
POLITECNICO DI TORINO

Master’s Degree in Automotive Engineering

Master’s Degree Thesis

Analysis of a mathematical model of a
battery

Supervisors

Prof. Iustin Radu BOJOI

Candidate

Riccardo ARCURI

MARCH 2022





Summary

Lithium-ion cells are the most diffused technology for energy storage. Their
application spans from portable devices to satellites, thanks to their high energy
density and specific energy.

The high diffusion of electric vehicles goes hand in hand with the need for high
range, fast charge and long life for the battery pack. This concerns both usability
and sustainability.

While discharging operation cannot be controlled, because depending on the
amount of torque requested by the driver, the charging phase can be addressed to
minimize charging time or aging, or even selecting the best trade-off of the two.

For a safe, reliable and efficient operation of the battery pack, the battery
management system (BMS) monitors and controls the operation of each cell. To
predict the behavior of a cell and apply the best control strategy, a model that
describes the electrical operation is necessary.

Two types of models are presented. One is based on the dynamics of lithium
atoms across the two electrodes, thus it is an accurate description of the real
cell. The high conceptual and computational complexity makes the physics based
model (PBM) intractable in this work because of the poor availability of data. The
equivalent circuit model (ECM) is instead built from the analysis of variables at
the terminals of the cell, namely current and voltage, and related parameters such
as resistances and capacitors. The model can be improved by integrating a thermal
model and an aging model.

The heat developed by the current flowing through the cell is responsible for the
temperature rise. The temperature variation affects the parameters that describe
the cell, thus the state of the cell is continuously updated.

Moreover, extreme temperatures accelerate undesired reactions, making it nec-
essary to provide the battery pack with a cooling system. High current intensity
for fast charging is responsible also for the aging of the cell. It leads to lithium
loss, hence to a reduction in the capacity.

Although most present electric vehicles are provided with pouch cells, the three
coupled models are built considering an A123 cell.

The choice comes from the lack of data about pouch cells, while analyses on the
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selected cylindrical cell are available in some papers. Nevertheless, the model can
be applied to any cell for which electrical, thermal and cycling data are accessible.
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Chapter 1

Introduction

To contain the increasing global warming and the other consequences of climate
change, COP26 signed the agreement to achieve carbon neutrality by 2050. Energy
transition is a fundamental strategy to achieve the goal, by means of decarbonization,
electrification of transports and switching to a cleaner energy production through
renewables. A report from IEA [1] points out that the transport sector is responsible
for 24 % of the global CO2 emissions. In detail, 74.5 % of CO2 emissions in the
transport sector are due to road vehicles. More efficient internal combustion
engines, enabled mainly by combustion control, and devices for reducing the
emissions at the tailpipe, allow a reduction of CO2 and other pollutants such as
NOx. Notwithstanding the improvement, the increasing demand for passenger cars
lead to a rise in the emission of greenhouse gasses (GHG) up to 2018 [2]. On the
other hand, while total car sales in 2021 reduced by 25 % with respect to 2019, a
sharp increase was registered in the electric vehicle market. For instance, EVs sales
in Europe reached a value of about 1.1 million in 2021. In [3] is reported an increase
of 70 % of the sales of pure electric vehicles and PHEV (plug-in electric vehicles)
together. The electric vehicle market results as the most dynamic among the players
of clean energy. Since it is not provided with an internal combustion engine, an
EV offers opportunities of reducing GHG and other pollutants emissions, at least
locally (Tank to Wheel, or TTW). Anyway, the growth of the share of electricity
produced by renewables, also solves the problem of pollution from energy generation
plants (Well to Tank, or WTT). Beside the vehicle usage, the sustainability of an
electric vehicle must be evaluated on the entire life of the vehicle, starting from the
provision of raw materials and production to the end of life and recycling. This
process is defined as “life cycle assessment” (LCA). The production of the battery
is responsible for over 40 % of CO2 emission considering all the production of an
electric vehicle [4]. Lithium is an abundant element on Earth, but its extraction is
a high energy consuming process. What is more rare is the cobalt, furthermore
more than half of cobalt world’s supply is extracted in the Democratic Republic of
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Introduction

Congo, where miners (even children) work in hazardous conditions. For this reason,
cobalt is more and more substituted in new compounds, as in LFP cells. At the
end of life, a crucial question is the disposal of the battery packs, also considering
the increasing diffusion of electric vehicles. Thus, the recycling of battery cells is
fundamental for sustainability. Elements can be recovered and reused for producing
new electrodes, with the goal of 95 % recovery of lithium, nickel and cobalt in the
next years [5]. To postpone the end of life, the aging mechanisms must be known,
so the cell’s operation can be controlled to minimize the degradation. A model of
battery behavior can be also useful for avoiding oversizing of the battery pack and
at the same time maximizing the performance of the system. The electrical model
is built using an equivalent circuit and it is improved by incorporating a thermal
model and an aging model.
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Chapter 2

Battery cells and battery
pack

This chapter covers battery cells basics, their characteristics and their operating
principles, for different chemistries. A focus is dedicated to the lithium-ion technol-
ogy, being the most diffused one for automotive applications. The powertrain of an
electric vehicle is introduced, with a deepening on the battery management system
whose functionalities illustrated.

2.1 Cell characteristics and working principles
The cell is the elementary unit of a battery pack. It delivers a voltage that depends
on the chemistry of the electrodes and on the operating conditions, such as the
state of charge or the temperature.

A battery cell can store a certain quantity of charge, that can be delivered to an
external circuit. The maximum quantity of charge that can be held by a cell is named
nominal charge capacity. The quantity of charge can be restored by recharging
the battery, in case of secondary cells, while we deal with primary cells if they are
single use. A relative measure of the current is the C-rate, that is the constant
current that should enter/exit the cell for 1 h to completely charge/discharge the
cell.

Energy is stored under the form of electrochemical energy and delivered as
electrical energy when a load is connected. Research is trying to increase the values
for specific energy and the energy density, to have lighter and smaller batteries:
the specific energy defines the maximum amount of energy that can be stored per
unit weight, the energy density is referred to the unit volume.

Cells can be connected in series or in parallel, to obtain a high-voltage or high-
capacity battery, respectively. More cells connected, form a battery module. Again,
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more modules can be wired to obtain a battery pack. Cells can have different
shapes: cylindrical, prismatic or pouch. For the first two types, the positive and
negative electrodes are constituted by a long foil with the separator in between
and wound around a mandrel. Pouch cells present instead a stacked structure of
alternated positive and negative electrodes, with the separator on every electrode
layer. Prismatic and pouch cells can better exploit the available space, while the
spacing in between the cylindrical cells helps the thermal management.

Figure 2.1: Pouch (a), cylindrical (b) and prismatic (c) cells types.

The components of a cell are a positive and a negative electrode and the relative
current collectors, the electrolyte, and the separator. The positive and negative
current collectors are the connection point with the external circuit. Charging and
discharging processes are possible thanks to redox reactions. The negative electrode
is the region of the cell where the charge is accumulated: during discharging
electrons are released towards the external circuit through an oxidation reaction.
Because of this reaction, the negative electrode is also defined as anode. Electrons
arrive at the positive electrode (cathode) where a reduction reaction occurs. During
charging, electrons are forced from the positive electrode to the negative one, which
are now named anode and cathode respectively. The electrolyte is necessary to
allow ions transfer from one electrode to the other, while the separator electrically
isolates the two electrodes to avoid short circuit but still is a good conductor for
ions.

In a lead-acid cell, the negative electrode is made of lead (Pb), the positive
one is made of lead dioxide (PbO2) and the electrolyte is a solution of water and
sulfuric acid (H2SO4). During discharge, the lead of the negative electrode reacts
with the HSO−4 in the electrolyte: 2 electrons are released to the external circuit,
a hydrogen ion is released into the electrolyte and solid lead sulfate (PbSO4) forms
as crystals on the electrode surface.

Pb(s) +HSO−4 (aq) ⇒ PbSO4(s) +H+
(aq) + 2e−

On the positive electrode, the lead dioxide (PbO2) of which it is constituted,
reacts with the electrons coming from the external circuit, the hydrogen ions and
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HSO−4 present in the electrolyte, again forming solid lead sulfate on the electrode
surface and releasing water.

PbO2(s) +HSO−4 (aq) + 3H+
(aq) + 2e− ⇒ PbSO4(s) + 2H2O(l)

Figure 2.2: Lead acid battery chemical reactions diagram [6].

The potential difference across the two terminals of the cell is named electromo-
tive force because it is the cause of electrons motion. It depends on the materials
of the two electrodes.

The potential of the electrodes is calculated considering a standard hydrogen
electrode as reference, for which 2H+ + 2e− spontaneously converts to 2H at
“zero volts”. To obtain a large potential between the electrodes, a low (possibly
negative) electrode potential for the negative electrode should be selected and a
higher potential for the positive electrode. On a periodic table, strong reducing
elements are found on the left and strong oxidizing elements on the right. The
most reactive atoms are those that present one or two valence electrons on the
outer shell or that miss one or two electrons on the outer shell.

Selecting lithium and fluorine as materials for the two electrodes, their standard
potentials (E0) are respectively -3.04 V and 2.87 V as reported in table 2.1, resulting
in a cell voltage of 5.91 V. This electrochemistry cannot be adopted because the
voltage is too high to be sustained by the known electrolytes [7].

For a lead-acid battery cell, the negative electrode has a standard potential
-0,356 V, the positive electrode standard potential is 1.685 V. The result is a cell
potential of 2.05 V, that varies with the variation of sulfuric acid concentration.
In fact, a discharged cell presents a high quantity of lead sulfate deposited on the
electrodes surface and almost no sulfuric acid in the electrolyte because of the
reactions with the electrodes material. To obtain a 12 V battery, six lead acid cells
(2 V each) are put in series [8].
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Alternatively to the cell chemistries involving redox reactions, some metallic
alloys are capable of storing hydrogen (insertion) as a sponge can store water. The
chemical structure of the electrode does not change, even if some small increase in
the volume can be observed, resulting in a very long life of the cell. On the other
hand the cell potential is lower (1.3 V) than a lead acid cell. These compounds are
called metal hydride and present in NiMH and NiCd cells.

Reduction half-reaction Standard Potential
Li+ + e− ⇒ Li(s) -3.04
K+ + e− ⇒ K(s) -2.92
Ca2+ + 2e− ⇒ Ca(s) -2.84
Na+ + e− ⇒ Na(s) -2.71
Zn2+ + 2e− ⇒ Zn(s) -0.76
2H+ + 2e− ⇒ H2(g) 0.00
Cu2+ + 2e− ⇒ Cu(s) 0.34
O3(g) + 2H+ + 2e− ⇒ O2(g) +H2O(l) 2.07
F2(g) + 2e− ⇒ 2F− 2.87

Table 2.1: Standard potentials of electrode reactions at 25 °C

2.2 Lithium-ion cell
Lithium-ion cells have a similar operation principle to metal hydride cells, not
involving redox reactions of the lithium with the electrodes material.

During discharging, lithium atoms exit the negative electrode and split in an
electron that runs across the external circuit, and the lithium ion that reaches the
positive electrode through the electrolyte. Li+ and e- join at the positive electrode
and fill the vacant spaces between the electrode particles, diffusing to equalize the
concentration.

The operation of lithium atoms entering the structure of the electrode is called
intercalation. When charging a cell, we have the opposite process, with lithium
ions that exit the positive electrode (deintercalation).

Li-ion cells are capable of higher specific energy and energy density, lower self-
discharge and longer life thanks to the gentler intercalation mechanism with respect
to redox reactions. On the other hand, they are more expensive and complex to
produce.
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The negative electrode is generally made up of layers of graphite (graphene), kept
together by a loose bond, so that lithium ions can easily intercalate. Each graphite
site, constituted by six carbon atoms, can hold an atom of lithium. Lithium titanate
is an alternative for the negative electrode: the absence of side reactions allows
faster charging and longer lifetime, but the high electrode potential results in a low
energy density.

A much higher energy density is enabled by the use of silicon: a single silicon
atom can house four lithium atoms, but this leads to a huge volume change: the
electrode material tends to fracture because of the cyclic expansion and contraction
during charging and discharging.

Battery cell typologies are generally named after the compounds used for the
positive electrode because of the high variety. They can be grouped according to
their structure:

• 2-D structures host lithium atoms in between the layers as represented in
figure 2.3(a). For LCO (LixCoO2), a quantity x of lithium between 0.5 and 1
is needed to avoid fast aging. Since cobalt is rare and toxic, a portion can be
substituted by nichel, which confers a higher energy density to the cell and its
poor thermal stability can be mitigated by the manganese, as in NCM cells.
NCA cells blend instead nichel, cobalt and aluminum.

