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ABSTRACT

Road traffic crashes result in the deaths of approximately 1.3 million people around the world
each year and leave between 20 and 50 million people with non-fatal injuries. Due to
insufficient physical protection in the event of a collision, more than half of all road traffic

deaths are among vulnerable road users (VRU), i.e., pedestrians, cyclists, and motorcyclists.

The urban road environment poses a high risk to VRU. However, traffic crashes can be
reduced by using appropriate safety countermeasures on “hazardous road locations” (HRL)
where higher collision frequency are observed with respect to the average expected level. It
is important to highlight that evaluating each sub-category of VRU separately plays a key role

to find the most effective countermeasures for each specific VRU.

This study presents the analyses and results about the spatial distribution of traffic collisions
to identify HRL in Turin from 2006 to 2019 by considering all VRU and related sub-categories

(pedestrians, cyclists, moped and motorcycle users respectively).

The Italian National Institute of Statistics (ISTAT) provided the official database of traffic
collisions . Firstly, the crash data relating to regional (Piedmont), provincial (Turin), and
municipal (Turin) levels was evaluated by using descriptive statistics. The crash data of Turin
was then prepared and organized to carry out a detailed analysis. Due to the absence of a
complete geographic coordinates in the crash database, data was geo-localized firstly and

then analysed with the help of Geographic Information System (GIS) technologies.

The distance-based and density-based methods were used for the spatial distribution analyses
of the traffic collisions. While distance-based methods (Nearest Neighbor Analysis, G and F
Functions) evaluate distances between events to define areas where traffic crashes are
clustered, density-based methods (the Kernel Density Estimation) were used to examine the

crash density to identify HRL.

The crash database was extracted as six time intervals by dividing it into 2—3-year periods to
highlight the presence of false-positive and false-negative HRL. All critical road segments and
intersections which presented 3 out of 6 positive time intervals in the road network were
identified as HRL. These analyses were carried out for all VRU and the related VRU sub-

categories.



The results indicate collisions were concentrated in the main intersections of the city, which
deal with heavy traffic flows and conflicts between users during the day. It is a clear fact that
wide cross-sections in the urban road environment cause some difficulties to VRU due to
significant speed differences with respect to motorized users, the absence of signalized
junctions and protected pedestrian crossings in some points. It seems that most of hazardous
road locations (HRL) are for specific sub-categories rather than others. So, safety

countermeasures should be differentiated based on the specific VRU sub-category to be

protected.
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1. INTRODUCTION

A road traffic crash is a collision or incident that lead to injury, fatality, and/or property
damage only occurring on a public road and involving at least one moving vehicle (Peden et
al., 2004). Road collisions are one of the leading causes of death in many countries and anyone

using the roads is at risk of injury or death in the event of a road accident.

According to World Health Organization (WHO, 2021), road traffic crashes result in the deaths
of approximately 1.3 million people around the world each year and leave between 20 and 50
million people with non-fatal injuries. Young people are particularly vulnerable on the world’s
roads; in fact, road traffic injuries are the leading cause of death for children and young adults
aged 5-29. Young males under 25 years are more likely to be involved in road traffic crashes
than females, with 73% of all road traffic deaths occurring among young males in that age. In
2016, low- and middle-income countries had higher road fatality rates per 100 000 population
(27.5 and 19.2, respectively) compared to high-income countries (8.3). The African region had
the highest road traffic fatality rate, at 26.6, while the European region had the lowest rate,

at 9.3.

As stated by World Health Organization (WHO, 2021), more than half of all road traffic deaths
are among vulnerable road users: pedestrians, cyclists, and motorcyclists due to insufficient
physical protection in the event of a collision with cars, trucks or buses. Globally, pedestrians
and cyclists represent 26% of all deaths, with those using motorized two- and three-wheelers
comprising another 28%. Car occupants make up 29% of all deaths and the remaining 17% are
unidentified road users. According to EC (European Comission, 2018), between 2001 and
2010, the number of road fatalities in the EU decreased by 43 percent, and between 2010 and
2017 by another 20 percent. Nonetheless, 25,300 people still lost their lives on EU roads in
2017, equivalent to some 70 lives lost per day, and about 135,000 people were seriously

injured, including a large percentage of pedestrians, cyclists and motorcyclists.

More than half of the world’s population now live in urban areas — increasingly in
highly-dense cities (Ritchie and Roser, 2018). In urban areas, nowadays more and more people
prefer walking or cycling to reach their destination instead of taking public transportation or

using a car due to traffic problems. This situation makes more people vulnerable due to a high



risk of injury in any traffic collision. Specific solutions for the protection of vulnerable road
users not only ensure greater safety in urban traffic but also increase efficiency of the

transportation system.

With the developments in technology in recent years, different types of two-wheeled vehicles
have changed to mobility. Fuel-powered two-wheelers (motorcycles and mopeds) are a
means of transportation that people are accustomed to seeing in urban mobility today, the
other is electric-powered two-wheelers (electric motorcycles, pedelec, scooters, and
hoverboards) which play a crucial role in urban vehicle ecosystem nowadays. Electric two-
wheelers are an environmentally more sustainable alternative to conventional powered two-
wheelers. However, the users of both types of vehicles are particularly vulnerable based on

accident statistics.

According to EC (European Commission, 2021), as a result of Covid-19 pandemic, cycling has
experienced a significant rise in popularity for the last two years, and many cities around the
world (temporarily) reallocated road space to cyclists and pedestrians. This encouraging
development can have a significant positive impact on air and climate quality but at the same
time creates new road safety challenges. EU-wide, around 70% of road fatalities in urban areas
involve vulnerable road users. Therefore, tackling road safety in cities is a crucial area of focus

for urban mobility planning.

As stated in Horizon Europe - Work Programme (European Commission Decision, 2021),
European Commission has allocated a fund for research and innovation actions within the aim
of a safer urban environment for vulnerable road users. Project results are expected to

contribute to the following expected outcomes:

e 50% reduction in serious injuries and fatalities in road crashes by 2030, with a focus on
measures addressing unprotected vulnerable road users,

e better prediction of all road users behaviour and the use of new transport modes,

e new concepts and guidelines for safe inclusion of new types of vulnerable road users,
i.e.those using new means of transport into the traffic system,

e new solutions that facilitate inclusion of all vulnerable users in the transport system,
including people with disabilities, the elderly, and children by providing a safe

environment for walking and cycling,



e a modal shift to active and clean modes of transport, improving the health of road

users and the quality of urban environments.

Road traffic crashes are not “accidents” since preventable. The likelihood of traffic collisions
can be reduced by using appropriate countermeasures such as traffic monitoring and control
devices, managing exposure to risk through transport policies, modifying the road layout, or
increasing protection of vehicle occupants. The basis of the most appropriate countermeasure
is the safety analysis which concerns the identification of hazardous road locations (HRL), or
hot spots, by using evidence-based measures based on crash data. HRL are specific points on

the road with higher crash frequency than expected at some threshold level of significance.

Identifying accident hotspots and appending value-added data to understand the processes
occurring in these hotspots is important for the appropriate allocation of resources for safety
improvements (Anderson, 2009). Safety analyses are carried out by using statistical and spatial
analysis tools in Geographic Information System (GIS). GIS-based techniques are relatively
simple to use and can convert raw statistical and geographical data into meaningful
information for spatial analysis, mapping, and identifying any factors contributing to accidents

(Choudhary et al., 2015).

This work presents the application of the spatial analysis methods in GIS Software to identify
hazardous road locations (HRL) in Turin using ISTAT data as a case study. Among all accident,
the interest is on those where vulnerable road users were involved in. For this purpose,
accident data in the period 2006-2019 collected from police records by ISTAT was used.
According to the literature, there are two approaches for the spatial analysis of traffic
collisions: the link-attribute and the event-based approaches. In the first, spatial events such
as traffic crashes are not analyzed directly but assigned to geographic features, such as areas
or segments of the road network. In event-based analyzes, traffic collisions are just points in
space. In this study, event-based approach is used and this approach consists of distance-
based and density-based methods. While distance-based methods (Nearest Neighbor
Analysis, G and F functions) evaluate distances between events to define areas where traffic
crashes are clustered, density-based methods (Kernel Density Estimation) examine the density

of the point patterns to identify hazardous road locations (HRL).



2. SPATIAL ANALYSIS OF ROAD COLLISIONS

This chapter aims to analyze the historical developments in road safety strategies and spatial
analysis for road traffic collisions which represent the starting point for any methodological

study relating to Road Safety.

2.1. Road Safety in urban areas

According to the UN, in 2018, an estimated 55.3 percent of the world’s population lived in
urban settlements. By 2030, urban areas are projected to house 60 percent of people globally
and one in every three people will live in cities with at least half a million inhabitants (United
Nations, The World’s Cities, 2018). The rapid increase in population and motorization will
cause a close interaction between vulnerable and motorized road users. As a result, the safety

of vulnerable road users will be a more prominent issue in the coming years.

In order to understand the development of road safety research, it is important to know how
the scientific view has changed during the short history of systematic road safety research. It

consists of four phases of scientific paradigms (Loo and Anderson, 2015):

Paradigm | (1900-1925/35) : Control of the automobiles was seen as the problem. There was
limited research but more of a description of what was happening. This phase coincided with

the rise of the automobiles from the beginning of the twentieth century to 1935.

Paradigm 1l (1925/35-1965/70) : Control of traffic situations was seen to be the problem. The
countermeasures and the research were centered on the classical three “Es” approach of
engineering, education, and enforcement. This is when systematic road safety research was

born and when a number of new disciplines came into road safety research.

Paradigm Il (1965/70-1980/85) : Management of the traffic system was seen to be a problem.
In this systems approach, mathematical models for the description and prediction of traffic

collisions were developed.

Paradigm 1V (1980/85-present) : Management of the transport system as a whole was seen as
the problem. The scope is widened from just focusing on the road itself. This is the current

trend of road safety thinking.
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In industrialised countries, road infrastructure and its environment have been gradually
developed to meet the needs of growing traffic and mobility. Their present state reflects the
conflicts and compromises between the different transport modes -- particularly between the
vulnerable road users and motorised traffic -- the traffic regulations, and the beliefs and
doctrines of the engineers responsible for road design and traffic management, particularly
with regard to road users’ duties and behaviour (OECD, 1998). Anyone using the roads is at
risk of injury or death in the event of a road accident. Some people are more at risk than others
and are commonly referred to as Vulnerable Road Users (VRU). The term has been defined in

different ways:

e World Health Organisation in 2013 considered VRUs to be “pedestrians, cyclists, and
motorcyclists”

e US DOT’s National Strategy on Highway Safety has a more complex definition: “road
users who are most at risk for serious injury or fatality when they are involved in a
motor-vehicle-related collision. These include pedestrians of all ages, types and
abilities, particularly older pedestrians and people with disabilities. VRU’s also include
bicyclists and motorcyclists. Older drivers may also be considered to fit into this same
user group”

e European Union’s ITS Directive refers to “non-motorised road users, such as
pedestrians and cyclists as well as motor-cyclists and persons with disabilities or
reduced mobility and orientation”

According to Organisation for Economic Co-operation and Development (OECD, 1998), there
have been developments regarding VRU in the 1960s and 1970s. Some new residential areas
were built by architects and planners on the principle of complete segregation of pedestrians

and motorised vehicles, first in Sweden (Scaft guidelines), then in some British new towns.

In the 1980s, the idea of comprehensive networks for pedestrians and cyclists started to make
way in some countries, thus acknowledging walking and cycling as full-fledged means of
transport. Cycle tracks or cycle lanes were introduced, with various degrees of success or
failure from a safety viewpoint. In a number of cities, pedestrian footpaths were organised to

provide continuing routes and were often widened and resurfaced. Pedestrianised streets in
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city centres became better integrated into overall schemes aimed at providing better mobility

for all with less private car traffic.

The concepts of mixed traffic and traffic calming spread and extended from the previous
schemes in residential areas to the treatment of urban thoroughfares with heavy traffic. The
idea that fast motorised traffic may have to yield priority to local traffic and vulnerable road
users through some parts of urban areas generating a lot of activity onto the street finally
became acceptable. Such form of transport planning usually implies operating modal transfers
from motorised road transport to rail and non-motorised means. VRU should thus get better

attention.

Today the growing view is that road safety is a system-wide and shared multi-sectoral
responsibility which is becoming increasingly ambitious in terms of its results focus. Sustaining
the level of ambition now evident in high-income countries requires a road safety
management system based on effective institutional management functions that can deliver

evidence-based interventions to achieve desired results.

The road safety management system as depicted in Figure 2.1 can be viewed as three inter-
related elements: institutional management functions, interventions, and results. Managing
for road safety results requires an integrated and accountable response to these system

elements (Bliss and Breen ,2009).

Results Final
Outcomes
Intermediate
Qutcomes

Outputs
Road Network

Interventions Planpmg. Emr\l.I and Fleco\.rlelr\,r elmd
design, exit of rehabilitation
operation, vehicles of crash
and use and drivers victims
Institutional Results Focus

Management
Functions

Figure 2.1 : Road Safety Management System (Bliss and Breen, 2000; Wegman, 2001; Koornstra
et al, 2002; Bliss, 2004)
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2.2. Spatial Autocorrelation Analysis

Spatial analysis of traffic crashes is a fundamental study in road safety because it helps to
understand how crashes are affected by locations, how the parameters vary spatially, and
which areas need priority for countermeasures. It is the most preferred technique for road
safety analysis in recent years since it provides a depth analysis instead of a simple visual

evaluation.

Collision events are records in a 2D space, which can be expressed in geographic terms
(longitude, latitude), in cartographic (East, North) coordinates, or in the local plane (X, Y),
(Bassani et al., 2020). GIS stores information as thematic layers, all linked by their geographic
coordinates. Unlike standard databases, GIS allows users to compare and manipulate data
based on the spatial relationships. In this way, it is possible to manage the large amount of
crash data which can be visualized with high resolution on the maps thanks to GIS software.
GIS tools provide to identify the locations where accidents are clustered, or where the
consequences of such events reach the critical threshold, while also evaluating the attributes

of the data associated with each element.

Traffic accidents are random events that vary in time and space. The number of accidents
varies from month to month and year to year in the road network. Although there may be a
spatial dependence between the accidents, the distribution of traffic collisions is not uniform
in space. To evaluate this spatial dependence between events, the so-called distance-based
methods are used, which define the presence of spatial aggregations of accidents in the road

network.

Moreover, it is also possible to evaluate accidents in restricted areas as cluster events, to
understand which points on the network have a higher incidental density. These points can be
defined as hazardous road locations (HRL) due to the higher expected number of accidents
than other locations. Therefore, in addition to the distance-based methods, the density-based
approach is used to assess high densities in certain areas for identifying hazardous road
locations. In this way, it is possible to evaluate whether high densities in certain areas are the
consequence of specific characteristic of the road environment. Generally, when increasing
the level of granularity of the analysis, the correlation between output areas will become

weaker. This introduces another issue in road safety analysis, that is the spatial
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autocorrelation (Loo and Anderson, 2015). Spatial autocorrelation refers to the extent to
which the value of a variable at a given location influences values of that variable at contiguous
locations (Cliff & Ord, 1973; Goodchild, 1986; Griffith, 1987; Odland, 1988). If positive spatial
autocorrelation is present, it results in a spatial clustering of similar variable values (Black,
1991). It means that two traffic collisions occurring close to each other may be caused by the
same reason. By identifying the reason, it is possible to take precaution to prevent accidents
(reduction of the frequency of occurrence) or reduce its consequences (reduction of incidental

severity).

Approaches to identify positive spatial autocorrelation can be divided into two major groups

(Loo and Yao, 2013):

e link-attribute approach,

e event-based approach.

In the first approach, spatial events such as traffic crashes are not analyzed directly but are
instead assigned to geographic features, such as areas or a road network. Traffic crashes are
assigned to line and point features, namely roads (links) and junctions (nodes). Links are, in
turn, divided into shorter segments called basic spatial units (BSUs) for detailed spatial
analysis. Traffic crash numbers or rates are treated as attribute values of these geographic
features (Loo and Yao, 2013). Both geometric (such as road width and gradient) and
nongeometric features (such as traffic volume and presence of road markings) of the BSUs can
be stored in the relational database of the road network. The link-attribute approach provides
to analyze traffic collisions by considering them as attributes of the road features. Traffic
collisions are treated as attributes of these base spatial units; information from different

databases is integrated: collision, hospital, traffic, land use.

The link-attribute methodologies allow deriving some spatial statistics that provide
information on the degree of aggregation of points, showing the areas where concentrations
are higher than the threshold. The main spatial statistics relating to this approach are the
Moran’s | and the Getis-Ord General G. Generally, Moran’s | is the most common spatial

statistics since it is at the global level (Loo and Anderson, 2015).

On the other hand, in event-based analyzes, collisions are just points in space. The

link-attribute approaches, as mentioned, involve segmentation of the road network as base
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space units (BSUs). By counting the crashes within them, collisions become attributes of these
segments. However, these operations involve a significant computational effort, and entail
different difficulties: (i) the correct choice of the BSU length, (ii) the impossibility of dividing
different parts of a road network into segments of equal sized length, (iii) the difficulty with
the interpretation of data from sections with different length, and (iv) the consequent loss of

information (Bassani et al., 2020).

Event-based approaches consist of distance-based and density-based methods. Road
collisions being dealt with as two-dimensional (2D) point patterns, where the data are only
locations of a set of point objects. This represents the simplest possible spatial data (Loo and
Anderson, 2015). While distance-based methods that examine distances between events,
density-based methods that examine the crude density or overall intensity of a point pattern

(O’Sullivan and Unwin,2003).

The most common methodology of the density-based methods is the ”“Kernel density
estimation”. This methodology is a spatial interpolation technique that estimates the density
of points in the 2D plane with coordinated (¢, A ), (E, N) or (X, Y) for each collision event. By
cumulating the values, the final density estimation in the related area is obtained. A detailed

description of the methods is introduced in Section 3.3.

2.3. Software tools

The different methodologies described in the previous paragraphs are applied with the help
of the QGIS, ArcGIS and R software. QGIS is an open geographic information system (GIS)
source, released under the GNU General Public License (GPL); it is used for the management

of the huge amount of data, providing adequate tools for data processing.

