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Abstract

The huge amount of energy consumption causes serious environmental con-

sequences such as climate change and air pollution, among others, all of

which have a significant and negative impacts for humanity and ecosystem

survival. The building sector represents one of the most energy intensive

field, requiring further attention in order to reduce its environmental impact.

Efficient and sustainable buildings have become critical to preserve the

environment and will help to reduce the overall amount of energy exploited

in buildings, since building inefficiency is one of the primary contributors to

global energy consumption, greenhouse gas emissions and, consequently, to

the global warming. Machine Learning techniques (ML) and Deep Neural

Networks (DNN) are widely acknowledged as an effective way for achieving

desired results in prediction tasks, which represent a viable method to

expand the use of advanced control strategies for building energy manage-

ment. However, one of ML shortcomings is related to the amount and

quality of training data that strongly limit the application of data-driven

models in building energy systems. Most machine learning extrapolation

capabilities are insufficient for these strategies, due to their reliance on a

large data set that properly characterize the problem. In this perspective,

Transfer Learning (TL) has been identified as a promising technique to scale

up machine learning approaches. In particular, transfer learning aims to

improve the performance of a target learner exploiting knowledge in related

environments. Despite its effectiveness, its application in smart buildings
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still need further studies. To overcome these limitations, the thesis proposes

a statistical investigation on the application of transfer learning to forecast

indoor air temperature evolution in buildings. Such technique may help

to broaden the use of data-driven models in advanced control strategies,

helping the energy sector decarbonization. The case study is represented by

a reference medium size office building. Starting from a database of around

1500 EnergyPlus simulations, comparing a Multilayer Perceptron (MLP)

and a Long-Short Term Memory (LSTM) neural networks, the last one has

been used to predict 1 hour ahead indoor temperature with a granularity

of 10 minutes. The analysis helped to quantify the influences of specific

features on transfer learning and machine learning performance. In particu-

lar, the thesis analyzed both the influence of building specific features such

as construction materials, orientation, weather, climate and occupancy as

well as data availability and technique on transfer learning performance.

Lastly, the resulting outputs have been deeply analyzed to rank the most

important features and guidelines on data availability requirements.
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Chapter 1

Introduction

1.1 Building sector energy consumption

Energy sector is the core of contemporary economies and it is essential

for society growth and prosperity. Simultaneously, this sector, which is

still mainly dominated by the use of fossil fuels in energy production,

transformation and usage, accounts for two-thirds of global emissions. CO2

emissions account for roughly 90% of worldwide greenhouse gases (GHG)

ones [9], due to the exploitation of fossil fuels like natural gas, oil and coal,

as shown in figure1.1:

Fig. 1.1: CO2 emission by energy source [1]

.
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Emissions coming from the combustion of these sources are the main

cause of global warming, that is become one of the principal issue which

all word nations are facing in all levels of their infrastructures, industries

and economy. The close link between energy usage and climate change

has become widely acknowledged. The Intergovernmental Panel of Climate

Change [10] defined the global warming as the increase of air and sea surface

temperatures over the globe. From 2000’s building energy demand has grown

five times faster than advances in the carbon intensity of power generation

[9], and it has significantly increased over the past decades because of an

increasing number of households, floor area and the consequently growth

of the demand for equipment like air conditioners; Electricity has the

potential to become the energy source that people rely on for all of their

daily requirements: mobility, cooking, lighting, heating and cooling. Thus,

combined with renewable power generation, electrification plays a key part

in the energy transition scenario, and electricity reliability and affordability

is going to becoming more important regarding people’s lives and well-

being.[11]. Electricity’s contribution to the final energy will rise to almost

35% by 2050, higher respect current 20%. Buildings have contributed

significantly to world energy consumption and greenhouse gas emission

[12] and it is one of the most energy intensive sector, as shown in figure

1.2. For this reason energy efficient and sustainable buildings have become

imperative towards saving the environment. The Special Report of Global

Waring of 1.5◦C [10] highlighted the importance of reaching net-zero CO2

emissions avoiding the worst impact of global climate change. 44 countries

and the EU have pledged achieving the net-zero emissions target: in total

they account for around 70% of global CO2 emissions and Gross Domestic

Products (GDP). The Net Zero By 2050 [2] states that the global electricity

demand will increase even more between 2020 and 2050, despite strong

growth in renewable energy plants. Thanks to the improving of energy
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Fig. 1.2: CO2 emission by sector[1].

efficiency, the adoption of renewable energy technologies and the shift to low-

carbon electricity, the carbon intensity of the power sector has decreased by

more than 90%, while the carbon intensity of end-use sectors has decreased

by 65%, and by 2050, energy-related emissions will have dropped by 75%.

The predicted consumption by sector is shown in figure 1.3.

Fig. 1.3: Electricity consumption by sector and source [2].
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1.2 Flexibility of buildings energy control

systems and smart grid

The decarbonization process faced by the modern society, requires many

actions including the introduction of renewable energy systems (RESs)

and the management of the energy demand and generation. However, the

energy management problem is often complicated by the dependency with

weater conditions, user needs, building characteristics and grid constraints,

that require advanced control strategy in order to fully exploit the benefits

associated to an optimal management. A cost-effective solution, the key to

facilitate secure energy control operations and the inclusion of RESs is the

Energy Flexibility[13]. In energy engineering the term flexibility is described

as "the ability to cost effectively balance electricity supply and demand

continually maintaining acceptable service quality to connected loads and

grid requirements at the same time" [14]. The introduction of a wide amount

of renewables in the energy system hard tests the controllability and stability

of the grid due to the stochastic nature of production side, which stresses

the need for flexibility at demand side. These requirements can be solved

thanks to the Smart grid concept. A smart grid is defined as an upgradable

low voltage electricity distribution network enabled for intelligent control

and multidirectional communication between sources, loads and components

allowing a cooperative and cheap energy utilization. The smart grid is

a connection able to active loads and generators toward a demand side

management program, sensors, meters and intelligent coordination systems

[14]. The National Institute of Standard Technologies (NIST) define his

conceptual grid model as shown in figure 1.4:
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Fig. 1.4: Smart grid NIST conceptual model [3].

Demand-side flexibility management (DSFM) has been proposed and

implemented as an effective and sustainable measure to facilitate the penetra-

tion of RESs in smart grids. Today’s buildings not only consume energy but

also produce energy, becoming from energy consumers to energy prosumers

and, in the last case, demand-side flexible resources consist of flexible loads,

demand-side generations and flexible storage. Building energy flexibility

could be achieved by splitting energy demand and energy delivery toward

storage that allows to shift energy use from period of high electricity price to

period of low electricity price. As mentioned in the NIST [3], these strategies

can be implemented thanks to the important concept of Interoperability of

control systems intended as information exchange between each system de-

vices. Tens of billions of dollars are spent annually on electrical devices and

software communications. Beginning with individual sensors and devices

found in the home, figure 1.5 shows how the impacts of interoperability can

change with the interaction scale.
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Fig. 1.5: Interoperability across scales [3].

Each level of the diagram represents a new interactions and information

exchange. These include:

• Local: residential, industrial, and commercial users can benefit from

interoperability between individual sensors energy-consuming devices,

and system controllers by better monitoring their energy demand (or

production) and managing consumption according to their unique

needs;

• Proximal: customers would be able to communicate with and maybe

supply services to their neighbors, aggregators, or distribution utilities

if there was interoperability at the community level;

• Regional: interoperability at the regional level would increase utili-

ties, system operators, and regulators state awareness, allowing for

more efficient operations and better long-term planning. The electri-

cal system’s physical interactions with the surrounding environment

should also be better handled;
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• Global: global interoperability will enable wider access to modern en-

ergy services, economic development, and environmental preservation

on a society scale.

1.3 Control devices

The control of devices need to create these connections is possible through

a Building Energy Management System (BEMS). BEMSs are computer-

based systems that help to manage, regulate, and monitor the building’s

mechanical and electrical devices such as heating, ventilation, lighting,

power systems and, consequently, the energy consumption of the building’s

equipment [15]. They link the building services plant to a central computer,

allowing for management of on/off periods, humidity, and temperatures and

so on [16]. The BEMS includes the Energy Management and Information

Systems (EMIS), which extend and combine the features of a Building

Automation System (BAS) to analyze and regulate building energy usage

and system performance. The EMIS, in turn, contains Energy Information

and Fault Detection and Diagnostic (FDD) systems, which are designed to

aid decision-making through informative solutions, as well as Automated

System Optimization Tools, which modify control settings. Predictive and

descriptive modeling are used in Energy Information Systems (EIS) to ac-

complish tasks such as energy consumption forecasting, anomaly detection,

advanced benchmarking, load profiling, and schedule optimization of build-

ing energy systems [7]. The Verein Deutscher Ingenieure defines an EMS

as “the proactive, organized and systematic coordination of procurement,

conversion, distribution and use of energy to meet the requirements, taking

into account environmental and economic objectives” [4]. The EMS monitors

meters, controls building energy consumption and production, while adjust-

ing equipment usage by means of scheduling algorithms. The operation
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scheduling problem consists in planning the use of available resources, such

as generators and storage, as well as flexible loads, with the aim of minimiz-

ing operation costs and/or the environmental impact, while satisfying the

energy demand based on systems’ inputs such as price. Nowadays, EMS

implementation and operations are possible by the growing availability of

Internet of Things (IoT) devices and the newest machine learning and deep

learning techniques available to deal with huge amounts of data. The EMS

has to cooperate with other actors to ensure the correct control of residential

devices and consequently the achievement of the aforementioned objectives.

Participants of the connection chain are [17]:

a. energy consumers that take part in the DR program and they can be

either residential, commercial or industrial consumers;

b. a DR aggregator that is connected to the customers and executes the

DR program;

c. a Distribution System Operator (DSO) that controls the distribution

grid;

d. an Independent System Operator (ISO) or Regional Transmission Oper-

ator (RTO).

