
POLITECNICO DI TORINO
MSc’s Degree in Data Science and Engineering

A.y. 2020/2021
November/December 2021

Optimization of Convolutional Neural
Networks Training for Federated
Learning on Embedded Systems

Supervisors

Prof. Andrea CALIMERA

Ph.D. Valentino PELUSO

Candidate Erich MALAN



Abstract

The advancement of low power technologies and the improvement of wireless
communication systems and infrastructures, fueled the Internet of Things (IoT),
enabling the proliferation of connected sensors able to collect and transmit data
over the internet. Meanwhile, thanks to the recent breakthroughs in Artificial
Intelligence (AI), Convolutional Neural Networks in particular, computers can learn
trends from the collected data and extract meaningful insights to make decisions
autonomously. IoT and AI are twin pillars of a new revolution: the Artificial
Intelligence of Things (AIoT).

This revolution poses several opportunities and challenges. The availability
of large-scale datasets generated by pervasive networks of sensors enabled the
development of AI models achieving unprecedented accuracy in many domains,
e.g., computer vision and natural language understanding. At the same time, the
creation and management of centralized datasets are raising several privacy and
security concerns. For example, security cameras, smart speakers, and smartphones
collect sensitive information that users might be unwilling to share with service
providers. Therefore, the major challenge today is to develop a new class of learning
strategies that enable to process data locally, i.e., on embedded systems at the
edge of the IoT.

This is the goal of Federated Learning (FL), the target of this work, an emerging
learning paradigm where the model training is distributed over a connected fleet
of devices. Each device uses its own data to train a local version of the model;
periodically, the devices send their model versions (instead of the data) to a
centralized server; here, the local versions are aggregated in a global model, that
is sent back to the edge devices. Although previous research demonstrated that
training from decentralized data is feasible, at least for what concerns the model
accuracy, how to manage the limited energy resources of the IoT end-nodes remains
an open problem. Indeed, FL involves frequent upload and download of models
to achieve competitive accuracy, introducing a massive communication overhead,
which shortens the battery life of the edge devices.

This work introduces an optimized training strategy that gradually reduces the
number of model parameters that are trained and synchronized with the global
model. Experimental results collected on standard datasets demonstrated that
the benefits of the proposed strategy are twofold: (i) substantially reduce the
communication overhead at the same accuracy, with savings ranging from 14%
to 59% (depending on the accuracy levels and on the dataset) with respect to a
standard FL; (ii) increase the number of model updates at the same communication
cost, thus improving the model accuracy, up to +2.5%.
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Chapter 1

Introduction

1.1 General overview

Technological shift The data production increases with such rapidity that the
technology evolution of servers’ hardware components will not be able to match
in a few decades. The main issues arising in a big data environment are due to
computation and communication bottlenecks, while the burdened system must
account for and deal with its heterogeneity. The rapidly growing performances of
end-user devices such as smartphones, IoT-driven market directions, and the more
and more shaped and restricting privacy laws require a system design different
from the classical centralization of data and computational cores. The computation
performed by the system is more and more shifted away towards the edge devices.
The edge devices have been initially conceived just to be interfaced with reality,
by sensing and transmitting signals, receiving and actuating third parties actions.
The latency provided required them to perform at least partially the inference on
the spot, which then evolved in local training. A shift that in the last few years
headed towards federated learning with its many variants.

Deep learning on Mobile Deep learning is one of the hottest topics since the
beginning of the third millennium, however, its mobile branch comes later, relocating
the research efforts on efficiency rather than fully-accuracy driven optimization.
Many recent works consider the exploitation of mobile devices for many different
aspects. The creation of shallow models and mobile efficient models [1] allowed
initially the inference directly over mobile devices. More optimization techniques
have been introduced to allow more and more devices, such as Micro Controller
Units (MCUs) to be usable, varying from model quantization (a technique that
reduces the precision of parameters) to model compression (reducing the number
of parameters).

1



Introduction

Distributed vs Federated Learning Besides the definition of edge devices,
this work constitutes a schematic definition of Federated learning by comparing
it to the Distributed Learning paradigm, stating the common grounds and the
differences. It is simple to think of distributed learning as the middle point that
divides the basic classical deep learning (Single dataset over a single machine with
a single GPU) in opposition to Federated learning. The main distinction points
between distributed and federated learning are:

• privacy by design Privacy by design is typical and critical of FL. The
pivotal theme of FL different types is that raw data is never transmitted across
the internet, it is so processed in the same generating and storing device.
Despite the data decentralization privacy is not always ensured, techniques as
homomorphic encryption and differential privacy are proposed in particular
for vertical federated learning where gradients and features are sent over the
network. FL enables data processing locally, so it enables tasks that could be
not allowed by the law for the classical paradigm [2].

• performances: accuracy vs time Decentralization provides benefits of
energy and time consumption compared to classical training. However, the
drawback lies of course in the accuracy performance, decreased by decentralized
training and more importantly by federated learning. The time performance
is instead shown to be better for both distributed and federated, however,
distributed is still faster than federated. [2] .

• System complexity Even if in [2] the other different milestone is considered
to be the aggregation of models instead of gradients, it can be seen in 3 that
this distinction is more blurred. The distinction seems to be more clear for the
system complexity, FL is usually identified by the geographical scattering of
nodes, the data is generated and maintained locally producing the side effect
of heterogeneity, an issue that still presents a challenge for agnostic FL.

1.2 Contribution

1.2.1 Descriptive contribution

A summarizing effort has been made to provide clarity through a notions scheme
for FL, pointing out the principal types and definitions which are much broader
than the one addressed by the proposed work. Along with the definition of the
structural heterogeneity are then proposed the main challenges of FL in particular
for the macro area addressed.
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Federated Learning The FL definition provided is a merging attempt of the
most referenced contextual literature, which unfortunately is not always coherent.
The most extensive publication is "Advances and Open Problems in Federated
Learning" [3] which with the strength of most of the most important FL publishers
presents the challenges and future directions also considering the specific topics
concerned. Many other surveys or topic related papers such as [4], [5], [6], [7],[8],[9],
[10],[11] show differences towards FL and heterogeneity definitions. The work
proposed merges together and balances the related works by proposing a distinction
based on:

• Infrastructure The infrastructure difference focuses on the physical attributes
of the participating components, such as servers, devices, and communication
links. It is related to their cardinality and capability denoted by the hardware
characteristics. It is more common to consider a single cloud server (Distributed
learning), many servers (Cross Silo), or lots of devices (Cross-Device).

• Architecture The architecture is to be intended about the data split. Dif-
ferent data partitioning needs different processing and systems, with relative
issues and challenges. In particular, the different partitioning could be hori-
zontal based on examples, vertical based on features, or transfer which is a
mix of both.

• Topology Following the proposal of [12], a new definition is presented: the
underlying topology, more specific and more focused on the topological aspect,
considering the graphs types related to the most interesting scenario: the star
graph of the centralized topology.

Heterogeneity The heterogeneity is an unavoidable characteristic of FL, it
severely impacts the design and the performance. It is such an important topic
that some works such as [8][9] focus their efforts on estimating and defining the
sole heterogeneity. The heterogeneity and the FL paradigm are not independent,
in fact, each definition of FL (collapsed over the previously schematic definitions)
has its type and degree of heterogeneity. The heterogeneity more considered is
towards the data, its local generation and storage could present skew over example
amounts, labels, and attributes. The data distribution hardly is homogeneous
in decentralized settings, instead, it presents most likely highly skewed trends
(heterogeneous). Moreover, data could be non-independent, because of the system
design (e.g. pictures sampled from a video). Other types of heterogeneity are
agglomerated into the system one, varying from hardware, state, and performances
of the participating clients to the law enforcement that they might be liable to.

3
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1.2.2 Empirical contribution
The novel methodology refers to the traditional FL, which is mostly referred
considering for communication issues, optimizations, and convergence under hetero-
geneous settings. Accordingly to the definitions provided it is characterized by the
centralized topology, cross-device infrastructure with horizontal architecture, based
on multiple synchronous updates. The challenges of traditional FL are today fo-
cused on communication, the primary sink of energy. However, the communication
must be optimized considering the other challenges: heterogeneity, privacy, and
accuracy. The empirical work proposed is rooted in the traditional FL algorithm
[13], and outperforms it in terms of communication efficiency, while maintaining
the same accuracy levels without loss of privacy. The communication efficiency is
introduced for layer-architectured deep models by a new methodology: FedNILO
(Narrowing Iteratively the Layer Optimization in Federated Learning).

FedNILO The key concept of the proposed method is to limit the model updates
and computation to specific layers, which are reduced in terms of cardinality over
time. Classical transfer learning techniques and network similarity studies depict
that the shallow layers converge faster and tend to be similar even between different
datasets that share the same task (e.g. computer vision classification). Instead, the
deeper the layers are, the more computation is required to obtain their convergence.
FedNILO takes advantage of the concept and limits the number of iteration of each
layer depending on its architectural position. The parameters of these layers are
then considered to be frozen, they are not locally trained anymore and nor are
synchronized with the server. Two hyperparameters K, F are introduced to regulate
the frozen or unfrozen state of the network layers. FedNILO has empirically shown
to outperform traditional FL in terms of communication, narrowing harshly the
burden of single devices over single rounds, yet achieving competitive accuracy
with a substantial reduction of cumulative communication.

Search Space FedNILO provides communication savings by introducing a system
complexity, which is brought by the addition of two variables K and F . The two
hyperparameters determine when to start, and how frequently toggle the next step
of optimization. They could be intended like two knobs: the first one considers
more the target accuracy to be reached (in a real-world case the convergence needed
is estimated through the algorithm convergence settings), the second one is more
fine-grained and allows better savings for small rounds. Experimental settings
consider a grid search of K ∈ {350,400,450,500} and F ∈ {25,50,75}. Different
hyperparameters choices could allow more savings under certain assumptions, low
values of both K and F for lower target accuracies tend to be particularly efficient
in terms of communication, while to reach higher final accuracy levels, they must

4



Introduction

be increased.

Metrics The performances of the employed methodology are determined by
the accuracy and the communication cost. The average accuracy measured over
30 rounds (ACC.) determines the capability of the trained model to correctly
classify the test target labels, it is inspired by a common ground baseline [14]. The
communication cost (CC) measures the communication effort of the system to
reach a target ACC., it is measured both in communication rounds (CR) and in
Gigabytes (GB).

1.3 Work Organization
The ensuing work organization follows a simple outline, from a general description
gradually focused on the target topic (communication efficiency for cross-device
horizontal federated learning with a centralized topology), the challenges, related
works, and state of art and then introducing the innovative solution FedNILO,
its methodology and relative results with the experimental setup to reproduce them.

Given the many recent technological innovations related to the work, the very
first chapter 2 provides a general overview of the technological context, rather than
directly addressing federated learning (which is extensively treated in its chapter)
deals with the technological scenarios and systems that surround it.

In chapter 3 will be presented a structural definition of Federated Learning, by
reporting the gold standard definition and then schematically defining the main
characteristics that could define a particular context. The abstract partitioning is
based on infrastructure (devices involved), architecture (data partitioning requires
different system functions), and topology (how nodes are connected).

A specific section 3.5 deals with the heterogeneity types that could occur (and
typically occur) in an agnostic federated learning scenario, where data, hardware,
and systems, in general, could be highly skewed. 4 is an overview of the most
relevant related works, the practical concept, and the relative savings, starting
from the baseline [13] and its relative optimization techniques.

The novel approach is depicted in chapter 5, focusing on the algorithm and its
functioning procedures over the server or client sides. The chapter discloses the
details of the implementation, and it provides purposeful insights into the most
important steps along with the policy and their motivations. It follows chapter 6,
which is composed of two parts (i) the experimental setup needed to perform the
experiments, comprehending the research scenario, models, and hyperparameters,
and (ii) the experimental results obtained with the definition of relative metrics
used. In the end, 7 is a quick recap, which briefly resumes the presented work

5
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the theoretical notions provided, and the experiment performed with the results
accomplished.
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Chapter 2

Background

2.1 General context
This chapter presents the surrounding context motivating FL, referring to the
broader scenario and presenting the standards of the common terms that are
operated throughout the work. It provides the standard definitions of IoT and its
relative actors. Besides, it refers to the technological breakthroughs provided by AI
to introduce their energy-driven optimizations that enabled the AIoT and inherent
notions.

2.1.1 IoT and AI
The International Telecommunication Union (ITU) provided the standard definition
of IoT as “A global infrastructure for the information society, enabling advanced
services by interconnecting (physical and virtual) things based on existing and
evolving interoperable information and communication technologies” [15] 1. An
extensive network of devices 2 that merges or at least mutually interfaces physical
and cyber worlds, deeply revolutionizing both the scope of the internet and the
role played by actors. Fridges, fitness trackers, traffic lights, and more are pushed
toward their interconnection, constituting the network depicted in figure 2.1 which

1“NOTE 1 – Through the exploitation of identification, data capture, processing and commu-
nication capabilities, the IoT makes full use of things to offer services to all kinds of applications,
whilst ensuring that security and privacy requirements are fulfilled.
NOTE 2 – From a broader perspective, the IoT can be perceived as a vision with technological
and societal implications. ” [15]

2Device : “With regard to the Internet of things, this is a piece of equipment with the
mandatory capabilities of communication and the optional capabilities of sensing, actuation, data
capture, data storage and data processing” [15].