Another well-known software for GIS services is ArcGIS developed and maintained
by Esri. ArcGIS is a command line-based GIS system for manipulating data. ArcGIS provides
great insights using contextual tools to visualize and analyze your data. ArcGIS Desktop
consists of several integrated applications, including ArcMap, ArcCatalog, ArcToolbox,
ArcScene, ArcGlobe, and ArcGIS Pro. ArcMap is the application used to view, edit and query
geospatial data, and create maps. It helps to collaborate and share via maps, apps,

dashboards, and reports.
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R software is a programming language for statistical analysis that can be used by integrating
it into QGIS and ArcGlIS. Series of algorithms extend its functionality. In this way, it can be used
for the analysis of geographic data. Thanks to the “Processing R Provider” extension, it is
possible to use R in QGIS. R uses external libraries (called "packages") that expand its
functionality. In the present study, it was necessary to install some packages (abind, tensor,

goftest, proxy, DBI, Rcpp, classint, rgdal, sp, spatstat) for the point pattern analysis.
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3. MATERIALS AND METHODS

This chapter concerns the definition of the case study, procedures for the acquisition and
processing of incidental data, and the methods for spatial analysis of traffic crashes that are
developed in the case study. While the first part of this chapter is related to the description of
the case study, the second part provides method for the acquisition and processing of crash

data relating to the period 2006-2019 for the city of Turin.

The third part of this chapter illustrates the methods for analyzing the spatial distribution of
traffic crashes including VRU to identify the HRL in Turin. As explained in Chapter 2.2., there
are two methodologies: the first is the Link-Attribute approach that considers accidents as
attributes of linear elements such as road segments; the second one is the Event-Based
approach, in which accidents are considered as a set of points in space. In this case study,

methods of the Event-Based approach which are given below are used:

e distance-based methods,

e density-based methods.

The results of these analyses for the Turin case study are presented in Chapter 4.

3.1. The Case Study

3.1.1. Area of Study

One of the largest metropolitan cities in Italy, Torino has been chosen as a study area. Turin is
an Italian municipality of 842,612 inhabitants (ISTAT, August 2021), the fourth Italian
municipality by population and capital of the Piedmont Region. The infrastructural network of
the central area of the city has as a plan like a chessboard. The roads develop in a straight line
crossing orthogonally, with an orientation similar to the Roman castrum: a cardo maximus
(north-south direction) and a decumanus maximus (east-west direction) are crossing at the
center of the castrum, and parallel to which develop all the other streets inside the castrum.
The exception is the eastern side, where the structure of the road network is conditioned by
the presence of the Turin hills. The chessboard layout considerably facilitates orientation.
Thanks to the large tree-lined avenues (which naturally follow the directions of the other

streets), it also makes mechanized circulation, both public and private transport, smoother.
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Fig 3.1 : Map of the city of Turin (Shapefile “Carta di sintesi” from Geportale Regione Piemonte)

3.1.2. Description of the Case Study

This study deals with the spatial analysis of traffic crashes from 2006 to 2019 that involves
only VRU (pedestrians, cyclists, and motorcyclists, etc.) in Turin. The main aim of this case
study is the identification of HRL where the number of accidents is abnormally high in Turin,
by using Geographic Information Systems (GIS) with the help of QGIS, ArcGIS, and R Software.
The database which is related to the traffic accidents in Turin was obtained from ISTAT.
Acquisition and Processing of Incidental Data are introduced in the next section. Specifically,
distance-based methods are applied to verify the clustering of the spatial pattern of points
(point pattern); subsequently, we proceeded with the application of the Kernel density

estimation that allows the identification of the critical points of the road network.
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3.2. Acquisition and Processing of Incidental Data

The final database from the regional collision database provided by ISTAT (ltalian National
Institute of Statistics), which involves only VRU in the period from 2006 to 2019 for the city of

Turin, was obtained through the following activities:

1. extraction of traffic collisions only involving VRU,
2. geolocation of accidents in a GIS system,

3. database formation for the analysis of the spatial distribution of accidents.

The results of descriptive analyses are shown in Chapter 4.1.

3.2.1. Traffic collisions involving Vulnerable Road Users (VRU)

The incidental database of Italy has been obtained thanks to ISTAT for the years from 2006 to
2019. According to the definition of a traffic accident adopted from the ISTAT, the database
contains only accidents that involve at least one injured person. In Italy, traffic accidents that
only result in material damage (i.e., the property damage only crashes) are not considered

statistically as an accident.

In the database, the rows (records) are related to individual incidents while the columns
(fields) present a series of information like accident location, nature of the accident, vehicles
involved, users involved, consequences, etc. The following paragraphs describe the various
operations carried out to obtain the final database, containing only the incidental events of

interest for the case study.

In the first place, it was necessary to filter only incidents relating to the Piedmont Region,
Turin’s Province, and the Municipality of Turin. The Crash database of the Piedmont Region
was created by filtering province numbers of Piedmont region ( 001 : Turin, 002: Vercelli, 003:
Novara, 004: Cuneo, 005: Asti, 006: Alessandria, 096: Biella,103: Verbano-Cusio-Ossola) while
Province and Municipality of Turin database are extracted by filtering the number of 001 for

the Province of Turin and the number of 272 for the Municipality of Turin.

19



001268 STRAMBENELLSC.Ir —_

001269 STRAMBINO™
001270 SUSA~ __— COMUNE

001271 TAVAGNASCO
TORINO
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Fig 3.2 : ISTAT identification codes; Province -blue box , Municipality- red box (retrieved from ISTAT
Database)

Once the incidents relating to the Municipality of Turin have been selected, it was proceeded
with the identification of accidents involving only VRU. The different definitions of VRU are
explained in Section 2.1. In this current study, pedestrians, velocipede! , moped and
motorcycle users are evaluated as VRU. The information relating to those users was filtered
in the excel file obtained from ISTAT. This process was carried out by using the code numbers

of those users:

* “natura_i” is related to the nature of the accident: selected records are a value of 5 in this

field (5 = Pedestrians involved);

e “type_VvA”, “type_vB” and “type_vC” are related to the type of vehicle involved: all the
records in which at least a “vulnerable” user in these three fields, a value between 14 and 17

(14 = Velocipede, 15 = Moped, 16 = Motorcycle alone, 17 = Motorcycle with passenger);

nn nn mn nmn n.n

e "oml_sex", "pm1_eta", "pfl_sex", "pfl_eta", "pm2_sex", "pm2_eta", "Pf2_sex", "pf2_eta",
"pm3_sex", "pm3_eta", "pf3_sex", "pf3_eta", "Pm4_sex", "pm4_eta", "pfd_sex" and
"pfd_eta", referring to any pedestrians involved in the accidents: all the records have selected

to find the presence of at least one injured / dead pedestrian.

In the ISTAT database, there is an inconsistency between the nature of the accident
(5=Pedestrians involved) and pedestrian fields. The number of accidents coming from the
nature of the accidents does not coincide with the number of accidents relating to the

pedestrians' fields. This apparent inconsistency comes from the ISTAT database. So,

1 Velocipede is a human-powered land vehicle with one or more wheels, the most common type today is the
bicycle.
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pedestrian fields are used directly to obtain the number of accidents in which pedestrians are

involved.

3.2.2. Geolocation of accidents

The database from 2006 to 2016 was taken from the previous study carried out by Bassani,
M., Rossetti, L., and Catani, L. in 2018. In the current study, the database for the period 2017-
2019 was obtained by ISTAT includes only the address information of the accidents. Therefore,
GPS Visualizer's Address Locator was used to convert addresses of accidents into geographic
coordinates; this was done through a JavaScript-On-Demand (JSON) code executed by the web
browser, capable of take advantage of the APIs (Application Programming Interfaces)

provided by various mapping (Google Maps, Bing Maps, etc.).

A total of 3916 street addresses for the period 2017-2019 were converted to geographic
coordinates (Latitude, Longitude). The coordinate information of addresses was obtained by
entering all address information on website as in Figure 3.4. An excel file containing all

information was prepared to this scope.

L] L] MAKE A MAP MAKE A PROFILE Geocode addresses
- Google Maps CONVERT A FILE  Look up elevations
1S l I a 1Ze r - Google Earth Draw on a map GPSBabel
-JIPG/PNG/SVG Calculators Atlas: Share a map

GPS Visualizer's Address Locator

Convert multiple addresses to GPS coordinates

‘ NOTE: You'll need to get your own free API key to process a large number of addresses using this page. (Ge

Input:

)

Type of data:| raw list, 1 address perline ¥ | Source: Bing Maps v Start geocoding I
Field separator in output: | tab v Add a color:

#| Include source+precision info in output
Your Bing Maps API key (why?): [Get a key

Results as text:
Draw a map

output format:
Google Maps T
Labels on map

more map options

Create a GPX file
s

clear results box

Figure 3.3 : Interface of GPS Visualizer’s Address Locator (http-//www.gpsvisualizer.com/geocoder))
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GPS Visualizer's Address Locator

Convert multiple addresses to GPS coordinates

NOTE: You'll need to get your own free API key to process addresses using this page. (Get a key: E

Input:
VIA GORIZIA, VIA BALTIMORA ,Torinp,Italia

o
Type of data:| raw list, 1 addrass per line V| Source:| Bing Maps V| | start geocoding |

Field separator in output: |[comma i) ~| Add a color:

B Include source+precision info in output
Your Bing Maps API key (why?): |AnuNAnyuS—}(TUCbQMvthS—UCIsciZ‘r’GL'.-'TKtjDEn:mkiw}(thzghuz-|_[Get a key]

Results as text: (1 of 1 lines processed)
latitude,longitude,name,desc,color,source,precision Draw a map

45.84527,7.64859,"VIA GORIZIA, VIA BALTIMORA ,Torino,Italia™,™\ output format:
Leaflet hd

I:I Labels on map
[more map options]

| Create a GPX file |

clear results box

Figure 3.4 : The example for the usage of GPS Visualizer’s Address Locator

For intersection points, generally, the coordinate information of addresses are directly correct
but some addresses include building number information to refer to the location of the
accidents (e.g., Via Pietro Cossa, 68, Torino, Italia). To fix these kinds of addresses and
eliminate wrong address and coordinate information in the database, each coordinate
information was checked by Google Maps as indicated in Figure 3.5(a). If there is an apartment
number in the address, the point in the street where the building is 90 degrees perpendicular
to the street was chosen (Figure3.5 (b)). At the end of this operation, 181 out of 3,916
accidents (approximately 5%) were eliminated from the crash database of VRU for the period

2017-2019.

The information relating to the final database is given in Section 4.1.1.
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Figure 3.5: The example for the usage of Google Maps

3.3. Methods of Spatial Distribution Analysis

This chapter introduces the event-based methods which were used in the case study to
identify HRL. The event-based approach considers the physical locations of individual crashes
(events) directly (Yamada and Thill, 2007). When the event-based approach is used to identify

local clusters, this goal is accomplished by directly measuring the (physical or network)

distance or the degree of concentration among the traffic crashes (Loo and Yao, 2013).
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Event-Based methods are divided into two groups:

e Distance-based,
e Density-based.

3.3.1. Distance-based Methods

Among the different distance-based methods, the Nearest Neighbor Analysis, G Function and
F function are applied in the present study. In this way, it is possible to identify spatial

aggregations of a set of points that are clustered or uniformly spaced.

3.3.1.1 Nearest Neighbor Analysis

Nearest Neighbor analysis is commonly used to analyze point pattern datasets based on
distance. This analysis leads to the determination of the Nearest Neighbor (NN) index. This

index provides an indication for the degree of aggregation of the points.

According to the Nearest Neighbor (NN) method (Clark and Evans, 1954), in a random
distribution of a set of points on a given area, it is assumed that any point has the same chance
of occurring on any sub-area as any other point, that any sub-area of specified size has the
same chance of receiving a point as any other sub-area of that size, and that the placement of
each point has not been influenced by that of any other point. Thus, randomness as here
employed is a spatial concept, intimately dependent upon the boundaries of the space chosen

by the investigator.

A nearest neighbor analysis compares the characteristics of an observed set of distances
between pairs of closest points with distances that would be expected if points were randomly
placed. During the analysis, the distance from each point to its nearest neighbor is calculated.
This value gets added to a running total of all minimum distances, and once every point has
been examined, the sum is divided by the number of points. This produces what we call a

“mean minimum distance” or “nearest neighbor distance” (Loo and Anderson, 2015).

The equation is given in the below :

3 Yidij
dops =

(3.1)

where
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- d= observed mean distance from the nearest point;
d;; = distance between the point i and its nearest j;

- n=number of points in the dataset.

The expected mean distance under the hypothesis of random arrangement of the points for
the considered area (Complete Spatial Randomness - CSR) can be also calculated through the

following equation:

5 0,5
dexp = Tnja (3.2)

- d= expected mean distance from the nearest point;
- n=number of points under study;

- a=the size of the area under study.

The ratio of the observed mean distance to the expected mean distance serves as the measure
of departure from randomness (Clark and Evans, 1954). This ratio is called Nearest Neighbor
Index. It is the measure of the degree to which the observed distribution departs from random

expectation with respect to the distance to nearest neighbor.

It can be evaluated as :
difference : d = dpps — dexp (3.3)
ratio: 7 = dops/dexp (3.4)

Depending on the value of this index, three different "structures" of points (Point Patterns)

can be obtained, as shown in Tab. 3.1 and in Fig. 3.6:

1. Clustered: many points are concentrated close together, and large areas that contain
very few, if any, points (attraction);

2. Random: any point is equally likely to occur at any location and the position of any
point is not affected by the position of any other point;

3. Uniform (regular/dispersed): every point is as far from all of its neighbors as
possible(repulsion).
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Table 3.1: Possible values of the NN index and difference

Pattern d r
Clustered <0 <1
Random =0 =1
Uniform >0 >1

s v . .
. @ . T
L . . . P .o @ . . ."‘. ] ® P
. - L . - - & - " "
. 4 é . . - - . )
Dispersed -« =  Clustered

Fig 3.6 : Diagram showing patterns of dispersion to being clustered (Loo and Anderson, 2015)

This process leads to the identification of a structure of point patterns. However, the
usefulness of any measure of spacing will be increased if its reliability can be ascertained (Clark
and Evans, 1954). Therefore, it is better to conduct a statistical test that gives information

about the level of statistical significance for significant patterns in the data.

The statistical test begins by identifying the problem in terms of a hypothesis about the
parameter under study. The hypothesis to be tested is called the null hypothesis (Ho). In the
present study, the null hypothesis predicts that the events exhibit complete spatial
randomness (CSR) either of the features themselves or of the values associated with those
features . The z-scores and p-values gives an information about whether you can reject that
null hypothesis or not. Both z-scores and p-values are associated with the standard normal

distribution.

Z-scores are standard deviations, which provide a numerical measure among the observed
value and the expected value related to the null hypothesis; specifically, the extent of the
observed value differs from the expected one. The value of the Z-score can be determined

with the formula given below:

dops—d
Z — obs—%exp (3'5)
SE

where d,,s is the mean “observed” distance from the nearest point, cfexp is the mean

"expected" distance from the nearest point and, SE is the standard error of the mean distance
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to the nearest neighbor in a randomly distributed population of the same density as that of

the observed population. The value of SE can be calculated from the formula given below:

0,26136
SE =

= (3.6)

where n is the number of observations and a is the surface of the study area.

The p-value is a probability. For the pattern analysis tools, it is the probability that the
observed spatial pattern was created by some random process. When the p-value is very
small, it means it is very unlikely (small probability) that the observed spatial pattern is the
result of random processes, so the null hypothesis can be rejected. The range of the z-score
and p value depend on the confidence level. Typical confidence levels are 90, 95, or 99

percent.

Table 3.2: The criteria of z-score, p-value, and confidence level (Shi et al., 2019)

z-score p-value Confidence Level
<-1.65or >1.65 <0.10 90%
<-1.96 or >1.96 <0.05 95%
<-2.58 or >2.58 <0.01 99%

For a level of 95% confidence, the limits of the interval are £ 1.96; by values falling outside of
this range we have:
e z-score > 1.96: dispersed pattern,

e z-score <-1.96: clustered pattern.
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Fig 3.7 : Average nearest neighbor analysis indicates a clustering pattern based on the z-score and p-
value(https://pro.arcgis.com/en/pro-app/2.8/tool-reference/spatial-statistics/what-is-a-z-score-
what-is-a-p-value.htm)

Fig. 3.7 shows the trend of the parameter r that is computed by the ratio between the
observed and expected NN distance under the hypothesis of random spatial distribution (CSR).
The yellow band is relative to the confidence interval that declares the randomness in the
distribution of the point patterns. Thanks to the contribution of the NN index and the
statistical test, it is possible to identify point patterns that are clustered, random, or uniformly

spaced as seen in Fig. 3.8.

Nearest Neighbor Ratio: 0,443461 Significance Level Critical Value
z-score: -56,015641 (”‘:";) (‘“;";:3
X <2
p-value: 0,000000 0.05 ; -2.58 - -1.96
010 [ -1.96--1.65
- [ -1.65-1.65
010 3 1.65-1.96
005 @ 1.96-258
0.01 B >258
] P

Significant Significant

Clustered Random Dispersed

Fig 3.8 : The output of Nearest Neighbor Analysis from ArcGIS Software for the 2015-2016 crash data
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3.3.1.2 G and F functions

G and F functions are an extension of the Nearest Neighbor approach. The G function,
sometimes called the refined nearest neighbor, is the simplest. G function uses the same
information contained in NN analysis, but instead of summarizing it using the mean, we
examine the cumulative frequency distribution of the nearest-neighbor distances (O'sullivan
and Unwin, 2010). Formally, this is defined as

#(dmin(si)<d)
Gy = +

(3.7)

where the value of G for any particular distance, d, tells us what fraction of all the
nearest-neighbor distances in the pattern is less than d. An explanatory example of this

method is shown in Fig. 3.9.

The information related to Fig 3.9 in above:
(a) the nearest neighbor for a small point pattern. The nearest neighbor to each event lies
in the direction of the arrow pointing away from it.
(b) calculations for the NN distances for the point pattern shown in (a).

(c) the G function for the point pattern of (a) and (b).

o Point NN D, [m] :ﬁ "
I‘F 3 o 1 10 25.59
\ - — —0 .|| .
Ms o 3 5 211
N\, 10 [ 4 8 9.00 | and
® - '
A o
w8 (7 3500) ..l
== 10 melers 2O—g)7 12 7 24.81 ° . .
] 10 20 30 40
(a) (b) (c) Distance, d

Fig 3.9 : Application of NN analysis and G function (O'sullivan and Unwin, 2003)
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The shortest nearest-neighbor distance is 9.00 between events 4 and 8. Thus, 9.00 is the
nearest-neighbor distance for two events in the pattern. Since 2 out of 12 is a proportion of
2/12=0.167, G(d) at distance d=9.00 has the value 0.167. The next nearest-neighbor distance
is 15.64, for event 2, and three events have nearest neighbors at this distance or less. Since 3
out of 12 is a proportion of 0.25, the next point plotted in G(d) is 0.25 at d=15.64. As d
increases, the fraction of all nearest-neighbor distances that are less than d increases. This
process continues until we have accounted for all 12 events and their nearest-neighbor

distances.
The shape of this function tells us a lot about how events are spaced in a point pattern:

e if events are closely clustered together, G increases rapidly at short distances;
e if events tend to be evenly spaced, G increases slowly up to the range of distances at

which most events are spaced, and only then increases rapidly.