• a 3-D diffusion of lithium occurs in cubic spinel structures like the ones of
figure 2.3(b), such as in LMO (LixMn2O4) electrodes. They are inexpensive
and non-toxic, but they easily degrade [9].

• LFP (LixFePO4) electrodes present olivine structure (1-D) as figure 2.3(c),
where lithium intercalates in linear tunnels. They are not expensive but the
energy density is low because of the presence of iron. Moreover, it is difficult
to estimate the SOC due to the cell potential that is constant for about 80 %
of the lithium variation.

To withstand voltages higher than 2 V, non aqueous organic solvents are used,
such as ethylene and propylene carbonates (cyclic type) or dimethyl, ethyl methyl
and diethyl carbonates (linear). New applications include fluorinated organic
solvents and solvents containing boron or sulfur [11]. Salts are used to increase
the ionic conductivity and they do not take part in the chemical reactions.Lithium
hexafluorophosphate (LiPF6) is the most used. Some products of the decomposition
of solvents and salts lead to formation of the solid electrolyte interphase (SEI),
which is an electrically insulating layer but does not affect the ionic conductivity,
and it prevents further reaction of the solvent with the graphite contained in the
electrode. Additives are used to control the formation of SEI, to avoid thermal
runaway, to protect from overcharge and to act as flame retardant [12].
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Figure 2.3: Electrode crystal structure in which Li+ ions intercalate through the
1-D (c), 2-D (a), and 3-D (b) frameworks [10].

Figure 2.4: Components of a lithium-ion cell and its operation [13].

A cell can fail because of errors during the design or manufacture processes, or
during use because of uncontrolled operations, abuse or aging.

Corrosion, SEI formation and growth of crystals, called dendrites, lead to
aging, with the result of reduced capacity and increased internal impedance and
self-discharge.
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2.3 Future of battery cells
Research on energy storage technology is pushed by the increasing demand of EVs
and by the requirements on their performances. The need for high range and fast
charging time implies high specific energy and energy density, resistance to high
currents and temperatures.

Present batteries for automotive application offer energy density very close to
600 Wh/l and specific energy of about 250 Wh/kg at cell level. Obviously, when
considering the battery pack, the two values will be lower, because of the added
materials and the required space to assembly all the cells together, not contributing
to the energy storage.

Appetible because of its high energy density, to enable the use of silicon in the
negative electrode structure, Nanowire technologies help in controlling the volume
change during intercalation and deintercalation, hence to increase the cell lifespan
[14].

Another promising type of battery cells, is the Zinc-air, which presents a zinc
anode and an air cathode. The design of the cell is based on the It features low
cost and very high specific energy (about 1000 Wh/kg). Electrolytes inspired by
processes relative to the human breathing system, increase ionic conductivity and
dimensional stability, with the result of better performances and extended cycle-life
[15].

The development of solid state electrolytes is pushed by the need to overcome
the limitations of liquid electrolytes, such as high decomposition at high voltages,
resistivity of the SEI and risk of thermal runaway. Since the solid electrolyte do
not suffer decomposition, high voltages and high temperatures can be reached, thus
the cooling system serves no purpose, leading to money savings [16].

2.4 Electric powertrain
The powertrain of an electric vehicle includes the battery pack, power electronics
devices and the electric motor. A vehicle can be provided with one or more electric
motors, even one each of the wheels. The connection between the electric motor
and the wheels is in charge of the transmission, which generally features a fixed
reduction ratio for the gearbox, since the electric motor is able to cover a wide
range of rotating speeds. The electric motor presents a constant torque zone and
a constant power zone. The first is limited by the current that flows through
the power electronics, the second depends on the maximum rotating speed of the
motor.

Between the electric motors and the battery pack, some devices are required to
convert the DC power provided by the battery into AC power to be delivered to
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the electric motor, or the opposite, namely to convert the AC power developed by
the motor during the "regenerative braking" into DC power to recharge the battery.

Figure 2.5: Diagram of an electric vehicle.

The first operation described is performed by the inverter, that is able to generate
a sinusoidal wave for the voltage, as required by the electric motor. The component
at the base of the inverter operation is the switch, that controls the conduction
across a certain circuit. By cyclically varying the duty cycle of the switch, that is
the percentage of the switching period during which the device is ON, the mobile
mean value of the voltage assumes a sinusoidal profile.

The rectifier instead executes the reverse operation, by selecting as output
the actual maximum of the three voltages produced by the electric motor, hence
delivering to the battery pack an almost constant voltage, at least not periodical.

Another device is the DC-DC converter, that reduces the high voltage of the
battery to be applied to the inverter, or amplifies the voltage produced by the
rectifier to feed the battery.

The energy path that goes from the battery to the wheels, or the way back, is
not fully efficient. Each step presents some electrical or mechanical losses. Power
electronics present switching and conduction losses, so the conversion efficiency of
the devices is generally as high as 95÷98 % and the mechanical efficiencies of the
transmission and the electric motor are higher than 90 %.

The traction system includes some components that support the battery pack
operation.

To disconnect the battery pack from the load when not in use, two high-current
capable relays, called contactors, are used. A third pre-charge contactor is needed
to avoid big currents when closing the two main contactors, in case the load has
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capacitive nature. Also fuses are present to isolate the battery in case of problems
during charge or in the event of a crash.

Since the temperature of each cell must be maintained within a certain range, a
dedicated system is included in the battery system. This issue is investigated in
section 4.1.

The mentioned DC-DC converter connects the high voltage battery pack also
to a 12 V circuit. It includes the auxiliaries, that is to say lights, windows, power
steering and brakes, passenger compartment air conditioning and others, and the
related 12 V battery.

Finally a control unit is essential to coordinate the different players on the basis
of the actual or the predicted state of the battery system. This is the aim of the
battery management system.

2.5 Battery Management System
The battery management system (BMS) is an embedded system to properly manage
a battery pack, so it includes both hardware and software parts.

The chipset must be selected according to the number of cells to be monitored,
if active or passive balancing is used, required accuracy and points of temperature
measurement and most of all cost. The BMS has a hierarchical design: it features
a master, which controls the contactors between battery pack and load and the
thermal management, and communicates with BMS slaves, which are welded to
the modules to minimize wiring. They have to measure the voltage of each cell of
the module and to balance the energy.

Figure 2.6: Diagram of BMS modules.

Some purposes of the BMS are to protect the operator in case of maintenance
and to protect the cells in case of damage or failure. It can prolong the battery life
by controlling the power limit and avoiding overcharge and overdischarge, while
guaranteeing the functional design requirements.

The functionalities of the BMS are:

• measurement of voltage, current and temperature,
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• protection from abuse,

• interface,

• performance management,

• diagnostics.

The voltage of each cell is needed for balancing, for estimating SOC and SOH and
for safety, so as to avoid overcharge. The basic voltage measurement is performed
using analog-to-digital converters (ADC).

The temperature affects some operational characteristics such as the internal
resistance, and can cause some unwanted events such as the lithium plating when
charging at low temperature. Cell internal temperature can be estimated through
an accurate model, while sensors can be placed on the module.

The current cannot be measured directly, but computed from a voltage mea-
surement, by means of two devices. A resistive shunt current sensor measures the
voltage not at the connection terminals, but in correspondence of small screws,
where a certain resistance is calibrated. The other device exploits the Hall effect:
a coil is wrapped around the wire where the current needs to be measured flows,
obtaining a second current that is induced in the coil. There is no direct electrical
connection, but a feedback circuitry is needed to check magnetic hysteresis.

The BMS is in charge of controlling the contactors, so the connection of the
battery pack with the load. The negative contactor is the first to be closed, then
the pre-charge contactor allows the current to rise gradually thanks to its resistance.
As this current is close enough to the battery pack current, the positive contactor
is closed and the pre-charge one is opened.

Figure 2.7: Diagram of battery pack connection and contactors.

While for a 12 V battery it is safe to ground it to the vehicle chassis to reduce
wiring, a battery pack must be well isolated: according to FMVSS a current lower
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than 2 mA is safe for human body, which means that the isolation resistance
between battery pack and vehicle ground must be greater than 500 times the
battery voltage [17]. The BMS needs to check the isolation resistance.

As mentioned, temperature affects some cell parameters and is responsible for
some degradation mechanisms. Overcharge causes a temperature rise in the cell,
moreover if done at low temperature, it leads to lithium plating. The growth of
the SEI layer causes further thermal isolation and so temperature rises. Short
circuits can occur when the separator melts due to high temperatures, enabling
high currents. The heat that generates induces the breakdown of the electrolyte
and the formation of gasses that are flammable. A uniform aging of the cells can
be obtained keeping a uniform temperature across the battery pack. Cells can be
warmed up when temperature is too low to avoid damage. Thermal management
can be performed using air cooling or liquid cooling.

The BMS has to ensure that all the cells work in the safe operating region
considering voltages, currents and temperatures and the protection circuit must
react quickly in case of short circuit or uncontrolled release of energy. Faults can
be detected by the BMS slaves, which are able to disconnect the pack and their
communication with the master needs to be very quick and free of electro-magnetic
interferences. When one or more cell parameters are in the “failure zone” (specified
by the cell manufacturer) of figure 2.8(a), the cell is permanently damaged.

The safe operating zone is described by a certain temperature value as in figure
2.8(b), over which the thermal fuse disconnects the pack, a threshold in the current
value, checked by the electronic protection and a function of the two parameters:
the resettable fuse disconnects the pack until the current and the temperature
decrease again in the safe operating zone. Electronics also monitor the voltage
values and the battery is disconnected in case of overvoltage for the battery or
the charger, or undervoltage for the battery or the load. All the events that are
out-of-tolerance are recorded, together with their duration.

Communication in the automotive environment requires a robust protocol
because of the high quantity of electrical noise. The CAN (Controller Area
Network) protocol manages the messages to be exchanged between the processors,
the priority and sequence, and the transmission speed, that is high (1 Mb/s) for
critical operations such as engine management, or low (100 kb/s) for operations
such as switching lights or opening the windows. Messages are packets of about 60
bits divided in fields, according to the different information to be transmitted.

To allow a proper management of the performances of the battery pack, for
instance the available energy and the instantaneous available power, cells SOC,
capacities and resistances must be estimated. Poor estimation methods abruptly
correct overcurrent or overvoltage events and force an overdesign of the pack to
make up for the uncertainties.

A model of the battery pack can be intergrated into the BMS software to monitor
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Figure 2.8: Current-temperature (a) and voltage-temperature (b) protection
mechanisms design [18].

or even to predict the state of each cell, starting from the variables that can be
measured or estimated, which are current, voltage and temperature. Once the
present or future state is known, the proper control of the battery can be applied
to comply with driver request and respecting the battery system limits.
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Chapter 3

Models for lithium-ion cells

In this chapter the two main models to predict the behavior of a cell are presented.
The first is based on empirical observations, which means on the parameters

that can be measured at the cell terminals. It is not a description of the cell’s
internal components and internal behavior and for this reason it is not capable of
predicting the degradation of the cell.

The second model is based on physics, so on the electrochemical mechanisms
that occur inside the electrodes. Hence the latter is more accurate and is able of
predicting the behavior considering all the possible reactions that occur inside the
electrodes or electrolyte materials.

3.1 Equivalent circuit model
This model is built using simple electrical elements that approximate the cell
behavior.

Starting from the simplest description of a cell, it can be modeled as a voltage
generator. Actually, the voltage that is registered at the cell’s terminal when it
is fully charged, is higher than the voltage measured when the cell is discharged.
The first improvement is the relation of the open circuit voltage with the state
of charge, (defined with z) of the battery cell. The coulombic efficiency can be
included in the formulation to account for the quantity of charge that does not
enter the cell because of side reactions. The relation between OCV and SOC varies
according to the cell chemistry and the temperature.

ż(t) = −η(t)i(t)
Q

(3.1)

When the cell is charging, the measured voltage is slightly higher than the
OCV at the same SOC, while it is lower when a load is connected and the cell
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Figure 3.1: Relation between OCV and SOC for different cells chemistries (a)
and relative equivalent circuit (b) [13].

is discharging. This effect can be modeled by adding a resistance in series to the
circuit, so the voltage at the terminal is:

v(t) = OCV (z(t))−R0i(t) (3.2)

Figure 3.2: Equivalent circuit with ohmic resistance [13].

When looking at the voltage behavior as a result of a current pulse, it can be
noticed an instantaneous voltage drop as the load is connected, then the voltage
decreases at a much lower rate. As the load is disconnected, after an instantaneous
increase the voltage stabilizes within some time. This effect is due to the diffusion
of lithium atoms inside the electrodes, which is a slow process.