7
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is divided by hierarchical levels: The centralized cloud server, the edge nodes, and
the edge devices 3 4. The monitoring part is performed by sensors 5, while the
action decided by the AI is performed by actuators 6

Figure 2.1: Levels of network hierarchy in IoT adapted from [17]

Initially conceived as a centralized system, IoT stumbles into the Big Data
issue, where immense volumes of highly heterogeneous data need instant or rapid
processing to extract information and/or make decisions. The description of big
data is tight by the 3 Vs: Volume, Velocity, and Variety [5] [4]. A boundless
number of devices produces endless data that must be sent over the internet to be

3Edge in this context refers to any computing and network resource along the path between
data sources and cloud data centers

4“Device: A technical, physical component (hardware) with communication capabilities linking
it to other IT systems. A device can be either attached to or embedded inside a physical entity
or monitor a physical entity in its vicinity.” [16]

5“Sensor: A device identifying or recording features of a given physical entity.” [16]. E.g.,
camera or microphone.

6“Actuator: Mechanical device for moving or controlling a mechanism or system. It takes
energy, usually transported by air, electric current or liquid, and converts it into a state change,
thus affecting one or more physical entities.” [16] E.g. Electrical Switch.

8
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processed, overcrowding communication links, computational nodes and introducing
dramatic complexity when dealing with its heterogeneity (Variety). Distributed
learning paradigms have been developed to substantially reduce the time required
by training, the centralized data is distributed across different nodes, that pertain
to the cloud server, to achieve the same goal in a synchronized way exploiting
multithreading and parallel computation [5] [18].

AI needs huge tons of data to improve implemented models, in particular, its sub-
category defined as Deep Learning is particularly greedy of data examples [5]. The
IoT data generation pointed out before comes to be double ending: while drastically
undermining the execution, it could significantly improve AI which empowers the
performances of IoT. Deep learning models introduced unprecedented performances
especially in computer vision (CV) and natural language understanding (NLU),
with brain-like inspired mathematical models. The most famous architectures
depicted in 2.2 comes from the Multi-Layer Perceptron (MLP) [figure a, left], which
then inspired Convolutional Neural Networks (CNNs) [figure b, middle] for the CV
tasks and Recurrent Neural Networks (RNNs) [figure c, right] or Long-Short Term
Memory cells (LSTMs) particularly suited for NLU due to their memory oriented
design. The CNNs shown to outperform every other state-of-the-art technique,
in particular in their capacity to extract and spot complicated and hierarchical
patterns compared to the finest handmade features [19]. CNN’s evolved along
with the capacity and computational capabilities of GPUs and dedicated hardware,
starting with a rush focused on the accuracy performances which produced ever
more complex models, increasing the number of parameters and/or the number of
operations, from AlexNet to ResNet152.

Figure 2.2: Neural networks, MLP, CNN and RNN image readapted from [20]

2.1.2 Towards AIoT
The mutual empowering of IoT and AI, however, is hampered by many challenges.
The improvements of data quality and amounts weigh ever more on the network links
and low-end devices. Their technological trend lead to unfeasible communication
costs, but also processing and memory unavailable resources at the central server

9
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[21]. The resources unavailability could produce single tasks failures, introduce
system latency, or in extreme circumstances system breakdowns. The chain of
action that links a sensor to an actuator laying in the same place is composed of
the meddled components such as edge nodes and cloud-server. Their connection is
bidirectional: (i) forward from device to cloud-server, through edge nodes, and (ii)
back to the device again. The latency introduced by this paradigm gives infeasible
operational times. E.g., a camera in a train station that captures real-time videos
for critical security reasons, sends the frames to the local device, which forwards
them to the cloud server. The centralized server queues their computation and
provides the result (e.g., risk/not risk) that must be sent back to the device that
must order the actuator to cut the power down. Real-time predictions are essential,
while the centralized computation paradigm presents too much latency and failure
points.

Edge intelligence: Inference Fortunately, also the evolution curves of low-
end devices have seen a positive boost during the last decade. It enabled deep
models on cutting-edge capabilities, meanwhile clearing the way of research efforts
towards efficiency. The aim shifts so to preserve as much as possible accuracy
while drastically diminishing the required resources in terms of memory, energy,
and power [22]. These optimization techniques allow inference tasks to be directly
carried out by the end devices involved, without the strict necessity to employ
the server. New distributed systems emerged relying on the inference capabilities
of low-end devices such as the Big/Small model predictions and the Ensemble
Learning. The first (Big/Small) provides a server that is asked to substitute
the edge devices only when the accuracy confidence is under a certain threshold.
Ensemble learning, instead, employs a fleet of devices to perform their predictions
and then aggregates them by mean of some decision function (e.g., majority voting)
the prediction probabilities to obtain the consensus target.

Edge intelligence: Learning Inference over the edge is yet not enough. The
communication burden is not completely resolved, and most of all privacy legacies
undermine the feasibility of the task. The decentralization of data and its processing
is thus following the inferential computation distribution. However, training requires
more resources than inference, because an additional step (back-propagation) must
be performed to optimize the model. The memory need is more than doubled
because of the computation of the gradients, while the data batch size provides
different results and is less arbitrary. But most importantly, is the data present
or generated onto the device sufficient to train a Deep Model? As mentioned
before, differently from other machine learning algorithms, deep models need
substantial training examples. Besides, their performances suffer a lot because
of class unbalancing being neural networks prone to overfitting. The training
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performed purely locally is then prone to divergence, and it does not appeal to
fairness, melting down the interconnection and prospects of IoT. The path of AIoT
goes down towards the decentralization of data and computation, to reach efficiency
and privacy goals not by segregating nodes but by building mutual empowering
connections between them.
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Chapter 3

Federated Learning

This chapter provides an extensive overview of FL and its characteristics. It starts
with the gold standard definition and then proposes a schematic taxonomy defining
the core types. Then it specifies the infrastructure, the architecture, and the
possible topologies that have been deployed as particular cases or enhancements
of traditional centralized FL. It furtherly exposes the meaning of heterogeneity,
focusing on the data heterogeneity that severely impacts the training performance.
It concludes with the challenges to motivate the solution provided.

3.1 General view

3.1.1 Gold standard definition

The broader scenario addresses the actors involved with terms such as Trainers
and Coordinator so that it complies with the broader definition of FL [12]. The
prevalent paradigm is indeed the client-server one, but it is not the only one
available. However, to smooth the introduction of the theme, this work starts from
the trivial paradigm and then explores the possible variances.

The gold standard definition provided by [3] asserts: "Federated learning (FL)
is a machine learning setting where many clients (e.g., mobile devices or whole
organizations) collaboratively train a model under the orchestration of a central
server (e.g., service provider) while keeping the training data decentralized."

Accordingly to the leading definition, the coordinator (central server) orchestrates
the updates and aggregations (parameters synchronization) to achieve a global
learning objective.
The figure 3.1 points the crucial steps of a traditional FL round (R) out, which are
pointedly defined below.
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Figure 3.1: Federated learning graphical representation provided by Google [23]

• client identification & selection Even though the pool of clients could be
composed by every device, the clients’ availability is not always granted. The
server could apply a further selection of the available clients based on some
decision function which typically addresses the performances of the client
given the connection stability, the battery life, the hardware capability as well
as the quality of the model previously submitted (toxic nodes and adversarial
attackers)

• Broadcast (C. - A.) The coordinator broadcasts the model parameters to
the end nodes. The clients could overwrite the new parameters over the local
model or modify it accordingly.

• Client training / computation (A.) The end nodes perform the training.
For example, they train the model over the local data through multiple
stochastic gradient descent (SGD) steps.

• Upload (A. - B.) The end nodes upload/push the trained parameters of the
model back to the coordinator, along with optional statistics or pieces of
information (for example, the number of data examples)

• Sampling and aggregation (B.) Once the coordinator has collected a suf-
ficient number of updates, it exploits an agglomeration algorithm to merge
them. Traditional FL performs the weighted average of the parameters. The
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weighting regards the data examples that clients used during the training.
Stragglers and toxic updates could be discarded depending on the policy.

• Coordinator model update (B. - C.) The coordinator updates the global
model with the aggregation of the new parameters received. There are different
aggregating techniques, the most common one is overwriting it with the
weighted average (FedAVG).

3.2 Infrastructure

Distributed learning should take into account three main scenarios where first of
all denote the main difference between distributed (Datacenter) vs federated (cross
silo / cross device) learning. In each case the computational part is distributed
over more machines, but generally FL implies the local generation of heterogeneous
decentralized data displaced over a geographical distribution, while the data is
never sent across the internet or shared between parties.

Datacenter - (Distributed Learning) Cisco defines the public cloud (server
cloud) as a collection of data centers that supply data resources generally fully
accessible (depicted in figure 3.2). The distribution of data must not be intended
as decentralized. It is more like a virtual distribution over different machines,
allowing aggregation, redistribution, and sharing depending on the need. The
devices involved are computational nodes usually inside the same computation
center, e.g., a cluster of servers or machines supposed to be always available.

The data is centralized, so the distributed learning is performed on homogeneous
partitions, while the system architecture provides reliable links and fast connections.
The main bottleneck comes to be computation. The datacenter paradigm shows to
be strengthened by the model performances, nodes’ reliability, and communication
cost at least during the training phase. However, it shows to be a weak approach
considering the privacy, the feasibility, or the communication cost for what concerns
the massive data gathering [3].
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Figure 3.2: Datacenter Distributed Learning - picture adapted from flower docu-
mentation [24]

Cross-Silo (FL) Particularly interesting for organizations such as govern-
ments or private companies is the Cross-Silo FL. The ’Silo’ term comes from siloed
data, distributed over different geographically distributed data centers. The nodes
involved are generally reliable and perform similarly to the Distributed Learning
paradigm [3]. Nevertheless, the data is generated, stored, and processed locally.
One key example is the Cross-Silo federated learning for Health-Care organizations
of different hospitals like depicted in figure 3.3.

The number of actors is limited, from two up to hundreds, generally speaking,
depending on the width of the organization involved. The communication links
are assumed to be reliable, but the geographical distribution introduces higher
network complexity levels. The computation and/or the communication could
provide a challenge depending on data volumes and types. Here is the figure of
the orchestrator (server), the node keeping the target labels. Instead, every other
trainer party (also servers) participates at every round, providing none or somewhat
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very few failures[3]. [3]

Figure 3.3: Cross silo federated learning for healthcare, image readapted from
[25]

Cross Device (FL) Cross-device infrastructure is the emerging paradigm
proposed by the Google research team [13], which is addressed by the proposed work
with the optimization provided. Figure 3.4 depicts an example of cross-device FL.
The devices, in this case, are in the range of medium to low computational power
(from the end-user computers to mobile phones). The leading reference targets
mobile phones due to their impressive distribution and increasing computational
power, furthermore, they have many incorporated peripherals that generate tons of
data.

The geographical distribution is supposed to be hugely ample and sparse, while
the number of nodes is immense. The data is generated locally and remains
local, while the communication is about the gradients or generally about the
model parameters. System heterogeneity is one challenge still in its definition. It
could occur in terms of data (usually horizontally partitioned), system, hardware,
software, or even law. The most challenging aspect reflects the communication cost
[3]. Transferring models instead of gradients is less data-dependent, however, deep
models are well-known for the massive parametrization.

The convergence of a globally shared model requires many and many steps.
The main scenario considers one orchestrator server which synchronizes the clients’
models. The clients’ pool is huge, considering up to 1010 different devices, but it must
be assumed the partial participation at least over a single round. Cross-device FL is
affected by highly unreliable networks and client states, while the devices involved
have limited computational power and battery resources constrained. Different
configurations have been developed, such as fully decentralized or hierarchical FL
[3].
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Figure 3.4: Cross Device Federated Learning - picture adapted from flower
documentation [24] [26]

3.3 Architecture

The FL architecture takes into account the data splits performed across the various
clients. It is helpful to consider the aggregated data as a big table where the rows
represent the examples while the columns represent the features. It allows a visual
partitioning of data by row (example) or column (feature). The main three types
are Horizontal, Vertical, and Transfer which is a mix of the two. Of course, these
definitions have many facets depending on the case, as the others definitions shall
be considered as the centroids of clustered works [27].

The common diversity is the horizontal/vertical splits. They are addressed as
partition by example and partition by feature, respectively. Even if the focus is
on the data partition types, the differences are on the architectural level. The
parties act and interact discordantly from an architectural point of view, requiring
different coordination methodologies.
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Horizontal or homogeneous graphically depicted in figure 3.5 is the directly
addressed architecture of this work. The data partition over the actors is performed
by example [8] [3] [27]. Every actor is supposed to have different data points
in terms of amount and or targets. It is typical of cross devices settings, the
traditional FL example holds a key example. Traditional FL exploits end-user
smartphones where users could have their pictures of family, pets, etcetera. The
exchanges between parties are supposed to respect privacy by design, by sharing
models instead of their raw data. Privacy corresponds to the pivotal advantage.
The challenges consider mostly the communication cost and the capability to deal
with the heterogeneity, concerning both system and data. The heterogeneity could
be extremely treacherous.

Figure 3.5: Horizontal Federated Learning adapted from [27]

The communication cost is due to the model size and convergence mostly. The
table 3.1 is an example inspired from [8], on the left client 1 has the data records
of only two different patients, both alive and non-smokers. Every client has its
own labels that are locally stored. Client 2 (on the right) has many more patient
records (different from client 1) with different distributions of both features and
labels, which instead are conceptually shared (both clients have the names of the
same columns).