The F function is closely related to G but may reveal other aspects of the pattern. Instead of
accumulating the fraction of nearest-neighbor distances between events in the pattern, point
locations anywhere in the study region are selected at random, and the minimum distance
from these locations to any event in the pattern is determined. The F function is the
cumulative frequency distribution of shortest distances from random points to nearest events.
If {pl. . .pi...pm}is a set of m randomly selected locations used to determine the F function,

then formally

#[dmin(pi,S)<d]
Fd - n

(3.8)

where dmin(pi; S) is the minimum distance from location pi in the randomly selected set to any

event in the point pattern S (O'sullivan and Unwin, 2010).
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Fig 3.10 : Random points (shown as crosses) for the same point pattern as before and the resulting F
function (O'sullivan and Unwin, 2003)

One advantage of the F-function over the G function is that we can increase the sample size
of random points to get a smoother cumulative frequency curve. The shape of the F function

also indicates the type of spatial arrangements of events:

e if events are closely clustered together, F-function increases slowly at short distances
but more rapidly at longer distances. This is due to a good portion of the study area
being empty. Therefore, many random point locations are long distances from the
nearest event in the pattern.

e if events tend to be evenly spaced, F-function rises quickly at short distances as many
random points are placed in proximity of the observed events. In this case, most

random point locations are relatively close to an event.

The difference between the F and G functions is that they behave differently for clustered and
evenly spread patterns. While G shows how close together events in the pattern are, F relates
to how far events are from arbitrary locations in the study area. So, if events are clustered in
a corner of the study region, G rises sharply at short distances because many events have a
very close nearest neighbor. The F function, on the other hand, is likely to rise slowly at first,
but more rapidly at longer distances, because a good proportion of the study area is empty,
so that many locations are at quite long distances from the nearest event in the pattern.

Fig 3.11 is an example to show the relationship between G and F functions.
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Fig 3.11 : Comparing F and G functions for clustered and evenly distributed data (O'sullivan and
Unwin, 2003)

In Figure 3.11, the upper example is clearly clustered. As a result, most events (around 80% of
them) have close near neighbors, so that the G function rises rapidly at short distances up to
about 0.05. In contrast, the F function rises steadily across a range of distances. The lower
example is evenly spaced, so that G does not rise at all until the critical spacing of about 0.05,
after which it rises quickly, reaching almost 100% by a distance of 0.1. The F function again
rises smoothly in this case. Note that the horizontal scale has been kept the same in these
graphs. The important difference between the two cases is the relationship between the

functions, which is reversed (O'sullivan and Unwin, 2003).

3.3.2. Density-based Methods

Density-based methods allow assessing high densities in certain areas for identifying HRL.
Cluster location identification is useful to take action based upon the location of one or more
closers. In this way, it is possible to explain collisions as being a consequence of shared
common characteristics in the surrounding area. In the present study, Kernel Density

Estimation (KDE) is used.
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3.3.2.1. Kernel Density Estimation(KDE)

Kernel Density Estimation is an exploratory method to identify the location of clusters as areas
of high local event densities. The concept is that the event pattern has a density at any location
in the study region and not just at locations where there is an event. This principle results in
continuous surfaces of density estimates. Kernel density estimation methods have a variety
of applications including exploratory point data analysis, point data smoothing and, the

creation of continuous surfaces from point data.

KDE estimates the event density by counting the number of events in a region, called "kernel”,
and it is centered at the location where the estimate is to be made. KDE allows to identify the
location of point clusters (areas with a high density of events). In road safety research, kernel
density estimation is an interpolation technique, which is a method for generalizing collision
locations (points) to an entire area (Silverman 1986; Bailey & Gatrell, 1995). In this way, the

collision point data interprets in the form of a density surface.

Kernel density estimation involves placing a symmetrical surface over each point and then
evaluating the distance from the point to a reference location based on a mathematical
function and then summing the value for all the surfaces for that reference location. This

procedure is repeated for successive points (Loo and Anderson, 2015).

This method therefore allows to place a kernel over each observation, and summing these
individual kernels gives us the density estimate for the distribution of collision points

(Fotheringham et al., 2000).

The KDE equation is (Fotheringham et al., 2000):

fu,v) ==Y, K(% (3.9)

nh?2 1=

— (u, v) is the density estimate at the location (u, v),
— nisthe number of observations,

— his the bandwidth or kernel size,

— Kis the kernel function,

— djis the distance between the location (u, v) and the location of the j-th observation.
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The Crashes within the kernels are weighted based on their Euclidean distance from the kernel
center, and the resulting density value is assigned to that center (Mohaymany et al., 2013).
The distance is weighted according to a kernel function which was displayed by K in Equation
(3.9). KDE functions are used to weigh nearby events more heavily than distant ones in
estimating the local density. Many different kernel density functions exist. Their symmetric
functions are centered at zero with an area underneath that equals one. The units along the
horizontal axis of kernel density functions are multiples of bandwidth.

The kernel function K (e.g., uniform, triangle, quartic, etc.) as shown in Fig 3.12. defines the
shape of the humps to be placed over individual observations, and the bandwidth controls
their widths. In this way, the resulting density is smooth and is a probability density. The
continuous surface will be created and, it is possible to obtain the density anywhere in the
study area, not only at the locations where the observed data have been sampled. Typically,
we compute f(x,y) at the mesh points of a rectangular grid. The choice of the K function does
not significantly affect the result (Loo and Anderson, 2015). Quartic (biweight) K Function is

used in the case study.
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Fig 3.12 : Different Kernel functions with the same reference
system(https://upload.wikimedia.org/wikipedia/commons/4/47/Kernels.svg)
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Another important parameter that should be defined is the bandwidth. Most of the kernel
density functions are bounded which means that they count only events within a given
threshold distance from the location where the density estimate is made. This threshold
distance is called the bandwidth. In other words, the bandwidth is the search radius within
which intensity values for each point are calculated. Points are weighted, where collisions
closer to the kernel center contribute a higher value to the cell’s intensity value of the cell
(Ratcliffe, 1999).

The kernel method divides the entire study area into predetermined number of cells and
draws a circular neighborhood around each feature point (the collision) and then a
mathematical equation is applied that goes from 1 at the position of the feature point to 0 at
the neighborhood boundary. If the radius is increased, all other things being equal, the kernel
becomes flatter. This kernel function is applied to each collision point, and individual cell
density value is the sum of the overlapping kernel values over that cell divided by the area of
the search radius (Loo and Anderson, 2015).

Large values of h result in an overlap of surfaces and mask the structure of the data; small
values produce a surface characterized by the presence of numerous peaks and hard to
interpret (Gutierrez-Osuna, 2004). Figure 3.13 reports the example of the one-dimensional
case, which helps to understand the strong dependence of the result on the value of the

parameter h.

The choice of kernel is relatively unimportant it is a continuous function in which the weights
decrease as distance increases; the selection of an appropriate bandwidth is much more
important (Brunsdon et al., 1996; Fotheringham et al., 1997b; 1999). Okabe et al., (2009), as
well as Porta et al., (2009), suggest a range of values for h between 100 and 300 m with respect
to urban areas, based on the average length of arcs in the road network. Therefore, h strongly
depends on the case study.

While the K function is chosen as Quartic (biweight), the bandwidth (h) is defined as 150 m in
the case study. 100 meters of bandwidth is enough to assess the locations on the scale of the
individual intersections. However, this value does not provide a correct solution in the
presence of widespread problems in larger areas, where characterized by a high number of
accidents such as main squares. Therefore, 150 meters of bandwidth is chosen. By selecting

this value, not only intersections but also squares are identified.

35



(xk h=1.0

0,025

0.02

h=10.0

= 0015

Py oglX

0.01

0.005 IR ——— et

Fig 3.13 : Kernel density function (blue); the density functions of every single point(red) are
cumulated with each other to obtain the estimate of the final density. The amplitude of the
density functions of every single point (bandwidth) can be narrow (two upper images) or wide
(two lower images) and greatly affects the density estimate of the final density (Gutierrez-
Osuna, 2004).

Fig 3.14. shows some outputs from QGIS software relating to the motorcycle users for the
period 2017-2019 as an example. Fig 3.14 (a) illustrates the map including traffic collisions for
motorcycle users in the years from 2017 to 2019. The output of the KDE method is given in
Fig 3.14 (b) as a heat map. After this step, the subdivision of the density band was determined

based on the information given below by using the map statistics :

e values lower than the average value (M);
e M+ 2 *standard deviations (SD);

e M+4*SD;

e M+6*SD;

e values greater than M + 6*SD.

The location of traffic collisions where the density values are higher than M + 6*SD is identified

as hazardous road locations(HRL) as shown in Fig 3.14 (c).
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Fig 3.14 : (a) Traffic collisions for motorcycle users in the period 2017-2019, (b) The output of
the KDE method for motorcycle users in the period 2017-2019, (c) Hazardous road locations
(HRL) for motorcycle users in the period 2017-2019
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4. RESULTS

Chapter 4 shows the results of the descriptive statistics and all analyses. Chapter 4.1 gives the
descriptive statistics results of the crash database for the years from 2006 to 2019. Section 4.2
shows the results of clustering analysis by using Nearest Neighbor Analysis, G Function, and F
Function while Section 4.3 indicates the identification of the hazardous road locations(HRL) by
using the Kernel methodology for all VRU and related sub-categories (pedestrians, cyclists,

moped and motorcycle users respectively).

The spatial distribution analysis of the accidents was carried out by using the distance-based
and density-based methods as explained in Chapter 3.3. All analyzes are applied for VRU of
given periods below and additionally VRU sub-categories (pedestrians, velocipedes, mopeds,

and motorcycles).

In the previous study, analyzes were carried out for 2-3 years periods. The last three years are
included in the study as 3 years period: 2006 — 2007, 2008 — 2009, 2010 — 2011, 2012 — 2014,
2015 -2016, 2017 — 2019.

4.1. Results of Descriptive Statistics of crash database

The Italian National Institute of Statistics (ISTAT) provided the official database of traffic
collisions. Firstly, the crash data relating to regional (Piedmont), provincial (Turin), and
municipal (Turin) levels was evaluated by using descriptive statistics. The crash data of Turin

was then prepared and organized to carry out a detailed analysis.

As it can be seen in Figure 4.1, although there are fluctuations in some years, it is a clear that
there is a decreasing trend in the number of accidents from 2006 to 2019 for all levels. 51.86%
of the traffic accidents in the Piedmont region belong to the Province of Turin while it is
28.42% at the municipality level for the period 2006 to 2019. The incidental data relating to

the three different scales have shown in Fig. 4.1.
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Figure 4.1 : The number of accidents based on Region, Province, and Municipality, from 2006 to 2019
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The trend shown in the graph in Fig. 4.2 is consistent with the trend of a reduction in accidents

observed at national level in recent years.
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Figure 4.2 : Road accidents resulting in death or injury, killed and injured, from 2001 to 2020,
absolute values (ACI-ISTAT, 2020)
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A descriptive statistic was carried out to analyze the road accidents in the municipality of Turin
as hourly, daily, and annual distributions. The annual distribution is summarized in Fig. 4.3. As
reported in previous paragraph, a decreasing trend is observed over the years, with a
reduction in accidents from 2006 to 2019 of approximately 34.80% (from 4560 to 2973
accidents). The daily distribution of the number of accidents in the municipality of Turin is
given in Table 4.1. According to the percentage distribution, it is determined that the highest
accident rate from 2006 to 2019 is on Thursday, Friday, or Saturday that are indicated with red

color as in the table below:
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Figure 4.3 : Annual distribution of accidents in Turin, from 2006 to 2019

Table 4.1 : The daily distribution of the number of accidents as a percentage(%), from 2006 to 2019 /
Municipality (TURIN)

Day MONDAY | TUESDAY | WEDNESDAY | THURSDAY | FRIDAY | SATURDAY | SUNDAY | TOTAL
% % % % % % % %
2006 14.45 13.42 14.14 14.93 15.15 15.37 12.52 100
2007 14.08 14.19 13.61 16.06 16.20 13.85 12.00 100
2008 14.35 15.26 13.65 13.95 16.54 15.15 11.11 100
2009 14.61 13.35 15.34 15.01 15.50 13.89 12.30 100
2010 14.85 14.32 14.64 14.32 16.33 14.45 11.25 100
2011 13.34 14.99 14.41 14.97 16.45 14.80 11.05 100
2012 15.69 14.50 15.40 14.62 15.54 13.88 10.36 100
2013 14.22 14.16 14.69 15.07 15.60 14.56 11.71 100
2014 13.88 14.93 15.52 15.83 15.27 13.72 10.84 100
2015 13.88 13.59 15.52 15.78 14.86 14.57 11.79 100
2016 14.77 15.57 15.10 14.90 15.40 13.71 10.55 100
2017 13.47 15.06 14.02 16.75 15.71 13.99 11.00 100
2018 13.61 14.98 14.25 16.42 15.85 12.91 11.98 100
2019 15.20 15.71 14.19 15.07 15.30 13.19 11.34 100
TOTAL 14.32 14.52 14.56 15.23 15.72 14.20 11.46 100

40



Fig. 4.4 shows the daily distribution from 2006 to 2019. The day characterized by the highest
number of accidents is Friday (7,700) while the least critical is on Sundays (5,614). Regarding
the hourly distribution, shown in Fig. 4.5, there is a peak in correspondence of the time slot
18-19, with 3,490 accidents. There are high values, smaller but still significant, in the time slot
8-9 and 9-10. These values are consistent with critical time slots for mobility regarding entry

and exit from work and opening/closing activities.
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Figure 4.4 : Daily distribution of the number of accidents in Turin from 2006 to 2019
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Figure 4.5 : Hourly distribution of the number of accidents in Turin, from 2006 to 2019
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From Figure 4.6, it was determined that the highest number of accidents for all years was

reached at 17-18 or 18-19 time slots.

Records including at least one of the field codes listed above were identified in the database
as “VRU”. By filtering this information, a database is obtained by 20,770 records (42.40% of
total accidents in the municipality of Turin). The breakdown of the number of accidents over
fourteen years is shown in Tab. 4.2. while their trend is shown in Fig. 4.7.
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Figure 4.6 : The maximum number of accidents based on time slot &years in Turin

Table 4.2 : Total number of accidents and, the number of accidents involving at least one vulnerable
user for the Municipality of Turin, from 2006 to 2019

Year Accidents_Total Accidents_VRU % VRU
2006 4,560 1,835 40.24
2007 4,432 1,817 41.00
2008 3,979 1,624 40.81
2009 3,723 1,575 42.30
2010 3,729 1,539 41.27
2011 3,575 1,473 41.20
2012 3,358 1,421 42.32
2013 3,186 1,358 42.62
2014 3,228 1,439 44.58
2015 3,163 1,429 45.18
2016 3,013 1,344 44.61
2017 3,081 1,354 43.95
2018 2,997 1,227 40.94
2019 2,973 1,335 44.90
Total 48,997 20,770 42.40
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Figure 4.7: Total number of accidents and, the number of accidents involving at least one vulnerable
user for the municipality of Turin, from 2006 to 2019

The decrease in the total number of accidents does not correspond with the increasing trend
in VRU. The data shows a slight increase in the percentage of the total number of accidents
that involve at least one vulnerable user compared to the total accidents, from 40.24% in 2006
to around 44.90% in 2019. Fig. 4.8 and Fig. 4.9 show the number of injured and dead VRU over
fourteen years. There are some fluctuations in the number of injured and dead VRU but it is

clear that there is a decrease from 2006 to 2019.
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Figure 4.8 : The total number of injured VRU from 2006 to 2019
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Figure 4.9 : The total number of dead VRU from 2006 to 2019

The number of accidents based on the road user categories is given in the Table 4.3 below in
more detail from 2006 to 2019. The database shows that some accidents involve more than
one VRU. Therefore, there is one additional row in the table to indicate the number of
accidents between VRU. The total number of accidents involving VRU is computed by
subtracting the total number of accidents between VRU’s from the total number of accidents
involving pedestrians, velocipedes, mopeds, and motorcycles. It is seen from the table that
the number of accidents involving velocipedes increases approximately 50% from 2006 to

2019 while there is a decreasing trend for other VRU over fourteen years.
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Table 4.3 : The number of accidents based on road user categories in Turin from 2006 to 2019

Road User Category | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | Total
Pedestrians 666 | 683 | 607 | 606 | 632 | 538 | 527 | 555 | 620 | 566 | 587 | 551 | 535 | 543 | 8216
Velocipedes 171 | 210 | 168 | 142 | 188 | 203 | 255 | 245 | 268 | 265 | 234 | 257 | 206 | 256 | 3068
Mopeds 269 | 239 | 212 | 187 | 131 | 133 | 96 71 59 71 47 51 44 56 | 1666
Motorcycles 800 | 766 | 698 | 699 | 632 | 648 | 597 | 544 | 549 | 588 | 520 | 538 | 486 | 525 | 8590
Between VRU's 71 81 61 59 44 49 54 57 57 61 44 43 44 45 770
Total VRU 1835 | 1817 | 1624 | 1575 | 1539 | 1473 | 1421 | 1358 | 1439 | 1429 | 1344 | 1354 | 1227 | 1335 | 20770
Other road users 2725 | 2615 | 2355 | 2148 | 2190 | 2102 | 1937 | 1828 | 1789 | 1734 | 1669 | 1727 | 1770 | 1638 | 28227
Total- All road users | 4560 | 4432 | 3979 | 3723 | 3729 | 3575 | 3358 | 3186 | 3228 | 3163 | 3013 | 3081 | 2997 | 2973

Tab. 4.4 shows the distribution of the number of accidents between vulnerable road users in
Turin from 2006 to 2019. This table indicates the individual distribution of sub-categories of
vulnerable road users. The total number of accidents is evaluated based on sub-categories,
but it is noted in the table that there are 770 accidents between vulnerable road users.

Table 4.4 shows that 78.02% of the accidents involving VRU includes motorcycles and
pedestrians while velocipedes and mopeds are at 21.98%. Motorcycle users and pedestrians
have the highest risk of injury on the roads. Fig. 4.10 indicates the the number of injured

people relating to VRU categories over the fourteen years.

