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Abstract

Biocomputing is a novel research area, in which biological entities are manipulated
to perform computations. The highly specialized mechanisms that neurons adopt to
elaborate thousands of synaptic signals could make them an outstanding platform
to realize such technologies. Hence, recently researchers have been attracted by
the possibility of designing logic gates and digital circuits with neurons. Several
challenges arise from this ambition, mainly associated to the stochastic nature and
noise of neural signalling. Additionally, there is still a partial lack of comprehension
related to the processes of encoding/decoding of neural information. Therefore,
the search of strategies that could make these systems more controllable is crucial.
Since it has been demonstrated that astrocytes play a fundamental role in the
regulation of neural activity, these could be employed to increase the reliability of
neuronal biocomputing systems. Furthermore, the computing power of traditional
digital devices is made possible also by the use of memory elements, realised through
sequential logic circuits. However, most of the efforts in literature concentrate about
the implementation of combinatorial logic, while the development of sequential
circuits with neurons has been only partially investigated.

In this thesis we propose a mathematical model of neuronal logic gates based
on Izhikevich model. First, neural OR and AND gates are developed by regulating
the synaptic strengths. These systems are further coupled with astrocytes feedback
through the tripartite synapse model by Postnov et al., in order to achieve improved
gating robustness. Bit error ratio and accuracy are used to assess the OR and AND
gates performances at different synaptic gaussian noise levels. Then a larger library
of neural logic gates, comprising buffer AND NOT, NOT and NAND gates, is
developed exploiting synaptic inhibition. These building blocks are after connected
together to realise sequential circuits, both asynchronous and synchronous, including
SR latch, gated SR latch and D flip-flop. Finally, the initial validation of their
operability with increased firing frequency is provided.

Our results demonstrate the effectiveness of astrocytes regulating activity as
denoising mechanism. Furthermore, we initially validate that sequential circuits
can be built with interconnected neuronal logic blocks, representing an outstanding
chance for developing extremely elaborate biocomputing systems. The examination
of the current model could give useful insight about how biological cells can be
engineered to perform computations and could be taken as inspiration for further
in-vitro experiments. The development of neuronal biocomputing systems will pave
the way for the realisation of innovative medical technologies, as neuroprosthesis
and neuronal implantable chips, directly made by biological cells. Hence these
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devices will display optimal biocompatibility and will be able to treat diseases by
restoring the altered physiological communication of biological cells.
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Chapter 1

Introduction

1.1 Motivations
Since the dawn of computer science, scientists have always been fascinated by
the brain capabilities of performing computations. Our brain constantly receives
many sensory stimuli from the external environment, rapidly processes them to
take decisions that allow the actuation of complex tasks. As an example, when
we grab an object, our nervous system integrates the information coming from the
visual system and the tactile mechanoreceptors located in our hand and regulates
the response based on the shape and the fragility of the object. This allows us
both to hold a stone, or an egg without breaking it, a complex problem that
is still challenging for robotic hands. Moreover this is simultaneously executed
during several ongoing involuntary processes, as regulation of heart and respiratory
rate, with an high level of parallelism. Even if neurons are slower respect modern
computers, brain computational rate exceed computers, thanks to the extremely
high level of connectivity [1]. This result could also be related to the fact that the
brain is a much more flexible computational system than computers. Indeed the
nervous system displays convenient features as concurrency, fault-tolerance and
adaptive learning [1].

Although the principles that govern our nervous system remain not fully un-
derstood, existing knowledge of the human brain has influenced information and
communication technologies (ICT) from many points of view. The development of
artificial intelligence systems (AI) which try to replicate typical brain learning and
problem solving mechanisms, has displayed a strong impact on most engineering
technologies. Artificial neural networks (ANN) could be considered the most repre-
sentative example of bio-inspired computing system and constitute one of the most
powerful tools of machine learning.

In their pioneering work published in 1943 [2], McCulloch and Pitts theorized
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Introduction

that the brain could be modelled using simple interconnected building blocks, which
symbolize the neurons. Each of them is described using boolean algebra and, based
on thresholding functions, they manage to perform logical operation as logic AND
and logic OR. This constitutes the first attempt to formalize neurons as computing
units with logic gating capabilities.

Interestingly, the fundamental computational units of digital electronics, the
logic gates, and the physiological units of the nervous systems, the neurons, share
some similarities [1]. In digital electronics, any digital circuit can be built using
the same basic logic gates as building blocks. Similarly, neurons, keeping the same
principles of operation, i.e. the action potential generation, menage to realize diverse
cognitive mechanisms. Furthermore, both of them constitute information processing
systems that receive multiple inputs and produce a single output. Nevertheless, the
number of inputs tolerated by a unit (fan-in) and the number of units that could
be driven by an output (fan-out) are much larger in the nervous system respect
digital electronics, reaching values in the range 1000-10000. Another difference is
represented by the fact that the internal dynamic of neurons is much more complex
than the logic gate’s one. Specifically logic gates can be considered static, meaning
that outputs are well-defined respect input’s values. Instead neurons internal state
is influenced by a large number of variables, as inputs synchronization, proximity
with the sender neuron, characteristic of the synapses, etc.

Based on the outstanding computational capabilities of the human brain, the
question arises whether it could be possible for science to use neurons, in a control-
lable manner, similar to what is done with logic gates. This could open the frontier
for the development of biological computing systems, by applying the computing
tools of digital electronics into the biological nervous system. Biocomputing is a
novel research paradigm which try to manipulate biological entities, as neurons,
through synthetic biology techniques, to perform human defined computations [3].

But why could engineers be interested in realizing computer-like systems using
biological cells? In the future such technologies may lead to the development
of innovative biomedical solutions acting at cellular level. Neurodegenerative
diseases are provoked by the progressive loss of functionality of specific neurons
populations. Especially engineered cells with biocomputing abilities could be
implanted to restore the physiological behaviour by directly communicating with
the ill cells. Furthermore, in the last years we have seen the rising in the interest of
the scientific community in the design of brain implantable chips. The application
of these technologies are various, among all, brain stimulators used as neurodiseases
therapies, brain computer interfaces or neuroprosthesis. The research on neuron
biocomputing could open the frontiers for the development of innovative brain
chips entirely made by reprogrammed cells.

Why devices made by cells could provide an alternative to traditional silicon
chips? In the same manner as research on tissue engineering is trying to do, fully
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biocompatible solutions could be developed by engineered cells directly extracted
from the patient. Additionally, the use of the same biological medium could
overcome the difficulties related to the interface between electronics and biological
tissues, which often cause the lost of performances of the device and the aggressive
response of the biological environment respect the device, followed by the final
rejection of the device.

The starting point toward the realization of neuron biocomputing technologies
is the development of logic gates, the basic units of digital electronics, made by
neurons. A neuronal logic gates should be composed by a network of neurons,
in which the input signals are generated by a first layer of neurons, elaborated
according to the graph of synaptic connections and eventually by other intermediate
layers of neurons, and finally mapped into outputs by an output layer of neurons.
The input-output relationship should follow the logic rules defined by Boolean
algebra. If a such device could be developed, neuronal logic gates could be used
as building blocks, and larger computing systems could be realized by cascading
multiple modules.

Several challenges arise toward the realization of neuronal logic gates. We mainly
address to the following three types of issues.

• Stochastic nature of neurons signalling: neurons signalling is intrinsically
stochastic and can be understood only using a probabilistic approach. As a
consequence, from the same input values, different output responses could be
elicited. Furthermore, in biological networks, neurons can also fire without any
synaptic inputs [4] and with poor synchronization, resulting in an enormous
background noise that make difficult to process neuronal messages.

• Control over synaptic connections: biological neuronal networks display
high levels of connectivity. The development of synaptic connections is ruled by
complex activity-dependent mechanisms. Therefore controlling the topology of
in-vitro biological network constitutes a complex task. However, this could be
required for designing neuronal network that behave accordingly to a desired
logic response.

• Dynamics of membrane excitability: while for digital logic gate fixed
thresholds can be used to define the logic outputs, neuronal dynamics are much
more complex. As will be further discussed in Section 1.2, neuron excitation
both depends on the number of received inputs and also on their frequency,
due to the spatial and temporal summation mechanisms. Consequently, if the
operating frequency does not belong to a certain range, the neuronal gate
could not follow the expected logic function.

In this thesis we will investigate about the design of networks of cells belonging
to the nervous system, in which input spike patterns are mapped in output spike
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patterns following predefined logic gating relationships. The instruments of mathe-
matical modelling will be used to capture valuable information about the dynamics
of neuronal logic gates, and define an effective design paradigm that can be used
to build such complex systems.

1.2 A biological framework of neurons signalling
1.2.1 Neurons electrophysiology
Neurons can be considered as the fundamental computational unit of human nervous
system. The brain is organised as an enormous network architecture made by
billions of these elementary units. Each of them receives incoming input signals
from other units, elaborates them and produces an output. This output is generated
in the form of brief sudden electrical impulses called action potentials (APs).

To obtain a better understanding about the nature of these neuron signals,
first we will focus on their relationships with the electrical properties of the cell
membrane. When neurons are at rest, a stable difference in the electrical potential
between the two sides of the membrane is maintained. This stable state is called
the resting membrane potential and its typical values are in the range between
−60 and −70 mV [4]. The resting potential is associated to the continuous action
of protein pumps, that keep an unequal distribution of ion species (K+ and Na+)
at the extremities of the membrane. Variations in the membrane potential occur
when the neuron receives electrical stimuli from the other cells. Specifically, an
excitatory stimulus produces an increase in the potential, called depolarization,
which enhances the cell’s probability to fire an AP. In constrast, an inhibitory
stimulus produces a negative deflection respect the baseline, i.e. hyperpolarization,
and reduces the firing probability. When the membrane potential exceeds a critical
threshold, an AP is generated.

Action potentials are often defined as all-or-none signals [4]. This means that
neurons can only spike or not spike, because if an AP is generated it has always
the same amplitude. A further increase in the amplitude of a suprathreshold input
does not influence the amplitude of APs, but rather the frequency of the sequence
of spikes (called train of APs). Instead the duration of the stimulus is proportional
to the number of APs elicited [4]. Therefore the information of neuronal signalling
is not represented by the amplitude of APs, but instead in their timing, number
and frequency.

1.2.2 Bipartite synapses
Once understood which are the signals used by neuron to convey the information,
now we will focus on how this information can be transmitted between more neurons.
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Neuron communication is made possible by the presence of specialized structures
called synapses. We refer to the neuron which transmits the message as presynaptic
neuron, while the receiver neuron is called postsynaptic neuron. Synapses involving
only these two kind of ’actors’ are often called bipartite synapse, differently from
the case that will be discussed in the next Subsection, in which another type of
cell come into play.

The most common class of bipartite synapse, namely chemical synapses, make
use of neurotransmitters, which are substances that act as chemical messengers.
The firing of the presynaptic neuron triggers its release of neurotransmitter, which
reaches the receptors located in the postsynaptic neuron. This chemical bond
influences the permeability of ions channels located on the postsynaptic cell. Hence,
the postsynaptic membrane potential is affected, eliciting a subthreshold signal
called postsynaptic potential. Depending on the type of neurotransmitter and
receptors, this signal can be either a small depolarization, namely excitatory
postsynaptic potential (EPSP), or a small hyperpolarization, called inhibitory
postsynaptic potential (IPSP). The generation of an AP can not be triggered
by a single EPSP, but rather requires many of them. At the same time, IPSPs
prevent the firing. Therefore the neuron needs to evaluate the contribution of
all the receiving inputs and decide if firing an AP or not. This is what is called
neuronal integration. It can be seen as a "voting" mechanism, in which each EPSP
represents a positive contribution that increases the firing probability, while each
IPSP represents a negative contribution that decrease this probability. Neuronal
integration is based on two concurrent mechanisms, the temporal summation and
the spatial summation. The temporal summation occurs due to repeated stimuli
coming from the same presynaptic neuron. If a first EPSP does not totally decay
by the time the second EPSP is generated, the two effects are summed together,
and the firing threshold can be reached. We refer instead as spatial summation
to the integration of inputs coming from many presynaptic neurons acting on the
same postsynaptic neuron. Furthermore, each synapse can be characterised with its
on strength in increasing or decreasing the postsynaptic membrane potential and
this can be enhanced or weakened by cellular activity. This phenomenon, called
synaptic plasticity, is fundamental for complex brain functions related to memory
and learning.

As previously anticipated, different species of neurotransmitter participate in the
transmission of the chemical information. Chemical neurotransmitters can directly
or indirectly affect the opening of ion channels, depending on their complementary
receptor [4]. Ionotropic receptors are part of the channels that they regulate, and the
binding with the neurotransmitter induces a conformational change in the receptor
structure that provokes the channel opening. On the other hand, metabotropic
receptors are distinct from the channels, and their regulation function is performed
indirectly through the activation of second messengers. The latter process generally

5



Introduction

takes more time. Based on the ion species associated to the specific channel,
its opening can have an excitatory or inhibitory effect on the postsynaptic cell.
Even though most neurotransmitters can bind with both excitatory or inhibitory
receptors [4], some of them prefer to perform their action in one of the two types.
The major excitatory neurotransmitter is the glutamate, which predominantly act
on ionotropic receptors AMPA and NMDA [5]. Even if both AMPA and NMDA are
ionotropic receptors, NMDA are considerably slower. Instead most of the inhibitory
synapses involve a neurotransmitter called GABA (γ-aminobutyric acid). This one
can operate ionotropically on GABAA receptors or metabotropically on GABAB

receptors.

1.2.3 Tripartite synapses
Our nervous system is not only populated by neurons, but also by non-excitable
cells called neuroglia. Astrocytes are a specific type of glial cells, which mainly
fulfill supplementary functions respect to neurons. Specifically their main roles
include providing structural support to neurons, supplying them with nutrients and
oxygen, insulate them and protect them from pathogens through the blood-brain
barrier (BBB). Even though astrocytes have long been thought as passive elements,
recently it has been demonstrated that they can also directly communicate with
neurons and regulate their activity [6][7][8]. In particular, they are able to modulate
the amount of neurotransmitter released in the synaptic cleft, contributing to the
synaptic current regulation and providing feedback to the neuronal activity. Recent
experiments demonstrated that astrocyte activity does not simply mirror neurons
patterns but seems to produce frequency or amplitude modulation of the neuronal
activity [9]. The functional unit involving a presynaptic neuron, a postsynaptic
neuron and an astrocyte is defined as tripartite synapse [6].

As previously observed, astrocytes are non-excitable cells, meaning that they are
not able to generate APs, but instead they encode information through oscillations
in Ca2+ concentration. This ionic messenger is mainly stored inside an organelle
structure called endoplasmic reticulum (ER). Considering a tripartite synapse,
the presynaptic firing induces the release of glutamate in the synaptic cleft. The
glutamate binding to astrocyte receptors triggers astrocyte activity. At that point a
secondary signalling molecules, called 1,4,5-trisphosphate (IP3), is involved. Indeed
the IP3 intracellular concentration increases [9]. As a consequence, IP3 binds
the receptors placed on the astrocyte endoplasmic reticulum and Ca2+ is realised
from the ER to the cytoplasm. Since the opening of IP3 channels increases with
increasing Ca2+ concentrations, this leads to a self-amplifying release mechanism,
called calcium-induced calcium release (CICR). With high Ca2+ concentrations,
the astrocyte responds releasing ’glion mediators’ (or ’glion transmitters’), which
are excitatory neurotransmitters as ATP and glutamate. This contributes to the
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synaptic transmission [10] enabling a feedback mechanism. Moreover, this could
be whether a positive or negative feedback, depending if the astrocyte mediator
release happens near an excitatory or inhibitory interneuron [11]. Although several
mediators are involved in the neuron-glion interaction, we can define two main
pathways of astrocyte activation [12]: the slow activation pathway and the fast
activation pathway. The previously explained mechanism of activation via IP3
production is defined as slow activation pathway. In addition astrocytes can
be activated due to the increasing of K+ extracellular concentration. Since this
astrocyte depolarisation can be considered instantaneous, this mechanism is called
fast activation pathway. Even though the molecular pathways concerning neuron-
astrocyte communication are well defined, the physiological meaning of astrocyte
signalling remains substantially not clear.