Vertical or heterogeneous graphically depicted in figure 3.6, is not addressed
by the proposed optimization but its definition gives a better understanding of
the generalized concept of FL. The data partition over the actors is performed
by feature level [8] [3] [27]. The server and client definitions are a bit misleading
because vertical FL highly correlates to cross-silo structure, where the parties are
composed of equal servers. It is better to change their definition to active/host
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Table 3.1: Horizontal FL

Table 3.2: Client 1

Patient Age Smoker Alive
1 68 N 1
2 23 N 1

Table 3.3: Client 2

Patient Age Smoker Alive
3 68 Y 0
4 23 N 1
5 67 N 1

...
832 76 Y 1
833 42 - 0

party for the nodes owning the target labels, while passive/guest otherwise. The
nodes communicate partial gradients throughout the links. A single node has the
labels’ availability and can compute the loss function to update the other, or also
the other, local models, while data remains local.

Figure 3.6: Vertical Federated Learning adapted from [27]

The model is then globally distributed instead of shared or personalized, ac-
curately it is parallelly distributed, which distinguishes itself from serial model
distribution more typical of Split Federated Learning [25]. In the cross-silo scenario,
computation and privacy take the critical issues ranking over the communication
bottleneck. However, their precise ordering depends more on the data and batch
size, compared with the gradients. In table 3.4, the partition provided is more clear.
On the left, client 1 acts namely as an active (or host) party. It has the target
labels (Alive) along with its own features and data points. Client 2 instead has no
labels (guest - passive party), shares the same data examples but with different
features (donation and income compared to Age and Smoker).
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Table 3.4: Vertical FL

Table 3.5: Client 1

Patient Age Smoker Alive
1 68 Y 1
2 23 N 1
3 67 N 1
4 68 Y 0
5 42 - 0

Table 3.6: Client 2

Patient Donations Income
1 10.00 1M
2 200.00 300k
3 5k 300k
4 NaN 400k
5 200M -

Federated Transfer learning One additional architectural classification is
the federated transfer learning which, rather than a whole new architectural concept,
is a mix of vertical and horizontal architectures 3.7. Federated transfer learning
comes to be a compelling approach when data is highly heterogeneous. It exploits
the transfer learning of traditional machine learning concept to benefit the target
domain from a general source domain [11] [7] [27]. In addition to guests and hosts
of vertical FL, it is inserted the role of the arbiter, defined as the node that occupies
of sharing the public keys, collecting gradients, and checking the loss convergence.

Figure 3.7: Transfer Federated Learning adapted from [27]

3.4 Topology
The network’s topology is represented as an indirectly connected graph. The
graph is a conceivable illustration that depicts the involved parties (nodes) and
their relationships (edges). There are correlations between the previous definitions,
although there is an abstraction in terms of exchanges. Even if two more additional
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topologies are cited in [12] (Split and Vertical, 3.8 the two graph representations
on the right), this work focuses on the topologies that are typical of standard FL
(centralized) and two of its enhancements, still applicable to cross-device settings
while mostly sharing the horizontal partitioning: Hierarchical and Decentralized
FL.

The centralized topology is represented by a star graph (figure 3.8 on the left),
where the central node is the server and leaves are the trainer devices. The server
has a bidirectional edge with every client (the server sends the model to the
clients, and then gathers their versions whenever possible). Typically exploited by
cross-device horizontal FL, it is the topology targeted as the principal FL scenario
provided by Google in 2017, with FedAVG [13]. Under cross-device settings, it
evolves in a dynamic star graph because of partial participation. It is one of the
first stage implementations, afterward reshaped into hierarchical and decentralized
topologies, far more complex. Despite the recent evolutions, it serves as a yardstick
for optimization. The naive concept is yet still valid and required, allowing a
simpler reproducibility of the results. The server presents the very single point of
failure, mainly dreaded because of malicious attacks.

Hierarchical [28] proposed hierarchical FL, an optimization of the centralized
topology. The star graph of centralized topology advance to a tree graph (figure 3.8,
middle). The root node is still the cloud server while the leaves are the end-user
devices. However, instead of a direct connection, the graph provides a mid-step
layer, typically composed of edge nodes or servers. The idea is related again to
cross-device learning. In particular, it has been engineered for mobile networks,
considered highly unreliable and heterogeneous. The centralized concept recurs in
the sub-graphs, which replicate at least one time over the leaves. The cloud server is
still the root node and coordinator, head of the MacroBase central Station (MBS),
and samples and aggregates the models of its child nodes. The children nodes are
both coordinators and producers. They do not directly train models, but act as
Small cell bases (SBS), reproducing the centralized topology with end-user devices.
SBS broadcast, collect and aggregate trained models to update their local versions
similar to the center node, but then they push it to the MBS. The stability and
performances provided come with a cost. It increases latency because of topological
relationships: one round consists of many rounds of SBS and one for the MBS.

Decentralized Decentralized topology is also referred to as peer-to-peer FL or
fully decentralized FL in works such as [29] [30] [31]. It is graphically representable
through a partially connected graph, usually random or K-regular. One of the
most challenging aspects relies on the consensus of the model. The coordinator
becomes no more centralized or even not present at all (every node is an end-device
or an end-node). Hence the solution considers alternating the subgraphs composing
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nodes to provide coordinated services. Another solution exploits the social network
learning theory, provided by DeGroot, to find consensus. However, the consensus is
not always achievable depending on the graph. The graph dynamically evolves its
topology: the relationships (links) are based on the availability of the nodes. The
security and privacy prove to be more guaranteed without a third-party coordinator
requiring. However, it requires more computation for encryption and decryption,
whenever present. [27].

Figure 3.8: Federated learning topologies adapted from [12]

3.5 Heterogeneity in Federated Learning
In federated learning applications, heterogeneity is inherent to the common ground
of problem definition. It relates to many aspects but addresses most commonly
the data skew. Other relations are hardware, network, geographical, and model
represent critical challenges in a real-world scenario. This section presents the most
meaningful data heterogeneity definition with its many facets, followed by other
heterogeneity definitions that affect the system or the application, focusing on the
system heterogeneity and suggesting broader sense notions such as law enforcement.

3.5.1 Data heterogeneity or skew
Data heterogeneity is the most taken into account in FL research. It severely
affects the deep learning models and their global convergence. It is intrinsic of
FL notably for the horizontal partitioning of dataset brought by Cross-Device
settings. The identically and independently distributed (IID) assumption is almost
self-explanatory. This section reports and defines it to give a better understanding
of the concept. By so, it is possible to enlighten its comparison to the nonIID
case. NonIID instead, presents various mixes of unbalanced data amounts with
different distributions of features and target labels. For research purposes, the need
for datasets embedding the heterogeneity assessment is targeted conspicuously.
However, the generation of FL datasets is still far from realistic deployment.
Different FL tools and frameworks provide three generating methods: (i) partitions
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of classical deep learning datasets (MNIST, CIFAR10, ImageNet, Shakespear...),
(ii) some ad hoc premade datasets (Federated EMNIST), or (iii) the generated in
an FL fashion synthetic datasets (Federated Synthetic datasets) [12].

Amount Balance

The effortless concept when dealing with homogeneity is the amount of data
available in each device. The training of a neural network is performed over mini-
batches of data to compute the gradients, which are then averaged to perform the
back-propagation. If a device must divide its 1000 training examples into 50-sized
data batches, it performs 5 epochs based on 100 local steps, otherwise, if it has only
10 examples it performs 5 local steps for the same amount of epochs. The different
batch sizes could lead to better or worse results [13] affecting the convergence of
the standard FL algorithm.

Balanced Every client has the same amount of data with the corresponding
target labels. A more precise mathematical notion would be: x features, y labels,
D(x, y) dataset, i, j clients (for any arbitrarily chosen clients i, j without loss of
generality. ):

|Di(x, y)| ≈ |Dj(x, y)|

The absolute value represents the cardinality of the dataset. Each client is supposed
to have the same amount of data points or at least the difference between them
must be close to the definition of pointless. Even if it is simpler for testing purposes,
it poorly represents reality conditions. The number of data examples created and
stored by different devices could depend on the storage capacity, the state statistics
of the device, or the use it makes the owner. A smartphone with limited storage
capacity is unlikely to have massive data points, nonetheless, the state for an
autonomous MCU equipped with a camera could be affected by the battery life,
sampling fewer examples than one another. In the end, one user could be more
interested in capturing more pictures (a fashion blogger), yet the independence of
the storing capacity and the battery life is not respected.

Unbalanced Much more close to the facts on the ground is the unbalanced
assumption. It considers the differing amounts of data points across devices. From
a statistical point of view, the amount of data examples over devices represents a
distribution. However, there are some inconsistencies in the literature to produce
FL synthetic datasets or to provide unbalanced partitioning over different clients.
The first straightforward solution distributed labels singularly between the clients.
Two distributions of use split the dataset across clients in a more reality-trustworthy
way: the lognormal distribution and the Dirichlet distribution (usually paired with
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the label partition with the Latent Dirichlet Allocation, LDA). The mathematical
definition is pointed out below: [12]

|Di(x, y)| > |Dj(x, y)|

which represents more a lognormal distribution with slight variance or

|Di(x, y)|≫ |Dj(x, y)|

that instead is more representative for the LDA with low values of α. The side
effects of unbalancing are partially mitigated by standard FL [13] on the aggregation
phase by a weighted average of the models accordingly to the dataset size. Clients’
selection could be exploited to disqualify the too under-representative clients that
might be toxic for the model convergence (for example if |Di(x, y)| < B where B is
the batch size).

Feature and label distributions

Deep models more than requiring a sufficiently high number of examples are not
robust against the class unbalancing suffering of overfitting. Despite that, it is
exactly what the real-world scenario introduces in FL. The clients’ local datasets
are not only unbalanced in terms of cardinality, but they also present features and
labels distributions’ skew. The label distribution is the most addressed nonIID
challenge because it deeply impacts standard FL performances. It stretches the
number of rounds needed to reach convergence and deteriorates the accuracy’s
steadiness, generality, and top levels. The nonIID assumption leads the devices to
diverge from the minimal risk of the global model, but even more from the other
devices, distancing from a smooth convex optimization function.

Notions and notation In this case, this work refers to the classification task,
a supervised method that considers the features of a data sample to predict the label
previously defined for the training. A little notion introduces the mathematical
concepts needed by the subsection. Given x features, y labels, i, j clients, their local
data distribution denoted as π(x, y) and a relative drawn example (x, y) ∼ Pi(x, y)
As suggested in [3], it is convenient for definition purposes rewrite it using the
conditional probability formula:

Pi(x, y) = Pi(x|y)Pi(y)
= Pi(y|x)Pi(x)

(3.1)

Identical and Independent Distribution (IID) IID fashion implies that
each client has approximately the same distribution of both labels and features,
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moreover assumed as independents. That means that every client has at least one
representative data point (x) per each class (y), while the ratio of examples is the
same for each class of each client dataset. For example, if the i-th client’s dataset
accounts of I dogs, I cats and I frogs pictures and the client k-th has K dogs, K
cats and K for any values of I, K ∈ N+, the distribution is assumed to be identical.
The probability distribution P(x, y) is shared or close between any arbitrary clients
couple i, k:

Pi(x, y) ≈ Pj(x, y)

The independence violation usually occurs because of eligibility requirements, when
the devices are not under users’ use and are fully charged, by so are introduced
significant daylight patterns [3]

Non Identical and Independent Distribution (NonIID) A completely com-
prehensive definition and assessment of NonIID is still an opened challenge in FL,
however some guidelines must be assumed whenever cross device with horizontal
partitioning settings are applied. Generally the nonIID assumption considers the
difference across clients in the distribution of paired data examples with their labels

Pi(x, y) /= Pj(x, y) (3.2)

However, the clients’ distributions may change, likewise could change the defined
distribution for a generic client i. [3]. The inequality 3.2 is due to the difference in
one of the four terms composing the conditional probability transcription of the
formula, producing four different types of nonIID-ness and skew.

Label distribution The label distribution skew could happen in terms of
the marginal distribution P (y) (different labels distribution across clients) or the
conditional distribution P (x|y) (distinct labels distribution between two clients
that share the features’ distributions). Common strategies provide the whole labels
partitioning across clients (e.g., ten labels and two clients produce 5-fold mutually
exclusive label datasets), or the Dirichlet distribution regularized by α. [12]

Prior probability shift (Labels distribution skew) From a mathematical point
of view, the equation 3.2 is not satisfied because of different marginal probabilities
of the labels between at least two clients, and so Pi(y) /= Pj(y). It does not mean
that the conditional probability of x based on y must be different as well [3]. It
could be that:

Pi(x|y) = Pj(x|y), Pi(y) /= Pj(y)

The most inducing cause grounds in the intrinsic geographical distribution of FL,
distant regions provide different distributions. E.g., white polar horses do not live
in tropical forests, wombats’ pictures are unlikely to be sampled from Nord-Europe
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users (except for voyages and or Zoos). Different facial treats distributions locate in
different continents (example readapted from [3]). The bias introduction has been
addressed by some work to respect fairness [32]. Figure 3.9 depicts an example of
the prior probability shift where a wombat (typical of Australia’s) may be present
only on the dataset of client 1 (a), while the Blue-footed bird can only be found
in the Galapagos (b). It is an extreme example but efficient: the samples are
dependent on the geographical location, or by the preferences of the user, who may
dislike wombats and never take pictures of them.

(a) client 1 (b) client 2

Figure 3.9: Example of concept drift, typical animals of localised regions (a.
wombat:Australia and b. Blue-footed bird:Galapagos)

Concept shift It could also happen that the same features link different labels.
From a mathematical point of view by exploiting the second equation of 3.1 it
could happen that even if the marginal distribution of the feature is respected, the
conditional one is not:

Pi(x) = Pj(x), Pi(y|x) /= Pj(y|x)

It often happens for tasks such as sentiment analysis or next word prediction, e.g.,
if some clients prefer cats over dogs, they could like a comment or a video where
a cat scares away the dog and vice versa [3]. Fig 3.10 represents an example: a
sticker is pasted to the picture of a cat, the glasses can be approved by one client
while annoying one another which could be a strict radical animal lover.

