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Summary

Cell migration is one of the most important and most studied phenomena in biology and
plays a fundamental role for many physiological and pathological processes such as mor-
phogenesis, wound healing and tumorigenesis. Understanding cell migration, considering
the stimuli and mechanisms involved, can also help in the development of new therapeu-
tic approaches. In this respect, a model that can reproduce experimental observations as
closely as possible is of undoubted utility for medical and bioengineering purposes.

In the body many cells, such as fibroblasts, immune cells and some types of cancer
cells, migrate individually by adhering to a protein substrate known as the extracellular
matrix (ECM). There are many mechanisms affecting cell motion. For instance, it is well
known that cells sense the concentration gradients of particular chemicals and migrate
attracted or repelled by them (chemotaxis). In recent years, researchers have performed
experiments demonstrating that cells can also migrate in response to mechanical stimuli
of the substrate to which they adhere: motion toward regions of the substrate with higher
stiffness is called durotaxis, while motion guided by the stress or the deformation of the
substrate itself is called tensotaxis. Unlike chemotaxis, these migratory processes are not
yet fully understood from a biological point of view, which makes the investigation of
mathematical models suitable for their reproduction even more important.

This Thesis is placed exactly in this context. In fact, its goal is to appropriately
modify a mathematical model proposed by Colombi et al. in [1], that deals with single-
cell migration in response to chemotactic signals, to account for mechanical stimuli and
thus to be able to model and simulate the phenomena of durotaxis and tensotaxis, for
example as reported in [2]. In the case of durotaxis the cell moves by changing its direction
of polarization and its motility according to the different stiffness of the substrate and the
amount of ECM, respectively. In the case of tensotaxis, the substrate on which the cell
moves is appropriately deformed and the cell polarizes and migrates in response to proper
scalar measures of the substrate strain or stress.

From the mathematical point of view the equations of motion of the cell are nonlocal
integro-differential equations, with integral terms that are in charge of describing the
nonlocal evaluation of the considered mechanical cue by the cell in its neighbourhood.
Their evaluation calls for explicit numerical methods, as well as appropriate quadrature
techniques to account for possible singularities of the integrand functions (e.g. piecewise
constant substrate stiffness). In addition, it must be taken into account that the integrand
functions may be defined only pointwise, and therefore their interpolation at quadrature
nodes is necessary. The equations are solved with a MATLAB® code by partitioning the
bidimensional substrate with a uniform square mesh, eventually deformed in the case of
tensotaxis.

The mechanical stimulus to be integrated in the equations of motion is known exper-
imentally in the case of durotaxis, while it is derived by the solution of the mechanical
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problem for the substrate in the case of tensotaxis. Specifically, the mass and momen-
tum balance equations for the substrate are defined neglecting the mutual mechanical
interaction between the cell and the substrate. The latter is modeled either as a linear
elastic solid or as a hyperelastic Yeoh’s solid. Then, the mechanical problem is solved
with the software COMSOL Multiphysics® and the quantities of interest are imported
into the MATLAB® code that numerically implements the equations of motion, taking
into account that the deformation of the substrate implies a deformation of the mesh.

In both cases the equations of motion of the cell are solved by simulating different ex-
perimental setups found in the literature and the numerical simulations show a qualitative
agreement with the experimental observations.
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Sommario

La migrazione cellulare è uno dei fenomeni più importanti e più studiati in biologia. Esso
gioca un ruolo fondamentale per molti processi fisiologici e patologici come la morfogenesi,
la guarigione delle ferite e la tumorigenesi. La comprensione della migrazione cellulare,
considerando gli stimoli e i meccanismi coinvolti, può inoltre aiutare nello sviluppo di
nuovi approcci terapeutici. A questo proposito, un modello che possa riprodurre il più
fedelmente possibile le osservazioni sperimentali è di indubbia utilità per scopi medici e
bioingegneristici.

All’interno dell’organismo vi sono molte cellule, come i fibroblasti, le cellule immunita-
rie e alcuni tipi di cellule tumorali, che migrano individualmente aderendo a un substrato
proteico noto come matrice extracellulare (ECM). Il movimento delle cellule è influenzato
da molti meccanismi differenti. Ad esempio, è noto che le cellule percepiscono i gradienti
di concentrazione di particolari sostanze chimiche e migrano attratte o respinte da esse
(chemiotassi). Negli ultimi anni, i ricercatori hanno eseguito esperimenti che dimostrano
che le cellule possono migrare anche in risposta a stimoli meccanici del substrato a cui
aderiscono: il movimento verso regioni del substrato con maggiore rigidezza è chiamato
durotassi, mentre il movimento guidato dallo stress o dalla deformazione del substrato
stesso è chiamato tensotassi. A differenza della chemiotassi, questi processi migratori non
sono ancora pienamente compresi dal punto di vista biologico, il che rende ancora più
importante lo studio di modelli matematici in grado di simularli.