1.3 Research questions
In this thesis, a paradigm for the design of neuronal networks with logic gating
responses will be investigated. This will be done through the use of numerical
simulations, based on the versatile neuron model proposed by Eugene M. Izhikevich
[13]. Main efforts will be associated to the design of a library of elementary neuronal
logic gates, which can be further interconnected as building blocks for the realisation
of larger digital-like circuits.

Through the the thesis we will address to the following research questions.

1) Is there a network structure of Izhikevich neurons that manage to
simulate OR and AND logic gates?
With the term ’network structure’ we mean the graph that describes the
network, characterized by the number of neurons and their interconnections.
These are represented by the synapses, which information processing capability
is mostly encoded in their synaptic strength. Thus neuronal logic gates can be
differentiated based on the number of neurons, their linking and the regulations
of the synaptic strengths.

2) Can tripartite synaptic transmission improve logic gates reliability?
In Subsection 1.2.3 the mechanisms of regulation of neuronal activity played
by astrocyte has been discussed. Hence tripartite synapses could be used as
a strategy to design more controllable biocomputing solutions, addressing to
the challenges related to the stochasticity of neuron signalling.

3) How can the network structure be modified to simulate other logic
functions?
A large library of neuronal logic gates could be developed, further exploring
physiological process involved in the nervous system, as the synaptic inhibition.
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Otherwise, the examination of digital electronics principles could provide
inspirations. Clearly, new logic functions could be achieved by cascading
the existing ones, that means by interconnecting more neuronal logic gates
together. Furthermore, digital tools as digital buffers could be exploited.
These allow to increase the number of logic gates that can be driven by a logic
gate output, and they are also used to restore degraded logic signals.

4) Can neuronal logic gates be connected to realise sequential circuits
as latches and flip-flops?
Contrary to combinatorial logic, whose output is simply defined by the inputs at
the present instant, in sequential logic the outputs depends also on the previous
inputs values. That means that sequential logic has storage capabilities. All
common digital devices serves of sequential circuits, to realize tasks that require
memory, as for instance pipeline architectures, registers, counters and adders.
The possibility of developing biocomputed circuits with data storage properties
could pave the way to extremely powerful biocomputing technologies, toward
the realization of biological finite-state machines. However, the actual state of
art of neuronal biocomputing mostly includes examples of simple combinatorial
circuits, while the development of much complex neuronal sequential circuits
is only at the beginning.

1.4 Contributions
We summarise our main contributions as follows.

1) Design of neuronal OR/AND gates by synaptic weights regulation:
our network consists in three Izhikevich neurons, with excitatory bipartite
synapses described by a conductance-based model with instantaneous rise and
single-exponential decay. The simulated neuronal responses display OR and
AND gating, based on the chosen values of synaptic weights. Furthermore the
logic gating is extended both to phasic and tonic spiking behaviours.

2) Astrocyte-based denoising of synaptic channel: the neuronal OR/AND
gates are tested involving tripartite synapses described by the Postnov et al.
model [14][12] modified using the aforementioned synaptic conductance-based
model. We quantify the astrocyte-denoising effect using accuracy and bit error
ratio (BER) at different levels of gaussian synaptic noise. The success of the
denoising is validated by the significant increase in the accuracy and decrease
in the BER.

3) Design of novel neuronal logic gates through AND NOT architec-
ture, cascading and neuronal buffers: synaptic inhibition is used for the
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modelling of AND NOT gate and NOT gate, as theorised by L. Yoder [15].
All bipartite synapses are modelled using the conductance-based model with
synaptic conductance as difference of two exponentials. We simulate a neu-
ronal NAND gate, by neuronal AND and NOT gates cascading. Furthermore,
a strategy for input synchronization based on the use of neuronal buffers is
here initially validated.

4) AND NOT gate-based sequential circuits: a realistic simulation of the
neuronal SR latch, as formulated by L. Yoder [16], is achieved. Finally we
propose and simulate the realisation of gated SR latch and D flip-flop, by
the use of interconnected building blocks from our neuronal logic gate library.
Additionally we demonstrate the functioning of the D flip-flop with increased
firing frequency by re-adjusting the synaptic weights.

We plan to submit the folowing paper:

• Giulio Basso and Michael Taynnan Barros. "Biocomputing Model Using
the Tripartite Synapses Provides Reliable Neuronal Logic Gating with Spike
Pattern Diversity" - To be submitted to IEEE Transactions Selected Topics in
Computing. 2022.

1.4.1 Summary of the thesis
In Chapter 2 we provide an overview about the state of art of biocomputing. We
start by introducing the molecular communication paradigm used to carry biological
information. After we investigate the origins of biocomputing and provide some
examples, first based on DNA signalling within bacteria and then based on nervous
system cells. Chapter 3 covers the main instruments of mathematical modelling
required in our work, concerning the simulation of neurons, bipartite synapses,
tripartite synapses and synaptic noise. Chapter 4 examines the proposed methods
for the modelling of the simplest neuronal logic gates, that is the OR and AND
gates. Here we start describing the proposed modifications of the tripartite synapses
model and the general network structure adopted for both the gates. Afterwards,
we focus on the realisation of the gates, first with bipartite and then with tripartite
synapses. In Chapter 5 we illustrate the methods used for the design of the AND
NOT-based gates and the sequential circuits. After describing the AND NOT gate
and NOT model, we investigate the employ of cascading architecture and neuronal
buffers, in relation to the neuronal NAND gate. Then these neuronal logic gates
are combined for the development of sequential circuits. Chapter 6 reports the
results of the simulations, which are then analysed in Chapter 7. Finally Chapter
8 concludes the work.
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Chapter 2

Literature Review

2.1 Molecular communication
In biological systems, as cells, the information is exchanged and processed through
sophisticated communications mechanisms, that allow the systems to make funda-
mental decisions, as differentiation, proliferation and apoptosis. These communica-
tions processes often employ molecules, and the chemical message is mainly encoded
through the specific type of molecule and its concentration. A clear understanding
and human control over biological communications mechanisms could represent
an outstanding chance for the development of novel biomedical technologies, both
for diagnostic and therapeutic purpose. Furthermore, since molecules live at the
nanoscale, these processes could be exploited for nanonetworks, namely inter-
connections of nano-machines. Indeed at that scale, traditional electromagnetic
technologies often fail due to issues related to the size and the power consumption
[17]. For these reasons, the research interesting about communication mechanisms
involved in nature is rising.

Molecular communication (MC) is a new bio-inspired paradigm of communi-
cation engineering that uses molecules to carry information between transmitters
and receivers [18][17][19][20][21]. Examples of candidate information molecules are
DNA/RNA strands, intracellular messengers as Ca2+, neurotransmitters, hormones
and other small proteins [21]. Among all effective reviews, Farsad et al. compre-
hensively analysed molecular communication using the formalism of traditional
communication engineering [19]. Any communication system can be analyzed in its
main components, namely the transmitter, the channel and the receiver. The trans-
mitter is the device that generates the signal by encoding the information and sends
it, the channel represents the environment in which the signal propagates, while the
receiver is the device that collects and decodes the information. In MC, transmitter
and receiver can be biological cells (e.g. presynaptic and postsynaptic neurons
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respectively), cells genetically engineered or artificial cells, i.e. simplified synthetic
cells with well-controllable behaviours. The main function of the transmitter cell is
the production and release of the information molecules. This can be engineered by
manipulating the metabolic pathways of the cell, e.g. with viral vectors, which then
synthesizes the desired signaling molecules. The channel is the biological aqueous
or gaseous medium where the information particles propagate. The propagation to
the receiver is made possible by biological transport processes as free diffusion, or
flow assisted propagation. Afterwards, the receiver cell needs to show the receptors
complementary to the information molecules. The receptors receive the chemical
signals, acting as antennas in traditional communication engineering. Once the
information molecules are captured, the receiver decodes the information contained
in the signal.

An interesting example of such biological communication systems is depicted
by neuronal communication. Communication in the nervous systems is mainly
fulfilled via two types of propagation mechanisms, one that involves signalling
within neurons, while the other concerning signalling between neurons [22, 23].
Therefore the transmitter and the receiver can be identified as two portions of the
same neurons, or as the presynaptic and postsynaptic neurons. The channel can
be abstracted as the neuron axon, or as a synaptic connection. The propagation
within neurons takes place as action potentials that travel along neurons axons.
These local changes in the electrical potential of the membrane are amplified by
the presence of voltage gated ion channels (associated with K+ and Na+ ions),
which open following a positive feedback mechanism that permits the propagation
without attenuation. After the passage of the electrical wave, they remain closed
during the so-called refractory period, that ensures the proceeding of signals in only
one direction. The propagation between neurons occurs at the level of the synapses,
through processes of reaction and diffusion. At chemical synapses, the signal is
transmitted by the presynaptic neuron with the realising of neurotransmitter, which
diffuses across the synaptic cleft until the binding with the receptors located on
the postsynaptic membrane. The generation of the two forms of neuron signals
marks the transduction between them. Action potentials generation is controlled
by the opening of the voltage gated ion channels, which in turn are triggered
by the binding of neurotransmitter. Symmetrically, when APs reach the axon
terminal induce the fusion with the presynaptic outer membrane of the synaptic
vesicles containing neurotransmitter, and so the release. Overall, the information
is carried by the number and timing of action potential spikes. However, how
this information is encoded and decoded by neurons is not completely understood.
Evidences seems to show that the information is quantified in the number of spikes
over some periods, or in the length of intervals with absence of spikes, or even in the
frequency of spike trains. An experimental demonstration on how digital data can
be externally transferred to an in vivo nervous system exploiting neuronal molecular
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communication is depicted by [24]. In this work they managed to transmit digital
signals into the nervous system of earthworms using electrical stimulation and
analyzed the receiving signal which has propagated along the nerve cord.

The realisation of communication systems using biological principles results
in several benefits. First of all, by using molecules already involved in biological
systems, fully-biocompatible devices can be developed, overcoming the issues related
to the aggressive response of the immune system respect the artificial implant.
Additionally, biological communication exhibits an extraordinary high efficiency
and low heat dissipation [25]. Since the reaction space in which this processes
occur are at the nano-scale, time constants, as diffusion times, are significantly
reduced, and therefore chemical reactions are facilitated. Moreover molecular
communication devices could directly be supplied with the power coming from the
catabolic physiological processes [19].

However, molecular communication research has to deal with many challenges.
Compared with the performances of traditional electromagnetic technologies, molec-
ular communication is considerably slower. For instance the speed of diffusion
processes can be in the order of micrometers per millisecond [26]. Other remarkable
issues are associated to the noise and stochastic nature of biological channels
[27]. Molecules movements can be unpredictable, and noise can be introduced
due to several phenomena, as the degradation of the information molecules or the
interference with other molecules in the biological environment [28].

Nonetheless molecular communication technologies display numerous powerful
applications in the biomedical field. As instance they can be used for both tumour
diagnosis and therapy [29, 18]. The sensing of the concentrations of biomarkers,
as proteins excessively produced by the abnormal cells, can be used to detect and
assess the disease. As far as concern anti-tumour therapies, cancer cells can display
specific receptors over-expressed respect the healthy cells, which can be exploited
through ligand-receptor reactions to transport the anti-tumour drug in the target
site, minimising the toxic effects in the surrounding healthy tissues. Other recent
application of MC concerns regenerative engineering, where the control of cells
differentiation, proliferation and migration can be obtained by manipulating cells
communication processes [30]. Finally MC technologies may potentially be used to
restored the impaired processing and transfer of information on the nervous system
when affected by neurodegenerative diseases [31].
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2.2 Biocomputing
Molecular Communication allows to transfer signals between bio-nanomachines.
A further step toward the realization of powerful molecular technologies is repre-
sented by the possibility of making these devices process the received signals with
elementary operations, i.e. computations. As observed in Section 1.1, this is the
objective of a research area called biocomputing. Main research efforts are concerned
with the developing of some sort of processing units, eventually located both on
transmitters and receivers, which elaborate the biological inputs and produces an
output according to predefined relationships [3].

Even though the concepts of making computations with atoms and molecules
date back to the so-called “There’s Plenty of Room at the Bottom” lecture by
Richard Feynman in 1959 [32], the biocomputing principle was firstly actualized by
Leonard Adleman in 1994 [33]. In its groundbreaking work, by showing the solution
of the Hamiltonian paths problem using molecular operations with strands of DNA,
he demonstrated the feasibility of implementing human-defined computations
with molecules. Since that, numerous implementation of digital-like devices as
switches, oscillators and logic gates have emerged. Most of the examples of
biocomputing technologies presented in literature serve of proteins and DNA
strands as information molecules. Indeed by controlling the genes transmitted
between two bio-nanomachines, one could manipulate the synthesis of proteins
and therefore the cells functionalities [21]. Prehoda et al. [34] pointed out that
operations which can be interpreted as logic gating are already implemented in
the biological environment. Specifically, the N-WASP protein, which contributes
to the polymerisation during cell motility, manifests its activity only in the case
in which two specific ligands bind together its domains. Since individually each
of these ligands are weak activators, i.e. they are not able to elicit the N-WASP
activation, but together yield potent activation, this protein circuit act similarly
to an AND gate. This mechanism ispired Dueber et al. [35], who synthetically
engineered the N-WASP managing to develop a library of gates, which includes
several realisation of AND gate and OR gate. Even though these circuits of proteins
exhibit an high flexibility for the design of biocomputing solutions, their outputs
do not always result in simple binary responses, because they depend on the input
proteins concentrations [35]. Therefore this could preclude the usage of the existing
binary gating techniques.

DNA molecules are recognize as another possible candidate for the construction
of biocomputing devices, because of the many operations that scientists are able
to implement with them. Instances of such operations are the cut-and-paste,
achievable through the use of restriction enzymes, the synthesis of target DNA
strands, the exponential copying of DNA molecules with polymerase chain reaction
(PCR) and the readout of DNA strands using the selective hybridization with
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probes [36]. An example of DNA biocomputing is provided in [37], in which they
realized a DNA circuit capable of logic gate operations (AND, OR, XOR), with
patterns of microRNA (miRNA) as inputs and fluorescence outputs.

Other biocomputing technologies regard the development of logic circuits using
whole-cells, as bacteria. Moon et al. [38] developed an AND gate in Escherichia coli
based on transcription factors, which are proteins that bind to specific sequences
of DNA called promoter and regulate the transcription of the DNA into messenger
RNA [39]. The AND gate receive as inputs two promoters and its output is still
a promoter that can be used as input of another gate, enabling the design of
cascaded structures. Since both input promoters are required for activating the
output promoter expression, the gate behaves as an AND gate. A more complex
transcriptional circuit is proposed in [40], in which they realized a toggle switch in
Escherichia coli, using promoters in a mutual inhibitory network. The aforemen-
tioned results represent only few examples of the achievements of biocomputing
through bacteria. Since prokaryotic cells could be considered as structurally simple
organisms, a more challenging ambition is realizing such biocomputed solutions
with eukaryotic cells as neurons.