The interconnection between these actors is illustrated in figure 1.6:

Fig. 1.6: Smart Grid actors [17].
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The Demand Response program involves an agreement between utility

and consumers. This one can communicate to the utility which are the

appliance’s loads that it is possible to control, for reaching the targets of

program. EMSs, by receiving market and system signals, with a Direct

Load Control (DLC), can manage loads such heating, ventilation and air

conditioning (HVAC) systems, storage and local generation units, according

to user preferences. The main types of EMS control are shown in figure 1.7:

Fig. 1.7: Types of EMS control [4]

Starting form the left of figure 1.7, in a Centralized Control the EMS analyzes

thermal and electrical loads of a buildings district, without checking every

single appliance; in a Decentralized Control each dwelling has more owns

EMSs, that control their own electric appliances and/or heating system

finding the optimal scheduling of all devices and can collaborate between

each others and the main grid by exchanging electricity and hot water; in

the middle of these two EMS control types, there is another one, according

to with each residential unit has its EMS controlling all dwelling loads and

can communicate with other EMS’s units. The resulting scheduling may be

later adjusted by a global controller. The optimization of EMS control can

be applied with a Model Predictive Control (MPC). This system is based on

the idea of approximating a long-horizon optimal control problem by a short
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horizon one. At each time step, the algorithm estimates the future behavior

of the system based on current features, and finds an optimal state based

on the prediction. Next, new forecasts are available, and the procedure is

repeated. In other words, the original optimization problem addresses the

forecast uncertainties by sequentially making short-term decision, based on

new short-term forecasts [4]. Furthermore, the MPC predicted the behavior

of the system under more control strategies and chose to communicate the

better one to the consumer’s devices. MPC functions are summarized below:

• Weather predictive/responsive: the buildings’ capacity to predict/respond

to external climatic conditions and choose the most appropriate oper-

ation profile as a result;

• User predictive/responsive: the building’s capacity to predict users

real-time interactions with the integrated technology, and learning

from their behavior.

• Grid predictive/responsive: concerns the predictions of building’s

action/reaction to signals/information from the grid. The goal is

maximizing energy/cost efficiency at the district/city scale.

• Thermal mass predictability/adaptability: concerns the prediction of

building’s thermal mass effects based on itself and the building energy

loads.

1.4 Machine learning applications in build-

ings

Buildings dynamics and energy consumption are highly dependent on dif-

ferent building physical, operational, and functional characteristics, as well

as meteorological and temporal properties. Building features and energy
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performance forecasting helps city and community managers have a better

understanding of their future energy needs, and plan to satisfy them more

efficiently[5]. Machine learning (ML) has faced an increasing popularity in

building energy management due to its capability and flexibility in model

development; ML is a set of data-driven techniques able to recognize pat-

terns within input data and predict future variables or perform decision

making actions. These techniques have already achieved significant success

in many knowledge areas and many articles have been written where fea-

tures and skills learned from training data could be used to predict future

outcomes to improve building performance, occupant comfort and health.

In the following figure 1.8, is shown the percentage of papers using building

types for Building Energy Performance Forecast (BEPF). Different model

Fig. 1.8: Percentage of papers using various building types for BEPF [5].

types exist, but two categories are predominant. The first one are the

white-box models, which is detailed physics based methods, regulated by

algebraic and differential equations; these models achieve high accuracy,

precision and a detailed description of thermal phenomena, but it needs

of high computational efforts and it is difficult to calibrate. On the other

hand, black-box models are data driven methods, that rely on the available

historical building data to identify model structure and data relationship.

These models are suitable for predicting future behavior under similar set
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of conditions. These approaches are able to represent the dynamic of a

real system, reducing computational costs while identifying parameters

that optimize a given objective function [18], without the need of expert

knowledge-based judgment or calibration; but the shortcoming of these mod-

els are the absence of physical representation and the misunderstanding user

side concern how operate the model. The ideal scenario of machine learning

is the availability of a lot of labeled training data and similarity between

training and testing features space, because if there are some differences,

the prediction could be discounted, but, at the same time, uncertainty is an

unavoidable part of model outputs behavior. Another problem that leads to

the failure of the predictions is the lack of historical data or the limitation in

installing additional meters for monitoring building features. To overcome

these limitations, the thesis analyze the applications of Transfer Learning

in smart buildings, with the aim to represent building thermal dynamics.

1.5 Thesis contributions and structure

The goal of this study is to assess the effectiveness of transfer learning for

building thermal dynamics in several deployment conditions. This is done

developing a LSTM that has to map and generalize the relationships between

all features regarding indoor and outdoor environment, as temperature,

occupancy, solar radiation, HVAC ventilation air mass flow rate or efficiency.

In this way LSTM can be applied to different environments, despite several

indoor and outdoor conditions, as well as the building use and function.

Successively, part of a database of around 1500 EnergyPlus simulations

was exploited to run machine learning (ML) and transfer learning (TL)

simulations. The aim is to create a lot of different environments, based on

several occupancy profile, climate file, HVAC system efficiency or zone, useful

to test and demonstrate the potential and the effectiveness of TL technique
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in the building environment. Results aim to discuss the most influencing

factor on the effective deployment of transfer learning, suggesting future

guidelines for the application of such technique. The thesis is structured as

follow:

• Chapter 2: concerns the description of the machine learning tech-

niques exploited in this thesis work; in particular, starting from the

explanation of the NN mechanisms as feed forward and recurrent

neural network, following with the description of NNs used and the

transfer learning concept;

• Chapter 3: describes the case study and the creation process of

the data set used, the different occupancy, MELs lighting profiles

related each others, the climate file and the HVAC efficiency lev-

els. Next will be shown the variables outcome from the simulations

and the relationship between some of these and the building energy

consumption;

• Chapter 4: deals with the selection of features used to train the

models, following with the description of exploited NNs structures,

the tuning and optimization of them hyperparameters. Next deployed

cases are shown and metrics useful to evaluate the goodness of results

are described;

• Chapter 5: concerns the evaluation of the produced outcomes and

metrics cited previously with the discussion of the obtained results;

• Chapter 6: deals with conclusive observation and prospective future

projects.



Chapter 2

Neural networks and Transfer

Learning concept

Artificial neural networks (ANNs) are machine learning techniques exploited

for learning, optimizing and generalizing the relationship between linear and

non-linear data. Their concept exist just from some decades, but to manage

them, more computational power and resources need, that are available

and accessible nowadays, so it is possible to apply them to a huge amount

of data and several types of applications. ANNs structure is designed to

replicates how biological organisms learn. Neurons are cells that make up

the human nervous system, by means axons and dendrites, that link neurons

with connections called synapses, whose response changes based on external

stimuli. Each neuron elaborate inputs by means an activation function,

scaling them by a weight, which connected each neuron to the next one.
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2.1 Neural network mechanisms

2.1.1 Feed Forward neural networks

The Perceptron is the simplest type of neural network. As shown in figure

2.1, it is composed by a single input layer, from which the information is

send to the output node, as shown in figure 2.1. This one applies a linear

Fig. 2.1: Perceptron architecture [6].

activation function and add a bias b and a weight w to each neuron input;

b and w are related by the function 2.1.

y =
nØ

t=0
wixi+ b (2.1)

Several activation functions can be applied inside a net, based on the model

type to simulate. Deep Neural Networks are usually exploited; they are

composed by multiple layers, more than simple perceptron net. More

specifically, in this project a MLP (Multilayer Perceptron) and a LSTM

(Long-Short Term Memory) are compared, being respectively artificial

feedforward and recurrent neural networks (ANN and RNN). Layers between

input and output ones are known as hidden layers, since the calculations

conducted are not apparent to the user. Feedforward Networks are called

that because of their design within successive layers feed into one another in
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the forward direction, from the first (input) to the last layer (output), from

the left to the right side [6]. An example of more complex neural network

structure (respect to the perceptron one) is shown in figure 2.2:

Fig. 2.2: Deep neural Network structure example.

To reach high prediction accuracy, the model needs of a training phase,

during which, by a supervised learning approach (schematically illustrated

in figure 2.3), the net learn the relationship between input features and true

outcomes, minimizing the prediction error, also known as Loss function.

Fig. 2.3: Supervised learning schema [6].

Thus, training concerns the update of weights and biases given to the features

in order to produce output values reaching high prediction performance.

This is an iterative mechanism known as Forward Propagation, concerning

error computation, and Backpropagation, concerning biases and weights
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adjustment. All that allow to fit network hyperparameters; these ones are

variables like the learning rate, the number of epochs, the number of hidden

layers and neurons within each of these and the activation function, which

affect weights and bias.

2.1.2 Recurrent neural networks

Recurrent neural networks (RNNs) are highly exploited for sequential data

processing, as the case of time series forecasting issue. These NN types

differentiate respect the simple feed forward networks, principally because

layers not work independently, but there is an exchange of information

across them. This is possible thanks to Backpropagation through time, more

complex respect to the standard backpropagation, because at each time step

the loss function (between predicted and real values) and the gradients of

total loss with respect to network’s parameters are computed. This process

goes in the opposite way respect the feed forward direction, so from the

right to the left. This parameter sharing is suitable because allows the

user to generalize the network and apply it to cases of different fields. This

mechanism is shown below, in figure 2.4:

Fig. 2.4: RNNs structure [6].
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RNN transfers an activation function to the next layer at each time

step; the first activation is usually set to zero or randomly. Information is

exchanged through activation, RNN scans the data from left to right, and

its predictions are based not just on current input but also on previous ones.

This process can be mathematically explained as follow:

a(1) = g1(waaa
(0) + waxx

(1) + ba) (2.2)

ŷ(1) = g2(waaa
(0) + waxx

(1) + ba) (2.3)

2.2 Multilayer perceptron

Multi-layer Perceptron (MLP) is a supervised learning algorithm. As shown

in figure 2.5, MLP is composed by an input and an output layer with one

or more hidden layers between them.

Fig. 2.5: MLP structure.

MLP is a neural network where the mapping between inputs and outputs

is non-linear. Multilayer Perceptron can use any activation function like

ReLU or sigmoid. It falls under the category of feedforward algorithms,
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because inputs are combined with the initial weights in a weighted sum and

subjected to the activation function, just like in the Perceptron; but the

difference is that each linear combination is propagated to the next layer, so

the information move in only one direction. Backpropagation is the learning

mechanism that allows the Multilayer Perceptron to iteratively adjust the

weights in the network, with the goal of minimizing a certain cost function.

