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ABSTRACT 

 

Commercial buildings are significant consumers of electrical and thermal 

energy, therefore energy savings, improving energy efficiency, and reducing 

greenhouse gas emission are the purposes for building owners, operators, and 

stakeholders. On the other hand, energy analysts have to understand the energy 

consumption behavior by looking for changes in energy patterns that may imply 

device failures or anomalous behavior. This master’s thesis deals with an energy 

data-mining approach that performs automated Anomaly Detection, through 

data analytics techniques called Matrix Profile (MP) and its extension Contextual 

Matrix Profile (CMP). This work aims to extract from large energy time-series data 

generated by sub-meters and smart sensors installed in Politecnico di Torino 

buildings, anomalous energy consumption patterns and to understand the root 

causes of the detected anomaly. The framework built up combines a hierarchical 

cluster algorithm, which helps to aggregate power consumption daily patterns, 

with MP and a final descriptive statistics outliers’ analysis.  
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1 INTRODUCTION 

 
Nowadays energy data analysts are faced with large amount of data due to the 

entrance in the buildings sector of IoT technologies. IoT stands for Internet of 

things, and it refers to concept of connecting embedded devices, computers, or 

smart sensors through wireless or wired network to the internet. These devices 

can be monitored, interact among themselves and finally they can also 

exchange data [1]. The Building Automations System (BAS) is a network of 

sensors, actuators, software and communication protocols, it could be thought 

as the brain of the building. In reference [2] the authors list the main tasks of BAS, 

it enables the storing of a large volume of energy data and the associated driving 

factors, the controlling of building system, the estimating of the energy saving 

after retrofit actions. In particular, it controls indoor temperature, humidity, 

ventilation and lighting conditions simplifying management operations, but as 

reported by reference [3]: ‘’can’t answer questions like: How much energy is 

consumed at different times of the day? Does the economizer behave 

appropriately? What is the optimal air handling unit supply air temperature 

setpoint?’’ To answer these questions, we need for Energy Management 

Information System (EMIS), a tool able to organize, present, visualize, analyze data 

that come from BAS, makes a Fault Detection and controls, supporting and 

improving the savings in buildings [3]. The Energy Information System (EIS) as 

illustrated in Figure 1-1 is a sub-system of EMIS, its task is essentially monitoring 

data at meter-level and carrying out automated analysis like predictive energy 

analysis. The results of these analysis are usually provided in dashboards. On the 

other hand, when we refer to Fault Detection and Diagnostic System (FDD), we 
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relate to a software able to detect faults, incorrect occupant behavior and 

anomalies of building system with rule-based or model-based diagnostic logics.  

 

 
 

 

 

The last component Automated System Optimization manages BAS settings 

continuously in order to improve HVAC system energy consumption while 

ensuring thermal comfort.  With this amount of data, buildings are becoming 

information-intensive, so, the needs for analyzing large datasets with Data Mining 

powerful techniques is increasing [4].  

 
  

Figure 1-1: Data inputs and key capabilities of EMIS. Reprinted from [3] 
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1.1 RELATED WORKS 

 

Energy inefficiencies Detection and Anomalies Detection (AD) are Data Mining 

(DM) application related. This way of discovering hidden knowledge from data is 

so useful in order to save energy and to improve operational system 

performance. The scientific paper contains hundreds of methodologies for AD, 

the most traditional ones exploit physical principle-based methods or statistical 

analysis which results in a poor performance if the quantity of data examples is 

too large. Instead, a rising interest to multidisciplinary subject as DM is opening 

the doors to a promising solution, with brilliant performance results. As reported 

by [4]: ‘’ DM is multi-disciplinary subject, integrating techniques from statistics, 

machine learning, artificial intelligence, high performance computing etc.’’ DM 

techniques are mainly of two kinds: supervised and unsupervised. The two 

categories have strengths and weakness.  Supervised techniques are more 

suitable for modeling complicated relationship but is needed the availability of 

high-quality training data. By contrast, unsupervised techniques explore 

structure and correlations among data without the need for training dataset, 

inputs, outputs variables and without prior information. Among the unsupervised 

techniques the Authors in [4] mention the Association rule Mining Algorithm. In 

fact, if an observation meets the antecedent of a frequent association but don’t 

meet the consequence than an anomaly is found. Also, statistical test methods 

are employed for AD, an example is The Generalized Studentized Deviate Test 

(GESD). The most of Frameworks in scientific literature apply the GESD method on 

energy profile computed statistics in order to extract abnormal energy 

consumption pattern from large Time Series. Capozzoli et al. in Ref. [2] has been 

introduced a predictive-based methodology for automated detection of 
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anomalous patterns supported by Symbolic Aggregate Approximation (SAX). 

This methodology is a multistep one and in addition to SAX transformation, it 

leverages on classification and regression tree. After the outlier removal stage 

has been performed, the SAX application helps to reduce dimension of the initial 

Time Series, without losing key information. The lengths of the non-overlapping 

windows on time axis are not equal, to better approximate the initial Time Series 

and the not-equal probability of the symbols encoding each approximated 

constant segment has also been taken into account (these are Novelties in 

scientific literature). In the meantime, CART is employed to segment daily period 

in time windows.  
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2 METHODS 
 

2.1 MATRIX PROFILE  

 

In time series analysis, most of the time, we are interested in finding anomalies; 

one method to do this is performing similarity join. Initially, we could compare 

snippets of the time series against itself by computing the distance between 

each pair of snippets. Implementing such an algorithm using nested loop is a 

relatively simple thing but it requires a computational effort even with a short time 

series. The Matrix Profile technique carries out this task reducing drastically the 

computation time; it was introduced by Eamon Keogh at University of California 

at Riverside and Abdullah Mueen at University of New Mexico in 2016 [5]. 

Essentially, The Matrix Profile is a data structure that annotates time series; it has 

two main components, the Distance Profile, and the Profile Index. The algorithms 

used to compute these components involves the use of sliding windows of length 

m throughout the time series. First, the distances of the windowed sub-sequence 

against the time series are computed, after that is needed to set an exclusion 

zone to prevent trivial matches. The exclusion zone helps the algorithms to ignore 

m/2 indices both before and after the windows index when computing the 

minimum distance and the nearest-neighbour index. At the end the Distance 

Profile is updated with minimal values and the Distance Profile with the first 

nearest-neighbour index. 
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2.1.1 DEFINITIONS AND NOTATIONS 

 
To figure out what is really Matrix Profile, is helpful to focus on some definitions 

given by the authors in [6]. The following definitions explains in detail the 

components of the algorithms. 

 

‘’Definition 1. A time series T is a sequence of real-valued numbers 𝑡! : T =

𝑡", 𝑡#, … , 𝑡$ where n is the length of T”; as mentioned in[6]. 

 

‘’Definition 2. A subsequence 𝑇!,& of a T is a continuous subset of the values from 

T of length m starting from position	′𝑖′. Formally, 𝑇!,& = 𝑡! , 𝑡!'", … , 𝑡!'&(" , where 1 ≤

𝑖 ≤ 𝑛 −𝑚 + 1, Figure 2-1 ”; as mentioned in[6]. 

 

 
 

 
 
‘’Definition 3. An all-subsequences set A of a time series T is an ordered set of all 

possible subsequences of T obtained by sliding a window of length m across 

𝑇: 𝐴 = 𝑇",&, 	𝑇#,&, … , 𝑇$(&'",& , where m is a user-defined subsequence length. We 

use 𝐴[𝑖] to denote 𝑇!,&. Figure 2-2 ”; as mentioned in[6]. 

 

Figure 2-1: Time Series and windowed sub-sequence of length m. Adapted from [5] 
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“Definition 4. A distance profile D is a vector of the Euclidean distances between 

a given query and each subsequence in an all-subsequences set. Figure 2-3 ”; as 

mentioned in[6]. 

 

 
 
 

 
 
 

 
 

 
 
The Authors in [6] take for granted that the distance is measured with the 

Euclidean distance between the z-normalized subsequences (the subsequences 

have a mean of zero, and a standard deviation of one). In this sense, Distance 

Profile annotates the time series T, it records a set of distances. If the query and 

all-subsequences set belong to the same time series, the distance profile must 

Figure 2-2: all-subsequence ordered set. Adapted from [5] 

Figure 2-3:Distance Profile on the left and Distance Matrix on the right, where blue 
is more similar subsequences and red is more dissimilar subsequences. Adapted 
from [5] 
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be zero at the location of the query, and close to zero just before and just after. 