An infinite series of RC pairs, defined as Warburg impedance, can be used to
model it. Actually, one or few RC pairs are enough to provide a good model, as a
trade off between accuracy and simplicity: one RC circuit models the short time
constant and a second one models the long time constant. The two can be included
in the model, so the diffusion voltage is added to the voltage equation.
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Equations 3.3 and 3.4 and figure 3.3 are now reported for a model that includes
just 1 RC pair.

diR1(t)
dt

= − 1
R1C1

iR1(t) + 1
R1C1

i(t) (3.3)

v(t) = OCV (z(t))−R1iR1(t)−R0i(t) (3.4)

Figure 3.3: Voltage response to a discharge pulse and effects of the lithium
diffusion (a) and equivalent circuit with one RC pair (b) [13].

Another drift from the OCV is due to the hysteresis, but in this case there is not
any voltage recovery as time flows. This means that, as the cell rests, hysteresis
voltages do not change, while diffusion voltages decrease to zero. Hysteresis is due
to mechanical stress, caused by the intercalation and deintercalation processes of
lithium in the electrodes. Also, thermodynamic effects participate to the hysteresis,
because related to the energy of particles and so to the insertion rate of lithium in
the electrodes [19].

Figure 3.4: Voltage variation during charging and discharging due to hysteresis
(a) and equivalent circuit that includes hysteresis modeling (b) [13].
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The variation of the dynamic hysteresis voltage h(z, t) as function of the SOC
is given by

dh(z, t)
dz

= γsgn(ż)(M(z, ż)− h(z, t)) (3.5)

where γ is index of the rate of change of the hysteresis with respect to SOC and
M(z, ż) is the maximum polarization due to hysteresis, that is positive for charging
because the SOC increases.

3.2 Physics based model
Since equivalent circuit models are not constructed considering the real components
of a cell, they are not capable of modeling many of the mechanisms that occur in
the device.

The possibility of simulating those mechanisms enables the batteries to operate
at their physical limits [20]. The intercalation of lithium atoms in the electrodes
can be simulated under all possible conditions of temperature and current rate,
so eventual secondary reactions or damages to the electrodes structure can be
predicted. Hence an electrochemical model that is based on physics is able to have
an updated description of the cell as it ages because of lithium consumption or
active material dissolution [21]. If the internal state of the cell is known, the BMS
can operate the battery so that degradation is minimized [22].

PBMs are very complex, both conceptually and computationally, but they
can be reduced to a form that requires the same computational power as ECMs.
The construction of the model starts from the smallest scale, then the model is
progressively simplified as a bigger scale is considered.

Figure 3.5: Diagram of the ECM and PBM approaches for modeling lithium-ion
cells.

The smallest scale is called molecular scale, where processes at the atomic level
are analyzed, such as those that influence the OCV and the diffusion of lithium
atoms. Actually OCV and lithium diffusivity can be easily measured. At this scale
are derived the partial differential equations (PDE) that describe the dynamics
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and kinetics of a lithium-ion cell: the mass and charge conservation equations for
both the electrode and the electrolyte and the lithium exchanged between solid
and electrolyte in terms of flux density, known as Butler-Volmer equation.

The charge conservation equation in the electrode material is defined by

∇ · is = ∇ · (−σ∇φs) = 0 (3.6)

where is is the current density in the solid material, σ is the bulk conductivity and
φs is the electric potential in the electrode.

The mass conservation in the electrode material is defined by

∂cs

∂t
= ∇ · (Ds∇cs) (3.7)

where cs is the lithium concentration in the electrode material and Ds is the
material diffusivity.

The mass conservation in the electrolyte is instead defined by

∂ce

∂t
= ∇ · (De∇ce)−

ie · ∇t0+
F

−∇ · (cev0) (3.8)

where this time the lithium concentration, diffusivity and current density are
referred to the electrolyte material. F = 96485Cmol−1 is the Faraday’s constant,
t0+ is the rate at which cations are transferred with respect to the solvent and v is
the velocity of the specie.

The charge conservation in the electrolyte is given by

∇ · ie = ∇ ·
A
−K∇φe −

2KRT
F

A
1 + ∂ ln f±

∂ ln ce

B
(t0+ − 1)∇ ln ce

B
= 0 (3.9)

where K is the ionic conductivity and f± is the mean molar activity coefficient.
Last equation is the lithium exchange between solid and electrolyte materials:

j = i0
F

;
exp

A
(1− α)F
RT

η

B
− exp

3
−αF
RT

η
4<

(3.10)

where α is a charge transfer coefficient and η is the reaction overpotential.
For all the equations (∇) and (∇·) operators are respectively the gradient and

divergence operators.
Next step is the particle scale, where small volumes are considered. Particles

representing the solid electrode material are present in the volumes, while the
void between the particles is filled up by the electrolyte, both parts considered as
homogeneous materials. The geometry of the particles and of the volume needs
to be defined, considering that some particles are truncated by the cube surfaces.
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Figure 3.6: Particles and electrolyte inside a small volume of the electrode [13].

Mass and charge conservation equations are applied to both solid particles and
electrolyte, while boundary conditions need to be defined at the interface between
solid and electrolyte and at the edges of the volume.

To simplify the model, the whole electrode is substituted by a single particle
(SPM) of solid electrode, with spherical shape and divided in spherical shells. The
lithium is distributed in between the shells and it moves towards the inside or
outside the external shell and among the shells as result of the applied current.

The continuum model assumes that the small volume we consider is filled up
by a substance whose characteristics are the average of the characteristics of the
materials present in the volume. Hence, considering the electrode material, the
presence of electrolyte between the particles is neglected.

The resulting model has not poor accuracy since the considered length scale is
much bigger than the particle radius. Each position (x, y, z) defines a point that
could be both in the electrolyte or solid electrode material and the behavior of the
material in the neighborhood of the point is known. This consideration applies to
all the quantities regarding the cell.

Next step is to consider only one dimension (x), that defines the position between
the current collector of the negative electrode and that of the positive electrode.
The spheres of radius Rs that model the electrode particles are centered at each x
position. A “pseudo dimension” (r) describing the lithium concentration is placed
beside the x position, for this reason this model is called “pseudo-two dimensional”.

The model is still too complex for real time simulations because an infinite
number of pseudo-two dimensions is present, and for each position the equations
describing all the cell states need to be solved. The hint is to pass from PDEs to
ordinary differential equations (ODEs), so to reduce the functions to a small order,
that is still capable of returning good results.

PDEs are transformed to transfer functions, then the discrete-time realization
algorithm (DRA) converts the transfer functions into state-space form, giving
information about input and output, but also about the internal state of the system.
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Figure 3.7: Schematic of the P2D electrochemical model of a cell [23].

A discrete-time formulation of the final state-space model of an LTI system is

x[k + 1] = Ax[k] +Bu[k] (3.11)

y[k] = Cx[k] +Du[k] (3.12)

where x[k] is the state of the system and u[k] is the input, while the matrices A,
B, C and D are obtained from the continuous-time formulation of the state-space.

It is now possible to predict the values of the reaction flux and of the potential and
lithium concentration for both solid electrodes and electrolyte using the resulting
reduced order model (ROM) [24]. These quantities are contained in the output
vector.

y(t) =



φ̃s−e(z, t)
j(z, t)
c̃s,e(z, t)
φ̃s(z, t)
φ̃e(x, t)
c̃e(x, t)


(3.13)

All the values are referred to each of the four locations of figure 3.8, namely to
x = 0, x = Ln, x = Ln + Lm and x = L, hence each component of the output
vector y(t) is a vector of four elements.

A diagram that represents the variables that can be computed for the negative
and positive electrodes and for the separator, is presented in figure 3.8. Electrodes
potentials on both sides, namely the current collector and the separator sides of
the electrodes, surface and average lithium concentrations, reaction fluxes can be
evaluated for each position across the cell. Notation z in figure 3.8 represents a
spatial variable within the electrodes, not the SOC as used in equation 3.1.

To further improve the model, the temperature variation can be considered.
The heat generated by the cell or exchanged with the surroundings, results in a
variation of the temperature of the cell. As seen in section 2.5, the temperature, in
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Figure 3.8: Variables relative to positive and negative electrodes and separator
[24].

turn, affects some operational parameters or even can accelerate some degradation
mechanisms.

Once the computational complexity has been reduced using ROM, still a very
high quantity of data is required. It requires many characteristics of the components
of the cell, as dimensions and thermal parameters of both electrodes and of the
separator, and at a much smaller scale the particles dimensions, electrodes porosity
and electronic conductivity, ionic conductivity and others [25, 23, 26].

3.3 Selection of the model
The poor availability of specific and detailed data about the cell, makes the PBM
of a battery cell unachievable in the present work.

On the other hand, an ECM allows a fast prediction of the electro-thermal
behavior of the modeled cell, with the need of data that can be measured [27].
Relations of the OCV to the SOC of the cell can be evaluated for different cell
temperatures performing charging and discharging tests, and parameters to be
used in the equivalent circuit can be extracted [28].

Generally, the quantities that are measured or estimated, are affected by sensor
and process noises, introduced and accumulated in open-loop methods as the
Coulomb counting. Closed-loop estimation methods are more robust in the SOC
estimation, indeed they require a high computational power. An ECM can be
provided with filters or observers, that are able to cancel the noise and provide
automatic convergence. The most used family of dedicated algorithms are the
Kalman filters.

The Kalman filter performs a prediction of the present state of the system, on
the base of all past data, and an estimation by updating the predicted state with
the present data, as introduced in section 5.3. The results from ECMs can be
sufficiently accurate in simulating the state of the cell. In some case, such as [29],
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the computed voltage is enough accurate even without any Kalman filter.
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Chapter 4

Thermal analysis and aging
mechanisms

This chapter is dedicated to the analysis of two fundamental aspects of a battery
cell. They are critical issues since affecting the performance, life and safety of the
battery cell. One is the influence of the temperature on the operation of the cell,
dependent on the variation of the cell parameters values. The second aspect is the
aging of the battery, consequence of undesired reactions or structural damage, and
accelerated by certain conditions.

An overview is presented to understand the bases of the thermal model and the
aging model which will be integrated with the electrical one.

4.1 Thermal analysis
To preserve performance, safety and life of the battery, lithium ion cells need to
work in a certain temperature range, which spans from 20 °C to 40 °C [30]. Inside
this interval, the behavior of a cell changes, generally without safety problems. In
turn, the cell performance is dependent on the parameters that describe the cell.

As seen in section 2.5, the temperature is monitored to avoid the cells to work
under unsafe conditions.

A thermal model integrated in the BMS system is necessary to predict the
temperature of the core of the cell. in fact it is not possible to physically measure
it. Moreover, it would have been difficult to gauge the temperature of a battery
pack made up of more than 7000 cells, as in the case of Tesla cars.

When cells are being charged, one can reach a temperature a few degrees higher
or lower with respect to a close cell, such as 33 °C and 27 °C. It is not a problem
for the cell that it is at 33 °C, also because it is not too high. The temperature
difference between the two is instead what must be avoided to reduce the risk of
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Figure 4.1: Variation of different cell parameters with respect to temperature
[13].

localized damage [31]. Hence some temperature homogeneity should be guaranteed
among the cells of the battery pack, so that cells behavior is not affected by diversity
in parameters. the temperature difference should be lower than 5 °C [32].

Some studies have even analyzed the thermal behavior for different configurations
of the cell, specifically of the pouch type. Different sizes for the electrodes are
considered, with the result of a higher maximum temperature registered in the case
of higher aspect ratio, because of the smaller volume. Also current collectors tabs
location and dimension is investigated. The conclusion is a negligible influence of
the tab placement on the maximum temperature and temperature distribution. On
the other hand, the tab dimension has a big impact on the maximum temperature,
which can be significantly reduced with increasing the tab dimension [33, 34].

The temperature gradient inside a cell is affected by thermophysical properties
[35]. This leads to different aging rates across the cell. Keeping tabs on the
maximum temperature and temperature heterogeneity, considering both the cases
of single cell and entire battery pack, is crucial to maximize the life-cycle of the
lithium ion cells [31].
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4.1.1 Temperature control
A thermal management system is required to maintain the operating temperature
inside the desired range. if the cell temperature exceeds the two limits, performances
and stability can decline. Moreover, in case of extreme temperatures, thermal
runaway can arise, with consequent risk of fire or explosions.

Low temperatures cause an increase in the electrolyte viscosity hence, the
increase in the internal resistance of the cell [36]. This results in a decrease of the
terminal voltage and so of the cell performance.

Dealing with very low temperatures, around -20 °C, battery efficiency is highly
affected [37]. Specifically, the poor battery efficiency at low temperatures is not due
to a physical reduction in the capacity, but to the reduction of the rate (discharge
capacity) at which charge is delivered from/to the cell, as a consequence of the
parameters variations due to the change in temperature.