Backpropagation needs a requirement to work properly: the function that

combines inputs and weights in a neuron, for instance the weighted sum,

and the threshold function, for instance ReLU, must be differentiable.

2.3 Long Short Term Memory

Long Short-Term Memory (LSTM) is an artificial Recurrent Neural Network

(RNN) architecture used in deep learning field. LSTM has feedback connec-

tions and it is able to process entire sequences of data, learning long-term

dependencies. For example, LSTM is applicable to tasks such as unseg-

mented, connected handwriting recognition, speech recognition and anomaly

detection in network traffic or intrusion detection systems (IDSs). LSTM

networks are well-suited to classifying, processing and making predictions

based on time series data. An RNN using LSTM units can be trained with

a supervised model, on a set of training sequences, using an optimization

algorithm, like gradient descent, combined with backpropagation through

time to compute the gradients needed during the optimization process; in

this way, each weight of the LSTM network changes in proportion to the

error derivative (at the output layer of the LSTM network) with respect to

corresponding weight. The principal property of a LSTM is to remember

useful information and forget irrelevant ones. This is allowed thanks to a

specific gating mechanism and a structure composed by:

• Hidden state, managing the short term memory;
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• Cell state, managing the long term memory and dependencies.

LSTM scheme is shown in figure 2.6:

Fig. 2.6: LSTM scheme.

Memory cells, in particular, employ gates to govern the information to

be preserved or discorded at each time step before carrying on the long

and short term information to the next cell gates; this system filters out

unnecessary data. Cell state proceeds in a straight line throughout the

series, with very slightlinear interactions. The LSTM may delete or add

information to the cell state, which is carefully controlled by structures

called gates; these ones are a mechanism to selectively allow information to

carry on across the LSTM layer. A sigmoid neural net layer plus a pointwise

multiplication operation make them up. The sigmoid layer produces integers

from zero to one, indicating how much of each component should be allowed

to pass. A value of zero indicates that the component is irrelevant and

may be eliminated, whereas a value of 1 indicates that the component

is critical and must be preserved. Proceeding in steps, the LSTM data
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process develops in three phases as soon as the number of gates. The first

step concerns what information will be removed from the cell state, which

regulate the information flow into and out of the cell. The "forget gate", a

sigmoid layer, makes this judgment. Next, another sigmoid layer, the input

gate, determines what new data will be updated in the cell state; at the

same time a tanh layer creates a vector of new candidate values, which are

elementwise multiplicated with values previously selected by the input gate,

generating a new vector with the goal of update the cell state. The last

step is divided into two strides: first of all another sigmoid layer, the output

gate determines which aspect of the cell state will be output, and then the

cell state passes through a tanh and multiplied by the outcoming from the

sigmoid layer.

2.4 Sequence to sequence RNN types

According to the problem to be addressed, different types of RNNs architec-

ture can be implemented. Their are defined as Sequence to Sequence RNNs

because of the shape of input and output variables, that are series of one or

more values. It is possible to distinguish five different structures, as shown

in figure 2.7:

Fig. 2.7: Types sequence to sequence RNN configurations.

In this study a Many to Many configuration is exploited, which gives in
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output a sequence of predicted values for each input features sequence.

About input and output variables, chapters 3 and 4 will deal with better.

2.5 Literature review on ML techniques for

building dynamics

In the recent decade, ML techniques for building dynamic modeling has

gotten more attention by means the increasing computational power, use of

sensors and meters. Thus, nowadays is possible to exploit data collected

trough efficient artificial neural network models. Moreover, these ones

are useful for their ability to deal with non-linear, multi-variable data

set, despite these can rapidly lose accuracy when data have a variable

distribution over time. Machine learning applications have seen multiple

applications in predicting the internal temperature of buildings. One of

these is the work performed by Xu et al. [19], who applied a DL method to

predict indoor air temperature one step ahead and multi-time step ahead

to test and compare performance between two LSTM models, one of which

is modified by an error correction. Results demonstrate that novel LSTM

model overcomes the standard one, improving predicted data precision.

Another interesting study is published by Shi et al. [20] in a tobacco

manufacturing warehouse in Chongqing. This study provides a model based

on BP neural networks applied on a cloud database to forecast indoor relative

humidity and air temperature concurrently every 10 minutes, 6 hours, 24

hours, and 72 hours in advance. The advantage of the online database is

avoid the exploitation of some features like solar radiation, thermodynamic

properties of building materials, or wind speed, allowing a less complex

model with good performances for each forecast horizon. In 2021, Sun et

al. [21] proposed a multiple linear regression model to predict the supply

temperature, adjusting it according to the feedback of the consumers’ set
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point and actual indoor temperature deviation. These data were sharing by

wireless collection devices installed in the building served by a CHP units

and peak shaving boilers. The results showed an heat consumption saving of

6% in the heating stations and that control period changes based on thermal

heating method and building thermal characteristics. Ellis et al. [22] used

an Encoder-Decoder LSTM to simulate an air handling unit-variable air

volume (AHUVAV) HVAC system. Forecasts were employed by an MPC

to optimize energy costs, exploring its performance through E+ software.

Another interesting work was performed by Mtibaa et al. [23] that applied

a multi-step ahead IAT prediction in a multi-zone building comparing

a Multilayer Perceptron (MLP), a Non-linear Autoregressive model with

exogenous inputs (NNARX) and two sequence-to-sequence LSTM models:

a LSTM-MISO (Multi-Input Single-Output) and a LSTM-MIMO (Multi-

Input Multi-Output), both applied on real smart buildings, one using a

Variable Air Volume (VAV) and the other one a Constant Air Volume (CAV)

HVAC system. Results proved that LSTM-MIMO is the best method for

modeling IAT for both VAV and CAV buildings. Fang et al. [24] proposed

three LSTM-based sequence to sequence model architectures to make a

multi-step ahead IAT forecasting: a LSTM-Dense model, a LSTM-LSTM

model and a LSTM-dense-LSTM model, evaluating the performance under

different forecast horizons. In this paper results were compared with two

benchmarks: a Naive model and a Prophet model (developed by Facebook

[25]). Results analyses showed that the LSTM-dense model performs better

for shorter forecast horizons, while the other two architecture models are

more suitable for longer forecast horizons, but all of LSTM-based models

overcome the two benchmarks. Moreover, a study which concerns something

similar to the models pre-processing done in this thesis, was performed

by Afroz et al. [26], where, in the context of thermal comfort, this study

examines real indoor environmental data to predict IAT in multiple adjacent
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zones in a commercial building with the aim of resetting the air temperature

set-point without affecting occupant comfort. A NNARX is exploited for

single-zone and multi-zone prediction, optimizing the model performance

changing more features as network size, optimal input parameters or size of

training data. As a result, they obtained better performance, easing the

application to real systems, complexity of the model structure, minimum

features exploited and energy savings.

2.6 Transfer learning concept

Machine learning techniques are increasingly using for different application of

building field such as occupancy detection and activation recognition, build-

ing load prediction, energy system control and building dynamics modeling

and forecasting, which is the main issue of this project. Traditionally, before

applying forecasting, a neural network have to learn knowledge between

data; it is made by diving the whole data set in three sub-datasets: training,

validation and test data set, going ahead with the respective phases. The

training phase is the one during which the net carries out some adjustments

to the weights applied to input data, through an activation function and an

optimization techniques, comparing the outputs with the real values. Then

the validation phase concerns in a small part of data set with which the

net is tested and it is possible to understood the forecasting accuracy; if it

is not satisfying, the net is trained again. Ones net performance are good,

the testing phase is the next one and consists in the real application of

forecasting. Until nowadays, building dynamic forecasting is made training

the net on data monitoring during the building life. The shortcoming of this

method is the need of a certain amount of data to ensure good forecasting

performance. So at the beginning of building life it is not possible to apply

automated energy savings strategies by forecasting. For this reason, Trans-
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fer Learning (TL) is the optimal solution. According to TL, when strategies

have to be applied to a new building, called Target Building, or after an

energy requalification, a similar one is identified, called Source Building. A

"similar" building can have equal climate, energy efficiency, HVAC system

or final uses. The advantage of TL is the availability of great amount of

source building data, on which the net could be trained to learn knowledge

between features; weights of the net are saved and then applied to the target

building data. In this way it is possible to achieve building dynamic forecast

from the birth of the target building or shortly thereafter. Transfer learning

can be classified according to several aspects, but before describing them,

let’s explain better the definition of Domain, Task and Transfer Learning:

• A Domain D is composed by two components: a feature space χ and

a probability distribution P (X), where X = x1, ...., xn ∈ χ;

• A Task T is composed by two components: a label space Y and

a predictive function f(·), which is learned from the training data,

represent by pair xi, yi, where xi ∈ χ and yi ∈ Y . The function f(·)

need to approximate the conditional probability P (y|x) and improve

the forecasting accuracy.

• Transfer learning. Given a source domain DS and task Ts, a target

domainDT and task TT , transfer learning helps to improve the learning

of the target predictive function in DT using the knowledge in DS and

TS, where DS Ó= DT and TS Ó= TT [7].

Now it is possible to describe how transfer learning can be categorized,

based on different characteristics. The first one is based on the similarity

between source and target task and domain:

• In the Inductive Transfer Learning the source task and the target task

are different (TS Ó= TT ), while source and target domain can be equal
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or different. The goal of this case is helping the learning of the target

predictive function f(·) in DT exploiting data in DS, (TS and part of

labeled data in DT ).

• In the Transductive Transfer Learning source task is equal to target

task (TS = TT ) and source and target domain are different (DS Ó= DT ).

• In the Unsupervised Transfer Learning no labeled data are available

in source and target domain and target task is different but related to

source task (TS Ó= TT ).

Another categorization of TL is based on the strategy using to share knowl-

edge. According to it, let’s distinguish four approaches:

• According to the Instance-based TL, a part of source domain data

DS is used for learning in target domain DT when historical target

task data are available. It is made by reweighting source domain data

helping learning in target domain.

• According to the Feature representation-based TL, features are ex-

ploited to maps instances from source and target domains improving

training on target task.