The data relating to the number of accidents involving VRU is consistent with the the data
about injured people based on VRU categories. Fig 4.10 highlights that the number of injured
velocipede users rises to approximately 46.4% from 2006 to 2019 while it decreases for other
VRU categories. Moreover, the data shows how the road enviroment causes health risk for

pedestrians and motorcycle users.

Table 4.4 : The distribution of the number of accidents between vulnerable road users in Turin

Vulnerable User Category Number of accidents % VRU
Pedestrians 8216 38.14
Velocipedes 3068 14.24
Mopeds 1666 7.74
Motorcycles 8590 39.88
Total 21,540

The number of accidents between VRU's is 770.
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Figure 4.10: The distribution of the number of injured people based on VRU categories in Turin over

fourteen years

Fig. 4.11 shows the data about vulnerable road users who lost their lives due to traffic crashes

in Turin from 2006 to 2019. Here again, we can see that traffic accidents cause the death of

pedestrians and motorcycle users the most among VRU.
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Figure 4.11 : The distribution of the number of dead people based on VRU categories in Turin over

fourteen years
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4.1.1. Final Database

All the operations described in the previous paragraphs led to the creation of the crash
database of VRU containing 16,079 records relating to 11 years 2006-2016 and 3,735 records
relating to 3 years 2017-2019 for the Municipality of Turin with at least one vulnerable user

involved; all these accidents have geographic coordinates (latitude, longitude) WGS84.

The prepared databases have been called “DB 2006 _2016_VRU (TO)_revised” and “DB
2017_2019_VRU (TO)_revised”.

The following paragraph describes in detail all the operations that led to the processing of the
final crash database, starting with the regional database provided by ISTAT for the period
2006-2019.

This procedure can be summarized as follows:

1. Regional database - Piedmont, consisting of 172,416 records,

2. Filtering of only provincial incidents- Turin (To), equal to 89,413 records,

3. Filtering of only municipal incidents, equal to 48,997 records,

4. Identification of only the accidents in which the presence is found of at least one
vulnerable user, equal to 20,770 records*,

5. selection of only the Geo localizable records, obtaining a database final consisting of
19,814 records.

Note: *775 of 16,854 accidents for the period 2006-2016 and 181 of 3,916 accidents for the
period 2017-2019 are removed from the crash database of VRU.

4.2. Clustering Analysis

Clustering analyses are performed through distance-based methods which are Nearest
Neighbor Analysis, G Function, and F Function. Analyses are carried out to verify the clustering

of the spatial pattern of points for six study periods relating to all VRU categories.
4.2.1. Nearest Neighbor Analysis
The NN index and z-score can be determined using the "Nearest Neighbor Analysis" tool of

ArcGlIS, which allows to determine the Nearest Neighbor statistics of the set of points selected,
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allowing us to evaluate the level of aggregation of the points (Chapter 3.3.1.1 Nearest

Neighbor Analysis).

Fig 4.12 shows the interface of Nearest Neighbor analysis in ArcGlIS. Once point layers are
created by using an excel file relating to the location of accidents, they can be used as input

features and processing extent can be defined by Turin map.

NN index can be evaluated as a difference or ratio. In this case, NN index is a ratio (r<1:
clustered, r=1: random, r>1:uniform). For a level of 95% confidence, the limits of the interval
are + 1.9. By values falling outside of this range; z-score > 1.96 refers to dispersed pattern and
z- score <-1.96 refers to clustered pattern. Such result is corroborated by the high negative
value of the Z-score. Table 4.5 shows the results of Nearest Neighbor Analysis for all vulnerable

road users(VRU).

5 — O >
Input Feature Class
[17_19_VRU_PC =
Distance Method
[ ECLIDEAN_DISTANCE -

Generate Report (optional)

Area (optional)

¥ Workspace y
¥ Qutput Coordinates

A Processing Extent
Extent
Same az layer carta_sintesi_geo_PC W E.
Top
| 4999391,491924 |
Left Right
388000,320535 | [ 403949, 763439
Bottom

| 4984596,577439 |

Snap Raster

Cancel Show Help ==

QK Cancel Environments. .. Show Help ==

Fig 4.12 : Interface of Nearest Neighbor Analysis in ArcGIS
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Tab 4.5 : The results of Nearest Neighbor Analysis for all VRU

All VRU

Study Periods NN Index Z-score
2006-2007 0.387 -67.99
2008-2009 0.419 -60.50
2010-2011 0.435 -57.32
2012-2014 0.398 -74.49
2015-2016 0.437 -56.70
2017-2019 0.380 -72.54

As can be seen, the NN indexes of the six study periods show very high values less than 1 and

the respective Z-scores underline the high statistical significance of such results. Therefore,

we confirm what was previously expected that accidents are concentrated mainly at specific

points. The reports of Nearest Neighbor analyses are shown in Annex I.

Table 4.6 shows the results of Nearest Neighbor Analysis for each sub-category of vulnerable

road users(VRU). It can be seen from the results that all point patters of sub- categories of

VRU are clustered for the six study periods.

Tab 4.6: The results of Nearest Neighbor Analysis for sub-categories of VRU

PEDESTRIANS VELOCIPEDES
Study Periods NN Index Z-score Study Periods NN Index Z-score
2006-2007 0.532 -31.77 2006-2007 0.657 -12.23

2008-2009 0.503 -32.28 2008-2009 0.748 -8.13

2010-2011 0.549 -28.79 2010-2011 0.653 -12.55
2012-2014 0.533 -36.78 2012-2014 0.600 -21.06
2015-2016 0.579 -27.36 2015-2016 0.680 -13.67
2017-2019 0.479 -39.62 2017-2019 0.627 -18.77

MOPEDS MOTORCYCLES
Study Periods NN Index Z-score Study Periods NN Index Z-score
2006-2007 0.650 -14.56 2006-2007 0.510 -35.42
2008-2009 0.670 -11.76 2008-2009 0.472 -35.99
2010-2011 0.701 -8.93 2010-2011 0.509 -32.29
2012-2014 0.762 -6.83 2012-2014 0.484 -40.32
2015-2016 0.799 -4.18 2015-2016 0.539 -29.27
2017-2019 0.944 -1.28 2017-2019 0.471 -38.51
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4.2.2. G Function

The "G function" algorithm in the “R scripts” section of the QGIS was used to determine the G
function. Figure 4.13 shows the outputs of the G function relating to the six study periods
considered for all VRU. The x-axis shows the nearest-neighbor distances while the y-axis
illustrates the cumulative frequency distribution of the nearest-neighbor distances (G-
function). While the black line represents the “observed” G function, the red dotted line
indicates the theoretical G function.

The value of G for any particular distance, d, tells us what fraction of all the nearest-neighbor
distances in the pattern is less than d. The default algorithm sets the maximum NN distance
equal to 140 m; in correspondence with this value, we have that 100% of the NN distances are
less than it. Then, the different distances are normalized based on this maximum value.

It is worth noting that the curve relating the actual structure of the points ("observed" G-
function) seems above the theoretical curve in all six periods analyzed for all VRU. As it can be
seen from the figures below the G function rapidly increases over short distances. It means
that collision events are closely clustered together in specific locations.

It is interesting to highlight that there is a "jump" in the trend of the observed G function
relating to the years from 2006 to 2011 and 2017 to 2019. This situation is due to the
geolocation procedure based on the GPS Visualizer's Address Locator adopted for the years
before 2011 and from 2017 to 2019. In this case, some incidental events relating to these years
were assigned to the same coordinates, although they may have occurred at different points
on the road network. It causes a substantial number of NN distances that are equal to zero.
This situation precisely causes a sudden increase in the G function near the origin of the axes.
Traffic collisions with the geographic coordinates provided directly by the ISTAT database give
more precise results.

The maximum NN distance for the period 2012-2014 and 2017-2019 is 100 m which is less
than the maximum NN distance among all periods highlighted as 140 m above. This is basically
due to three-year periods. These periods have more traffic collisions than others and,
therefore, the distance between collision events decreases and, at the same time, NN

distances also decrease.
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The following figures show the output graphs of the six study periods considered for
pedestrians. The default algorithm sets the maximum NN distance equal to 200 m; in
correspondence with this value, we have that 100% of the NN distances are less than it. As it
can be seen from the figure that the curve of “observed” G function is above the curve relating

III

tothe “theoretical” G function. It indicates that collision events are closely clustered together
in specific locations.

As in the previous analysis, there is a "jump" in the observed G function relating to the years
from 2006 to 2011 and 2017 to 2019 due to the geolocation process. It is also obtained that
when the study period extends, the distance between accidents decreases since the number

of accidents relating to these periods rises. At the same time, NN distances decrease as shown

in (d) and (f) in the Figure 4.14.
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Fig 4.14 : The results of G function for Pedestrians (a) 2006-2007,(b) 2008-2009, (c) 2010-2011,
(d) 2012-2014, (e)2015-2016, (f) 2017-2019
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Figure 4.15 shows the output graphs of the six study periods considered for velocipede users.
As it can be seen from the figure that the curve of the “observed” G function is above the

III

curve relating to the “theoretical” G function. It indicates that collision events are closely
clustered together in specific locations. The maximum NN distance is equal to 500 m; in
correspondence with this value, we have that 100% of the NN distances are less than it. The
maximum NN distance is seriously high since the number of accidents is low for this road user
type. This leads to an increase in the distance between collision events. There are some
fluctuations in the outputs shown in Fig. 4.15. It is due to the low number of accidents

concerning velocipede users. So, there is a long-distance among traffic collisions and, it causes

a fluctuation in the results.
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Fig 4.15 : The results of G function for Velocipedes (a) 2006-2007,(b) 2008-2009, (c) 2010-2011,
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The following figures show the output graphs of the six study periods considered for moped
users. The results indicate that collision events are closely clustered together in specific
locations since the figure that the curve of the “observed” G function is above the curve

relating to the “theoretical” G function.

It indicates that the maximum NN distance is equal to 700 m; in correspondence with this
value, we have that 100% of the NN distances are less than it. The maximum NN distance is
seriously high since the number of accidents is low for this road user type. There are some
fluctuations in the outputs shown in Fig. 4.16., especially for the period 2017-2019. The
maximum NN distance is also obtained for this period. It means that the distance between

crashes is relatively high in this study period.
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The following figures show the output graphs of the six study periods considered for
motorcycle users. The default algorithm sets the maximum NN distance equal to 200 m; in
correspondence with this value, we have that 100% of the NN distances are less than it. As it
can be seen from the figure that the curve of “observed” G function is above the curve relating

III

tothe “theoretical” G function. It indicates that collision events are closely clustered together
in specific locations.

As in the previous analysis, there is a "jump" in the observed G function relating to the years
from 2006 to 2011 and 2017 to 2019 due to the geolocation process. It is also obtained that
when the study period extends, the distance between accidents decreases since the number

of accidents relating to these periods rises. At the same time, NN distances decrease as shown

in (d) and (f) in the Figure 4.14.
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Overall, the outputs of the G function for all VRU and related sub-categories are listed above
regarding six study periods.

It is obtained from the results that the curve relating the actual structure of the points
("observed" G-function) is above the theoretical curve in all six periods analyzed. It means that
collision events are closely clustered together in specific locations of the road network for all
VRU and related sub-categories of VRU.

Moreover, the G function is an extension of the Nearest Neighbor approach. The results of
the NN analysis should be consistent with the output of the G functions. In this case study,
the results of the G function and Nearest neighbor were compatible with each other. All

results highlight that collision events are closely clustered together.

4.2.3. F Function

The "F function" algorithm in the “R scripts” section of the QGIS was used to determine the F

function. Figure 4.18 shows the output graphs of the six study periods considered for all VRU.

The x-axis shows the nearest-neighbor distances while the y-axis illustrates the cumulative
frequency distribution of shortest distances from random points to nearest events (F-
function). While the black line represents the “observed” F function, the red dotted line
indicates the theoretical F function. F-function increases slowly at short distances but more
rapidly at longer distances. It is noted that the "observed" F-function is below the theoretical
curve in all six periods analyzed. This result indicates that the collision events are distributed
in space as a "clustered" structure which is characterized by the presence of different

aggregations in specific locations.

The maximum NN distance is 500 m and, there are no significant differences between the
results of two and three-year periods since point locations anywhere in the study area are

selected randomly.

It is also important to highlight that the F function is less sensitive to the geolocation process.
In this case, there were no significant differences in the results shown in figure 4.18 below, as

happened in the previous methodology.
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Fig 4.18 : The results of F function for all VRU (a) 2006-2007,(b) 2008-2009, (c) 2010-2011,
(d) 2012-2014, (e)2015-2016, (f) 2017-2019

The following figures show the output graphs of the six study periods considered for
pedestrians. The "observed" F-function is below the theoretical curve in all six periods

analyzed. It means that traffic collisions are clustered in specific locations of the road network.
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The maximum NN distance is 700 m and, there were no significant differences in the results

shown in figure 4.19 below, as happened in the G function methodology.
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The following figures show the output graphs of the six study periods considered for
velocipede users. The "observed" F-function is below the theoretical curve in all six periods
analyzed. It means that traffic collisions are clustered in specific locations of the road network.
The maximum NN distance is 1400 m and, it can be realized that when the number of accidents
decreases, the observed distance between collision events rises conversely. Whereas there

were no differences in the results shown in figure 4.20 below.
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Figure 4.21 shows the output graphs of the six study periods considered for moped users. The
"observed" F-function is below the theoretical curve in all six periods analyzed. It means that
traffic collisions are clustered in specific locations of the road network. The maximum NN
distance is 1500 m and, it can be realized that when the number of accidents decreases, the
observed distance between collision events rises conversely. Whereas there were no
differences in the results. The extension in the theoretical curve for the period 2015-2016 and

2017-2019 is due to the low number of traffic collisions related to moped users.
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The following figures show the output graphs of the six study periods considered for
motorcycle users. The "observed" F-function is below the theoretical curve in all six periods
analyzed. It means that traffic collisions are clustered in specific locations of the road network.
The maximum NN distance is 700 m and, there were no significant differences in the results

shown in figure 4.22 below, as happened in the G function methodology.
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The following figures show the output graphs of the six study periods considered for motorcycle u.
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Overall, the outputs of the F function for all VRU and related sub-categories are listed above
regarding six study periods. This third distance-based analysis methodology highlights how the
point structures of the different study periods are characterized by numerous aggregations, a
result witnessed by the presence of the F functions always observed below the theoretical
curves. It means that collision events are closely clustered together in specific locations of the
road network for all VRU and related sub-categories of VRU.

The F function is likely to rise slowly at first, but more rapidly at longer distances, because a
good proportion of the study area is empty, so that many locations are at quite long distances
from the nearest event in the pattern.

Unlike the G function, the F function is less sensitive to the accuracy of geolocation; in fact,
no significant differences were found for short distances as happened in the previous

methodology.

Moreover, the outputs of the F functions are consistent with the results of the NN method.
All results highlight that collision events are closely clustered together for all VRU and related

sub-categories in six time periods.

4.3. Identification of Hazardous Road locations (HRL)

This chapter introduces the results of the KDE method and the identification of hazardous

road locations (HRL). The following steps are carried out until this chapter:

e The final database was prepared and, the excel files that include the crash records and
geographic coordinates based on six study periods were created for all VRU and related
sub-categories (pedestrians, motorcycle users, velocipede users, and moped users) for
the analyses in GIS software.

e Then the Nearest Neighbor method was applied to identify spatial aggregations of the
point patterns that are clustered or uniformly spaced in ArcGIS software. It was
obtained that the collision events were closely clustered together for all VRU and
related sub-categories regarding study periods.

e After the second step, G and F functions which are an extension of the Nearest
Neighbor approach, are carried out in QGIS software. These functions were used to
verify the NN method. The outputs of the G and F functions also highlight that the

point patterns of the collision events were clustered closely.
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So, after the steps mentioned above, the KDE method was applied to identify hazardous road
locations (HRL). By applying this method, the heatmaps with the continuous surface of density
were created. In this way, we were able to detect the high local event densities in such

locations. The following steps are carried out in this chapter:

e By selecting 150 meters of the bandwidth(h) and quartic (biweight) Kernel function,
the KDE method was applied. As a result of this analysis, the heatmaps with density

bands were created.

e Each density band was subdivided based on the rule given below with the help of each

heat map statistics;
- values lower than the average value (M);
- M + 2 *standard deviations (SD);
- M + 4*SD;
-M + 6*SD;
- values greater than M + 6*SD.

e After the step above, the location of traffic collisions where the density values are
higher than M + 6*SD is identified as the critical point in the road network.
e The critical points in the road network which presented 3 out of 6 positive study

periods were identified as hazardous road locations(HRL).

The following sections show the results of the KDE analysis and hazardous road locations (HRL)

for six study periods regarding all VRU and related sub-categories.
4.3.1. VRU Overall Analysis

Firstly KDE method was applied for all VRU regarding six study periods. Fig 4.23 shows the
traffic collisions of all VRU based on the six study periods. Red dots represent each traffic
collision in the city of Turin. It is clear to see that traffic collisions are more concentrated in

urban areas than the rural areas.
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(e) (f)
Fig 4.23 : Spatial distributions of VRU collisions : (a) 2006-2007, (b) 2008-2009, (c) 2010-2011, (d)
2012-2014, (e) 2015-2016, (f) 2017-2019
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By using the maps including all VRU for six study periods, the KDE method was applied for six
study periods. As a result of the KDE method, heat maps were created. Heat maps of six study
periods are shown in Annex 6. Then, the density band of each map was rearranged based on
the rule given above with the help of each heatmap statistic. After this step, the location of
traffic collisions where the density values are higher than M + 6*SD is identified as the critical

point in the road network.
Critical points for all VRU from 2006 to 2019 are extracted as given below (Fig. 4.24).