Such matches are called trivial matches and are avoided by ignoring an 

exclusion zone of m/2 before and after the location of the query. 

‘’Definition 5. 1NN-join function given two all-subsequence sets A and B and two 

subsequences 𝐴[𝑖] and 𝐵[𝑖], a 1NN-join function 𝜃"$$(𝐴[𝑖], 𝐵[𝑗]) is a Boolean function 

which returns “true” only if 𝐵[𝑗] is the nearest neighbor of 𝐴[𝑖] in the set B ”; as 

mentioned in[6]. 

 

‘’Definition 6. Similarity join set: given all-subsequence sets A and B, a similarity 

join set 𝐽)* of A and B is a set containing pairs of each subsequence in A with its 

nearest neighbor in 𝐵 ∶ 𝐽)* = {〈𝐴[𝑖], 𝐵[𝑗]〉|	𝜃"$$(	𝐴[𝑖], 𝐵[𝑗])}. We denote this formally as  

𝐽)* = 𝐴 ⋈+	"$$ 𝐵, Figure 2-4 ”; as mentioned in[6] . 

 

 
 
 

 
 
 
‘’Definition 7. A matrix profile (or just profile) 𝑃)* 	is a vector of the Euclidean 

distances between each pair in 𝐽)* 	where 𝑃)*[𝑖]	 contains the distance between 

𝐴[𝑖]	and its nearest neighbor in B’’; as mentioned in[6]. 

Figure 2-4: Similarity join set. Adapted from [5] 
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‘’Definition 8. A self-similarity join set 𝐽)) is a result of similarity join of the set A 

with itself. We denote this formally as  𝐽)) = 𝐴+"$$𝐴 . We denote the corresponding 

matrix profile or self-similarity join profile as 𝑃))’’,Figure 2-5 ; as mentioned in[6]. 

 

 
 
 

 

 

The matrix profile value at location 𝑖 is the distance between 𝑇! and its nearest 

neighbor, wherever it is. The highest point on the profile corresponds to the time 

series discord, the lowest points correspond to the locations of the best time 

series motif pair and the variance can be seen as a measure of the T ’s 

complexity. 

 

‘’Definition 9. A matrix profile index 𝐼)* of a similarity join set 𝐽)* is a vector of 

integers where 𝐼)*[𝑖] = 𝑗		𝑖𝑓	{𝐴[𝑖], 𝐵[𝑗]} 	 ∈ 	 𝐽)* ’’, Figure 2-6; as mentioned in[6]. 

 

The nearest neighbor information is contained in the matrix profile index, in this 

way we can retrieve the nearest neighbor of 𝐴[𝑖] by accessing the i th element. It 

should be considered that the function which computes the similarity join set of 

two input time series is not symmetric, therefore, 𝐽)* = 𝐽*), 𝑃)* = 𝑃*), 𝐼)* = 𝐼*) [6]. 

 

Figure 2-5: Time Series, Time Window and Matrix Profile. Adapted from [5] 
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2.1.2 GUIDED MOTIF SEARCH 

In some cases, there is a need to include in the analysis some domain knowledge. 

Annotation Vectors are sorted series of values in the range [0, 1] which gives us 

the relevance of a motif at that index. A 1 in the AV means that any motif starting 

at that index is important and should be preserved instead a 0 means that the 

motif can be ignored [7].  As we let it be understood before, the Annotation Vector 

is a craftly way to ignore insignificant patterns in our dataset. The Annotation 

Vector introduces the concept of Guided Motif Search [7]; if the data analyst is 

aware of Motifs in a Time Series, he could award these parts of Time Series adding 

1 into Annotation Vector Series, supporting in this way the Motifs Search. But also, 

Guided Motif Search is the process of penalizing certain portions (undesirable) of 

z-normalized Euclidean distance Time Series, during Motif Search workflow. If it is 

known the kind of pattern we are looking for, we can use the Annotation Vector to 

transform the Matrix Profile, performing successively Motif/Discord discovery.  The 

Figure 2-6: Time Series and Matrix Profile Index. Adapted from [5] 
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new Matrix Profile, Corrected Matrix Profile, which can be used in order to identify 

desirable motifs or discords, is supplied in the following formula: 

 

𝐶𝑀𝑃[𝑖] = 𝑀𝑃[𝑖] + (1 − 𝐴𝑉[𝑖]) ∗ ma x(𝑀𝑃) 
( 2-1 ) 

Where: 

• CMP is the Corrected Matrix Profile. 

• MP is the original Matrix Profile. 

• AV is the Annotation Vector. 

• max (MP) is the maximum value of the original Matrix Profile. 

 

 

 

 

Essentially, this formula brings to new Matrix Profile by shifting the undesirable 

distances towards the maximum of the old Matrix Profile, max (MP) and thereby 

removing those corresponding subsequences from the pool of potential motifs 

[7] . In the following sections are reported the main Annotation Vector techniques, 

developed by the Authors in [7] which have been applied in several research 

fields. From different domains come from bias function which guides the Motif 

search. Sometimes, datasets contain frequents patterns which are not useful for 

Figure 2-7: Stop-Word Motif Bias. Time Series, Motif, nearest Neighbour (top); Matrix Profile(bottom). 
Adapted from [7]. 
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further analysis and overcome more interesting ones. With the term Stop-Word 

we refer to those words which don’t carry meaning or information inside a 

sentence, but which is plenty of. By analogy with text analytics, the goal is finding 

a ‘bias’ function to avoid meaningless or trivial words in this case represented by 

not-interesting, repeated patterns [7]. 

 

 

 

 

 

To give back an AV, we first calculate the Distance Matrix, a measure of similarity 

between stop-word and the other subsequences, Figure 2-8 (middle). Then a 

threshold could be set, in order to establish which subsequence likens to motif 

Figure 2-8: Time Series(top); Distance Profile(middle); Annotation Vector(bottom). Adapted from[7] 

Figure 2-9: Time Series, New Motif, New Nearest Neighbour (top); Corrected Matrix Profile (bottom). Adapted 
from [7] 

STOP-WORD 
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stop-word one. The last step generates the AV vector in this way: all the data 

between ′3𝑚′ before and ′3𝑚′ after the stop-word motif index meet 1 in AV vector.   

If in our dataset there are ‘’complex’’ portions (having many peaks and many 

valleys, regions with spikes), it is very likely that the Euclidean distances among 

them is greater than the distances among ‘’simple’’ ones (in brief, “Euclidean 

Distance has a bias toward simple profile” [7] ). The effect is that it will be difficult 

discovering ‘’complicated’’ top-K motifs since they will be overwhelmed by 

‘’simple’’ ones. We can define a complex measure with the following formula (2-

2) and generate a Complexity Vector to construct an Annotation Vector that will 

award motifs in complex regions. The following pseudocode lines deals with the 

stages from Complex Vector to Simplicity-Bias AV. 

 
Table 2-1: Simplicity-Bias pseudo-code 

1 annotation vector = complexity vector 
2 annotation vector = annotation vector - min (annotation vector) 
3 annotation vector = annotation vector / max (annotation vector) 
 
 
 
 

𝐶𝐸(𝑄) = NO(𝑞! − 𝑞!'")#
&("

!-"

		 

( 2-2 ) 

 

 
 

Figure 2-10: Simplicity-Bias; Time Series, Motif and Nearest Neighbour (top); z-normalized (bottom). 
Adapted from[7]  
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Lastly, there are some cases in which we are interested in finding not the best 

motif, but a Time Series interval which is ‘’exploitable’’ or ‘’actionable’’ in some 

specific way [7]. Several tricks are mentioned in [7] to address these cases, one 

of them consists in generating AV using additionally Time Series related to the 

problem (by the name of ‘’Suppressing Motion Artifact’’). Whereas with the terms 

‘’ Suppressing Hard-Limited Artifacts’’ we refer to those techniques allowing to 

find Motifs between Time Series upper bound value and Time Series lower bound 

value, excluding the boundaries [7]. 

 

Figure 2-11: Complexity-Vector; Time-Series (top); Complexity Vector (middle); Annotation 
Vector (bottom). Adapted from [7] 

Figure 2-12: Time Series, New Motif, New Nearest Neighbour (top); Corrected Matrix Profile (bottom). 
Adapted from [7]. 
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2.1.3 THE Z-NORMALIZATION EFFECTS 
 

As mentioned before, the Matrix Profile is series where each value at a certain 

index is the distance between z-normalized (zero mean, the variance equal to 

one) subsequence of time series one, which starts at that index and the best 

matching z-normalized subsequence of time series two [9]. In this case, the time 

series one and the time series two are the same, this means that we search for 

matches in the same time series. The Matrix Profile has been employed to find 

discords, or rather the subsequence which is the farthest from its nearest match. 