• According to the Model parameter-based TL, source and target task

share parameters or model hyper-parameters distribution.

• According to the Relational knowledge-based TL, relationship among

source and target domain data is similar and it is transferred among

data.

An illustration of this classification is shown in figure 2.8, referring to the

building load prediction:
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Fig. 2.8: TL classification approaches [7].

In this project, the TL approach adopted is the Model Parameter-based.

This one can be applied in two different ways:

1. Features extraction concerns the NN training on the source domain

data applying then model, with saved weights, directly on the target

domain data, fine tune just some layers of the net with the limited

amount of target data and freeze the other ones, in such a way to

adapt the model to the target building.

2. Weights initialization concerns the NN training on the source domain

data and subsequently a retrain of the whole network on target domain

data. This approach aim to initialize the weights and adapt better

the model to the target data.

A representation of these two cases are shown in figure 2.9: The last

classification of TL, it is related to the similarity between source and target

space; in particular let’s distinguish:

• Heterogeneous TL if the feature and label spaces are different (χS Ó= χT

and YS Ó= YT );
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Fig. 2.9: Feature extraction and weight initialization examples [7].

• Homogeneous TL if the feature and label spaces are the same (χS = χT

and YS = YT ).

Understood the amount of aspects characterizing TL typologies, it is inter-

esting notice an overview of TL applications related to the techniques used

to execute them. Pinto et al. [7] presented a literature review on this topic,

comparing 77 papers and classifying them based on smart building applica-

tions, adopted metrics and algorithms. Figure 2.10 displays the applications

adopted in smart buildings, relating them to the TL classifications and

techniques discussed previously.

Fig. 2.10: Sankey diagram based on TL applications, techniques and categories

[7].



Chapter 3

Case study

3.1 Case study description

This case study concerns a medium-size reference office building (shown

in figure 3.1), on which thirty-one years were simulated through Open

Studio and Energy Plus and saved in a compressed hierarchical data for-

mat (HDF5). The available features regard system-level and end-use level

information thanks to the Building Energy Management System (BEMS),

which provides system-level sub-metering of electricity consumptions and

zone-level indoor environmental measurements. Simulations were carried

out with the following assumptions:

• physics-based building thermal simulations are based on a detailed

building thermal zoning;

• MELs and HVACs schedules were used to represent stochastic occu-

pancy profiles, based on space level and thermal zone;

• all data exploited and outcoming from simulations were saved in an

HDF file format, suitable to reduce disk size requirements and store

models, climate files, metadata and time-series data.
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The building model used for the project is a medium-size office building of

three floors with a total floor areas of 4890 square meters. This building is

one of the commercial building models developed by the U.S. Department

of Energy (DOE), representing 70% of U.S. commercial buildings. As shown

in figure 3.1, this office is composed by 12 space types: open and enclosed

office rooms, conference room, classroom, dining area, lobby, corridor, stair,

storage, restroom, plenum, and mechanical room.

Fig. 3.1: Building geometry and thermal zones [8].

Regarding the conditioning system, the building is served by three Air

Handling Units (AHUs) with Variable Air Volume (VAV), one per floor.

Furthermore, the AHUs are equipped with air cooled direct expansion

cooling coil and gas heating coil; each zone is served by VAV terminal unit

with reheat coil. The creation of the whole data set follow the workflow in

figure 3.2.
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Fig. 3.2: Workflow of data generation [8].

Starting from building information input (building type and climate

zone), the building energy modeling software Open Studio and particularly

Open Studio Standard Gem (a specific software library), were used to carry

out the simulations. The seed model was created and then modified changing

building envelop properties, thermostat set-point, MELs and HVAC system

efficiency, in order to generate three different building efficiency levels

and represent real building operations. To simulate the effect of different

climate conditions, three climate files were considered, corresponding to

three locations: San Francisco (3C), Miami (1A) and Chicago (5A). Mean

temperature and humidity trends of these locations are shown in figure 3.3.

Fig. 3.3: Mean air temperature and humidity of Miami (a), San Francisco (b)

and Chicago (c).

Power consumption for lighting/MELs/occupancy density and efficiency

levels are shown below in tables 3.2 and 3.2.
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Table 3.1: Lighting, MELs and Occupancy of the main space types [8].

Lighting power density MELs power density Occupancy density

Space Type (W/m2) (W/m2) (m2/p.)

Open office 13.2 12.9 12.2

Enclosed office 14.9 11.7 20

Conference room 16,5 13.5 2.5

Classroom 16.7 12.5 2.7

Corridor 8.9 3.9 n.a.

Stair 9.3 n.a. n.a.

Dining room 8.7 13.4 9.3

Lobby 12.1 3.6 9.3

Mechanical room 12.8 3.6 n.a.

Table 3.2: Systems efficiency levels [8].

Efficiency Level Low Standard (ASHRAE 90.1–2013) High

COP of AHU 1,8 2,4 3

Water heater thermal efficiency 46,7% 62,3% 77,9%

Gas burner efficiency 48,0% 64,0% 80,0%

VAV reheat coil efficiency 60,0% 80,0% 95,0%

Fan total efficiency 36,3% 48,4% 60,5%

Pump motor efficiency 18,0% 24,0% 30,0%

Envelope thermal resistance 0.75 standard level varies by climate 1.25 standard Level

Moreover, five stochastic occupancy profiles were created to highlight

the differences in user preferences due to their age, culture, gender and

corresponding lighting, MELs and HVAC operations. An example of com-

parison between the original profiles and the updated ones are shown in

figure 3.4.
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Fig. 3.4: Occupancy, lighting and MELs profiles between office and conference

rooms [8].

3.2 Simulations outcomes

Each configuration was then simulated with thirty years of historical weather

plus one Typical Meteorological Year (TMY3) weather data. Each simula-

tion provides a time-serie and all of them were saved in a unique Hierarchical

Data Format (HDF5) file, to reduce memory requirements and improve file

reading and writing efficiency. To sum up, 3 (locations) x 3 (efficiency levels)

x 5 (occupancy/MELs, lighting profiles) x 31 (weather files) = 1395 models

were obtained. Each model represent time-series with a time-step of 10

minutes and 35 output variables, shown in table 3.3 with the corresponding

variable type, dimension and size.
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Table 3.3: Simulations output variables [8].

Name Variable Type Dimension (rows columns) Size (MB)

Air System Outdoor Air Economizer Status System Variable 525.603 3

Cooling Electricity Energy 525601 2

Electricity Facility Energy 525601 2

Electricity HVAC Energy 525601 2

Exterior Lights Electricity Energy 525601 2

Fan Air Mass Flow Rate System Variable 525603 3

Fan Electric Power Power 525603 3

Fans Electricity Energy 525601 2

Gas Facility Energy 525601 2

Gas HVAC Energy 525601 2

Heating Electricity Energy 525601 2

Interior Equipment Electricity Energy 525601 2

Interior Lights Electricity Energy 525601 2

Pump Electric Power Power 525601 2

Pump Mass Flow Rate System Variable 525601 2

Pumps Electricity Energy 525601 2

Site Day Type Index Other Variable 525601 2

Site Horizontal Infrared Radiation Rate per Area Other Variable 525601 2

Site Outdoor Air Dewpoint Temperature Other Variable 525601 2

Site Outdoor Air Drybulb Temperature Other Variable 525601 2

Site Outdoor Air Relative Humidity Other Variable 525601 2

Site Outdoor Air Wetbulb Temperature Other Variable 525601 2

System Node Mass Flow Rate System Variable 52560377 153

System Node Pressure System Variable 52560377 153

System Node Relative Humidity System Variable 52560377 153

System Node Temperature System Variable 52560377 153

Zone Air Relative Humidity Zone Variable 5256068 29

Zone Air Terminal VAV Damper Position Zone Variable 5.256065 28

Zone Electric Equipment Electric Power Power 5256047 20

Zone Lights Electric Power Power 5256065 28

Zone Mean Air Temperature Zone Variable 5256068 29

Zone Mechanical Ventilation Mass Flow Rate Zone Variable 5256065 28

Zone People Occupant Count Zone Variable 5256028 13

Zone Thermostat Cooling Setpoint Temperature Zone Variable 5256068 29

Zone Thermostat Heating Setpoint Temperature Zone Variable 5256068 29

From results, it is noted how the energy consumption changes base

on efficiency levels, weather and day of the week (weekend or not). The



3.2 Simulations outcomes 44

relationship between these variables are shown in figure 3.5.

Fig. 3.5: Relationship between energy consumption, efficiency levels and

weather [8].

As expected, energy consumption increases respectively with the decrease of

efficiency, and it is higher during the weekdays with respect to the weekend.

Consumption trend is approximately constant in climate 3C and varied in

climate 5A, because of the higher temperature variation between seasons in

Chicago.

At the end of simulations, all csv time series obtained were converted and

saved in an Hierarchical Data Format (HDF5), that supports an unlimited

variety of data types, and is designed for flexible and efficient I/O and for

high volume and complex data.
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Methodology

In this chapter will be exposed the steps involved in this study. Starting

from a classification based on the information level of each variable outcomes

from EnergyPlus simulations, a selection of features suitable for an accurate

indoor air temperature prediction were done. Two neural networks have been

developed and after the identification of their principal hyperparameters, a

tuning of these have been applied through an optimization library called

OPTUNA [27]. After an analysis of NNs’ metrics, the NN model which

allowed the best metrics has been taken into account for the next steps. The

last two sections will concern the description of all cases deployed, machine

learning techniques applied and the metrics adopted to evaluate the models

accuracy. Figure 4.1 sums up all these steps.
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Fig. 4.1: Methodology adopted in the thesis.

Firstly a source model will be selected and this will be exploited to

testing the two NN model types and select the better one. Next step

concerns the quantification of zone orientation influences, analyzing three

different zones with the same boundary conditions. Successively, to evaluate

the goodness of prediction in respect to the other features, all of these will

be crossed in order to create nearly 30 different cases based on the same

zone but different boundary conditions, as efficiency level, occupancy profile

as well as the climate file.
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4.1 Input features selection

Simulation outcomes shown in table 3.3 don’t provide the same information

level for all variables. It is possible to distinguish three information level as

following in table 4.1.