The critical points for all VRU were analyzed related to each study period and, the number of
accidents was determined for each identified point. Firstly, the results were obtained for the
period related to years from 2006 to 2007 as shown in Fig 4.25. “Piazza Vittorio Veneto”
(accident no:5) was the most critical location for all VRU in the 2006-2007 period. There has
been a total of 26 collision events in this location. Another point should be mentioned is

“Corso Vittorio Emanuele 1l” that is close and parallel to “Piazza Vittorio Veneto”.

s o
. ik
&
t. .
a9
|
e ¢
£
.‘. ..
] & . L ]
® Y.
bt
3
¢ *
o
- -

Fig 4.24 : All critical points for all VRU, from 2006 to 2019 (red dots represents the traffic collisions)
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It can be concluded that this area was much more critical than others for all VRU in this period.
There was a total of 20 traffic collisions for an accident no 3 (intersection in corso Regina
Margherita and corso Potenza) and 4 (intersection in corso Peschiera and corso Trapani) that

are located in the same corridor.
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Fig 4.25 : Critical points for VRU, for the period 2006-2007 (red dots represents the traffic collisions)

The following figure shows the critical points for all VRU in the period 2008-2009. “Piazza
Rivoli” (accident no:4) was the most critical location for all VRU in the 2008-2009. There has
been a total of 15 collision events in this location. It can be also highlighted that accident no 2
(intersection in corso Regina Margherita and corso Potenza) and 6 (intersection in corso

Peschiera and corso Trapani) are in the same corridor with Piazza Rivoli.
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Fig 4.26 : Critical points for VRU, for the period 2008-2009(red dots represents the traffic collisions)

Fig 4.27 shows the critical points for all VRU in the period 2010-2011. It is realized that critical
points were close to each other in this study period. As in the previous period, “Piazza Rivoli”
(accident no:7) was the most critical location for all VRU in 2010-2011. There has been a total
of 14 collision events in this location. Moreover, accident no 1 (intersection in corso Regina
Margherita and corso Potenza) and 2 (intersection in corso Lecce and corso Claudio Appio)
supported this location with a total of 20 traffic collisions. It can be also seen that the accidents
in “Piazza Rivoli” were in the same corridor as the accidents in corso Vittorio Emanuele Il

(accidents no 9, 10, and 11).
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Fig 4.27 : Critical points for VRU, for the period 2010-2011 (red dots represents the traffic collisions)

The following figure shows the critical points for all VRU in the period 2012-2014. Generally,
the critical points were detected in the squares of the city for this period. “Piazza Rivoli”,
“Piazza Lorenzo Bernini” and “Piazza Statuto” are in the same corridor and, a total of 52
accidents occurred in these squares for the given study period. “Piazza Vittorio Veneto” ( a
total of 24 collision events for all VRU) was the most critical point based on the number of
accidents in this study period. The number of accidents is relatively high since this period

includes three years of crash records.
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13 | Via Guido Reni, Via Paclo Gaidamo C}

Fig 4.28 : Critical points for VRU, for the period 2012-2014 (red dots represents the traffic collisions)

Figure 4.29 shows the critical points for all VRU in the period 2015-2016. “Piazza Rivoli” was

the most critical point with a total of 18 collision events in this period. It can be seen from the

figure that “Piazza Rivoli” is in the same corridor with accidents no 6, 7, and 10 while also

crossing with “Piazza Lorenzo Bernini” in another direction.
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2015-2016 / VRU
Critical Points

12
- 2
g 2015-2016
The
3 4
L ® E Mo Location of the actident nul:fber
9 E 7 | | |accidents |

™y 8 . 1 | Corso Mortara/ Via Livorno(4), Via Orvieto{4) | 3
* 10 :__g___g_griqziﬁg Cesare, Corso Novara 12
> | 3 | Piazza Rivoli |18
Piazza Lorenzo Bernini { Corso Franciz, Corso Alessandro 15

| Tassoni |5
: 5 | Piazza XVl Dicembre | 10

11 | & | Corso Vitterio Emanusle Il Corse Castelfidarde | £l
- | Corso Vittorio Emanuele Il / Corso Duca Degli Abruzzi 3}, 10

[Corso Vinzaglio|7) 1)

Corzo Castelfidardo, Corso Peschiers, Corso Einzudi Luigi, | 1

| Corso Mediterraneo |

|9 | Mi=a Monginevra, Vis de Francesco Sanctis | 7

| 10  Corsc Moncalieri, Corso Fiume | 7

| Piazzale San Gabriele di Gorizia [ Corso Unione Sovietica, | R
| 1 Via Filadelfiz |

Fig 4.29 : Critical points for VRU, for the period 2015-2016 (red dots represents the traffic collisions)

The following figure shows the critical points for all VRU in the period 2017-2019. Generally,
the critical points were detected in the squares of the city for this period. “Piazza Rivoli”,
“Piazza Lorenzo Bernini” and “Piazza Statuto” are in the same corridor and, a total of 45
accidents occurred in these squares for the given study period. Piazza Rivoli is in the same
corridor with accident no 6 (intersection in corso Vittorio Emanuele Il and corso Castelfidardo).
There was a total of 30 traffic collisions in this corridor. The number of accidents is relatively

high since this period includes three years of crash records.
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2017-2019 / VRU
Critical Points

1
L]
Wil e
L S
5 6
e % 7 2017-2019 .
? The
2 Y number
No Location of the accident of
8 | | accidents |
9 * 1  Piazza Generale Antonio Baldissera | 17
* 2 Piazza Statuto | 13
3 | Piazza Lorenzo Bernini | 14
4  |Piazza Rivoli |18
5 Corso Peschiers, Corso Trapani o o | 0 |
Corso Vittorio Emanuele Il f Corso Castelfidarda|8), =
& [Corsa Inghilterra(4) | 1
7 | Via Mizza / 1(2},2{1), 3(1), 4(3), 5(2}, Via San Pia V(3] | 12
8  Corsc D' Azeglic Massimo, Viz Francesco Petrarcs | 5
9 Corso Orbaszano, Via Gorizia | 3

Fig 4.30 : Critical points for VRU, for the period 2017-2019 (red dots represents the traffic collisions)

After the identification of critical points for all VRU, the critical points in the road network
which presented 3 out of 6 positive study periods were identified as hazardous road locations
(HRL) as shown in Figure 4.31. According to the results, seven hazardous road locations (HRL)
are obtained for all VRU in the years from 2006 to 2019. It can be seen from the table that
Piazza Rivoli with a total of 94 traffic collisions from 2006 to 2019 is the most dangerous
location for all VRU. It can be highlighted that the locations of all hazardous roads are
interconnected. Piazza Rivoli relates to three different corridors but, the most critical corridor
is in the line of accident no 1, 2 and, 3 with a total of 231 traffic collisions from 2006 to 2019

for all VRU.
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Hazardous Road Locations
Pizzza Statuto

renzo Bernini

| M| e
|

woli

Intersection - corso Vittorio Emanuele Il - corse Castelfidardo
Intersection : corso Peschiers - corso Trapani

Intersection: corzo Moncalieri - corzo Fiume

E R R B )

Intersection: corsa Regina Margherita - Corso Potenza

|2006- 2008-2010-2012- 2015-2017-

7 .
) No Hazardous Road Locations |2007 2009 2011|2014 2016|2019

w
N
.
-

Piazza Statuto 13 9 12 (14 |10 |13 |71

2 | Piazza Lorenzo Bernini 11 4 4 12 | 15 | 14 | &6

=h

3 | Piazza Rivali 5 15 | 14 | 20 | 18 | 18 (94

Intersection : corso Vittorio
Emaznuele || - corso Castelfidarde

Intersection : corso Peschiera - corso
Trapsni

Intersection: corse Moncalieri -
corso Fiume

Intersection: corso Regina
T |Margherita - corso Potenza, corso 0 |12 | 12| 12 2 9 63
Locce

Figure 4.31 : Hazardous Road locations (HRL) for all VRU (red dots represents the traffic collisions)

By comparing the results for six study periods, false positive and false negative locations are
identified. The false-positive problem arises when a safe site is being wrongly identified as
hazardous. Conversely, the false-negative problem arises when a high-risk site is not being
identified as an HRL. So, those locations are determined in the view of such information with

a help of the heat maps:

False Positive Locations for all VRU

e Intersection in strada Settimo, lungo Stura Lazio,
e [ntersection in corso Orbassano, via Gorizia,

e Corso Siracusa, Corso Sebastopoli.

False Negative Locations for all VRU

e Piazza Vittorio Veneto,
e Piazza Derna,
e Corso Giulio Cesare, Corso Novara,

e Intersection in corso Vittorio Emanuele Il / corso Duca Degli Abruzzi, Corso Vinzaglio.
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4.3.2. Pedestrian Analysis

By using the maps including traffic collisions relating to pedestrians for six study periods, the
KDE method was applied for six study periods. As a result of the KDE method, heat maps were
created. Heat maps of six study periods are shown in Annex 7. Then, the density band of each
map was rearranged based on the rule given in the beginning of the Chapter 4.3 with the help
of each heatmap statistic. After this step, the location of traffic collisions where the density

values are higher than M + 6*SD is identified as the critical point in the road network.
All critical points relating to pedestrians are extracted as given below.

The critical points for pedestrians were analyzed related to each study period and, the number
of accidents was determined for each identified point. Firstly, the results were obtained for
the period related to years from 2006 to 2007 as shown in Fig 4.33. The intersection in corso
Palermo and corso Novara (accident no 1) was the most critical location for pedestrians in the
2006-2007 period. There has been a total of 7 collision events in this location. Another point
that should be mentioned is the intersection in via Bologna and corso Novara which is in the

same corridor with accident no 1.
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Fig 4.32 : All critical points for pedestrians, from 2006 to 2019 (red dots represents the traffic collisions)
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Fig. 4.34 shows the critical points for pedestrians in the period 2008-2009. “Piazza Rivoli”
(accident no:6) and “Piazza Sabotino” (accident no:7) were the most critical locations for

pedestrians in the 2008-2009 although they are not in the same corridor.

Fig 4.35 shows the critical points for pedestrians in the period 2010-2011. It is realized that
critical points were far from each other in this study period. As in the previous period, “Piazza
Rivoli” (accident no:4) was the most critical location for pedestrians in 2010-2011. There has
been a total of 13 collision events in this location. Moreover, accidents no 1 and 2 related to

“corso Giulio Cesare” are in the same corridor with a total of 13 traffic collisions.

Fig 4.36 shows the critical points for pedestrians in the period 2012-2014. Generally, the
critical points were detected in the squares of the city for this period. “Piazza Baldissera
Antonio Generale”, “Piazza Della Republica” and “Piazza Vittorio Veneto” were the critical
locations for the pedestrians based on the number of accidents in this study period. The

number of accidents is relatively high since this period includes three years of crash records.

Figure 4.37 shows the critical points for pedestrians in the period 2015-2016. “Piazza XVIII
Dicembre” was the most critical point with a total of 10 collision events in this period. It can
be seen from the figure that the critical points for pedestrians in this period are distributed

evenly spaced.

The Fig 4.38 shows the critical points for pedestrians in the period 2017-2019. Generally, the
critical points were detected in the squares of the city for this period. It can be seen that
“Piazza Vittorio Veneto” was the most critical location with a total of 15 traffic collisions.
Generally, it is not possible to make inferences since the critical points were distributed so far
from each other. The number of accidents is relatively high since this period includes three

years of crash records.
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Fig 4.33 : Critical points for pedestrians in the period

collisions)

2006-2007 / Pedestrians

Critical Points

2006 -2007
The number of
Location of the accidents accidents
Corso Palerma, Corsc Novara T
Via Bologna, Corso Movara 3
Corso Regina Margherita, Corso Tassoni 3
Via Criztina, Viz Claudio Luigi Berthollet 5
Wiz Madama Cristina, Viz Valperga 4
Corsa Turati, Corso Bramante, Corso Unione Sovistica 4
Strada Portone, 10 7

2006-2007 (red dots represents the traffic

2008-2009 / Pedestrians

Critical Points

2008-2009

Location of the accident

The number
of accidents

Corso Giulio Cesare - /' Wia Luigi Szlvatore Cherubini(3),116(2)

ia Bologns, Via Fadova

Corso Giulio Cesare, 17, 20,21 23

Corso Belgio, Corse Tortona

Corso Francia, 161(2),163{1)

Piazza Rivoli : Corso Francia3), Corso Lecce(2), Vittorio E

le ll 2)

R R R R R

Piazza Sabotine : Corso Peschiera(4), Via Monginevra(4], Via dante di

MNanni[1)

[N EN AT BV R T

Fig 4.34 : Critical points for pedestrians in the period 2008-2009 (red dots represents the traffic

collisions)
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2010-2011 / Pedestrians
Critical Points

2010-2011
The
Mo Location of the accident number of
Corso Giulio Cesare, Via Baltea|2) /
1 |Corso Palerma, Via Baltea(1)/ Corso Giulio Cesare 7
92,97 38 /Corsa Palermo, 124
2 | Corso Giulio Cesare, Corso Novara [
o \ia Francesco Cigna, Strads Fortinof2], Via &
Urbinof2),50{1}, Asri {2
Fiazza Rivoli - / Corso Vittorio Emanuele 1{3),
4  [Corso Lecce|3), Corso Francia(3], 13
iz Domodoszola{1), 14[1), Via Francia(4)
Carso Vittoric Emanuele Il - { Piazza Carlo Felice(3),
5 |Via Paolo Sacchi(2), Via Venti Settembre(1}, Via 8
Alessandro Volta(1), 57(1)
6 | Corso Peschiera, Corso Racconigi I
7 | Corso Bramante 85(1),30{3},91(1), 52{1), 54(1) 7

Fig 4.35 : Critical points for pedestrians in the period 2010-2011 (red dots represents the traffic
collisions)

2012-2014 / Pedestrians

Critical Points
2012-2014
The
Mo Location of the accident number of
accidents
Piazza Baldisserz Antonio Generale - {Via Cecchi Antonio(3),
1 | CorsoPrincipe Oddone(4), Corso Vigevanao(1), Viz Enrico 10
Giachino{2)
Piazza Della Republica - / 18({3), Via Milzno(1),
Corso Giulio Cezare{1), 5. Giuseppe Benedetto Cottolengo(l), Vis
2 Clements Damiana Priccca(1), Corsa Regina Margheritaf3), 15
others(5}
3  CorzoLecce, Via Michele Leszonz 6
1 Via Po- [ Viz Dell' Accademiz Albertina{5], Via Gicachino z
Rossini(3)
5 Piazza Vittario Veneto- [ Via Vanchiglia[2) Viz Alfonso 12
‘Bonafous(2), others[10}
6 | Vis Mizza- [ 2,3,4,5(2), Via San Pio V(2] 7
7 Viz Mizza- Corso Vittorio Emanuele I
8  Corso Wittorio Emanusle |, Piazza Carlo Felice 4
a Corzo Lazzari Francesco Detto || Bramante 90(3),34(1), 2
S| 2!15311! Null{1}
‘Corso Orbassano , / Via Reni Guide(2), Carla Alfonso Nallina[3),
10 Piszza Omero(3) 11
+ [Wia Guido Reni, Via Paolo Gaidano), others(2)
11 | Corso Marencelli Pietro, Vis Canelli 7

Fig 4.36 : Critical points for pedestrians in the period 2012-2014 (red dots represents the traffic
collisions)
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2015-2016 / Pedestrians

Critical Points
2015-2016
The

Location of the accident | number of

accidents
1 | ViaStradella- / 22({2),24(1),Corso Venezia(2) 5
2 | Corso Movara, Corso Giulio Cesare 8
3 | Piazza Statuto - / Via Luigi Cibrariol3), Corso Principe Oddone(1), others(3) 7
a Fiazza ¥Vl Dicembre- { Corso 5an Martino(4), Via Santarosa Fistro(1), 10

athers(5}

5 | Wia Monginevro, Viz de Sanctis Francesco 5
6 | Corso Lazzari Francesco Detto Il Bramante 88!2! 92!3[‘ Wia Carl Drmea!l] -3

Fig 4.37 : Critical points for pedestrians in the period 2015-2016 (red dots represents the traffic
collisions)

2017-2019 / Pedestrians
Critical Points

2017-2019
Mo L son of the accidant The I'II_II'I'II:IE‘I:
of accidents
1 \ia Chiesa Dellz Salute, Via Vibo' 7
2 \ia Pietro Cossa, Via Giovanni Servais 8
3 Wia Nizza - / 1,3, 4{2), 5, Via San Pia V' &
a Corso Orbassanc- / 260(2), 277(3), Via Guido Reni, Via Castelgomberto, 3

\ia Den Grazioli Bartolomeo

\ia Genova, Via Varazze -/ Via Genova(4), Via Cherasco{2), Piazza Camillo
Bozzelo

Pizzza Vittorio Vensto 15
' Cerse Pietro Maroncelli, Via Nizza ¥

7

Fig 4.38 : Critical points for pedestrians in the period 2017-2019 (red dots represents the traffic
collisions)
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After the identification of critical points for pedestrians, the critical points in the road network
which presented 3 out of 6 positive study periods were identified as hazardous road locations
(HRL) as shown in Figure 4.39. According to the results, one hazardous road location (HRL) is
obtained for pedestrians in the years from 2006 to 2019. It can be seen from the table that
Corso Bramante, 20 with a total of 23 traffic collisions from 2006 to 2019 is the most
dangerous location for pedestrians. Although this location is not the most critical location for
six study periods, it has been chosen as a hazardous road location since it is presented 3 out

of 6 positive study periods.

Mo Hazardous Road Lecations

1 |Corso Bramante 52

No "“::::t';::s“d 2006-2007 2008-2008(2010-2011(2012-2014 | 2015-2016 20172018, TOT

1 Corso Bramante, 32 3 3 | 5 | 7 3 z 23 |

Figure 4.39: Hazardous Road locations (HRL) for only pedestrians (red dots represents the traffic
collisions)

By comparing the results for six study periods, false positive and false negative locations are
identified for pedestrians. So, those locations are determined in the view of such information

with a help of the heat maps:

False Positive Locations for pedestrians:

e Strada Portone,10,

e Via Madama Cristina, Via Claudio Luigi Berthollet.
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False Negative Locations for pedestrians:

e Piazza Vittorio Veneto,

e Piazza Rivoli.

4.3.3. Motorcyclists Analysis

By using the maps including traffic collisions relating to motorcycle users for six study periods,
the KDE method was applied for six study periods. As a result of the KDE method, heat maps
were created. Heat maps of six study periods are shown in Annex 8. Then, the density band of
each map was rearranged based on the rule given in the beginning of the Chapter 4.3 with the
help of each heatmap statistic. After this step, the location of traffic collisions where the

density values are higher than M + 6*SD is identified as the critical point in the road network.

All critical points relating to pedestrians are extracted as given below.
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Fig 4.40 : All critical points for motorcycle users, from 2006 to 2019 (red dots represents the traffic
collisions)
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The critical points for motorcycle users were analyzed related to each study period and, the
number of accidents was determined for each identified point. Firstly, the results were
obtained for the period related to years from 2006 to 2007 as shown in Fig 4.41. The
intersection in corso Regina Margherita & corso Lecce / corso Potenza and Piazza Adriano
were the most critical locations for motorcycle users in the 2006-2007 period. It can be seen
from the figure that accident no 3 (intersection in corso Regina Margherita and corso Lecce)
is in the same corridor with accident no 6 (intersection in corso Trapani and corso Peschiera)

with a total of 17 collision events.