2.3 Biocomputing with excitable cells
As previously anticipated in Chapter 1.1, researchers have tried to apply the
biocomputing paradigm with cells belonging to the nervous system. Several
contributions have been presented, most of them relying on the use of mathematical
modelling (in-silico models), but also few attempts of in-vitro experiments has been
investigated.

One of the first examples of in-silico model of logic gating realized with neurons,
is represented by the work of T. P. Vogels and F. Abbott [41]. Although their
main objectives concerned the understanding of signals propagation mechanisms
within the brain, once established such signal transmission in networks of integrate-
and-fire neurons, they explored whether the networks could perform computations.
Specifically, they built sparsely and randomly connected networks, they searched for
candidate pathways in the networks and adjust their synaptic strengths achieving
interesting computing circuits as NOT gate, switch, XOR gate and flip-flop. An
attractive point of this work is the fact that they did not build the network
architectures by hand, that is drawing the synaptic connections of the neurons, but
rather found the logic circuits within random networks, adopting a solutions which
may be also convenient in in-vitro experiments. One critical choice is that they
encoded the logic levels through the firing frequency, namely AP trains with low
frequencies are classified with the logic level 0, while trains with higher frequencies
are classified with the logic level 1. Even if this rate coding is often considered
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a biologically plausible hypothesis belonging brain signal propagation, it is not
effective for the biocomputing task, since the change in neurons frequency could
not always be abrupt, and therefore it could be difficult to clearly define the state
transitions [42]. More recently Adonias et al. [43, 44] defined mathematical models
of neuronal logic gates, and they simulated their possible applications as a treatment
for epileptic seizures. The logic gates were made by three neurons, described by
the Hodgkin-Huxley model and using fixed synaptic strengths between neurons,
but varying their connection probabilities. Their results demonstrated that the
accuracy in performing the logic tasks decreases with increasing firing-rate levels.
Although they developed a biologically detailed model of neurons, reproducing
the morphological and electrical characteristics of specific neurons populations,
they only implemented the simple AND and OR gates, without investigating more
complex logic functions. A different strategy toward the development of neuronal
logic gate is the one depicted in [42]. Here they adopted an encoding method in
which each logic variable is represented by two distinct neurons. If the first of these,
named Neuron 0, is firing, the logic variable is regarded as a logic 0, instead if the
second neuron is firing, named Neuron 1, it is regarded as a logic 1. Based upon
this encoding, they implemented a neuronal network of leaky-integrate-and-fire
neurons, made by three layers, and with a supplementary teaching layer that is
used to teach the network in reproducing the desired logic functions. Interestingly,
in this training phase, the synaptic weights of the network were trained using
the spike-timing–dependent plasticity rule (STDP). In that way they managed
to develop all the principle logic gates (AND, OR, NAND, NOR, XOR, XNOR)
and cascaded them to realize more complex combinatorial circuits as a rounding
logic network of 8421-binary-coded decimal (BCD) code, an half adder and a full
adder. However, they hardly simplified the model by using neurons which fire only
single spikes, which is biologically unrealistic. Furthermore, their logic encoding
is disadvantageous because it doubles the number of neurons required and it is
also less intuitive than the much simpler encoding with the presence of APs as
logic level 1 and the resting state as logic level 0. Another stimulating framework
is presented in the work by L. Yoder [16]. Here he theorized a novel gate model
made by three neurons with one inhibitory and one excitatory synapse, named
neuronal AND NOT gate, and he designed a SR latch by connecting two these
gates with mutual inhibitory feedback loops. Nevertheless, his theoretical methods
have not been supported by simulations with realistic biological model of neurons.
In our work we will take inspiration from this model, combined with more plausible
neurons modelling, and further expand it toward the realization of other types of
logic gates and more complex flip-flop circuits. Finally, with an approach more
oriented toward machine learning applications, other models based on recurrent
neuronal networks (RNN) have been presented, with examples of realization of
numerous logic gates types (AND, OR, NOT, XOR, NOR, NAND, and XNOR)
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[45] and also a 3-bit flip-flop [46].
As far as concern the applicability of logic gating techniques to in-vitro exper-

iments, accomplishments have been already made by researchers. In [47], based
on the observations that the neurons response latencies increase with ongoing
stimulations, they proposed that the brain may consist in dynamic logic gates
(DLGs), i.e. with time-dependent truth tables. With this hypothesis, they defined
an experimental setup using in-vitro cortical cells and built AND, OR, NOT, XOR
dynamic logic gates. The operating mode of the DLGs varies with the delay between
inputs and outputs stimulations, that means that the desired logic functions is
reproduced only within a certain range of delays. Furthermore, they originally
defined the gates architecture using neuronal chains that are made by consecutive
neurons connected in series. This solution seem enhancing the dynamic range of
supported time-lags. Lastly, [48] addressed the biocomputing research using a
different type of cells belonging to the nervous system, the astrocytes cells. They
proposed an AND gate and OR gate implementation with astrocytes, engineered
through synthetic genes to manipulate their Ca2+ signaling threshold. Moreover, a
reinforced learning platform were implemented to optimize the Ca2+ activation level
and the input transmission period that minimise the noise and the delay. Their
methods were validated by wet-lab experiments involving human astrocytomas.
From the literature analysis, it is clear that the research about the exciting themes
of biocomputing is still at an early stage, and many other aspects need to be
explored.
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Chapter 3

Mathematical models of
neurons electrophysiology

The processes of neuron electrical excitability are made possible by the presence
of two main ion species, the Na+ and K+ ions. The typical shape of an action
potential is illustrated in Fig. 3.1. At the resting state, the inner side of the neuron
is characterized by a larger concentration of K+ ions, while the outer side sees
a higher concentration of Na+s, and this unbalanced condition is maintained by
the Na+/K+ protein pumps. Whenever the neuron is sufficiently stimulated, the
membrane depolarization causes the opening of the voltage-gated Na+ channels,
which results in an inward Na+ current that further depolarize the cell. Therefore
the membrane potential rapidly overshoots, leading to the well-known spike shape.
The inactivation of Na+ channels, followed with some delay by the opening of
K+ channels which similarly produces an outward current, causes the membrane
repolarization. Afterward, a phase of hyperpolarization occurs, during which the
membrane potential undershoots below the resting membrane potential, due to
the slow dynamic that rules the K+ channels closure. The process of generation
of action potential is also characterized by the presence of a period of diminished
excitability called refractory period. This is further subdivided into an initial
absolute refractory period, during which it is impossible to re-excite the neuron,
and a relative refractory period, during which a new AP can be generated only by
a stronger stimulus.

In this Chapter we will summarize the primary mathematical instruments used
to describe such dynamic of excitability. We will start by reviewing the first model
of spike-generation, introduced by A. Hodgkin and A. Huxley in 1952 [50]. The
historical importance of the Hodgkin-Huxley model (HH model) is attributed to the
fact that for first it conceptualizes neurons as dynamical systems [51] and that many
other models can be interpreted as simplified reformulation of HH model dynamics.
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Figure 3.1: Voltage trace of an action potential and its physiological phases.
(Source: [49])

For the treatise about this mathematical method we referred to [52]. After that,
we will illustrate the much simpler Izhikevich model of spiking neuron [13]. Once
understood how the membrane potential can be modelled, we will further explore
some mathematical models of synaptic transmission through bipartite synapses
[53][5] and tripartite synapses [14][12].

3.1 Hodgkin–Huxley model
Before illustrating the Hodgkin–Huxley model, we need to briefly introduce some
concepts about channel gating, i.e. the dynamic of opening and closure of ion
channels. A simple model of two-state channel is depicted by the following kinetic
model:

C
α(v)
⇄
β(v)

O.

The channels can assume two alternative states, the open state (O) and the closed
state (C); α(v) and β(v) are the kinetic constants (with dimensions [s−1]) that
regulate the opening and closure of the channels respectively, and they depend on
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the electrical membrane potential (for clarity this dependence with v will be later
omitted). That means that the ionic channels can pass from the C state to the O
state with a rate constant α and in the opposite direction with a rate constant β.
Such dynamic process can be described by the following differential equation:

ġ = α(1− g)− βg , (3.1)

where we denotes with g the proportion of channels in the O state, with ġ its
derivative respect the time, while 1− g is the proportion of channels in the C state.
Therefore the first term on the right side of Eq. 3.1 represents a source term and
the second term is a sink of O channels. Equation 3.1 is often reformulated as
follow:

ġ = g∞ − g

τg

, (3.2)

defining
g∞ = α

α + β
, (3.3)

τg = 1
α + β

. (3.4)

According to Eq. 3.1 g tends towards a steady state following a first order law.
However, physiological channels dynamics typically do not follow a such simple rule,
but are rather described as made by multiple subunits, called gates. Each of them
can be open or closed, and ions can pass through a channel if and only if all its
gates are open. Thus the gates can be modelled with the previous two-state model.
The potassium channels consists of four identical gates, defined activation gates,
because their permeability increases with the depolarization. The conductance of
K+ ion channels can be formulated as:

gK = gKn4 , (3.5)

ṅ = αn(1− n)− βnn , (3.6)

with gK constant value. Since each gate is independent, and n can be interpreted as
the probability to find one gate open, the channel opening probability is regarded
as a joint probability, and so it is proportional to n4 which is the product of the
marginal probabilities. Instead the modelling of Na+ channels needs to account
a second mechanism, called inactivation. Specifically the sodium channels are
represented as made by three activation gates m, and another gate h, which is
called inactivation gate because it closes with the ongoing depolarization, triggering
the repolarization phase. The overall sodium conductance can be written as:

gNa = gNam3h , (3.7)

19



Mathematical models of neurons electrophysiology

where, as before, m and h are described with the two-state model:

ṁ = αm(1−m)− βmm , (3.8)

ḣ = αh(1− h)− βhh . (3.9)

Equations 3.8 3.9 could be further rewritten as previously done with Eq. 3.2.
In the Hodgkin–Huxley model, the neuronal membrane is locally schematized

using the equivalent circuit reported in Fig. 3.2. The capacitor Cm accounts for
the capacitive effects of the membrane phospholipid bilayer. The contribute of
each ions is represented through a conductance and a voltage source reporting its
Nernst potential. It can be noted that here also the contribute of the chlorine
ion is accounted for. Differently from potassium and sodium conductance, which
are voltage-gated and can be described with the gating model previously analysed
(Equations 3.5 and 3.7), the chlorine conductance is often assumed as constant.
The current contribute of a specific ion species can be modelled as the product
between its conductance and the driving force, that is the difference between its
Nernst potential and the membrane potential v:

Ii = gi(v − Ei) . (3.10)

Figure 3.2: Hodgkin–Huxley model equivalent circuit used to describe a patch of
the cell membrane.
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According to Kirchhoff’s current law, the total current I flowing through a patch of
the cell membrane can be obtained as the sum of the membrane capacitive current
and the current passing through each ion channel (INa, IK , ICl):

I = Cmv̇ + gNa(v − ENa) + gK(v − EK) + gCl(v − ECl) . (3.11)

Collecting together all the equations that constitute the Hodgkin–Huxley model:

I = Cmv̇ + gNa(v − ENa) + gK(v − EK) + gCl(v − ECl)

ṅ = n∞−n
τn

ṁ = m∞−m
τm

ḣ = h∞−h
τh

(3.12)

3.2 Izhikevich model
The high biological accuracy of the Hodgkin–Huxley model is paid by its math-
ematical complexity. Indeed it is a four-dimensional system of ODEs with non
linearities due to the conductance-voltage dependence. However, in certain case
the precise shape of the action potential can be regarded as less important than
the overall excitation dynamic [51], therefore simplified model can be preferred.

A valid trade-off between biological plausibility and computational cost is
represented by the model proposed by Eugene M. Izhikevich [13]. Here, differently
from the HH model in which each state variable has a precise physiological meaning,
Izhikevich adopted a modelling approach which uses the instruments of dynamical
system and bifurcation theory to capture the overall dynamic of the spiking system.
This model makes use of only two state variables. The first variable is the fast
variable v that represents the membrane potential. The second variable u is a
slow variable, called recovery variable. Multiple mechanisms are described by this
single variable. Indeed u accounts for the activation of K+ channels (as n in the
HH model), the inactivation of Na+ channels (as h in the HH model) and also
it provides negative feedback to v [13]. The Izhikevich model is defined by the
following set of equations:

v̇ = 0.04v2 + 5v + 140− u + I , (3.13)

u̇ = a(bv − u) , (3.14)
with the auxiliary after-spike resetting:

if v ≥ +30 mV, then
v ← c

u← u + d ,
(3.15)
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where I is the stimulating current, which could be a synaptic current or an external
injected current, and a,b,c,d are model dimensionless parameters. The condition
in 3.15 is true when the neuron is firing. In that case, first v is set to 30, in order
to have all the spikes with this same amplitude. Then the membrane potential
is ripolarized by setting v to c and u is updated. Noticeably the model does not
have a fixed firing threshold, but rather its value depends on the history of the
membrane potential. The numerical values that compare in Eq. 3.13 were obtained
by fitting experimental data. Hence, the model is rescaled in a such way that v
units correspond to mV, I units to pA and time units to ms. The model parameters
a,b,c,d can be interpreted as follows:

• a: can be considered as the time constant of the recovery variable. Smaller
values of a correspond to slower recoveries.

• b: represents the sensitivity of the recovery variable u to the membrane
potential v. This coupling is increased by increasing values of b, possibly
resulting in subthreshold oscillations and low spiking threshold.

• c: defines the after-spike resetting of v, which depends on fast high-threshold
K+ conductances

• d: defines the after-spike updating of u, which depends on slow high-threshold
Na+ and K+ conductances.

By varying the model parameters a,b,c,d different physiological spiking and burst-
ing behaviours can be reproduced. Examples of spiking behaviours successfully
reproduced are the phasic spiking pattern, which occurs when a neuron fires a
single spike at the onset of the stimuli and then remains at the resting state, or
the tonic spiking pattern, in which the neuron continues to fire as long as the
stimulating current active [54]. Instead a burst consists in rapid trains of APs
followed by periods of silence longer respect the typical inter-spike interval in the
firing phase [51].

3.3 Bipartite synapses model
During the process of synaptic transmission involving chemical synapses, the
binding of the neurotransmitter molecules to the postsynaptic receptors influence
the conductance of the ligand-gated ion channels located on the postsynaptic
cell. These changes in ion permeability result in the increase of ionic currents,
consequently altering the membrane potential.