Figure 3.10: Concept shift labels distribution skew example, adapted from [8]
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Feature distribution / Attribute skew The feature distributions consider
the differences between datasets’ attributes. The pointing differences scheme is still
the same, it underlies the divergences of the marginal distribution of the attributes
(Covariate shift), or the distribution of the conditional features of the same labels
(Concept drift). The feature distribution heterogeneity, differently from labels, is
less characteristic of horizontal FL, shifting the importance towards the vertical
FL (because of example/feature partitioning).

Covariate Shift The clients feature distribution variance is due to the marginal
probability distribution of the features per se P(x), independently from the condi-
tional probability of the labels, given the features:

Pi(y|x) = Pj(y|x), Pi(x) /= Pj(x)

I.e., two users in a hand-writing letter recognition task have different writing styles,
i-th user is used to press down harder whenever it writes the "i" letter but faintly
draws the "l", the j-th user instead always draws both of them emphasised ("i","l").
If the first user has a dataset composed by ("i":I,"i":I,"l":L), and the second users
instead has ("i":I,"i":I,"l":L), they share the labels, however the width distribution
of one dataset differs from the other [3].

The work provided by [8] introduces an inner distinction of covariate shift. The
attributes may also have different overlapping levels: Non-overlapping (vertical
FL), partially overlapping, and fully overlapping (horizontal FL) represented in
figure 3.11 which proposes for each type an example of covariate shift between two
clients.

Fully overlapping refers more to the horizontal FL, two cameras of two
different devices could have different lenses or sensors quality, introducing various
levels of noise into the same subject, figure (c). Non-Overlapping refers more to
the vertical FL, which almost represents its definition (feature partitioning). In
figure (a), it is possible to see that even if the two pictures represent the same
panda, they are two mutually exclusive partitions of a larger picture. The Partially
Overlapping features are depicted in figure (b). The same icon of a PC can show
a partially shared image, with different grades and directions of the rotation based
on the horizontal axis. Such a difference could be due to the sampled pictures of a
multi-view camera system.
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Figure 3.11: Covariate shift based on overlapping levels: adapted from [8]

Concept drift The last member that could not satisfy the equation introducing
feature heterogeneity is the concept drift, which refers to the variation of the
conditional distribution P(x, y). It could also occur when the marginal distribution
of labels (P(y)) is shared.

Pi(x|y) /= Pj(x, y), Pi(y) = Pi(y)

Similar to the prior probability shift, the heterogeneity introduced is mainly due to
the geographical distribution of the data collected. Two clients native to remote
regions (such as Quebec and Saudi Arabia) share the number of cars pictures.
Nevertheless, the first ones are covered by snow, presenting low luminance (the
light hours in cold countries are limited), contrast, and temperature values. On
the other hand, the other client’s pictures may be about cars laying on the sand,
having the opposite values of the attributes mentioned [3]. In figure 3.12 there are
two images of car drifting (as the concept) on different kinds of powders: (a) sand
and (b) snow. It must be considered as a subsample of larger datasets of both
clients mainly represented by similar topics.
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(a) client 1 (b) client 2

Figure 3.12: Example of concept drift, drifting cars’ pictures with different
conditional attributes’ probabilities, (a) desert drifting car and (b) winter drifting
car

3.5.2 System heterogeneity
The system heterogeneity heavily impacts the performances and the design of FL
algorithms, especially under Cross-Device settings. Besides the dissimilarities in the
local data, each device has its own characteristics based on hardware, software, and
state. This heterogeneity could introduce stragglers or failures that the paradigm
must account for.

Hardware and State The hardware architecture of the devices can impact
the computation and the communication of different devices. It relates to the CPU
capability, the possible presence of a GPU, the network connectivity (3G, 4G, 5G,
or wifi), and the memory (in particular the RAM to perform the training and the
ROM to store the models and data). Different performances introduce failures
and latency in the training phase. The coordinator must then wait for stragglers
and account failures. Many techniques have been deployed to provide robustness
from fault tolerance, asynchronous FL to model personalization, quantization, and
compression [3] [25].

The client state also has a deep impact, even if the client’s equipment shows
relatively good hardware and connection. The battery life or the processes already
running on the device could play a key role. While AIoT devices devote themselves
entirely to the task, smartphones handle many tasks requested by the owner. Their
employment could ruin so both the user experience and the training performance.
In the end, the hardware heterogeneity may also impact the data heterogeneity,
providing different datasets in terms of amount, colors, etcetera.

Software differences can impact the feasibility and reliability of the devices,
even if it is more distinctive of cross-silo settings [3]. Different operating systems,
frameworks, versioning, protocols, and standards could impact the performances,
the expected results, or even the feasibility. FL market-driven algorithms should
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be multi-platform. So they should be agnostic to the software versions and tools,
in particular for smartphone devices training. Dealing directly with ten servers is
remarkable, while it is unimaginable to do it with billions of devices).

Model One overcoming technique that addresses the hardware heterogeneity
introduces the model heterogeneity, different hardware computation capabilities
could preclude tons of devices from participation. The idea of FL is the opposite:
it shall distribute the load across a fleet of devices. The more load distribution, the
better. Many techniques of model compression already deployed for inference over
highly constrained devices [22] and every energy-driven optimization of traditional
deep learning could be transposed for the need.

The global reduction of the model size possibly reduces its accuracy, while pre-
cluding portions of the devices pool withholds access to their data. The application
of specific techniques over participating devices still provides enhancements to the
global model. The architectural heterogeneity implies different model architectures,
while the cardinality reduction could be provided by pruning singular weights
(namely sparse pruning) [33] or clustered weights, grouped by channel (channel
skipping) or layer (layer skipping). Also, the width of a layer could be tuned to
the need, providing the same number of layers but reducing the number of feature
maps. Moreover, the quantization could shrink the precision of the weights and
biases, introducing the precision variety.

Different model aggregation techniques directly address the model heterogeneity.
E.g., FedMA considers the similarity of neural layers output [32], while the model/-
knowledge distillation [34] requires public and private datasets applying transfer
learning techniques, and personalization (clients share only some layers with the
global model).

Political and others The geo-delocalization could be affected by different gov-
ernments and laws enforcement or regulations. Some data could not be available,
illegal to gather, or process depending on the countries and regions. The figure
3.13 represents the map of worldwide data protection and privacy legislation ex-
trapolated on the site of the united nations conference on trade and development
(UNCTAD), which partially addresses the legislation presence and levels over the
countries. However, the legislation differs even further. The European region is
regulated by the GDPR, while Convention 108 establishes similarities with Russia.
Different regulations concern the United States and China. To conclude assessing
the real-world heterogeneity is still a challenge: "Nothing has more degrees of
freedom than reality" cit. Elon Musk.
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Figure 3.13: Worldmap of data protection law, picture adapted from [35]

3.6 Challenges
This section points out the main challenges of FL ranked by importance. They
represent the ones that mainly focus on mobile edge networks and low computational
devices typical of AIoT.

Communication The most important challenge lay over the core bottleneck of
FL laying in the communication. The remarkable number of rounds and the model
sizes result in massive communication loads. The higher the number of rounds,
the higher is the cumulative communication cost, which is the most substantial
energy sink. As previously mentioned, the devices involved to train the models
have constrained resources. They are connected through wireless networks and are
supplied with batteries. The model size leverages the cumulative communication
overhead, but furthermore, it increases the energy consumption for the single round
of the single device. By so, it impacts the affected devices in terms of load and
time. The most common solutions provide faster convergence techniques based on
regulation or different aggregation, while few other techniques involve the model
compression techniques such as quantization and sparsification. [27] [3]

Heterogeneity The definition of heterogeneity is provided in section 3.5. It may
vary on the system heterogeneity, which considers more the hardware and relative
state of the devices involved, or on the data heterogeneity, which considers the
partitioning of data and the relative skew that shows up in real-world scenarios).
The main problem caused by statistical heterogeneity or data heterogeneity is the
complexity generated. Deep models training performs well for massive data points,
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identically and independently distributed. Despite that, FL produces the exact
opposite situation between different client datasets. The client drift, introduced
by the divergent optimization of the model, could reveal itself to be toxic for the
global model convergence. Contrariwise, the global model’s update could not fit
at all the clients’ needs. Many regularization and personalization techniques deal
with data heterogeneity. However, still the statistical metric definition a priori is
an open challenge.

The system heterogeneity is also typical of cross-device FL, where the involved
devices have different capabilities in terms of communication, computation, storage,
and availability. The client state could vary because of low battery levels and bad
communication bandwidth. The highly varying performances could severely affect
the methodology, inducing stragglers or failures. Client selection, asynchronous
FL, and timings are some techniques that deal with them. [27] [3].

Privacy & Security Respecting privacy becomes more important, FL address
privacy by design avoiding data transfer across the internet. Despite that, malicious
clients or even servers still could infer data using gradient reversal techniques. Few
gradients can be sufficient to reverse the data entirely. FL, like any other internet
service, is not devoid of cyber threats. They could concern the many stages and
devices, from training to inference, from client to server. For such techniques
as homomorphic encryption (cryptographic technique) and differential privacy
(noise addition over the transferred message such as model or gradient) have been
deployed. [3] [10]
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Related works

FL is subject to an increasing evolution interest, which leads to more and more
techniques towards many directions as could be seen in the hint of chapter 3 for
the open challenges. This section presents a few related publications, ordered by
clusters of common ground techniques. The papers presenter are the ones that have
shown to respect some coherence with the FL type referenced by this thesis and
inspired the novel method. A context where the server exploits the edge devices
to perform the computational task required by deep learning. The clients train
locally a previous globally shared model with their local data. Once the local
training ended up, the clients share their models’ parameters instead of their data
or gradients, (exception made for [36]). Based on the previously stated definition 3,
the related works are in an FL context which is supposed to be: horizontal, cross-
device, and centralized, yet typically synchronous (Except [37]). More specifically,
the works considered are the baseline [13], and its relative optimization techniques,
exception made for [38] which is based on gradients aggregation (FedSGD), the
technique then passed by FedAVG.

4.1 FedAVG - Pioneer

FedAVG [13] is considered to be the most representative work for the referred FL
scenario. It is used as the baseline comparison by almost every other subsequent
related paper. For this reason, the comparison proposed is yet also referred to
it, and it is the only one of which the algorithm will be presented. It provides
the backbone shared by the proposed FedNILO (similarly to cited works). The
key concept proposed is to perform multiple steps of Stochastic Gradients Descent
(SGD) over the computation clients, then the model parameters are transmitted
instead of the gradients. The communication paradigm is similar to its ancestor.
It is based on multiple steps of decentralized training, performed synchronously.
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The model parameters transmission enables a more secure privacy paradigm, but
most importantly, optimizes the communication from a range of 10x up to 100x
communication rounds reduction compared to FedSGD.

The algorithm 1 represents the task that runs on the server for the training of a
global model. The table 4.1 is a brief resuming of the notation operated.

Algorithmic notation

Θ Model Parameters η Learning Rate

Sk Reachable devices
∇l(Θk; b) Gradient of the loss
computed on data batch b to up-
date model parameters Θk

Table 4.1: Notation

FedAVG (Server)

Parameters:
Rounds T

Algorithm 1 FedAVG - Server side
1: Initialize Θ0; ó initialize model parameters on server
2: for r (round) in 1...T do
3: Sample Sk subset of reachable clients
4: n← 0 ó training examples counter
5: for k (client) in Sk in parallel do
6: Θk

r , nk ← ClientUpdate(Θr−1)
7: n← n + nk

8: end for
9: Θr ← 1

n

q|Sk|
k nkΘk

r ó update server model through weighted average
10: end for
11: return Θ

The algorithm requires as input the number of rounds along with the number
of epochs, they determine the number of steps to be performed on the server-side
and the client sides, respectively. At line 1 the server must initialize the model
and its parameters, at line 2 up to line 10 there is the iterative procedure with the
key steps of standard FL performing T steps which are referred to as rounds. In
line 3, the server begins to check the availability of the devices and it performs
the client selection, which is simulated through a random uniform extraction with
the replacement of the available clients. Then it initializes n, a counter for the
number of data examples employed in the cycle. Lines 5 to 8 propose a loop to be
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parallelly accomplished (to spare execution time). Every selected client is requested
to perform the training of the server model, returning the new model parameters
and the number of data points that contributed to its training (line 6). The server
stores momentarily the models and updates the counter. At the end of the cycle,
the server updates its model with the weighted average of the received models for
each k-th client accordingly to the number of data processed by them (line 9). At
the end (line 11), the server returns the last global model version.

Client side 2: The clients receive from the server the last version of the global
model, and then, they (line 3) overwrite their local models’ parameters. For every
epoch in the range previously defined (by the design of the application as a given
parameter or by the server), it performs a cycle (lines 4-8), which perform an inner
loop (lines 5-7) to update the model with the local data for E epochs. In line 6, for
every batch of local data, the client performs an SGD step, to improve the model.
Once they conclude the training (line 9), they return the model to the server along
with the number of examples that have been exploited during the local training
(line 9).

