU. 

This study presents the analyses and results about the spatial distribution of traffic collisions 

to identify HRL in Turin from 2006 to 2019 by considering all VRU and related sub-categories 

(pedestrians, cyclists, moped and motorcycle users respectively).  

The Italian National Institute of Statistics (ISTAT) provided the official database of traffic 

collisions . Firstly, the crash data relating to regional (Piedmont), provincial (Turin), and 

municipal (Turin) levels was evaluated by using descriptive statistics. The crash data of Turin 

was then prepared and organized to carry out a detailed analysis. Due to the absence of a 

complete geographic coordinates in the crash database, data was geo-localized firstly and 

then analysed with the help of Geographic Information System (GIS) technologies. 

The distance-based and density-based methods were used for the spatial distribution analyses 

of the traffic collisions. While distance-based methods (Nearest Neighbor Analysis, G and F 

Functions) evaluate distances between events to define areas where traffic crashes are 

clustered, density-based methods (the Kernel Density Estimation) were used to examine the 

crash density to identify HRL. 

The crash database was extracted as six time intervals by dividing it into 2–3-year periods to 

highlight the presence of false-positive and false-negative HRL. All critical road segments and 

intersections which presented 3 out of 6 positive time intervals in the road network were 

identified as HRL. These analyses were carried out for all VRU and the related VRU sub-

categories. 
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The results indicate collisions were concentrated in the main intersections of the city, which 

deal with heavy traffic flows and conflicts between users during the day. It is a clear fact that 

wide cross-sections in the urban road environment cause some difficulties to VRU due to 

significant speed differences with respect to motorized users, the absence of signalized 

junctions and protected pedestrian crossings in some points. It seems that most of hazardous 

road locations (HRL) are for specific sub-categories rather than others. So, safety 

countermeasures should be differentiated based on the specific VRU sub-category to be 

protected. 
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1. INTRODUCTION 

 

A road traffic crash is a collision or incident that lead to injury, fatality, and/or property 

damage only occurring on a public road and involving at least one moving vehicle (Peden et 

al., 2004). Road collisions are one of the leading causes of death in many countries and anyone 

using the roads is at risk of injury or death in the event of a road accident. 

According to World Health Organization (WHO, 2021), road traffic crashes result in the deaths 

of approximately 1.3 million people around the world each year and leave between 20 and 50 

million people with non-fatal injuries. Young people are particularly vulnerable on the world’s 

roads; in fact, road traffic injuries are the leading cause of death for children and young adults 

aged 5-29. Young males under 25 years are more likely to be involved in road traffic crashes 

than females, with 73% of all road traffic deaths occurring among young males in that age. In 

2016, low- and middle-income countries had higher road fatality rates per 100 000 population 

(27.5 and 19.2, respectively) compared to high-income countries (8.3). The African region had 

the highest road traffic fatality rate, at 26.6, while the European region had the lowest rate, 

at 9.3. 

As stated by World Health Organization (WHO, 2021), more than half of all road traffic deaths 

are among vulnerable road users: pedestrians, cyclists, and motorcyclists due to insufficient 

physical protection in the event of a collision with cars, trucks or buses. Globally, pedestrians 

and cyclists represent 26%  of all deaths, with those using motorized two- and three-wheelers 

comprising another 28%. Car occupants make up 29% of all deaths and the remaining 17% are 

unidentified road users. According to EC (European Comission, 2018), between 2001 and 

2010, the number of road fatalities in the EU decreased by 43 percent, and between 2010 and 

2017 by another 20 percent. Nonetheless, 25,300 people still lost their lives on EU roads in 

2017, equivalent to some 70 lives lost per day, and about 135,000 people were seriously 

injured, including a large percentage of pedestrians, cyclists and motorcyclists. 

More than half of the world’s population now live in urban areas — increasingly in 

highly-dense cities (Ritchie and Roser, 2018). In urban areas, nowadays more and more people 

prefer walking or cycling to reach their destination instead of taking public transportation or 

using a car due to traffic problems. This situation makes more people vulnerable due to a high 
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risk of injury in any traffic collision. Specific solutions for the protection of vulnerable road 

users not only ensure greater safety in urban traffic but also increase efficiency of the 

transportation system.  

With the developments in technology in recent years, different types of two-wheeled vehicles 

have changed to mobility. Fuel-powered two-wheelers (motorcycles and mopeds)  are a 

means of transportation that people are accustomed to seeing in urban mobility today, the 

other is electric-powered two-wheelers (electric motorcycles, pedelec, scooters, and 

hoverboards) which play a crucial role in urban vehicle ecosystem nowadays. Electric two-

wheelers are an environmentally more sustainable alternative to conventional powered two-

wheelers. However, the users of both types of vehicles are particularly vulnerable based on 

accident statistics. 

According to EC (European Commission, 2021), as a result of Covid-19 pandemic, cycling has 

experienced a significant rise in popularity for the last two years, and many cities around the 

world (temporarily) reallocated road space to cyclists and pedestrians. This encouraging 

development can have a significant positive impact on air and climate quality but at the same 

time creates new road safety challenges. EU-wide, around 70% of road fatalities in urban areas 

involve vulnerable road users. Therefore, tackling road safety in cities is a crucial area of focus 

for urban mobility planning. 

As stated in Horizon Europe - Work Programme (European Commission Decision, 2021), 

European Commission has allocated a fund for research and innovation actions within the aim 

of a safer urban environment for vulnerable road users. Project results are expected to 

contribute to the following expected outcomes: 

• 50% reduction in serious injuries and fatalities in road crashes by 2030, with a focus on 

measures addressing unprotected vulnerable road users,  

• better prediction of all road users behaviour and the use of new transport modes,  

• new concepts and guidelines for safe inclusion of new types of vulnerable road users, 

i.e.those using new means of transport into the traffic system, 

• new solutions that facilitate inclusion of all vulnerable users in the transport system, 

including people with disabilities, the elderly, and children by providing a safe 

environment for walking and cycling,  
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• a modal shift to active and clean modes of transport, improving the health of road 

users and the quality of urban environments. 

Road traffic crashes are not “accidents” since preventable. The likelihood of traffic collisions 

can be reduced by using appropriate countermeasures such as traffic monitoring and control 

devices, managing exposure to risk through transport policies, modifying the road layout, or 

increasing protection of vehicle occupants. The basis of the most appropriate countermeasure 

is the safety analysis which concerns the identification of hazardous road locations (HRL), or 

hot spots, by using evidence-based measures based on crash data. HRL are specific points on 

the road with higher crash frequency than expected at some threshold level of significance. 

Identifying accident hotspots and appending value-added data to understand the processes 

occurring in these hotspots is important for the appropriate allocation of resources for safety 

improvements (Anderson, 2009). Safety analyses are carried out by using statistical and spatial 

analysis tools in Geographic Information System (GIS). GIS-based techniques are relatively 

simple to use and can convert raw statistical and geographical data into meaningful 

information for spatial analysis, mapping, and identifying any factors contributing to accidents 

(Choudhary et al., 2015). 

This work presents the application of the spatial analysis methods in GIS Software to identify 

hazardous road locations (HRL) in Turin using ISTAT data as a case study. Among all accident, 

the interest is on those where vulnerable road users were involved in. For this purpose, 

accident data in the period 2006-2019 collected from police records by ISTAT was used. 

According to the literature, there are two approaches for the spatial analysis of traffic 

collisions: the link-attribute and the event-based approaches. In the first, spatial events such 

as traffic crashes are not analyzed directly but assigned to geographic features, such as areas 

or segments of the road network. In event-based analyzes, traffic collisions are just points in 

space. In this study, event-based approach is used and this approach consists of distance-

based and density-based methods. While distance-based methods (Nearest Neighbor 

Analysis, G and F functions) evaluate distances between events to define areas where traffic 

crashes are clustered, density-based methods (Kernel Density Estimation) examine the density 

of the point patterns to identify hazardous road locations (HRL). 
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2. SPATIAL ANALYSIS OF ROAD COLLISIONS 

This chapter aims to analyze the historical developments in road safety strategies and spatial 

analysis for road traffic collisions which represent the starting point for any methodological 

study relating to Road Safety. 

2.1.  Road Safety in urban areas 

According to the UN, in 2018, an estimated 55.3 percent of the world’s population lived in 

urban settlements. By 2030, urban areas are projected to house 60 percent of people globally 

and one in every three people will live in cities with at least half a million inhabitants (United 

Nations, The World’s Cities, 2018). The rapid increase in population and motorization will 

cause a close interaction between vulnerable and motorized road users. As a result, the safety 

of vulnerable road users will be a more prominent issue in the coming years.  

In order to understand the development of road safety research, it is important to know how 

the scientific view has changed during the short history of systematic road safety research. It 

consists of four phases of scientific paradigms (Loo and Anderson, 2015): 

Paradigm I (1900-1925/35) : Control of the automobiles was seen as the problem. There was 

limited research but more of a description of what was happening. This phase coincided with 

the rise of the automobiles from the beginning of the twentieth century to 1935. 

Paradigm II (1925/35-1965/70) : Control of traffic situations was seen to be the problem. The 

countermeasures and the research were centered on the classical three “Es” approach of 

engineering, education, and enforcement. This is when systematic road safety research was 

born and when a number of new disciplines came into road safety research.  

Paradigm III (1965/70-1980/85) : Management of the traffic system was seen to be a problem. 

In this systems approach, mathematical models for the description and prediction of traffic 

collisions were developed.  

Paradigm IV (1980/85-present) : Management of the transport system as a whole was seen as 

the problem. The scope is widened from just focusing on the road itself. This is the current 

trend of road safety thinking. 
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In industrialised countries, road infrastructure and its environment have been gradually 

developed to meet the needs of growing traffic and mobility. Their present state reflects the 

conflicts and compromises between the different transport modes -- particularly between the 

vulnerable road users and motorised traffic -- the traffic regulations, and the beliefs and 

doctrines of the engineers responsible for road design and traffic management, particularly 

with regard to road users’ duties and behaviour (OECD, 1998). Anyone using the roads is at 

risk of injury or death in the event of a road accident. Some people are more at risk than others 

and are commonly referred to as Vulnerable Road Users (VRU). The term has been defined in 

different ways: 

• World Health Organisation in 2013 considered VRUs to be “pedestrians, cyclists, and 

motorcyclists” 

• US DOT’s National Strategy on Highway Safety has a more complex definition: “road 

users who are most at risk for serious injury or fatality when they are involved in a 

motor-vehicle-related collision. These include pedestrians of all ages, types and 

abilities, particularly older pedestrians and people with disabilities. VRU‘s also include 

bicyclists and motorcyclists. Older drivers may also be considered to fit into this same 

user group” 

• European Union’s ITS Directive refers to “non-motorised road users, such as 

pedestrians and cyclists as well as motor-cyclists and persons with disabilities or 

reduced mobility and orientation” 

According to Organisation for Economic Co-operation and Development (OECD, 1998), there 

have been developments regarding VRU in the 1960s and 1970s. Some new residential areas 

were built by architects and planners on the principle of complete segregation of pedestrians 

and motorised vehicles, first in Sweden (Scaft guidelines), then in some British new towns. 

In the 1980s, the idea of comprehensive networks for pedestrians and cyclists started to make 

way in some countries, thus acknowledging walking and cycling as full-fledged means of 

transport. Cycle tracks or cycle lanes were introduced, with various degrees of success or 

failure from a safety viewpoint. In a number of cities, pedestrian footpaths were organised to 

provide continuing routes and were often widened and resurfaced. Pedestrianised streets in 

https://rno-its.piarc.org/en/acronyms#ITS
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city centres became better integrated into overall schemes aimed at providing better mobility 

for all with less private car traffic. 

The concepts of mixed traffic and traffic calming spread and extended from the previous 

schemes in residential areas to the treatment of urban thoroughfares with heavy traffic. The 

idea that fast motorised traffic may have to yield priority to local traffic and vulnerable road 

users through some parts of urban areas generating a lot of activity onto the street finally 

became acceptable. Such form of transport planning usually implies operating modal transfers 

from motorised road transport to rail and non-motorised means. VRU should thus get better 

attention. 

Today the growing view is that road safety is a system-wide and shared multi-sectoral 

responsibility which is becoming increasingly ambitious in terms of its results focus. Sustaining 

the level of ambition now evident in high-income countries requires a road safety 

management system based on effective institutional management functions that can deliver 

evidence-based interventions to achieve desired results.  

The road safety management system as depicted in Figure 2.1 can be viewed as three inter-

related elements: institutional management functions, interventions, and results. Managing 

for road safety results requires an integrated and accountable response to these system 

elements (Bliss and Breen ,2009). 

 

 

 

 

 

 

 

 

 

Figure 2.1 : Road Safety Management System (Bliss and Breen, 2000; Wegman, 2001; Koornstra 

et al, 2002; Bliss, 2004) 
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2.2.  Spatial Autocorrelation Analysis 

Spatial analysis of traffic crashes is a fundamental study in road safety because it helps to 

understand how crashes are affected by locations, how the parameters vary spatially, and 

which areas need priority for countermeasures. It is the most preferred technique for road 

safety analysis in recent years since it provides a depth analysis instead of a simple visual 

evaluation. 

Collision events are records in a 2D space, which can be expressed in geographic terms 

(longitude, latitude), in cartographic (East, North) coordinates, or in the local plane (X, Y), 

(Bassani et al., 2020). GIS stores information as thematic layers, all linked by their geographic 

coordinates. Unlike standard databases, GIS allows users to compare and manipulate data 

based on the spatial relationships. In this way, it is possible to manage the large amount of 

crash data which can be visualized with high resolution on the maps thanks to GIS software.  

GIS tools provide to identify the locations where accidents are clustered, or where the 

consequences of such events reach the critical threshold, while also evaluating the attributes 

of the data associated with each element.  