Mathematical models of chemical synapses generally can be divided in methods
that abstract synapses as ohmic conductances or as sources of currents [53]. Methods
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belonging to the first class are called conductance-based models. In that case,
the synaptic current Isyn is modelled similarly as done with ionic currents in the
Hodgkin-Huxley model. That means that Isyn is described as the product of
a conductance gsyn with the driving force, which is the difference between the
postsynaptic membrane potential v and the reversal potential Esyn:

Isyn = gsyn(t)[v(t)− Esyn] . (3.16)

Similarly to the Nernst potential, which is the membrane voltage at which there is
no net flow of a particular ion across the membrane [55], the reversal potential is
defined as the membrane potential of a post-synaptic neuron at which the action
of a given neurotransmitter causes no net current flow [56]. Excitatory synapses
are modelled with Esyn values above the resting potential, while for inhibitory
synapses Esyn is chosen with values below the resting potential. For example
commonly shared values are Esyn = 0 for excitatory synapses and Esyn = −75 for
inhibitory synapses [57]. The ohmic model can be considered a good approximation
for AMPA-type glutamate receptors and γ-aminobutryic acid type A (GABAA)
receptors, since when their channels are open their current-voltage relationship
is close to be linear. In other cases, a second class of synapses models, called
current-based model, is used. In these models, the dependence with the membrane
potential v is substituted by a fixed values Vrest, which represents the resting
potential:

Isyn = gsyn(t)[Vrest − Esyn] . (3.17)
For small excitatory synapses, in which the driving force hardly changes during the
excitation, this can be considered a valid simplification [53]. Moreover, since each
postsynaptic neuron can be involved in multiple synapses with several presynaptic
neurons, the synaptic current models depicted in Equations 3.16 3.17 can be
extended for networks modelling. Generally, considering a postsynaptic neuron
with n synapses, the overall synaptic contribution Isyntot is modelled as a weighted
sum of the synaptic currents Isyni

coming from each synapse i:

Isyntot =
nØ

i=1
wiIsyni

, (3.18)

where the synaptic weights wi are dimensionless numbers representing the strength
of the synapses.

It can be noted so far that the modelling of neurotransmitter-gated channels
involved in synaptic transmission share some similarities with the gating of ionic
voltage-dependent channels. Therefore the same two-state model, expressed by Eq.
3.1, can be used to describe gsyn [5]. Here the closing rate β is usually assumed to be
constant, while the opening rate α depends on the neurotransmitter concentration.
Specifically during the first phase of the synaptic event, the arrival of an AP at

23



Mathematical models of neurons electrophysiology

the presynaptic terminal triggers the release of neurotransmitter. This phase is
simulated by setting α much larger than β, such that the term depending on β
in Eq. 3.1 can be ignored. Consequently, assuming null initial neurotransmitter
concentration (gsyn(0) = 0), the solution of the differential equation corresponds
to an increasing function of the type 1 − exp(−αt). The second phase saw the
neurotransmitter diffusion and consecutive uptake. This is modelled by setting
α to zero, and hence the solution becomes an exponential decay of the type
gmaxexp(−βt), where gmax is defined as the maximum reached at the end of the
first phase. Since the release is faster than the uptake, the time constant of the
first phase is smaller than the one of the second phase, namely 1/α < 1/β.

0 10 20 30
0

0.5

1

(a) Instantaneous rise and single exponen-
tial decay

0 10 20 30
0

0.5

1

(b) Alpha function
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0

0.5

1

(c) Difference of two exponentials

Figure 3.3: Examples of time course of the synaptic conductances gsyn with
different models. In each simulation a presynaptic spike occurs at time t0 = 5 ms.
In simulations 3.3a and 3.3b the unique synaptic time constant is set as τ = 5 ms,
while in simulations 3.3c the two constants are τr = 2.64 ms and τd = 3.96 ms.
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Especially in the case of large networks, the modelling of synaptic transmission
processes becomes challenging from the computational point of view. For that
reason, usually some further simplification are adopted [53]. One of the simplest
but widely used model reduces the gating dynamic previously discussed as an initial
instantaneous rise of the synaptic conductance, followed by an exponential decay:

gsyn(t) =


0, t < t0

gmaxe− (t−t0)
τ , t ≥ t0 ,

(3.19)

where t0 is the time of the presynaptic spike and τ is the decay time constant. An
example of such synaptic dynamic is reported in Fig. 3.3a. This simple model
is considered a valid approximation for synapses in which the release phase is
much faster than the uptake phase, as in certain types of inhibitory synapses or in
AMPA-mediated excitatory synapses. In other cases, models which account also for
a prolonged rising time are necessary. One of these is the so-called alpha function:

gsyn(t) =


0, t < t0

gmax
(t−t0)

τ
e1− (t−t0)

τ , t ≥ t0 .
(3.20)

This model uses the same synaptic constant τ for both the rise and decay phases.
Fig. 3.3b reports an example of synaptic conductance modelled with the alpha
function. An intuitive extension of this model is represented by the possibility
of setting the time constants of the two phases independently. This can be done
by defining the synaptic conductance as the difference of two exponentials, one
regulating the rising phase, the other the decay phase:

gsyn(t) =


0, t < t0

gmaxB(e− (t−t0)
τd − e− (t−t0)

τr ), t ≥ t0 ,
(3.21)

defining the normalization factor B and the time of the conductance peak tpeak:

B = 1

−e−
(tpeak−t0)

τr + e
−

(tpeak−t0)
τd

, (3.22)

tpeak = t0 + τdτr

τd − τr

ln
3

τd

τr

4
. (3.23)

The normalization ensures that gsyn peak equals to gmax and that it occurs at
t = tpeak. An example of synaptic conductance simulated using this model is shown
in Fig. 3.3c. Setting τr and τd according to experimental data, most chemical
synapses can be realistically described by this model. However, experimental data
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presented in literature display an extremely high physiological variability and often
there is no consensus about the fitted values of the synaptic time constants. As
instance, decay time constants of GABAA receptors are proved to vary from 1 to
at least 50 ms across diverse types of neurons [58]. This biological diversity makes
the simulation task even more demanding.

3.4 Tripartite synapses model

 

Text

Figure 3.4: Schematic representation of the tripartite synapse model. The main
state variables of each compartment are represented by circles. The arrows describe
the dependence relationships. The light blue line shows the astrocyte slow activation
pathway, regulated by the control parameter β, whereas the red line indicates the
fast activation pathway, regulated by α. Control parameters γ and δ influence the
astrocyte response.

We consider the tripartite synapse model defined by Postnov et al. [14][12],
coupled with presynaptic and postsynaptic Izhikevich neurons, as proposed in [59].
Defining the state variable z as the synaptic activation variable [60], Isyn as the
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synaptic current and Iglion as the astrocyte-induced current, the synaptic coupling
is described by the following equations:

τsż = [1 + tanh(ss(v1 − hs))](1− z)− z

ds

, (3.24)

Isyn = (ks − δGm)(z − z0) , (3.25)

Iglion = γGm , (3.26)

where v1 is the presynaptic neuron potential and τs describes the time delay.
Parameters hs, ss, ds control the activation and relaxation of z, ks is the conductance
and Gm is the glion mediator concentration. Control parameters δ and γ regulate the
strength of the astrocyte influence on synapse and postsynaptic neuron respectively.
z0 represents the reference level for z (e.g. when the presynaptic neuron is silent,
z(t) = z0). If v1 < hs the synapse is inactive (z = 0), while when v1 − hs term is
positive the synapse is active, and z generates the postsynaptic current Isyn. The
sum of Isyn and Iglion is used as stimulating current in the Izhikevich model of the
postsynaptic neuron (Eq. 3.13). Dynamics of calcium concentration c within the
astrocyte and calcium concentration ce in the ER are described by the following
modified two-pool model:

τcċ = −c− k4f(c, ce) + (r + αu2 + βSm) , (3.27)

εcτcċe = f(c, ce) , (3.28)

with f(c, ce) = k1
c2

1 + c2 −
A

c2
e

1 + c2
e

BA
c4

k4
2 + c4

B
− k3ce . (3.29)

In Eq. 3.27, the term −c represents the contribution of Ca2+ pumps, which pumps
ions out the cell. The term r is a steady flux of Ca2+ into the cell without external
influence (when α = 0, β = 0). The term αu2, with u2 postsynaptic neuron recovery
variable, represents the calcium influx from the extracellular space due to glion
depolarisation (fast activation pathway). The term βSm is the influx sensitive to
IP3 mediator Sm production (slow activation pathway). The function f(c, ce) is a
nonlinear function that describes the Ca2+ fluxes between cytoplasm and ER [52].
Its first term, often called uptake, is an Hill-type law indicating the increasing of
ER calcium concentration depending on cytoplasmatic concentration, with the aim
of calcium storage in the ER. The second term, called release, indicates the release
of calcium from ER reticulum to the cytoplasm: its second factor is an Hill-type
law related to the CICR phenomenon and the first factor is another Hill-type law
which represents the flux dependence in the ER calcium concentration (e.g. if there
is no calcium in it, nothing can be released, while in the opposite case if there is
lot of calcium the flux saturates at its maximum value). Finally, the third term in
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f(c, ce) represents the loss of ER calcium by leakage channels. Furthermore, this
system is coupled with the description of glion mediator production Gm and IP3
mediator Sm:

τSmṠm = [1 + tanh(sSm(z − hSm))](1− Sm)− Sm

dSm

, (3.30)

τGmĠm = [1 + tanh(sGm(c− hGm))](1−Gm)− Gm

dGm

, (3.31)

where Sm production is triggered by increasing z (similarly as in Eq. 3.24),
while Gm production is triggered by increasing calcium cytoplasm concentration
c. By changing control parameters α, β, γ, δ several neuron-astrocyte dynamics
can be simulated [14]. Parameters α and β regulate fast and slow activation
pathway respectively. While the fast mechanism produces a fast but short term
response, occurring as a single calcium spike, the slow mechanism elicits long-term
activity, since that by increasing β the number of calcium spikes increases. Control
parameters γ and δ allow to control the astrocyte feedback performed on the
postsynaptic neuron. The parameter γ regulates the depolarising current Iglion,
thus it controls the positive feedback mechanism. This can support the postsynaptic
firing activity also after the end of the stimulus. The parameter δ influences the
negative contribution subtracted to the synaptic strength ks, thus represents a
negative feedback which can inhibit the transmission of the stimulus. In [12] they
showed how different calcium dynamics can be simulated by choosing astrocytes
control parameters α, β, γ and δ. An overall representation of the tripartite synapse
model is shown in Fig 3.4

3.5 Synaptic noise model
In physiological networks, each synapse is influenced by the activity of thousands
of neighbouring synapses, resulting in a background synaptic noise. With the
simplifying assumption of sources as independent and identically distributed random
variables, the sum of these noisy synaptic effects converges to a Gaussian probability
distribution, in accordance with the central limit theorem. For us noise represents
an arbitrary effect on the information of the spikes, but is not focused on particular
parts of the brain, or specific scenarios that the presented noise model may need to
be readjusted. Synaptic noise can be simulated using a normal distributed random
variable [61], with zero mean and standard deviation σ, which contributes in the
stimulating current of the postsynaptic neuron:

Inoise ∼ N(0, σ) (3.32)
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Chapter 4

Biocomputing models using
tripartite synapses

In the following Chapter, the objectives related to the first two research questions
will be investigated. We will start by presenting some modifications related to the
tripartite synapse mathematical description, required for the logic gates implemen-
tation. Then we will define the overall network structure of tripartite synapse logic
gates. The research question number 1, which focus on the design of simple OR and
AND gates with Izhikevich neurons, will be investigated by disabling the astrocytes
influence on the tripartite synapse, and hence only considering the neurons activity.
Afterward the scheme behind research question number 2, namely the design of
the OR and AND gate with asctrocytes contribution, will be examined. We will
conclude the Chapter by introducing a simple synaptic noise model to account for
the neuron signalling stochasticity.

The first step toward the design of neuronal logic gates is to formalize a rule
which defines the logic levels. In Section 2.3, the examples found in literature
display several different types of encoding method, as the rate coding, or the
encoding based on distinct neurons proposed in [42]. In our work we decided to
adopt an encoding based on the presence or not of APs: the neuron resting state is
marked with the low logic level, instead the presence of APs is marked with the
high logic level. This method appears to be as the most intuitive encoding method.
Moreover its convenience is also related to the fact that the sequence of spikes can
be easily translated in a binary sequence, by segmenting the signal in bins and
considering each bin as a bit 1 or 0 depending if the neuron is firing or not.
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4.1 Modified synaptic coupling
For the development of an in-silico model of neuronal logic gates, we adopt the
Izhikevich model reviewed in Section 3.2. This choice is motivated by the fact
that it provides a versatile computational framework for the description of neurons
behaviour with minimal computational complexity while keeping biological plausi-
bility. Instead the synaptic coupling is described using the tripartite synapse model
of Postnov et al., presented in Section 3.4. One of the most prominent features
of the Izhikevich model is its ability in accurately reproducing different neuron
spiking behaviours, as tonic/phasic spiking and bursting. Instead, our preliminary
experimental tests showed that the Postnov model, coupled with Izhikevich neurons,
manage to simulate only the most common type of spiking pattern, which is the
tonic spiking. Hence we propose the following modifications. Instead of using the
z activation variable, as reported in Eq. 3.24, we use the most common approach
based on a synaptic conductance with instantaneous rise and single-exponential
decay, expressed in Eq. 3.19. This can be alternatively described by the following
differential equation with an update condition:

gsyn ← gsyn +flag with flag =
1 if the presynaptic neuron is firing

0 otherwise ,
(4.1)

ġsyn = −gsyn

τ
, (4.2)

where τ is the time constant of the conductance decay and flag indicates if the
presynaptic neuron is firing or not. When a presynaptic neuron is firing, the
corresponding synapse is activated by the instantaneous increase of gsyn, and
then the conductance is extinguished with an exponential decay. Notice that
here the conductance maximum gmax in Eq. 3.19 is set to 1. Nevertheless, this
definition realistically reproduces the temporal summation mechanism, since if
another presynaptic spike arrives before that the previous exponential has totally
decayed, the two contributes are summed and therefore gsyn can also be higher
than 1. Since the variable z is here substituted by gsyn, also Eq. 3.30 describing
the IP3 concentration needs to be modified as follows:

τSmṠm = [1 + tanh(sSm(gsyn − hSm))](1− Sm)− Sm

dSm

. (4.3)

Moreover, we expand the model for the case of multiple tripartite synapses, that
means more than one presynaptic neuron and one astrocyte connected with the
same postsynaptic neuron. Considering a tripartite synapse involving n presynaptic
neurons and the only one postsynaptic neuron, the resulting synaptic current is
computed as:

Isyntot =
nØ

i=1
(wigsyni

(Esyni
− vpost)− δiGmi

) , (4.4)
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where wi, gsyni
, Esyni

represent respectively the weight, the synaptic conductance
and the reversal potential of the i-th synapse (i.e. the synapse between the i-th
presynaptic neuron and the postsynaptic neuron), vpost is the membrane potential
of the postsynaptic neuron and δiGmi

is the i-th astrocyte negative feedback
contribution. In addition, the postsynaptic neuron is also stimulated by the
astrocyte mediator through Iglioni

as expressed in Eq. 3.26.