FedAVG (Client)

Parameters:
Epochs E

Algorithm 2 FedAVG - Client side
1: Client:
2: procedure ClientUpdate(Θr)
3: Θk ← Θ
4: for e (epoch) in E do
5: for b in batches do
6: Θk ← Θk − η∇l(Θk; b) ó local training step
7: end for
8: end for
9: return Θk, num_examples

10: end procedure

FedAVG has been tested over MNIST and CIFAR10, which the last unfortu-
nately is presented only under homogeneous assumptions. Accordingly to the
hyperparameters search, the work enounces that epochs E and batch size B are
highly correlated with the algorithm convergence. Especially under heterogeneous
data settings, a higher number of local epochs resulted in deteriorated performances,
as subsequently confirmed by [39] and [32].

35



Related works

4.2 Optimizations of FedAVG
The following related works are based on FedAVG, they especially improve the target
accuracy under heterogeneous assumptions, or the convergence speed to reduce the
communication overhead to reach it. They are complementary with FedNILO, but
probably need different hyperparameters due to the different convergence rates. In
the end, this section exposes two paragraphs, the first one has similar works for
the method proposed, which are the less orthogonal methods because they already
remove or freeze already some parameters. They follow different policies more
fine-grained, so the result could be also satisfactory. Instead, the second considers
other techniques that reduce the model only over the communication link through
lossy compression techniques, which again are completely orthogonal.

4.2.1 General - convergence under nonIID assumption
Data and Server learning rate This subsection considers papers that are more
generic or not too strictly related. They share the same objective of optimizing
the communication, but usually, they engage regularization techniques or different
problem setups towards the scope. They focus more on the reduction of rounds to
reach the target accuracy instead of the communication cost.

The most straightforward concept of FedAVG optimization based on heteroge-
neous settings is [9] 5% Data Sharing, which suggests sharing only 5% of data.
The final accuracy increasing claim is in the range of 30%, but yet the privacy is
still violated even under impressive data sharing reduction. The tradeoff benefit
versus cost is satisfactory, but it could not hold under law restrictions.

Another work that comes to be considered as a baseline addresses instead
the server possibilities, FedOpt [14]. The algorithm proposition considers a new
optimization methodology, performed over the aggregation of models on the server.
The algorithm takes advantage of adaptive optimizers, such as Adam, Adagrad,
and Yogi to update the global model. It proposes a more sophisticated way to
assemble the trained parameters of the clients. Instead of computing the weighted
average, it updates the global model as the same principle of the clients’ training.
It introduces a new hyperparameter that defines the server learning rate. The
learning rate is used in conjunction with an adaptive optimizer to determine how
much the new upcoming parameters should affect the global model. The final
accuracy considered as the average accuracy of 100 rounds shows a boost of 8% on
CIFAR10 and CIFAR100.

Regularization Data heterogeneity assumptions lead clients to overfit their
models over a few labels. The local model parameters poorly generalize the
other clients’ needs, introducing bias and divergence for the global optimization.
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Regularization techniques are widely employed to reduce the variance of the models
across clients, to prevent or bound the weights divergence. Usually, these works
add a term to the optimization loss that considers the distance between the locally
updated model, and the one received by the server.

The clients’ optimization divergence by the global optimal solution has initially
been addressed by Stochastic Controlled Averaging SCAFFOLD [36], which
comprehend a dynamically updated client state for each participating device. The
method introduces the client state to measure and counteract the client drift due
to its heterogeneity. The communication savings are in the range of 1x up to 4x,
for the same accuracy levels (in terms of convergence speed up). However, as
reported by [40] SCAFFOLD requires the gradients’ communication, augmenting
the communication overhead x2 along with the privacy issues provided by the
gradient reversal attacks.

FedProx [6] adds a dynamic proximal term into the client loss function which
works as a regulator. Basing the euclidean distance between the updated model and
the received server’s model penalizes the new optimization steps for better-shared
consensus. The regularization is similar to the L2 penalty of traditional machine
learning but is adapted to the model divergence considering the Euclidean distance
between the optimized and the global parameters. A static parameter that weights
the importance of the update reduction governs the strength of the regularization.

Similarly does FedDyn [40] which is based on a dynamical regularization
over the client. The regularization shares some similarities between FedProx and
SCAFFOLD. Nonetheless, it is a combination of two different terms. The first
is an L1 penalty based on the inner product of the client’s model and server
gradient, while the second consists of an L2 penalty. Moreover, differently from
SCAFFOLD, only the model parameters are sent through the network. During
the aggregation phase on the server, it adopts a similar concept of FedOpt to
update the shared model. It does not anymore restore the global model with the
naive weighted average, though it performs the update through the last averaged
aggregation regularized by an additional parameter conceptually similar to the
learning rate, obtaining 4x of convergence speedup. The many results reported for
FedAVG lead the choice of this paper results as the baseline comparison to match
the state-of-the-art of FedAVG, given some due differences.

Beyond the average aggregation In the end, the last work considered as a
baseline is FedMA[32]. It allows many more local steps by changing the aggregation
on the server of the clients’ updates. The shift provides a gap between the naive
average of the gathered models and the one performed, which considers the network
similarity of the layers. Moreover, the matched aggregation allows different widths
of the network’s layers to participate and contribute to the model update because
the parameters are smartly clustered and then averaged whenever similar. The
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proposal benefits up to hundreds of local epochs differently from FedAVG especially
under heterogeneous assumptions, the testing scenario, however, is much more a
Cross-Silo rather than Cross-device. The final accuracy increases up to 16% in
parity condition of communication cost. Though, considering the very first step
this solution could be considered similar to 1-round learning because it obtains a
boost of 65% of accuracy with respect to FedAVG.

4.2.2 Communication & computation
Other works that aim to reduce energy consumption are mainly focused on the
number of parameters that need to be optimized and/or communicated. In such
cases, they are entitled to model compression techniques. On the other hand,
communication could be reduced by compressing the message sent between the
parties, usually through lossy compression techniques.

Model compression

Some works such as PruneFL[33] take advantage of the previously mentioned
techniques already dispensed over low-end devices in particular for inference tasks,
to exploit memory, power, and energy bounded devices, or in general with massively
constrained resources. The objective prefixed is to minimize the energy consumption,
besides they address the system heterogeneity, reducing the communication and
computation time through a pruning technique based on the hardware resources
and the client states. The pruning technique allows having different sized models
per each client, dealing with the system heterogeneity. It compresses the models
through a sparsification technique: only the larger weights (the ones with a sufficient
magnitude) are optimized and synchronized. Even if the final accuracy endures,
the results are close enough, while the loss is supported by a time reduction to 1

3
and a density size to ≈ 15%. The tradeoff takes into account accuracy, time, and
model size. It is noteworthy that this allows more devices to complete the training
dealing also the stragglers and failures issues.

TWAFL [37] propose a less fine-grained reduction technique, by taking advan-
tage of asynchronous federated learning and so partially resolves the stragglers’
issue. This type of asynchronous federated learning still provides a methodology
based on rounds for the procedure. However, it does not require every selected
client anymore to synchronize its parameters at each session. Latecomers’ results
could be aggregated with new versions weighted by a staleness parameter: the more
recent is the update the more it weighs on the round aggregation. Nevertheless,
the main role of the contribution considers splitting the deep models into two
subsets of layer groups: shallow layers versus deep layers. The first ones lay at the
beginning of the network, for a Convolutional Neural Network (CNN) for example
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could be intended as the convolutional layers, in opposite the deep layers are placed
at the end, like the Fully Connected (FC) layers of a CNN. The work agrees on the
previous convergence of shallow layers and similarly updates more frequently the
deep ones, reducing the communication cost in a range from 40% up to 90% on
MNIST, reporting even accuracy improvements.

In the end, FedAPF[41] freezes sparsely the model parameters affected by
stability or staleness measuring the distances between updates. The concept
is similar to PruneFL where the training involves sparse parameters structures.
However, the clients share the same model architecture while the model is not
pruned but just sparsely frozen. The communication benefits in the same way but
the model size has no improvements. To avoid the transmission of masks every
client must keep a record of every update of the global model, which could reveal
itself as unfeasible under cross-device settings. Moreover, each client not only has
to process the whole model but must also have sufficient memory to store the
fine-grained mask, producing more faulty nodes.

Message compression and quantization

In the end, a little consideration is given to the completely orthogonal techniques
of message quantization and compression. The compression and quantization
techniques are less treated because are beyond the scope of this work but are just
cited for the context exploration of the reader.

FedPAQ [42] exploits a low-precision quantizer on the difference between the
trained model versus the one received by the server, because of the lossy compression
technique the convergence is slightly slower, and also the accuracy drops little. But
the time reduction reported is impressive with a difference of 102 under the same
loss reporting.

While FedDGC [38] which is rooted on FedSGD considers the gradients updates.
The algorithm takes advantage of the Deep Gradient Compression technique to
compress the gradients but only if the gradient magnitude is above a given threshold.
Whenever the gradients meet the threshold are disposable to be sent over the
network. The algorithm introduced a compression ratio of 300x up to 600x.

4.3 Heterogeneity
In the end, a little consideration should be given to [43] that firstly defined a
state-of-the-art technique for the nonIID data generation. It exploits the Dirichlet
Distribution (Dir(α)) to perform a random horizontal partition of the data. Much
more close to the real-world scenario than other approaches such as label-based
partitions. α scales the heterogeneity of the partitioning, for α→ inf it provides
a homogeneous scenario, while for α → 0 every client has a single label dataset.
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The publication inspired the authors of [12], which created a standard for client
data heterogeneity relying on the Latent Dirichlet Distribution (LDA). LDA is
widely used to represent the distribution of words across documents and topics.
By abstraction, it could apply to define the similar distribution of the images
between clients and labels. The process still divides the data labels by a Dir(α) but
allocates the data examples by label across the clients, creating a heterogeneous
federated dataset that provides nonIID and unbalanced fashion. Moreover, [12]
accurately reports at the end of the paper the missing reference baseline sharing:
dataset, hyperparameters, clients, clients selection, data partitioning, and so on.
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Methodology

This chapter describes the novel communication-oriented optimization FedNILO.
It starts from the classical deep learning optimization that inspired it and then
shortly defines the environment of its application along with the backbone of the
algorithm. It gradually delves into the methodology. It brings forward the FedNILO
implementation with the support of a graphical scheme. Then, it points out and
details the algorithms that take place on server and client sides. The algorithms
are again about the methodology, but they provide the notions and the fine-grained
steps. In the end, this chapter provides a deepening for the relevant procedures to
explain their workflow and show their logic. Indeed, FedNILO exploits the layer
freezing, however, its distributed environemnt requires the distinction between their
training and their synchronization.

5.1 Origins, backbone and objective
Classical deep learning origins Classical Deep learning techniques and opti-
mizations such as transfer learning [44], and network similarity [45] declare the
proportionality between the relative layers position and their convergence. Layers
close to the input converge faster than the ones close to the output. Moreover,
the first layers dedicated to feature extraction appear similar even for different
datasets sharing the same task. The feature extractors of CIFAR10 and CIFAR100
as reported in [45] have high similarity trends.

LayerOut [46] applies a similar concept for the training time reduction in
the classical context. In Fig. 5.1 it is represented the application of transfer
learning from ImageNet dataset to benefit the colorectal cancer dataset accuracy
performances. Only the last three convolutional layers and the fully connected
layers are subject to the training. The previous ones are maintained frozen because
they are similar across different datasets [45] They are exploited to process the
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Figure 5.1: Transfer learning from ImageNet to histological images adapted from
[47]

images and extract the features but do not evolve during training.

Federated Learning Backbone The previous chapters detailed the background
of FL along with its taxonomy of application. The focus of this work is to emulate
the traditional FL scenario brought by [13]. Namely, it provides synchronous
updates for cross-device settings. The server acts as coordinator, while the clients,
partially participate in training and have a horizontal partitioning of the data. As
usual, the proposed algorithm shares the FedAVG backbone for the optimization.

The technique provided by FedAVG does not strictly follow classical convergence.
The aggregation of model parameters after a few or many epochs is structurally
different even from the average of the gradients, in particular under heterogeneity
assumptions. Figure 5.2 graphically shows the weights divergence introduced by
FedAVG compared to the classical optimization with centralized data and SGD
depending on the heterogeneity settings. [41] demystifies the static layer freezing
because of accuracy performances starvation. Hence, this work proposes it as a
final stage optimization. FedNILO exploits the previously enounced discoveries
and applies them to benefit FL through two fine-tunable knobs.

FedNILO objective and application The core objective of the algorithm
proposed is to minimize the global empirical risk, through the distributed training
of the server’s model, reducing the communication cost of FedAVG. Even if the
target of this work is to optimize the communication cost under heterogeneous
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Figure 5.2: Weights divergence provided by different heterogeneity levels between
FedAVG and SGD, readapted from [9]

settings, it reports the results also for IID to consider the stability relevance of the
algorithm under agnostic heterogeneity conditions.

The algorithm proposal is based on a computer vision task, mainly referred
to in the related literature. It exploits datasets such as CIFAR10 and CIFAR100
and particularly refers to the CNNs models. However, it could adapt to different
datasets and other neural networks, characterized by a layered architecture such as
MLPs. The FL infrastructure is centralized but there should not be any barrier
in hierarchical and decentralized implementation with the due modifications. The
variety of the scenarios provided consider the heterogeneous and homogeneous
cases. Respectively, their partitioning makes use of the random uniform allocation
and the LDA.

5.2 FedNILO
Wrapping up the FedAVG backbone, FedNILO is delivered with the scope to
reduce the communication cost. Rather than reducing the number of rounds
providing faster convergence like many optimizations proposed, it reduces the
cardinality of the parameters to be trained and synchronized in a layer-wise way.
The optimization performed is regularized by two additional hyperparameters,
K, and F . They represent respectively the kick-start between the first freezing
step, and the period regulating the layer-freezing scaling frequency. These two
knobs allow different empirical results and should be fine-tuned accordingly to the
underlying optimization algorithm.