Traffic accidents are random events that vary in time and space. The number of accidents 

varies from month to month and year to year in the road network. Although there may be a 

spatial dependence between the accidents, the distribution of traffic collisions is not uniform 

in space.  To evaluate this spatial dependence between events, the so-called distance-based 

methods are used, which define the presence of spatial aggregations of accidents in the road 

network. 

Moreover, it is also possible to evaluate accidents in restricted areas as cluster events, to 

understand which points on the network have a higher incidental density. These points can be 

defined as hazardous road locations (HRL) due to the higher expected number of accidents 

than other locations. Therefore, in addition to the distance-based methods, the density-based 

approach is used to assess high densities in certain areas for identifying hazardous road 

locations. In this way, it is possible to evaluate whether high densities in certain areas are the 

consequence of specific characteristic of the road environment. Generally, when increasing 

the level of granularity of the analysis, the correlation between output areas will become 

weaker. This introduces another issue in road safety analysis, that is the spatial 
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autocorrelation (Loo and Anderson, 2015). Spatial autocorrelation refers to the extent to 

which the value of a variable at a given location influences values of that variable at contiguous 

locations (Cliff & Ord, 1973; Goodchild, 1986; Griffith, 1987; Odland, 1988). If positive spatial 

autocorrelation is present, it results in a spatial clustering of similar variable values (Black, 

1991). It means that two traffic collisions occurring close to each other may be caused by the 

same reason. By identifying the reason, it is possible to take precaution to prevent accidents 

(reduction of the frequency of occurrence) or reduce its consequences (reduction of incidental 

severity). 

 Approaches to identify positive spatial autocorrelation can be divided into two major groups 

(Loo and Yao, 2013): 

• link-attribute approach, 

• event-based approach. 

In the first approach, spatial events such as traffic crashes are not analyzed directly but are 

instead assigned to geographic features, such as areas or a road network. Traffic crashes are 

assigned to line and point features, namely roads (links) and junctions (nodes). Links are, in 

turn, divided into shorter segments called basic spatial units (BSUs) for detailed spatial 

analysis. Traffic crash numbers or rates are treated as attribute values of these geographic 

features (Loo and Yao, 2013). Both geometric (such as road width and gradient) and 

nongeometric features (such as traffic volume and presence of road markings) of the BSUs can 

be stored in the relational database of the road network. The link-attribute approach provides 

to analyze traffic collisions by considering them as attributes of the road features. Traffic 

collisions are treated as attributes of these base spatial units; information from different 

databases is integrated: collision, hospital, traffic, land use.  

The link-attribute methodologies allow deriving some spatial statistics that provide 

information on the degree of aggregation of points, showing the areas where concentrations 

are higher than the threshold. The main spatial statistics relating to this approach are the  

Moran’s I and the Getis-Ord General G. Generally, Moran’s I is the most common spatial 

statistics since it is at the global level (Loo and Anderson, 2015).  

On the other hand, in event-based analyzes, collisions are just points in space. The 

link-attribute approaches, as mentioned, involve segmentation of the road network as base 
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space units (BSUs). By counting the crashes within them, collisions become attributes of these 

segments. However, these operations involve a significant computational effort, and entail 

different difficulties: (i) the correct choice of the BSU length, (ii) the impossibility of dividing 

different parts of a road network into segments of equal sized length, (iii) the difficulty with 

the interpretation of data from sections with different length, and (iv) the consequent loss of 

information (Bassani et al., 2020).  

Event-based approaches consist of distance-based and density-based methods. Road 

collisions being dealt with as two-dimensional (2D) point patterns, where the data are only 

locations of a set of point objects. This represents the simplest possible spatial data (Loo and 

Anderson, 2015). While distance-based methods that examine distances between events, 

density-based methods that examine the crude density or overall intensity of a point pattern 

(O’Sullivan and Unwin,2003).  

The most common methodology of the density-based methods is the ”Kernel density 

estimation”. This methodology is a spatial interpolation technique that estimates the density 

of points in the 2D plane with coordinated (φ,λ), (E, N) or (X, Y) for each collision event. By 

cumulating the values, the final density estimation in the related area is obtained. A detailed 

description of the methods is introduced in Section 3.3. 

2.3.  Software tools  

The different methodologies described in the previous paragraphs are applied with the help 

of the QGIS, ArcGIS and R software. QGIS is an open geographic information system (GIS) 

source, released under the GNU General Public License (GPL); it is used for the management 

of the huge amount of data, providing adequate tools for data processing.  

Another well-known software for GIS services is ArcGIS developed and maintained 

by Esri.  ArcGIS is a command line-based GIS system for manipulating data. ArcGIS provides 

great insights using contextual tools to visualize and analyze your data. ArcGIS Desktop 

consists of several integrated applications, including ArcMap, ArcCatalog, ArcToolbox, 

ArcScene, ArcGlobe, and ArcGIS Pro. ArcMap is the application used to view, edit and query 

geospatial data, and create maps. It helps to collaborate and share via maps, apps, 

dashboards, and reports. 

https://en.wikipedia.org/wiki/Esri
https://en.wikipedia.org/wiki/ArcMap
https://en.wikipedia.org/wiki/ArcCatalog
https://en.wikipedia.org/wiki/ArcGIS_Pro
https://en.wikipedia.org/wiki/Map


16 
 

R software is a programming language for statistical analysis that can be used by integrating 

it into QGIS and ArcGIS. Series of algorithms extend its functionality. In this way, it can be used 

for the analysis of geographic data. Thanks to the “Processing R Provider” extension, it is 

possible to use R in QGIS. R uses external libraries (called "packages") that expand its 

functionality. In the present study, it was necessary to install some packages (abind, tensor, 

goftest, proxy, DBI, Rcpp, classInt, rgdal, sp, spatstat) for the point pattern analysis.  

 

(a) 

(b) 

Figure 2.2 : Interfaces of the software’s : (a) ArcGIS, (b) QGIS & “Processing R Provider” 

extension 
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3. MATERIALS AND METHODS  

This chapter concerns the definition of the case study, procedures for the acquisition and 

processing of incidental data, and the methods for spatial analysis of traffic crashes that are 

developed in the case study. While the first part of this chapter is related to the description of 

the case study, the second part provides method for the acquisition and processing of crash 

data relating to the period 2006-2019 for the city of Turin.  

The third part of this chapter illustrates the methods for analyzing the spatial distribution of 

traffic crashes including VRU to identify the HRL in Turin.  As explained in Chapter 2.2., there 

are two methodologies: the first is the Link-Attribute approach that considers accidents as 

attributes of linear elements such as road segments; the second one is the Event-Based 

approach, in which accidents are considered as a set of points in space. In this case study, 

methods of the Event-Based approach which are given below are used: 

• distance-based methods, 

• density-based methods. 

The results of these analyses for the Turin case study are presented in Chapter 4.  

3.1.  The Case Study  

 

3.1.1. Area of Study  

One of the largest metropolitan cities in Italy, Torino has been chosen as a study area. Turin is 

an Italian municipality of 842,612 inhabitants (ISTAT, August 2021), the fourth Italian 

municipality by population and capital of the Piedmont Region. The infrastructural network of 

the central area of the city has as a plan like a chessboard. The roads develop in a straight line 

crossing orthogonally, with an orientation similar to the Roman castrum: a cardo maximus 

(north-south direction) and a decumanus maximus (east-west direction) are crossing at the 

center of the castrum, and parallel to which develop all the other streets inside the castrum. 

The exception is the eastern side, where the structure of the road network is conditioned by 

the presence of the Turin hills. The chessboard layout considerably facilitates orientation. 

Thanks to the large tree-lined avenues (which naturally follow the directions of the other 

streets), it also makes mechanized circulation, both public and private transport, smoother. 
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Fig 3.1 : Map of the city of Turin (Shapefile “Carta di sintesi” from Geportale Regione Piemonte) 

 

3.1.2. Description of the Case Study  

This study deals with the spatial analysis of traffic crashes from 2006 to 2019 that involves 

only VRU (pedestrians, cyclists, and motorcyclists, etc.) in Turin. The main aim of this case 

study is the identification of HRL where the number of accidents is abnormally high in Turin, 

by using Geographic Information Systems (GIS) with the help of QGIS, ArcGIS, and R Software. 

The database which is related to the traffic accidents in Turin was obtained from ISTAT. 

Acquisition and Processing of Incidental Data are introduced in the next section. Specifically, 

distance-based methods are applied to verify the clustering of the spatial pattern of points 

(point pattern); subsequently, we proceeded with the application of the Kernel density 

estimation that allows the identification of the critical points of the road network.  
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3.2.  Acquisition and Processing of Incidental Data 

The final database from the regional collision database provided by ISTAT (Italian National 

Institute of Statistics), which involves only VRU in the period from 2006 to 2019 for the city of 

Turin, was obtained through the following activities:  

1. extraction of traffic collisions only involving VRU, 

2. geolocation of accidents in a GIS system, 

3. database formation for the analysis of the spatial distribution of accidents. 

The results of descriptive analyses are shown in Chapter 4.1. 

3.2.1. Traffic collisions involving Vulnerable Road Users (VRU) 

The incidental database of Italy has been obtained thanks to ISTAT for the years from 2006 to 

2019. According to the definition of a traffic accident adopted from the ISTAT, the database 

contains only accidents that involve at least one injured person. In Italy, traffic accidents that 

only result in material damage (i.e., the property damage only crashes) are not considered 

statistically as an accident.  

In the database, the rows (records) are related to individual incidents while the columns 

(fields) present a series of information like accident location, nature of the accident, vehicles 

involved, users involved, consequences, etc. The following paragraphs describe the various 

operations carried out to obtain the final database, containing only the incidental events of 

interest for the case study.  

In the first place, it was necessary to filter only incidents relating to the Piedmont Region, 

Turin’s Province, and the Municipality of Turin. The Crash database of the Piedmont Region 

was created by filtering province numbers of Piedmont region ( 001 : Turin, 002: Vercelli, 003: 

Novara, 004: Cuneo, 005: Asti, 006: Alessandria, 096: Biella,103: Verbano-Cusio-Ossola) while 

Province and Municipality of Turin database are extracted by filtering the number of 001 for 

the Province of Turin and the number of 272 for the Municipality of Turin. 
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Fig 3.2 : ISTAT identification codes; Province -blue box , Municipality- red box (retrieved from ISTAT                
Database) 

Once the incidents relating to the Municipality of Turin have been selected, it was proceeded 

with the identification of accidents involving only VRU. The different definitions of VRU are 

explained in Section 2.1. In this current study, pedestrians, velocipede 1  , moped and 

motorcycle users are evaluated as VRU. The information relating to those users was filtered 

in the excel file obtained from ISTAT. This process was carried out by using the code numbers 

of those users:  

• “natura_i” is related to the nature of the accident: selected records are a value of 5 in this 

field (5 = Pedestrians involved); 

• “type_vA”, “type_vB” and “type_vC” are related to the type of vehicle involved: all the 

records in which at least a “vulnerable” user in these three fields, a value between 14 and 17 

(14 = Velocipede, 15 = Moped, 16 = Motorcycle alone, 17 = Motorcycle with passenger); 

• "pm1_sex", "pm1_eta", "pf1_sex", "pf1_eta", "pm2_sex", "pm2_eta", "Pf2_sex", "pf2_eta", 

"pm3_sex", "pm3_eta", "pf3_sex", "pf3_eta", "Pm4_sex", "pm4_eta", "pf4_sex" and 

"pf4_eta", referring to any pedestrians involved in the accidents: all the records have selected 

to find the presence of at least one injured / dead pedestrian. 

In the ISTAT database, there is an inconsistency between the nature of the accident 

(5=Pedestrians involved) and pedestrian fields. The number of accidents coming from the 

nature of the accidents does not coincide with the number of accidents relating to the 

pedestrians' fields. This apparent inconsistency comes from the ISTAT database. So, 

 
1 Velocipede is a human-powered land vehicle with one or more wheels, the most common type today is the 
bicycle. 



21 
 

pedestrian fields are used directly to obtain the number of accidents in which pedestrians are 

involved. 

3.2.2. Geolocation of accidents 

The database from 2006 to 2016 was taken from the previous study carried out by Bassani, 

M., Rossetti, L., and Catani, L.  in 2018. In the current study, the database for the period 2017-

2019 was obtained by ISTAT includes only the address information of the accidents. Therefore,  

GPS Visualizer's Address Locator was used to convert addresses of accidents into geographic 

coordinates; this was done through a JavaScript-On-Demand (JSON) code executed by the web 

browser, capable of take advantage of the APIs (Application Programming Interfaces) 

provided by various mapping (Google Maps, Bing Maps, etc.).  

A total of 3916 street addresses for the period 2017-2019 were converted to geographic 

coordinates (Latitude, Longitude). The coordinate information of addresses was obtained by 

entering all address information on website as in Figure 3.4. An excel file containing all 

information was prepared to this scope.  

 

 

Figure 3.3 : Interface of GPS Visualizer’s Address Locator (http://www.gpsvisualizer.com/geocoder/) 
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Figure 3.4 : The example for the usage of GPS Visualizer’s Address Locator  

 

For intersection points, generally, the coordinate information of addresses are directly correct 

but some addresses include building number information to refer to the location of the 

accidents (e.g., Via Pietro Cossa, 68, Torino, Italia). To fix these kinds of addresses and 

eliminate wrong address and coordinate information in the database, each coordinate 

information was checked by Google Maps as indicated in Figure 3.5(a). If there is an apartment 

number in the address, the point in the street where the building is 90 degrees perpendicular 

to the street was chosen (Figure3.5 (b)). At the end of this operation,  181 out of 3,916 

accidents (approximately 5%) were eliminated from the crash database of VRU for the period 

2017-2019. 