Table 4.1: Simulations outcomes information levels.

Building level AHU level Zone level

Cooling Electricity [J] Air System Outdoor Air Economizer Status [-] System Node Mass Flow Rate [kg/s]

Electricity Facility [J] Fan Air Mass Flow Rate [kg/s] System Node Pressure [Pa]

Electricity HVAC [J] Fan Electric Power [W] System Node Relative Humidity [%]

Exterior Lights Electricity [J] System Node Temperature [°C]

Fans Electricity [J] Zone Air Relative Humidity [%]

Gas Facility [J] Zone Air Terminal VAV Damper Position [-]

Gas HVAC [J] Zone Electric Equipment Electric Power [W]

Heating Electricity [J] Zone Lights Electric Power [W]

Interior Equipment Electricity [J] Zone Mean Air Temperature [°C]

Interior Lights Electricity [J] Zone Mechanical Ventilation Mass FlowRate [kg/s]

Pump Electric Power [W] Zone People Occupant Count [-]

Pump Mass Flow Rate [kg/s] Zone Thermostat Cooling Set-point Temperature [°C]

Pumps Electricity [J] Zone Thermostat Heating Set-point Temperature [°C]

Site Day Type Index [-]

In addiction to these, outdoor variables are summary in table 4.2.

Table 4.2: Outdoor simulations outcomes.

Outdoor simulation outcomes

Site Horizontal Infrared Radiation Rate per Area [W/m2

Site Outdoor Air Dewpoint Temperature [°C]

Site Outdoor Air Drybulb Temperature [°C]

Site Outdoor Air Relative Humidity [%]

Site Outdoor Air Wetbulb Temperature [°C]
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Not all features listed in table 4.1 and 4.2 were selected for the training

phase. The selection process depends on the accuracy level with which you

want to describe the building model. In this case a zone level was selected

for the model training and features take into account indoor, outdoor and

conditioning system properties, as listed in table 4.3.

Table 4.3: Training model features.

Selected training features

Zone Thermostat Cooling Set-point Temperature [°C]

Zone Thermostat Heating Set-point Temperature [°C]

Zone People Occupant Count [-]

Zone Mechanical Ventilation Mass Flow Rate [kg/s]

Zone Mean Air Temperature [°C]

Site Day Type Index [-]

Site Horizontal Infrared Radiation Rate per Area [W/m2]

Site Outdoor Air Wetbulb Temperature [°C]

4.2 Neural networks design

As anticipated in the previous chapters, in this study two neural networks

are compared: a MLP and a LSTM. NN models developed in this study

were trained on 8 h of medium office building features data, with a time step

of 10 minutes, with the goal to predict indoor air temperature evolution

for the next hour. Thus, for each prediction 6 values are obtained and

compared with the real ones during the training phase, to update the model

accuracy. Each of these two NN has different hyperparameters that aim

learning process optimization; some of these are in common as shown in

table 4.4, .
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Table 4.4: NN models hyperparameters.

LSTM MLP

Number of LSTM layers Input features number of each layer

Number of neurons for each layer Output features number of each layer

Batch size

Learning rate

Epochs

4.3 Hyperparameters tuning

The first step concerns the exploitation of an optimization library called

OPTUNA [27], with which is possible to fit a range for each model hyper-

paramenter and run an arbitrary number of trials. Each trial consist on a

simulation with a specific value for each hyperparameter, included in the

range fitted previously, aiming the optimization of one or more metrics (in

this case the MAPE was selected). For both the NNs, 6 optuna simulations

were run. The first five simulations needed to understand how performance

change respect to hyperparameters values; thus, they allow to restrict the

field freedom degrees. Once this is done, the last simulation provides the

final optimal hyperparameters values for each neural network. The source

model selected concerned one conference room of the ground floor, with a

standard efficiency and the first occupancy profile. NN models were trained

on 1 year of data and tested for another year, which is specifically a Time

Meteorological Year (TMY): a set of meteorological data with data values

for every hour in a year for a given geographical location. The data are

selected from hourly data in a longer time period (normally 10 years or

more). For each month of the year, data have been selected from the year

that was considered most "typical" for that month. At the end of this step,

the optimal models hyperparameters obtained are listed in tables 4.5 and

4.6.
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Table 4.5: LSTM model optimal hyperparameters.

LSTM

Number of layers 3

Number of neurons per layer 175

Epochs 90

Learning rate 0.0077

Batch size 900

MAPE 0.535

Table 4.6: MLP model optimal hyperparameters.

MLP

Number of outputs from the layer 1 100

Number of outputs from the layer 2 70

Number of outputs from the layer 3 70

Number of outputs from the layer 4 10

Epochs 120

Learning rate 0.00757

Batch size 900

MAPE 1.096

As noted in tables 4.5 and 4.6, the LSTM provides a better accuracy, so

it will be the architecture used for transfer learning applications. The two

models are displayed in figure 4.2 and figure 4.3.
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Fig. 4.2: Case study MLP structure.

Fig. 4.3: Case study LSTM structure.
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4.4 Transfer learning scenario

The study focuses on the influence of specific features to analyze the ef-

fectiveness of TL for building thermal dynamic models. In particular, the

following features were deeply analyzed:

• 4 different zones: a conference room at the bottom floor, a conference

room and an enclosed office at the middle floor and an open office at

the third floor;

• all climate files: 1A (Miami), 3C (San Francisco), 5A (Chicago);

• all efficiency levels: low, standard and high;

• 3 occupancy profiles: run 1, run 2, run 3.

To understand how much the zone, the climate, the occupancy profiles

(MELs and lighting consequently) and the efficiency level affect the per-

formance of the model, a combination between all variables listed above

was done, by creating nearly 30 cases. For each case obtained, three dif-

ferent techniques were applied and compared: machine learning (ML),

feature extraction (TL-FE) and weights initialization (TL-WI), each one

tested to one week, one month and one year, obtaining more than 250

simulations. Cases will be identified with the format <zone><climate

file><efficiency><occupancy profile>. Firstly, 3 zones, different from the

source one, were compared testing them on one month of target data. In

table 4.7, are shown simulations run more specifically:

For the next simulations, the model will be tested on one week, one month

and one year. Solely, when one year of data is available, machine learning is

used instead of transfer learning, because there are enough data to training

a model with good performance; however in this study TL was also applied

on one year, as an ideal case. Thus, maintaining locked the zone, changing

all others features, combining every possible crossing case for 3 different
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Table 4.7: Simulations on three different building zones.

Zone Climate Efficiency Occupancy profile Technique Training time Testing time Epochs

CONFROOM MID 2 3C Standard run 1 ML 1m 1m 90

CONFROOM MID 2 3C Standard run 1 FE 1y 1m 80

CONFROOM MID 2 3C Standard run 1 WI 1y 1m 80

ENCLOSEDOFFICE BOT 2 3C Standard run 1 ML 1m 1m 90

ENCLOSEDOFFICE BOT 2 3C Standard run 1 FE 1y 1m 80

ENCLOSEDOFFICE BOT 2 3C Standard run 1 WI 1y 1m 80

OPENOFFICE BOT 3 3C Standard run 1 ML 1m 1m 90

OPENOFFICE BOT 3 3C Standard run 1 FE 1y 1m 80

OPENOFFICE BOT 3 3C Standard run 1 WI 1y 1m 80

time period and 3 technique applied, 9 (shown in table 4.8) runs for each

case were obtained, to examine the combining effect of each feature.

Table 4.8: Simulations run for each case, based on technique exploited, training

and testing periods.

Technique Training period Testing period

ML 1y 1y

ML 1m 1m

ML 1w 1w

FE 1y 1y

WI 1y 1m

FE 1y 1w

WI 1y 1y

FE 1y 1m

WI 1y 1w

The wide amount of simulations run are listed in table 1 in Appendix A.

4.5 Evaluation metrics

To evaluate the effectiveness of ML and TL and models performance, several

metrics have been identified, including:

• Mean absolute percentage error (MAPE): a lower result implies better

performance and it provides the degrees of the inaccuracy in percentage
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terms:

MAPE = 100
n

nØ
t=1

-----yreal − ypred

yreal

----- (4.1)

• Mean absolute error (MAE): is a an usual statistic for assessing forecast

accuracy:

MAE =
qn

i=1 |ypred − yreal|
n

=
qn

i=1 |ei|
n

(4.2)

• Mean squared error (MSE): It penalizes greater error values and can

be higher than MAE due outliers:

MSE =
qn

i=1(yreal − ypred)2

n
(4.3)

• Jumpstart: the difference amount between the starting performance

value between ML and TL techniques.

• Time to threshold: time needs to reach a certain accuracy in the target

task.

• Asymptotic performance: the difference between the last performance

value, at the end of the simulation.

MAPE, MAE and MSE have been calculated either for each time step and

as total mean of these. Instead, last three metrics are illustrated in figure

4.4.

Fig. 4.4: Jumpstart, time to threshold and asymptotic performance metrics [7].
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These metrics need to answer at some questions like:

• what is the error quantified between real and predicted values?

• how much is the computational time required to make the model able

to predict indoor air temperature with a good accuracy?

• how much TL started and final performance are better than ML ones?

In chapter 5, results obtained from all simulations introduced previously

will be shown and analyzed.



Chapter 5

Results

The chapter studies in detail the influences of the different features on

prediction accuracy, exploiting three techniques to carry on the simulations:

simple machine learning and two transfer learning solutions (features ex-

traction and weights initialization) . Firstly the zone variable is examined,

comparing three zones, different from the source one, but with the same

boundary conditions. Once learned how much the zone affects the goodness

of the prediction, other features are taken into account. Thus, considering

the same zone of the source one, next examination regards the efficiency

level, occupancy profile, weather file and training/testing influence. Lastly,

a classification of all features are made, to quantify what variables have the

major impact on prediction issue.

5.1 Zone analysis

The three zones selected for this analysis are a conference room and an

enclosed office on the middle floor, and a open office at the top floor; all

of these have a different orientation, which is the examined characteristic.