The layered structure of deep models such as MLPs and CNNs is suitable for
progressive layer freezing. The layer freezing technique is applied reversely, distinct
from the common practice of transfer learning. The algorithm iteratively reduces
the layers’ active state in the direction of the network’s depth. The previous
convergence of the first layers allows their earlier globally shared freezing state.
This purpose is complied with the progressive layer state freezing, according to the
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direction of the layered structure composing the proposed networks.

5.2.1 Workflow

Figure 5.3: FedNILO methodology

In figure 5.3 is shown a graphical representation for the algorithm, deeply treated
in the next subsection 5.2.2. The horizontal axis at the top of the image represents
the rounds, the steps of standard synchronous FL upon which FedNILO plays
out. It starts from one and theoretically does not end, while the dotted lines
represent the round shift that elapses between two optimization phases. Each
represented round is delimited by a blue box, comprehending the steps occurring
within. The left vertical axis represented by devices shows the complete pool
of clients (underrepresented as a toy example). The smartphone icons represent
hypothetical end-user devices, which could be any end-user devices such as laptops.

Their representation shows different shapes and colors within, to represent the
heterogeneous local data, the balancing, and the non-identical and independent
distributions. The clients do not always participate in each round because cross-
device settings entail partial participation. Their models are present only when
they are participating in the represented round. The layers of their models share
the same color of their data when they train them. The grey layers represent the
parameters received by the server. These parameters are frozen so the clients do
not train them anymore. The white dots also represent the frozen parameters, but
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they set forth their already updated state. At the bottom lays the cloud server,
represented by a cloud icon with the grey global model sketch. The transparent
and grey bounded box represents the evolution of the server procedure. The cloud
server is always operative and participates at each elapsed round.

At the beginning of each round, the cloud server sends the model (grey) to
the reachable clients. The clients then perform the training over local data and
send back the optimized model to the server. The server aggregates them and
proceeds toward the next round. After K rounds, the server sets the first layer in a
frozen state, yet it still needs to communicate it to the clients. The clients receive
the model and the index of the first frozen layer. They completely overwrite it
(r = K + 1), but they only train and send back the layers needed (the colored ones,
the grey ones are left equal with the server). In round K + 2, the server sends only
the complete model to the green client because the blue and yellow have already
received the first layer parameters. Thus, they train only the unfrozen layers. At
the right of the image, for (R = K + F + 1), the orange client receives the complete
model because it was never available since before the first layer froze. Accordingly
to the defined policy, it optimizes and then transmits back only the last layer.

5.2.2 Implementation

The FedNILO algorithm is computed in a distributed fashion by different devices.
The server acts as the global coordinator. It broadcasts and updates the global
parameters, while the end-user devices train the model whenever available. The
algorithm presentation is separated into two pieces of pseudocode, taking place on
the server-side and a generic client-side (every client follows the same procedure).

The algorithm 3 describes the server’s procedures. It takes as inputs the number
of rounds to be performed, the values of K and F previously introduced. At the
beginning (line 1), the server initializes the model parameters. In lines 2 - 13, it
starts the iterative process that provides the final model. Each iteration represents
a round of FL. In line 3, the server selects the available clients. The algorithm
exploits a uniform distribution to emulate the clients’ availability. The strategy
extracts 10% of the clients and replaces them at every round iteration. In line 4,
the server initializes the samples counter. In line 5, frozenIndex(r, F, K) defines
Io in function of the current round and the K/F hyperparameters. Io is the index
of the first layer that remains unfrozen. Every previous layer becomes frozen, at
least for training. The subsection 5.2.3 details Io, the formula to compute it, and
its temporal role.
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FedNILO (Server)

Parameters:
Rounds T
Start Freezing Round K
Freezing frequency F

Algorithm 3 Server algorithm - FedNILO
1: Initialize Θ0; ó initialize model parameters on server
2: for r (round) in 1...T do
3: Sample Sk subset of reachable clients
4: n← 0 ó training examples counter
5: Io ← frozenIndex(r, F, K)
6: for k (client) in Sk in parallel do
7: Θu,k ← reduce([Iu,k, end])
8: Θk

r , nk ← ClientUpdate(Θk
r−1, Io)

9: n← n + nk

10: map(k, Iu,k) ó Maps the client id that already updated the frozen
layer

11: end for
12: Θr ← 1

n

q|Sr
k |

k nkΘk
r ó update server model through weighted average

13: end for
14: return Θ

Then, between lines 6-10, the algorithm presents a parallel loop. In line 7, for
each k-th selected client, the server reduces the global model to the one needed
to reduce the communication overhead. In section 5.2.4 takes place the detailed
explanation of the communication of the parameters, along with their update and
overwrite. In line 8, the server sends the model to the client. The server waits
for the clients to train and send their models back. Whenever a k client fulfills
its assignment, the server receives the k-th model. In association with the model,
it seizes the number of data examples that contributed to the training. In line 9,
it updates the data examples counter and maps the client id with the indexes of
the updated layers. So that it traces the indexes Iu,k required to send the model
reduced to the clients’ needs. Once it has sampled the trained models of the selected
clients, in line 12, it aggregates the model parameters through their average. The
server computes the weighted average by summing the pointwise products of the
nk number of data examples and the models’ parameters, for every k-th client
belonging to Sr

k . Then it normalizes it with the counter n, which is the sum of the
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total data points exploited. At the end (line 14), the server returns the globally
optimized model Θ, concluding the training process.

FedNILO (Client)

Parameters:
Epochs E

Algorithm 4 Client algorithm - FedNILO
1: procedure ClientUpdate(Θr, Io)
2: Θk ← Θ
3: Θk ← freeze(Io)
4: for e (epoch) in E do
5: for b in batches do
6: Θk

[Io,end] ← Θk − η∇l(Θk; b) ó local training step
7: end for
8: end for
9: return Θk

[Io,end], num_examples
10: end procedure

The second algorithm 4 refers to the procedure that takes place over a generic
client k, which is selected during an arbitrary round r. Line 2, the selected clients
receive the global model parameters Θ and the indication of the first layer subject
to training Io.They overwrite their local parameters with the globally incoming
ones. The subsection 5.2.4 presents the detailed procedure. Line 3, the client sets
every l-layer previous or equal to Io in the frozen state. Instead, the parameters
of any layers l, such that Io < l are subject to the back-propagation during the
training. Once defined, the client starts the training procedure. In lines 4-8, it
executes a loop over the prefixed number of epochs. In lines 5 - 7, takes place
another loop that cycles over the data batches. The data batches are the result
of the local data partitioning, divided in b batches of a given batch size B shared
between clients. In line 6, the clients iteratively update the unfrozen parameters
Θk

[Io,end] performing an SGD step. Line 9, at the end of the cycle, they return the
optimized parameters Θk

[Io,end] along with the number of data examples exploited
to carry out the training to the server.
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5.2.3 Freezing index
This subsection details the index Io that defines the frozen state of the layers. The
index of the first layer that needs to be optimized is defined accordingly to the
following formula, Given K kick-start round, F rounds period regulating frequency,
and L the number of layers composing the network architecture:

Io ∈ {0, ..., L− 1} ⊆ N,

Io(r, K, F ) =


0 r ≤ K
ç r−K

F
è K ≤ r ≤ K + (L− 1)F

L− 1 otherwise

Where çxè is the next superior part of the fraction.
It means that for r ≤ K → Io = 0 each layer l ∈ L is subject to optimization,

therefore to synchronization. For r = K + 1→ Io = 1, the server prescribes the
frozen state of the first layer. For r = K + F + 1 → Io = 2, the server imposes
the first and the second layers in the frozen state. Starting from K-th round, and
every after F rounds, the server charges the ensuing layer l = Io + 1 the frozen
state. Indeed it updates Io with the last value of l. The server increases Io until it
reaches the last layer l = L, which never gets frozen.

Even if the dynamic exchange of the index layer introduces a slight commu-
nication overhead, it is unremarkable. A short unsigned integer is sufficient to
enumerate each layer of every network, requiring only 16 bits per client per round.
It is far smaller than the size of the network parameters. The training developed by
clients optimizes only the unfrozen state layers pointed out as [Io, end]. However,
the whole model actively participates during the forward propagation needed to
compute the loss and its gradient, as previously pictured in Fig. 5.1.

5.2.4 Parameters synchronization
This subsection details the way the server and the clients exchange the model
parameters. It also describes how they update and overwrite them while showing
how it is supposed to work.

Server mapping for clients’ download savings The server maps the clients
to keep track of which client has already updated a given layer k : Iu,k. This
mapping operation does not require the devices’ state nor gradients, only their ids,
and the layers indexes. Indeed, it helps to avoid sending already updated and no
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more optimized layers. After K rounds, the server sets the first layer in a frozen
state. It still needs to be broadcast to clients because it was involved in the last
aggregation. Depending on the ratio of client selection will be completely updated
in a few rounds. E.g., the client k-th is available to train the model for the round
K + 1. The client receives the model with the first layer in a frozen state, Io = 1. If
at round K + 2 it is again available, it needs to be updated only over the last L− 1
layers. Indeed, the first layer parameters would be the same as the one received
before.

Download versus upload curves Hypothetically, given the 10% of client se-
lection ratio with uniform independent distribution, one generical device has a
probability of 99.5% to train the model at least once in 50 rounds. However, this
is a simulation of the real-world scenario, where the independence assumption
could not be satisfied. If a device has a full-loaded battery and perfect state, it is
likely to be resampled between close rounds. On the other hand, if it consumed
its battery to perform the previous round’s training, it will not be available for
many consecutive rounds. The higher is the client’s participation ratio, the faster
the server-to-client (s-c) communication curve collapse to the client-to-server (c-s)
one. As pictured in Fig. 5.4 which shows for a generic example of FedNILO with
F = 450, K = 50 the round costs plots of download (blue line) and uploads (orange
line).

Figure 5.4: FedNILO 450/50 upload(c-s) vs download(s-c) cost in bytes per round

Transmission procedure Both server and clients, flatten the model’s parame-
ters before transmitting them to the other party. The procedure suggests that it
is avoidable to inform the client about which it must restore and which instead
overwrite. Whenever the clients obtain the new flattened parameters can overwrite
their local ones. They start to rewrite the local parameters array, starting from
the last index, until they completely overwrote the ones received. Then, they can
restore the model with the shape of the proper tensors. The server, instead, has
tracks of the parameters that must receive and does not require any index. At
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every round, it receives only the layers’ parameters that have been trained by the
clients, globally starting from Io.
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Chapter 6

Experimental Results

This chapter consists of two sections, the experimental setup and experimental
results. The first one shows an overview of the foundation employed, a sort of input
of the methodology. The second instead shows the results obtained given the setup
depicted.

6.1 Experimental setup
This section presents the setup employed to carry out the experiments. It starts
with platform that carried out the experiments and continues with the model
selected, giving its details in a resuming table. Then it introduces the datasets
and the preprocessing occurring in train and test phases. It continues with the
partitioning methods to simulate heterogeneous and homogeneous settings. It
presents the several hyperparameters required by traditional FL, and in a dedicated
paragraph treats the ones introduced by FedNILO. In the end, it shows the metrics
applied in the following section.

6.1.1 Hardware and Software
The experiments have been carried out using the standalone simulation paradigm,
over a workstation equipped with Nvidia Titan Xp (12 GB). The experiments
took advantage of the multi-thread processing. It enabled parallel training that
drastically reduces the training time. Nevertheless, it requires approximately
16 hours on average to complete under the proposed stopping conditions. The
software configuration is composed of Python3.9.5 for the programming language
and PyTorch 1.8.1 for the deep learning environment. Flower [24], a framework
for federated learning which is framework agnostic (e.g., TensorFlow or PyTorch
for the clients’ training), has been modified to avoid the localhost communication,
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which presented a bottleneck. In the end, the data processing and partitioning are
an adaptation of the library FedML [12] another tool for federated learning.

6.1.2 Model - CIFARCNN
The model employed is a shallow convolutional neural network, which origins
come from a tutorial of TensorFlow addressing the classification task of CIFAR10.
It did not achieve state-of-the-art results on CIFAR10 but is sufficient for the
purpose. Moreover, its architecture is not too deep nor over parametrized. So it
is suitable for cross-device settings, which leads it to be commonly mentioned in
the literature. [13] initially used the mentioned network. However, the reference
link is not available anymore, while a modified version is proposed by [40]. Its
description allowed its reconstruction, which claims to differ from [13] proposal
because it avoids the use of batch normalization layers. The total parameters of
the model are less than 1 million, distributed over two convolutional and three
fully connected layers.

Network Structure The network employed for the test is summarized in
Table 6.1 and is a shallow model for visual computational tasks, in particular for
CIFAR10 and CIFAR100 datasets classification. The first line of the table reports
the input image shape that will be processed orderly by the subsequent layers.