The following figure shows the critical points for motorcycle users in the period 2008-2009.
While the most critical location was the intersection in corso Regina Margherita & Piazza Maria
Ausiliatrice, accident no 5 (intersection in corso Vittorio Emanuele Il - / corso Duca Degli
Abruzzi, corso Vinzaglio), 7 (intersection in corso Vittorio Emanuele Il, via S. Secondo), and 8
(intersection in via Fiume & corso Moncalieri) created the long corridor with a total of 23
traffic collisions related to the motorcyclists. It can be seen from the figure that accident no 3
(intersection in corso Regina Margherita and corso Lecce) is in the same corridor with accident
no 6 (intersection in corso Trapani and corso Peschiera) with a total of 13 collision events.

Fig 4.43 shows the critical points for motorcycle users in the period 2010-2011. It is realized
that critical points were far from each other in this study period. accidents no 1,2 and 6 related

to “corso Regina Margherita” are in the same corridor with a total of 16 traffic collisions.

Figure 4.44 shows the critical points for motorcycle users in the period 2012-2014. The
number of accidents is relatively high since this period includes three years of crash records.
It is important to highlight that many corridors contain of more than two critical locations. The
longest corridor includes accident no 2, 10, 11, 12, 4, and 5 with a total 48 of traffic collisions
relating motorcyclists. “Piazza Rivoli” is the most critical location based on the number of

accidents.

Figure 4.45 shows the critical points for motorcyclists in the period 2015-2016. The
intersection in “corso Moncalieri & corso Fiume “ was the most critical point with a total of 11
collision events in this period. It can be seen from the figure that the critical points for
motorcyclists in this period were distributed evenly spaced. Whereas accident no 1 and 2 were

in the same corridor with a total 19 of traffic collisions in the years 2015-2016.
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Fig 4.46 shows the critical points for motorcycle users in the period 2017-2019. It can be seen

that “Piazza Riccardo Cattaneo” was the most critical location with a total of 10 traffic

collisions. Generally, it is not possible to make inferences since the critical points were

distributed so far from each other.

2006-2007 / Motorcycles

Critical Points
2006 -2007
The
No Location of the accident "'"::e'
accidents

Strada Settimo, Lungo Sture Lazio

3

2 | Via Cigna, Corso Vigevano

5

Corso Regina Margherita- [ Corso Lecce(S), Corso
Potenzal2), others(2)

10

Corso Regina Margherita- [ Corso 5. Maurizio|2), Corso
Regio Parco(4), 102{1)

7

Piazza Adrizneo - { Corse Vittoric Emanuele §I[3), Corsa

Francesco Ferruccilg), Via Frejus(1)

10

6 | Corso Trapani, Corso Peschiera

7 | Corso Agnelli, Corso Traiano

Fig 4.41 : Critical points for motorcycle users in the period 2006-2007 (red dots represents the traffic

collisions)

2008-2009 / Motorcycles
Critical Points

2008-200%

The

Location of the accident number of
accidents

Corso Regina Margherita - / Corso Principe Eugenio4],
others(9)

Corso ina Margherita, Piazza Maria Ausiliatrice

Corzo Regina Margheritz - / Corso Patenzz(8], Corso Lecce{l)

Via Cernaia,3,11,14(2), Via 5. Dalmazzo

Vittorio Emanuele |l - { Corso Duca Degli Abruzzi(4), Corso
Vinzagliof3)

Corso Trapani, Corsa Peschiera

[ IR [T ]

Arsenzle

Vittorio Emanuele Il -/ Via 5. Secondao(4),62, 63, 65, Via

\ia Fiume, Corso Moncalieri

Corse Mazsima D' Azeglio - [ Via Federico Campana|2), Viz
Morgzri Oddino{2), Via Giuzeppe Giacosa(2), 20, 34, 38

10

Corso Bramante, 20

Fig 4.42 : Critical points for motorcycle users in the period 2008-2009 (red dots represents the traffic

collisions)
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2010-2011 / Motorcycles

Critical Points
2010-2011
The
No Location of the accident number of
accidents
1 |Corso Regina Margherita, Corso Potenza 2
2 | Corso Regina I erita, Corso Lecce 3
3 |Corso Vittorio Emanuele Il, Corso Duca degli Abruzzi 5
4 | Corso Vittorio Emanuele Il, Corso Vinzaglio 3
5 | Via Borgarg, Via Bernardino Luini 5
5 Corsa Umbria - [ Corso Margherita Regina, Corso Principe 5
|Oddane, Via Caserta,Via 3. Giovanni Bosco, 5
Corso Sebastopoli, Corso Sirscuza &
i Corso Bramante -/ Corso Unione Sovietica(3), Corsa 5
Lepanto(2}, 5, &
3 Corso Unione Savietica, Corso Lepanto / Corso Flippe Turati,
|Carso Lepanto 2

Fig 4.43 : Critical points for motorcycle users in the period 2010-2011 (red dots represents the traffic
collisions)

2012-2014 [ Motorcycles
Critical Points

2012-2014
The
number
No Location of the accident of
accidents
1 {Corso Regina Margherita - | Corso Lecce(E), Corso Potenza(3) ]
2 \Piazza Rivali - [ Corso Trapani{3), Corso Vittorio Emanuele 12
1{2], Corso Franciz(S),Corso Lecce(1)
3 {Carso Racconigi, Corso Peschisra 8
\Corsa Vittorio Emanusle |- Corso Massimo D'Azegliof4), Via
4 \talzndra Fratelli(2), 2{2) 8
5 ‘Corsa Vittorio Emanuele |- / Viale Marone Public Virgilio(4), 3
(Carso Cairoli(2), 4, 6(2)
Carso Mediterraneo - / Corso Francesco Ferrucci(5), Via
6 iCristoforo ColombolZ), Via Paole Braccini(1), (Via Braccini g
|Paglo, Corso Liona)
7 [Corsa Unione Sovietica, Pizzzale San Gabriele di Gorizia 11
3 iCorso Gil i Angelli, Via Filadelfia 5
9 |Piazza Masszua- [ Via Pietro Cosza(4), Corso Franciz({4] B
10 (Corso Vittorio Emanuele |- [ Via Paolo Borselling(2), Via :
{Giowanni Falcone(3), 130(1)
o ‘Corso Vittorio E Iz II-{ Corso (2], Corso ~
iCastelfidarda(2}, 127{1}
12  [Corso \Vittorio Emanuele |, Corso Re Umberto | 7
13  [Corso Trapani, Corso Peschiera 7
14 [Corza Galileo Ferraris, Corso Einaudi Livigi 7

Fig 4.44 : Critical points for motorcycle users in the period in the period 2012-2014 (red dots represents
the traffic collisions)
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2015-2016 / Motorcycles
Critical Points

2015-2016

Corso Vittorio Emanuele |- / Corsa Vinzaglio|6), Corso Duca Degli
Abruzzi2)

The
Location of the accident number of
accidents

%]

Corso Monczlieri- / Corso Fiume(g), Ponte Umberto [(2),Via

Wolturno(2), Via Curtstone

Corso Unione Sovietica, Piazzale San Gabriele di Gorizialg),
others (3]

Corso Re Umberto |, Via Tirreno

LR S P SR L] L

Corso Umbria, Yia Macerata

o B W

Corso Novara, Corso io Parco

Fig 4.45 : Critical points for motorcycle users in the
represents the traffic collisions)

&

&)
5
d | >

Wi e .

period in the period 2015 -2016 (red

dots

2017-2019 / Motorcycles
Critical Points

2017-2019

Location of the accident

Corso Regina Margherits -  Corso Lecce(5), Corso Potenza(Z)

The
number

accidents

Corso Tortona, Corso Belgio

Via Dell’ Accademnia Albertina, Via Cavour Camillo Benso

Corso D'Azeglio Massimo, Via Francesco Petrarca

Corso Bramante, Corso Unicne Sovietica © 2, Corso Bramants,
Corso Filippo Turati - 3, Corso Unione Sovietica, Corso Lepanto - 1

Corso Bramante, 20

Corso Orbassang, Via Gorizia

| @ oo

Piazza Riccardo Cattaneo, Corso Enrico Tazzoli, Corso Orbassang

=
=}

Fig 4.46 : Critical points for motorcycle users in the period in the period 2017 -2019 (red dots

represents the traffic collisions)

After the identification of critical points for motorcyclists, the critical points in the road

network which presented 3 out of 6 positive study periods were identified as hazardous road

locations(HRL) as shown in Figure 4.47. According to the results, six hazardous road locations
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(HRL) are obtained for motorcycle users in the years from 2006 to 2019. It can be seen from
the table that the intersection in corso Trapani & corso Peschiera with a total of 27 traffic
collisions from 2006 to 2019 is the most dangerous location for motorcyclists. Moreover, the

first three hazardous road locations (HRL) were located in the same corridor.

By comparing the results for six study periods, false positive and false negative locations are
identified for pedestrians. So, those locations are determined in the view of such information

with a help of the heat maps:

False Positive Locations for motorcycle users:

e Via Cigna, Corso Vigevano,

e Piazza Riccardo Cattaneo.

False Negative Locations for motorcycle users:

e The intersection in corso Moncalieri & corso Fiume.

Mo Hazardous Road Locations

1  Intersection : corso Regina Margherita - corso Potenza

2 | Intersection : corzo Regina Margherita - corso Lecce

3 Intersection : corso Trapani - corso Peschiera

4 |Intersection : corso Vittorio Emanuele |l - corso Vinzaglio

5 | Intersection : corso Vittorio Emanuele |l - corso Duca degli Abruzzi

6 | Intersection : corso Bramante - corso Unione Sovietica

1,2
L
3 4,5
L ]
L] - ; . ; . = : =
: |2006- 2008-|2010- 2012-|2015- 2017-
No | Hazardous Road Locations | 2007 | 2009 2011 | 2014 | 2016 | 2019 | TOT |
Intersection : corso Regina
6 K Margheritz - corso Potenza 2 | B | i | G % 2 | 24
Intersection : corso Regina
L

z Margherita - corso Lecce i 1 3 5 | 5 | 3 | > | 2 |
3 Intersection : corso Trapani -

\corso Peschiers it | # | A | 7 | - i | 7
Intersection : corso Vittario
Emanuele | - corse \inzaglic
Intersection : corso Vittario
5 Emanuele |l - corsa Duca degli g 4 g I 2 2 15
Abruzzi i |
Intersection : corso Bramante -
corso Unione Sovietica

Figure 4.47: Hazardous Road locations (HRL) for only motorcycle users (red dots represents the traffic
collisions)
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4.3.4. Velocipede users Analysis

By using the maps including traffic collisions relating to velocipede users for six study periods,
the KDE method was applied for six study periods. As a result of the KDE method, heat maps
were created. Heat maps of six study periods are shown in Annex 9. Then, the density band of
each map was rearranged based on the rule given in the beginning of the Chapter 4.3 with the
help of each heatmap statistic. After this step, the location of traffic collisions where the

density values are higher than M + 6*SD is identified as the critical point in the road network.

All critical points relating to velocipede users are extracted as given below in Fig 4.48.
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Fig 4.48 : All critical points for velocipede users, from 2006 to 2019 (red dots represents the traffic
collisions)

The critical points for velocipede users were analyzed related to each study period and, the

number of accidents was determined for each identified point. Generally, a limited number of
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critical locations are obtained since the number of crash records related to the velocipede
users is low. Firstly, the results were obtained for the period related to years from 2006 to

2007 as shown in Fig 4.49. There were two critical locations which are far from each other.

Fig 4.50 shows the critical points for velocipede users in the period 2008-2009. It can be seen
from the figure that two intersection points were identified as critical points.

Fig 4.51 shows the critical points for velocipede users in the period 2010-2011. It is realized
that critical points were far from each other in this study period. “Piazza Generale Antonio

Baldissera” is the most critical location in this study period.

Fig 4.52 shows the critical points for velocipede users in the period 2012-2014. The number of
accidents is relatively high since this period includes three years of crash records. It is
important to highlight that Piazza Statuto was in the crossing point of the two different
corridors. Corridor 1 which includes accidents no 3, 4, and 5 had the same number of accidents
as corridor 2 (accident no 3, 2, and 6) with a total 19 of accidents in each. Moreover, the most
critical location was the intersection in corso Vittorio Emanuele Il & corso Castelfidardo with
a total of 8 traffic collisions in this study period. This location was also in the same corridor

with the accident no 7 (the intersection in corso Vittorio Emanuele Il & Via Nizza).

Figure 4.53 shows the critical points for velocipede users in the period 2015-2016. There were
three different corridors obtained as accidents no 1&2, 3&4 and, 4&5 with a total number of
15, 14, and 13 traffic collisions respectively. “Piazza Rivoli” was the most critical point in the
road network for this period and it was also in the most critical corridor based on the number

of accidents.

Fig 4.54 shows the critical points for velocipede users in the period 2017-2019. “Piazza
Statuto” was the most critical location with a total of 12 traffic collisions. Piazza Statuto was

crossing with the two different corridors.
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2006-2007 [/ Velocipede
Critical Points

ion of the

\Carsa Filadelfia, Corso Orbaszano
(Via Mizza, Corza Piero Maroncelli

BRH
E

[CHTRE

Fig 4.49 : Critical points for velocipede users in the period 2006 -2007 (red dots represents the traffic
collisions)

2008-2009 / Velocipede
Critical Points

2003-2009
The
No Location of the accident of
accidents:
1 Carso Trapani, Pizzza Rivali 4
2 |Corso Galiles Ferraris, Corso Stati Uniti{2) / Corso Stati Unit(2) | 4

Fig 4.50 : Critical points for velocipede users in the period 2008 -2009 (red dots represents the traffic
collisions)
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2010-2011 / Velocipede
Critical Points

2010-2011
lLocation of the accident The muemberaf
Piazza Antonio Generale Baldissera - i Via Snadelaﬁ! Via Antonio Cecchil2) 5
iz Clemente Damiano Priccea, Vis Carlo Antonio Porporsti 4

Fig 4.51 : Critical points for velocipede users in the period 2010 -2011 (red dots represents the traffic
collisions)

2012-2014 / Velocipede
Critical Points

2012-2014
The
No Location of the accident number of
accidents
1  Corso Mortara- / iz Orvieto(4), Via Livorno{1) 1
- {Corso Principe Oddone, Via Mariz Ausiliatrice{3), Via San Giovanni 5
Boscol1), 32(1)
5 [Piazza Statuto- Via Cibrario Luigi(3), 24, Corso Francis, Carso :
Principe Eugenio
Piazza Lorenzo Barnini, Corso Alessandro Tassoni{2), Corso
4 Franciz{4), Corsa Francesco Ferrucd 7
Piazza Rivoli, Corso Trapani :3, Corso Trapani, Corso Francia:1,
5 | Piazza Rivoli, Carso Vittorio Emanuele Il 2 &
&  (Corso Vittorio 1, Corso C: i
7 Corso Vittorio 1l, Via Nizza 5
3 ‘Corso Trapani, Corsa Carlo & Mello Rosselli:S / Corso Rossalli Carlo e 2
[Nello, Wia San Paclo:2
3 Piazza Marmaladz - / Corso Carle e Nello Rosselli|2), Corse 5
\Racconigi, Corse Lione

collisions)
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2015-2016 / Velocipede
Critical Points

2015-2016
The
Location of the accident b
accidents

&Y Piazza Rivali-  Carso Lecce(3), Corso Trapani(2), Corso Francis(2), -

Corso Vittario Emanuele |1, 237 (2]

Fiazza Lorenzo Barmini - [ Corsa Francesco Ferrucci(3], Via Gizcome Medidi, 6

Carsa Alessandro Taszoni, 9(1)

Corso Vittorio 11, Corso C; 5

Fiazza Antonio le Corso & [ Corso Mortarz, Via

Udine:2 [ E}

Piazzz Baldissera Antonic Generzle \iz Giachine Errico: 1

Corso Movara, Corso Giulio Cesare 4

mmgm_m-fmum%ﬁeﬁggt Corzo Turati ﬁiml] 3

Fig 4.53 : Critical points for velocipede users in the period 2015-2016 (red dots represents the traffic

collisions)

2017-2019 / Velocipede
Critical Points

2017-2013
The
Mo Location of the accident e nf“"‘"
_accidents)

Piazza Baldizsera Antonio Generale - { Corso Maortara{4), Corsa

1 |Principe Oddone(3), Corsa Vigevana{2) / Corso Venezia, Corso 10
Wigewvamo:l

5 [Pimeza Statuto- [ Via San Donato(3), 22(2), Via Luigi Cibrariof3}, 12
Caorse Principe Eugenio{1), 17, Via 5an Donato, Corso San Marting

& {Carso Pirincipe Oddone , / Wiz San Giovanni Boscol2), Viz Maria i
lusiliztrice, 30

i Piazza Lorenzo Bernini - f Corse Framciz(S), Via Duchesss Jolanda, &
{Carso Alesszndro Tassoni(2)

5 Piazza Rivoli - / Corsc Vittoric Emanusle I, Corso Francia(4), Corso 7
[Trapani, Corso Lecce

€ iCorso Vittorio Il- Corso C= (4}, Corsa €
Inghitterralz)

Fig 4.54 : Critical points for velocipede users in the period 2017-2019 (red dots represents the traffic
collisions)
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After the identification of critical points for velocipede users, the critical points in the road
network which presented 3 out of 6 positive study periods were identified as hazardous road
locations(HRL) as shown in Figure 4.55. According to the results, four hazardous road locations
(HRL) are obtained for velocipede users in the years from 2006 to 2019. It can be seen from
the table that “Piazza Rivoli” with a total of 29 traffic collisions from 2006 to 2019 is the most
dangerous location for velocipede users. Moreover, “Piazza Rivoli” is in the same corridor with
“Piazza Lorenzo Bernini”. This corridor has a high risk for velocipede users based on the

evaluation in the number of accidents (a total of 52 traffic collisions).

By comparing the results for six study periods, false positive and false negative locations are
identified for velocipede users. So, those locations are determined in the view of such

information with a help of the heat maps:

False Positive Locations for velocipede users:

e [ntersection corso Galileo Ferraris, corso Stati Uniti.

False Negative Locations for velocipede users:

e Piazza Statuto.