The zone are respectively named as <CONFROOM_MID_2>, <OPENOF-

FICE_BOT_3> and <ENCLOSEDOFFICE_BOT_2>. At each floor are
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presented more zones with the same function and it’s the reason why at the

end of each format there is a number. As described in chapter 4, to allow

a good prediction accuracy and teach the model to understand features

relationship, a training phase is necessary. During this phase, at each epoch,

weights of all neurons are tuned through the calculation of a loss function;

in this study the MSE loss was selected. Following figures display the loss

function trend for each zone and technique.

Fig. 5.1: MSE loss function trend of bottom floor open room.

Fig. 5.2: MSE loss function trend of middle floor conference room.
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Fig. 5.3: MSE loss function trend of bottom floor enclosed room.

From figures above it’s possible to notice some observations. First of all,

ML loss function is deeper respect to TL_FE and TL_WI. This happens

because during ML training phase the model learns features relationship for

the first time, and when TL is executed, the first training phase has been

applied yet and the learning rate is reduced, so the slope is lower. Moreover,

TL_FE and TL_WI loss trends are very similar. Regarding the testing

phase, a MAE and MSE comparison for each prediction step could give an

evidence of the better performance of TL methods respect to the simple ML

one. This benchmarking is shown in the following figures for each zone.

Fig. 5.4: Testing phase MAE and MSE for bottom floor open room.
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Fig. 5.5: Testing phase MAE and MSE for middle floor conference room.

Fig. 5.6: Testing phase MAE and MSE for bottom floor enclosed room.

Figures 5.5, 5.4 and 5.6 highlight that, as expected, both metrics increase

proportionally with the time horizon in all cases; moreover the major gap

between ML and TL techniques are higher for the first steps. Differently for

the two offices, for the conference room ML has better performance than

TL. This could be explained considering that the ML learning have been

just applied on the same zone type, and an further training could bring to

an overfitting of the model.
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5.2 Technique analysis

This section pays a particular attention to the difference between the model

accuracy based on the technique applied. Considering the whole data set,

without distinguishing training and testing periods, system efficiencies as

well as the occupancy profiles, analyzing the density distribution of the

mean MAE of the simulations run, figure 5.7 is obtained.

Fig. 5.7: Mean MAE density distribution per technique.

This figure highlights the extension of ML technique error, which has a

maximum nearly to 3 °C, opposite to the others techniques application

results, that are totally condensed in a range between 0 °C and 0.6 °C. It is

visible that more than 50% of ML simulations have a grower MAE respect

to that obtained with both TL methods.

5.3 Training period analysis

Another additional analysis concerns the availability of data exploited to

train the model. In this study tree training period were taken into account:

one week, one month and one year. Thus, for each prediction step and

training period, metrics resulted are displayed in figure 5.8, 5.9 and 5.10.
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Fig. 5.8: Mean MAE density distribution per technique and a training period

of 1 week.

Fig. 5.9: Mean MAE density distribution per technique and training period of

1 month.
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Fig. 5.10: Mean MAE density distribution per technique and training period of

1 year.

These figures confirm that the models performance get worse with the

rise of the prediction horizon and results provides a lower accuracy for ML

respect to the TL one, whatever is the training period and consequently

the data availability. Moreover, it is evident that, a model tuned on one

month has the best performance; while, on the other side, weekly training

period provides the worst accuracy. This is explainable considering that

one year of data includes a wider temperature variation, especially for more

critical climate as Chicago (5A); this factor could deceive the model that

couldn’t understand features relationship; thus, training the model on one

month at a time provides a tuning on a more uniform temperature trend

and, consequently, better prediction performance.

5.4 Climate analysis

The climate proved to be among the most interesting factor to be analyzed.

In figure 5.11 is displayed the mean MAE distribution, based on climate
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file, technique and testing period. First of all, paying attention to the scale

Fig. 5.11: Mean MAE distribution based on technique, climate and testing

period.

of each axis, the results put on view that a testing period of one month

provides the lowest prediction error. Additionally, the model struggles to

predict the indoor air temperature with the 5A climate type, which has

the greatest temperature range from winter to summer season. Another

evidence of figure 5.11 is that ML is not always the worse method respect

to TL alternatives, like in case of climate 5A/monthly testing and climate

1A/yearly testing; this event is called Negative Transfer. Furthermore,

despite FE and WI accuracy are similar, the WI method provides the higher

performance in all cases, probably because a tuning of all layers help the

model to adapt better its weights to the target data.

5.5 Statistical evaluations

In this chapter a statistical analysis of all features affecting model perfor-

mance is presented. First of all, in figure 5.12, the Asymptotic performance

(also called Performance improvement ratio) is displayed for all cases imple-
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mented in this thesis. As shown in section 4.5, the asymptotic performance is

the gap between the ML and TL testing accuracy value of the last simulation

epoch.

Fig. 5.12: Negative transfer learning analysis
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In the upper plot it is visible that more than 80% of TL applications

metrics overcome ML ones, while for nearly 15% of cases, Negative Transfer

Learning (NTL) occurs. This event is focused in the lower plot. It is noted

that the majority of NTL happens with monthly and yearly data availability

with different climates; in particular, climate 5A and 1A occurs more. The

occurrence of NTL doesn’t means that TL get worse, rather that both ML

and TL reach high accuracy and perform similarly when these two data

amounts are available. Both climates 5A and 1A are different respect to

the source one (3C), and they occurs more when compare respectively with

monthly and yearly availability. Thus, climate variable is the more affecting

feature, and ML reaches good performance with monthly availability. So,

if the target building dynamic is similar to the source one, TL is not the

only efficient solution. Regarding the occupancy profiles, results indicate an

uniform occurrence of all that and no one is particularly distinguished.

Next step concerns the development of regression tree to characterize the

feature importance with different data availability. This instrument is

created using a method called binary recursive partitioning, which is an

iterative procedure that divides data into partitions or branches, then

separates each partition into smaller groups as the algorithm progresses up

each branch. The Training Set’s records are initially sorted into the same

division. The method then divides the data into the first two divisions or

branches, taking use of every potential binary split on each field. The split

that minimizes the sum of the squared deviations in the two independent

partitions is chosen by the algorithm. Each of the new branches is then

divided according to this rule. This procedure is repeated until each node

meets the minimum node size chosen by the user or automatically and

becomes a terminal node, called leaf node. In this case the data exploited

are the climate file, the efficiency level, the occupancy profile, the technique

method and testing period; while as output the resulting MAE is given.
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The tree displayed in figure 5.13 was implemented on the whole data set.

Fig. 5.13: Regression Tree for the total data set

This regression tree demonstrate that, in order of importance, metrics are

affected by technique method, climate type, testing period, occupancy profile

and efficiency level. From these results 3 metric ranges was extrapolated:

[0, 0.3), [0.3, 0.7), [0.7, 3]. The next step concerns the creation of classification

trees, distinguishing the three testing periods. Before do it, the intervals

listed previously were converted in prediction performance classes:

• [0, 0.3): High performance;

• [0.3, 0.7): Medium performance;

• [0.7, 3]: Low performance.

The classification trees were stopped to the third deph level; results obtanied

are shown below in figure 5.14, 5.15, 5.16:
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Fig. 5.14: Classification Tree for a testing period of one week.

Fig. 5.15: Classification Tree for a testing period of one month.
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Fig. 5.16: Classification Tree for a testing period of one year.

Taking a look at these trees, the first visible consideration is the absence

of the Low class in the monthly tree; this reflects results previously obtained,

evaluating the monthly testing period as the better one for reaching higher

performance; on the other hand the weekly testing period aims the worse

accuracy because of the limited data availability. In all trees, technique

method, climate file and efficiency profile result to be the best discriminant

features. Another reflection regards the fact that every time happens the

combination between climate 5A and ML method on the upper nodes, low

performance are obtained at the leaf nodes. This consequence reflects the

negative transfer results explained before. The gap between TL-FE and

TL-WI resulting classes are placed on the same level in all trees and, every

time they occurs, higher accuracy are provided as verified in the previously

analysis. Regarding the occupancy profiles, it hasn’t a primary role on the

classes classification as noted also in the regression tree. As anticipated in

the chapter 3, the occupancy profiles were chosen arbitrarily and related to

them also MELs and lighting profiles. In figure 5.17 a day type occupancy
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is shown and it’s noted that occupancy 1 and 3 are more similar.

Fig. 5.17: Occupancy profiles of a day type.

To confirm all evidences extrapolated from results and graphs shown until

now, in figure 5.18 the real indoor air temperature evolution respect to that

obtained through ML, TL-FE and TL-WI is displayed, in both positive and

negative transfer learning cases.

Fig. 5.18: Real temperature evolution vs ML/TL-FE/TL-WI one.
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When positive TL occurs, it is clear that ML technique isn’t able to follow

the real temperature evolution and, consequently, in this case the building

dynamics prediction can’t be implemented in a MPC the control strategy

applications. Thus, if a new building is erected or an energy requalification

with new meters installation are applied, both transfer learning applications

are needed to realize a building automation system providing high prediction

accuracy and efficient control strategies.



Chapter 6

Conclusions

This thesis work provides a feasibility analysis of the transfer learning

application on building dynamic issue, comparing it with traditional machine

learning technique. In particular, two types of transfer learning methods are

taken into account: weights initialization and feature extraction. The study

examines more than 250 building boundary conditions configurations to

rank features that affect the models performance, choosing at the beginning

a source case. In addiction to the technique methods exploited, features

taken into account are the climate type, the efficiency level in terms of

building insulation, the occupancy profile and the orientation of different

zones. The analysis concerns not only a features classification, but has

the further goal of understanding the data availability needed to forecast 1

hour ahead of indoor air temperature with high accuracy to allow a cost

effective and better building energy control strategy. In this case, training

periods of 1 week, 1 month and 1 year are considered. Before run the

simulations, the neural network has to be selected. Two NNs types has

been compared: a Multlayer Perceptron (MLP) and a Long-Short Term

Memory (LSTM). An optimization process, through OPTUNA library, has

been applied to get the better performance from both the nets and, at the

of the process, the LSTM provides the best prediction accuracy. Thus, this
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one has been exploited to run all simulations needed to the analysis. At

the end of the simulation process, variables was examined and a statistical

investigation of results was carried on. First of all, three different zones

were comparing and results demonstrated that, although the zone purpose

is the same respect to the source zone one, the orientation affects the model

significantly, resulting the ML better than TL in a specific case. Then,

the other features previously cited were examined, creating more than 250

boundary conditions configuration on the source zone. Metrics evaluation

demonstrated that TL application provides better performance than ML

method in more than 80% of cases. Moreover, results showed that the

climate variable plays a crucial role on prediction outcomes because, testing

the model on a climate type too dissimilar from the source one, the NN could

be deceived without understanding right features relationship. In addiction,

analysis proved that a training process on a monthly data availability aims

the lowest metrics respect to the other two training period of which the

yearly one is the worse. A statistical investigation, through regression and

classification trees, indicated that efficiency level and occupancy profiles

have a secondary role on prediction results, after technique exploited, climate

type and data availability. From all analysis executed in this thesis work,

follows that a possible solution and future challenge to ensure high building

dynamics prediction performance, is create as many networks as similar

climate type groups, to training the model on more uniform boundary

conditions.