Operator
(activation)

Number of
filters

Kernel size
(stride)

Weights
(bias)

Output
shape

Input Image (32,32,3)
Conv2d
(ReLU) 64 5x5 (1) 4800 (64) (64,28,28)

MaxPool 2x2 (2) (64,14,14)
Conv2d
(ReLU) 64 5x5 (1) 102400 (64) (64,10,10)

MaxPool 2x2 (2) (64,5,5)
Linear
(ReLU) 630400 (394) 394

Linear
(ReLU) 75648 (192) 192

Linear
(LogSoftmax) 1920 (10 or 100) LABELS

(10,100)
Total Parameters 815892

Table 6.1: Cifar CNN architecture
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The first layer is composed of a bidimensional convolution (Conv2d), performed
by 64 filters with size 5x5, stridden across the images with 1 stride pixel. The
output is processed throughout the ReLU activation function and then sampled
with the bidimensional max-pooling (MaxPool) technique. MaxPool filters out
every textile of 4-pixel neighbors neurons, leaving only the one with the higher
magnitude. A subsequent convolutional layer with the same characteristics (Conv2d
+ ReLU + MaxPool) processes the output of the first layer.

The features extracted are then flattened to be processed by the first fully
connected dense filter (Linear). The second convolutional layer and the first dense
one compose most of the network parameters. Two more hidden linear layers are
then affixed at the end. The last layer is the only one that, instead of ReLU
activations, uses the LogSoftmax for the Cross entropy loss computation. The
output shape of the ultimate layer depends on the dataset. CIFAR10 and CIFAR100
have 10 and 100 output neurons, respectively. The final row reports, instead, the
total number of parameters.

Weights initialization The model weights initialization depends on their per-
taining layer type (Convolutional versus Fully Connected). The convolutional layers
weights are initialized accordingly to a normal distribution defined as N (0, 2√

5x5x64),
where 5x5 is the kernel size while 64 represent the number of the channel, shared
between both. The bias is instead initialized to zero. Nevertheless the weight
distribution of fully connected layers is uniform and it is defined as U[−s,s] where
s = 1√

#weights
, which depends on the number layer weights. Referring to table 6.1

they are respectively 630400, 75684 and 1920. The bias of fully connected layers is
initialized with the same distribution, sharing the same parameter s.

6.1.3 Datasets and partitioning
CIFAR10 (C10) and CIFAR100 (C100) are two standard datasets widely used for
FL comparisons. They are medium-sized, composed of 60000 images with three
channels (RGB) of 32 × 32 pixels with int8 precision, with 10 and 100 target labels
as suggested by their name. The datasets are available through the torchvision
library with a train/test partition of 50000 and 10000 examples, respectively. The
training subdivision presented is equally sized with 5000 and 500 examples per
class for CIFAR10 and CIFAR100, correspondingly. The train set is partitioned
over the clients accordingly to the homogeneous and heterogeneous settings. The
following paragraph focuses on the partitioning of clients’ data, while the test set
exploited to measure the performances is kept centralized on the server.

Preprocessing A different pre-processing pipeline unfolds for the train and test
sets. However, the test set shares part of the training processing, the one that does
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not provide data augmentation. It is composed of the image transformation into a
tensor and the application of the normalization of the RGB channels (CIFAR10 µ =
[0.49139968, 0.48215827, 0.44653124] and σ = [0.24703233, 0.24348505, 0.26158768],
CIFAR100 µ = [0.5071, 0.4865, 0.4409] and σ = [0.2673, 0.2564, 0.2762]). The
training pipeline instead provides data augmentation. It converts the input data
to PIL images, first padded by 4 pixels and then randomly cropped back to the
original shape of (32,32,3). Then, it randomly flips them along the horizontal
axes. It follows the tensor transformation with the normalization steps, which
coincide with the ones applied for the test set. Though, it concludes with the cutout
transformation. The cutout transformation randomly defines a mask, which has
obscures a subset of elements both over the width and height of images, providing a
sort of black rectangle applied on the image, with random base, high, and position.

Heterogeneity The dataset exploited is an adaptation coming from the classical
deep learning tasks. By so, it has not been purposely designed to represent FL
partitions. New federated datasets are emerging on the specialized frameworks.
Despite this, CIFAR10 and CIFAR100 are still the baselines of the recent publica-
tions. So that, it requires their partitioning to simulate the FL environment. The
proposed work replicates it throughout the adaptation of the data loaders provided
by [12] framework, both for homogeneous and heterogeneous partitioning.

Homogeneous partitioning - IID and Balanced The homogeneous sce-
nario is used more for the convergence and as a measure towards the baseline
shown by [13]. The examples are partitioned across clients in equal balance, such
that each client has 500 training images to train its model. The IID assumption
considers the label distribution. The target examples follow a balanced separation
over the clients. The process randomly shuffles the data points and then partitions
them across the devices using the array-split function of NumPy. The label’s
distribution is not precisely shared and with the same cardinality. However, the
result is very close. Each client owns approximately 50 or 5 different targeted
images for each label. In fig 6.1 there is a graphical representation of homogeneous
partitioning for CIFAR10 dataset. The x-axis represents the clients involved, while
the y axis denotes the number of data examples. It is a stacked bar chart, divided
by client, where the number of examples is stacked label by label orderly. The
graph highlights the balance and the similar distributions, showing almost parallel
and equally sized color bars. Every client has approximately the same total number
of data examples which is close to 500.
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Figure 6.1: Homogeneous data distribution for IID and balanced assumptions
across 100 clients

Heterogeneous partitioning - extremely nonIID and unbalanced The
heterogeneous partitioning is more sophisticated. Label splits and lognormal
distribution demonstrated to be quite far from the real heterogeneity levels. The
LDA technique proposed by [12] uses a Dirichlet distribution to allocate the amount
of data examples across the devices. The examples are distributed label by label
across the C clients with the probabilities defined by a Dirichlet distribution with
vector parameter α ∈ [0,1]C that concerns the label partitioning over the C clients.
The α parameter scales the heterogeneity levels in a range of (0, inf). Low values of
α denote highly heterogeneous settings (lower than 1, α→ 0), while higher values
(more than 100, α→∞) converge to the IID balanced assumption. The experiments
carried are based on α = 0.3, causing a highly heterogeneous scenario. The data
points may vary in a range from 50 to more than 1300, while the distribution of
the labels could provide one-fold, twofold, or many-folds, independently from the
amount, being possible to have 1300 examples of two classes on one client, and 50
examples of 7 classes on one other. Similar to the previous image without lacking
comparison there is proposed in fig 6.2 the partitioning performed for heterogeneity
assumptions, in particular the one performed with Dir(0.3). The balance is no
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more respected because the examples between clients vary a lot, likewise, it does
the data distribution.

Figure 6.2: Heterogeneous data distribution for IID and balanced assumptions
across 100 clients

It is almost impossible to spot geometrical patterns even if the stacking of
the labels provides the same order. By taking a look at the first client (on the
left), it can be spotted that its dataset’s composition relies on only two labels,
approximately composed of 900 data examples. Meanwhile, the 20th one has nearly
fifty examples and four labels. Finally, approaching the right of the image, one
client provides almost 1200 data examples. At the center-left of the image, one
client instead provides a single label dataset (orange).

6.1.4 Hyperparameters

Core hyperparameters

To face and respect the cross-device settings while maintaining reasonable training
times, the total number of clients amounts to 100. In addition, at each round
ten clients are uniformly sampled to compute the training process. It follows the
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prevailing technique to simulate massive targets with partial participation. Each
selected client performs respectively 5 epochs over B batches of his data, where the
batch size is fixed to 50, to propose a comparison with FedAVG.

The referring optimizer is the stochastic gradient descent (SGD), which starts
with an initial learning rate of 0.01 and a weight decay of 1e-3. The loss used
to perform the backpropagation is the Cross-Entropy Loss. FedAVG requires
the learning rate decay to achieve convergence, especially under nonIID data
assumptions where the accuracy fluctuations are bold. The learning rate decay
fixed to 0.998 is applied, and it modifies the learning rate according to the formula
ηt = η00.998t depending on the round currently elapsing.

The process ends when at least one of the following constraints is reached:
1) the total number of rounds elapsed reaches 2000;
2) the total number of communication rounds reaches 1000;
In the case of FedAVG, the first constraint is the one that blocks the training,
while for FedNILO for the provided hyperparameters is the second one that toggles
the training state. Indeed, it relates to the communication dispensed by the two
algorithms. The hyperparameters selection grid testing FedNILO leads it not to
reach the same communication amount; nor it would under dozens of thousands of
rounds, because at the final stage of optimization, the communication of one round
of FedAVG implies almost 500 rounds of FedNILO.

Additional Hyperparameters

FedNILO provides two additional knobs to finetune the optimization algorithm,
K, and F , which regulate the starting round and the toggle frequency of layer
freezing. The hyperparameters’ choice is arbitrarily but should depend on the
task. The study of the convergence rates of the backbone algorithm employed, or a
fixed communication budget benefits the following rule of thumb. The suggestion
considers K as 1

2 , 1
3 of the number of rounds needed for the target accuracy or the

total amount of communication.

K K ∈ N+ determines whenever start the optimization, higher values of K allow
better final accuracy levels, per contra, it also determines lower communication
savings. On the opposite, low values of K lead to highly beneficial communication
savings. The peak accuracy reached tends to be lower while the rounds required
are highly stretched. For K = 1, the optimization starts at the very beginning
harshly reducing the performances of the model.
For such reasons, K has been tested for values of K ∈ {350,400,450,500}

F F ∈ N+ determines instead the period enumerated in rounds which are main-
taining the same optimization before toggling the next step, providing a scaling
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frequency function (the frequency is the reciprocal of F , lower values of F denote
higher frequencies). Here again, the results reported show that low values of F
provide better communication savings and are usually associated with low values
of K, while experimentally higher values of both are shown for higher final accu-
racy targets. For F = 1 the last optimization phase occurs in L rounds where L
corresponds to the number of layers. F has been tested for every K value, for the
following values F ∈ {25,50,75}

6.1.5 Evaluation metrics
Round (R) One round of synchronous FL considers one cycle of the iterated steps
elapsing after every global update. To quickly rehearse them, they are composed of
the client selection, the model broadcasting performed by the server, the training
of the model parameters accomplished by the selected devices, the update of the
devices’ local models, and its aggregation on the server. It is a measure that
provides a step-based definition timeline, exploited for convergence rates and as a
relative measure for other metrics such as accuracy and communication cost.

Communication cost (CC) or Communication Round (CR) The commu-
nication cost takes place in two different phases during one round of training. The
first one is the download of the model by the clients (server-client interaction, s-c),
the second is the upload of the clients’ models (client-server interaction, c-s). The
two parts of communication that occur compose a communication round, which
can be measured in GBs by dumping the message or estimating the size of the
model. So if a model size Ms is 3.5 MB the communication round corresponds to
CC = (3.5s−c +3.5c−s)nccf = 70MB, where nc is the total number of clients and cf

is the ratio of selected clients. The message size is not estimated but calculated as
the size system function (python) of the dumped message with the pickle library. In
these terms, it is possible to use a notation similar to [40] where the communication
cost is commuted in rounds, using the definition of communication rounds, denoted
as: 2Msnccf = 1CR that is the model size for download and upload tasks, while
a halved sized model fills one communication round in two rounds, or oppositely
if the gradient is needed to track the client’s state, the message size comes to be
the double of the model size, so 1 round corresponds to 2 CRs. The two measures
have a similar concept, but CC is an empirical measure that shows the effective
communication required. While CR is an estimated metric of the communication
referred to the steps performed.

Accuracy Accuracy could be measured in many ways in FL. It inherits from
classical training the percentage of correctly classified examples over the test set.
For research purposes of convergence or optimization, it is useful to consider the
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centralized accuracy over a local dataset on the server. In this case, the two datasets
are the test cifar10 and test cifar100 already partitioned by the torchvision library.
Federated accuracy could be more practical in an effectively cross-device platform,
while the results for IID test-sets are very similar, but the testing is particularly
slower.

Round accuracy The round accuracy is the accuracy obtained over the test
set in a particular round. It provides low-quality information in particular under
nonIID settings because the accuracy plots present noise. The accuracy could vary
up to 10/15% over a single round. The learning rate decay is needed to reach
consensus/convergence in nonIID settings [48], but the number of required rounds
could be very high (up to 5-20k rounds).

Top accuracy over a steady space One overcoming solution is to consider
the accuracy whenever reaching a steady space. The steady space is represented by
a sufficiently large interval presenting low variance between rounds. But again, the
steadiness could be hard to reach in a context of limited resources and limited com-
munication budget, moreover the round accuracy jitters a lot under heterogeneous
settings.

Mean accuracy of the last L-rounds The other overcoming solution is to
consider the average accuracy of the previous L-rounds, better if considered over a
steady space. This solution is proposed also in [14] and [33]. It is favorable because
knowing the accuracy performances of a model is not trivial in the real-world
scenario. The federated evaluation requires additional communication costs. The
proposed results consider the mean accuracy of 30 rounds, which is the most
representative for the task. Indeed, [14] used 100 rounds of average, bu they
tested the algorithms for much many rounds. The number of rounds chosen is the
proportion between the elapsed rounds of the two tests.

6.2 Results

This section represents the output comparison between traditional FL and the
proposed FedNILO. It starts with the per device-round savings that verify in
different steps of the procedure. Then it shows the cumulative communication
cost savings that the new methodology could spare. It reports the results for both
CIFAR10 and CIFAR100, separately for heterogeneous and homogeneous settings.
The heterogeneity assumption is the most interesting because it is close to the
real-world application. Nevertheless, it reports the homogeneous assumption for
completeness of the results, though interesting to show the generalization capability
of the algorithm under agnostic presumptions. Reducing the communication
burden represents the scope of the proposed work. Concluded the needed period
of massive computation defined by K, FedNILO reaches the prefixed scope, both
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considering the single round reduction, but most importantly achieves huge CC
savings considering the complete training, ranging from 18% up to 59% of the
comprehensive CC depending on the dataset, heterogeneity and the target accuracy.
The achieved results perform with different values of K and F . Despite introducing
system complexity they can be estimated for the need. The next subsection
will present the results under heterogeneous and homogeneous contexts, both for
CIFAR10 and CIFAR100, giving insights into the similarities and differences across
the tables.