4.2 Network structure
In this Section, we describe the general network structure used for both the neuronal
OR and AND gate. That means that we define how many cells are involved and
how they are interconnected. As can be observed in Fig. 4.1, the network consists
in two presynaptic neurons, with their membrane potentials v1 and v2 as the logic
inputs, and a postsynaptic neuron, whose membrane potential v3 is the logic output.
The presynaptic neurons are connected to the postsynaptic neuron through two
distinct tripartite synapses. Therefore two astrocytes are included. The OR gate
and the AND gate developed involving only excitatory synapses. The presynaptic
neurons are described using Equations 3.13 3.14 3.15. Both of them are stimulated
by external currents (I in Eq. 3.13) chosen as rectangular functions, which define
when the logic inputs are ON or OFF. The astrocytes and the corresponding
tripartite synapse models are adapted as explained in Section 4.1. The synaptic
current, given by Eq. 4.4, consists in the sum of the contributions Isyn1 and Isyn2

coming from each synapse. The overall current that stimulates the postsynaptic
neuron is given by the sum of the synaptic current and the currents coming from
the two astrocytes:

Itot = Isyn1 + Isyn2 + Iglion1 + Iglion2 . (4.5)

For the modelling of synapses with the presence of noise, also the contribution of
noise, expressed according to Eq. 3.32, is accounted:

Itot = Isyn1 + Isyn2 + Iglion1 + Iglion2 + Inoise . (4.6)

Finally, the postsynaptic neuron Izhikevich model can be formulated using Itot as
stimulating current:

v̇3 = 0.04v2
3 + 5v3 + 140− u3 + Itot , (4.7)

u̇3 = a(bv3 − u3) , (4.8)

if v3 ≥ +30 mV, then
v3 ← c

u3 ← u3 + d .
(4.9)
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Figure 4.1: Schematic representation of the logic gate model involving two
tripartite synapses. Each neuron and astrocyte is described by its state variables,
and the arrows indicates the dependence relationships between variables. For both
astrocytes, the slow activation pathway is highlighted with a light blue line, while
the fast activation pathway with a red line. The control parameters that describe
these processes are reported in bold type close to the lines. In this final network,
the postsynaptic membrane potential v3 is influenced by the stimuli received by
two distinct tripartite synapses.
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4.3 Neuronal logic gates
4.3.1 Bipartite synapse logic gates
First of all, the tripartite synapse logic gates are tested using only neurons and
blocking astrocytes activity. Indeed, here we focus only on the logic gating, meaning
that we want to understand how a set of inputs represented by firing patterns can
be transformed into an output firing pattern implementing a Boolean function.
Only in the next Section we will examine how this system can be improved by the
astrocytes contribution. As previously explained in Section 3.4, the dynamic of the
astrocyte model is ruled by the control parameters. We saw that α and β define
the dependence of Ca2+ signalling on the postsynaptic and presynaptic activities
through the fast and slow activation pathways. Instead parameters γ and δ define
how the Ca2+ concentration can positively or negatively affect the postsynaptic
activity, closing the feedback loop. Hence, if all the control parameters are set to
zero, all the connections between neurons and astrocyte (which are clearly visible
in Fig. 3.4) are removed. The glion current due to astrocyte mediator, depicted
in Eq. 3.26, becomes null, because γ = 0. Since δ = 0, the equation of the total
synaptic current of the tripartite synapse in Eq. 4.4 becomes equivalent to the
conductance based model of bipartite synapses described by Equations 3.16 and
3.18. Therefore the general case of the tripartite synapse is reduced to the simplest
case of the bipartite synapse. Notice that the difference between the postsynaptic
potential and the reversal potential in Equations 3.16 and 4.4 have different signs
due to the fact that the stimulating current in Izhikevich model (Eq. 3.13) is added
with a positive sign. Other neuron models adopt different sign conventions.

The OR gate defines an input-output relationship in according to the logical
disjunction. As shown in the Truth Table 4.1, its output is high (i.e. 1) if one
of the inputs or both of them are high. Therefore, in the neuronal logic gate
that implements the OR gate, the firing of one input neuron must produce a

X1 X2 X1 + X2
0 0 0
0 1 1
1 0 1
1 1 1

Figure 4.2: Symbol of the OR gate Table 4.1: Truth table of the OR gate.
The operator + defines the OR logic
operation.
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sufficiently strong stimulation such that it causes the firing of the postsynaptic
neuron. This could be done by regulating the synaptic weights wi, because they
represent the strength of the synapses, namely how much a presynaptic input
affects its corresponding postsynaptic neuron. Evidently, since the OR gate act
symmetrically, meaning that the result of the input sequence [1 0] is the same of the
sequence [0 1], the two synaptic weights wi need to be equal. The value of wi is here
computed empirically considering the neuronal logic gate with only one external
stimulating current ON, and increasing the weight until the postsynaptic neuron is
high. The AND gate implements the logical conjunction. Therefore its output is
at the high level only if both of its inputs are at the high level, as indicated in the
Truth Table 4.2. The basic idea of the neuronal AND gate design is that we need
to make synaptic inputs less influential, such that both two input neurons have to
be at the high level to make the level of the output neuron high too. This can be
obtained by decreasing the synaptic strength. As previously observed with the OR
gate, the two synapses needs to have the same wi. The empirical procedure that
we adopt consists in searching for the minimum value of wi that makes the output
neuron firing in the condition with both inputs high.

In Fig. 4.4, an example of functional scheme of logic gate is reported, showing the
graphical conventions adopted in this work. The dashed arrows indicate the external
stimulating current Iexti

, always chosen as step or rectangular functions. Neurons
which cover only a presynaptic role (i.e. they do not form any synapses in which
they represent the postsynaptic neuron) are depicted by ellipses, characterized by
their membrane potential variable. The circles stand for the postsynaptic neurons.
Excitatory synaptic connections are represented by simple arrows and characterized
by their synaptic weight wi. The equivalent traditional symbol of the logic gate is
reported with dotted line. Since the same scheme of Fig. 4.4 can be used to model
both the neuronal OR and AND gates, in this example a simple box with dotted
line is reported. One of the key aspect about the design of neuronal logic gates is
the possibility of cascading, that is connecting more of them using the gates outputs
as the inputs of another consecutive gate. Hence here we formalise the neuronal

X1 X2 X1 ·X2
0 0 0
0 1 0
1 0 0
1 1 1

Figure 4.3: Symbol of the AND gate Table 4.2: Truth Table of the AND
gate. The operator · defines the AND
logic operation.
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logic gates as a made only by the postsynaptic neuron and its synapses with the
adjusted weights wi. Notice that the presynaptic neurons are not part of the gate.
The inputs of the logic gates are represented by the membrane potential v1 and
v2, while the external current Iexti

are only used in the first layer to communicate
the input pattern to the network. With such definition, these building blocks can
be intuitively layered to build more complex circuits. For instance, the membrane
potential v3, can be used as one of the two inputs of another neuronal logic gate.

 

 

Text

Figure 4.4: Functional scheme of a generic neuronal logic gate.

4.3.2 Tripartite synapse logic gates
Once understood the design paradigm used to build small networks of neurons
with logic gating capabilities, these could be coupled with the astrocyte regulation
activity involved in tripartite synapses. Specifically, the main mechanisms that
can influence the gate response are the positive feedback and negative feedback,
regulated by the control parameters γ and δ. Moreover, since the Gm concentration
that appears in the positive feedback term (Iglion in Eq. 3.26) depends also on the
calcium concentration (Eq. 3.31), calcium signalling is required for the feedback
effect. Therefore at least one of the two parameters α and β must be non-null, in
order to trigger one of the two activation pathways.

With the setting of the astrocytes control parameters, the contribute of each
input stimulus can be reinforced or weakened to characterize the gating response.
The OR gate and AND gate design follows the same approach based on the
regulation of the influence of the stimuli, as explained in the previous Subsection.
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The difference respect the bipartite synapse biocomputing is that with tripartite
synapse logic gates, the gating response can be characterized both by the tuning
of the synaptic weights, but also adapting the astrocytes regulation mechanism.
Furthermore, we expect the astrocytes feedback to enhance the neuronal response
while reducing the contribution related to noise, acting similarly to a denoising
technique. The underlying assumption is that the noise contribution is weaker than
the stimulating inputs, and so the negative feedback mechanism should mainly
affect the noise, while its influence on the inputs should be neglectable.
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Chapter 5

From combinatorial to
sequential neuronal logic
circuits

In the previous Chapter we presented a model of neuronal logic gate based on
tripartite synapses, able to reproduce the simplest logic gating, namely the AND
and OR gates. Here we investigate the possibility of developing larger logic
circuits. Hence, in order to have a paradigm more flexible and friendly from the
computational complexity point of view, we restrict to the use of simpler bipartite
synapses. Neurons are still described with the Izhikevich model and bipartite
synapses are described using the conductance-based model. Differently respect
the previous implementation, the synaptic conductances are not defined with the
instantaneous rise and exponential decay model, but rather with the difference of
two exponentials model (Equations 3.21, 3.22 and 3.23).

We will start by focusing on the objectives of the third research question.
Specifically, we will examine other types of logic gates, useful for the design of
sequential circuits. This will be done by including also inhibitory synapses in the
logic gates networks. Then, according to the last research question, we will use
these novel neuronal logic gates as building blocks for the development of circuits
with memory capabilities, i.e. sequential circuits. Even though sometimes the term
flip-flop is used in common language to referring to all the families of 1-bit storage
elements made by logic gates, in our work we will use the following terminology:
the term latch will be used for indicating level-sensitive devices, while edge-sensitive
devices will be defined as flip-flops. This convention is often adopted in digital
electronics textbooks [62].
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5.1 Neuronal AND NOT gate and NOT gate
In [15] L. Yoder theorized a novel type of logic gates, particularly suitable for
biocomputed implementations with neurons, and which can be flexibly used to
develop several computational solutions. As shown in Fig. 5.1, it consists in an
AND gate in which one of its two inputs is inverted. L. Yoder referred to this
special type of logic gate as AND NOT gate. Considering a traditional AND gate,
its output is 1 if and only if both inputs are 1. Instead, for the statement X AND
NOT Y , the high output requires X to be 1, while Y need to be 0, because of
the logical negation. In any other cases the output is 0, as depicted in the Truth
Table 5.1. Notice that, differently respect traditional gates, as AND and OR gates,
the AND NOT gate is not symmetrical respect its inputs. L. Yoder proposed that
the gating behaviour of the AND NOT gate could be consider similar to a neuron
response based on the following modelling assumption. Lets consider a neuron,
with one excitatory synapse and one inhibitory synapse. Assume the following
hypothesis:

• the inhibitory effect of an inhibitory stimuli is able to perfectly counterbalance
the excitation elicited by an excitatory stimuli. That means that if the neuron
simultaneously receives both an excitatory input and an inhibitory input, the
output response is repressed, and so the neuron remains at the resting state;

• the inhibitory input is not able to make the postsynaptic neuron firing, i.e.
particular case of spiking behaviour, as rebound spike [54], are excluded;

• the firing of the only presynaptic excitatory neuron is enough to elicit the
firing of the postsynaptic neuron. This can be achieved with a strong synaptic
strength.

Therefore the neuron will fire if and only if the excitatory input is firing and the
inhibitory input is quiet, while in any other case it will remain in the resting state.
This neuronal response is curiously similar to the truth table of the AND NOT

X Y X · Y
0 0 0
0 1 0
1 0 1
1 1 0

Figure 5.1: Symbol of the AND NOT
gate

Table 5.1: Truth Table of the AND
NOT gate. The AND NOT operation
can be written as X · Y .
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Figure 5.2: Functional scheme of the neuronal AND NOT gate. The excitatory
synapse is characterised by the synaptic weight wx, while the inhibitory synapse
by wy.

gate. The excitatory input can be considered as the logic variable X, while the
inhibitory input as the logic variable Y . Hence, a neuronal AND NOT gate can
be developed considering a neuron with an excitatory synapse and an inhibitory
synapse, as illustrated in Fig. 5.2, where the bar-headed arrow stands for the
inhibitory connection. The synaptic weight wi of the excitatory synapse has to be
chosen such that if the excitatory input is high (the presynaptic neuron 1 is firing)
then the postsynaptic neuron fires. This can be done empirically by considering
the AND NOT gate with only the excitatory input high, and increasing its wi

until the postsynaptic neuron is at the high level. From now, we will refer to
the weight value of the excitatory AND NOT gate synapse obtained with such
empirical procedure as wx. On the other hand, the synaptic weight associated
to the inhibitory synapse must be set such that if both excitatory and inhibitory
inputs are high, then the postsynaptic neuron must be at the resting state. Now,
the value of wi can be computed considering the AND NOT gate with the weight of
the excitatory synapse wx previously found, setting both inputs high and increasing
the inhibitory weight until the postsynaptic response is repressed. We call wy the
value of the weight found for the AND NOT gate inhibitory synapse.

A fundamental type of logic gates, which is essential for the development of most
logic circuits, is the NOT gate. It consists on a single input gate, which implements
the logical negation. That means that if its input is 0, the output response is 1,
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Figure 5.3: Functional scheme of the neuronal NOT gate.

and vice versa. It can be noticed that, the NOT gate can be directly obtained from
the neuronal AND NOT gate [16]. Indeed, looking at the AND NOT gate Truth
Table 5.1, the output of the last two conditions, where X = 1, corresponds to the
negation of Y . Therefore an AND NOT gate in which the input X is always high
implements a NOT gate respect the input Y . Adopting the aforementioned scheme,
a neuronal NOT gate can be design by using an excitatory input that is always at
the high level, namely a neuron that is always firing. Spontaneously and continuosly
active neurons are demonstrated to exist in the brain [15][63]. For instance they
are involved in the awake condition, and the sleep requires their inhibition. Notice
that, since the logic NOT gate has only one input, here the "effective" input is
represented by the inhibitory input. Figure 5.3 depicts the functional scheme of
the NOT gate. The continuously active neuron is implemented as a presynaptic
neuron whose external stimulating current is always ON. Since we are interested
only in the state of the inhibitory input, the continuously firing neuron is simply
represented by an ’H’, which stands for high level. Since the NOT gate shares the
same network structure of the AND NOT gate, the synaptic weights assume the
same values wx and wy.

5.2 Logic gates cascades and neuronal buffers
Our preliminary tests displayed that the inhibition is highly sensitive to inputs
timing. Indeed, considering the neuronal AND NOT gate, if the excitatory and
inhibitory inputs are not well-synchronized, the inhibition could be not effective.
Therefore even though both inputs are high, the output response could not be the
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desired resting state, but rather the firing state. Synchronization becomes a critical
issue in the case of logic gates cascade. Considering more logic gates consecutively
connected, the implementation of each Izhikevich neurons elaborates the received
synaptic inputs to compute the resulting membrane potential. Certainly, these
operations are not performed instantaneously, but rather require a finite time.
Therefore each neuron block inevitably introduce a delay on the chain of signals
transmission. As a consequence, the inputs synchronization is not always ensured.
Here we address to the aforementioned challenges as follows. First, the time
constants related to the synapses are increased, such that the variations of the
conductances require more time and so the inhibitory and excitatory effects last
more. Secondly, using an approach inspired by digital electronics, we introduce the
use of neuronal buffers. In digital electronics a digital buffer is a gate whose output
state is equal to its input state. Digital buffers are commonly used for electrical
isolation, impedance matching and for restoring degraded digital signals after the
propagation over long distances. For our purpose, the buffer can be used to simply
introduce a delay in the input signals and counterbalance their asynchronization. A
neuronal buffer can be developed as a neuron with a unique excitatory synapse, with
a value of synaptic weight chosen such that if its associated intput neuron is firing,
also the output neuron fires. Notice that also the AND NOT gate receives only one
excitatory input that is able to make its output firing. Hence the buffer synaptic
weight can be chosen as the weight of the excitatory synapse of the AND NOT gate
wx. The input synchronization along the neuronal circuits is guaranteed ensuring
the following condition: when more gates are connected together, logic gate inputs
must pass through the same number of neuron layers in order to introduce the same
delay. Whenever a branch of the neuronal circuit does not respect this condition,
neuronal buffers are added. Examples of logic circuits with poor synchronization,
fixed with the use of neuronal buffers, will be further discussed in appendix B.