The information relating to the final database is given in Section 4.1.1. 
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(a) 

 

(b) 

Figure 3.5: The example for the usage of Google Maps 

 

3.3. Methods of Spatial Distribution Analysis  

This chapter introduces the event-based methods which were used in the case study to 

identify HRL. The event-based approach considers the physical locations of individual crashes 

(events) directly (Yamada and Thill, 2007). When the event-based approach is used to identify 

local clusters, this goal is accomplished by directly measuring the (physical or network) 

distance or the degree of concentration among the traffic crashes (Loo  and  Yao, 2013).  
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Event-Based methods are divided into two groups: 

• Distance-based, 

• Density-based. 

3.3.1. Distance-based Methods  

Among the different distance-based methods, the Nearest Neighbor Analysis, G Function and 

F function are applied in the present study. In this way, it is possible to identify spatial 

aggregations of a set of points that are clustered or uniformly spaced. 

3.3.1.1 Nearest Neighbor Analysis 

Nearest Neighbor analysis is commonly used to analyze point pattern datasets based on 

distance. This analysis leads to the determination of the Nearest Neighbor (NN) index. This 

index provides an indication for the degree of aggregation of the points. 

According to the Nearest Neighbor (NN) method (Clark and Evans, 1954), in a random 

distribution of a set of points on a given area, it is assumed that any point has the same chance 

of occurring on any sub-area as any other point, that any sub-area of specified size has the 

same chance of receiving a point as any other sub-area of that size, and that the placement of 

each point has not been influenced by that of any other point. Thus, randomness as here 

employed is a spatial concept, intimately dependent upon the boundaries of the space chosen 

by the investigator. 

A nearest neighbor analysis compares the characteristics of an observed set of distances 

between pairs of closest points with distances that would be expected if points were randomly 

placed. During the analysis, the distance from each point to its nearest neighbor is calculated. 

This value gets added to a running total of all minimum distances, and once every point has 

been examined, the sum is divided by the number of points. This produces what we call a 

“mean minimum distance” or “nearest neighbor distance” (Loo and Anderson, 2015).   

 The equation is given in the below :   

 

�̅�𝑜𝑏𝑠 =
∑ 𝑑𝑖𝑗

𝑛
𝑖

𝑛
             (3.1) 

where 
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- �̅�= observed mean distance from the nearest point; 

- 𝑑𝑖𝑗 = distance between the point i and its nearest j; 

- n = number of points in the dataset. 

The expected mean distance under the hypothesis of random arrangement of the points for 

the considered area (Complete Spatial Randomness - CSR) can be also calculated through the 

following equation: 

�̅�𝑒𝑥𝑝 =
0,5

√𝑛 𝑎⁄
                                                                   (3.2) 

- �̅�= expected mean distance from the nearest point; 

- n = number of points under study; 

- a = the size of the area under study. 

The ratio of the observed mean distance to the expected mean distance serves as the measure 

of departure from randomness (Clark and Evans, 1954). This ratio is called Nearest Neighbor 

Index. It is the measure of the degree to which the observed distribution departs from random 

expectation with respect to the distance to nearest neighbor.  

It can be evaluated as :  

  difference :  𝑑 = �̅�𝑜𝑏𝑠 − �̅�𝑒𝑥𝑝                                                (3.3) 

                                             ratio: 𝑟 = �̅�𝑜𝑏𝑠 �̅�𝑒𝑥𝑝⁄                                                                (3.4) 

Depending on the value of this index, three different "structures" of points (Point Patterns) 

can be obtained, as shown in Tab. 3.1 and in Fig. 3.6: 

1. Clustered: many points are concentrated close together, and large areas that contain 

very few, if any, points (attraction); 

2. Random: any point is equally likely to occur at any location and the position of any 

point is not affected by the position of any other point; 

3. Uniform (regular/dispersed): every point is as far from all of its neighbors as 

possible(repulsion). 

 

 

 



26 
 

Table 3.1: Possible values of the NN index and difference 

Pattern d r 

Clustered <0 <1 

Random =0 =1 

Uniform >0 >1 

 

 

Fig 3.6 : Diagram showing patterns of dispersion to being clustered (Loo and Anderson, 2015) 

 

This process leads to the identification of a structure of point patterns. However, the 

usefulness of any measure of spacing will be increased if its reliability can be ascertained (Clark 

and Evans, 1954). Therefore, it is better to conduct a statistical test that gives information 

about the level of statistical significance for significant patterns in the data. 

The statistical test begins by identifying the problem in terms of a hypothesis about the 

parameter under study. The hypothesis to be tested is called the null hypothesis (H0). In the 

present study, the null hypothesis predicts that the events exhibit complete spatial 

randomness (CSR) either of the features themselves or of the values associated with those 

features . The z-scores and p-values gives an information about whether you can reject that 

null hypothesis or not. Both z-scores and p-values are associated with the standard normal 

distribution.  

Z-scores are standard deviations, which provide a numerical measure among the observed 

value and the expected value related to the null hypothesis; specifically, the extent of the 

observed value differs from the expected one. The value of the Z-score can be determined 

with the formula given below: 

𝑍 =
�̅�𝑜𝑏𝑠−�̅�𝑒𝑥𝑝

𝑆𝐸
                                                     (3.5) 

where �̅�𝑜𝑏𝑠  is the mean “observed” distance from the nearest point,  �̅�𝑒𝑥𝑝  is the mean 

"expected" distance from the nearest point and, SE is the standard error of the mean distance 
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to the nearest neighbor in a randomly distributed population of the same density as that of 

the observed population. The value of SE can be calculated from the formula given below:  

𝑆𝐸 =
0,26136

√𝑛2

𝑎

                                                                        (3.6) 

where n is the number of observations and a is the surface of the study area. 

The p-value is a probability. For the pattern analysis tools, it is the probability that the 

observed spatial pattern was created by some random process. When the p-value is very 

small, it means it is very unlikely (small probability) that the observed spatial pattern is the 

result of random processes, so the null hypothesis can be rejected. The range of the z-score 

and p value depend on the confidence level. Typical confidence levels are 90, 95, or 99 

percent.  

Table 3.2: The criteria of z-score, p-value, and confidence level (Shi et al., 2019) 

z-score p-value Confidence Level 

<-1.65 or >1.65 < 0.10 90% 

<-1.96 or >1.96 < 0.05 95% 

<-2.58 or >2.58 < 0.01 99% 

 

 

For a level of 95% confidence, the limits of the interval are ± 1.96; by values falling outside of 

this range we have: 

• z-score > 1.96: dispersed pattern, 

• z- score <-1.96: clustered pattern. 

 



28 
 

 

Fig 3.7 : Average nearest neighbor analysis indicates a clustering pattern based on the z-score and p-
value(https://pro.arcgis.com/en/pro-app/2.8/tool-reference/spatial-statistics/what-is-a-z-score-
what-is-a-p-value.htm) 

 

Fig. 3.7 shows the trend of the parameter r that is computed by the ratio between the 

observed and expected NN distance under the hypothesis of random spatial distribution (CSR). 

The yellow band is relative to the confidence interval that declares the randomness in the 

distribution of the point patterns. Thanks to the contribution of the NN index and the 

statistical test, it is possible to identify point patterns that are clustered, random, or uniformly 

spaced as seen in Fig. 3.8. 

 

 

 

 

 

 

 

 

 

 

 

Fig 3.8 : The output of Nearest Neighbor Analysis from ArcGIS Software for the 2015-2016 crash data 

https://pro.arcgis.com/en/pro-app/2.8/tool-reference/spatial-statistics/what-is-a-z-score-what-is-a-p-value.htm
https://pro.arcgis.com/en/pro-app/2.8/tool-reference/spatial-statistics/what-is-a-z-score-what-is-a-p-value.htm
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3.3.1.2 G and F functions 

G and F functions are an extension of the Nearest Neighbor approach. The G function, 

sometimes called the refined nearest neighbor, is the simplest. G function uses the same 

information contained in NN analysis, but instead of summarizing it using the mean, we 

examine the cumulative frequency distribution of the nearest-neighbor distances (O'sullivan 

and Unwin, 2010). Formally, this is defined as 

𝐺𝑑 =  
#(𝑑𝑚𝑖𝑛(𝑠𝑖)<𝑑)

𝑛
                                                           (3.7) 

where the value of G for any particular distance, d, tells us what fraction of all the 

nearest-neighbor distances in the pattern is less than d. An explanatory example of this 

method is shown in Fig. 3.9. 

The information related to Fig 3.9 in above:  

(a) the nearest neighbor for a small point pattern. The nearest neighbor to each event lies 

in the direction of the arrow pointing away from it.  

(b) calculations for the NN distances for the point pattern shown in (a). 

(c) the G function for the point pattern of (a) and (b). 

 

 

Fig 3.9 : Application of NN analysis and G function (O'sullivan and Unwin, 2003) 
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The shortest nearest-neighbor distance is 9.00 between events 4 and 8. Thus, 9.00 is the 

nearest-neighbor distance for two events in the pattern. Since 2 out of 12 is a proportion of 

2/12=0.167, G(d) at distance d=9.00 has the value 0.167. The next nearest-neighbor distance 

is 15.64, for event 2, and three events have nearest neighbors at this distance or less. Since 3 

out of 12 is a proportion of 0.25, the next point plotted in G(d) is 0.25 at d=15.64. As d 

increases, the fraction of all nearest-neighbor distances that are less than d increases. This 

process continues until we have accounted for all 12 events and their nearest-neighbor 

distances. 

The shape of this function tells us a lot about how events are spaced in a point pattern: 

• if events are closely clustered together, G increases rapidly at short distances; 

• if events tend to be evenly spaced, G increases slowly up to the range of distances at 

which most events are spaced, and only then increases rapidly.  

The F function is closely related to G but may reveal other aspects of the pattern. Instead of 

accumulating the fraction of nearest-neighbor distances between events in the pattern, point 

locations anywhere in the study region are selected at random, and the minimum distance 

from these locations to any event in the pattern is determined. The F function is the 

cumulative frequency distribution of shortest distances from random points to nearest events. 

If {p1. . .pi. . .pm} is a set of m randomly selected locations used to determine the F function, 

then formally 

Fd =  
#[𝑑𝑚𝑖𝑛(pi ,S)<d]

m
                                                           (3.8) 

where dmin(pi; S) is the minimum distance from location pi in the randomly selected set to any 

event in the point pattern S (O'sullivan and Unwin, 2010).  
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random point 

 

event location 

 

 

 

Fig 3.10 : Random points (shown as crosses) for the same point pattern as before and the resulting F 
function (O'sullivan and Unwin, 2003) 

 

One advantage of the F-function over the G function is that we can increase the sample size 

of random points to get a smoother cumulative frequency curve. The shape of the F function 

also indicates the type of spatial arrangements of events: 

• if events are closely clustered together, F-function increases slowly at short distances 

but more rapidly at longer distances. This is due to a good portion of the study area 

being empty. Therefore, many random point locations are long distances from the 

nearest event in the pattern. 

• if events tend to be evenly spaced, F-function rises quickly at short distances as many 

random points are placed in proximity of the observed events. In this case, most 

random point locations are relatively close to an event. 

The difference between the F and G functions is that they behave differently for clustered and 

evenly spread patterns. While G shows how close together events in the pattern are, F relates 

to how far events are from arbitrary locations in the study area. So, if events are clustered in 

a corner of the study region, G rises sharply at short distances because many events have a 

very close nearest neighbor. The F function, on the other hand, is likely to rise slowly at first, 

but more rapidly at longer distances, because a good proportion of the study area is empty, 

so that many locations are at quite long distances from the nearest event in the pattern. 

Fig 3.11 is an example to show the relationship between G and F functions. 
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Fig 3.11 : Comparing F and G functions for clustered and evenly distributed data (O'sullivan and 
Unwin, 2003) 

 

In Figure 3.11, the upper example is clearly clustered. As a result, most events (around 80% of 

them) have close near neighbors, so that the G function rises rapidly at short distances up to 

about 0.05. In contrast, the F function rises steadily across a range of distances. The lower 

example is evenly spaced, so that G does not rise at all until the critical spacing of about 0.05, 

after which it rises quickly, reaching almost 100% by a distance of 0.1. The F function again 

rises smoothly in this case. Note that the horizontal scale has been kept the same in these 

graphs. The important difference between the two cases is the relationship between the 

functions, which is reversed (O'sullivan and Unwin, 2003). 

3.3.2. Density-based Methods 

Density-based methods allow assessing high densities in certain areas for identifying HRL. 

Cluster location identification is useful to take action based upon the location of one or more 

closers. In this way, it is possible to explain collisions as being a consequence of shared 

common characteristics in the surrounding area. In the present study, Kernel Density 

Estimation (KDE) is used. 
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3.3.2.1. Kernel Density Estimation(KDE) 

Kernel Density Estimation is an exploratory method to identify the location of clusters as areas 

of high local event densities. The concept is that the event pattern has a density at any location 

in the study region and not just at locations where there is an event. This principle results in 

continuous surfaces of density estimates. Kernel density estimation methods have a variety 

of applications including exploratory point data analysis, point data smoothing and, the 

creation of continuous surfaces from point data. 

KDE estimates the event density by counting the number of events in a region, called "kernel", 

and it is centered at the location where the estimate is to be made. KDE allows to identify the 

location of point clusters (areas with a high density of events). In road safety research, kernel 

density estimation is an interpolation technique, which is a method for generalizing collision 

locations (points) to an entire area (Silverman 1986; Bailey & Gatrell, 1995). In this way, the 

collision point data interprets in the form of a density surface.  

Kernel density estimation involves placing a symmetrical surface over each point and then 

evaluating the distance from the point to a reference location based on a mathematical 

function and then summing the value for all the surfaces for that reference location. This 

procedure is repeated for successive points (Loo and Anderson, 2015). 

 This method therefore allows to place a kernel over each observation, and summing these 

individual kernels gives us the density estimate for the distribution of collision points 

(Fotheringham et al.,  2000). 