To control the temperature of the battery pack cells, cooling systems can be
used. They are able to extract a portion of heat from the cell, by convection with
air or with a cooling fluid.

Figure 4.2: Example of cooling system of a battery pack [38].

When air is the fluid that is in charge of absorbing part of the heat, two methods
can be used. With passive air cooling (as in Nissan Leaf), the heat generated by
the cells is transmitted through conduction to the external case of the battery pack,
which in turn dissipates the heat to the ambient air. A more effective solution is
the active one, where the air conditioning system serves not only the passengers
compartment, but also the battery pack, in order to control the cells’ temperature.
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When dealing with forced air systems, a “spacer” is placed in between the cells.
This component, in addition to the function of keeping aligned the cells, allows the
air to flow in between the glass-filled nylon material, improving the heat exchange
of the cells to the air [31].

The thermal management system can be designed to heat up the battery pack
in case of low temperatures, beside the cooling task.

Because of the low thermal conductivity and heat transfer efficiency of air,
natural and forced air cooling systems are not so effective in dissipating the heat.
This is even more crucial considering the need for fast charges, which means
increasing the charging current and as consequence the thermal power developed.
On the other hand, although the higher effectiveness of liquid cooling systems in
controlling the cells temperature, a higher system complexity leads to higher costs
[39].

4.1.2 Thermal model
An electro-thermal model of the battery cell or battery pack is useful to predict the
device behavior and coordinate the traction system and the thermal management
system with the proper control. The model is also helpful in the design phase, to
compare different battery pack configurations.

According to [27], a Thévenin circuit to model the electrical part coupled
with a model to predict the thermal dynamics, provides acceptable accuracy and
mathematical simplicity in simulating the battery behavior. In particular, just one
RC pair is sufficient to comply with this compromise, since the transient phenomena
can be well modeled because of the low C-rates that are applied on electric vehicles.
For all the pieces of the circuit, the relation with the SOC and temperature is
defined using look-up tables. The actual state and behavior of the system is found
by interpolating the data for the working condition.

The heat generated inside a battery cell during its operation can be split into
the two components: irreversible heat and reversible heat. The irreversible heat is
generated by the internal resistances of the cell, known as Joule effect. The ohmic
resistance and the resistances of the RC branches can be considered for the purpose
[29, 40].

Pth = R0i
2 +

NØ
i=1

Rii
2
Ri

(4.1)

The current i is the battery current, that passes across the ohmic resistance R0.
The index of the summation and subscript of the resistance i indicates the different
RC branches, hence Ri is the resistance of the i-th branch and iRi

is the current
flowing through that resistance.
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The entropy effect is instead responsible for the generation of the reversible heat.
As to whether the cell is charging or discharging, this quantity can be negative or
positive. Moreover, it is strongly dependent on the SOC of the cell.

˙qrev = iT
∂Uavg

∂T
(4.2)

In [41] are analyzed the heat generation mechanisms, resulting in a 54 % contri-
bution from the ohmic resistance to the total heat generation, then electrochemical
reactions contribute for about 30 %. The remaining heat is developed within the
polarization process.

4.2 Degradation factors
One big trouble with batteries is the reduction in the energy they can store and
deliver. The result is the reduction of the electric vehicles range, which is itself
already limited. With the progressive degradation, when some capacity conditions
are reached, the battery pack needs to be substituted.

The related problems are the cost of the new battery pack and the handling
of the old one. For what concerns the latter, a “second life” can be implemented,
that is the use of the pack for stationary energy storage, as the case of supporting
renewable energy [42]. One example is "the Battery Storage Unit" on the EUREF
Campus of Berlin. Twenty battery packs from Audi e-tron are employed for storing
the excess of energy produced by the photovoltaic and wind power systems, and
use this as support of the grid in case of fluctuations. New processes for recycling
the cells are enabling a more sustainable disposal of the devices at the end-of-life,
moreover they permit the reuse of elements which are costly or ethically problematic
[43].

Figure 4.3: Example of "second life" application of battery packs [44].
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A cell reaches its end of life when the capacity reaches 80 %. Considering the
various applications of batteries, the expected lifetime for reaching this condition is
different. For the automotive industry the goal is set to 15 years, for smartphones
2 years, for aerospace applications at least 18 years [45].

The aging of a cell can be split in the two branches: calendar aging and cycle
aging. Calendar aging is not affected by the usage of the cell, whilst it depends on
the chemistry of the cell components, the SOC, the temperature and the elapsed
time when no charging or discharging events occurred. The factors that affect cycle
aging are the C-rate, DOD, number of cycles and the temperature at which cycles
are performed. For what concerns electric vehicles, the cycle aging has a big impact
on the battery pack, because of the high power involved during discharging and
charging processes.

Consequences of the cell deterioration are, among the others, capacity and power
fade. The capacity fade is the reduction in the quantity of energy that can be
stored in the cell, due eventually to both calendar aging, to processes which can
damage the cell or to undesired reactions. The same factors can be the cause of
power fade, that is the reduction in the maximum power that can be delivered by
a cell. Generally electric vehicles are provided with battery cells that are oversized
in power, meaning that they are able to provide a power that is higher than the
maximum power that can be handled by the power electronics or powertrain. As
seen in section 2.5, the limitation is given by the inverter design. Thus the power
fade is generally non-tangible.

4.2.1 Solid electrolyte interphase
One of the main causes for capacity reduction is the SEI formation, as introduced
in section 2.2. When considering the negative electrode, for instance made of
lithium-titanate-oxide (LTO), the potential of graphite is very low for almost all the
operational range in terms of SOC, which is good to obtain high voltage batteries.
On the other hand, this electrical potential value is below the stability zone for the
organic solvents used in electrolytes. The decomposition of the electrolyte solvents
occurs as it comes into contact with the lithiated graphite. The process gets faster
as the lithium concentration in the electrode increases, meaning that the battery
charges, because the graphite potential gets lower.

When batteries are produced, they are completely discharged, so the positive
electrode hosts all the lithium. As the cell is charged for the first time, a layer
of SEI forms. This is called the formation process, since the SEI insulates the
graphite from the solvent in the electrolyte and the layer growth is slowed down.

An undesired reaction is the consumption of lithium during the SEI film pro-
duction, ending in the decrease of the capacity. The porosity of SEI still permits
the lithium to intercalate and deintercalate, while the ionic conductivity decreases
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Figure 4.4: Diagram of SEI formation on the electrode surface [18].

and so the cell resistance increases. The result is a decrease in the capacity and in
the deliverable power. Nevertheless, the pores in the SEI allow solvent to reach the
graphite, so the formation of the passivating layer goes on even, if at a much lower
rate.

4.2.2 Secondary reactions on SEI
Some hydrofluoric acid HF can form from the reaction of water with the salt LiPF6
dissolved in the electrolyte [46]. This acid will corrode the SEI film and expose
fresh graphite to the solvent, thus increasing the layer. The HF can also dissolve
metals such as cobalt and manganese, causing the degradation of the electrode and
the poisoning of the electrolyte [47, 48].

Another undesired event occurs when lithium deposits on the graphite anode
instead of intercalating in the open structure, because of fast charging. The process
is promoted when temperatures are very low, being the diffusion of lithium in
the electrode, slower. This causes reduction in capacity, since part of the lithium
is no longer available for passing from an electrode to the other. Moreover, the
accumulation of lithium on the electrode surface, causes dendrites to build up and
perforate the separator, with the effect of short circuiting the cell [49].

The intercalation and deintercalation process is responsible for the electrodes
volume change. Even if expansion and contraction is limited, with cycles this
process can cause the cracking of electrode particles, which makes it easier for the
electrolyte solvent to reach the lithiated graphite, resulting in SEI growing.

The same passivating film formation can occur on the surface of the positive
electrode, even if in a weaker way, together with the acid attack and the electrode
poisoning. Inside the electrode structure, the lithium changes the molecular forces
between the particles’ molecules, depending if it occupies or not the site. This
phase transition effect is generally reversible, but when it occurs, capacity can be
reduced because lithium cannot enter a deformed site.
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Figure 4.5: SEI growth because of electrode particle cracking [18].

Literature works show that high temperature has a severe effect on cell lifetime
with different chemistry due to accelerated aging. The cause is the catalyzing effect
of the high temperatures, which stimulates the decomposition and side reaction
processes described [50]. As a loop, the series resistance increases due to aging,
which results in reduction of power capability of the cell and more internal heat
generation.

Figure 4.6: Secondary processes on the surface of the electrode material.

4.2.3 Algorithm for degradation analysis
Also in the case of aging, modeling can rely on representation of the electrochemical
processes or on the description by means of equivalent circuits. The first is obviously
more accurate, because it is a reproduction of the real system, whilst the latter is
built performing the parameterization of the observed behavior. Data acquisition
on aging phenomena requires time, furthermore it generally accounts for some
of the different parameters that affect the aging, such as temperature, depth of
discharge and C-rate [51].
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The theory of crack propagation is applied to the electrodes material to model
the cell damage due to cycling stress. In [52] a lumped parameter is used to describe
the damage mechanisms. The parameter L spans from 0, when the cell has all the
nominal capacity, to the value of 1 when the capacity is null. Thus, a value of the
lumped damage parameter equal to 0.2 corresponds to the end of life condition of
the cell. The damage parameter can be accounted for in a resistance, that is also
function of the temperature and the SOC, to be put in series with the ECM [52].

The code is able to update the parameters values of the circuit model during the
battery operation (online, which means in real time). It returns the increased values
of internal resistance and the decrease in charge capacity. Dynamic simulations of
some equivalent circuit models are able to output predictions that closely match
the results of more complex electrochemical models [53, 54].

The discharging phase is practically impossible to control, since it depends on
the driver requirements in terms of torque. For what concerns charging instead, a
regulation on the current can be actuated. The aim of the charging algorithm is to
optimize the charging time in view of the minimum aging.
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Chapter 5

Energetic framework

5.1 Energetic quantities

5.1.1 Pack related quantities
To obtain high performances from an electric vehicles, a high voltage is fundamental
to enable high power levels, both as output to the wheels and as input when charging.
The voltage that can be delivered by a cell is limited by the chemistry, but high
voltages can be delivered by connecting more cells in series. The total voltage of a
battery pack is: Vpack = ns · Vcell

Cells connected in parallel, instead enable high currents. The total current
delivered by a battery pack is: Ipack = np · Icell

The other nominal energetic quantities relative to the battery pack can be
deduced.
Qpack = np ·Qcell

Epack = ns · np ·Qcell · Vcell

Ppack = ns · np · Icell · Vcell

The number of cells connected in series ns or in parallel np is determined by
the following factors. The cost and size of power-electronics can be restrained by
limiting the voltage, hence the number of cells connected in series. A reduction
on the current, so of the number of cells connected in parallel, is beneficial for the
efficiency. This reduction in losses is pursued with the aim of reducing the cost
of wire, in fact a higher resistance is accepted to have a thinner section of copper
wires.

To calculate the actual available energy and power, SOC, total capacity and
internal resistance of all the cells of the battery pack at the present time should be
known. These quantities cannot be directly measured, so they need to be estimated
from the measurable quantities: pack current, cells voltages and cells temperatures.
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5.1.2 Capacity

The total capacity Q of a cell is the quantity of charge that is extracted from a cell
when it passes from a fully charged state to a fully discharged state.

Generally a cell is charged following a CC-CV profile, meaning that a constant
current is delivered to the cell until the maximum voltage is reached, then the
voltage is kept constant while the current decreases to an infinitesimal value. The
fully charged state corresponds to the condition of maximum voltage for the cell
after the CC-CV charging process, which is performed at a defined temperature
and considering the OCV after a certain time has elapsed [53]. The resulting state
of charge is 100 %. The discharged state corresponds to the condition of minimum
voltage, where the state of charge is 0 %.

The total capacity is measured in Ah, even if its unit derived from the SI is
the Coulomb, where 1C = 1A · 1s. The total capacity can decrease because of
degradation mechanisms and aging, hence it is dependent on the SOH, beside to
the C-rate and the temperature.

The discharge capacity is the quantity of charge that is removed from the cell
at a constant C-rate until reaching the minimum voltage, for instance the 1C-rate
discharge capacity is Q1C . It is dependent on the temperature and evaluated under
loading condition rather than at open-circuit.

The nominal capacity Qnom is the quantity of charge the battery is designed to
deliver. It is a constant value, different from the total capacity and the rated one,
and specified by the manufacturer.

Finally, the residual or actual capacity of a cell is the quantity of charge the cell
can deliver at present state, hence after eventual aging or damage. In any case,
the usable capacity is generally lower than the nominal charge capacity, because
some margin is kept to avoid damages, namely to avoid overcharge or overdischarge
cases.