The z-normalized Euclidean distance firstly commutes each subsequence shape 

to its normal form (capturing the shape and not the magnitude) and then 

compares normalized subsequences. The patterns processed with Matrix Profile 

belongs to several scientific fields, they are signals coming from uncalibrated 

sensors, natural sources, etc. As reported by the authors in [9], the z-

normalization has the disadvantage when dealing with flat subsequences, in fact, 

the fluctuations in a flat subsequence result in high values in Matrix Profile, against 

the human intuition of similarity. The effect of flat noisy subsequences impacts 

the Discord Discovery because the highest values of real discords could be 

overwhelmed by fluctuations Matrix Profile high values, whereas the Motif 

Discovery use case is not affected by this effect. The other aspect which limits the 

application of the z-normalized Euclidean distance is that the magnitudes or 

amplitudes are not involved when matches are performed. We could say that z-

norm Euclidean distance is a shape-comparator, but if our discords are fully 

influenced by amplitudes, as in the case of energy consumption time series, then 

the only information about the shape is not sufficient. To overcome these limits, 

we use not z-normalized Euclidean distance in the following. 
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Figure 2-13: Discord discovery; from the top to the bottom, Time Series with top discord in red and 1stNN in 
blue, z-normalized Euclidean Matrix Profile, Time Serie with top discord in red and 1stNN in blue, not z-
normalized Euclidean Matrix Profile. 

 

 
Figure 2-14: Not z-normalized profiles (left), z-normalized profile (right) 
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Figure 2-15: Time Series with top Discord and 1stNN in blue (top), z-normalized Euclidean Matrix Profile 
(bottom). 

 

 
 

Figure 2-16: top Discord profile and 1stNN in blue (left), top Discord profile under z-normalized Euclidean 
distance and 1stNN in blue (right). 

 

The Figure 2-13 displays the problem of flatten subsequences, the discord profile 

index change when the not z-normalized Euclidean distance is used. Meanwhile 

the Figure 2-14, shows the discord profiles (normalized and not normalized) found 

by both Matrix Profile techniques; the fluctuations bias the Discord discovery. Last 

problem regarding the z-normalized distance is shown in Figure 2-16, the discord 

profile and the 1stNN under z-normalized distance seem to be similar, but actually 

they are so different, as shown on the left side. 
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2.2 STATISTICAL MACHINE-LEARNING ALGORITHMS  

 
2.2.1 CART METHOD 

 

CART are machine learning methods that divide data into smaller and smaller 

groups(non-overlapping) with similar to each other values, using a set of splitting 

rules, to identify pattern useful for making prediction. As the name implies, 

Decision Tree methods are based on tree structure. The model, in analogy with 

flowchart makes ordered logical decisions, each of which come from decision 

node, that decides according to an attribute value. There are three kind of nodes, 

root node where the data start to be processed, decision node where data are 

split into branches that represent decision’s choices and last, the leaf node, that 

contain data after having followed a combination of decisions. From the root 

node the algorithm selects a feature that is the most predictive of the target class, 

then data observations are grouped by values of this feature. The algorithm 

continues the recursive partitioning choosing the best feature each time, until 

stopping criterion is reached. 

 

Stopping criteria are: 

• Nearly all of the observations at the node have the same class. 

• The are no remaining distinguishing features within partition. 

• The tree has reached a set size limit. 

 

The feature values that split data sample such that partitions includes primarily 

data of single class, suggest the best split; in addition, a group of data is said to 

be pure if it contains only a class. The way used to choose the best split involves 
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entropy index. The entropy index is a measure of purity of a data sample, it is on 

the range zero one. The value 0 states that the data sample at hand is 

homogeneous, in contrast, the value 1 underlines a very mixed class values data 

sample. 

 

 

 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆) =O−𝑝! log#(𝑝!)
.

!-"

 

( 2-3 ) 

 
Where: 

S = data sample. 

c = number of different class levels. 

𝑝!= proportion of falling into class level i. 

 

For example, if we have two class than 𝑝" = 𝑥 and 𝑝# = 1 − 𝑥	, where x is a possible 

value of proportion, between 0 and 1; accordioning to the previous formula ( 2-3 

). 

 

𝑆 = −𝑥 ∗ log# 𝑥 − (1 − 𝑥) ∗ log#(1 − 𝑥) 
( 2-4 ) 

Figure 2-17: Decision Tree structure 



  

 27 

 

  

Figure 2-18: Entropy function  

 
The peak of Entropy is reached in 𝑥 = 50 where the data sample contains the 

same number of objects belonging to the two class. To decide the best feature to 

split upon, the algorithm calculate the variation of the Entropy between and after 

a split for all possible features. This kind of calculation is called information gain. 

 

 

𝐼𝑛𝑓𝑜𝐺𝑎𝑖𝑛(𝐹) = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆") − 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆#) 
( 2-5 ) 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆#) =O𝑤! 	𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑃!)
$

!-"

 

( 2-6 ) 

Where: 

S is the total entropy resulting from a split. 

n is the number of partitions. 

𝑤! is the number of examples falling in partition ‘i’ (weight). 

𝑃! is the partition ‘i’. 



  

 28 

 

The higher the information gain, the better is the feature at creating 

homogeneous groups after a split. If the information gain is zero, the entropy 

doesn’t reduce, and the feature choice is bad. A decision tree can continue to 

grow until each example is perfectly classified or there are no more features to 

split on. The process to reduce the size of the tree is known as ‘pruning’, It avoid 

that the tree overfit data, losing the skill to generalize better to unseen data. 

 
2.2.2 AGGLOMERATIVE HIERACHICAL CLUSTERING 

 

Clustering is the process of grouping a set of data obsevations into multiple 

groups or clusters so that observations within a cluster have high similarity but 

are very dissimilar to those ones of other clusters. Dissimilarities and similarities 

are assessed based on certain kind of measures, described in the following. The 

partitioning is not performed in a supervised manner by humans, but by the 

clustering algorithm. Hence, clustering can lead to discover previously unknown 

knowledge and groups within the data. As a data mining algorithm, cluster 

analysis can be used to gain insight into the distribution of observations into 

dataset, to observe the characteristics of each cluster, and to focus on a 

particular set of clusters for further analysis. Alternatively, it may be useful as a 

reprocessing step for data mining frameworks, which would then operate on the 

detected clusters and on the related attributes or features. Clustering is known as 

unsupervised learning because the class label information is not present. In data 

mining, efforts have focused on finding methods for efficient cluster analysis in 

large datasets. A hierarchical method creates a hierarchical decomposition of 

the given set of data observations, it can be of two types, agglomerative or 

divisive one, based on how the hierarchical decomposition is performed. The 
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agglomerative approach, also called the bottom-up approach, starts with each 

observation which constitutes a single separate group. It successively merges 

the observations until all the groups are merged into one. Hierarchical clustering 

methods can be distance-based or density-based and continuity-based. This 

class of methods suffer from the fact that once a merging step is done, it can 

never be undone. Such techniques cannot correct erroneous decisions; however, 

methods for improving the quality of hierarchical clustering can be found in 

scientific literature. Once again, agglomerative methods start with individual 

observations as clusters, which are iteratively merged to form larger clusters, the 

process at the next step will operate on the newly generated clusters. These 

process of merging, if not well carried out, may lead to low-quality clusters. 

Moreover, the entirely process do not scale well because each decision of merge 

needs to examine many objects or clusters.  

 
2.2.3 DISSIMILARITY MEASURES: 

 

The following distance measures are written for two vectors or time series 

snippets x and y, they must be both of the same length, d-vectors.  The array 

elements or variables values may be quantitative (discrete or continuous) or 

qualitative (ordinal or nominal). 

 

Euclidean distance:  it is the usual square distance between the two vectors.  It is 

given by Equation: 

 

𝑑(𝑥, 𝑦) = (Oa𝑥/ − 𝑦/b
#)	

0

/-"

"
#

 

( 2-7 ) 



  

 30 

Maximum distance:  it is the maximum distance between two components of x 

and y (supremum norm), as described by Equation: 

 

 
𝑑(𝑥, 𝑦) = sup

"1/10
f𝑥/ − 𝑦/f 

( 2-8 ) 

Manhattan distance:  is the absolute distance between the two vectors.  It is given 

by Equation: 

 

𝑑(𝑥, 𝑦) =Of𝑥/ − 𝑦/f
0

/-"

 

  ( 2-9 ) 

Canberra distance:  terms with zero numerator and denominator are omitted 

from the sum and treated as if the values were missing. 