The KDE equation is (Fotheringham et al., 2000): 

𝑓(𝑢, 𝑣) =
1

𝑛ℎ2
∑ 𝐾(

𝑑𝑖

ℎ
)𝑛

𝑖=1                                                          (3.9)  

− (u, v) is the density estimate at the location (u, v) , 

− n is the number of observations, 

− h is the bandwidth or kernel size, 

− K is the kernel function, 

− di is the distance between the location (u, v) and the location of the i-th observation. 
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The Crashes within the kernels are weighted based on their Euclidean distance from the kernel 

center, and the resulting density value is assigned to that center (Mohaymany et al., 2013). 

The distance is weighted according to a kernel function which was displayed by K in Equation 

(3.9). KDE functions are used to weigh nearby events more heavily than distant ones in 

estimating the local density. Many different kernel density functions exist. Their symmetric 

functions are centered at zero with an area underneath that equals one. The units along the 

horizontal axis of kernel density functions are multiples of bandwidth. 

The kernel function K (e.g., uniform, triangle, quartic, etc.) as shown in Fig 3.12. defines the 

shape of the humps to be placed over individual observations, and the bandwidth controls 

their widths. In this way, the resulting density  is smooth and is a probability density. The 

continuous surface will be created and, it is possible to obtain the density anywhere in the 

study area, not only at the locations where the observed data have been sampled. Typically, 

we compute f(x,y) at the mesh points of a rectangular grid. The choice of the K function does 

not significantly affect the result (Loo and Anderson, 2015). Quartic (biweight) K Function is 

used in the case study. 

 

 

Fig 3.12 : Different Kernel functions with the same reference 

system(https://upload.wikimedia.org/wikipedia/commons/4/47/Kernels.svg) 
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Another important parameter that should be defined is the bandwidth. Most of the kernel 

density functions are bounded which means that they count only events within a given 

threshold distance from the location where the density estimate is made. This threshold 

distance is called the bandwidth. In other words, the bandwidth is the search radius within 

which intensity values for each point are calculated. Points are weighted, where collisions 

closer to the kernel center contribute a higher value to the cell’s intensity value of the cell 

(Ratcliffe, 1999).  

The kernel method divides the entire study area into predetermined number of cells and 

draws a circular neighborhood around each feature point (the collision) and then a 

mathematical equation is applied that goes from 1 at the position of the feature point to 0 at 

the neighborhood boundary. If the radius is increased, all other things being equal, the kernel 

becomes flatter. This kernel function is applied to each collision point, and individual cell 

density value is the sum of the overlapping kernel values over that cell divided by the area of 

the search radius (Loo and Anderson, 2015). 

Large values of h result in an overlap of surfaces and mask the structure of the data; small 

values produce a surface characterized by the presence of numerous peaks and hard to 

interpret (Gutierrez-Osuna, 2004). Figure 3.13 reports the example of the one-dimensional 

case, which helps to understand the strong dependence of the result on the value of the 

parameter h. 

The choice of kernel is relatively unimportant it is a continuous function in which the weights 

decrease as distance increases; the selection of an appropriate bandwidth is much more 

important (Brunsdon et al., 1996; Fotheringham et al., 1997b; 1999). Okabe et al., (2009), as 

well as Porta et al., (2009), suggest a range of values for h between 100 and 300 m with respect 

to urban areas, based on the average length of arcs in the road network. Therefore, h strongly 

depends on the case study.  

While the K function is chosen as Quartic (biweight), the bandwidth (h) is defined as 150 m in 

the case study. 100 meters of bandwidth is enough to assess the locations on the scale of the 

individual intersections. However, this value does not provide a correct solution in the 

presence of widespread problems in larger areas, where characterized by a high number of 

accidents such as main squares. Therefore, 150 meters of bandwidth is chosen. By selecting 

this value, not only intersections but also squares are identified. 
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Fig 3.13 : Kernel density function (blue); the density functions of every single point(red) are 
cumulated with each other to obtain the estimate of the final density. The amplitude of the 
density functions of every single point (bandwidth) can be narrow (two upper images) or wide 
(two lower images) and greatly affects the density estimate of the final density (Gutierrez-
Osuna, 2004).  

 

Fig 3.14. shows some outputs from QGIS software relating to the motorcycle users for the 

period 2017-2019 as an example.  Fig 3.14 (a) illustrates the map including traffic collisions for 

motorcycle users in the years from 2017 to 2019. The output of the KDE method is given in 

Fig 3.14 (b) as a heat map. After this step, the subdivision of the density band was determined 

based on the information given below by using the map statistics : 

• values lower than the average value (M); 

• M + 2 *standard deviations (SD); 

• M + 4*SD; 

• M + 6*SD; 

• values greater than M + 6*SD. 

The location of traffic collisions where the density values are higher than M + 6*SD is identified 

as hazardous road locations(HRL) as shown in Fig 3.14 (c).  
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 (a) 

 (b) 

 (c) 

Fig 3.14 : (a) Traffic collisions for motorcycle users in the period 2017-2019, (b) The output of 
the KDE method for motorcycle users in the period 2017-2019, (c) Hazardous road locations 
(HRL) for motorcycle users in the period 2017-2019 
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4. RESULTS 

Chapter 4 shows the results of the descriptive statistics and all analyses. Chapter 4.1 gives the 

descriptive statistics results of the crash database for the years from 2006 to 2019. Section 4.2 

shows the results of clustering analysis by using Nearest Neighbor Analysis, G Function, and F 

Function while Section 4.3 indicates the identification of the hazardous road locations(HRL) by 

using the Kernel methodology for all VRU and related sub-categories (pedestrians, cyclists, 

moped and motorcycle users respectively).  

The spatial distribution analysis of the accidents was carried out by using the distance-based 

and density-based methods as explained in Chapter 3.3. All analyzes are applied for VRU of 

given periods below and additionally VRU sub-categories (pedestrians, velocipedes, mopeds, 

and motorcycles).  

In the previous study, analyzes were carried out for 2-3 years periods. The last three years are 

included in the study as 3 years period: 2006 – 2007, 2008 – 2009, 2010 – 2011, 2012 – 2014, 

2015 – 2016, 2017 – 2019. 

4.1. Results of Descriptive Statistics of crash database  
 

The Italian National Institute of Statistics (ISTAT) provided the official database of traffic 

collisions. Firstly, the crash data relating to regional (Piedmont), provincial (Turin), and 

municipal (Turin) levels was evaluated by using descriptive statistics. The crash data of Turin 

was then prepared and organized to carry out a detailed analysis.  

As it can be seen in Figure 4.1, although there are fluctuations in some years, it is a clear that 

there is a decreasing trend in the number of accidents from 2006 to 2019 for all levels. 51.86% 

of the traffic accidents in the Piedmont region belong to the Province of Turin while it is  

28.42% at the municipality level for the period 2006 to 2019. The incidental data relating to 

the three different scales have shown in Fig. 4.1. 
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Figure 4.1 : The number of accidents based on Region, Province, and Municipality, from 2006 to 2019 

 

The trend shown in the graph in Fig. 4.2 is consistent with the trend of a reduction in accidents 

observed at national level in recent years.  

 

 

Figure 4.2 : Road accidents resulting in death or injury, killed and injured, from 2001 to 2020, 
absolute values (ACI-ISTAT, 2020) 
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A descriptive statistic was carried out to analyze the road accidents in the municipality of Turin 

as hourly, daily, and annual distributions. The annual distribution is summarized in Fig. 4.3. As 

reported in previous paragraph, a decreasing trend is observed over the years, with a 

reduction in accidents from 2006 to 2019 of approximately 34.80% (from 4560 to 2973 

accidents). The daily distribution of the number of accidents in the municipality of Turin is 

given in Table 4.1. According to the percentage distribution, it is determined that the highest 

accident rate from 2006 to 2019 is on Thursday, Friday, or Saturday that are indicated with red 

color as in the table below: 

Figure 4.3 : Annual distribution of accidents in Turin, from 2006 to  2019 

Table 4.1 : The daily distribution of the number of accidents as a percentage(%), from 2006 to 2019 / 

Municipality (TURIN) 

Day 
MONDAY 

% 
TUESDAY 

% 
WEDNESDAY 

% 
THURSDAY 

% 
FRIDAY 

% 
SATURDAY 

% 
SUNDAY 

% 
TOTAL 

% 

2006 14.45 13.42 14.14 14.93 15.15 15.37 12.52 100 

2007 14.08 14.19 13.61 16.06 16.20 13.85 12.00 100 

2008 14.35 15.26 13.65 13.95 16.54 15.15 11.11 100 

2009 14.61 13.35 15.34 15.01 15.50 13.89 12.30 100 

2010 14.85 14.32 14.64 14.32 16.33 14.45 11.25 100 

2011 13.34 14.99 14.41 14.97 16.45 14.80 11.05 100 

2012 15.69 14.50 15.40 14.62 15.54 13.88 10.36 100 

2013 14.22 14.16 14.69 15.07 15.60 14.56 11.71 100 

2014 13.88 14.93 15.52 15.83 15.27 13.72 10.84 100 

2015 13.88 13.59 15.52 15.78 14.86 14.57 11.79 100 

2016 14.77 15.57 15.10 14.90 15.40 13.71 10.55 100 

2017 13.47 15.06 14.02 16.75 15.71 13.99 11.00 100 

2018 13.61 14.98 14.25 16.42 15.85 12.91 11.98 100 

2019 15.20 15.71 14.19 15.07 15.30 13.19 11.34 100 

TOTAL 14.32 14.52 14.56 15.23 15.72 14.20 11.46 100 
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Fig. 4.4 shows the daily distribution from 2006 to 2019. The day characterized by the highest 

number of accidents is Friday (7,700) while the least critical is on Sundays (5,614). Regarding 

the hourly distribution, shown in Fig. 4.5, there is a peak in correspondence of the time slot 

18-19, with 3,490 accidents. There are high values, smaller but still significant, in the time slot 

8-9 and 9-10. These values are consistent with critical time slots for mobility regarding entry 

and exit from work and opening/closing activities.  

 

Figure 4.4 : Daily distribution of the number of accidents in Turin from 2006 to 2019 

Figure 4.5 : Hourly distribution of the number of accidents in Turin, from 2006 to 2019 
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From Figure 4.6, it was determined that the highest number of accidents for all years was 

reached at 17-18 or 18-19 time slots. 

Records including at least one of the field codes listed above were identified in the database 

as “VRU”. By filtering this information, a database is obtained by 20,770 records (42.40% of 

total accidents in the municipality of Turin). The breakdown of the number of accidents over 

fourteen years is shown in Tab. 4.2. while their trend is shown in Fig. 4.7. 

 

Figure 4.6 : The maximum number of accidents based on time slot &years in Turin 

Table 4.2 : Total number of accidents and, the number of accidents involving at least one vulnerable 
user for the Municipality of Turin, from 2006 to 2019 
 

Year Accidents_Total Accidents_VRU % VRU  

2006 4,560 1,835 40.24 

2007 4,432 1,817 41.00 

2008 3,979 1,624 40.81 

2009 3,723 1,575 42.30 

2010 3,729 1,539 41.27 

2011 3,575 1,473 41.20 

2012 3,358 1,421 42.32 

2013 3,186 1,358 42.62 

2014 3,228 1,439 44.58 

2015 3,163 1,429 45.18 

2016 3,013 1,344 44.61 

2017 3,081 1,354 43.95 

2018 2,997 1,227 40.94 

2019 2,973 1,335 44.90 

Total 48,997 20,770 42.40 
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Figure 4.7: Total number of accidents and, the number of accidents involving at least one vulnerable 
user for the municipality of Turin, from 2006 to 2019 

 

The decrease in the total number of accidents does not correspond with the increasing trend 

in VRU. The data shows a slight increase in the percentage of the total number of accidents 

that involve at least one vulnerable user compared to the total accidents, from 40.24% in 2006 

to around 44.90% in 2019. Fig. 4.8 and Fig. 4.9 show the number of injured and dead VRU over 

fourteen years. There are some fluctuations in the number of injured and dead VRU but it is 

clear that there is a decrease from 2006 to 2019. 
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Figure 4.8 : The total number of injured VRU from 2006 to 2019 
 
 
 

 
Figure 4.9 : The total number of dead VRU from 2006 to 2019 

The number of accidents based on the road user categories is given in the Table 4.3 below in 

more detail from 2006 to 2019. The database shows that some accidents involve more than 

one VRU. Therefore, there is one additional row in the table to indicate the number of 

accidents between VRU. The total number of accidents involving VRU is computed by 

subtracting the total number of accidents between VRU’s from the total number of accidents 

involving pedestrians, velocipedes, mopeds, and motorcycles. It is seen from the table that 

the number of accidents involving velocipedes increases approximately 50% from 2006 to 

2019 while there is a decreasing trend for other VRU over fourteen years. 
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Table 4.3 : The number of accidents based on road user categories in Turin from 2006 to 2019 

Road User Category 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 Total 

Pedestrians 666 683 607 606 632 538 527 555 620 566 587 551 535 543 8216 

Velocipedes 171 210 168 142 188 203 255 245 268 265 234 257 206 256 3068 

Mopeds 269 239 212 187 131 133 96 71 59 71 47 51 44 56 1666 

Motorcycles 800 766 698 699 632 648 597 544 549 588 520 538 486 525 8590 

Between VRU's 71 81 61 59 44 49 54 57 57 61 44 43 44 45 770 

Total VRU 1835 1817 1624 1575 1539 1473 1421 1358 1439 1429 1344 1354 1227 1335 20770 

Other road users 2725 2615 2355 2148 2190 2102 1937 1828 1789 1734 1669 1727 1770 1638 28227 

Total- All road users 4560 4432 3979 3723 3729 3575 3358 3186 3228 3163 3013 3081 2997 2973  

 

 

Tab. 4.4 shows the distribution of the number of accidents between vulnerable road users in 

Turin from 2006 to 2019. This table indicates the individual distribution of sub-categories of 

vulnerable road users. The total number of accidents is evaluated based on sub-categories, 

but it is noted in the table that there are 770 accidents between vulnerable road users. 