Figure 5.1: Visualization of the different capacity definitions. [55]
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5.1.3 State of charge
One of the most important parameters in a battery cell is the state of charge. An
accurate definition relates the SOC to the quantity of lithium that is present in
the electrodes. For example, a charged cell presents a lot of Li in the negative
electrode. Lithium stoichiometry at time k can be defined as the ratio between the
average concentration of Li and the max concentration.

θk = cs,avg,k

cs,max

(5.1)

Figure 5.2: State of charge of the cell compared to the average lithium concen-
tration in the negative electrode [18].

This value will be a quantity between 0 and 1 respectively for a SOC of 0 %
and 100 % for the negative electrode. Hence, for the two electrodes: θneg

0% < θneg
100%,

θpos
0% > θpos

100%.
For both the positive and negative electrodes, the SOC relative to the lithium

concentration is defined as follows [53].

z(t) = θk − θ0%

θ100% − θ0%
(5.2)

The voltage of a cell depends on the surface concentration of lithium. For this
reason there is no direct correlation between voltage and SOC.

Lithium stoichiometry and average concentration in the electrodes cannot be
directly measured, so SOC should be computed using the quantities that can be
metered, as the voltage. Actually voltage is related to the surface concentration
of lithium, while SOC depends on the average concentration of lithium in the
electrodes. The quantity of lithium stored in the electrodes is directly related to
the current that charges or discharges the cell, so a relationship that derives is
the Coulomb Counting. It updates the SOC of the cell considering the quantity
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of charge (the current involved for the considered period of time) that has been
extracted from or delivered to it [53].

z(t) = z(t0)− 1
Q

Ú t

t0
η(t)i(t)dt (5.3)

It is useful to derive a discrete-time formulation of the SOC, to be used into the
MATLAB model or into the BMS software.

zk+1 = zk −
ηkik∆t
Q

(5.4)

In the two relationships, η represents the coulombic efficiency, defined as the
ratio between the total charge extracted from the cell and the total charge put into
the battery. Generally its value is equal to 1 for lithium-ion battery cells [10, 53].

5.1.4 Equivalent circuit model
The equivalent circuit model presented in section 3.1 can be derived in a discrete-
time form, where equation 5.4 is coupled to the following two:

iR1,k+1 = e
−∆t

R1C1 iR1,k + (1− e
−∆t

R1C1 )ik (5.5)

vk = OCV (zk)−R1iR1,k −R0ik (5.6)

5.1.5 State of health
Battery cells present a reduction of the performance when they are aged or degraded.
Side reactions and damages to the electrodes structure can reduce the lithium
availability, while the SEI layer can increase internal impedance and reduce charge
and discharge efficiency.

To have an accurate description of the state of the cell, considering SOC, available
energy and available power, the actual degradation of the cell should be known.

The quantities that describe a change in the cell performances can be used to
estimate the battery health, as the residual capacity or the internal resistance.

SOH(t) = SOH(t0)−
s t

t0
|i(t)|dt
N Q

(5.7)
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5.2 Data collection
The characterization of a battery cell and the extraction of the parameters needed
to build the ESC model, require some tests under particular conditions. Each cell
is connected by means of a 4-wire setup to a computer that is capable to control
and acquire information about voltage, current and temperature of the cell. The
device is called battery cell cycler.

As mentioned in 2.5, the Kelvin connection is used to sense the battery pack
current. The two large terminals are connected to the negative wire of the battery
output. The current flows through the plates, which form the calibrated resistance
between the two small terminals. An ADC is connected to the small terminals to
sense the voltage drop across the calibrated resistance, so the current flowing can
be calculated.

i = vshunt

Rshunt

(5.8)

The shunt resistance should be small to avoid heating through Joule effect and so
power loss, hence the voltage measured is small and should be amplified.

Figure 5.3: Current shunt for measuring battery current.

To sense the battery temperature, a thermistor and two additional wires are
required for passing the information to the cycler.

Cells must be tested ad different temperatures to analyze the cell behavior
and to derive the parameters relations with temperature. An environmental test
chamber is used to simulate the desired ambient temperature.

The first test is executed to plot the value of the cell voltage at each point of
the SOC. To have an homogeneous temperature across the cell, the cell rests for
two hours at the temperature of interest, before the test starts. The fully charged
cell, is then slowly depleted until the voltage reaches the minimum value defined
by the manufacturer.

The output current is constant and set to a rate value of C/30. The small
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current is selected to avoid effects of dynamics and to maintain an almost constant
temperature, averting Joule heating.

The same procedure is applied for the charging test. The fully discharged cell is
placed for two hours in the environmental chamber at the set temperature, then
it is charged at a constant C/30 current rate as far as the maximum voltage is
reached.

After each of the discharging and charging tests, the cell is soaked at 25 °C for
two hours to check if the voltage is lower or higher than the minimum or maximum
voltage, since OCV depends on temperature and because the ohmic resistance can
cause a high voltage drop at extreme temperatures. Then the cell is slowly charged
or discharged until reaching the maximum or minimum voltage.

To determine the coulombic efficiency, the total charged and discharged charge
quantities in Ah are recorded, again for different temperatures. For instance, the
coulombic efficiency at 25 °C is defined as

η(25 °C) = total discharged Ah at 25 °C
total charged Ah at 25 °C (5.9)

The result, when considering different test temperatures, is a value lower than 1.
In case of different lithium ion cells tested, the coulombic efficiency is generally
higher than 98 %.

The parameters of the model that describe the cell response can be identified
with a current pulse discharging test, by measuring the cell voltage.

As the current is applied, it ramps up in ms. The effect on the voltage is a
sudden drop, due to the ohmic resistance, while a further and slower drop is due
to the lithium diffusion, as identified in 2.5. The current is maintained until the
voltage stabilizes, then it is removed, with the effect of an immediate voltage
increase and a successive slower recovery.

At this point the value of the ohmic resistance R0 is extracted from the instan-
taneous voltage increase when the current pulse is removed.

R0 =
----- ∆v0

Ipulse

----- (5.10)

The resistance R1 of the R-C pair is instead computed from the slower voltage
recovery. The considered voltage ∆v∞ is the difference between the total voltage
recovery and v0, and assumed to be equal to the sum of the voltage drops due
to the current pulse across the two resistances. The diffusion resistance is thus
computed.

R1 =
-----∆v∞Ipulse

-----−R0 (5.11)

Finally, the value of the capacitor C1 is estimated assuming that the voltage is
stabilized after a period of 4 times the time constant of the R-C circuit, from when
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the current is removed.
C1 = trecover

4R1
(5.12)

Figure 5.4: Current pulse and voltage response for computing cell parameters.

All the extracted values, namely the OCV profile and the electrical parameters
of the cell, are stored in look-up tables, where each entry is defined for a certain
SOC and temperature.

5.3 Estimation algorithms
A deeper analytical analysis of what is presented in section 5.1.3 returns that the
cell SOC can be estimated using the measured voltage and comparing it with the
OCV. This relation is accurate only if the actual voltage is metered after resting.
Ohmic and diffusion voltages can be subtracted from the voltage measurement.

Anyway, the SOC is very sensitive to the change in voltage. For instance, a very
small variation in voltage, in the order of tens of mV, leads to a high increase or
decrease in SOC for the blue and dark green curves. Around 3.3 V, the SOC ranges
from a value of about 30 % to about 70 %. The result is a very noisy relation of
the SOC with respect to the voltage. Some noise can be filtered, but this action
introduces a time delay in the voltage estimation.

Using the current to estimate the SOC is more intuitive. The amount of charge
that flows inside or outside the battery can be calculated using the current and the
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Figure 5.5: SOC as function of OCV for six lithium-ion chemistries.

SOC can be updated knowing its initial value and the quantity of charge normalized
to the capacity of the cell.

The equation 5.4 that describes the coulomb counting for computing the SOC
of the battery cell, is correct. Actually the current that is considered is not
a precise value, since it is affected by many factors: noise, bias introduced by
the measurement, self-discharge and current leakage make the measured value of
the current different from the true value. Moreover, the values of capacity and
coulombic efficiencies are also approximations, which will lead to an error in the
estimation of the SOC.

The voltage and the current approaches can be blended to obtain a model-based
estimation method. It presents a “true system”, where the current at the input
and the voltage at the output are measured. The other branch is the model that
computes the voltage using the same measured current as the true system as input.

Figure 5.6: Diagram of the model-based estimation approach.

The system features diffusion currents and hysteresis voltages that must be
estimated. Moreover there are the uncertainties introduced by process and sensor
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noises. The first leads to a change in the state of the cell since the measured current
might differ from the true value, the latter gives a non-fully trustable measured
value. For this reason a comparison of the outputs of the two branches is performed.
The difference of the two voltages can be used as feedback to update the model
and consequently to improve the goodness of the state estimation.

Again, the voltage error is not truthful because of the errors in the measurement
and in the estimation, due to the model that is not a perfect description of the real
system.

Sequential probabilistic inference (SPI) can be used to estimate the state of a
system for which some observed values are noisy or incomplete.

xk = f(xk−1, uk−1, wk−1) (5.13)

yk = h(xk, uk, vk) (5.14)

The system is identified through a state-space description. xk indicates the present
state and is a function of the past state and input and is influenced by the past
process noise wk. The output yk is a function of present state and input and of
the sensor noise vk, so it is not the true voltage since it is affected by a certain
noise. Both noise signals are random and unmeasurable. uk is the cell current that
is measured and used as input for both branches of the model-based estimation.

Since the actual state is predicted using information about the past, the solution
is defined as “sequential”. The term “probabilistic” is related to the process and
sensor noises, which are random signals.

In figure 5.7 the system evolution with discrete time k of the state and output is
illustrated. The state is not measurable, but it is possible to pass from the state xk−1
to the state xk using the conditional probability density function fX|X(xk|xk−1),
which accounts also for the process noise uncertainty. The system output yk

is instead observable, so it can be used for state estimation. The sensor noise
uncertainty is considered in the conditional probability density function fY |X(yk|xk).
The uncertainties lead to an error in the estimation of the state. Hence, beside the
estimation, it is necessary to know a certain interval of values that the state can
assume.

Being noise a random quantity, even repeating the same test, the observed
quantities are different because of noise influence. The random variables are the
quantities that cannot be precisely predicted, but for which the probability to
assume a certain value is known. The function that describes the likelihood of a
measurement X to assume the value x is the probability density function (pdf)
fX(x).

The Gaussian distribution is the most important probability density function,
also called normal distribution. For a pdf, some quantities can be defined, which
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Figure 5.7: Diagram of the sequential probabilistic inference concept.

are defined as “moments” of a statistical distribution. The first moment is the
mean of the distribution, which indicates the center of gravity of the function. The
mean value or expected value of the random variable X is given by

x̄ = IE =
Ú ∞
−∞

xfX(x)dx (5.15)

The difference between the random variable and the mean can be squared, and the
expected value of this quantity is defined as variance.

var(X) = IE[(X − x̄)2] = IE[X2]− x̄2 (5.16)

The standard deviation of a random variable X is simply σX =
ñ
var(X). Generally

a pdf is concentrated around the mean value and the variance describes how the
function is distributed around the mean. The lower the variance, the smaller the
interval in which the probability is higher. The variance is the second moment of a
distribution.

Finally, the Gaussian pdf of a random variable X that has mean x̄ and variance
σ2

X is given by

fX(x) = 1√
2πσX

exp

A
−(x− x̄)2

2σ2
X

B
(5.17)

which can be written in a more compact notation as X ∼ N(x̄, σ2
X). The empirical

rule for a Gaussian distribution states that 99.7 % of the observed data lies in the
interval ±3σ2

X around the mean.
When dealing with more random variables, these objects can be collected in a

vector. Each entry Xi of the random vector is related to a probable value xi of the
sample vector by means of the joint pdf. Also for the random vector, a mean or
expected value can be computed.

x̄ = IE[X] =
Ú ∞
−∞

Ú ∞
−∞

...
Ú ∞
−∞

xfX(x)dx1dx2...dxn (5.18)

The outer product of the vector is performed for computing the square correlation
matrix

ΣX = IE[XXT ] (5.19)
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The square covariance matrix is

ΣX̃ = IE[X̃X̃T ] (5.20)

being X̃ = X − x̄. The variances (ΣX̃)ii = σ2
Xi

of the scalar random variables are
placed on the diagonal. The other entries are proportional to the product of the
standard deviations of the random variables Xi and Xj

(ΣX̃)ij = ρijσXi
σXj

= (ΣX̃)ji (5.21)

The pdf of a random vector can be written as

fX(x) = 1ñ
(2π)n|ΣX̃ |

exp
3
−1

2(x− x̄)T Σ−1
X̃

(x− x̄)
4

(5.22)

The random variables collected in a random vector can be defined as independent
if and only if the joint pdf of the vector is equal to the product of the marginal pdfs
of each random variable. Moreover, two random variables Xi and Xj of a random
vector are uncorrelated if their standard deviations are finite and, for i /= j, the
covariance is null. This means that ρij = 0, and if all the random variables are
uncorrelated, the square covariance matrix is diagonal. The conditional pdf returns
the probability that X1 = x1 when X2 = x2.

fX1|X2(x1|x2) = fX(x1, x2)
fX2(x2) (5.23)

Finally a conditional expectation IE[X|Y = y] returns the expected value for the
random vector X, knowing that Y = y.