No Hazardous Road Locations

1 | Intersection : corso Vittorio Emanusle | - corso Castelfidarde
2 | PFiazza Rivoli
3 |Piazza Lorenzo Bernini
4 | Fiazza Generale Antonio Baldissera
. |
.
5 3
. L ]
1
L]
) 2006- | 2008- | 2010- | 2012- | 2015- | 2017 |
Mo . Hazardous Road Locations | 2007 | 2009 | 2011 | 2012 | 2016 | 2019 | TOT
Intersection : corse Vittaric Emanuele ||
1 - corso Castelfidzrdo | | 1 | & | 2 5 | E | 3 |
2 |Piazza Rivoli | 2 | a4 | 1 | 8 S | 7 |29 |
3 | Piszza Lorenzo Bernini | 2 | - | 1 ) -6 & | 8 | 23
4 | Fizzza Generale Antonio Baldissera 2 5 3 [ 10 | 26

Figure 4.55 : Hazardous Road locations (HRL) for only velocipede users (red dots represents the traffic
collisions)

97



4.3.5. Moped Analysis

By using the maps including traffic collisions relating to moped users for six study periods, the
KDE method was applied for six study periods. As a result of the KDE method, heat maps were
created. Heat maps of six study periods are shown in Annex 10. Then, the density band of each
map was rearranged based on the rule given in the beginning of the Chapter 4.3 with the help
of each heatmap statistic. After this step, the location of traffic collisions where the density

values are higher than M + 6*SD is identified as the critical point in the road network.
All critical points relating to moped users are extracted as given below in Fig 4.56.

The critical points for moped users were analyzed related to each study period and, the
number of accidents was determined for each identified point. Generally, a limited number of
critical locations are obtained since the number of crash records related to the moped users
is relatively lower than other vulnerable users. Firstly, the results were obtained for the period
related to years from 2006 to 2007 as shown in Fig 4.57. There were two critical locations

which are far from each other.

Fig 4.56 : All critical points for moped users, from 2006 to 2019 (red dots represents the traffic
collisions)
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Fig 4.58 shows the critical points for moped users in the period 2008-2009. It can be seen from
the figure that two intersection points were identified as critical points.

Fig 4.59 shows the critical points for moped users in the period 2010-2011. Only one critical
location was obtained for this period.

Fig 4.60 shows the critical points for moped users in the period 2012-2014. Only one

intersection point was obtained as a critical location for this period in the west side of the city.

Figure 4.61 shows the critical points for moped users in the period 2015-2016. There was only
one critical location obtained in this period.

Fig 4.62 shows the critical points for moped users in the period 2017-2019. Two critical
locations were identified for this type of road users in this period. It is clear to see that these

locations far from each other.

2006-2007 / Moped
Critical Points

2006 -2007 ) |
Mo Location of the accident e S mber. ot

| . accidents
Largo Giulio Ceszre, Via Feletto [ Corso Giulio Cesare, 109 /

\Largo Giulio Cesare,103 { Largo Giulio Cesare, Corso Giulio Cesare |
2 | Corso Trapani -/ Corso Peschiera(4), Via Frejus|(2) 1 4

4

Fig 4.57 : Critical points for moped users in the period 2006-2007 (red dots represents the traffic
collisions)
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2008-2009 / Moped

Critical Points
2008-2009
3 £ The number of
Location of the accident aceid
(Corso Novara, Corzo Giulio Cesare 4
[Viz Passo Buaole, Via Fio VII 3

Fig 4.58 : Critical points for moped users in the period 2008-2009 (red dots represents the traffic
collisions)

2010-2011 / Moped
Critical Points
2010-2011
Location of the accident Menumbenof.

(Corsa Vittorio Emanuelz |, Viz Madama Cristina(S), Via
\Accademia Albertina (1)

Fig 4.59 : Critical points for moped users in the period 2010-2011 (red dots represents the traffic
collisions)
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2012-2014 / Moped
Critical Points

2012-2014
& i The number of
No Location of the accident accid
1 Wiz Isonzo, Via Monginewro 3

Fig 4.60 : Critical points for moped users in the period 2012-2014 (red dots represents the traffic
collisions)

2015-2016 / Moped
Critical Points
20152016
Location of the accident IheRUmBAr of

Fig 4.61 : Critical points for moped users in the period 2015-2016 (red dots represents the traffic
collisions)
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2017-2019 / Moped
Critical Points

2017-2019

Na Location of the accident The lll.lmber of
| accidents

1 |Wiz Antonio Giuseppe Bertola, Via San Tommasa E
2 [Corso Bramante - [ 20(1], Vis Giordano Brunc(2) 4

Fig 4.62 : Critical points for moped users in the period 2017-2019 (red dots represents the traffic
collisions)

After the identification of critical points for moped users, hazardous road locations (HRL) were
not identified since the critical locations that should be in 3 out of the 6 positive study periods
could not be present. Based on this rule, it is not possible to identify hazardous road locations
(HRL) for moped users. Moreover, the limited number of critical locations were obtained due

to low number of crash records related to the moped users in database.
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5. ANALYSIS AND DISCUSSION

Hazardous road locations (HRL) for overall VRU and the sub-categories of VRU were identified
for the city of Turin in the period from 2006 to 2019 by using the ISTAT crash database. Within
the scope of the case study, analyses were carried out for all sub-categories of VRU
respectively. The results of the NN method provided the point patterns of the collision events
were closely clustered together regarding six study periods. Moreover, G and F functions were
used to verify the NN method. The outputs of the G and F functions also highlighted that a
clustered structure was evident for all VRU and related sub-categories. As a result of the
clustered structures of the point patters, we expected to identify HRL in some high-density
areas that was exactly what we observed in KDE method. The kernel analysis indicates that
some corridors in the city are more hazardous than others for specific sub-categories of VRU.
However, the lack of geographic coordinates from the years 2006 to 2011 and 2017 to 2019
causes some difficulties in the identification of hazardous roads. For example, the address of
one traffic collision is “Corso Vittorio Emanuele II, Via Nizza” while another one is “Via Nizza,
1”. These two addresses are so close to each other as shown in Fig. 5.1, and that could belong

to the same location. Therefore, the presence of geographic coordinates of traffic collisions is

so crucial to increase the accuracy of the analyses.

Corso Vittorio Emanuele 1l, Via Nizza

Via Nizza, 1

Fig 5.1 : The locations of the “Corso Vittorio Emanuele I, Via Nizza” and “Via Nizza, 1”
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The entire study period from 2006 to 2019 was subdivided into 2—3-year periods to limit false-
positive and false-negative locations. It is reasonable to identify a high number of HRL in three-
year periods since the number of accidents is high for three years. In overall VRU, it is clarified
the corridor which includes Piazza Rivoli, Piazza Lorenzo Bernini, and Piazza Statuto is the most
critical line with a total of 231 traffic collisions from 2006 to 2019. Hazardous road locations
(HRL) were also identified based on the sub-categories of VRU since safety countermeasures
should be differentiated based on the specific VRU sub-category. Corso Bramante,92 was
identified as HRL for pedestrians. When this location as given in Fig 5.3 is examined, it has
been determined that there are many pedestrian roads in front of this address. Traffic
accidents may have occurred on one of these pedestrian roads, but it is not so clear to identify
which road segment and the location this address refers to. Corso Bramante is one of the main
streets in the city of Turin and Corso Bramante,92 is the address where pedestrians interact
with vehicles frequently since it is very close to the intersection. The safety of pedestrians can

be improved by rearranging the pedestrian roads in this location.

Corso Bramante, 92
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For motorcyle users, six hazardous road locations are identified in the city of Turin. All HRL for
motorcylists are in the intersections and, 3 out of 6 HRL are located in the same corridor as
given in Figure 5.4. It has been determined that these roads have more than 2 lanes and they
are the main roads for public transportation in the city of Turin. Therefore, the traffic density
is relatively high in these roads and it is likely to pose a danger to motorcycles since motorcycle

users are using the same roads with vehicles.

For velocipede users, four hazardous road locations (HRL) are identified. When these specific
points were examined, the presence of cycle paths was observed as shown in Fig 5.5 with red
rectangular. These HRLs are the points where the traffic density is high and have many crossing
points with other roads in the road network. Therefore, the interaction of the bicycles with
the vehicles may be high due to the speed difference. To increase the safety of cyclists, the

existence of a sufficient number of traffic lights and the adequacy of cycling paths at these

points can be investigated.

corso Regina Margherita & corso Potenza

corso Regina Margherita & corso Lecce

corso Trapani & corso Peschiera

Fig 5.4 : The corridor including three intersection points
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Intersection : corso Vittorio Emanuele Il -

corso Castelfidardo

Piazza Lorenzo Bernini

Piazza Generale Antonio Baldissera

Fig 5.5 : HRL's for cyclists

For moped users, critical points related to each study period were obtained but it was not
possible to find the hazardous road locations (HRL) since the critical locations that should be
in 3 out of the 6 positive study periods could not be captured. Moreover, it was also hard to
identify the clustered structure of the point patterns due to the low number of traffic collisions
in the crash database. While the number of accidents decreases, the distance between the

collision events rises at a certain level. So, it is also more difficult to identify the clustered
structure.
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6. CONCLUSIONS

The thesis deals with the geospatial analysis of traffic collisions to identify HRL in Turin from
2006 to 2019 by considering all VRU and related sub-categories (pedestrians, cyclists, moped
and motorcycle users respectively). The Italian National Institute of Statistics (ISTAT) provided

the official database of traffic collisions.

According to the literature, there are two approaches for the spatial analysis of traffic
collisions: the link-attribute and the event-based approaches. In the first, spatial events such
as traffic crashes are not analyzed directly but assigned to geographic features, such as areas
or segments of the road network. In event-based analyzes, traffic collisions are just points in
space. In this study, event-based approach is used and this approach consists of distance-
based and density-based methods. The distance-based and density-based methods were used
for the spatial distribution analyses of the traffic collisions. While distance-based methods
(Nearest Neighbor Analysis, G and F Functions) evaluate distances between events to define
areas where traffic crashes are clustered, density-based methods (the Kernel Density

Estimation) were used to examine the crash density to identify HRL.

All results combined give a general picture that the methods carried out are reliable and
robust in a scientific way. The results indicate collisions were concentrated in the main
intersections of the city, which deal with heavy traffic flows and conflicts between users during
the day. It seems that most hazardous road locations (HRL) are for specific sub-categories
rather than others. Some critical road corridors for the motorcyclists and cyclists that include
more than two HRL were determined. It was obtained that all HRL for motorcyclists have more
than 2 lanes and, this means that these road locations suffer from heavy traffic flows which

determine severe conflict points.

Furthermore, it is concluded from the results that cyclists have a high risk in intersections and
main squares of the city. It is a clear fact that wide cross-sections in the urban road
environment cause some difficulties to cyclists, and pedestrians due to significant speed
differences concerning motorized users, the absence of signalized junctions, and protected
pedestrian crossings in some points. Conversely, high speed sport cyclists increase risks for
the other vulnerable road users. Especially in those countries which typically have combined

routes for both pedestrians and cyclists, the speed differences between the groups cause
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problems. So, safety countermeasures should be differentiated based on the specific VRU

sub-category to be protected.

The results of the analyses promote actions for the safety of the urban road environment and
sustainable mobility since road traffic crashes have become one of the world's largest
public-health and injury-prevention problems. Today the growing view is that road safety is a
system-wide and shared multi-sectoral responsibility. It is extremely important that all road
users are properly briefed and provided with necessary training based on the risk factors of
the related vehicle. It is also important to highlight that every road user must follow the rules

for their own safety.
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ANNEX 1 : THE RESULTS OF NEAREST NEIGHBOR ANALYIS FOR VRU

Average Nearest Neighbor Summary

Fhgnd wa a0 Level Crithcal Wakse

Nearest Neighbor Ratio: 0400151
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Sgeificamt sigrificars
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Chyrtwed Bardom Thypared

Given the z-soore of 56 SSE0A5T5TE, there 15 & e fan 1% likeliood that s dustered
pattern could be the resuit of mndom chance

Average Nearest Neighbor Summary
Observed Mean Digtance: 45,5044 Malars
Mearest Neighbor Ratio: | 0400151
r-score: | 66, 558085
pvalue: 0000000
Dataset Information
Input Feature Class: 0&_07_VRL_PC
Distance Method: BUCLIDEAN

Study Area: | 174699278, 767174
Selection Sel: False

The results of NNA for 2006-2007 / VRU
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Average Nearest Neighbor Summary

Mearest Meighbor Ratio: 0416558 Sgeilces Leval Critice Vakem
fpwakaall [x-acava)

E-goane -6 476 W
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Glern the -sonme of -G0LEMTAH, there 5 a less Tan 136 liehood that thés dustered pathern

could Be the resuk of random chance.

Average Nearest Meighbor Summary
Observed Mean Distance: |49 3451 Meters
Expected Mesn Distance: 115, 3465 Meters

Wearest Meighbor Rastio: 0 416356
z-score: | -50,634743
pvalues | 0000000
Dataset Information
Input Feature Classz 08 03 VAU PC
Distance Method: EUCLIDERN

Study Area: 165885701 B26112
Selection Set:  False

The results of NNA for 2008-2009 / VRU
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Average Nearest Meighbor Summary

sageificancs Laaal Crvicel Maks

Hearest Mekghbor fathe: 0, 448337
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E-scere: <56, 129078 =

a5 mm <
prowabue: 0000000 oo EEm REB--188
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fibersn Ehe -5 of -56, LEHITT532, these i a less than 13 Boedihood that this dustemd
partem could be the result of random chance.
Average Nearest Meighbor Summary
Observed Mean Distance: | 55 2117 Meters
Expeched Mean Distanoe: 123 7159 Meters
Nearest NMeighbor Ratio: (1, £36222
r-soores | -56 125078
pvalues | 0000000
Dataset Information
Input Feature Class: 10_11_ VAL BT
Distance Method: CUCLDEAN
Study Area: 17LS07045 056864
Selection Set: Fake

The results of NNA for 2010-2011 / VRU
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Average Nearest Neighbor Summary

Mearest Naighbor Ratia: 04L5T00
Eeseene: - 12, 60050

ki) [-amare)

Gibves the 15 of -72. 2H0HSSEL29, these ks 3 bies than 1% Bosdihoosd that shic ducteed
paEtem coukd Be the el of random chance.
Average Nearest Neighbor Summary
Observed Mean Distanoe: | 42, 4375 Meters
Expected Mean Distanoe: | 102,087 Meters
Wearest Meighbar Ratio: 0415700
z-soores | -T2 260056
prvalue: | 0000000
Dataset Information
Input Feature Class: 1314 VAU_PC
Distance Method: EUCLIDEAN
Study Ares: | 174212909, 006527
Selection Set: Fake

The results of NNA for 2012-2014 / VRU
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Average Nearest Neighbor Summary

Maarest Meighbor Ratie: 0413460 Hgeificeno Leeal Criticel Vahs
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Gibee the 3-5cnre of -56.0156A15516, hese 5 3 Jess than 1% Moehood that this dustemd
pactem could Be the result of random chance.
Average Nearest Meighbor Summary
Observed Mean Distancez 557111 Meters
Expected Mean Distance: 1256279 Meters
Mearest Mefghbor Ratio: 0443461
r-soores | -56,015642
prvalues | 0000000
Dataset Information
Input Feature Class: | 15 16 VAL_PC
Distance Method: CUCLIGESN

Stusdy Area: 174742173, 1759023
Selection Set: | Fake

The results of NNA for 2015-2016 / VRU
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Average Nearest Meighbor Summary

Maaiedl Melghbsr Ratis: 0,379529 Sigeificers Leesl Eriticsl Vakem
Esemne -T2, 543360 W prnn) risiing
[Fal <250
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Sgraficaar

itees the: 2-5c0re of -T2 54336004 1, there: 5 2 bess than 135 losihood that this. dustemd
pactem could Be the resul of random chance.
Average Nearest Neighbor Summary
Observed Mesn Distance: 419116 Maters
Expected Mesn Distance: 110,167 Meters
Mearsst Neighbor Ratio: 1, 375529
z-goore: -72 CATIES
p-vakee: | 0,000000

Dataset Information
Input Feature CRassz  17_19 WAL PC
Distance Method: CUCLIDEAN
Stindy Ares: | 181323407 BET4E
Selection Set: Fake

The results of NNA for 2017-2019 / VRU
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ANNEX 2 : THE RESULTS OF NEAREST NEIGHBOR ANALYIS FOR PEDESTRIANS

Average Nearest Neighbor Summary
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Giberss Ehe: -5 of 31 TMAR13278, them i a less than 1% Boelihond that this: dustrmed
partam oould Be the resul o random chance.
Average Nearest Neighbor Summary
Observed Mean Distanoe:  B7 SE51 Metary
Expected Mean Distanoe:  164,5105 Meters
Mearest Meghbor Ratio: 0532277
r-soores | -31 TP43E1
pvalues | 0,000000
Dataset Information
Input Feature Class: 06 07 _PEDESTRLAN_PC
Distance Method: EUCLIDEAN
Study Area: 116815014, B1ATE
Selection Set: Fake

The results of NNA for 2006-2007 / PEDESTRIANS
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Average Nearest Meighbor Summary
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Gikeen the 2-soore of <32, 3TTREEI L, there 5 & kess than 19 Blelihood that this clustensd

pattem ook Be the result of random chanoe.

Average Nearest Neighbor Summary
Observed Mean Distance: | 06 8027 Mete
Expechsd Mean Distanoe: | 177 6058 Meters

Wearest Meighbor Ratioz 0, 502095
r-soore: | -32 2TTMEL
prvalues | 0000000
Dataset Information
Input Feature Class: 08 09 PEDESTRLAN _PC
Distance Method: CUCLIDEAN
Study Area: 137284990 556513
Selection Set: Faks

The results of NNA for 2008-2009 / PEDESTRIANS
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Average Nearest Meighbor Summary

Mzarest Mebghbes Ratio: 0 548543
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Gieen the -sooe of -20. FEM24221 2, theee 5 2 less than 13 Boalihood that this dusiemnd

pattem: coukd be the: resul of random chance.

Average Nearest Meighbor Summary

Obmerved Mean Distance:
Expected Mean Bistance:
Mearest Meighbar Ratio:

I-30ore:

pvalue:

G7,1551 Maters
177,1143 Meters
0,548545
28787424
0000000

Dataset Information

Input Feature Class:
Distance Method:

Study Arsa:
Selection Set:

10_11_PEDESTRIAN_PC
ELCLIDEAN

172405504, 533036
Fake

The results of NNA for 2010-2011 / PEDESTRIANS
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Average Nearest Neighbor Summary

Mearest Mehghbor Rathe: 0531575
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Gibwrry Ehe z-seore of <36 TEQRTEE, there ks 2 fess thae 156 Bkellbood that this clushened
pactem could be the result of random chanos.