Table 4.4 shows that 78.02% of the accidents involving VRU includes motorcycles and 

pedestrians while velocipedes and mopeds are at 21.98%. Motorcycle users and pedestrians 

have the highest risk of injury on the roads. Fig. 4.10 indicates the the number of injured 

people relating to VRU categories over the fourteen years.  

The data relating to the number of accidents involving VRU is consistent with the the data 

about injured people based on VRU categories. Fig 4.10 highlights that the number of injured 

velocipede users rises to approximately 46.4% from 2006 to 2019 while it decreases for other 

VRU categories. Moreover, the data shows how the road enviroment causes health risk for 

pedestrians and motorcycle users. 

 

Table 4.4 : The distribution of the number of accidents between  vulnerable road users in Turin 

Vulnerable User Category Number of accidents % VRU 
Pedestrians 8216 38.14 
Velocipedes 3068 14.24 
Mopeds 1666 7.74 
Motorcycles 8590 39.88 
Total 21,540  
The number of accidents between VRU’s is 770. 
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Figure 4.10: The distribution of the number of injured people based on VRU categories in Turin over 
fourteen years 

 

Fig. 4.11 shows the data about vulnerable road users who lost their lives due to traffic crashes 

in Turin from 2006 to 2019.  Here again, we can see that traffic accidents cause the death of 

pedestrians and motorcycle users the most among VRU. 

 

Figure 4.11 : The distribution of the number of dead people based on VRU categories in Turin over 
fourteen years 
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4.1.1. Final Database 

All the operations described in the previous paragraphs led to the creation of the crash 

database of VRU containing 16,079 records relating to 11 years 2006-2016 and 3,735 records 

relating to 3 years 2017-2019 for the Municipality of Turin with at least one vulnerable user 

involved; all these accidents have geographic coordinates (latitude, longitude) WGS84. 

The prepared databases have been called “DB 2006_2016_VRU (TO)_revised” and “DB 

2017_2019_VRU (TO)_revised”. 

The following paragraph describes in detail all the operations that led to the processing of the 

final crash database, starting with the regional database provided by ISTAT for the period 

2006-2019. 

This procedure can be summarized as follows: 

1. Regional database - Piedmont, consisting of 172,416 records, 

2. Filtering of only provincial incidents- Turin (To), equal to 89,413 records, 

3. Filtering of only municipal incidents, equal to 48,997 records, 

4. Identification of only the accidents in which the presence is found of at least one 

vulnerable user, equal to 20,770 records*, 

5. selection of only the Geo localizable records, obtaining a database final consisting of 

19,814 records. 

Note: *775 of 16,854 accidents for the period 2006-2016 and 181 of 3,916 accidents for the 

period 2017-2019 are removed from the crash database of VRU. 

 

4.2. Clustering Analysis 

Clustering analyses are performed through distance-based methods which are Nearest 

Neighbor Analysis, G Function, and F Function.  Analyses are carried out to verify the clustering 

of the spatial pattern of points for six study periods relating to all VRU categories. 

4.2.1. Nearest Neighbor Analysis 

The NN index and z-score can be determined using the "Nearest Neighbor Analysis" tool of 

ArcGIS, which allows to determine the Nearest Neighbor statistics of the set of points selected, 
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allowing us to evaluate the level of aggregation of the points (Chapter 3.3.1.1 Nearest 

Neighbor Analysis).  

Fig 4.12 shows the interface of Nearest Neighbor analysis in ArcGIS. Once point layers are 

created by using an excel file relating to the location of accidents, they can be used as input 

features and processing extent can be defined by Turin map. 

NN index can be evaluated as a difference or ratio. In this case, NN index is a ratio (r<1: 

clustered, r=1: random, r>1:uniform).  For a level of 95% confidence, the limits of the interval 

are ± 1.9. By values falling outside of this range; z-score > 1.96 refers to dispersed pattern and  

z- score <-1.96 refers to clustered pattern. Such result is corroborated by the high negative 

value of the Z-score. Table 4.5 shows the results of Nearest Neighbor Analysis for all vulnerable 

road users(VRU). 

 

 

Fig 4.12 : Interface of Nearest Neighbor Analysis in ArcGIS 
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Tab 4.5 : The results of Nearest Neighbor Analysis for all VRU 

All VRU 

Study Periods NN Index Z-score 

2006-2007 0.387 -67.99 

2008-2009 0.419 -60.50 

2010-2011 0.435 -57.32 

2012-2014 0.398 -74.49 

2015-2016 0.437 -56.70 

2017-2019 0.380 -72.54 

 

As can be seen, the NN indexes of the six study periods show very high values less than 1 and 

the respective Z-scores underline the high statistical significance of such results. Therefore, 

we confirm what was previously expected that accidents are concentrated mainly at specific 

points. The reports of Nearest Neighbor analyses are shown in Annex I. 

Table 4.6 shows the results of Nearest Neighbor Analysis for each sub-category of vulnerable 

road users(VRU). It can be seen from the results that all point patters of sub- categories of 

VRU are clustered for the six study periods. 

Tab 4.6: The results of Nearest Neighbor Analysis for sub-categories of VRU 

PEDESTRIANS 

  

VELOCIPEDES 

Study Periods NN Index Z-score Study Periods NN Index Z-score 

2006-2007 0.532 -31.77 2006-2007 0.657 -12.23 

2008-2009 0.503 -32.28 2008-2009 0.748 -8.13 

2010-2011 0.549 -28.79 2010-2011 0.653 -12.55 

2012-2014 0.533 -36.78 2012-2014 0.600 -21.06 

2015-2016 0.579 -27.36 2015-2016 0.680 -13.67 

2017-2019 0.479 -39.62 2017-2019 0.627 -18.77 

  

MOPEDS 

  

MOTORCYCLES 

Study Periods NN Index Z-score Study Periods NN Index Z-score 

2006-2007 0.650 -14.56 2006-2007 0.510 -35.42 

2008-2009 0.670 -11.76 2008-2009 0.472 -35.99 

2010-2011 0.701 -8.93 2010-2011 0.509 -32.29 

2012-2014 0.762 -6.83 2012-2014 0.484 -40.32 

2015-2016 0.799 -4.18 2015-2016 0.539 -29.27 

2017-2019 0.944 -1.28 2017-2019 0.471 -38.51 
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4.2.2. G Function 

The "G function" algorithm in the “R scripts” section of the QGIS was used to determine the G 

function. Figure 4.13 shows the outputs of the G function relating to the six study periods 

considered for all VRU. The x-axis shows the nearest-neighbor distances while the y-axis 

illustrates the cumulative frequency distribution of the nearest-neighbor distances (G-

function). While the black line represents the “observed” G function, the red dotted line 

indicates the theoretical G function.  

The value of G for any particular distance, d, tells us what fraction of all the nearest-neighbor 

distances in the pattern is less than d. The default algorithm sets the maximum NN distance 

equal to 140 m; in correspondence with this value, we have that 100% of the NN distances are 

less than it. Then, the different distances are normalized based on this maximum value. 

It is worth noting that the curve relating the actual structure of the points ("observed" G-

function) seems above the theoretical curve in all six periods analyzed for all VRU. As it can be 

seen from the figures below the G function rapidly increases over short distances. It means 

that collision events are closely clustered together in specific locations. 

It is interesting to highlight that there is a "jump" in the trend of the observed G function 

relating to the years from 2006 to 2011 and 2017 to 2019. This situation is due to the 

geolocation procedure based on the GPS Visualizer's Address Locator adopted for the years 

before 2011 and from 2017 to 2019. In this case, some incidental events relating to these years 

were assigned to the same coordinates, although they may have occurred at different points 

on the road network. It causes a substantial number of NN distances that are equal to zero. 

This situation precisely causes a sudden increase in the G function near the origin of the axes. 

Traffic collisions with the geographic coordinates provided directly by the ISTAT database give 

more precise results. 

The maximum NN distance for the period 2012-2014 and 2017-2019 is 100 m which is less 

than the maximum NN distance among all periods highlighted as 140 m above.  This is basically 

due to three-year periods. These periods have more traffic collisions than others and, 

therefore, the distance between collision events decreases and, at the same time, NN 

distances also decrease. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Fig 4.13 : The results of G function for all VRU (a) 2006-2007,(b) 2008-2009, (c) 2010-2011, 
 (d) 2012-2014, (e)2015-2016, (f) 2017-2019 
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The following figures show the output graphs of the six study periods considered for 

pedestrians. The default algorithm sets the maximum NN distance equal to 200 m; in 

correspondence with this value, we have that 100% of the NN distances are less than it. As it 

can be seen from the figure that the curve of “observed” G function is above the curve relating 

to the  “theoretical” G function. It indicates that collision events are closely clustered together 

in specific locations. 

As in the previous analysis, there is a "jump" in the observed G function relating to the years 

from 2006 to 2011 and 2017 to 2019 due to the geolocation process. It is also obtained that 

when the study period extends, the distance between accidents decreases since the number 

of accidents relating to these periods rises. At the same time, NN distances decrease as shown 

in (d) and (f) in the Figure 4.14. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Fig 4.14 : The results of G function for Pedestrians (a) 2006-2007,(b) 2008-2009, (c) 2010-2011, 
 (d) 2012-2014, (e)2015-2016, (f) 2017-2019 
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Figure 4.15 shows the output graphs of the six study periods considered for velocipede users. 

As it can be seen from the figure that the curve of the “observed” G function is above the 

curve relating to the  “theoretical” G function. It indicates that collision events are closely 

clustered together in specific locations. The maximum NN distance is equal to 500 m; in 

correspondence with this value, we have that 100% of the NN distances are less than it. The 

maximum NN distance is seriously high since the number of accidents is low for this road user 

type. This leads to an increase in the distance between collision events. There are some 

fluctuations in the outputs shown in Fig. 4.15. It is due to the low number of accidents 

concerning velocipede users. So, there is a long-distance among traffic collisions and, it causes 

a fluctuation in the results. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Fig 4.15 : The results of G function for Velocipedes (a) 2006-2007,(b) 2008-2009, (c) 2010-2011, 
 (d) 2012-2014, (e)2015-2016, (f) 2017-2019 
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The following figures show the output graphs of the six study periods considered for moped 

users. The results indicate that collision events are closely clustered together in specific 

locations since the figure that the curve of the “observed” G function is above the curve 

relating to the “theoretical” G function. 

 It indicates that the maximum NN distance is equal to 700 m; in correspondence with this 

value, we have that 100% of the NN distances are less than it. The maximum NN distance is 

seriously high since the number of accidents is low for this road user type. There are some 

fluctuations in the outputs shown in Fig. 4.16., especially for the period 2017-2019. The 

maximum NN distance is also obtained for this period. It means that the distance between 

crashes is relatively high in this study period. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Fig 4.16 : The results of G function for Mopeds (a) 2006-2007,(b) 2008-2009, (c) 2010-2011, 
 (d) 2012-2014, (e)2015-2016, (f) 2017-2019 
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The following figures show the output graphs of the six study periods considered for 

motorcycle users. The default algorithm sets the maximum NN distance equal to 200 m; in 

correspondence with this value, we have that 100% of the NN distances are less than it. As it 

can be seen from the figure that the curve of “observed” G function is above the curve relating 

to the  “theoretical” G function. It indicates that collision events are closely clustered together 

in specific locations. 

As in the previous analysis, there is a "jump" in the observed G function relating to the years 

from 2006 to 2011 and 2017 to 2019 due to the geolocation process. It is also obtained that 

when the study period extends, the distance between accidents decreases since the number 

of accidents relating to these periods rises. At the same time, NN distances decrease as shown 

in (d) and (f) in the Figure 4.14. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Fig 4.17 : The results of G function for Motorcycles (a) 2006-2007,(b) 2008-2009, (c) 2010-2011, 
 (d) 2012-2014, (e)2015-2016, (f) 2017-2019 
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Overall, the outputs of the G function for all VRU and related sub-categories are listed above 

regarding six study periods.  

It is obtained from the results that the curve relating the actual structure of the points 

("observed" G-function) is above the theoretical curve in all six periods analyzed. It means that 

collision events are closely clustered together in specific locations of the road network for all 

VRU and related sub-categories of VRU.  

Moreover, the  G function is an extension of the Nearest Neighbor approach. The results of 

the NN analysis should be consistent with the output of the G functions. In this case study,  

the results of the  G function and Nearest neighbor were compatible with each other. All 

results highlight that collision events are closely clustered together. 

 
 

4.2.3. F Function 

The "F function" algorithm in the “R scripts” section of the QGIS was used to determine the F 

function. Figure 4.18 shows the output graphs of the six study periods considered for all VRU.  

The x-axis shows the nearest-neighbor distances while the y-axis illustrates the cumulative 

frequency distribution of shortest distances from random points to nearest events (F-

function). While the black line represents the “observed” F function, the red dotted line 

indicates the theoretical F function. F-function increases slowly at short distances but more 

rapidly at longer distances. It is noted that the "observed" F-function is below the theoretical 

curve in all six periods analyzed. This result indicates that the collision events are distributed 

in space as a "clustered" structure which is characterized by the presence of different 

aggregations in specific locations. 

The maximum NN distance is 500 m and, there are no significant differences between the 

results of two and three-year periods since point locations anywhere in the study area are 

selected randomly. 

It is also important to highlight that the F function is less sensitive to the geolocation process. 

In this case, there were no significant differences in the results shown in figure 4.18 below, as 

happened in the previous methodology. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Fig 4.18 : The results of F function for all VRU (a) 2006-2007,(b) 2008-2009, (c) 2010-2011, 
 (d) 2012-2014, (e)2015-2016, (f) 2017-2019 

 
 

The following figures show the output graphs of the six study periods considered for 

pedestrians. The "observed" F-function is below the theoretical curve in all six periods 

analyzed. It means that traffic collisions are clustered in specific locations of the road network. 
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The maximum NN distance is 700 m and, there were no significant differences in the results 

shown in figure 4.19 below, as happened in the G function methodology. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Fig 4.19 : The results of F function for Pedestrians (a) 2006-2007,(b) 2008-2009, (c) 2010-2011, 
 (d) 2012-2014, (e)2015-2016, (f) 2017-2019 
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The following figures show the output graphs of the six study periods considered for 

velocipede users. The "observed" F-function is below the theoretical curve in all six periods 

analyzed. It means that traffic collisions are clustered in specific locations of the road network. 