Given an introduction on probabilistic quantities, the steps for implementing
the solution of a Gaussian SPI is presented. This is the basis for the different types
of Kalman filters. The six steps can be grouped in two processes, which are the
prediction and the correction of the state.

The three steps of the prediction process are:

• 1a. time update of the state-prediction, based on measurements taken at the
previous time step,

• 1b. error-covariance time update, where the state-estimate error covariance
matrix is predicted using past information,

• 1c. prediction of the system output, knowing last time step output and
measuring the actual input.

The correction process includes the following three steps:
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• 2a. estimator gain matrix computation,

• 2b. update of the state-estimate measurement, which is revising the prediction
through a comparison with the actual measurement of the output,

• 2c. update of the error-covariance measurement.

The point of using a Kalman filter is to minimize the error in the estimation of
the state, or more precisely to find the minimum mean square error (MMSE). The
illustrated steps are valid for a linear system that presents white and Gaussian
noises. Generally the cell model is nonlinear, for this reason some methods to
approximate the system need to be applied. The three main strategies for coping
with nonlinearities are:

• the extended Kalman filter (EKF), which linearize the system around the cur-
rent state estimate by truncating to the first order the Taylor series expansion
at each time step,

• the sigma-point (SPKF) or unscented (UKF) Kalman filter alleviates the
errors introduced by EKF in the estimation because of the approximation.
The idea is to linearize the distribution of the state random variable, rather
than linearizing all the system,

• the particle filters are used when problems do not present Gaussian distribution
or feature a multimodal distribution. These filters are based on Monte Carlo
simulation, where a simpler distribution is substituted to the real one, then
some samples (called particles) of past distribution are weighted and summed
to obtain a distribution similar to the real one. Obviously this method is the
most accurate.
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Chapter 6

Model definition

In this chapter, the model is presented conceptually and in its construction and
operation. Three sub-models are studied and implemented for describing the
mechanisms of chapters 3 and 4.

The battery is modeled by means of an equivalent circuit model, that simulates
the electric behavior of the cells. Depending on the current that is flowing out of
the cell or into it, the voltage and the SOC change.

The temperature variation and its influence on the cell parameters are presented
in the thermal model. The process is again governed by the current that produces
some heat because flowing through the ohmic and the diffusion resistances.

The model that describes the loss of capacity and consequent reduction of the
SOH is also integrated in the system. The temperature of the cell and the total
charge quantity released by or introduced in the battery are critical issues regarding
the life of the device.
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Figure 6.1: Diagram of the interactions between thermal, degradation and elec-
trical models.

6.1 Heat generation and temperature variation
The first block of the flowchart is the thermal model. The idea comes from the fact
that the cell parameters vary according to the temperature. As seen in section 4.1,
the current that flows through a resistance causes power dissipation in the form of
heat. This condition is verified through the ohmic resistance and the resistances of
the RC branches that describe the lithium diffusion. The first step is to compute
the power that is dissipated by the cell as “Joule effect”. Starting from equation 4.1,
the thermal power is evaluated considering just one RC branch for the electrical
model.

According to different studies [56, 57, 58, 59] the entropic heat is very small if
compared to the ohmic heat generation, particularly in case of high currents. The
result is that the contribution from reversible heat is neglected.

Pth = R0i
2 +R1i

2
R1 (6.1)

At this point the thermal model is developed, with the thermal power as input.
The basis of the thermal model is [60], where a formulation for the energy balance
of battery systems is presented.

The dynamics of heat transfer are analyzed, considering different processes:
chemical reactions, phase changes, variation in the heat capacity and heat transfer
to the surroundings. For the purpose of this work and the data availability, the
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model will consider the heat transfer dynamics across a cylindrical cell as presented
in [61].

Figure 6.2: Diagram of the thermal model of the battery cell [61].

The model accounts for the temperatures of the core and of the surface of the
cell. The heat dissipated because of the fluid that act as coolant, namely air or
liquid coolant, on the surface of the cell is also considered. The points are connected
by resistances, which are the heat conduction resistance Rc of the cell material, in
between the points of the core and the surface, and the heat convection resistance
Ru relative to the air or the liquid cooling fluid.

At this point, the formulation of the heat transfer can be applied.

dTcore(t)
dt

= Tcell(t)− Tcore(t)
RcCc

+ Pth(t)
Cc

(6.2)

dTcell(t)
dt

= Tamb(t)− Tcell(t)
RuCs

− Tcell(t)− Tcore(t)
RcCs

(6.3)

The two components Cc and Cs are the core heat capacity and the surface heat
capacity.

The thermal model is implemented using the MATLAB Function block of
Simulink. The given input to the model is the thermal power simply calculated as
in equation 6.1, together with the initial conditions of the temperatures, namely
the cell core, the cell surface and the fluid temperatures. The latter is supposed to
be constant as in [60].

The system of the two equations 6.2 and 6.3 describing the thermal dynamics is
implemented in the MATLAB Function as in figure 6.3. The time is now considered
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as discretized quantity k as for the SOC. The output are the derivatives of the core
and the surface temperatures of the cell, hence an integrator block is placed, with
the initial condition specified. Since a "for cycle" is used for the simulation of the
cell behavior with time, the initial conditions are updated for every iteration with
the temperatures state of the previous cycle. The outcome of the two "Integrator"
blocks are sent as input to the MATLAB Function as actual temperature state of
the cell.

Figure 6.3: MATLAB Function implemented on Simulink to model temperature
evolution.

To analyze different cells or different working conditions, heat conduction and
convection resistances, cell and fluid capacitances and all the starting temperatures
can be changed into the MATLAB Function script.

At this point the temperature behavior as current is provided to the cell with
time is known. The results are feed back to the workspace and extracted.

As seen in 4.1, the cell parameters are dependent on the temperature, hence
also the cell behavior is affected by the heat generation and dissipation dynamics.
The temperature value is now used to extract from the database all the required
data, for the specific cell, at the considered temperature and at the present SOC.

The parameters R0, R1 and C1 are not measurable, since they are not physically
present in the real cell. Instead they can be used all together to represent some
physical properties or processes as the voltage drop due to the ohmic resistance or
the lithium diffusion into the electrodes. For example, OCV varies according to
the SOC but also with the temperature. Also the capacity and internal resistance
are affected by T. Hence, all the parameters that describe the cell behavior in
the equivalent circuit model, are updated with the temperaure, such as the ohmic
resistance in figures 7.5 and 7.9. The C-rate is updated in case the current changes.
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6.2 Capacity loss
Next step is to consider the aging model. It has been shown in 4.2, that the factors
which affect the degradation of a cell are

• the time, for calendar aging or cycling time,

• the temperature, that promotes some reactions or causes the reduction of
capacity,

• the depth of discharge and C-rate, which are indexes of the stress the cell is
subjected to.

To obtain data about aging, cells are tested at different C-rates and temperatures,
for different depths of discharge. An example is [62], where cells are cycled with a
depth of discharge of 90, 80, 50, 20 and 10 %, for C-rates of 1/2, 2, 6, 10, all under
temperature conditions of -30, 0, 15, 25, 45 and 60 °C.

Some tests stopped soon because of the high loss of capacity during cycling,
or even failed at the first test. The cells had poor performances when testing
at extreme conditions, as excessively high or low temperatures, or high current
intensity.

A general equation that fits the registered data, considering the different factors,
is

∆Q = B e
−Ea
RT tz (6.4)

where ∆Q is the capacity loss, B is pre-exponential factor, Ea activation energy,
R gas constant, T temperature of the core of the cell, t the time and z power law
factor [63]. Those parameters are evaluated for the different C-rates at which cells
have been tested.

In the MATLAB code for the aging model all the values are interpolated for the
actual current intensity, using interp1 function.

A better description of the cell usage can be formulated using the total quantity
of charge delivered by the cell in its cycling history, instead of time in equation 6.4.
This quantity is the total throughput (Ah) and depends on the number of cycles
N , the depth of discharge and the total capacity.

Athr = N ×DOD ×Q (6.5)

The result is
∆Q = B e

−Ea
RT Az

thr (6.6)

Because of the range requirements from an electric vehicle, the maximum capacity
loss acceptable for a battery pack is 20 % as reported in section 4.2.
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Equation 6.6 can be used to extract the total throughput that a cell can handle
under the considered conditions of temperature and current intensity.

Athr =
A

∆Q
B e

−Ea
RT

B 1
z

(6.7)

Knowing the cell capacity and depth of discharge of the cycles and from equation
6.5, the total number of cycle correspondent to the computed charge quantity can
be evaluated:

N = Athr

Q
(6.8)

The SOH is derived from the definition using equation 5.7.

6.3 Electrical model
The outcome of the thermal model, that is the temperature variation during cell
usage, is used to update the parameters of the cell.

Moreover, the temperature is the input of the aging model, together with the
current intensity.

The thermal model and aging model are recalled at each iteration of the sim-
ulation time, and they are able to update the temperature and the SOH of the
cell.

Once all the models are joined together, some test can be performed to evaluate
the goodness of the model.
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Results

The outcome of the model are presented in this chapter. Different current intensities
are selected as input for the tests, in order to evaluate the temperature increase
and the influence on the degradation.

Since a real cell to be tested is not available, neither are the test equipment, the
model output is compared to the literature and studies available.

Datasheet relative to some cells have been downloaded from "University of
Colorado Colorado Springs" website1.

7.1 Dataset used for the model
The file contains data relative to six different cells, which are not specified. Functions
are provided to extract the required data from the Excel files, as the OCV relative
to each point of the SOC, the value of the ohmic resistance and to the time constant.
The latter is used to compute the resistance of the RC branch that describes the
lithium diffusion in the electrode. Other data included in the datasheet are the
capacity of the cell and the coulombic efficiency. All the parameters are given
for different temperature conditions, since their value change according to the
temperature. The set of temperature is -25, -15, -5, 5, 15, 25, 35 and 45 °C.

Finally, all the information are put in a MATLAB structure called "model", to
be available in the workspace during simulations.

Among the six cell datasheets, the selected one is named "A123". The choice
comes from the comparison of the available data with the information contained
in some studies. The cited articles present studies on a 26650 cylindrical model
of battery cell, from A123 manufacturer. The cell features a capacity of 2.3 Ah.
The value of the OCV of the cell from the datasheet are plotted together with the

1http://mocha-java.uccs.edu/BMS1/CH02/ESCtoolbox.zip
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SOC. The result is compared with the studies. The same is done for the internal
ohmic resistance, whose values are plotted in relation to the SOC and for different
temperatures. The code for extracting and plotting the data is reported in appendix
A.1.

Figure 7.1: OCV and ohmic resistance variations from online datasheet.

Figure 7.2: OCV and ohmic resistance variations from online articles.

The relation of OCV presents an identical profile, with the The other parameters
of the electrical model, are not compared since the ECM includes a single RC
branch for simulating lithium diffusion, while in [64] two RC branches are used.
Since the time constant is just one in the ECM and two in the article, the result of
their relations with temperature and SOC are different.

Next step is to find data relative to the thermal characteristics of the cell.
Actually the datasheet contained only electrical parameters.

To apply the thermal model seen in 4.1.2, resistances and heat capacities relative
to the materials of the cell or to the fluid that is in contact with the surface of the
cell are needed to solve the heat transfer equations 6.3 and 6.2.

The values of heat conduction and convection resistances Rc and Ru and of core
and surface heat capacities Cc and Cs are from [65] since relative to the cell from
A123 manufacturer and with similar characteristics to the cell of the used database.
The values of the presented terms are reported in table 7.1.
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Rc Ru Cc Cs

35.5 K
W

2.8 K
W

50.0 J
K

2.8 J
K

Table 7.1: A123 cell thermal parameters

The results of the temperature evolution can be seen in for instance in figures
7.4 and 7.8.

The aging model is the next block implemented. Also data relative to the
cycling of the cell, durability and stress tests, are not provided in the datasheets.
The article [62] has conducted some tests on an A123 cell model. Cyclic tests for
different current intensities and depth of discharge and for different temperatures
returned data about the degradation of the cell and the SOH variation.