6.2.1 Per round communication savings
The single round-device reduction is helpful to reduce the failure and straggling
probabilities of the involved devices. The less a device is required to download, train,
and upload, the higher are its odds to successfully submit its contribution. FedNILO
harshly reduces the low-end devices’ stress time, depending on the optimization
phase. The last optimization phase, which considers the refinement of the model,
leaving the device almost unaffected. It reduces the required time, preventing
adverse events such as battery consumption, network jittering, device failure, or
loading concomitances.

Rounds interval layers parameters MB CR
[1, K] 5 815892 3.112 1.000
[K + 1, K + F ] 4 811028 3.093 0.994
[K + F + 1, K + 2F ] 3 708564 2.702 0.868
[K + 2F + 1, K + 3F ] 2 77770 0.296 0.095
[K + 3F + 1, S∗] 1 1930 0.007 0.002

Table 6.2: Cifar CNN size and parameters changing over K/F rounds interval
phases (CIFAR10)

Table 6.2 summarizes the parameters to be locally optimized and the communi-
cation burden that occurs along to the optimization phases of the algorithm for
CIFAR10. Given arbitrary K, F ∈ N+ the round statistic reduction is reported
below, depending on the optimization phase. Rounds interval column relates to the
range of rounds during which the number of layers. It provides for such intervals,
the parameters along their statistics. The layers column is the number of layers
optimized at that point, the parameters and MB columns instead refer to the
number of parameters and the size of the model that need to be optimized and
synchronized with the server. The last column instead is the relative comparison
for the communication round. At the bottom line, the interval of pertaining round
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is [K + 3F + 1, S∗], where S∗ denotes the round such that S∗ + 1 violates the
constraints. Unfolding line by line the table highlights the methodology. The
number of layers reduces by one, starting from K + 1 rounds (line 1), scaling down
to 1 with a step of 1 every F round.

Rounds interval layers parameters MB CR
[1, K] 5 833262 3.179 1.000
[K + 1, K + F ] 4 828398 3.160 0.994
[K + F + 1, K + 2F ] 3 725934 2.769 0.871
[K + 2F + 1, K + 3F ] 2 95140 0.363 0.114
[K + 3F + 1, S∗] 1 19300 0.074 0.023

Table 6.3: Cifar CNN size and parameters changing over K/F rounds interval
phases (CIFAR100)

Similarly, Table 6.3 reports the same logic applied to CIFAR100. The output
labels cardinality changes and requires more parameters for the last layer, that
updates the statistics. It has ten times the weights, and so the last phase of the
algorithm requires ten times the communication cost because of the labels. One
final round of CIFAR100 corresponds then to ten final rounds of CIFAR10.

6.2.2 Cumulative communication cost over accuracy
The total communication cost, however, is the most important target of this work.
The communication reduction burden for the single devices is not enough without
being accompanied by the accuracy-communication tradeoff. FedNILO outperforms
standard FL considering the overall CC same levels of average accuracy, up to
59%. In particular, the harshly reduced communication cost encumbering at the
final stage of optimization allows more rounds. By so, FedNILO obtained up
to 2.5% of accuracy increase, which would not be possible otherwise under the
same constraints, still maintaining the communication cost lower of more than
30% respect to the best accuracy of FedAVG. This subsection starts with the
trustworthy simulation, but then it studies the results under homogeneous settings.
The behavior of the novel method on the opposite extreme distribution assumption
is helpful to infer its behavior under agnostic assumptions.

Heterogeneous context results - Dir(0.3)

The most important context roots in highly heterogeneous settings, which are
representative of typical real-world scenarios. Yet, FedNILO outperforms standard
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FL by strictly reducing the cumulative CC (up to 59%) and obtaining higher levels
of accuracy. Yet, still saving more than 30% of the reported CC.

Cifar10 nonIID
Acc. CC (GBs) savings percentage K/F

FedAVG FedNILO
74.5 45.35 24.58 45.8% 350/25
75.0 51.19 24.59 52.0% 350/25
75.5 60.13 24.65 59.0% 350/25
76.0 + 24.7 + 350/25
76.5 + 27.7 + 350/25
77.0 + 30.65 + 350/50
77.5 + 33.76 + 450/50
78.0 + 39.82 + 500/75
Avg 52,57%

Table 6.4: CIFAR10 heterogeneous settings providing Communication Cost over
same accuracy levels. Comparison between FedNILO versus FedAVG, reporting the
values of K and F achieving the best results. FedNILO achieved higher accuracy
scores for higher values of K and F outperforming FedAVG in terms of CC and
ACC.

Table 6.4 reports the comparison of the results between FedAVG and FedNILO
for CIFAR10 Dir(0.3) in terms of communication costs, providing for both the total
GBs sent over the internet, the relative saving percentage, and the settings of K/F
that achieved the results. As can be noted the accuracy levels are proportional
to the values of K and of F by order, indeed in the last column, K/F equals
350/25 is present for the first five examples, then followed by 350/50, 450/50
and 500/75. The FedNILO CC trend reproduces the more abstract concept of
table 6.2, for only one accuracy point increasing standard FL needs 15 GBs of
communication. While FedNILO required only 0.07 GBs, obtaining in comparison
to the top-accuracy score of FedAVG a savings percentage of 59% of CC savings.
The value is highlighted for better exposition. The line, that rules the table below
the first three values denotes the accuracy that has been possible to achieve without
violating the constraints. More importantly, still sparing a portion of the standard
FL CC. Even if the comparison cannot be provided, it must be noted that the last
highlighted value has more than 30% of communication savings concerning the
standard FL with 2.5% of increased accuracy. In the end, the bottom row reports
the average saving percentage for the three comparable values, under the range of
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accuracy of 75% FedNILO(350/25) spares more than 50% of the communication
overhead.

Cifar100 nonIID
Acc. CC (GBs) savings percentage K/F

FedAVG FedNILO
40.5 42.9 25.68 27.4% 350/25
41.0 47.69 26.19 45.1% 350/25
41.5 59.3 26.81 54.8% 350/25
42.0 + 29.81 + 350/50
42.5 + 38.73 + 500/50
Avg 42.43%

Table 6.5: CIFAR100 heterogeneous settings providing Communication Cost
over same accuracy levels between FedNILO and FedAVG. It reports the saving
percentage along with the values of K and F that obtained the best score reported.
FedNILO outperforms FedAVG in terms of final accuracy and CC. In the end, it
reports the average savings percentage.

The Table 6.5 reports instead the results obtained for CIFAR100 also under
heterogeneous settings. Again the proportionality trend that bounds the increasing
values of F and K follow the increasing top accuracy, similarly to the CIFAR10,
with the major difference that the accuracy boost comes only with one additional
percentage point with similar costs and savings for the top accuracy reached by
standard FL (lines 3 and 5). Also, the savings reported are quite lower, especially
for the first line. Even if the datasets’ characteristics are similar, become quite
different under FL training. The training images for each target label are reduced
from 5000 to 500, still, need to be partitioned across clients. However, FedNILO
still outperforms FedAVG with the same grid search showing a stability trend of
results under different datasets, achieving an average in this case of 42.43% of CC
savings (last line).

Homogeneous context results - IID

The homogeneous context is less interesting from an empirical point of view. The
literature comes to be interested in it for convergence rates studies more than
empirical results because of its convex and bounded empirical error theoretical
demonstration. However, it has been tested and studied to check the FedNILO
performances. This test denotes, or at least suggests, its capability under the
agnostic assumptions, whenever the alpha parameter is not known a priori. By so
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it is useful to consider the extremal opposite to the heterogeneity setup. FedNILO
performances are demonstrated to be lower but still valid, indicating a stabile
capacity supported by 30% of CC savings on average for IID and balanced settings.
Unfortunately, it could not obtain higher accuracy scores, which probably happened
because of a generalization capability of FedNILO under the Dirichlet distribu-
tion. While the optimization for the smooth and convex optimization typical of
homogeneous settings could suffer a bit more of layer removal optimization.

Cifar10 IID
Acc. CC (GBs) savings percentage K/F

FedAVG FedNILO
80.5 33.26 27.3 17.9% 350/50
81.0 41.16 30.58 25.7% 400/50
81.5 55.14 39.64 28.1% 500/75
Avg 23.9%

Table 6.6: CIFAR10 homogeneous settings Communication Cost for same accuracy
levels: comparison between FedAVG and FedNILO reporting the values obtaining
the best performance. The last line reports the average CC savings obtained.

Table 6.6 reports the results achieved for CIFAR10 under homogeneous settings.
While the proportionality pattern is still respected. FedNILO did not overcome the
traditional FL accuracy scores under the imposed constraints. The main difference
comes with the absence of 350/25 instead present in each reported table, starting
directly from 350/50 (line 1). This is the case where FedNILO performed worst,
presenting the lowest CC saving percentage of 17.9% (line 1 - 80.5% of accuracy
reference) by an average of 24% (the last line reporting the average percentage
savings). Nevertheless, the results reported are still quite impressive, exhibiting
savings that relieve the communication burden of more than 6 and 15 GBs of
network traffic cost.
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Cifar100 IID
Acc. CC (GBs) savings percentage K/F

FedAVG FedNILO
40.5 39.74 26.17 34.1% 350/25
41.0 47.19 32.54 31.0% 400/25
41.5 57.68 34.92 39.5% 450/50
Avg 34.87%

Table 6.7: CIFAR10 homogeneous settings Communication Cost for same accuracy
levels: comparison between FedAVG and FedNILO reporting the values obtaining
the best performance. The last line reports the average CC savings obtained.

In the end, Table 6.7 presents the results of CIFAR100 under IID and balanced
settings fashion. Here also the values K/F represent the same increasing pattern,
but while 350/25 still occupies the first line (40.5% of accuracy), K = 500 does
not figure at all. While the previous results tables had an increasing trend of
savings, comparing the percentages of the second line with the first, stands out a
drop of CC saving percentage, from 34.1% to 31%, finally fixed for the last values
reported of 39%. This is due to the scaling of hyperparameters. The provided grid
search probably does not fit at best the accuracy space. In the end, the average
CC savings of CIFAR100 IID evidenced at the bottom line of the table hovers to
35%. It proves again the partial stability of FedNILO and its hyperparameters,
over different heterogeneity levels and different datasets.
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Chapter 7

Conclusions

This thesis introduced FedNILO, an innovative methodology to reduce the commu-
nication cost in Federated Learning. It explores the context, the importance, the
taxonomy of FL, and its characteristical concepts. It focuses on the cross-device FL
and states the communication cost as the principal challenge. Communication cost
under cross-device settings becomes crucial because it puts strain on the devices.
The devices are not dedicated servers equipped with wired networks and high
computational capabilities. Indeed, the higher the load, the more they are prone to
failures and delays. The communication drains the batteries that supply them and
commits the smartphones’ resource, ruining the owner’s user experience. FedNILO,
as the related works, comes from the traditional algorithm FedAVG, the pioneer
of the topic. It ensures the independence between communication and data, by
communicating the model parameters.

FedNILO adapts and applies the concept of layer freezing exploiting the previous
convergence of the layers close to the input. It gradually reduces the model
parameters that are trained and synchronized with the server, becoming more
suitable for low-end devices. The freeze occurs in a layer-wise fashion, targeting
layered-architecture networks commonly used for visual classification. Standing
out from pruning or skipping, the model only freezes the layers instead of removing
them, in the following the topological direction. However, whenever the server
freezes a new layer, it ensures its communication to be avoidable once updated on
the clients. The clients receiving the freezing instruction only train and synchronize
the profitable layers.

FedNILO generates a slight complexity into the system, introducing two knobs
K and F . However, their estimation can take place in light of the communication
budget or the convergence rate. Moreover, K and F choices present a unidirectional
pattern: their values’ rise is proportional to the target accuracy score and the
communication cost. The benefit of K and F is to regulate the kickstart and the
scaling frequency of the FedNILO optimization, allowing its general and fine-grained
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adaptability to different setups. K and F allow to trade-off the balance between
accuracy and communication cost, allowing fine-tunable results depending on the
principal scope.

This work provides the testing on traditional visual classification datasets,
CIFAR10 - CIFAR100, suitably partitioned for realistic industrial implementations.
For such conditions and respectively, FedNILO outperforms FedAVG; (i) gradually
reducing the round-device’s payload of interest to negligible levels (0.2% / 2%),
(ii) Optimizing the cumulative communication cost for equal accuracy scores (from
45.8% / 27.4% up to 59% / 54.8% ), (iii) reaching higher accuracy scores still using
less communication (35% CC saving, ACC: +2.5% / +1%).

In the end, to test the agnostic capability of FedNILO, this work proposes the
results for homogeneous partitioning. As the opposite extreme of heterogeneous, the
partitioning is IID, balanced, and not representative of industrial representations.
Nevertheless, it hints at FedNILO’s capability of generalization for agnostic settings.
FedNILO, by definition, still gradually reduced the round-device’s burden. However,
it showed incapability to reach higher accuracy and the same levels of communication
savings. Yet, it demonstrated its stability, outperforming FedAVG in terms of
cumulative CC (from 17.9% / 34.1% to 28.1% / 39.5%).

Overall the results show the benefits of the proposal. The proposed solution
gradually diminishes the number of layers along the topological order. Therefore, it
allows more rounds, distributes the load over more devices, increases the accuracy,
and halves the communication cost required.
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