The maximum NN distance is 1400 m and, it can be realized that when the number of accidents 

decreases, the observed distance between collision events rises conversely. Whereas there 

were no differences in the results shown in figure 4.20 below. 
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(a) 

 
(b) 

 
(c) 
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Fig 4.20 : The results of F function for Velocipedes (a) 2006-2007,(b) 2008-2009, (c) 2010-2011, 
(d) 2012-2014, (e)2015-2016, (f) 2017-2019 
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Figure 4.21 shows the output graphs of the six study periods considered for moped users. The 

"observed" F-function is below the theoretical curve in all six periods analyzed. It means that 

traffic collisions are clustered in specific locations of the road network. The maximum NN 

distance is 1500 m and, it can be realized that when the number of accidents decreases, the 

observed distance between collision events rises conversely. Whereas there were no 

differences in the results. The extension in the theoretical curve for the period 2015-2016 and 

2017-2019 is due to the low number of traffic collisions related to moped users. 
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(a) 

 
(b) 
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Fig 4.21 : The results of F function for Mopeds (a) 2006-2007,(b) 2008-2009, (c) 2010-2011, 
 (d) 2012-2014, (e)2015-2016, (f) 2017-2019 
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The following figures show the output graphs of the six study periods considered for 

motorcycle users. The "observed" F-function is below the theoretical curve in all six periods 

analyzed. It means that traffic collisions are clustered in specific locations of the road network. 

The maximum NN distance is 700 m and, there were no significant differences in the results 

shown in figure 4.22 below, as happened in the G function methodology. 
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The following figures show the output graphs of the six study periods considered for motorcycle u.  

 
Fig 4.22 : The results of F function for Motorcycles (a) 2006-2007,(b) 2008-2009, (c) 2010-2011, 
(d) 2012-2014, (e)2015-2016, (f) 2017-2019 
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Overall, the outputs of the F function for all VRU and related sub-categories are listed above 

regarding six study periods. This third distance-based analysis methodology highlights how the 

point structures of the different study periods are characterized by numerous aggregations, a 

result witnessed by the presence of the F functions always observed below the theoretical 

curves. It means that collision events are closely clustered together in specific locations of the 

road network for all VRU and related sub-categories of VRU.  

The F function is likely to rise slowly at first, but more rapidly at longer distances, because a 

good proportion of the study area is empty, so that many locations are at quite long distances 

from the nearest event in the pattern.  

 Unlike the G function, the F function is less sensitive to the accuracy of geolocation; in fact, 

no significant differences were found for short distances as happened in the previous 

methodology. 

Moreover, the outputs of the F functions are consistent with the results of the NN method. 

All results highlight that collision events are closely clustered together for all VRU and related 

sub-categories in six time periods. 

 

4.3. Identification of Hazardous Road locations (HRL) 

This chapter introduces the results of the KDE method and the identification of hazardous 

road locations (HRL). The following steps are carried out until this chapter: 

• The final database was prepared and, the excel files that include the crash records and 

geographic coordinates based on six study periods were created for all VRU and related 

sub-categories (pedestrians, motorcycle users, velocipede users, and moped users) for 

the analyses in GIS software. 

• Then the Nearest Neighbor method was applied to identify spatial aggregations of the 

point patterns that are clustered or uniformly spaced in ArcGIS software. It was 

obtained that the collision events were closely clustered together for all VRU and 

related sub-categories regarding study periods. 

• After the second step, G and F functions which are an extension of the Nearest 

Neighbor approach, are carried out in QGIS software. These functions were used to 

verify the NN method. The outputs of the G and F functions also highlight that the 

point patterns of the collision events were clustered closely. 
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So, after the steps mentioned above, the KDE method was applied to identify hazardous road 

locations (HRL). By applying this method, the heatmaps with the continuous surface of density 

were created. In this way, we were able to detect the high local event densities in such 

locations. The following steps are carried out in this chapter: 

• By selecting 150 meters of the bandwidth(h) and quartic (biweight) Kernel function, 

the KDE method was applied. As a result of this analysis, the heatmaps with density 

bands were created. 

• Each density band was subdivided based on the rule given below with the help of each 

heat map statistics;  

- values lower than the average value (M); 

- M + 2 *standard deviations (SD); 

- M + 4*SD; 

- M + 6*SD; 

- values greater than M + 6*SD. 

• After the step above, the location of traffic collisions where the density values are 

higher than M + 6*SD is identified as the critical point in the road network. 

• The critical points in the road network which presented 3 out of 6 positive study 

periods were identified as hazardous road locations(HRL). 

The following sections show the results of the KDE analysis and hazardous road locations (HRL) 

for six study periods  regarding all VRU and related sub-categories. 

4.3.1. VRU Overall Analysis  

Firstly KDE method was applied for all VRU regarding six study periods. Fig 4.23 shows the 

traffic collisions of all VRU based on the six study periods. Red dots represent each traffic 

collision in the city of Turin. It is clear to see that traffic collisions are more concentrated in 

urban areas than the rural areas. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
 

(e) 

 

 
(f) 

Fig 4.23 : Spatial distributions of VRU collisions : (a) 2006-2007, (b) 2008-2009, (c) 2010-2011, (d) 

2012-2014, (e) 2015-2016, (f) 2017-2019 
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By using the maps including all VRU for six study periods, the KDE method was applied for six 

study periods. As a result of the KDE method, heat maps were created. Heat maps of six study 

periods are shown in Annex 6. Then, the density band of each map was rearranged based on 

the rule given above with the help of each heatmap statistic. After this step, the location of 

traffic collisions where the density values are higher than M + 6*SD is identified as the critical 

point in the road network. 

Critical points for all VRU from 2006 to 2019 are extracted as given below (Fig. 4.24). 

The critical points for all VRU were analyzed related to each study period and, the number of 

accidents was determined for each identified point. Firstly, the results were obtained for the 

period related to years from 2006 to 2007 as shown in Fig 4.25. “Piazza Vittorio Veneto” 

(accident no:5)  was the most critical location for all VRU in the 2006-2007 period. There has 

been a total of 26 collision events in this location.  Another point should be mentioned is 

“Corso Vittorio Emanuele II” that is close and parallel to “Piazza Vittorio Veneto”.  

 

 

Fig 4.24 : All critical points for all VRU, from 2006 to 2019 (red dots represents the traffic collisions) 

 



73 
 

It can be concluded that this area was much more critical than others for all VRU in this period. 

There was a total of 20 traffic collisions for an accident no 3 (intersection in corso Regina 

Margherita and corso Potenza) and 4 (intersection in corso Peschiera and corso Trapani) that 

are located in the same corridor. 

 

 

Fig 4.25 : Critical points for VRU, for the period 2006-2007 (red dots represents the traffic collisions) 

 

The following figure shows the critical points for all VRU in the period 2008-2009. “Piazza 

Rivoli” (accident no:4)  was the most critical location for all VRU in the 2008-2009. There has 

been a total of 15 collision events in this location. It can be also highlighted that accident no 2 

(intersection in corso Regina Margherita and corso Potenza) and 6 (intersection in corso 

Peschiera and corso Trapani) are in the same corridor with Piazza Rivoli. 
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Fig 4.26 : Critical points for VRU, for the period 2008-2009(red dots represents the traffic collisions) 

 

Fig 4.27 shows the critical points for all VRU in the period 2010-2011. It is realized that critical 

points were close to each other in this study period. As in the previous period, “Piazza Rivoli” 

(accident no:7)  was the most critical location for all VRU in 2010-2011. There has been a total 

of 14 collision events in this location. Moreover, accident no 1 (intersection in corso Regina 

Margherita and corso Potenza)  and 2 (intersection in corso Lecce and corso Claudio Appio) 

supported this location with a total of 20 traffic collisions. It can be also seen that the accidents 

in  “Piazza Rivoli” were in the same corridor as the accidents in corso Vittorio Emanuele II 

(accidents no 9, 10, and 11). 
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Fig 4.27 : Critical points for VRU, for the period 2010-2011 (red dots represents the traffic collisions) 

 

The following figure shows the critical points for all VRU in the period 2012-2014. Generally, 

the critical points were detected in the squares of the city for this period. “Piazza Rivoli”, 

“Piazza Lorenzo Bernini” and “Piazza Statuto” are in the same corridor and, a total of 52 

accidents occurred in these squares for the given study period. “Piazza Vittorio Veneto” ( a 

total of 24 collision events for all VRU) was the most critical point based on the number of 

accidents in this study period. The number of accidents is relatively high since this period 

includes three years of crash records. 
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Fig 4.28 : Critical points for VRU, for the period 2012-2014 (red dots represents the traffic collisions) 

 

Figure 4.29 shows the critical points for all VRU in the period 2015-2016. “Piazza Rivoli” was 

the most critical point with a total of 18 collision events in this period. It can be seen from the 

figure that “Piazza Rivoli” is in the same corridor with accidents no 6, 7, and 10 while also 

crossing with “Piazza Lorenzo Bernini” in another direction. 
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Fig 4.29 : Critical points for VRU, for the period 2015-2016 (red dots represents the traffic collisions) 

 

The following figure shows the critical points for all VRU in the period 2017-2019. Generally, 

the critical points were detected in the squares of the city for this period. “Piazza Rivoli”, 

“Piazza Lorenzo Bernini” and “Piazza Statuto” are in the same corridor and, a total of 45 

accidents occurred in these squares for the given study period. Piazza Rivoli is in the same 

corridor with accident no 6 (intersection in corso Vittorio Emanuele II and corso Castelfidardo). 

There was a total of 30 traffic collisions in this corridor. The number of accidents is relatively 

high since this period includes three years of crash records. 
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Fig 4.30 : Critical points for VRU, for the period 2017-2019 (red dots represents the traffic collisions) 

 

After the identification of critical points for all VRU, the critical points in the road network 

which presented 3 out of 6 positive study periods were identified as hazardous road locations 

(HRL) as shown in Figure 4.31. According to the results, seven hazardous road locations (HRL) 

are obtained for all VRU  in the years from 2006 to 2019. It can be seen from the table that 

Piazza Rivoli with a total of 94 traffic collisions from 2006 to 2019 is the most dangerous 

location for all VRU. It can be highlighted that the locations of all hazardous roads are 

interconnected. Piazza Rivoli relates to three different corridors but, the most critical corridor 

is in the line of accident no 1, 2 and, 3 with a total of 231 traffic collisions from 2006 to 2019 

for all VRU. 
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Figure 4.31 : Hazardous Road locations (HRL) for all VRU (red dots represents the traffic collisions) 

 

By comparing the results for six study periods, false positive and false negative locations are 

identified. The false-positive problem arises when a safe site is being wrongly identified as 

hazardous. Conversely, the false-negative problem arises when a high-risk site is not being 

identified as an HRL. So, those locations are determined in the view of such information with 

a help of the heat maps:  

False Positive Locations for all VRU 

• Intersection in strada Settimo, lungo Stura Lazio, 

• Intersection in corso Orbassano, via Gorizia, 

• Corso Siracusa, Corso Sebastopoli. 

False Negative Locations for all VRU 

• Piazza Vittorio Veneto, 

• Piazza Derna, 

• Corso Giulio Cesare, Corso Novara, 

• Intersection in corso Vittorio Emanuele II / corso Duca Degli Abruzzi, Corso Vinzaglio. 
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4.3.2. Pedestrian Analysis  

By using the maps including traffic collisions relating to pedestrians for six study periods, the 

KDE method was applied for six study periods. As a result of the KDE method, heat maps were 

created. Heat maps of six study periods are shown in Annex 7. Then, the density band of each 

map was rearranged based on the rule given in the beginning of the Chapter 4.3 with the help 

of each heatmap statistic. After this step, the location of traffic collisions where the density 

values are higher than M + 6*SD is identified as the critical point in the road network. 

All critical points relating to pedestrians are extracted as given below. 

The critical points for pedestrians were analyzed related to each study period and, the number 

of accidents was determined for each identified point. Firstly, the results were obtained for 

the period related to years from 2006 to 2007 as shown in Fig 4.33. The intersection in corso 

Palermo and corso Novara (accident no 1) was the most critical location for pedestrians in the 

2006-2007 period. There has been a total of 7 collision events in this location.  Another point 

that should be mentioned is the intersection in via Bologna and corso Novara which is in the 

same corridor with accident no 1. 

 

 

Fig 4.32 : All critical points for pedestrians, from 2006 to 2019 (red dots represents the traffic collisions) 
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Fig. 4.34 shows the critical points for pedestrians in the period 2008-2009. “Piazza Rivoli” 

(accident no:6) and “Piazza Sabotino” (accident no:7) were the most critical locations for 

pedestrians in the 2008-2009 although they are not in the same corridor. 

Fig 4.35 shows the critical points for pedestrians in the period 2010-2011. It is realized that 

critical points were far from each other in this study period. As in the previous period, “Piazza 

Rivoli” (accident no:4) was the most critical location for pedestrians in 2010-2011. There has 

been a total of 13 collision events in this location. Moreover, accidents no 1 and 2 related to 

“corso Giulio Cesare” are in the same corridor with a total of 13 traffic collisions. 

Fig 4.36 shows the critical points for pedestrians in the period 2012-2014. Generally, the 

critical points were detected in the squares of the city for this period. “Piazza Baldissera 

Antonio Generale”, “Piazza Della Republica” and “Piazza Vittorio Veneto” were the critical 

locations for the pedestrians based on the number of accidents in this study period. The 

number of accidents is relatively high since this period includes three years of crash records. 