Digital electronics often benefits from the use of NAND gates. Specifically their
importance is related to the fact that any Boolean function can be implemented
with a combination of NAND gates. This powerful feature, which characterizes also

X Y X · Y
0 0 1
0 1 1
1 0 1
1 1 0

Figure 5.4: Symbol of the NAND gate Table 5.2: Truth Table of the NAND
gate. The NAND operation can be writ-
ten as X · Y .
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Figure 5.5: Functional scheme of the neuronal NAND gate. The NAND gate
can be obtained using an AND and NOT gates cascading, as in Fig. 5.5a. The
synchronization of the inputs of such neuronal circuit can be achieved with the
addition of a neuronal buffer, as shown in Fig. 5.5b.

the NOR gates, is called functional completeness. The NAND gate is defined as an
AND gate followed by a negation operation. Consequently its output is low only if
both its inputs are high, while it is high in any other cases (Table 5.2). Since we
already discuss how to develop the neuronal AND gate (Subsection 4.3.1) and the
neuronal NOT gate (Section 5.1), a straightforward implementation of the neuronal
NAND gate can be achieved by cascading a neuronal AND gate with a NOT gate.
This simple cascaded structure is depicted in Fig. 5.5a. The same values of synaptic
weights wx and wy of the AND NOT gate implementation can be used. Instead
we refer to the synaptic weight value of the AND synapses as wz. Now lets focus
on the synchronization of the scheme in Fig. 5.5a. Consider the neuron related to
the NOT gate, with membrane potential v4. Its inhibitory synaptic input passes
through two layers of neurons, specifically the one associated to the presynaptic
neurons (with membrane potentials v1 and v2) and the one related to the AND
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gate (with membrane potential v3). On the contrary, the excitatory synaptic input
pass only through one layer of neurons, which is the continuously firing neuron.
Hence the synchronization condition is not fulfilled and the logic circuit could not
follow the desired behaviour. The circuit can be adjusted by adding a neuronal
buffer in the branch related to the excitatory synapse of the NOT gate, as depicted
in Fig. 5.5b. Since now both synaptic inputs pass through two layers of neurons,
the condition is satisfied.

5.3 Neuronal latches
All the neuronal implementations of logic circuits considered so far make use of
combinatorial logic. In combinatorial circuits, their outputs are fully defined by the
present values of the inputs. Therefore they could be defined as static, meaning
that they do not depend on the previous values of inputs and outputs. Differently
in sequential logic circuits, the definition of the outputs relies also on the sequence
of past inputs. For this reason the logical outputs are often referred as states, which
recall the storage capability of sequential logic.

One of the simplest sequential circuits is the set-reset latch (SR latch). It
consists in a 1-bit memory, in which its state is defined asynchronously. SR latches
are commonly built using NOR gates or NAND gates. Even though we already
presented a model of neuronal NAND, here we discuss the realization based on
AND NOT gates, formulated in [16]. This choice is motivated by the fact that the
NAND gate implementation involves a larger number of neurons respect the AND
NOT gate, and hence its computational cost is higher. The logic scheme of the
AND NOT gate based SR latch is shown in Fig. 5.6. As can be observed, it is
made by two AND NOT gates in which each inverted input (the Y input of the

 

Figure 5.6: Logic circuit of the SR latch based on AND NOT gates.
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S R Q Q
0 0 Not allowed
0 1 1 0
1 0 0 1
1 1 Memory state

Figure 5.7: Symbol of SR the latch. Table 5.3: Truth Table of the SR
latch.

original AND NOT gate in Fig. 5.1) is obtained using the output of the other gate.
Here the not inverted inputs (the X input in 5.1) are called set (S) and reset (R).
The behaviour of the latch is summarized in Table 5.3. For instance, lets consider
the case with S = 1 and R = 0. Since R = 0 the response of the AND NOT gate 2,
namely Q, will certainly be 0, because its X input is 0 (see the AND NOT gate
Truth Table 5.1). The gate 1 has inputs S = 1 and Q = 0, therefore its output Q
is 1. Similarly it can be demonstrated that with S = 0 and R = 1, Q is 1, while Q
is 0. Consequently this realization consists in an active low latch, that means that
when it is activated by setting the set equal to 1 and reset to 0, its output Q is
at the low level. Now considering the case with S = 1 and R = 1, since each of
the two gates have X input as 1, they behave as inverters. Suppose that in the
instant before the setting of S = 1 R = 1 the latch presented outputs Q−1=1 and
Q−1=0. Once chosen S and R to 1, the gate 1 has inputs S = 1 and Q−1 = 1,
and so Q is 0; the gate 2 has inputs R = 1 and Q−1=0 and so Q is 1. Therefore
the outputs are unchanged. Similarly one could demonstrate the case with Q−1=0
and Q−1=1. This inputs configuration is called the memory state, because the
latch stores the 1-bit information which represents its state. Finally in the case
with S = 0 and R = 0, since both X inputs are 0, both Q and Q−1 are 0. This
combination is often called not allowed condition (or forbidden condition), because
now the fundamental relationship that Q corresponds to the negation of Q is not
valid anymore. Even though this condition does not damage the device, it must be
avoided because the latch is not following the desired logic behaviour. A neuronal
SR latch can be design using two neuronal AND NOT gates with mutual inhibitory
feedback, meaning that the response of the output neuron of each gate is used as
the inhibitory input of the other gate. The functional scheme of the neuronal SR
latch is displayed in Fig. 5.8. The synaptic weights of the excitatory and inhibitory
synapses can be chosen according to the AND NOT gate implementation. A critical
point of the neuronal latch is that here, since inhibitory inputs are obtained from
the outputs of the gates, they will always be delayed respect the excitatory inputs.
Indeed the rule based on the number of neuronal layers is not respected, and there
is no neuronal buffer configuration that can re-equalize them. As instance, if we
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Figure 5.8: Functional scheme of the neuronal SR latch.

add a buffer in the branch related to the excitatory input of AND NOT gate 1, this
gate will now satisfy the rule, but the inhibitory input of the AND NOT gate 2 will
be delayed even more. The strategy that we adopt here to solve this issue consists
in making the inhibitory effect last more, and so relaxing the synchronization
requirement. This can be achieved exploiting the temporal summation mechanism,
obtained with increased time constants of the inhibitory synapses.

As previously observed, the SR latch is always transparent. This circuit can be
further modified with an additional input, called latch enable (LE), to develop a
latch which becomes transparent only for a specific level of such input. This type
of latch is often called as gated SR latch. It represents an example of synchronous

Figure 5.9: Logic circuit of the gated SR latch. The SR latch within this circuit
is represented by its symbol.
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LE S ′ R′ Q Q
0 Memory state
1 0 0 Memory state
1 0 1 0 1
1 1 0 1 0
1 1 1 Not allowed

Figure 5.10: Symbol of the gated SR
latch.

Table 5.4: Truth Table of the gated
SR latch.

circuit, and specifically defined as level-sensitive, because its transparency depends
on the level of the clock signal LE. The logic scheme of the gated SR latch is
depicted in Fig. 5.9. It is composed of a SR latch in which the S and R inputs pass
through a first layer of NAND gates. The NAND gates take as inputs the actual set
and reset of the gated latch, that here we call S ′ and R′, and the LE input which is
in common between both the gates. Observing the NAND Truth Table 5.2, it can
be noticed that if LE = 0 the NANDs outputs are always 1. Hence the following
SR latch is forced in the memory state, namely it is not transparent respect the
inputs. On the contrary if LE = 1, the NANDs outputs correspond in the negation
of their other inputs (S ′ or R′). Therefore in that condition, the SR latch receives
the inputs S ′ and R′, and so its behaves as an active high latch, i.e. the setting
of S ′ = 1 and R′ = 0 results in a high output Q. The overall behaviour of such
device is shown in Truth Table 5.4. A neuronal gated SR latch can be developed
connecting the neuronal building blocks which implement the NAND gates and
the SR latch following the same scheme of the gated SR latch, as illustrated in Fig.
5.11.
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Figure 5.11: Functional scheme of the neuronal gated SR latch.
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5.4 Neuronal flip-flops
In the previous Section the implementation of one of the simplest synchronous
circuit, i.e. the gated SR latch, has been analysed. We observed that this device
is level-sensitive: adopting the clock signal (LE) as a periodic square wave, the
latch is transparent only during the high semi-periods of the clock [62]. Instead,
flip-flop circuits are defined as edge-sensitive, meaning that they become sensitive
only for a brief time which is triggered by the transition of the clock between the
two levels. In other words, the device ’take a picture’ (sample), the input values at
the clock edge. Depending on the type of flip-flop, this could be the rising edge
(positive-edge flip-flop), the falling edge (negative-edge flip-flop) or both of them
(dual-edge flip-flop).

Most of digital flip-flops are obtained from a fundamental architecture, called
master-slave. Figure 5.12 shows a master-slave flip-flop, which comprises two gated
SR latches connected in cascade. The first of them is called master, because it
is used to transmit the input values. The second latch is called slave, because
it can only sample the outputs of the master or hold them in memory. This is
achieved with a shared clock signal CLK, which is directly sent to the slave and
inverted to the master. When the clock signal is low (CLK = 0), the LE signal
seen by the master latch is high, and so changes in the inputs levels influence the

Figure 5.12: Logic circuit of the master-slave flip-flop.

Figure 5.13: Logic circuit of the D flip-flop.
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master outputs. On the contrary, the slave is forced in the memory condition
because its LE is low, hence its outputs remain stable. When the clock signal
switches to the high level (CLK = 1), the master is locked and maintains the
previous outputs levels. At the same time, the slave becomes transparent, and sets
its outputs according to the received inputs, which are the fixed outputs held by
the master. Since after the rising of the clock the master is not sensitive to the
inputs variations anymore, the flip-flop outputs correspond to the inputs values
at the instant of the rising edge. Therefore this device represents a positive-edge
flip-flop, because it is sensitive at the rising edge of the clock. Similarly could be
demonstrated that placing the not gate only in the slave clock, the device behaves
as a negative-edge flip-flop. Although the clock signal regulates the operation
computed by the flip-flop, the device could still encounter the not allowed condition,
in the case of both high inputs.

A straightforward modification of the master-slave flip-flop can be done in order
to avoid the the not allowed condition. The S ′ and R′ signals are substituted by
an unique input signal D, which is sent directly for the S input and inverted for
the R input, as depicted in Fig. 5.13. The above-mentioned flip-flop is called D
flip-flop, where D stands for data, because it requires a unique data input, or for
delay, because the variations of the input are reported in the output after a certain
delay defined by the next clock edge. The network structure that implements the
neuronal D flip-flop is illustrated in Fig. 5.14. With this large circuit, the use
of neuronal buffers becomes fundamental, especially in the neuronal NOT gates,
due to the additional connection with the continuously firing neurons. Notice that
all the sequential circuits presented in the current and the previous Sections can
be implemented by using AND NOT gates, NOT gates, AND gates and neuronal
buffers. Therefore all the values of synaptic weights can be chosen according to
the ones defined in each building block. On the whole, three values of synaptic
weights are needed, especially wx and wy, which are in common between the AND
NOT gates, the NOTs and the buffers, and wz, which is used for the synapses of
the AND gates.
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Figure 5.14: Functional scheme of the neuronal D flip-flop. For simplicity, when
n neuronal buffers are connected in cascade, the number of buffers (x n) is reported
and only one buffer is represented.
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Chapter 6

Results

6.1 Simulations
6.1.1 Numerical simulations
All the numerical simulations reported in Section 6.2 were obtained in MATLAB
R2019b. The equations of the model were implemented using the explicit Euler
method with step size dt = 0.5 ms. Table 6.1 reports the chosen values of
the parameters that characterize the tripartite synapse model, according to the
modifications proposed in Section 4.1. Since all the synapses involved in the
above-mentioned simulations are excitatory synapses, for all of them the reversal
potential Esyn is set as 0. The time constant τ of the single-exponential synaptic
model is equal to 10 ms.

Table 6.1: Parameters of the tripartite synapse model in common between all
tripartite synapse logic gates.

k1 = 0.13 k2 = 0.9 k3 = 0.004 k4 = 2/εc

εc = 0.04 r = 0.31
τc = 8 τSm = 100 τGm = 50 τg = 10

sSm = 100 sGm = 100
hSm = 0.45 hGm = 0.5

dSm = 3 dGm = 3
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6.1.2 Simulink simulations
The simulations related to Sections 6.3 and 6.4 were computed using MATLAB
R2021b Simulink. The equations are discretised using the explicit Euler method
with step size dt = 0.5 ms. The Simulink parameter sample time, which indicates
when a Simulink block produces outputs and updates its internal state, is chosen
equal to dt. The Izhikevich neurons involved in the model are characterized with
the tonic spiking behaviour. The reversal potential Esyn is set as 0 for excitatory
synapses and as -75 for inhibitory synapses. All the logic circuits are driven by an
external stimulating current equal to I = 4 pA. Finally, also an example of logic
circuit with higher stimulating current I = 7 pA is provided.

6.2 Neuronal OR and AND gates
6.2.1 Logic gates with different spiking patterns
This Subsection reports the results of the bipartite synapse logic gates, obtained by
blocking astrocytes activity of the tripartite synapses, as discussed in Subsection
4.3.1. The OR gate and AND gate are developed investigating two possible firing
patterns, specifically phasic spiking and tonic spiking patterns. Phasic spiking
occurs when a neuron fires a single spike at the onset of the stimuli and then
remains at the resting state [54]. In the first realisation, all the three neurons in the
logic gate network communicate using phasic spiking. This can be done by setting
the initial values of all the voltage potentials vi, the recovery variables ui and the
values of the model parameters a,b,c,d as indicated in [13]. The stimulating current
of both presynaptic neurons is chosen as a rectangular function, with amplitude
equals to I = 0.5 pA between 0.5 and 1.5 seconds and null otherwise. Then OR
and AND gates are developed regulating the influence of the stimuli, through the
synaptic strength wi, as discussed in 4.3.1. For this purpose, OR gate synaptic
strength is chosen as wi = 0.02, while the AND gate synaptic strength is chosen
as wi = 0.01. Figures 6.1 and 6.2 report the AND gate and OR gate operations
with phasic spiking pattern. With tonic spiking pattern, the neuron continues to
fire as long as the stimulating current is ON. The combination of neuron model
parameters that allows to simulate tonic spiking pattern can be found in [13]. The
high level current amplitude is chosen as I = 4 pA. The OR gate is realised using
wi = 0.9, while the AND gate synaptic strength is wi = 0.05. Figures 6.3 and 6.4
depict the AND gate and OR gate dynamics using tonic spiking.
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Figure 6.1: Phasic pattern OR gate involving only neurons, with stimulating
current I = 0.5 pA and synaptic strength wi = 0.02
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Figure 6.2: Phasic pattern AND gate involving only neurons, with stimulating
current I = 0.5 pA and synaptic strength wi = 0.01
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Figure 6.3: Tonic pattern OR gate involving only neurons, with stimulating
current I = 4 pA and synaptic strength wi = 0.09
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Figure 6.4: Tonic pattern AND gate involving only neurons, with stimulating
current I = 4 pA and synaptic strength wi = 0.05
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6.2.2 Logic gates using astrocytes
In Fig. 6.6 an example of the dynamic of a tripartite synapse logic gate is provided.
The fast activation pathway is blocked by setting α = 0, while the slow activation
pathway is enabled with β = 0.05. With this choice, the activity of each astrocyte
reflects the state of the associated input neuron. When the presynaptic neuron is
not firing, the associated astrocyte displays damped calcium oscillations, while when
the presynaptic neuron is firing, also the calcium signal shows spiking activities.
Moreover, astrocytes activation continues also when neurons firing has already
stopped. Here, the astrocyte control parameters γ and δ, which reflect the positive
feedback and negative feedback mechanism respectively, are empirically chosen so
that the output neuron replicates the desired logic gating. Specifically γ = 1.5 and
δ = 10.
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Figure 6.5: Mismatched AND gating due to the too high synaptic strength
(wi = 0.11). The logic gate is obtained involving only neurons and with stimulating
current I = 4 pA.
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Figure 6.6: Simulation of AND gate with enabled astrocytes activity (α = 0
β = 0.05 γ = 1.5 δ = 10), synaptic strength wi = 0.11 and stimulating current
I = 4 pA. The astrocytes calcium signals are reported.