Appendix A

Table 1: Crossing cases simulations.

Climate Efficiency Occupancy Technique Training period Testing period Epochs Format

1A Low run1 ML 1y 1y 90

1A-LE-O1

1A Low run1 ML 1m 1m 90

1A Low run1 ML 1w 1w 90

1A Low run1 FE 1y 1y 80

1A Low run1 WI 1y 1y 80

1A Low run1 WI 1y 1m 80

1A Low run1 FE 1y 1w 80

1A Low run1 WI 1y 1y 80

1A Low run1 FE 1y 1m 80

1A Low run1 WI 1y 1w 80

1A Standard run1 ML 1y 1y 90

1A-SE-O1

1A Standard run1 ML 1m 1m 90

1A Standard run1 ML 1w 1w 90

1A Standard run1 FE 1y 1y 80

1A Standard run1 WI 1y 1m 80

1A Standard run1 FE 1y 1w 80

1A Standard run1 WI 1y 1y 80

1A Standard run1 FE 1y 1m 80

1A Standard run1 WI 1y 1w 80

1A High run-1 ML 1y 1y 90

1A-HE-O1

1A High run-1 ML 1m 1m 90

1A High run-1 ML 1w 1w 90

1A High run-1 FE 1y 1y 80

1A High run-1 WI 1y 1m 80
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1A High run-1 FE 1y 1w 80

1A High run-1 WI 1y 1y 80

1A High run-1 FE 1y 1m 80

1A High run-1 WI 1y 1w 80

3C Low run-1 ML 1y 1y 90

3C-LE-O1

3C Low run-1 ML 1m 1m 90

3C Low run-1 ML 1w 1w 90

3C Low run-1 FE 1y 1y 80

3C Low run-1 WI 1y 1m 80

3C Low run-1 FE 1y 1w 80

3C Low run-1 WI 1y 1y 80

3C Low run-1 FE 1y 1m 80

3C Low run-1 WI 1y 1w 80

3C Standard run-1 ML 1y 1y 90

3C-SE-O1

3C Standard run-1 ML 1m 1m 90

3C Standard run-1 ML 1w 1w 90

3C Standard run-1 FE 1y 1y 80

3C Standard run-1 WI 1y 1m 80

3C Standard run-1 FE 1y 1w 80

3C Standard run-1 WI 1y 1y 80

3C Standard run-1 FE 1y 1m 80

3C Standard run-1 WI 1y 1w 80

3C High run-1 ML 1y 1y 90

3C-HE-O1

3C High run-1 ML 1m 1m 90

3C High run-1 ML 1w 1w 90

3C High run-1 FE 1y 1y 80

3C High run-1 WI 1y 1m 80

3C High run-1 FE 1y 1w 80

3C High run-1 WI 1y 1y 80

3C High run-1 FE 1y 1m 80

3C High run-1 WI 1y 1w 80

5A Low run-1 ML 1y 1y 90

5A-LE-O1

5A Low run-1 ML 1m 1m 90

5A Low run-1 ML 1w 1w 90

5A Low run-1 FE 1y 1y 80
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5A Low run-1 WI 1y 1m 80

5A Low run-1 FE 1y 1w 80

5A Low run-1 WI 1y 1y 80

5A Low run-1 FE 1y 1m 80

5A Low run-1 WI 1y 1w 80

5A Standard run-1 ML 1y 1y 90

5A-SE-O1

5A Standard run-1 ML 1m 1m 90

5A Standard run-1 ML 1w 1w 90

5A Standard run-1 FE 1y 1y 80

5A Standard run-1 WI 1y 1m 80

5A Standard run-1 FE 1y 1w 80

5A Standard run-1 WI 1y 1y 80

5A Standard run-1 FE 1y 1m 80

5A Standard run-1 WI 1y 1w 80

5A High run-1 ML 1y 1y 90

5A-HE-O1

5A High run-1 ML 1m 1m 90

5A High run-1 ML 1w 1w 90

5A High run-1 FE 1y 1y 80

5A High run-1 WI 1y 1m 80

5A High run-1 FE 1y 1w 80

5A High run-1 WI 1y 1y 80

5A High run-1 FE 1y 1m 80

5A High run-1 WI 1y 1w 80

1A High run-1 ML 1y 1y 90

1A-HE-O1

1A High run-1 ML 1m 1m 90

1A High run-1 ML 1w 1w 90

1A High run-1 FE 1y 1y 80

1A High run-1 WI 1y 1m 80

1A High run-1 FE 1y 1w 80

1A High run-1 WI 1y 1y 80

1A High run-1 FE 1y 1m 80

1A High run-1 WI 1y 1w 80

3C Low run-1 ML 1y 1y 90

3C-LE-O1

3C Low run-1 ML 1m 1m 90

3C Low run-1 ML 1w 1w 90
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3C Low run-1 FE 1y 1y 80

3C Low run-1 WI 1y 1m 80

3C Low run-1 FE 1y 1w 80

3C Low run-1 WI 1y 1y 80

3C Low run-1 FE 1y 1m 80

3C Low run-1 WI 1y 1w 80

3C Standard run-1 ML 1y 1y 90

3C-SE-O1

3C Standard run-1 ML 1m 1m 90

3C Standard run-1 ML 1w 1w 90

3C Standard run-1 FE 1y 1y 80

3C Standard run-1 WI 1y 1m 80

3C Standard run-1 FE 1y 1w 80

3C Standard run-1 WI 1y 1y 80

3C Standard run-1 FE 1y 1m 80

3C Standard run-1 WI 1y 1w 80

3C High run-1 ML 1y 1y 90

3C-HE-O1

3C High run-1 ML 1m 1m 90

3C High run-1 ML 1w 1w 90

3C High run-1 FE 1y 1y 80

3C High run-1 WI 1y 1m 80

3C High run-1 FE 1y 1w 80

3C High run-1 WI 1y 1y 80

3C High run-1 FE 1y 1m 80

3C High run-1 WI 1y 1w 80

5A Low run-1 ML 1y 1y 90

5A-LE-O1

5A Low run-1 ML 1m 1m 90

5A Low run-1 ML 1w 1w 90

5A Low run-1 FE 1y 1y 80

5A Low run-1 WI 1y 1m 80

5A Low run-1 FE 1y 1w 80

5A Low run-1 WI 1y 1y 80

5A Low run-1 FE 1y 1m 80

5A Low run-1 WI 1y 1w 80

5A Standard run-1 ML 1y 1y 90

5A-SE-O1

5A Standard run-1 ML 1m 1m 90
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5A Standard run-1 ML 1w 1w 90

5A Standard run-1 FE 1y 1y 80

5A Standard run-1 WI 1y 1m 80

5A Standard run-1 FE 1y 1w 80

5A Standard run-1 WI 1y 1y 80

5A Standard run-1 FE 1y 1m 80

5A Standard run-1 WI 1y 1w 80

5A High run-1 ML 1y 1y 90

5A-HE-O1

5A High run-1 ML 1m 1m 90

5A High run-1 ML 1w 1w 90

5A High run-1 FE 1y 1y 80

5A High run-1 WI 1y 1m 80

5A High run-1 FE 1y 1w 80

5A High run-1 WI 1y 1y 80

5A High run-1 FE 1y 1m 80

5A High run-1 WI 1y 1w 80

1A Low run-2 ML 1y 1y 90

1A-LE-O2

1A Low run-2 ML 1m 1m 90

1A Low run-2 ML 1w 1w 90

1A Low run-2 FE 1y 1y 80

1A Low run-2 WI 1y 1m 80

1A Low run-2 FE 1y 1w 80

1A Low run-2 WI 1y 1y 80

1A Low run-2 FE 1y 1m 80

1A Low run-2 WI 1y 1w 80

1A Standard run-2 ML 1y 1y 90

1A-SE-O2

1A Standard run-2 ML 1m 1m 90

1A Standard run-2 ML 1w 1w 90

1A Standard run-2 FE 1y 1y 80

1A Standard run-2 WI 1y 1m 80

1A Standard run-2 FE 1y 1w 80

1A Standard run-2 WI 1y 1y 80

1A Standard run-2 FE 1y 1m 80

1A Standard run-2 WI 1y 1w 80

1A High run-2 ML 1y 1y 90

1A-HE-O2
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1A High run-2 ML 1m 1m 90

1A High run-2 ML 1w 1w 90

1A High run-2 FE 1y 1y 80

1A High run-2 WI 1y 1m 80

1A High run-2 FE 1y 1w 80

1A High run-2 WI 1y 1y 80

1A High run-2 FE 1y 1m 80

1A High run-2 WI 1y 1w 80

3C Low run-2 ML 1y 1y 90

3C-LE-O2

3C Low run-2 ML 1m 1m 90

3C Low run-2 ML 1w 1w 90

3C Low run-2 FE 1y 1y 80

3C Low run-2 WI 1y 1m 80

3C Low run-2 FE 1y 1w 80

3C Low run-2 WI 1y 1y 80

3C Low run-2 FE 1y 1m 80

3C Low run-2 WI 1y 1w 80

3C Standard run-2 ML 1y 1y 90

3C-SE-O2

3C Standard run-2 ML 1m 1m 90

3C Standard run-2 ML 1w 1w 90

3C Standard run-2 FE 1y 1y 80

3C Standard run-2 WI 1y 1m 80

3C Standard run-2 FE 1y 1w 80

3C Standard run-2 WI 1y 1y 80

3C Standard run-2 FE 1y 1m 80

3C Standard run-2 WI 1y 1w 80

3C High run-2 ML 1y 1y 90

3C-HE-O2

3C High run-2 ML 1m 1m 90

3C High run-2 ML 1w 1w 90

3C High run-2 FE 1y 1y 80

3C High run-2 WI 1y 1m 80

3C High run-2 FE 1y 1w 80

3C High run-2 WI 1y 1y 80

3C High run-2 FE 1y 1m 80

3C High run-2 WI 1y 1w 80
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5A Low run-2 ML 1y 1y 90