Figure 4.37 shows the critical points for pedestrians in the period 2015-2016. “Piazza XVIII 

Dicembre” was the most critical point with a total of 10 collision events in this period. It can 

be seen from the figure that the critical points for pedestrians in this period are distributed 

evenly spaced. 

The Fig 4.38 shows the critical points for pedestrians in the period 2017-2019. Generally, the 

critical points were detected in the squares of the city for this period. It can be seen that 

“Piazza Vittorio Veneto” was the most critical location with a total of 15 traffic collisions. 

Generally, it is not possible to make inferences since the critical points were distributed so far 

from each other. The number of accidents is relatively high since this period includes three 

years of crash records. 
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Fig 4.33 : Critical points for pedestrians in the period 2006-2007 (red dots represents the traffic 

collisions) 

 

 

Fig 4.34 : Critical points for pedestrians in the period 2008-2009 (red dots represents the traffic 

collisions) 
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Fig 4.35 : Critical points for pedestrians in the period 2010-2011 (red dots represents the traffic 

collisions) 

 

 

Fig 4.36 : Critical points for pedestrians in the period 2012-2014 (red dots represents the traffic 

collisions) 
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Fig 4.37 : Critical points for pedestrians in the period 2015-2016 (red dots represents the traffic 

collisions) 

 

 

Fig 4.38 : Critical points for pedestrians in the period 2017-2019 (red dots represents the traffic 

collisions) 
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After the identification of critical points for pedestrians, the critical points in the road network 

which presented 3 out of 6 positive study periods were identified as hazardous road locations 

(HRL) as shown in Figure 4.39. According to the results, one hazardous road location (HRL) is 

obtained for pedestrians  in the years from 2006 to 2019. It can be seen from the table that 

Corso Bramante, 20 with a total of 23 traffic collisions from 2006 to 2019 is the most 

dangerous location for pedestrians. Although this location is not the most critical location for 

six study periods, it has been chosen as a hazardous road location since it is presented 3 out 

of 6 positive study periods. 

 

 

Figure 4.39: Hazardous Road locations (HRL) for only pedestrians (red dots represents the traffic 

collisions) 

 

By comparing the results for six study periods, false positive and false negative locations are 

identified for pedestrians. So, those locations are determined in the view of such information 

with a help of the heat maps:  

False Positive Locations for pedestrians:  

• Strada Portone,10 , 

• Via Madama Cristina, Via Claudio Luigi Berthollet. 
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False Negative Locations for pedestrians: 

• Piazza Vittorio Veneto, 

• Piazza Rivoli. 

 

4.3.3. Motorcyclists Analysis  

By using the maps including traffic collisions relating to motorcycle users for six study periods, 

the KDE method was applied for six study periods. As a result of the KDE method, heat maps 

were created. Heat maps of six study periods are shown in Annex 8. Then, the density band of 

each map was rearranged based on the rule given in the beginning of the Chapter 4.3 with the 

help of each heatmap statistic. After this step, the location of traffic collisions where the 

density values are higher than M + 6*SD is identified as the critical point in the road network. 

All critical points relating to pedestrians are extracted as given below. 

 

Fig 4.40 : All critical points for motorcycle users, from 2006 to 2019 (red dots represents the traffic 

collisions) 
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The critical points for motorcycle users were analyzed related to each study period and, the 

number of accidents was determined for each identified point. Firstly, the results were 

obtained for the period related to years from 2006 to 2007 as shown in Fig 4.41. The 

intersection in corso Regina Margherita & corso Lecce / corso Potenza and Piazza Adriano 

were the most critical locations for motorcycle users in the 2006-2007 period. It can be seen 

from the figure that accident no 3 (intersection in corso Regina Margherita and corso Lecce) 

is in the same corridor with accident no 6 (intersection in corso Trapani and corso Peschiera) 

with a total of 17 collision events.   

The following figure shows the critical points for motorcycle users in the period 2008-2009. 

While the most critical location was the intersection in corso Regina Margherita & Piazza Maria 

Ausiliatrice, accident no 5 (intersection in corso Vittorio Emanuele II - / corso Duca Degli 

Abruzzi, corso Vinzaglio), 7 (intersection in corso Vittorio Emanuele II, via S. Secondo), and 8 

(intersection in via Fiume & corso Moncalieri) created the long corridor with a total of 23 

traffic collisions related to the motorcyclists. It can be seen from the figure that accident no 3 

(intersection in corso Regina Margherita and corso Lecce) is in the same corridor with accident 

no 6 (intersection in corso Trapani and corso Peschiera) with a total of 13 collision events.   

Fig 4.43 shows the critical points for motorcycle users in the period 2010-2011. It is realized 

that critical points were far from each other in this study period. accidents no 1,2 and 6 related 

to “corso Regina Margherita” are in the same corridor with a total of 16 traffic collisions. 

Figure 4.44 shows the critical points for motorcycle users in the period 2012-2014. The 

number of accidents is relatively high since this period includes three years of crash records. 

It is important to highlight that many corridors contain of more than two critical locations. The 

longest corridor includes accident no 2, 10, 11, 12, 4, and 5 with a total 48 of traffic collisions 

relating motorcyclists. “Piazza Rivoli” is the most critical location based on the number of 

accidents. 

Figure 4.45 shows the critical points for motorcyclists in the period 2015-2016. The 

intersection in “corso Moncalieri & corso Fiume “ was the most critical point with a total of 11 

collision events in this period. It can be seen from the figure that the critical points for 

motorcyclists in this period were distributed evenly spaced. Whereas accident no 1 and 2 were 

in the same corridor with a total 19 of traffic collisions in the years 2015-2016. 
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Fig 4.46 shows the critical points for motorcycle users in the period 2017-2019. It can be seen 

that “Piazza Riccardo Cattaneo” was the most critical location with a total of 10 traffic 

collisions. Generally, it is not possible to make inferences since the critical points were 

distributed so far from each other.  

 

Fig 4.41 : Critical points for motorcycle users in the period 2006-2007 (red dots represents the traffic 

collisions) 

 

Fig 4.42 : Critical points for motorcycle users in the period 2008-2009 (red dots represents the traffic 

collisions) 
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Fig 4.43 : Critical points for motorcycle users in the period 2010-2011 (red dots represents the traffic 

collisions) 

 

 

Fig 4.44 : Critical points for motorcycle users in the period in the period 2012-2014 (red dots represents 

the traffic collisions) 



90 
 

 

Fig 4.45 : Critical points for motorcycle users in the period in the period 2015 -2016 (red dots 

represents the traffic collisions) 

 

Fig 4.46 : Critical points for motorcycle users in the period in the period 2017 -2019 (red dots 

represents the traffic collisions) 

 

After the identification of critical points for motorcyclists, the critical points in the road 

network which presented 3 out of 6 positive study periods were identified as hazardous road 

locations(HRL) as shown in Figure 4.47. According to the results, six hazardous road locations 
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(HRL) are obtained for motorcycle users in the years from 2006 to 2019. It can be seen from 

the table that the intersection in corso Trapani & corso Peschiera with a total of 27 traffic 

collisions from 2006 to 2019 is the most dangerous location for motorcyclists. Moreover, the 

first three hazardous road locations (HRL) were located in the same corridor. 

By comparing the results for six study periods, false positive and false negative locations are 

identified for pedestrians. So, those locations are determined in the view of such information 

with a help of the heat maps:  

False Positive Locations for motorcycle users:  

• Via Cigna, Corso Vigevano, 

• Piazza Riccardo Cattaneo. 

False Negative Locations for motorcycle users: 

• The intersection in corso Moncalieri & corso Fiume. 

 

Figure 4.47: Hazardous Road locations (HRL) for only motorcycle users (red dots represents the traffic 

collisions) 
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4.3.4. Velocipede users Analysis  

By using the maps including traffic collisions relating to velocipede users for six study periods, 

the KDE method was applied for six study periods. As a result of the KDE method, heat maps 

were created. Heat maps of six study periods are shown in Annex 9. Then, the density band of 

each map was rearranged based on the rule given in the beginning of the Chapter 4.3 with the 

help of each heatmap statistic. After this step, the location of traffic collisions where the 

density values are higher than M + 6*SD is identified as the critical point in the road network. 

All critical points relating to velocipede users are extracted as given below in Fig 4.48. 

 

Fig 4.48 : All critical points for velocipede users, from 2006 to 2019 (red dots represents the traffic 

collisions) 

 

The critical points for velocipede users were analyzed related to each study period and, the 

number of accidents was determined for each identified point. Generally, a limited number of 
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critical locations are obtained since the number of crash records related to the velocipede 

users is low. Firstly, the results were obtained for the period related to years from 2006 to 

2007 as shown in Fig 4.49. There were two critical locations which are far from each other. 

Fig 4.50 shows the critical points for velocipede users in the period 2008-2009. It can be seen 

from the figure that two intersection points were identified as critical points. 

Fig 4.51 shows the critical points for velocipede users in the period 2010-2011. It is realized 

that critical points were far from each other in this study period. “Piazza Generale Antonio 

Baldissera” is the most critical location in this study period. 

Fig 4.52 shows the critical points for velocipede users in the period 2012-2014. The number of 

accidents is relatively high since this period includes three years of crash records. It is 

important to highlight that Piazza Statuto was in the crossing point of the two different 

corridors. Corridor 1 which includes accidents no 3, 4, and 5 had the same number of accidents 

as corridor 2 (accident no 3, 2, and 6) with a total 19 of accidents in each. Moreover, the most 

critical location was the intersection in corso Vittorio Emanuele II & corso Castelfidardo with 

a total of 8 traffic collisions in this study period. This location was also in the same corridor 

with the accident no 7 (the intersection in corso Vittorio Emanuele II & Via Nizza). 

Figure 4.53 shows the critical points for velocipede users in the period 2015-2016. There were 

three different corridors obtained as accidents no 1&2, 3&4 and, 4&5 with a total number of 

15, 14, and 13 traffic collisions respectively. “Piazza Rivoli” was the most critical point in the 

road network for this period and it was also in the most critical corridor based on the number 

of accidents.  

Fig 4.54 shows the critical points for velocipede users in the period 2017-2019. “Piazza 

Statuto” was the most critical location with a total of 12 traffic collisions. Piazza Statuto was 

crossing with the two different corridors. 
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Fig 4.49 : Critical points for velocipede users in the period 2006 -2007 (red dots represents the traffic 

collisions) 

 

Fig 4.50 : Critical points for velocipede users in the period 2008 -2009 (red dots represents the traffic 

collisions) 
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Fig 4.51 : Critical points for velocipede users in the period 2010 -2011 (red dots represents the traffic 

collisions) 

Fig 4.52 : Critical points for velocipede users in period 2012-2014 (red dots represents the traffic 
collisions) 
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Fig 4.53 : Critical points for velocipede users in the period 2015-2016 (red dots represents the traffic 

collisions) 

 

Fig 4.54 : Critical points for velocipede users in the period 2017-2019 (red dots represents the traffic 

collisions) 
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After the identification of critical points for velocipede users, the critical points in the road 

network which presented 3 out of 6 positive study periods were identified as hazardous road 

locations(HRL) as shown in Figure 4.55. According to the results, four hazardous road locations 

(HRL) are obtained for velocipede users in the years from 2006 to 2019. It can be seen from 

the table that “Piazza Rivoli” with a total of 29 traffic collisions from 2006 to 2019 is the most 

dangerous location for velocipede users. Moreover, “Piazza Rivoli” is in the same corridor with 

“Piazza Lorenzo Bernini”. This corridor has a high risk for velocipede users based on the 

evaluation in the number of accidents (a total of 52 traffic collisions). 

By comparing the results for six study periods, false positive and false negative locations are 

identified for velocipede users. So, those locations are determined in the view of such 

information with a help of the heat maps:  

False Positive Locations for velocipede users:  

• Intersection corso Galileo Ferraris, corso Stati Uniti. 

False Negative Locations for velocipede users: 

• Piazza Statuto. 

 

Figure 4.55 : Hazardous Road locations (HRL) for only velocipede users (red dots represents the traffic 

collisions) 
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4.3.5. Moped Analysis  

By using the maps including traffic collisions relating to moped users for six study periods, the 

KDE method was applied for six study periods. As a result of the KDE method, heat maps were 

created. Heat maps of six study periods are shown in Annex 10. Then, the density band of each 

map was rearranged based on the rule given in the beginning of the Chapter 4.3 with the help 

of each heatmap statistic. After this step, the location of traffic collisions where the density 

values are higher than M + 6*SD is identified as the critical point in the road network. 

All critical points relating to moped users are extracted as given below in Fig 4.56. 

The critical points for moped users were analyzed related to each study period and, the 

number of accidents was determined for each identified point. Generally, a limited number of 

critical locations are obtained since the number of crash records related to the moped users 

is relatively lower than other vulnerable users. Firstly, the results were obtained for the period 

related to years from 2006 to 2007 as shown in Fig 4.57. There were two critical locations 

which are far from each other. 

 

Fig 4.56 : All critical points for moped users, from 2006 to 2019 (red dots represents the traffic 

collisions) 
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Fig 4.58 shows the critical points for moped users in the period 2008-2009. It can be seen from 

the figure that two intersection points were identified as critical points. 

Fig 4.59 shows the critical points for moped users in the period 2010-2011. Only one critical 

location was obtained for this period. 

Fig 4.60 shows the critical points for moped users in the period 2012-2014. Only one 

intersection point was obtained as a critical location for this period in the west side of the city. 

Figure 4.61 shows the critical points for moped users in the period 2015-2016. There was only 

one critical location obtained in this period. 

Fig 4.62 shows the critical points for moped users in the period 2017-2019. Two critical 

locations were identified for this type of road users in this period. It is clear to see that these 

locations far from each other. 