 

𝑑(𝑥, 𝑦) =O
f𝑥/ − 𝑦/f
f𝑥/f + f𝑦/f

0

/-"

 

( 2-10 ) 

Binary distance:  the vectors are regarded as binary bits, non-zero elements are 

“on”, and zero elements are “off”.  The distance is the proportion of bits in which 

only one is on amongst those in which at least one is on. 

 

Minkowski distance:  is the p-norm, i.e., the p-th root of the sum of the p-th powers 

of the differences of the components 
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𝑑(𝑥, 𝑦) = (Oa𝑥/ − 𝑦/b
2)	

0

/-"

"
2

 

( 2-11 ) 

 
2.2.4 WARD’S METHOD 

 

Ward’s method says that the distance between two clusters, A and B, is how 

much the sum of squares will increase when we merge them: 

 

 

∆(𝐴, 𝐵) = 	 O ‖𝑥3iii⃗ − 𝑚)∪*iiiiiiiiii⃗ ‖# − O‖𝑥3iii⃗ − 𝑚)iiiii⃗ ‖# − O‖𝑥3iii⃗ − 𝑚*iiiiii⃗ ‖# =
!	∈	*!	∈	)!	∈	)∪*

		
𝑛)𝑛*
𝑛) + 𝑛*

‖𝑚)iiiii⃗ − 𝑚*iiiiii⃗ ‖# 

( 2-12 ) 

 

Where: 

 𝑚/ is the center of cluster j 

 𝑛/ is the number of points in it 

 ∆ is the merging cost of combining the clusters A and B.  

 

With hierarchical clustering, the sum of squares starts out at zero (because every 

point is in its own cluster) and then grows as we merge clusters. Ward’s method 

keeps this growth as small as possible. This is nice if we think that the sum of 

squares should be small after a merging. Given two pairs of clusters whose 

centers are equally far apart, Ward’s method will prefer to merge the smaller 

ones, furthermore Ward’s method is both greedy and constrained by previous 

choices as to which clusters to form. This means its sum-of-squares for a given 
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number k of clusters is usually larger than the minimum for that k, and even larger 

than what k-means will achieve.  

 

Silhouette Coefficient 

 

Silhouette coefficient has been introduced as a method to explain and to validate 

within clusters of data consistency. The silhouette coefficient represents the 

measure of how similar an object is to its own cluster (cohesion) compared to 

other clusters(separation). A formal definition of the two previous concepts will 

be required for a later analysis. The cohesion is how closely are the points into a 

given cluster. Optimal cluster will be characterized from a high value of cohesion.  

To find Silhouette coefficient we compute, for each point i, the statistics related to 

the distance from i to all other points in its own cluster, in order to compute the 

average distance.  

 

𝑎! =
1

|𝐶!| − 1
O 𝑑(𝑗, 𝑖)

/∈6!	,/7!

 

( 2-13 ) 

Where:  

i ∈ 𝐶! ,  

|𝐶!| is the cardinality of the cluster.  

 

Cluster separation is a statistic that assess how distinct or well-separated a 

cluster is from other clusters. For Silhouette coefficient is required to compute the 

distance between a given point i and any other cluster, which i is not a member 

of. First, we need to perform the average dissimilarities between i and the other 
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cluster, computed as the average distance between the point and all the 

members of that cluster. 

 

𝑑(𝑖, 𝐶/) =
1
f𝐶/f

O 𝑑(𝑗, 𝑖)
/∈6"

 

( 2-14 ) 

The equation 2.15 is performed for each cluster 𝐶/ = 𝐶! obtained from the 

clustering algorithm. Once, we highlight a” neighbouring cluster”, and the statics 

𝑏! used in silhouette is the average distance between that specific cluster. Hence, 

we get: 

 

𝑏! = min
/7!

𝑑a𝑖, 𝐶/b 

( 2-15 ) 

With the previous metrics we can define silhouette index, for a given point i as: 

 

𝑠! =
𝑏(𝑖) − 𝑎(𝑖)
max	{𝑎! , 𝑏!}

 

( 2-16 ) 

Which can be also written as: 

 

𝑠! =

⎩
⎪
⎨

⎪
⎧1 −

𝑎!
𝑏!
, 𝑎! < 𝑏!

0,																			𝑎! = 𝑏!
𝑏!
𝑎!
− 1,										𝑎! > 𝑏!

 

( 2-17 ) 

From this definition is clear that −1 ≤ 𝑠! ≤ 1 if ai < bi if ai = bi if ai > bi.  Also, the 

score is 0 for clusters with size equal to 1. This constraint is added to prevent the 

number of clusters from increasing significantly. For 𝑠! close to 1 we require 𝑎! ≪
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𝑏! . As 𝑎! measures of how dissimilar i is to its own cluster, a small value means it 

is well matched. At the Meanwhile, a large 𝑏! implies that i is badly matched to its 

neighbouring cluster. Thus an 𝑠! close to one means that the data is correctly 

clustered. If 𝑠! is close to -1, then for the same reason, i would be more appropriate 

if it was clustered in its neighbouring cluster. An 𝑠! near zero means that the 

sample is on the border of two natural clusters. Silhouette index is calculated 

separately for each point. In order to provide a median representative metric 

useful to determine the quality of the clustering we have to combine all the 

indexes. The average �̅�(𝑖) = 𝑠! over all points of a cluster is a measure of how 

tightly grouped all the points in the cluster are. Thus, the average 𝑠! over all data 

of the entire dataset is a measure of how appropriately the data have been 

clustered. It can be used to determine the natural number of a cluster into a 

dataset, computing the index for each possible k in order to select the maximum. 

 

 

 
Figure 2-19: Average Silhouette Coefficient and the best number of Cluster K 
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• �̅�(𝑖) ∈ (0.70, 1.00] → the given partition is extremely reliable 

• �̅�(𝑖) ∈ (0.50, 0.70] → the given partition is reliable 

• �̅�(𝑖) ∈ (0.25, 0.50] → the given partition is not so reliable 

• �̅�(𝑖) ∈ (−1.00, 0.25] → the given partition is not reliable  

 
2.3 CONTEXTUAL MATRIX PROFILE 

 

A new framework is proposed by De Paepe at al. in [10] that focuses on the implicit 

distance matrix calculation, called the Series Distance Matrix (SDM). This 

framework takes advantages from distance measures (SDM-generators) and 

distance processors (SDM-consumers), which can be combined, allowing for 

more flexibility and easier experimentation.  In SDM, the Matrix Profile is one 

special configuration.  Furthermore in [10] Is introduced the Contextual Matrix 

Profile (CMP) as a new SDM-consumer capable of discovering repeating 

operating patterns. The strength of CMP is that provides easy visualizations for 

data analysis and can find anomalies that are not only discords. Series analysis 

techniques deal with ordered group of observation, rather than independent data 

points, and unlike non-series, consecutive points in series carry meaning and 

patterns that will often occur throughout the series.  Finding and analysing these 

patterns can allow better insights in the dataset. Subsequently, they can be used 

for anomaly detection in contexts where anomalies are not only defined by 

unique behaviour. Series Distance Matrix (SDM) framework can be considered as 

the base building block on which other techniques can be built. As mentioned 

previously it consist of separate components that calculate distances between 

subsequences of input series (SDM-generators) and components processing 

these distances (SDM-consumers).  
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Definition 4. ‘’The z-normalised Euclidean distance 𝐷89(𝐴, 𝐵) between series of 

equal length 𝐴 ∈ 𝑅& and 𝐵 ∈ 𝑅& is defined as the Euclidean distance 𝐷9 of the z-

normalised series 𝐴} and 𝐵~ ’’.   

 

𝐷89(𝐴, 𝐵) = 𝐷89a𝐴}, 𝐵~b = �a𝑎:�− 𝑏:�	b
# +⋯+ a𝑎&("� −𝑏&("�b

# 

( 2-18 ) 

Given pairs of series, SDM-generators are responsible for calculating the 

distances between all pairs of subsequences. Because calculating the full 

distance matrix requires a high computational effort, it is convenient instead 

calculate fragments of the distance matrix.  These fragments are processed by 

the SDM-consumers, after which the fragment is discarded, and a new fragment 

is calculated. This could be used by some consumers, such as the Matrix Profile, 

to provide approximate intermediate results when processing all data takes a 

long time, making it well suited for interactive use cases. The CMP, which can 

easily find repeated patterns in series and inherits the benefits of the Matrix Profile, 

is deterministic, domain agnostic, exact and is suited for parallelization. As the 

name implies, the CMP is closely related to the Matrix Profile, and can be best 

explained making a comparison with it. 