56



Results

6.2.3 Effect of noise in the logic gates
In this Subsection we want to explore the effects of noise to the information encoded
in spikes, that ultimately can effect the output of the logic gates. This approach
also allows us to develop an improved verification of our models, and investigate
how astrocytes can handle noise through its feedback mechanisms. The bipartite
synapse logic gates are tested with the presence of noise, using the noise model
described in Section 3.5. All the noisy simulations reported in Figs. 6.7, 6.8, 6.9
and 6.10 are generated using the same observation of synaptic noise, with σ = 5.
The stimulating current is chosen as a rectangular function, with amplitude I = 4
pA between 0.5 and 1.5 seconds (ON phase) and null between 1.5 and 2.5 seconds
(OFF phase). In that way, the logic gates are equally evaluated both with the high
and low level responses. In the following Figures (from Fig. 6.7 to Fig. 6.10), the
ON phase is highlighted using light gray background, while the OFF phase using
dark gray background. All neurons are modelled using the tonic spiking pattern.

To assess how noise influences the logic gating, first of all the definition of a grid
in which evaluate the response is needed. This is defined using one of the two input
signals, that specifically needs to be at the high level. In the ON phase, the signals
are segmented, dividing each interspike interval in halves. Since the duration of
ON and OFF phases is the same, in the OFF phase the segmentation previously
defined for the ON phase is replicated. The first bin represents a special case. In
order to define all bins as symmetric, with a spike at the center, the beginning of
the first bin precedes the first peak with an interval equal to the half of the distance
between the first and second peak. An example of this signal segmentation can be
observed in Fig. 6.7. Each of the two phases consists in 8 bins, and so the overall
signal can be interpreted as a binary signal made by 16 bits. Note that the first
0.5 seconds, where no neurons are stimulated, are not assessed.

Once defined the grid, the output response accuracy is evaluated and signal
errors are assessed using the bit error ratio (BER). First of all, the signals are
encoded into a bit streams, classifying a spiking bin as 1, while a resting bin as 0.
The bit error ratio is calculated as the number of wrong bits divided by the total
number of transferred bits, expressed as a percentage. For binary classification
problems, the accuracy can be defined as [43]:

accuracy = TP + TN

TP + TN + FP + FN
, (6.1)

where TP represents the number of true positives, FP the number of false positives
and FN the number of false negatives. For our purpose, the spiking state is
considered as the positive class, while the resting state is the negative class. For
instance, in the case of the OR gate with one or both inputs at the high level, since
the output response needs to be high, an output bin with a spike is considered as a
TP while a bin without any spike is considered as a FN . Given that spikes are
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assessed individually, if instead of one spike two spikes are found in the same bin,
one spike counts as a TP and the other as a FP . When both inputs are low, also
the output response has to be low, therefore an output bin without any spike is
considered as a TN , whereas a bin with one spike is considered as a FP .

Figs. 6.7 and 6.8 show an example of bipartite synapse OR gate and AND
gate affected by noise, with standard deviation σ = 5, and assessed using the
aforementioned quality metrics.
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Figure 6.7: Simulation of OR gate involving only neurons, with synaptic strength
wi = 0.09, stimulating current I = 4 pA and affected by gaussian synaptic noise with
σ = 5. The stimulation current ON phase is marked with light gray background,
while the OFF phase with dark gray background. The quality indexes values are:
accuracy = 0.81, BER=18.75% for both simulation 6.7a and 6.7b
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Figure 6.8: Simulation of AND gate involving only neurons, with synaptic
strength wi = 0.05, stimulating current I = 4 pA and affected by gaussian synaptic
noise with σ = 5. The stimulation current ON phase is marked with light gray
background, while the OFF phase with dark gray background. The quality indexes
values are: accuracy=0.50, BER=50.00% for simulation 6.8a, and accuracy=0.81,
BER=18.75% for simulation 6.8b
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6.2.4 Astrocyte-based denoising
In this Subsection, the astrocyte denoising method is tested on the neuronal OR
and AND gates, with the same observation of noise used in the previous simulations
involving only neurons (Fig. 6.7 and Fig. 6.8). Fig. 6.9 shows the logic gate
response of the OR gate with astrocytes-based denoising. The astrocytes control
parameters are set as α = 0, β = 0.05, γ = 0 and δ = 15. Fig. 6.10 reports
the results of the astrocyte denoising applied to the AND gate. Here the control
parameters are chosen as α = 0, β = 0.05, γ = 1.5 and δ = 10. Since now both γ
and δ are nonzero, both positive and negative feedback are exploited.

Finally the logic gates performances are evaluated for increasing noise levels.
The analysis is performed using noise standard deviation from 1 to 10, with 10
noise observations for each noise level. For each observation OR gate, OR gate
with astrocyte denoising (ORd), AND gate and AND gate with astrocyte denoising
(ANDd) are assessed using accuracy and BER. The results of the noise sensitivity
analysis are reported in Fig. 6.11.
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Figure 6.9: OR gate astrocyte-based denoising. The synaptic strength is set
as wi = 0.22, the stimulating current as I = 4 pA, while the astrocyte control
parameters are chosen as α = 0 β = 0.05 γ = 0 δ = 15. The stimulation current
ON phase is marked with light gray background, while the OFF phase with dark
gray background. The quality indexes values are: accuracy=1.00, BER=0.00% for
simulation 6.9a, and accuracy=0.94, BER=0.00% for simulation 6.9b
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Figure 6.10: AND gate astrocyte-based denoising. The synaptic strength is set
as wi = 0.11, the stimulating current as I = 4 pA, while the astrocyte control
parameters are chosen as α = 0 β = 0.05 γ = 1.5 δ = 10. The stimulation current
ON phase is marked with light gray background, while the OFF phase with dark
gray background. The quality indexes values are: accuracy=0.75, BER=25.00%
for simulation 6.10a, and accuracy=1.00, BER=0.00% for simulation 6.10b
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Figure 6.11: Noise sensitivity analysis. Noise standard deviation changes between
1 to 10 and for each noise level 10 observations are generated. The graphs report
the BER and accuracy averages and standard deviation of the output response for
OR gate, OR gate with denoising mechanism (ORd), AND gate and AND gate
with denoising mechanism (ANDd).
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6.3 Neuronal AND NOT-based logic gates
This Section reports the results related to the fundamental neuronal logic gates
introduced in Sections 5.1 and 5.2, that will be later used as building blocks for the
development of sequential circuits. In the simulations of the current and the next
Sections, the networks are stimulated by input membrane potentials computed
synthetically to reproduce desired input patterns, as will be further discussed in
appendix A. Figure 6.12 displays the input and output membrane potentials of the
neuronal AND NOT gate. The excitatory and inhibitory synaptic weights are set
as wx = 0.06 and wy = 0.18 respectively. Synapse models are also characterized
by the synaptic time constants of rise and decay (τr and τd in Eq. 3.21). Their
values are chosen as τr = 15%ISI = 19.80 ms and τd = 20%ISI = 26.40 ms for the
excitatory synapse, and τr = 15%ISI = 19.80 ms and τd = 45%ISI = 59.40 ms for
the inhibitory synapse, where ISI = 132 ms is the average interspike interval. The
input patterns are chosen accordingly to the traditional incremental order used in
truth tables, and the input levels are changed every half of a second. In the first
interval both input neurons are silent, corresponding to input levels [0 0], in the
second interval and third interval only one input neuron is firing, corresponding to
[0 1] and [1 0], while in the fourth interval both input neurons are firing, i.e. [1 1].

Afterwards, the neuronal NOT gate is tested, as shown in Fig. 6.13. As observed
in Section 5.1, the neuronal NOT gate consists in a special case of AND NOT
gate, hence the synaptic parameters wx, wy, τr and τd are chosen as in the case of
the AND NOT gate. The input pattern is generated as a sequence that toggles
between the two state every 0.5 seconds.

Lastly, Fig. 6.14 depicts the dynamics of the neuronal NAND gate, which is
stimulated using the aforementioned incremental input pattern. The AND gate
included in the NAND cascaded architecture makes use of the following synaptic
parameters. The synaptic weights are set as wz = 0.065 and the synaptic time
constants are defined as τr = 2%ISI = 2.64 ms and τd = 3%ISI = 3.96 ms for
both synapses. The NOT gate within the NAND architecture makes use of the
same synaptic parameters of the AND NOT gate. Similarly, the neuronal buffers
are realised using the synaptic parameters of the excitatory synapse of the AND
NOT gate.
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Figure 6.12: Example of gating response of the neuronal AND NOT gate. For
the excitatory synapse, the synaptic parameters are set as: wx = 0.06, τr = 19.80
ms and τd = 26.40 ms. For the inhibitory synapse, they are chosen as: wy = 0.18,
τr = 19.80 ms and τd = 59.40 ms. The amplitude of the stimulating current is
I = 4 pA.
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Figure 6.13: Example of gating response of the neuronal NOT gate. For the
excitatory synapse, the synaptic parameters are set as: wx = 0.06, τr = 19.80 ms
and τd = 26.40 ms. For the inhibitory synapse, they are chosen as: wy = 0.18,
τr = 19.80 ms and τd = 59.40 ms. The amplitude of the stimulating current is
I = 4 pA.
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Figure 6.14: Example of gating response of the neuronal NAND gate. The
synaptic parameters of the AND gate are wz = 0.065, τr = 2.64 ms and τd = 3.96
ms; for the NOT gate excitatory synapse wx = 0.06, τr = 19.80 ms and τd = 26.40
ms; for the NOT gate inhibitory synapse wy = 0.18, τr = 19.80 ms and τd = 59.40
ms. The amplitude of the stimulating current is I = 4 pA.

6.4 Neuronal latches and D flip-flop
In this Section, the results related to the sequential circuits developed using the
library of neuronal AND NOT, NOT, NAND and buffers are reported. Since
latches and flip-flops are simply built connecting the fundamental neuronal logic
gates as building blocks, the values of the synaptic parameters are unchanged.

Figure 6.15 shows the dynamics of the neuronal SR latch. Here each membrane
potential is labelled with reference to the digital logic signals that it represents. As
instance vs is the membrane potential that is used as the set signal of the latch.
The two outputs of the devices are represented by the membrane potentials vQ and
vQ. Notice that the condition with both set and reset neurons at the resting state
is avoided, since it represents the not allowed condition of the SR latch (see Table
5.3).

Next, the results related to the neuronal gated SR latch are illustrated in Fig.
6.16. The membrane potential vLE is associated to the LE signal which drives the
front gating stage. Differently from the previous SR latch, now the not allowed
condition corresponds to the case with both set and reset neurons at the high level,
and hence it is excluded in the input pattern.

Figure 6.17a displays the membrane potentials of the neuronal D flip-flop. In
that case, the input pattern consists of the single D signal, whose role is played
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by membrane potential vD. Since this device is an example of synchronous edge-
sensitive circuit, it is triggered by a clock signal, depicted by membrane potential
vCLK . Specifically this implementation corresponds to a positive-edge flip-flop.
Hence the triggering rising edges of the clock are highlighted with arrows in vCLK ,
and reported with dashed lines in the other signals. The D flip-flop is also tested
with an increased stimulating current equals to I = 7 pA, as shown in Fig. 6.17b.
The values of the synaptic weights are recomputed following the same procedures
explained in Sections 4.3.1 and 5.1. The weights of the AND NOT gates are
wx = 0.11 and wy = 0.67 for the excitatory and inhibitory synapses respectively,
while the weights of the AND gates are set as wz = 0.099.
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Figure 6.15: Example of gating re-
sponse of the neuronal SR latch, with
stimulating current I = 4 pA.
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with stimulating current I = 4 pA.
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Figure 6.17: Examples of gating response of the neuronal D flip-flop with different
amplitudes of the stimulating current.

67



Chapter 7

Discussion

Our biocomputing research has started by examining the modelling of the simplest
logic gates, namely the OR and the AND gates, with the use of bipartite synapses.
As predicted in Subsection 4.3.1, the empirical tuning procedure resulted in a
smaller synaptic weight for the AND respect the OR gate. Observing the neuronal
OR gate simulation with phasic spiking (Fig. 6.1), one firing input neuron is enough
to trigger the spiking of the output neuron. Hence, this neuronal logic gate follows
correctly the gating response of the OR gate. Instead in Fig. 6.2, the output
neuron is at the level 1 only if both input neurons are at the level 1, implementing
an AND gating. Therefore, according to research question number 1, the results
demonstrate that the developed network of Izhikevich neurons is able to display
the desired gating responses. Furthermore the gating has been extended through
the tonic spiking behaviour, after recomputing the values of the synaptic weights
wi. Particularly in Figs. 6.3 and 6.4, the OR and AND gates are implemented
involving multiple spikes with the tonic spiking behaviour.

Afterward we have investigated about the use of tripartite synapses. Since the
system complexity of the astrocyte dynamics is considerably high, we tested this
mechanism on the OR and AND gates, which represent the simplest logic responses
and can be achieved with few neurons. From Fig. 6.5 and 6.6, we can observe the
astrocyte effect in regulating neurons activity. These two simulations are generated
using the same network parameters, but with astrocytes activity disabled (Fig.
6.5) and enabled (Fig. 6.6). In particular, an AND gate is designed using synaptic
strength wi = 0.11, which is larger than the one used in paragraph 6.2.1, where it
was set as wi = 0.05. In Fig. 6.5, with one input at level 1 and the other at level
0, the output response is at 1. Therefore the logic gate with only neurons does
not correctly reproduce the AND function, due to the increased synaptic strength.
Then the astrocytes negative feedback is used to correct the response, setting α = 0,
β = 0.05, γ = 1.5 and δ = 10. As can be observed in Fig. 6.6, the negative feedback
mechanism is able to reduce the influence of the inputs and make the logic gate
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behaviour more similar to the AND logic function. Although the overall response
approximately follows the behaviour of a logic AND, in the case with one input 1
and the other 0 (Fig. 6.6a) the output shows an initial spike which should not be
present. This can be caused by the fact that the astrocyte dynamic is slower than
the neuron dynamic, and so the astrocyte regulation mechanism activates with a
delay after the neuron excitation. Moreover only the slow activation pathway of
astrocytes is exploited here, because the astrocyte feedback induced through the
fast activation pathway was too strong.