The fitting of the data of the analysis gives the parameters that are necessary
for the aging model presented in 6.2, so to compute the capacity loss, with given
temperature and current intensity. The latter is responsible for the variation of the
parameters of the aging model, while the temperature affects the activation energy.

The needed values to be used in equations 6.6 are the pre-exponential factor,
the activation energy and the power law factor.

Values relative to that cell are reported in table 7.2.

C-rate B Ea z
1
2 30330 31500 J

mol
0.552

2 19300 31000 J
mol

0.554
6 12000 29500 J

mol
0.56

10 11500 28000 J
mol

0.56

Table 7.2: Parameters for computing the capacity loss for different C-rates

At this point, all the information needed to run the complete thermal-aging-
electrical model are collected.

7.2 Outcomes of the simulations
Some tests are here presented.

The tests are conducted on a single cell for a first analysis of the outcomes of
the model.

The model is fed with the mentioned data and the quantities that can be
selected for each specific testing conditions are the current intensity, the ambient
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temperature and resting temperature of the cell, the initial SOC and the final one,
that is the point at which the cell stops charging.

The testing conditions are set as input in the script A.2, and selected in order
to compare the results with the analyses performed by articles [64, 65].

Figure 7.3: Voltage and temperature evolution during charging at different C-rates
[65].

7.2.1 2C at 25 °C
The first test is conducted with a C-rate of 2, meaning that the cell is charged with
a current of 2.3 A. The temperature under which the test is simulated is 25 °C.
The boundaries that are set for the SOC are 0 % for the starting point and 100 %
for the moment at which the charging stops, so a full charging session.

A charging time of 30 minutes is selected for the simulation.
The first plot represents the temperature increase of the cell core during charging.

As clearly visible, the heat generation leads to a temperature increase of about 5
°C.
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Figure 7.4: Temperature variation during 2C charging simulation at 25 °C.

The little temperature variation leads to a small variation in the internal
resistance. The total decrease is in the order of 10−3mΩ across the charging process.

Figure 7.5: Ohmic resistance variation during 2C charging simulation at 25 °C.

The set simulation time of 1800 seconds is perfectly coincident with the charging
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time. Indeed after 30 minutes the cell has reached 100 % of SOC, when the cell
voltage reaches the maximum value of 3.6 V. Both the temperature evolution and
voltage behavior during charging match the plots of figure 7.3. In the test case, the
fully charged condition is reached at 1800 s, while in [65] it takes more or less 200
seconds less. The reached temperature is in both cases slightly higher than 30 °C.

Figure 7.6: SOC and cell terminal voltage variation during 2C charging simulation
at 25 °C.

The gentle charging conditions, namely low current intensity and consequent not
high increase in core temperature, result in a negligible capacity loss and consequent
reduction in SOH.
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Figure 7.7: SOH variation during 2C charging simulation at 25 °C.

7.2.2 3C at 25 °C
A test is conducted with a C-rate of 3, again at 25 °C and with a simulation
charging time of 1200 seconds.

The temperature increase results higher than in the case of 2C current intensity,
because of the higher quantity of heat developed.
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Figure 7.8: Temperature variation during 3C charging simulation at 25 °C.

The ohmic resistance decreases at a higher rate as effect of the increase in
temperature. The decrease across the charging process is in the order of 1.4 mΩ.

Figure 7.9: Ohmic resistance variation during 3C charging simulation at 25 °C.

Again, the set simulation time of 20 minutes resulted equal to the charging time.
After 1200 seconds the cell passes from 0 to 100 % of charge.
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Figure 7.10: SOC and terminal voltage variation during 3C charging simulation
at 25 °C.

A slightly higher capacity loss is registered because of the higher temperature
conditions and cell stress due to the higher charging rate.

Figure 7.11: SOH variation during 3C charging simulation at 25 °C.

59



Results

7.2.3 5C at 25 °C
This test is instead compared to the one reported in figure 7.12, considering the
5C current intensity.

Figure 7.12: Test conducted at different C-rate with resulting temperature and
SOC increase [64].

The results of the thermal-aging-electrical model match also this different article.
A final temperature very close to 35 °C a SOC of 75 % that is reached starting
from 25 % after 6 minutes are common results for both the analyses.

Figure 7.13: Temperature, SOC and voltage evolution for a test at 5C.
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7.2.4 Test replicated from article
Last test conducted on a single cell is replicated from article [64]. It represents a
strategy of minimum charging time. The current evolution is roughly reproduced
using two straight lines with different inclinations.

Figure 7.14: Test for the minimum charging time [64].

The results from the model perfectly match the outcome of the article. Both
plots show a temperature slightly higher than 35 °C at the end of the test, a SOC
of 75 % after 5 minutes of charging and a degradation of 99.982 % of residual SOH
for the article, while the model returns a value of 99.984 %.

Figure 7.15: Temperature, SOC and voltage evolution for the replicated test.
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7.3 Battery pack
A test of the model is performed simulating a battery pack. The number of cells is
computed to reproduce the total energy of about 75 kWh. Generally battery packs
are able to store a quantity of energy that goes from 20 kWh in case of small city
cars, to more than 120 kWh, such as in big SUVs and luxury sedan vehicles.

Supposing a battery pack voltage of 375 V and knowing the terminal voltage
and capacity of each of the cells, that are 3.3 V and 2.05 Ah, the number of cell to
be connected in parallel and those to be connected in series are computed. Using
the equations reported in section 5.1.1, the ratio between the battery pack voltage
and the nominal voltage of a single cell returns the number of cells connected in
series. From the equation of the energy of a battery pack, the number of cells
connected in parallel is found.

The battery pack results constituted of a parallel of 97 cells, which are put
together in a series of 114 PCM.

The model is able to simulate every single cell of the pack, returning for each
the voltage behavior, temperature evolution and cell degradation with respect to
the SOC.

In this work, the cell balancing has not been implemented. For this reason all
the cells will behave in the same way.

Moreover the cells are supposed to be identical, so they do not present differences
in the composition and construction of the components. The equivalent parameters
of the circuit that represents the cell are equal and the same current will flow
through each of the cells. For this reason the voltage behavior and the other output
of the model are equal for all the cells.

A simulation is conducted for the battery pack, with a charging current intensity
of 1C and under temperature condition of 25 °C.

The reported outcome in figure 7.16 is the SOC variation of the battery pack,
that is calculated as the average of the SOC of all the cells. The charging power,
considering 1C for the current intensity, 375 V for the pack voltage and considering
114 cell connected in series and 97 in parallel, is about 75 kW. Since the current
intensity is very low, the time is not enough to fully charge the battery pack.
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Figure 7.16: SOC variation during 1C charging simulation at 25 °C for the
battery pack.

7.4 Future works
The model can be improved by introducing some considerations:

• a better method for estimating the SOC and consequently obtain a more
reliable model,

• a system to equalize the energy contained in the cells of the battery pack,

• a controller for preserving battery life without impacting on the best charging
time.

7.4.1 Kalman filters for SOC and SOH estimation
The rough methods to evaluate the SOC can lead to errors in the estimation of
all the variables of the state of the system, because dependent on the estimation
of the initial SOC and on the current, that is affected by noise and measurement
bias. First a better algorithm for estimating the cell SOC can be implemented.
The basis of the work is introduced in section 5.3.

A similar approach can be applied to the estimation of the SOH. The parameters
are predicted and the error covariance is updated, then the estimator gain matrix
is computed to update the parameter estimation and finally the error covariance of
the parameter estimation is updated. A simultaneous prediction of cell parameters

63



Results

and state of the dynamic system can be performed, then the steps of the Kalman
filter methods can be applied.

7.4.2 Balancing of pack cells
Battery cells do not behave identical. Even very little differences in the composition
of the electrodes or in the production process, result in slightly different capacity
or voltage behavior and consequently in different equivalent parameters of the
ECM. Some cells can be weaker than the others. This means that their Coulombic
efficiencies are lower, so a smaller fraction of the charging current is converted
into stored energy. The SOC will be different with respect the stronger cells. Also
charging current itself might be not equal for all the cells, because of different
self-discharge and leakage behavior. If the same current is applied to all the cells,
the stronger cells can experience overcharging during charging process, while the
weaker cells can overdischarge when energy is released.

Figure 7.17: SOC evolution with imbalanced cells.

A good cell SOC estimator is necessary for an efficient balancing strategy,
otherwise the balancing circuit can operate on the wrong cell, causing further
imbalance.

Passive circuits use resistors to dissipate the excess energy stored in stronger
cells, in order to equalize the charge of all the cells. A non-dissipative strategy is
for instance to rely on the total energy that can be delivered by each cell. The
energy that is stored in stronger cells is distributed among those cells for which
the stored energy is lower.

7.4.3 Charging strategies and control
A specific controller can be coupled to the thermal-aging-electrical model. While
simply charging at the maximum allowed C-rate enables the reduction of charging
times, the battery can suffer some degradation because of the stress it is subjected
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Figure 7.18: Balancing strategy for battery pack cells [66].

to. The temperature increase, that is more important as the charging power
increases, lead to an accelerated degradation of the electrodes.

For these reasons an algorithm that performs a control of the charging time and
capacity loss, is necessary to balance the two factors. Beside the rough minimization
of the charging time, generally performed pushing the maximum current in the
CC-CV logic, the target can be to minimize the aging of the cell or to find a trade
off of the two.

When the period during which a vehicle is plugged in is higher than the time
required to restore 100 % of the SOC, so when fast charge is not required, some
protocols can be applied to preserve the maximum possible SOH. Degradation can
be highly mitigated, as in [67] a reduction of 46.2 % of the degradation for a single
cycle is achieved.

On the other hand, when a rapid charging is required, some algorithms are able
to achieve an optimal tradeoff between charging time and degradation.

Multistage constant current strategy employs different current levels. The cell
undergoes CC charging at a high level, until the maximum voltage of the cell is
reached. At this point the current intensity is switched to a lower level, that is
hold as long as the cell voltage is lower than the maximum, and so on. A reduction
in charging time of 34.2 % employing the multilevel current strategy is reported in
[69].

More sophisticated algorithms are able to control in real time the actors of
the cell model, to achieve a significantly lower SOH decay with respect to the
minimum-time protocol, with an almost imperceptible increase of time, as in [64].

A multi-objective function is implemented combining the charging time and
degradation. The weighting factor defines the extreme prevalence of one of the two
objective over the other or performs a swing between the two, for achieving the
optimal trade-off.

Finally it increases up to the moment in which the current is stopped. At this
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Figure 7.19: Multilevel constant current charging strategy [68].

Figure 7.20: Pareto frontier to evaluate the incidence of the weighting factor on
charging time and degradation [64].

point the cell voltage drops, because of the absence of current through the cell
components.

The voltage drop due to the ohmic resistance is clearly visible in correspondence
of the current stop. Right after, the diffusion voltages present a relaxation of the
voltage curve.

66



Chapter 8

Conclusions

The aim of this work was to build a model of battery cell capable of simulating the
voltage behavior and SOC evolution during the charging process.

An equivalent circuit model (ECM) is selected for modeling the electrical behavior
of the cell. The simplicity of construction, the not high computational power and
time required and the relative ease in acquiring the needed information about the
cell, turned the ECM preferable to the PBM.

The temperature variation due to the current flowing through the cell affects
the parameters of the cell. To improve the model accuracy, the thermal model of
the cell is implemented. The output is the temperature of the core of the cell.

Moreover the temperature affects the aging of the cell, together with the current
intensity that is applied to the cell. A model for computing the degradation of the
cell considering the operating conditions is presented and integrated together with
the electrical and thermal ones.

The critical point of the work, was the total lack of information about any cell.
No database or testing equipment to collect data on one or more cell models were
available. For this reason the complete model is tested using data accessible on the
web.

The test performed by the model, replicating the conditions of some experiments
reported in articles, returns values for the temperature evolution, voltage behavior
and even state of charge decrease very close to the results of the articles.

The goodness of the model is demonstrated by the match between the plots of
the two cases and their values.

The model is capable to simulate a battery pack, selecting the number of cells in
series and in parallel. The appreciable result is trivial, since the cells are supposed
to behave identically, both regarding temperature variation and voltage evolution.

The model can be further improved by implementing a more reliable estimation
of the SOC and SOH, for instance through the use of Kalman filter. An algorithm
to equalize the charge stored in all the cells of a battery pack can be included.
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Finally a controller can be developed, with the aim of finding the optimal trade-off
between charging time and capacity loss.
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Matlab scripts

A.1 Open circuit voltage and ohmic resistance
The code is used to extract and plot the OCV vs SOC relation and the variation of
the internal resistance for different temperatures, again with respect to the SOC.