 

 

 

Figure 2-20: Time Series on the left, Distance Matrix in the middle and Matrix Profile on the right. 
Reprinted from[10] 
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The Matrix Profile is defined as the column-wise minimum over the entire distance 

matrix, whereas the CMP is defined as the minimum over rectangular regions of 

the distance matrix.  These rectangles may overlap and may or may not cover 

the entire distance matrix. Note that the CMP-consumer may be configured in 

such a way that it calculates the Matrix Profile.  In this way, the CMP can be seen 

as a generalization or extension of the Matrix Profile. The CMP on the other hand 

looks for the best matching subsequence in ranges over S1 and S2.  These ranges 

allow us to group the data in different ways and can reveal new insightful 

operating patterns.   

 

 
 
 

 
 
One benefit of the CMP is that it allows us to discover these patterns in advance 

when the pattern is unknown in advance. So, assuming we did not know the 

weekday/weekend similarity beforehand, we could have easily deduced it by 

visualizing the CMP. The CMP has one other major advantage over a basic 

distance matrix, it allows for a (time) shift when comparing sequences. The CMP 

has one other major advantage over a basic distance matrix, it allows for a (time) 

shift when comparing sequences. One advantage of the CMP over the Matrix 

Profile for anomaly detection is that the CMP does not depend on the uniqueness 

CMP 

MP 

Figure 2-21: Matrix Profile on the left and Contextual 
Matrix Profile on the right 
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of anomalies (it does not simply find discords), but rather on the expectations of 

the user regarding normal behaviour.  These expectations correspond to the CMP 

contexts and can be based on the insights retrieved using the CMP for data 

visualization. As part of the SDM framework, the CMP can be calculated using any 

distance measure and calculated in parallel with other techniques such as the 

Matrix Profile 

 

 

 
 

2.4 OUTLIERS DETECTION TECNIQUES 

 
 
Once the CMPs for contexts and clusters were obtained, we have several sets of 

distances that have to be overseen, in order to exclude those ones that are not 

consistent with the physics of the problem. We could take advantage of the 

classical statistical techniques to explore in detail which distance is an outlier. 

This process is well known as Outliers Detection.  

 

Outlier definition of Hawkins [Hawkins 1980]: 

“An outlier is an observation which deviates so much from the other observations 

as to arouse suspicions that it was generated by a different mechanism”. 

 

Figure 2-22: Contexts or ranges in yellow and violet, and Distance 
Matrix (on the left) and Contextual Matrix Profile (on the right). 
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In this case, the outlier detection was performed taking into account the median 

of each column (representative of a distance of a certain day from the other 

ones) and then applying some techniques to discover which median (distance 

and the day to belong to) is an outlier. Higher is the distance higher is the 

probability of a day(context) to be an outlier. The methods employed to detect 

outliers are four: boxplot, z-score transformation, elbow-method and the last, 

Generalized Extreme Studentized Deviate. Below, an introduction of the main 

features of these statistical methods: 

 
2.4.1 BOXPLOT (BOX AND WHISKERS PLOT) 

 

A box and whisker plot displays the five-number summary of a data set. The five-

number summary is the minimum, first quartile, median, third quartile, and 

maximum. It also shows the spread, the center of a dataset and is useful for 

indicating whether a distribution is skewed and whether there are potential 

unusual observations (low probability to happen) in the data set.  

 

2.4.2 Z-SCORE TRASFORMATION 

 

The process of transforming dataset values into z-scores involves the generating 

of signed numbers, called z-score, such that, the sign of the z-scores (+ or –) 

identifies whether the values are located above the mean (positive) or below the 

mean (negative). The numerical value of the z-score corresponds to the number 

of standard deviations between a value and the mean of the distribution. z = 0 is 

in the center (at the mean), and the extreme tails correspond to z-scores of 

approximately –2.00 on the left and +2.00 on the right.  If an entire distribution of 
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values is transformed into z-scores, the resulting distribution of z-scores will 

always have a mean of zero and a standard deviation of one. The shape of the  

original distribution doesn’t change if transformed in z-score one and the 

location of any individual score relative to others in both distributions is the same. 

In conclusion advantage of standardizing distributions is that the values of 

different distributions can be compared. Those value that falls out the range]- 

2;2[ are possible outliers. 

 

 

 
 

𝑧 − 𝑠𝑐𝑜𝑟𝑒 =
𝑥 − 𝜇
𝜎

 
( 2-19 ) 

2.4.3 ELBOW-METHOD 
 
To detect those distances that are extremally large, another possible method is 

the elbow method. It sorts the medians of columns and gives them an Anomaly 

Score. When the rate of change of Anomaly score doesn’t vary significantly, the 

Figure 2-23 : Gaussian distribution with z-score values 



  

 41 

elbow is found. All distances (context or days) below the threshold are “outliers” 

or possible anomalies, Figure 2-24.  

 

 
 

 
 
 
2.4.4 GENERALIZED EXTREME STUDENTIZED DEVIATE TEST (GESD) 

 

GESD is a simple statistical approach used to detect one or more outliers in a 

univariate data set that follows an approximately normal distribution. Statistical 

considerations assume that normal data follow some statistical model and the 

data not following the model are outliers. The GESD test only requires that an 

upper bound for the suspected number of outliers be specified. Given the upper 

bound, r, the generalized ESD test essentially performs r separate tests: a test for 

one outlier, a test for two outliers, and so on up to r outliers. 

Figure 2-24: The Elbow plot 
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The generalized ESD test is defined for the hypothesis: 

 

H0: There are no outliers in the data set 

Ha: There are up to r outliers in the data set 

Our test statistic is given by the formula below: 

 

𝑅! =
max
!
|𝑥! − �̅�|	

𝜎
					 

( 2-20 ) 

Here, �̅� and σ are sample mean and sample standard deviation, respectively. In 

GESD we exclude the observation that maximizes |xi —�̅� | and then recompute the 

above statistic with n-1 observations. We repeat this process until r observations 

have been removed. This results in the r statistics R1, R2 ………., Rr. Corresponding to 

the r test statistics, compute the following r critical values: 

Figure 2-25: Q-Q plot 
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𝜆! =
(𝑛 − 𝑖)𝑡",$%!%&

9:𝑛 − 𝑖 − 1 + 𝑡",$%!%&	( =(𝑛 − 𝑖 + 1)
			𝑖 = 1,2… , 𝑟 

( 2-21 ) 

where	𝑡2,; is the 100p percentage point from the t distribution with ν degrees of 

freedom and 

 

𝑝 = 1 −
𝛼

2(𝑛 − 𝑖 + 1)
 

( 2-22 ) 

Our Significance level will be denoted by α. 

The number of outliers is determined by finding the largest I such that 𝑅! > 𝜆! 

 

2.4.5 MEDIAN Z-SCORE 

 

In The Median z-score method median and median absolute deviation are used 

in place of mean and standard deviation, this implies that the method is less 

influenced by a single extreme outlier value. 

 

𝑀𝐴𝐷 = 𝑚𝑒𝑑𝑖𝑎𝑛(f𝑥! − 𝑋�f) 

( 2-23 ) 

 

Where: 

𝑋� = sample median 

𝑀! =
0.6745 ∗ (𝑥! − 𝑋�)

𝑀𝐴𝐷  

( 2-24 ) 
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The example should be labeled as outlier if |𝑀!| > 3.5. 

 

2.4.6 ADJUSTED BOXPLOT 

 

Although the classical box-plot method is applicable to both symmetric and 

skewed data sample, what comes up is a large number of observations dealt with 

as outliers in case of high skewness in data sample [11]. Vanderviere and Huber 

have introduced a new trick taking into account the medcouple (MC), a robust 

skewness measure. 

Let 𝑋$ = {	𝑥", … , 𝑥$} be a data sample from continuous univariate distribution, with 

𝑥" ≤ ⋯ ≤ 𝑥$. The MC coefficient could be calculated as the following formula: 

 

𝑀𝐶(𝑥", … , 𝑥$) = 𝑚𝑒𝑑
a𝑥/ −𝑚𝑒𝑑<b − (𝑚𝑒𝑑< − 𝑥!)