5A-LE-O2

5A Low run-2 ML 1m 1m 90

5A Low run-2 ML 1w 1w 90

5A Low run-2 FE 1y 1y 80

5A Low run-2 WI 1y 1m 80

5A Low run-2 FE 1y 1w 80

5A Low run-2 WI 1y 1y 80

5A Low run-2 FE 1y 1m 80

5A Low run-2 WI 1y 1w 80

5A Standard run-2 ML 1y 1y 90

5A-SE-O2

5A Standard run-2 ML 1m 1m 90

5A Standard run-2 ML 1w 1w 90

5A Standard run-2 FE 1y 1y 80

5A Standard run-2 WI 1y 1m 80

5A Standard run-2 FE 1y 1w 80

5A Standard run-2 WI 1y 1y 80

5A Standard run-2 FE 1y 1m 80

5A Standard run-2 WI 1y 1w 80

5A High run-2 ML 1y 1y 90

5A-HE-O2

5A High run-2 ML 1m 1m 90

5A High run-2 ML 1w 1w 90

5A High run-2 FE 1y 1y 80

5A High run-2 WI 1y 1m 80

5A High run-2 FE 1y 1w 80

5A High run-2 WI 1y 1y 80

5A High run-2 FE 1y 1m 80

5A High run-2 WI 1y 1w 80

1A Low run-3 ML 1y 1y 90

1A-LE-O3

1A Low run-3 ML 1m 1m 90

1A Low run-3 ML 1w 1w 90

1A Low run-3 FE 1y 1y 80

1A Low run-3 WI 1y 1m 80

1A Low run-3 FE 1y 1w 80

1A Low run-3 WI 1y 1y 80
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1A Low run-3 FE 1y 1m 80

1A Low run-3 WI 1y 1w 80

1A Standard run-3 ML 1y 1y 90

1A-SE-O3

1A Standard run-3 ML 1m 1m 90

1A Standard run-3 ML 1w 1w 90

1A Standard run-3 FE 1y 1y 80

1A Standard run-3 WI 1y 1m 80

1A Standard run-3 FE 1y 1w 80

1A Standard run-3 WI 1y 1y 80

1A Standard run-3 FE 1y 1m 80

1A Standard run-3 WI 1y 1w 80

1A High run-3 ML 1y 1y 90

1A-HE-O3

1A High run-3 ML 1m 1m 90

1A High run-3 ML 1w 1w 90

1A High run-3 FE 1y 1y 80

1A High run-3 WI 1y 1m 80

1A High run-3 FE 1y 1w 80

1A High run-3 WI 1y 1y 80

1A High run-3 FE 1y 1m 80

1A High run-3 WI 1y 1w 80

3C Low run-3 ML 1y 1y 90

3C-LE-O3

3C Low run-3 ML 1m 1m 90

3C Low run-3 ML 1w 1w 90

3C Low run-3 FE 1y 1y 80

3C Low run-3 WI 1y 1m 80

3C Low run-3 FE 1y 1w 80

3C Low run-3 WI 1y 1y 80

3C Low run-3 FE 1y 1m 80

3C Low run-3 WI 1y 1w 80

3C Standard run-3 ML 1y 1y 90

3C-SE-O3

3C Standard run-3 ML 1m 1m 90

3C Standard run-3 ML 1w 1w 90

3C Standard run-3 FE 1y 1y 80

3C Standard run-3 WI 1y 1m 80

3C Standard run-3 FE 1y 1w 80
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3C Standard run-3 WI 1y 1y 80

3C Standard run-3 FE 1y 1m 80

3C Standard run-3 WI 1y 1w 80

3C High run-3 ML 1y 1y 90

3C-HE-O3

3C High run-3 ML 1m 1m 90

3C High run-3 ML 1w 1w 90

3C High run-3 FE 1y 1y 80

3C High run-3 WI 1y 1m 80

3C High run-3 FE 1y 1w 80

3C High run-3 WI 1y 1y 80

3C High run-3 FE 1y 1m 80

3C High run-3 WI 1y 1w 80

5A Low run-3 ML 1y 1y 90

5A-LE-O3

5A Low run-3 ML 1m 1m 90

5A Low run-3 ML 1w 1w 90

5A Low run-3 FE 1y 1y 80

5A Low run-3 WI 1y 1m 80

5A Low run-3 FE 1y 1w 80

5A Low run-3 WI 1y 1y 80

5A Low run-3 FE 1y 1m 80

5A Low run-3 WI 1y 1w 80

5A Standard run-3 ML 1y 1y 90

5A-SE-O3

5A Standard run-3 ML 1m 1m 90

5A Standard run-3 ML 1w 1w 90

5A Standard run-3 FE 1y 1y 80

5A Standard run-3 WI 1y 1m 80

5A Standard run-3 FE 1y 1w 80

5A Standard run-3 WI 1y 1y 80

5A Standard run-3 FE 1y 1m 80

5A Standard run-3 WI 1y 1w 80

5A High run-3 ML 1y 1y 90

5A-HE-O3

5A High run-3 ML 1m 1m 90

5A High run-3 ML 1w 1w 90

5A High run-3 FE 1y 1y 80

5A High run-3 WI 1y 1m 80
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5A High run-3 FE 1y 1w 80

5A High run-3 WI 1y 1y 80

5A High run-3 FE 1y 1m 80

5A High run-3 WI 1y 1w 80

1A Low run-3 ML 1y 1y 90

1A-LE-O3

1A Low run-3 ML 1m 1m 90

1A Low run-3 ML 1w 1w 90

1A Low run-3 FE 1y 1y 80

1A Low run-3 WI 1y 1m 80

1A Low run-3 FE 1y 1w 80

1A Low run-3 WI 1y 1y 80

1A Low run-3 FE 1y 1m 80

1A Low run-3 WI 1y 1w 80

1A Standard run-3 ML 1y 1y 90

1A-SE-O3

1A Standard run-3 ML 1m 1m 90

1A Standard run-3 ML 1w 1w 90

1A Standard run-3 FE 1y 1y 80

1A Standard run-3 WI 1y 1m 80

1A Standard run-3 FE 1y 1w 80

1A Standard run-3 WI 1y 1y 80

1A Standard run-3 FE 1y 1m 80

1A Standard run-3 WI 1y 1w 80

1A High run-3 ML 1y 1y 90

1A-HE-O3

1A High run-3 ML 1m 1m 90

1A High run-3 ML 1w 1w 90

1A High run-3 FE 1y 1y 80

1A High run-3 WI 1y 1m 80

1A High run-3 FE 1y 1w 80

1A High run-3 WI 1y 1y 80

1A High run-3 FE 1y 1m 80

1A High run-3 WI 1y 1w 80

3C Low run-3 ML 1y 1y 90

3C-LE-O3

3C Low run-3 ML 1m 1m 90

3C Low run-3 ML 1w 1w 90

3C Low run-3 FE 1y 1y 80
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3C Low run-3 WI 1y 1m 80

3C Low run-3 FE 1y 1w 80

3C Low run-3 WI 1y 1y 80

3C Low run-3 FE 1y 1m 80

3C Low run-3 WI 1y 1w 80

3C Standard run-3 ML 1y 1y 90

3C-SE-O3

3C Standard run-3 ML 1m 1m 90

3C Standard run-3 ML 1w 1w 90

3C Standard run-3 FE 1y 1y 80

3C Standard run-3 WI 1y 1m 80

3C Standard run-3 FE 1y 1w 80

3C Standard run-3 WI 1y 1y 80

3C Standard run-3 FE 1y 1m 80

3C Standard run-3 WI 1y 1w 80

3C High run-3 ML 1y 1y 90

3C-HE-O3

3C High run-3 ML 1m 1m 90

3C High run-3 ML 1w 1w 90

3C High run-3 FE 1y 1y 80

3C High run-3 WI 1y 1m 80

3C High run-3 FE 1y 1w 80

3C High run-3 WI 1y 1y 80

3C High run-3 FE 1y 1m 80

3C High run-3 WI 1y 1w 80

5A Low run-3 ML 1y 1y 90

5A-LE-O3

5A Low run-3 ML 1m 1m 90

5A Low run-3 ML 1w 1w 90

5A Low run-3 FE 1y 1y 80

5A Low run-3 WI 1y 1m 80

5A Low run-3 FE 1y 1w 80

5A Low run-3 WI 1y 1y 80

5A Low run-3 FE 1y 1m 80

5A Low run-3 WI 1y 1w 80

5A Standard run-3 ML 1y 1y 90

5A-SE-O3

5A Standard run-3 ML 1m 1m 90

5A Standard run-3 ML 1w 1w 90
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5A Standard run-3 FE 1y 1y 80

5A Standard run-3 WI 1y 1m 80

5A Standard run-3 FE 1y 1w 80

5A Standard run-3 WI 1y 1y 80

5A Standard run-3 FE 1y 1m 80

5A Standard run-3 WI 1y 1w 80

5A High run-3 ML 1y 1y 90

5A-HE-O3

5A High run-3 ML 1m 1m 90

5A High run-3 ML 1w 1w 90

5A High run-3 FE 1y 1y 80

5A High run-3 WI 1y 1m 80

5A High run-3 FE 1y 1w 80

5A High run-3 WI 1y 1y 80

5A High run-3 FE 1y 1m 80

5A High run-3 WI 1y 1w 80
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