1 % load the database of the selected cell model
2 load A123model .mat; % creates var. "model" with A123 cell

parameter values
3

4 % extract the value of OCV of the cell for the selected
temperature from the dataset

5 v_store =zeros (100 ,1);
6 for z =1:100
7 v_store (z)= OCVfromSOCtemp (z/100 ,25 , model);
8 end
9 % plot the variation of OCV with respect to SOC

10 figure
11 plot ((1:100) /100 , v_store )
12 xticks (0:0.5:1)
13 xlim ([0 1])
14 ylim ([2 4])
15 xlabel (’SOC ’); ylabel (’OCV (V)’);
16 title(’Relation between OCV and SOC ’);
17

18 % extract the values of the internal resistance of the cell for
the different temperatures from the dataset

19 r0_store =NaN (100 ,5);
20 T=[5 15 25 35 45] ’;
21 for k=1:5
22 for z =10:95
23 r0_store (z,k)= getParamESC (’R0Param ’,T(k),model);
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24 end
25 end
26 % plot the variation of ohmic resistance with temperature
27 figure
28 plot ((1:100) /100 , r0_store )
29 xticks (0:0.5:1)
30 xlim ([0 1])
31 ylim ([0.005 0.02])
32 legend (’5 °C’,’15 °C’,’25 °C’,’35 °C’,’45 °C’)
33 xlabel (’SOC ’); ylabel (’R_0 (\ Omega)’);
34 title(’Ohmic resistance variation with SOC for different

temperatures ’);

A.2 Thermal-aging-electrical model

1 % Code to simulate a single cell or a complete battery pack , with
selectable number of cells in parallel and in series .

2 The code includes the thermal model , the degradation model and the
electrical model of the cell.

3

4 clear all; close all; clc;
5

6 % load cell model and select number of cells in series and in
parallel

7 load A123model .mat; % load cell model in the variable "model"
8 Ns = 1; % number of modules connected in series to make a

pack
9 Np = 1; % number of cells connected in parallel in each

module
10

11 % allocate memory for some vectors
12 maxtime = 2000; % set simulation time
13 %t0 = 2700; % pack rests after time t0
14 storez = zeros ([ maxtime Ns Np]); % create storage for SOC
15 storei = zeros ([ maxtime Ns Np]); % create storage for current
16 storeT = zeros ([ maxtime Ns Np]); % create storage for

temperature
17 irc = zeros(Ns ,Np);
18 h = zeros(Ns ,Np);
19 storeP = zeros ([ maxtime Ns Np]); % create storage for thermal

power
20 storer0 = zeros ([ maxtime Ns Np]); % create storage for ohmic

resistance
21 storer = zeros ([ maxtime Ns Np]); % create storage for diffusion

resistance
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22 v_temp = zeros(maxtime ,1); % create storage for voltage
23 avgSOC = zeros(maxtime ,1);
24

25 % set charging range - min and max SOC
26 z = 0.25* ones(Ns ,Np); % initialize SOC at 25 %
27 z_stop = 0.95; % set SOC at which charging stops
28

29 Temp = 25; % set initial core temperature in °C
30

31 q = getParamESC (’QParam ’,Temp ,model)*ones(Ns ,Np);
32 % extract cell capacity
33 rc = exp ( -1./ abs( getParamESC (’RCParam ’,Temp ,model))) ’*ones(Ns ,Np

);
34 % extract time constant
35 r = ( getParamESC (’RParam ’,Temp ,model)) ’;
36 % extract cell diffusion resistance
37 m = getParamESC (’MParam ’,Temp ,model)*ones(Ns ,Np);
38 % extract hysteresis parameter
39 g = getParamESC (’GParam ’,Temp ,model)*ones(Ns ,Np);
40 r0 = getParamESC (’R0Param ’,Temp ,model)*ones(Ns ,Np);
41 % extract cell ohmic resistance
42 rt = 0.000125; % 125 microOhm resistance for each tab
43

44 m = 0*m; % eliminate model hysteresis for rough simulation
45

46 % compute pack capacity in Ah
47 totalCap = min(sum(q ,2)); % pack capacity = minimum module

capacity
48 C_r = 5; % initial C-rate
49 I = -C_r* totalCap ; % pack current
50

51 % thermal model data
52 % ------------------------------------------------------------
53 t=1; % time step for thermal model iterations
54 R_c = 1.94; % heat conduction (cell) resistance K/W
55 R_u = 3.08; % heat convection (air) resistance K/W
56 C_c = 62.7; % core (cell) heat capacity J/K
57 C_s = 4.5; % surface heat capacity J/K
58

59 T_amb = 298.15; % ambient temperature in K
60 T_core_p = Temp + 273.15; % internal cell temp initial condition

in K
61 T_cell_p = 298.15; % surface cell temp initial condition

in K
62

63 % aging model data
64 % ------------------------------------------------------------
65 SOH = ones(maxtime ,1); % initialize state of health at 100 %
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66 deltaQ = 20; % end of life set at 80 % of nominal
capacity

67 R = 8.314; % gas constant J/mol/K
68 DoD_cycles = z_stop -z(1 ,1); % depth of discharge for computing

aging
69

70 % add faults to pack: cells faulted open - and short - circuit
71 Rsc = 0.0025; % resistance value to use for cell whose SOC < 0%
72

73 T=25;
74 time =(1: maxtime );
75

76 % Simulate pack performance using ESC cell model.
77 % First compute thermal power resulting from the current flowing

through resistances (Joule effect )
78 % Run the thermal model , where the inputs are the heat generated

by the cell and the power dissipated to the cooling fluid; the
output is the temperature of the core of the cell

79 % Update all the cell parameters according to the computed cell
temperature . The cell SOC is updated according to the current
that flows inside / outside the battery

80 % Then the aging model is run , where the SOH of the cell is
computed considering the actual cell temperature and current
intensity , because they are the most critical factors when
dealing with cell degradation .

81

82 for k = 1: maxtime
83

84 % thermal model
85 P_th = r0 (1 ,1)*I^2+r(1 ,1)*irc (1 ,1) ^2; % thermal power

generation , considering both ohmic resistance and diffusion
resistance

86 u = P_th; % input to simulink model
87 storeP (k ,: ,:) = P_th; % store thermal power
88

89 sim(’fun_sim_5_2 .slx ’); % call simulink model
90

91 T=ans.yout {1}. Values .Data (51) -273.15; % acquire temperature
from simulink model to put as input for data acquisition

92

93 % update all cell parameters with temperature variation
94 rc = exp ( -1./ abs( getParamESC (’RCParam ’,T,model))) ’*ones(Ns ,

Np);
95 r = ( getParamESC (’RParam ’,T,model)) ’;
96 m = getParamESC (’MParam ’,T,model)*ones(Ns ,Np);
97 g = getParamESC (’GParam ’,T,model)*ones(Ns ,Np);
98 r0 = getParamESC (’R0Param ’,T,model)*ones(Ns ,Np);
99 rt = 0.000125; % 125 microOhm resistance for each tab

100
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101

102 v = OCVfromSOCtemp (z,T,model); % extract cell OCV from
relation with SOC at defined T

103 v = v + m.*h - r.* irc; % add in capacitor voltages
and hysteresis

104 r0(isnan(z)) = Rsc; % short - circuit fault has "
short - circuit " resistance

105 V = (sum(v./r0 ,2) - I)./ sum (1./r0 ,2);
106 ik = (v- repmat (V,1,Np))./r0;
107

108 z = z - (1/3600) *ik./q; % update each cell SOC
109 z(z <0) = NaN; % set over - discharged cells to

short - circuit fault
110 irc = rc.* irc + (1-rc).*ik; % update capacitor voltages
111 fac = exp(-abs(g.*ik) ./(3600* q));
112 h = fac .*h + (1- fac).* sign(ik); % update hysteresis voltages
113

114 minz = min(z(:)); maxz = max(z(:)); % check to see if SOC
limit hit

115 % if minz < 0.05 , I = -abs(I); end % stop discharging
116 % if maxz > 0.95 , I = abs(I); end % stop charging
117 if maxz > z_stop , I = 0; end % stop charging when SOC is 95 %
118 % if k>t0 , I = 0; end % rest
119

120 storez (k ,: ,:) = z; % store SOC for later plotting
121 storei (k ,: ,:) = ik; % store current for later plotting
122 storer0 (k ,: ,:) = r0; % store ohmic resistance
123 storer (k ,: ,:) = r; % store resistance of rc branch
124 C = abs(I)/q; % update C-rate for SOH computation
125

126 T_core_p = ans.yout {1}. Values .Data (51); % update core T as
initial condition

127 T_cell_p = ans.yout {2}. Values .Data (51); % update surface T
as initial condition

128

129 if T <25
130 T = 25;
131 end
132

133 storeT (k ,: ,:) = T; % store computed temperature of
the core of the cell

134 v_temp (k) = v(1 ,1);
135

136 % aging model
137 if k>1
138
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139 % the parameters of the aging model vary according to the
C-rate , so for each parameter the set of values are
interpolated to find the actual value correspondant to the
applied current intensity

140

141 C_rates = [1/2 , 2, 6, 10];
142

143 % interpolation for pre - exponential factor
144 B_vec = [30330 , 19300 , 12000 , 11500];
145 B_loss = interp1 (C_rates ,B_vec ,C,’pchip ’);
146

147 % interpolation for activation energy
148 E_a_vec = [31500 , 31000 , 29500 , 28000];
149 E_a = interp1 (C_rates ,E_a_vec ,C,’pchip ’);
150

151 % interpolation for exponential factor
152 z_vec = [0.552 , 0.554 , 0.56 , 0.56];
153 z_loss = interp1 (C_rates ,z_vec ,C,’pchip ’);
154

155 % compute the total charge quantity that can be extracted
from or put inside the cell considering the C-rate and
temperature and preserving 80 % of the total capacity of the
cell

156

157 A_thr = ( deltaQ /( B_loss *exp(-E_a/R/ T_core_p )))^(1/ z_loss );
% total Ah throughput

158

159 N = A_thr/q/ DoD_cycles ; % number of cycles at the EOL
160

161 SOH(k) = SOH(k -1) -C/(2*N *3600) ; % state of health update
162

163 end
164

165 % make SOC avg for battery pack
166 avgSOC (k) = mean(mean(z));
167

168 if I ~= 0
169 stop_t = k; % time at which stop charging
170 end
171

172 end % for k
173

174 % plot some of the collected data from the simulation
175

176 if Ns == 1 && Np == 1
177 % plot SOC for the cell
178 figure (1); clf; plot ((1: maxtime )/60, avgSOC *100); grid on
179 xlabel (’Time (min)’); ylabel (’Cell SOC (%) ’);
180 title(’Cell state of charge (SOC) variation during charging ’);
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181 else
182 % plot avgSOC for the battery pack
183 figure (1); clf; plot ((1: maxtime )/60, avgSOC *100); grid on
184 xlabel (’Time (min)’); ylabel (’Pack average SOC (%) ’);
185 title(’Average SOC for the pack ’);
186 end
187

188 % plot cell temperature
189 figure (2); clf; plot ((1: maxtime )/60, storeT ); grid on
190 xlabel (’Time (min)’); ylabel (’Cell temperature (°C)’);
191 %title(’ Variation of the cell temperature during charging ’);
192

193 % plot SOH variation
194 figure (3); clf; plot ((1: maxtime )/60, SOH *100); grid on
195 xlabel (’Time (min)’); ylabel (’Cell SOH (%) ’);
196 %title(’ Variation of the cell state of health during charging ’);
197

198 % plot cell terminal voltage
199 figure (4); clf; plot ((1: maxtime )/60, v_temp ); grid on
200 xlabel (’Time (min)’); ylabel (’Cell terminal voltage (V)’);
201 %title(’ Variation of the cell terminal voltage during charging ’);
202

203 % plot ohmic resistance
204 figure (5); clf; plot ((1: maxtime )/60, storer0 (: ,1 ,1) *1000) ; grid on
205 xlabel (’Time (min)’); ylabel (’Cell ohmic resistance (m\Omega)’);
206 %title(’ Variation of the cell internal (ohmic) resistance during

charging ’);
207

208 % plot SOC and voltage on the same graph
209 figure (6); clf;
210 yyaxis right
211 plot ((1: maxtime )/60, v_temp ); grid on
212 ylabel (’Cell terminal voltage (V)’);
213 yyaxis left
214 plot ((1: maxtime )/60, avgSOC *100);
215 ylabel (’Cell SOC (%) ’);
216 xlabel (’Time (min)’);
217 %title(’ Variation of SOC and cell terminal voltage during charging

’);
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