𝑥/ − 𝑥!
 

( 2-25 ) 

Where: 

• 𝑚𝑒𝑑< = Median of the 𝑋$ data set. 

• 𝑥! ≤ 𝑚𝑒𝑑< ≤ 𝑥/; 	𝑥! ≠ 𝑥/ . 

 

The fences are computed as follows: 

 

�
[𝐿, 𝑈] = [𝑄" − 1.5 exp(−3.5	𝑀𝐶	) 𝐼𝑄𝑅, 	𝑄= + 1.5 exp(4	𝑀𝐶) 𝐼𝑄𝑅]							𝑀𝐶 ≥ 0

	
[𝐿, 𝑈] = [𝑄" − 1.5 exp(−4	𝑀𝐶	) 𝐼𝑄𝑅, 	𝑄= + 1.5 exp(3.5	𝑀𝐶) 𝐼𝑄𝑅]						𝑀𝐶 ≤ 0

 

( 2-26 ) 
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If the distribution at hand is slightly right skewed, the lower fence moves to the 

right and more observation in the left side is determined as outlier, if a 

comparison with classical box-plot method is made; on the other hand, the upper 

fence identifies less observations as outliers. To summarize the adjusted box-plot 

method considers boundaries or fences that are free of the effect of skewness. 

 

 

 

 

 

 

 

 

 

Figure 2-26: Change of the intervals of two different box-plot methods. Reprinted from [11] 
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3 METHODOLOGY  

 

The methodology built up, deals with an Anomaly Detection framework on total 

electrical load time series, able to find anomalies patterns at meter level. In this 

chapter the entire framework process is described, the role of each concatenated 

algorithm is explained in detail as well as the interactions among algorithms. 

Data pre-processing is an essential step for data-mining process. The dataset 

used in this case study comes from a measure equipment installed in a medium 

voltage substation of Politecnico di Torino. The dataset under discussion has 

been processed by the BAEDA Lab Team and the physical inconsistencies like 

negative power rather than nearly-zero power were treated or removed. The 

further step consists in classifying daily pattern to find pattern distinctive feature. 

 

 

 
 

Figure 3-1: framework steps 
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3.1 CLUSTER SETTING 

 
The cluster analysis belongs to unsupervised class of methods with the 

classifying task; in this case, the scope of this step analysis is to bring together 

daily electrical load patterns which are more similar to each other and extract 

the main features like shape, the weekday type, the season day type and so on. 

The idea of similarity or dissimilarity is expressed through the concept of distance 

whereas the method represents the way to groups continuously the daily portions 

of Time Series (profiles). According to several test made with R libraries, the 

combination of Euclidean distance with Ward.D method has turned out the best 

one. This combination gives the best partitions (the most of daily patterns is 

closer to their own centroid with this combination of distance and methods then 

with other ones) which could be labeled easily by domain expert figure. 

 

3.2 CONTEXTUAL SUBSEQUENCES 

 

The contextual subsequences are a daily sub-period characterized by a load 

typical trend and associated with a Context. The task of identify daily 

subsequences is entrusted to a regression decision tree while the variable used 

to make decisions inside the leaf nodes is the hour of the day. Contextual 

subsequences allow to compare time portions with similar load trend, avoiding 

comparisons with so different profile portions. The CART method needs for 

hyperparameters tuning process to stop the learning stage and avoiding the 

overfitting. The hyperparameters act as thresholds that stop the algorithms when 

they are achieved; they are: 
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• The minbucket gives the smallest number of observations that are allowed 

in a terminal node. If a splitting parent node generates child one with less 

observation than the minbucket, the splitting doesn’t occur. The minbucket 

parameter was set to 120. 

• The minsplit is the smallest number of observations in the parent node that 

could be split further. If a node has less examples than the minsplit than it 

is labelled as leaf node. 

• the maxdepth bounds the tree growth below a certain depth / height. It was 

set equal to 10 

	

Last hypermeter has been taken into account is the complexity parameter. The 

complexity parameter cp is employed to measure the Cost-Complexity of our 

tree; it is useful in pruning the tree and has been set equal to 0, that means no 

limits to complexity. 

 

 
Figure 3-2: cp coefficient 
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3.3 ANOMALIES BY CONTEXTS AND CLUSTERS 

 

Contextual Matrix Profile stores inside itself distances between time 

subsequences. Each point displays the Euclidean distance between the two best 

matching contextual subsequences of two different days. Lower are the 

distances, better are the match. So, every column and row are representative of 

a dataset day and to gain further insight, we could isolate those distances that 

deviate from the majority. This refined approach leads us to discover anomalies 

respect each context but also respect each cluster.  The computation of CMP has 

been done with the support of customized and flexible Python library: ‘’Series 

Distance Matrix’’; the creators are the same of the scientific paper [10]. This library 

includes ‘’Generators’’ and ‘’ Consumers’’.  With the term generators we refer to a 

part of library ables to create Distance Matrix according to a set of suitable 

distances; instead, consumers process DM to generate CMP. The way to establish 

which distances are far from the rest ones is to apply outlier detection methods, 

described in the previous section. The next step concerns in querying all the 

outlier detection techniques to print a list of hierarchical anomalies (sorted by 

priority) by Contexts and Clusters, according to majority voting rule. Most of 

statistical outlier detection techniques are parameter free, whereas the adjusted 

boxplot has required parameter tuning procedure. As regards to GESD method, it 

has been excluded because some clusters have got few data examples to apply 

a statistical test. At the end of the framework anomalies have been classified with 

a colors’ legend. Each color is associated with a severity level, which in turn 

depend on how many outlier detection methods have detected a certain 

anomaly. 
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3.4 SAVING ESTIMATION 

 
Given some anomalies that are not ‘Thermal Sensitive’, the last step tries to put in 

place a potential saving estimation which give us an order of magnitude of 

energy saving, based on statical considerations. Thanks to Cluster analysis four 

categories of day have been found.  Each Cluster includes inside it a particular 

profile called centroid, which is the most representative profile. From physics 

point of view, the centroid is the ‘’ normal consumption’’, it is not affected by any 

kind of anomalies. Those values that doesn’t exceed twice the standard deviation 

of the centroid values moment by moment, have to be considered as ‘’ normal’’, 

instead those ones that exceed the +2𝜎 are overconsumptions. The delta 

consumption between  +2𝜎 and overconsumption is the actionable saving, that 

is, the savings we would have got if there not were the anomaly. We only have on 

actionable saving when the anomaly profile is a fault. 
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4 STUDY AND RESULTS 

 

The framework, implemented with the support of software like R and some 

libraries of python, has been applied to the case study of Politecnico di Torino. The 

working data come from meter equipment of the medium voltage substation C 

of the Politecnico di Torino. So, we will have to deal with electrical power 

consumption data of a building wings and the associated electrical subloads. In 

the rest of chapter, a description of the dataset is performed. The analysis period 

involved in this case study is between the first of January 2019 and the 31st of 

December of the same year whereas the frequency of data recording is quarterly 

basis. The meter level data represent the total energy consumed by chillers, 

facilities, and appliances. The sub-loads given in the dataset are: DIMAT 

department, Bar Ambrogio, Refrigeration unit, Data Center, Print Shop and the last, 

the Not Allocated Power. The really important datum for the case study analysis 

is the Total electrical load; in this time series there will be applied the most 

important data mining technique, which is Contextual Matrix Profile. But before 

coming there, data are processed with traditional machine learning methods. 

Since the methodology has already discussed widely in Chapter 4, in the rest of 

this section will be reported the results. The next paragraph shows the clusters 

found and how they will be interpreted used by domain expert in the framework. 

 

4.1 CLUSTERS DEFINITION 

 
The clusters definition is useful to reduce dimensionality of the problem. The time 

series of electrical load is firstly partitioned in daily basis load patterns, and  
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then trough the agglomerative hierarchical cluster technique each pattern 

(profile) is clustered according to similarity measure. At the end of cluster 

analysis, each cluster is labeled. The gray profiles are electrical load snippets of 

the time series, the red ones instead are the centroids. Each centroid is 

representative of its own cluster and the farther a generic profile is from a 

centroid, the higher is the probability that it is an anomaly. In detail, the cluster 

one with flat profiles includes almost all Sundays; the electrical load is just a 

plateau, a base load which derives from continuously working facilities. The 

cluster two is the cluster of Saturdays and half-days working. Around the middle 

of the day the load increases slightly, likely, because of academic activity, then it 

comes back quickly to the base load. The last two clusters underline the trend of 

consumptions caused by the occupancy, the use of the appliances, the power for 

refrigeration, fan and so on. The profiles of the cluster three has a similar shape 

with respect to those ones of cluster four, but the values keep their selves higher. 