 

 

 

Fig 4.57 : Critical points for moped users in the period 2006-2007 (red dots represents the traffic 

collisions) 
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Fig 4.58 : Critical points for moped users in the period 2008-2009 (red dots represents the traffic 

collisions) 

 

Fig 4.59 : Critical points for moped users in the period 2010-2011 (red dots represents the traffic 

collisions) 
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Fig 4.60 : Critical points for moped users in the period 2012-2014 (red dots represents the traffic 

collisions) 

 

Fig 4.61 : Critical points for moped users in the period 2015-2016 (red dots represents the traffic 

collisions) 
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Fig 4.62 : Critical points for moped users in the period 2017-2019 (red dots represents the traffic 

collisions) 

 

After the identification of critical points for moped users, hazardous road locations (HRL)  were  

not identified since the critical locations that should be in 3 out of the 6 positive study periods 

could not be present. Based on this rule , it is not possible to identify hazardous road locations 

(HRL) for moped users. Moreover, the limited number of critical locations were obtained due 

to low number of crash records related to the moped users in database.  

 

 

 

 

 

 

 

 

 

 

 



103 
 

5. ANALYSIS AND DISCUSSION  

Hazardous road locations (HRL) for overall VRU and the sub-categories of VRU were identified 

for the city of Turin in the period from 2006 to 2019 by using the ISTAT crash database. Within 

the scope of the case study, analyses were carried out for all sub-categories of VRU 

respectively. The results of the NN method provided the point patterns of the collision events 

were closely clustered together regarding six study periods. Moreover, G and F functions were 

used to verify the NN method. The outputs of the G and F functions also highlighted that a 

clustered structure was evident for all VRU and related sub-categories. As a result of the 

clustered structures of the point patters, we expected to identify HRL  in some high-density 

areas that was exactly what we observed in KDE method. The kernel analysis indicates that 

some corridors in the city are more hazardous than others for specific sub-categories of VRU. 

However, the lack of geographic coordinates from the years 2006 to 2011 and 2017 to 2019 

causes some difficulties in the identification of hazardous roads. For example, the address of 

one traffic collision is “Corso Vittorio Emanuele II, Via Nizza” while another one is “Via Nizza, 

1”. These two addresses are so close to each other as shown in Fig. 5.1, and that could belong 

to the same location. Therefore, the presence of geographic coordinates of traffic collisions is 

so crucial to increase the accuracy of the analyses. 

 

 

 

 

 

 

 

 

 

 

Fig 5.1 : The locations of the “Corso Vittorio Emanuele II, Via Nizza” and “Via Nizza, 1” 

Via Nizza, 1 

Corso Vittorio Emanuele II, Via Nizza 
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Piazza Rivoli 
Piazza Lorenzo Bernini 

Piazza Statuto 

The entire study period from 2006 to 2019 was subdivided into 2–3-year periods to limit false-

positive and false-negative locations. It is reasonable to identify a high number of HRL in three-

year periods since the number of accidents is high for three years. In overall VRU, it is clarified 

the corridor which includes Piazza Rivoli, Piazza Lorenzo Bernini, and Piazza Statuto is the most 

critical line with a total of 231 traffic collisions from 2006 to 2019. Hazardous road locations 

(HRL) were also identified based on the sub-categories of VRU since safety countermeasures 

should be differentiated based on the specific VRU sub-category. Corso Bramante,92 was 

identified as HRL for pedestrians. When this location as given in Fig 5.3 is examined, it has 

been determined that there are many pedestrian roads in front of this address. Traffic 

accidents may have occurred on one of these pedestrian roads, but it is not so clear to identify 

which road segment and the location this address refers to. Corso Bramante is one of the main 

streets in the city of Turin and  Corso Bramante,92 is the address where pedestrians interact 

with vehicles frequently since it is very close to the intersection. The safety of pedestrians can 

be improved by rearranging the pedestrian roads in this location. 

 

 

 

 

 

Fig 5.2 : The corridor including Piazza Rivoli, Piazza Lorenzo Bernini, and Piazza Statuto 

 

 

 

 

 

 

Fig 5.3 : The location of the Corso Bramante, 92 

Corso Bramante, 92 
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For motorcyle users, six hazardous road locations are identified in the city of Turin. All HRL for 

motorcylists are in the intersections and, 3 out of 6 HRL are located in the same corridor as 

given in Figure 5.4. It has been determined that these roads have more than 2 lanes and they 

are the main roads for public transportation in the city of Turin. Therefore, the traffic density 

is relatively high in these roads and it is likely to pose a danger to motorcycles since motorcycle 

users are using the same roads with vehicles. 

For velocipede users, four hazardous road locations (HRL) are identified. When these specific 

points were examined, the presence of cycle paths was observed as shown in Fig 5.5 with red 

rectangular. These HRLs are the points where the traffic density is high and have many crossing 

points with other roads in the road network. Therefore, the interaction of the bicycles with 

the vehicles may be high due to the speed difference. To increase the safety of cyclists, the 

existence of a sufficient number of traffic lights and the adequacy of cycling paths at these 

points can be investigated. 

 

Fig 5.4 : The corridor including three intersection points 

corso Regina Margherita & corso Potenza 

corso Regina Margherita &  corso Lecce 

corso Trapani &  corso Peschiera 



106 
 

 

Intersection : corso Vittorio Emanuele II - 

corso Castelfidardo 

 

Piazza Rivoli 

 

Piazza Lorenzo Bernini 

 

 

 

Piazza Generale Antonio Baldissera 

 
Fig 5.5 : HRL’s for cyclists 

 

For moped users, critical points related to each study period were obtained but it was not 

possible to find the hazardous road locations (HRL) since the critical locations that should be 

in 3 out of the 6 positive study periods could not be captured. Moreover, it was also hard to 

identify the clustered structure of the point patterns due to the low number of traffic collisions 

in the crash database. While the number of accidents decreases,  the distance between the 

collision events rises at a certain level. So, it is also more difficult to identify the clustered 

structure. 
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6. CONCLUSIONS  

The thesis deals with the geospatial analysis of traffic collisions to identify HRL in Turin from 

2006 to 2019 by considering all VRU and related sub-categories (pedestrians, cyclists, moped 

and motorcycle users respectively). The Italian National Institute of Statistics (ISTAT) provided 

the official database of traffic collisions.  

According to the literature, there are two approaches for the spatial analysis of traffic 

collisions: the link-attribute and the event-based approaches. In the first, spatial events such 

as traffic crashes are not analyzed directly but assigned to geographic features, such as areas 

or segments of the road network. In event-based analyzes, traffic collisions are just points in 

space. In this study, event-based approach is used and this approach consists of distance-

based and density-based methods. The distance-based and density-based methods were used 

for the spatial distribution analyses of the traffic collisions. While distance-based methods 

(Nearest Neighbor Analysis, G and F Functions) evaluate distances between events to define 

areas where traffic crashes are clustered, density-based methods (the Kernel Density 

Estimation) were used to examine the crash density to identify HRL. 

All results combined give a general picture that the methods carried out are reliable and 

robust in a scientific way. The results indicate collisions were concentrated in the main 

intersections of the city, which deal with heavy traffic flows and conflicts between users during 

the day. It seems that most hazardous road locations (HRL) are for specific sub-categories 

rather than others. Some critical road corridors for the motorcyclists and cyclists that include 

more than two HRL were determined. It was obtained that all HRL for motorcyclists have more 

than 2 lanes and, this means that these road locations suffer from heavy traffic flows which 

determine severe conflict points. 

Furthermore, it is concluded from the results that cyclists have a high risk in intersections and 

main squares of the city. It is a clear fact that wide cross-sections in the urban road 

environment cause some difficulties to cyclists, and pedestrians due to significant speed 

differences concerning motorized users, the absence of signalized junctions, and protected 

pedestrian crossings in some points. Conversely, high speed sport cyclists increase risks for 

the other vulnerable road users. Especially in those countries which typically have combined 

routes for both pedestrians and cyclists, the speed differences between the groups cause 
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problems. So, safety countermeasures should be differentiated based on the specific VRU 

sub-category to be protected. 

The results of the analyses promote actions for the safety of the urban road environment and 

sustainable mobility since road traffic crashes have become one of the world's largest 

public-health and injury-prevention problems. Today the growing view is that road safety is a 

system-wide and shared multi-sectoral responsibility. It is extremely important that all road 

users are properly briefed and provided with necessary training based on the risk factors of 

the related vehicle. It is also important to highlight that every road user must follow the rules 

for their own safety. 
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ANNEX 1 : THE RESULTS OF  NEAREST NEIGHBOR ANALYIS FOR VRU 

 

 

 

 

 

The results of NNA for 2006-2007 / VRU 
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The results of NNA for 2008-2009 / VRU 
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The results of NNA for 2010-2011 / VRU 
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The results of NNA for 2012-2014 / VRU 
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The results of NNA for 2015-2016 / VRU 
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The results of NNA for 2017-2019 / VRU 
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ANNEX 2 : THE RESULTS OF  NEAREST NEIGHBOR ANALYIS FOR PEDESTRIANS 

 

 

The results of NNA for 2006-2007 / PEDESTRIANS 
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The results of NNA for 2008-2009 / PEDESTRIANS 
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The results of NNA for 2010-2011 / PEDESTRIANS 
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The results of NNA for 2012-2014 / PEDESTRIANS 
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The results of NNA for 2015-2016 / PEDESTRIANS 
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The results of NNA for 2017-2019 / PEDESTRIANS 
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ANNEX 3 : THE RESULTS OF  NEAREST NEIGHBOR ANALYIS FOR MOTORCYCLE 

USERS 

 

 

The results of NNA for 2006-2007 / MOTORCYCLE USERS 
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The results of NNA for 2008-2009 / MOTORCYCLE USERS 
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The results of NNA for 2010-2011 / MOTORCYCLE USERS 
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The results of NNA for 2012-2014 / MOTORCYCLE USERS 
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The results of NNA for 2015-2016 / MOTORCYCLE USERS 
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The results of NNA for 2017-2019 / MOTORCYCLE USERS 
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ANNEX 4 : THE RESULTS OF  NEAREST NEIGHBOR ANALYIS FOR VELOCIPEDE 

USERS 

 

 

The results of NNA for 2006-2007 / VELOCIPEDE USERS 
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The results of NNA for 2008-2009 / VELOCIPEDE USERS 
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The results of NNA for 2010-2011 / VELOCIPEDE USERS 
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The results of NNA for 2012-2014 / VELOCIPEDE USERS 

 



135 
 

 

The results of NNA for 2015-2016 / VELOCIPEDE USERS 
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The results of NNA for 2017-2019 / VELOCIPEDE USERS 

 

 

 

 

 

 

 

 

 

 

 

 



137 
 

ANNEX 5 : THE RESULTS OF  NEAREST NEIGHBOR ANALYIS FOR MOPED USERS 

 

 

The results of NNA for 2006-2007 / MOPED USERS 
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The results of NNA for 2008-2009 / MOPED USERS 
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The results of NNA for 2010-2011 / MOPED USERS 
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The results of NNA for 2012-2014 / MOPED USERS 
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The results of NNA for 2015-2016 / MOPED USERS 

 



142 
 

 

The results of NNA for 2017-2019 / MOPED USERS 
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ANNEX 6 : THE RESULTS OF  KDE ANALYIS FOR VRU 

 

Heat map of traffic collisions including all VRU for the period 2006-2007  
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Heat map of traffic collisions including all VRU for the period 2008-2009 
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Heat map of traffic collisions including all VRU for the period 2010-2011 
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Heat map of traffic collisions including all VRU for the period 2012-2014 
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Heat map of traffic collisions including all VRU for the period 2015-2016 
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Heat map of traffic collisions including all VRU for the period 2017-2019 
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ANNEX 7 : THE RESULTS OF  KDE ANALYIS FOR PEDESTRIANS 

 

 

Heat map of traffic collisions including only pedestrians for the period 2006-2007 
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Heat map of traffic collisions including only pedestrians for the period 2008-2009 
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Heat map of traffic collisions including only pedestrians for the period 2010-2011 
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Heat map of traffic collisions including only pedestrians for the period 2012-2014 
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Heat map of traffic collisions including only pedestrians for the period 2015-2016 
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Heat map of traffic collisions including only pedestrians for the period 2017-2019 
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ANNEX 8 : THE RESULTS OF  KDE ANALYIS FOR MOTORCYCLE USERS 

 

 

Heat map of traffic collisions including only motorcycle users for the period 2006-2007 
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Heat map of traffic collisions including only motorcycle users for the period 2008-2009 
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Heat map of traffic collisions including only motorcycle users for the period 2010-2011 
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Heat map of traffic collisions including only motorcycle users for the period 2012-2014 
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Heat map of traffic collisions including only motorcycle users for the period 2015-2016 
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Heat map of traffic collisions including only motorcycle users for the period 2017-2019 
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ANNEX 9 : THE RESULTS OF  KDE ANALYIS FOR VELOCIPEDE USERS 

 

 

Heat map of traffic collisions including only velocipede users for the period 2006-2007 
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Heat map of traffic collisions including only velocipede users for the period 2008-2009 
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Heat map of traffic collisions including only velocipede users for the period 2010-2011 
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Heat map of traffic collisions including only velocipede users for the period 2012-2014 
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Heat map of traffic collisions including only velocipede users for the period 2015-2016 
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Heat map of traffic collisions including only velocipede users for the period 2017-2019 
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ANNEX 10 : THE RESULTS OF  KDE ANALYIS FOR MOPED USERS 

 

 

Heat map of traffic collisions including only moped users for the period 2006-2007 
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Heat map of traffic collisions including only moped users for the period 2008-2009 
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Heat map of traffic collisions including only moped users for the period 2010-2011 
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Heat map of traffic collisions including only moped users for the period 2012-2014 
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Heat map of traffic collisions including only moped users for the period 2015-2016 
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Heat map of traffic collisions including only moped users for the period 2017-2019 

 

 

 

 

 

 

 

 

 

 

 