In spite of that, the use of tripartite synapses results in significant benefits.
Indeed, we have tested the astrocyte regulating activity as a mechanism of reduction
of synaptical noise. In Figs. 6.7 and 6.8, we evaluate the performance of bipartite
synapse logic gates, with the presence of noise. Most of these simulations have the
same values of accuracy and BER, probably due to the fact that the same noise
observation was used. However, the AND gate with inputs [1 0] (Fig. 6.8a) is
significantly more sensitive to noise respect the other cases. This is proven by the
fall of the accuracy to 0.50 and the rise of the BER to 50.00%. Generally, it has
been observed that with the chosen synaptic noise model, noisy contributions often
occur as spurious spikes rather than as the suppression of the true spikes. For this
reason, in the case in which the logic response is high, since the output neuron is
already spiking, the noise effect could reinforce the spiking activity, but the errors
introduced are not relevant to the interpretation of the binary message. By the
contrast, when the output needs to be at the resting state, as for the case of the
AND gate with inputs [1 0], the presence of noisy spikes significantly compromises
the binary message. The astrocyte-based denoising mechanism is tested in Figs. 6.9
and 6.10. When applied to the OR gate, the denoising method is able to noticeably
reduce the noise contribution. Indeed, with inputs [1 0], the output perfectly
matches the desired response (accuracy=1.00, BER=0.00%). Instead, with inputs
[1 1], the denoised OR gate displays slightly lower values of accuracy, due to the
fact that the first firing bin consists in two rapid spikes. However, this fact does
not represent an effective binary error, since it reinforces the true response. The
BER, which is not affected by additive true spikes, is still optimal (BER=0.00%).
As far as concern the AND gate, even though the results with inputs [1 1] perfectly
match the desired response, the case with inputs [1 0] remains a critical point. One
possible interpretation could be related to the reduced synaptic strength. Indeed,
since the AND gate wi is smaller than the OR one, the inputs that stimulate
the postsynaptic neuron are less strong, and so it is difficult to set the astrocyte
negative feedback without removing also the correct gating response.

The effectiveness of astrocyte denoising is further validated by Fig. 6.11, where
the logic gates undergo increasing levels of noise and multiple observations are
averaged. In the case of both inputs at level 1, AND and OR bit error ratio
increases with noise levels, but remains below 55. Similarly as said before, noisy
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spikes during the high phases of the output signals do not cause relevant errors in
the binary sequence, and so noise mainly affects the low phase. For this reason
the BER values remain controlled. Instead, the accuracy values decrease fast with
the noise levels, because this index is also influenced by additive spurious spikes
during the low phases. For both quality metrics, the performances with astrocyte
denoising (ORd and ANDd) clearly overcome the realisations with only neurons
(AND and OR). As far as concerned the case with inputs [1 0], generally the two
metrics reflect worse results than the case of [1 1], because when the output must
be low, both of the signal phases are at the low level, hence evidently affected by
the presence of noisy spikes. The AND gate with inputs [1 0] confirms to have the
worst performances between all the logic gates. The denoising mechanism is able to
enhance its BER and accuracy, but the ANDd remains still more sensitive to noise
than the simple OR gate without denoising. By contrast the denoising technique
clearly improves the OR gate outcomes, obtaining the best results in terms of
BER and accuracy. According to the aforementioned outcomes, the tripartite
synapse-based strategy constitutes a valid solution to research question number 2,
since it improves the logic gates robustness in term of sensitivity to noise.

Once developed a reliable paradigm to design simple OR and AND gating
responses with Izhikevich neurons, the rest of our work has been concentrated
about the development of more complex logic circuits. The use of inhibition
provides an effective answer to research question number 3, since our library of
gating responses has been enlarged with the realisation of AND NOT, NOT and
NAND gates. The input and output membrane potentials of these neuronal logic
gates are reported in Figures 6.12, 6.13, 6.14, and they correctly fulfil the associated
truth tables. The realisation of each gate involved different choices regarding the
synaptic model parameters. For the AND NOT gate, we can observe that the value
of the weights related to the inhibitory synapse (wy = 0.18) is higher respect the
one of the excitatory synapse (wx = 0.06). The reason of this could be related to
the fact that when an excitatory and an inhibitory stimuli occur nearby, for our
purpose the inhibition must overcome the excitation, resulting in the resting state.
As far as concern the synaptic time constants, their choice is also driven by the
objective of defining a model able to operate with different level of stimulating
currents, and hence different operating frequencies. Surely if the synaptic decay
takes to much time respect the ISI, the synaptic conductance continues to increase
due to the temporal summation, and possibly leading to the failure of the neuron
models. Therefore by working at higher frequency (smaller ISIs) the synaptic
dynamic must be faster. For this reason we defined the synaptic time constants as
function of the ISI. Specifically for the AND NOT gate, the decay time constant
of the inhibitory synapse (τd = 45%ISI = 59.40 ms) is chosen larger respect the
one of the excitatory synapse (τd = 20%ISI = 26.40 ms), because we addressed to
the issues related to the mismatched synchronization by relaxing the dynamic of
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the inhibition. Furthermore, it can be noticed that the synaptic time constants
related to the AND gate (τr = 2%ISI = 2.64 ms and τd = 3%ISI = 3.96 ms) are
significantly smaller respect the case of the AND NOT gate. A possible reason could
be due to the fact that the AND gate needs to be designed avoiding the temporal
summation effect. Indeed with the temporal summation, prolonged stimuli are
reinforced and even a single firing input could provoke the output neuron activation,
leading to the undesired high state. Nonetheless, the chosen values of synaptic
time constants belong to the range of physiological values found in literature. For
instance fastest AMPA receptors display a time constant of 0.18 ms, while for
NMDA receptor of pyramidal cells it is up to 89 ms [53].

The final aim of our biocomputing research was the realisation of sequential
circuits. The versatility of our paradigm is represented by the fact that these larger
circuits are simply built starting from the elementary logic gates which are already
trained. Therefore the tuning of the synaptic parameters does not need to be
repeated. From Fig. 6.15, the memory condition related to the SR latch can be
regarded. When both inputs set and reset are at the high level, the membrane
potential vQ remains at the resting state, while vQ continues to firing, hence the
previous output levels are kept in memory. In the gated SR latch of Fig. 6.16, the
LE signal defines when the latch is transparent to the inputs. Hence, additionally
to the memory condition with set and reset [0 0], the outputs correctly remain
unchanged also when the LE signal is low. The last neuronal logic circuit here
implemented is the D flip-flop, whose dynamic is displayed in Fig. 6.17a. Here, as
expected, the input membrane potential vD is sampled at the rising clock edge and
replicated by the output membrane potential vQ. It can be noticed that, nearby
the first clock edge, the output response results in an unstable state. This could
be interpreted similar to a metastable state, meaning that the output assumes
an undefined state which is neither the high nor the low level. The reason of
this is related to the fact that the neuronal flip-flop is not initialized yet, and
hence the output is well-defined only after the first clock edge. Similarly in digital
electronics, when the flip-flop is turned on, it can not be predicted if the initial
state is the low or high level. This is the reason why often supplementary inputs,
often called preset and clear are used to initialize the device. Furthermore, in
Fig. 6.17a we can observe that, as in digital flip-flops, the output of the neuronal
flip-flop changes after a certain delay respect the clock edge. This is defined as
the propagation delay, which is the time needed between the clock edge and the
resulting change at the flip-flop output Q [64]. Finally Fig. 6.17b reports and
example of the behaviour of the D flip-flop with increased stimulating current I = 7
pA, which results in an higher neurons firing frequency. Our simulations regarding
the neuronal latches and flip-flops provide a straightforward design paradigm for
the realization of sequential circuits made by neuronal cells, fulfilling the requests
related to the research question number 4.
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Focused examinations of neuronal biocomputing systems with mathematical
modelling will provide useful insight in how networks of biological cells could be
engineered to display well-defined responses comparable to digital computations.
Future efforts of the research community must concern the validation of biocom-
puting mathematical models with in-vitro experiments. At this purpose, recent
advancements on cellular lithography are currently aiming to the control over the
development of cultured networks. Cells cultures are grown over micro-electrodes,
which offer the possibility of recording the biological electrical signals, even of single
neurons, and electrically stimulate the network to control the neurons activity and
hence also affecting their connectivity. The surface engineering of such devices
is fundamental for the cellular growth, and involves the use of nanotechnologies
to define the surface chemistry and the structural patterns. At this point, the
in-vitro networks could benefit from the use of astroglia cells. According to recent
experiments, neurons cultures display limited firing activities, while the addition
of astroglia increases the neuronal activity and prevents the progressive reduction
of cells sensitivity to glutamate [65]. Moreover, effects of regularisation of the
neuronal messages through astrocytes-neurons communication, similar to the ones
shown in our in-silico model, could be explored.

In our work we only explored the noisy dynamic of neuronal signalling with the
model of synaptic gaussian noise. This phenomenon could be further characterize
by the use of more complex and biologically plausible models of synaptic noise,
for example with poisson-distributed noise. In addition to the noisy dynamic, the
reliability of neuronal biocomputing systems needs to be characterised regarding
many other complex neuronal dynamics. Among them, the nervous system displays
the dependence of distinct regions accounted for different physiological functions.
Hence, this mechanism, called functional brain connectivity, is crucial for the
comprehension of neuronal information processing, since the inputs of a certain
regions of the network could also interfere with the outputs of distant regions.
Furthermore, other open questions result from the fact that the ultimate networks
topology of neuronal populations is often unknown and it strictly depend on the
neuronal activity due to the processes of neuronal plasticity.
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Chapter 8

Conclusion

In this thesis, we proposed a mathematical model of biocomputed logic gates,
exploring the computing potential of neurons and astrocytes. First, the gating
capabilities of Izhikevich neurons connected with bipartite synapses where demon-
strated. Then, we presented a tripartite synapse-based method used to improve
the neuronal logic gates reliability. The coupling through tripartite synapses were
described using a modified Postnov model coupled with a traditional synaptic
conductance-based model. We showed the realization of both AND and OR gates,
characterized their performance in relation to noise and quantified the denoising
effects of astrocytes. Furthermore, starting from the fundamental logic gates AND
NOT, NOT and NAND gates, we increased the computing power of the neuronal
systems by design large neuronal circuits. Especially, we showed the capability
of such in-silico networks to implement sequential circuits. This could open the
way for the design of powerful biological devices with storage capabilities. Our
future efforts could concern the development of an automatic method of tuning of
the synaptic parameters with respect to different stimulating currents. Indeed, in
Chapter 7 we showed that a change in the chosen stimulating current implicate
the recomputing of the synaptic weights values. Therefore an automatic optimiza-
tion algorithm, which could require non linear techniques, could be developed.
Alternatively, also the application of biological processes of synaptic learning, as
synaptic time dependent plasticity (STDP), could be employed for developing of
intelligent systems able to reproduce the desired logic response. Main challenges
related to these procedures arise due to the presence of inhibitory synapses, since
the application of learning rules as STDP to inhibitory synapses is still under
investigation.

The proposed design paradigm represents a valuable step toward the realisation
of reliable neuronal logic gates and powerful neuronal circuits. Research efforts
on this exciting area will pave the way to the development of innovative medical
solutions, thanks to the use of biological computing machines.
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Appendix A

Generation of synthetic
input patterns

In this appendix we summarise the strategy used to generate the synthetic input
patterns used in the simulations of Sections 6.3 and 6.4. All the input signals
of these networks, included the clock and LE signals, are obtained modifying
by hand the firing pattern of the same neuron. This is a continuously firing,
stimulated by a constant external current, with amplitude I = 4 pA in all the
simulations of Sections 6.3 and 6.4, with the exception of Fig. 6.17b which uses an
increased current I = 7 pA. The firing pattern is described by the variable flag
in Eq. 4.1, which assumes value 1 at the firing instants and 0 during the resting
states. Specifically, a first Simulink block receives flag as input and counts the
number of fired APs. The output of this counter block is used to trigger a switch
system, which deviates between 0 and the original firing pattern flag depending if
the number of APs exceeds a certain threshold. Furthermore a second threshold,
larger than the previous one, is used to reset the count of APs, in order to repeat
the process periodically. Therefore, by regulating the two thresholds, different
periodic firing patterns can be designed. Notice that the generation of all the input
patterns from the same continuously firing neuron ensures their synchronization.
As instance considering the two input patterns in Fig. 6.12, the second train of
the INPUT neuron 2 is perfectly aligned with the ongoing train of the INPUT
neuron 1. Alternatively, these input patterns could also be generated by using
periodic stimulating currents, as a square waves. However, the synchronization of
the firing patterns would be achieved only if the stimulating periods are multiple of
the interspike interval. Hence, the implementation of such solution is much more
complex than the solution based on switches, because the values of ISI depend on
the current amplitude and they could also slightly vary during the stimulation.
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Appendix B

Synchronization issues

As mentioned in Section 5.2, the neuronal gating response is strongly affected by
the synchronization of the input signals. Here we report two example of neuronal
logic circuit with poor synchronization and we illustrate how neuronal buffers can
be used to address this issue. The first example concerns about the sensitivity to

 

 

(a)

 

 

(b)

Figure B.1: Neuronal logic circuit consisting in an AND NOT and NOT gates
cascade. In Fig. B.1b a neuron buffer is added to improve the inputs synchroniza-
tion.
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Synchronization issues
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Figure B.2: Gating responses and synaptic conductances signals of the NOT gate
in the neuronal circuit in Fig. B.1. Specifically, Fig. B.2a and B.2b are associated
to the neuronal circuit in Fig. B.1a, while Fig. B.2c and B.2d to the circuit in Fig.
B.1b.

synchronization of inhibitory synapses. Fig. B.1a depicts a neuronal logic circuit
made by the cascade of an AND NOT gate and a NOT gate. Lets consider the
inputs of the NOT gate. The signal at its inhibitory synapse passes trough two
layers of neurons, which are the layer associated to the AND NOT gate and the
layer used to generate the input pattern. Instead the signal at the NOT excitatory
synapse passes only trough one layer, which is the one of the continuously firing
neuron. Therefore the condition based on the balanced number of layers is not
ensured, hence we expect the inhibitory input to arrive later respect the excitatory
input. This can be verify looking at the synaptic conductances gsyn in Fig. B.2a.
As a consequence, the overall gating response is affected by the presence of a
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Synchronization issues

 

 

(a)

 

 

(b)

Figure B.3: Neuronal logic circuit consisting in an AND gate receiving one input
from the output of a NOT gate. In Fig. B.3b a neuronal buffer is added to improve
the inputs synchronization.

wrong spike, highlighted in Fig. B.2b. Notice that here, only the first inhibitory
stimuli fails, since for the following stimuli the temporal summation occurs and
hence the inhibitory effect is reinforced. However, if such error occurs in much
complex circuits, as flip-flops, it can propagate generating other errors and possibly
causing the failure of the device. In order to equalize the number of neuron layers,
a neuronal buffer can be added in the branch related to the excitatory input of the
NOT gate, as shown in Fig. B.1b. In that way the excitatory input is delayed, and
so it is realigned respect the inhibitory input, as depicted in Fig. B.2c. With this
strategy, the inputs synchronization is restored and the final output replicates the
desired response (Fig. B.2d).

The second example of synchronization issues is related to the AND gate. We
saw that, for the AND NOT gate and NOT gate, the presence of errors related
to poor synchronization is also limited by the effect of the temporal summation,
which is obtained using large synaptic time constants. Instead the AND gate is
characterised by smaller synaptic time constants, hence the signal synchronization
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Figure B.4: Gating responses and synaptic conductances signals of the AND gate
in the neuronal circuit in Fig. B.3. Specifically, Fig. B.4a and B.4b are associated
to the neuronal circuit in Fig. B.3a, while Fig. B.4c and B.4d to the circuit in Fig.
B.3b.

becomes crucial because the temporal summation mechanism is not used. Fig.
B.3a reports a neuronal logic circuit which consists in an AND gate with one input
obtained from the output of a NOT gate. Therefore this circuit should implement
the same logic behaviour of the AND NOT gate. As can be observed in the synaptic
conductances of Fig. B.4a, the second input of the AND gate is delayed, because it
passes though the additional layer of the NOT gate. Consequently in Fig. B.4b,
the output of the AND gate does not follow the desired logic function. Again, by
adding a neuronal buffer in the branch of the first input of the AND gate (Fig.
B.3b), the synchronization of the neuronal circuit is fixed (Fig. B.4c) and the
correct logic response is achieved (Fig. B.4d).
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