Average Nearest Neighbor Summary
Observed Meaan Distance: | 75 8545 Meters
Expected Mean Distance: | 142,5057 Maters

Mearest Neighbor Ratio: 0, 532575
r-score: | -36 THIETS
p-value: | 0,000000
Dataset Information
Input Feature Class: 1214 PEOESTRLAN PC
Distance Method: CUCLIDERN
Study Ared: | 137443611 IS3600
Lalection Set: Fake

The results of NNA for 2012-2014 / PEDESTRIANS
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Average Nearest Neighbor Summary

Mearesl Meighbos Ratho: 05755335 Hyeificers Leval Criticdl Vabkm
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agraficant

Gibees the: 2-scmie ot -37. IBANEIAEY, Hheee is 3 bess than 1% Hoelhood that hes distemed
pactem could Be the nesult o andom chance.
Average Nearest Neighbor Summary
Observed Mean Distance: | 554507 Meters
Expected Mean Distance:  164,5012 Meters
MWearest Mefghbor Ratio: 0578036
r-soore: | -17 358808
prvalue: | 0000000
Dataset Information
Input Feature Classs | 15_16_FEDESTRLAN_PC
Distance Method: EUCLIDEAN
Study Areaz | 125511306, 294702
Selection Set:  Fake

The results of NNA for 2015-2016 / PEDESTRIANS
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Average Nearest Neighbor Summary

Mearest Meighber listia: 047950 Sageificers Loval
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Gk the -scone of -29.61TITTEHZE, there 5 2 kss than 13 Boalhood that this dustemed

pathem ooukd Be: the resul of random chance.

Average Nearest Neighbor Summary

Observed Mean Distance: 72 0528 Meaters
Expected Mesn Distancs: 150,455 Mt
Wearsst Meighbar Ratio: 0478162
r-score: | -F5517008
prvalue: | 0000000
Dataset Information

Input Peature Class: 17 13 PEDESTRLAN PC

Distance Method: CUCLIDEAN
Study Area: | 143144065, TRG954
Selection Set: Fabe

The results of NNA for 2017-2019 / PEDESTRIANS
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ANNEX 3 : THE RESULTS OF NEAREST NEIGHBOR ANALYIS FOR MOTORCYCLE

USERS

Average Nearest Neighbor Summary
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e the: 2-5cnie of -35. 421 7225063, Hhese 5 @ bess than 1% Hoeihood that this distremed
pactem could Be the resul o random chance.
Average Nearest Meighbor Summary
Observed Mean Distance: 87,1002 Meters
Expected Mean Distance: 1710072 Meters
Wearest Mefghbor Ratio: 0 505136
r-soorez | -35 471723
prvabues | 0000000
Dataset Information
Input Feature Classz | 06_07_MOTORCYCLE PC
Distance Method: EUCLIDERN
Study Areaz | 1665M0E2] X94TIL
Selection Set:  Fake

The results of NNA for 2006-2007 / MOTORCYCLE USERS
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Average Nearest Neighbor Summary

Mearest Meighber Ratie: 0477050
E-semre: -35, 65057 I
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Gibves, the 7-sonie of 15, BERIGEELEE, theer i 3 bies than 13 Bodihacs that this ductered
patenm coulkd Be the esull o random chance.
Average Nearest Neighbor Summary
Observed Mean Distanoe: | 84 3605 Meters
Expected Mean Distanoe: 17,6000 Meters
Wearest Meighbor Ratios 0472131
z-scores 15380057
pwalue: . 0,000000
Dataset Information
Input Feature Class: 08 09 MOTORCYCLE PC
Distance Method: EUCLIDEAN

Srudy Area: 162187436 173015
Selection Set:  Fake

The results of NNA for 2008-2009 / MOTORCYCLE USERS
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Average Nearest Meighbor Summary
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Gibvess Ehe 25000 of -32 FH0IF6FSTE, thess i 2 bees than 1% Boedihood that His dustemd
pattem coukd Be the result o random chance.
Average Nearest Meighbor Summary
Observed Mean Distances 95,5224 Maters
Expected Mean Distance: 167, 5700 Meters
Mearest Meighbor Ratios 0,505260
z-scores | <32 Z3047T
prvabues | 0000000
Dataset Information
Input Feature Classs 1011 MOTORCYCLE PC
Distance Method: EUCLIDERN

Stisdy Area: | 165405007, 563765
Selection Set: | Fake

The results of NNA for 2010-2011 / MOTORCYCLE USERS
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Average Nearest Neighbor Summary
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Gilepn the -sonme of -4, 3184155, there 5 a less Tan 1% Nieihood that thi dustered pathern

coiskd B thie result of random chanon.

Average Nearest Neighbor Summary
Observed Mean Distanoe: | 77 4017 Meters
Expected Mean Distance: 159,0507 Meters

Mearest Meighbor Ratios | 1484280
z-scores | 30, T1B416
pvalues | 0,000000
Dataset Information
Input Feature Class: | 13_14_MOTORCYCLE PC
Distance Method: ELUCLIOEAN
Study Area: 1FO994HG0, 174008
Selection Set: Fake

The results of NNA for 2012-2014 / MOTORCYCLE USERS
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Average Nearest Meighbor Summary

Mearest Meighbor Rathe: 0535055 Sigeificerss Laeal Eritiod Vahe
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Gitwess the 3-5coe of 29, 3737968072, these |5 a bess than 1% Boelhood that s dustemd
pachem could Be the resul o random chance.
Average Nearest Neighbor Summary
Ob=erved Mesn Distanoe: | 100, 2000 Meters
Expected Mean Distance: | 191, 5240 Maters
Mearest Meghbor Ratio: 0 575055
F-fpores | -20 273007
pvakse: | 0,000000
Dataset Information
Input Feature Classz | 1516 MOTORCYCLE PC
Distance Method: ELCLIGERN
Study Area: 161EIAEF] 409609
Selection Set: . Fake

The results of NNA for 2015-2016 / MOTORCYCLE USERS
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Average Nearest Neighbor Summary

Muarest Meightsr Ratio: 0471153
Ersicmre: <36, 509735 I
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Ghersn the: z-scom of <38, SI57MES, there ks 2 less than 1% Beeiibood that this chesreed
paftem could Be the result of random chance.
Average Nearest Neighbor Summary
Observed Mean Distance: 79 7105 Meters
Expected Mean Distance:  165,1718 Meters
Mearest Meighbar Ratio: 0471163
z-score: -38 505705
prvalues | 0000000
Dataset Information
Input Feature Classs 17 13 MOTORCYCLE PC
Distance Method: EUCLIDEAN

Study Area:  1ESE7EI29,T9P911
Selection Set:  Fake

The results of NNA for 2017-2019 / MOTORCYCLE USERS
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ANNEX4 : THE RESULTS OF NEAREST NEIGHBOR ANALYIS FOR VELOCIPEDE

USERS

Average Nearest Neighbor Summary
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Gbeen the: 2-50i o - 12, ZISOHIITGG, thesm is 3 bess than 1% Moslhood that this distemed
pactem coulkd Be the nesult of random chance.
Average Nearest Neighbor Summary
Observed Mean Distance: | 227,1002 Meters
Expected Mean Distance: | 345,5100 Meters
Mearest Meighbor Ratio: 0 656551
z-soore: -12 22S0E3
prvabues | 0000000
Dataset Information
Input Feature Classs  06_07 VELOCIPEDE PC
Distance Method: EUCLIDEAN

Study Area: 165983395 57211
Selection Set: Fake

The results of NNA for 2006-2007 / VELOCIPEDE USERS
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Average Nearest Meighbor Summary
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(ihee the 2-sc0re of -8, 1 3408230521, theee i 2 kess than 13 BkeSihood that this distemd
pafttem couk B tha rasult of random chance.
Average Nearest Neighbor Summary
Observed Mean Distance: 259 5769 Mebers
Expected Mean Distance: 347,170 Maters
Mearest Neighbor Ratio: 0, 747693
z-soored -8 138082
prvalues | 0,000000
Dataset Information
Input Feature Class: 06_03_WELOCIFEDE FC
Distance Method: EUCLIDEAN

Study Ares: 116918577, 610330
Selection Set: | Fake

The results of NNA for 2008-2009 / VELOCIPEDE USERS
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Average Nearest Meighbor Summary
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Gikern the z-scome of - 12557790063, theee i a bess than 13 Boalihood that this dustemnd

pattem coukd Be i result of random chanon.

Average Nearest Meighbor Summary
Observed Mean Distance: 1994745 Meters
Expected Mean Distance: 105 6013 Meters

Mearest Meighbor Ratio: 0 652724
z-scores | -12 552791
pvalues | 0,000000
Dataset Information
Input Feature Classz 10 11 WELOCIPECE PC
Distance Method: EUCLIDERN
Study Area: 131365760,0053060
Selection Setz: Fake

The results of NNA for 2010-2011 / VELOCIPEDE USERS
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Average Nearest Neighbor Summary

Maaiiil Nebghbese Raths: 0500000
Erdecmane T 06175
provalis: O,000000

Significerson Leval
{prvalua)
d.oL
nos
nin

oo
UIE]
oo

gl fesa

aanome

|

Eriticed Vahs
[3daaia)

« 2.5
EEE =18

1A% - LS
"143- L3

145 - 1,55
LBE- 200
=E38

Giheen the: 7-sooee of <21, DEITIIT0E, there & 3 iess than 19 Bkedinnod that this chestenes

pattem coukd Be the result of andom chanor.

Average Nearest Neighbor Summary

Observed Mesn Distance: 114, 5243 Maters
Expected Mean Distance: 214, 1695 Maters
Mearest Meighbor Ratio: 0600101
z-score: 21062794
pwalue: | 00000030

Dataset Information

Input Feature Class: 12 14 VELDCIPEDE PO

Distance Method: EUCLIDESN
Study Area: 152363031 304971
Selection Set:  Fake

The results of NNA for 2012-2014 / VELOCIPEDE USERS

134



Average Nearest Meighbor Summary
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Gibeess the: 7-5come of - 13, BESGIAGAES, them i 3 less than 1% Beelhood that thes dustemd
pactem coulkd e the result of random chance.
Average Nearest Neighbor Summary
Observed Mean Distance: 1609,1774 Maters
Expected Mean Distanos:  278,1419 Meters
Pearest Mesghbor Ratio: 0550105
z-mcores | -13 669605
prvabues | 0,000000
Dataset Information
Input Feature Class: 15_16_VELOCIPECE PO
Distance Method: | ELCLIDEAN

Study Area: | 154416157 56258
Selection Set: Fake

The results of NNA for 2015-2016 / VELOCIPEDE USERS
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Average Nearest Neighbor Summary
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Gibermn the 7-scom of - 18, PRS0063071, thise s 3 less than 13 oaihond that this distened
pettem could be e nesult of Andom chance.
Average Nearest Neighbor Summary
Observed Mean Distances | 147,277 Maters
Expected Mean Distance: 2350779 Meters
Nearest Neighbor Ratio: 626504
r-soores | -18 PES006
prvalues | 0000000
Dataset Information
Input Peature Class: 17 19 VELOCIPEDE PC
Distance Method: ELCLIDEAN
Study Area: 151522040, 103661
Selection Set: Fake

The results of NNA for 2017-2019 / VELOCIPEDE USERS
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ANNEXS5 : THE RESULTS OF NEAREST NEIGHBOR ANALYIS FOR MOPED USERS

Average Nearest Neighbor Summary
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Ghven Ehe 2-sooee of - 14561 1495126, there i 3 less than 13 Besfhood that Bhis dustemnd
pattem could Be the result of random chance.

Average Nearest Meighbor Summary
Observed Mean Distances 151, 1091 Mebers
Expected Mean Distance: 278,766 Meters

Mearest Meighbor Ratioz 0 &95657
r-soores | -14 561150
prvabues | 0,000000
Dataset Information
Input Feature Class: 06_07_MOPED PO
Distance Method: EUCLIDESN

Srudy Area: 146720000 TIR042
Selection Stz Fake

The results of NNA for 2006-2007 / MOPED USERS
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Average Nearest Meighbor Summary
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Gibees the: 2-5cnre of 11, TSELISME, there b 3 s thas 15 lkellood that this clistered
pactem could be the: resul o random chance.
Average Nearest Meighbor Summary
Observed Maan Distance: 1587 7207 Metérs
Expected Meaan Distanoe:  276,2200 Meterd
Mearest Meighbar Ratio: (675605
z-scores -11,750195
p-value: | 0,000000
Dataset Information
Imput Festure Class: [8_09 MOPED PC
Distance Method: CUCLDERN
Study Areh: | 112310155 589102
Selection Set: Fake

The results of NNA for 2008-2009 / MOPED USERS
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Average Nearest Neighbor Summary

Maaresl Meighbor Ratie: 0, 70050 Hyeifceron Leval Critical Vake
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Gibvesn Ehe 2-scnne of -8.911 39075745, thess s 2 bees than 1% Hosihood that this dushend
patem coukd Be the result of random chance.
Average Nearest Meighbor Summary
Observed Mean Distances  266,0516 Meters
Expected Mean Distance: | 179,7581 Meters
Mearest Meighbor Ratios 0700508
r-soores | -8,931350
prvalues | 0000000
Dataset Information
Input Feature Classz 1011 MOPED PO
Distance Method: FUCLIGERN

Study Area: 140207667 158191
Selection etz Fake

The results of NNA for 2010-2011 / MOPED USERS
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Average Nearest Neighbor Summary

sigeificeroe Leeal Critinal Vabs
fpveeke) [a-scars)
aoi < -A5E
nos “2BE--138
L] 138 - L B3
-1/ - 1:63
145 - 1,56
L9 - 298
= L38

nio
nons
o

nnannne

|

Sonifican

Gibeems the z-scom of 6258351 1286, this s 3 less than 13 Belihood that this disstered
pettem could be the result of andom chance.
Average Nearest Neighbor Summary
Observed Mean Distance: | 261 4574 Maters
Expected Mean Distanoe: 345 6041 Meterd
Nearest Neighbor Ratéo: 0762113
T-soore: | -6 BEREAE
p-wabue: | 0000000
Dataset Information
Inpust Feature Class: | 1214 MOPED PO
Distance Method: ELUCLIDERN
Study Area: 107547757 433158
Selection Set: Fake

The results of NNA for 2012-2014 / MOPED USERS
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Average Nearest Meighbor Summary

Mearest Mehghbor Ratie: 0, TH854E Hgeifceres Lesal Critiesd Vake
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fibeesn Ehe -5 of -4 LIBIBIEIET, there I 3 less than 13 Hoedihood that this dustemd
partem oould be the rasult of random chance.
Average Nearest Meighbor Summary
Observed Mean Distance: 416, 2506 Mebers
Expected Mean Distance: 571, 2452 Meters
Nearest Meighbor Ratio: | 0, PSBEG
F-soore: -4 104308
p-value: | 0,000029
Dataset Information
Imput Feature Class: 15 16 MOPED PC
Distance Method: CUCLIDERN
Stwdy Ares: | 138042042 B962T
Salection Set: Fabe

The results of NNA for 2015-2016 / MOPED USERS
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Average Nearest Neighbor Summary

Meanest Meighbor Rathe: 0,34157 Sgeificencs Leeal Criticd Vaks
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Gibvesn Bt 2-scme of -1 JPRAIATAU84, the patherm dons nof 2ppanr tn be signiminty ditrest
tean random.
Average Nearest Meighbor Summary
Observed Maan Distanoe: | 06,5256 Meters
Expected Maan Distance: 420, 5562 Meters
Nearest Meighbor Ratioz | 0544187
z-scores -1,276815
prvalues | 0201661
Dataset Information
Input Feature Classz 17 19 MOPED PC
Distance Method: EUCLIDEAN
Stsdy Area: | 106006550 B120R
Salaction Set: Fake

The results of NNA for 2017-2019 / MOPED USERS
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ANNEX 6 : THE RESULTS OF KDE ANALYIS FOR VRU

Heat map of traffic collisions including all VRU for the period 2006-2007
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Heat map of traffic collisions including all VRU for the period 2008-2009
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Heat map of traffic collisions including all VRU for the period 2010-2011
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Heat map of traffic collisions including all VRU for the period 2012-2014
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Heat map of traffic collisions including all VRU for the period 2015-2016
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Heat map of traffic collisions including all VRU for the period 2017-2019
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ANNEX 7 : THE RESULTS OF KDE ANALYIS FOR PEDESTRIANS

Heat map of traffic collisions including only pedestrians for the period 2006-2007
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Heat map of traffic collisions including only pedestrians for the period 2008-2009
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Heat map of traffic collisions including only pedestrians for the period 2010-2011

151



Heat map of traffic collisions including only pedestrians for the period 2012-2014
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Heat map of traffic collisions including only pedestrians for the period 2015-2016
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Heat map of traffic collisions including only pedestrians for the period 2017-2019
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ANNEX 8 : THE RESULTS OF KDE ANALYIS FOR MOTORCYCLE USERS

Heat map of traffic collisions including only motorcycle users for the period 2006-2007
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Heat map of traffic collisions including only motorcycle users for the period 2008-2009
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Heat map of traffic collisions including only motorcycle users for the period 2010-2011
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Heat map of traffic collisions including only motorcycle users for the period 2012-2014
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Heat map of traffic collisions including only motorcycle users for the period 2015-2016
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Heat map of traffic collisions including only motorcycle users for the period 2017-2019
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ANNEX9 : THE RESULTS OF KDE ANALYIS FOR VELOCIPEDE USERS

Heat map of traffic collisions including only velocipede users for the period 2006-2007
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Heat map of traffic collisions including only velocipede users for the period 2008-2009
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Heat map of traffic collisions including only velocipede users for the period 2010-2011
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Heat map of traffic collisions including only velocipede users for the period 2012-2014
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Heat map of traffic collisions including only velocipede users for the period 2015-2016
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Heat map of traffic collisions including only velocipede users for the period 2017-2019
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ANNEX 10 : THE RESULTS OF KDE ANALYIS FOR MOPED USERS

Heat map of traffic collisions including only moped users for the period 2006-2007
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Heat map of traffic collisions including only moped users for the period 2008-2009
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Heat map of traffic collisions including only moped users for the period 2010-2011
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Heat map of traffic collisions including only moped users for the period 2012-2014
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Heat map of traffic collisions including only moped users for the period 2015-2016
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Heat map of traffic collisions including only moped users for the period 2017-2019
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