Figure 4-1: Cluster dendrogram using Euclidean distance and Ward.D method 
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The days of June, July and December belong to the third cluster, instead the 

midseason days have been grouped into cluster four. As concerns the best 

number of clusters, the Silhouette criterion suggested to cut the dendrogram 

such that four groups have been generated. 

 

 

 

 

4.2 DAILY CONTEXTS 

 
This section is entirely dedicated on daily contexts. The context is a powerful tool 

introduced by Contextual Matrix Profile. 

Figure 4-2: Cluster analysis performed on Total Power time series 
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The meaning of the context is simple, it is essentially a daily period where 

anomalous subsequence could start. Detect anomalies is not simple task. First of 

all, it is mandatory define what is anomalous. In building energy, anomalies are 

mainly of two kinds, magnitude anomalies and shape anomalies, they may come 

from components system faults rather than from particular boundary condition 

like abnormal external temperature or occupancy condition. Another possible 

event is the lack of datum due to meter failures. The possibility of detecting 

anomalies in different day periods and day cluster give us the chance to include 

in our analysis as large number of anomalies as possible, even those that do not 

come out with traditional methods. 

Having said that, the rest of the chapter summarizes the results of CART method 

and the control parameters in input. The Figure 4-3 is a tree structure with root 

node, decision nodes and leaf nodes. The target variable in the leaf nodes is the 

Figure 4-3 : Decision Tree with root, decision, and leaf nodes 
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Total Power consumption, which is continuous variable, so this decision tree is of 

regression type. Root node and decision nodes have as splitting variable Hour of 

the day which in turn will be used to define contextual subsequences [2]. To set a 

good value for time window a lot of tests has been made, the best one, suggests 

a time windows of length two hours. In the Table 4-1 are listed the main context 

information: the start, the end, number of observations(examples) which fall into 

the range, duration, and the daily non-overlapping subsequence period of each 

context, the same thing of Time Window Context. The Subsequences cover 

entirely each day, later on they could be classified as normal or anomaly, after 

the Contextual Matrix Profile will be applied. Subsequence one last 6 hours and 15 

minutes and could start between the 00:00 and the 02:00, in this way it covers the 

first hours of the day, where the power is approximately cost.  

 

 

 

 

 

Figure 4-4: daily profiles and contextual subsequences 
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Table 4-1 : Contexts from CART analysis and relative duration 

 

 

The next subsequence is shorter than the previous one, is focused on the morning 

power rump-up and lasts less than 3 hours. The middle of the day appears with 

the maximum electrical load values which have high dispersion with respect data 

of other subsequences. The Subsequence four opposed to two, concerns the 

afternoon power rump-down. Lastly the subsequence of evening period, the 

power of which by analogy with subsequence one (the early hours of the day). 

The Figure 4-4 reports what has been explained before. 

 

 
 
 
 
 
 
 
 

  from to context_subsequence duration observations 

1 00:00 02:00 Subsequences of 04:15 h that starts between 00:00 

and 02:00 

2 h 8 

2 04:15 06:15 Subsequences of 02:30 h that starts between 04:15 

and 06:15 

2 h 8 

3 06:45 08:45 Subsequences of 06:45 h that starts between 06:45 

and 08:45 

2 h 8 

4 13:30 15:30 Subsequences of 03:30 h that starts between 13:30 

and 15:30 

2 h 8 

5 17:00 19:00 Subsequences of 05:00 h that starts between 17:00 

and 19:00 

2 h 8 
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4.3 CONTEXTUAL MATRIX PROFILE OUTCOMES 
 
 
 

 
 

 

 

The Figure 4-5 shows Contextual Matrix Profile for Context 1 with subsequence’s 

length of 4 hours and 15 minutes (Contextual Time Window or Contextual 

Subsequence), starting between the 00:00 and the 02:00 (Context Range). Each 

Column and each Row accounts for day’s Context Range and their intersection 

represents, as pointed out in the previous chapter, the Euclidean Distance 

Figure 4-5: Contextual Matrix Profile for Context 1, using not normalized Euclidean Distance 
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between the most similar subsequences of 4 hours and 15 minutes length, 

starting in the Context Range 00:00-02:00; moreover, the subsequences are not 

normalized when distance measure is applied. The distances in green, higher 

than the blue ones, are intensive in summer period, this probably means the need 

for cooling also in the early morning. Therefore, the main information we gain 

from the Figure 4-5 is about the difference of base load between summer and 

winter period.  

 

 

 

Figure 4-6: Contextual Matrix Profile for Context 2, using not normalized Euclidean Distance 
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In Contextual Matrix Profile of Context 2, Figure 4-6, at first sight, comes out only 

the difference between winter and summer months, but with more attention, a 

slight difference of distances between weekdays and weekend days (recurrent 

pattern) could be perceived. The reason of this recurrent pattern is explained by 

dissimilarities in ramp up shape of weekdays compared to that of weekend days 

one.  

 

 

 

 

The Matrix Profile for Context 3, Figure 4-7, compares the highest electrical load of 

the day and what comes up from patterns is still the different behaviour between 

Figure 4-7: Contextual Matrix Profile for Context 3, using not normalized Euclidean Distance 
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summer day and the rest of the year. Also, the midseason days are so far from 

winter ones. In Figure 4-8, the green squares are localized nearby Easter holidays, 

Winter holidays and the first two weeks of August. This distances distribution is 

fully influenced by drivers like external Temperature and occupancy. Lastly, we 

can clearly see a periodic pattern caused by weekdays versus weekends days.  

 

 

 

 

The Contextual Matrix Profile above, Figure 4-8 records Euclidean Distances for 

the early afternoon period, Context 4. The highest distances are in proximity of 

holidays and the weekends. The red distances in summer period are instead 

representative of the variability of summer boundaries conditions which impact 

the energy consumption profiles and of state of building occupation (all the 

Figure 4-8: Contextual Matrix Profile for Context 4, using not normalized Euclidean Distance 
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activities, this period, are reduced to minimum). The last Context, by analogy with 

the previous ones, suggests external Temperature as main driver of power profile 

shape, and again the dissimilarities in base load among winter days, summer 

days and holidays.  

 

 

4.3.1 CONTEXTUAL MATRIX PROFILE BY CONTEXTS AND CLUSTERS 
 
The further in-depth analysis focus on each cluster and aims at identifying 

unique operating patterns which are synonyms of anomalies. The anomaly, here, 

belongs to context day period but also to clustered day of the year. This way of 

carrying out Anomaly Detection give us the chance to exclude from analysis 

comparisons between different class of days, avoiding bias results. Cluster 1 holds 

Figure 4-9: Contextual Matrix Profile for Context 5, using not normalized Euclidean Distance 
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about seventy days with flat profiles (Sundays or holidays); if we carefully look at 

the Matrix Profile in Figure 4-10 (the top rows), some columns or rows are marked  

 

MATRIX PROFILE BY CONTEXT 1 AND CLUSTERS 

    

MATRIX PROFILE BY CONTEXT 2 AND CLUSTERS 

   
 

MATRIX PROFILE BY CONTEXT 3 AND CLUSTERS 

    

MATRIX PROFILE BY CONTEXT 4 AND CLUSTERS 
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in red (great distances) and are so far from the other ones; likely, they are 

anomalies. The anomalies of Context 1 are distributed in the first three cluster, 

instead the Context 2 presents the most severe anomalies only in Cluster 1, on 

Sunday. The Context 3 which contains the maximum power loads shows 

anomalies in almost every cluster, whereas in the Context 4 the red highest 

anomalies are concentrated in Cluster 2. The last row of the Figure 4-10, the 

Context 5, that is, the evening consumption period, shows the highest anomalies 

in Cluster 2. We may conclude: the Contextual Matrix Profile by Cluster and 

Context shows the dissimilarities between the same contexts of different Cluster 

days, but it is required another kind of visualization, focused on, operating profile 

to better capture the nature or the trend of abnormal profile. 

 
 
 
 
 
 
 
 
 

MATRIX PROFILE BY CONTEXT 5 AND CLUSTERS 

    

Figure 4-10: Depictions of each Contextual Matrix Profile by Context and 
Cluster 
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4.3.2 ANOMALIES RESULTS 
 

 
 

 

This paragraph shows anomalies result organized in the following way, each 

figure holds the anomalies which have been found by the methodology, classified 

by Clusters, Contexts and Severity. The grey lines in Figure 4-11 are the profiles 

belonging to Cluster 1 while the blue one is the centroid of cluster. For the moment, 

we are focusing on Context 1, and what stand out are those subsequences with 

abnormal values. The red Time Series snippet on 2019/08/12 is abnormal in terms 

of values and shape and like the red one on 2019/07/14 seems to be driven by 

external temperature, it is maybe an energy overconsumption. The anomalies 

labelled with severity medium or low and marked with yellow or green lines are 

Figure 4-11: Time Series Anomalies by Cluster 1 and Context 1 
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less severe (not so different from cluster centroid) but have some spikes that 

makes themselves anomaly. 

 

 

 

 

In Figure 4-12 we could observe abnormal behaviour, especially on 2019/08/13 in 

which an evident spike reaches 285 kW, so far from the cluster centroid which has 

a corresponding power value of 150 kW. The same anomaly trend occurs on 

2019/12/27 but with medium severity. Another interesting severity occurs on 

2019/08/17, the shape of the yellow snippet cannot be associated to abnormal 

Figure 4-12: Time Series Anomalies by Cluster 1 and Context 2 
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external driver, instead the sudden jump of power value leads us to think an 

incorrect data reading. 

 

 

 

 

The anomalies of Cluster 1 and Context 3, Figure 4-13, are related to the shape of 

Time Series snippets and the spikes could be related to sensor incorrect readings. 

Instead, the red subsequences are very dissimilar from the centroid so the related 

energy consumption could be associated with an unusual activity schedule. 

 

Figure 4-13: Time Series Anomalies by Cluster 1 and Context 3 
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The Figure 4-14, brings back the anomalies of Cluster 2 and Context 1; the most 

severe ones reach abnormal values e don’t follow the trend of centroid. On 

2019/07/06 but also on 2019/07/27 there are some spikes in the early morning, 

and the power values are extremely high, these are the reasons why they have 

been labeled as severity high. Whereas the subsequence shape in yellow on 

2019/06/24 at a certain point deviate from the centroid and becomes anomalous. 

 

 

Figure 4-14: Time Series Anomalies by Cluster 2 and Context 1 
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The previous Figure 4-15, shows clearly what we mean with the term ‘’magnitude 

anomaly’’. The loads in red and yellow are steadily far from centroid even if the 

shapes are very similar to the centroid one. Once again, we are not sure about 

the root case, we could assume that the main driver of this trend is the high 

external temperature of the middle of the summer day. To answer this doubt, we 

have to query the sub-load labeled as ‘’Refrigeration Unit ‘’, if we find high 

consumption also in ‘’Refrigeration Unit’’, we could validate our starting 

assumption and state that these profiles are uncommon rather than abnormal.  

 
 

Figure 4-15: Time Series Anomalies by Cluster 2 and Context 3 
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The figure above, Figure 4-12, is a Calendar Heat Map of the anomalies of cluster 

one. This kind of visualization is intuitive and immediate to understand. Each 

subsequence is associated with small rectangle(day). The rows of the heatmap 

are linked with a context whereas the columns with months of the year. Finally, 

the left axis reports the weekdays and the bottom one the week of month. All the 

light grey rectangles are the normal subsequences, most of them are located on 

Sunday or on holiday.  

Figure 4-12: The Heat Map Calendar Anomalies by Cluster 1  
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The second Heat Map calendar displays the anomalies of cluster 2. The light grey 

rectangles are half a days’ work or Saturdays. The main anomalies, marked in red 

or orange, once again, can be found in Summer and are the so called ‘Thermal 

Sensitive’ anomalies. The ones we are interested in are located in the mid-

seasons’ days in which the energy consumption is not highly influenced by 

external drivers. The last two figures, Figure 4-14 and Figure 4-15 include the 

results of Cluster 3 and Cluster 4 respectively. Now that anomalies have been 

identified, we have to establish which could be associated with a failure condition. 

 

Figure 4-13: The Heat Map Calendar Anomalies by Cluster 2  
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Figure 4-14: The Heat Map Calendar Anomalies by Cluster 3  

Figure 4-15: The Heat Map Calendar Anomalies by Cluster 4  
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4.3.3 SAVING POTENTIAL 
 

 

 
 

 
 

 
 

Figure 4-16: subsequences comparable to failure conditions or faults 
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The figure above, Figure 4-16, shows those anomalies that can be configured as 

failure conditions. Their typical characteristics are inconsistent punctual values 

(spikes) as on 2019-05-2022, incorrect readings as on 2019-01-21 and extremely 

high electrical load as on 2019-11-10. 

The Table 4-1 reports the saving estimated as explained in section “Methodology”. 

This type of saving could be actionable if the anomalies were saved in a 

database and exploited subsequently, comparing them with new data 

observation. Whereas the figure above contains all the subsequences 

comparable to failure condition, incorrect readings.  

 
Table 4-2: Saving 

 

Dates Theoretical Potential Saving 
[kWh] 

12/08/19 366.67 

13/08/19 70.62 

27/12/19 149.43 

06/07/19 559.47 

27/07/19 235.95 

24/06/19 102.18 

23/08/19 24.04 

10/11/19 292.59 

09/11/19 123.53 

24/12/19 31.29 

15/07/19 479.53 

22/05/19 38.21 
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5 CONCLUSION AND NEXT STEPS 

 

The work carried out in this master’s thesis final project deals with new framework 

for automated Anomaly Detection at meter level. The starting point of this work is 

the investigation of Matrix Profile technique. Unfortunately, there are not many 

scientific papers about Matrix Profile, probably, because the Time Series topic is 

not so easy to handle. Up to the present day the application fields of Matrix Profile 

in literature concerns mainly biomedical field and robotics. Although the MP 

needs to be refined, it is conquering the interest of many Data Analysts and 

represents the state of art for Time Serie data. The concept of anomaly is a bit 

complex, there is not only a kind of anomaly, but we expect abnormal profile 

shape (shape anomaly) and magnitude anomaly, that is, a certain variable 

could take values so far from the rest ones. The Contextual Matrix, which is more 

suitable for energy related problem, thanks to its flexibility, is an improvement 

respect to classical MP. The introduction of contexts allows us to search 

anomalies in a particular day time, moreover we could thoroughly inspect the 

type of anomaly and the time location. In this sense CMP can be seen as a step 

forward respect to traditional MP which treats subsequence as abnormal only if 

it has maximum distance from its nearest neighbour. The Methodology built up 

involves, in addition to CMP, other algorithms like CART and hierarchical cluster 

analysis, resulting globally parameter light. The parameter tuning analysis of 

CART and cluster algorithm is required in order to fit methodology to the case 

study, but we have tried to reduce the free parameter in order to keep our 

methodology as automated as possible. Respect to other anomaly detection 

framework available in scientific literature, we could leverage on ‘’The Highly 
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Desirable Properties of the Matrix Profile’’ [12] that are partially inherited by 

Contextual Matrix Profile. 

Here are some of them: 

 

• ‘’ It is exact’’: Matrix Profile doesn’t provide false positives, when motif 

discovery, discord discovery, Time Series joins is performed 

• ‘’ It is simple and parameter-free’’, the only parameter set is time window 

m (usually known by domain expert and thus it does not require tuning 

analysis). 

• ‘’ It is space efficient’’: Matrix Profile construction algorithms take up little 

space in memory, linear in the time series allowing for big Time Series 

processing. 

• ‘’ It is incrementally maintainable’’: we can continuously update our Matrix 

Profile, so it is possible keeping joins, motifs, discords exactly on streaming 

data 

• Matrix Profile construction is parallelizable 

• ‘’ It is free of the curse of dimensionality; it has time complexity that is 

constant in subsequence length’’ 

• ‘’ It can handle missing data’’: Even with missing data, Matrix Profile doesn’t 

provide false negatives. 

 

The work that has been carried out until now could be useful for creating a 

Dictionary of anomalies, exploitable in a different time period from the training 

one. This Dictionary could be updated every retraining and could be linked to an 

EMIS warning system. In this way occupants could be conscious of the occurring 

anomaly but with the previous information are not aware of the anomalies root 
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causes. Therefore, the possible future step could be about the use of Contextual 

Matrix Profile for an in-depth diagnostic analysis with the aid of sub loads massive 

dataset.  
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