Questa Tesi si colloca esattamente in questo contesto. Infatti, il suo obiettivo è quello
di modificare opportunamente un modello matematico proposto da Colombi et al. in [1],
che si occupa della migrazione di singole cellule in risposta a segnali chemiotattici, in
modo da tener conto degli stimoli meccanici e poter così modellare e simulare i fenomeni
di durotassi e tensotassi, ad esempio come riportato in [2]. Nel caso della durotassi, la
cellula si muove cambiando la sua direzione di polarizzazione e la sua motilità secondo la
diversa rigidezza del substrato e la quantità di ECM. Nel caso della tensotassi, il substrato
su cui la cellula si muove è opportunamente deformato e la cellula si polarizza e migra in
risposta a delle misure scalari di deformazione o di stress del substrato stesso.

Dal punto di vista matematico, le equazioni del moto della cellula sono equazioni
integro-differenziali non locali, con termini integrali che hanno il compito di descrivere
la valutazione non locale da parte della cellula degli stimoli meccanici considerati. La
loro valutazione richiede metodi numerici di avanzamento in tempo espliciti, così come
tecniche di quadratura appropriate per tenere conto di eventuali singolarità delle funzioni
integrande (ad esempio, rigidità del substrato costante a tratti). Inoltre, si deve tener
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conto del fatto che le funzioni integrande possano non essere definite analiticamente ma
solo in alcuni punti del dominio, e quindi è necessaria la loro interpolazione nei nodi di
quadratura. Le equazioni sono risolte tramite un codice MATLAB® partizionando il sub-
strato bidimensionale attraverso una mesh quadrata uniforme, eventualmente deformata
nel caso della tensotassi.

Lo stimolo meccanico da integrare nelle equazioni del moto è noto sperimentalmente
nel caso della durotassi, mentre è ricavato dalla soluzione del problema meccanico per
il substrato nel caso della tensotassi. In particolare, definiamo le equazioni di equilibrio
della massa e della quantità di moto per il substrato, trascurando l’interazione meccanica
reciproca tra la cellula e il substrato stesso. Quest’ultimo è modellato come un solido
elastico lineare o come un solido iperelastico di Yeoh. Poi il problema meccanico viene
risolto con il software COMSOL Multiphysics® e le quantità di interesse vengono importate
nel codice MATLAB® che implementa numericamente le equazioni del moto, tenendo
conto che la deformazione del substrato implica una deformazione della mesh.

In entrambi i casi le equazioni del moto della cellula sono risolte simulando diversi
setup sperimentali presenti in letteratura, e le simulazioni numeriche effettuate forniscono
risultati qualitativamente in accordo con quelli sperimentali.
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Chapter 1

Introduction

Cell migration is a critical phenomenon occurring in several biological processes, such
as morphogenesis, wound healing and tumorigenesis [35, 36]. Cell motility deficiency is
associated with anomalies and complications that can compromise short-term or long-
term health of individuals. Understanding cell migration as an integrated and coordinated
process, considering the stimuli and mechanisms involved, may help in the development
of the new therapeutic approaches to fight pathological processes [25]. For these reasons,
research on cell migration has drawn the attention of the scientific community during the
last decades; it has now become a leading interdisciplinary research field that calls for the
collaboration of cellular biologists with experts from other disciplines, such as computer
imaging, engineering, and mathematical modeling.

In this Chapter we will review the biological background needed to understand why and
how cell migration occurs, mostly focusing on the motion driven by mechanical stimuli,
and we will review some of the mathematical and computational models that have already
provided insights into this complex process.

1.1 Biological background

1.1.1 How cells migrate
While some body cells are often in suspension (e.g. circulating cells in blood), most body
cells need to attach to a polymer-like structure called the extracellular matrix (ECM) to
function properly in a tissue. It has become clear that adherent cells anchor to a substrate
and then exert contractile forces in order to explore the properties of their environment,
which is a part of the so-called process of mechanosensing [22, 23]. More in detail, cell
migration onto two dimensional (2D) substrates is conventionally described according to
a cycle of four active phases [19,28,29,39]:

1. the protrusion driven by polymerization of the branched actin network at the leading
edge of the cell (the lamellipodium);

2. the adhesion to the substrate of the protruding part by engagement and disengage-
ment of transmembrane adhesion molecules, mainly integrins;
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3. the cytoskeleton contraction due to the activity of myosin motors;

4. the actin network depolymerization and tail detachment with consequent retraction
at the cell rear.

These different steps of the migratory process are observed most distinctly in slow-moving
cells, such as fibroblasts, and they are schematized in Fig. 1.1.

Figure 1.1: The cycle of cell migration, from top to bottom. i) Cell attaches to the
substratum. ii) Polarized cell produces a protrusion in form of a lamellipodium at the
leading edge. iii) Strong focal contacts arise in the front while the cortex is under tension
and the rear contracts. The adhesion in the rear detaches thereby the cell moves forward.
iv) A new forward directed protrusion is formed to start the next cycle. From [29].

While chemical processes are certainly at play, mechanical forces play a critical role in
integrin-mediated adhesion and cellular responses [13, 23]. Integrins and focal adhesions
(FAs) (a protein complex consisting of clustered integrins and other cytoplasmic molecules)
mediate mechanical force transmission to the cytoskeleton, recruit cytoplasmic proteins
and activate a cascade mechanism that leads from mechanical force to the alteration of
cytoplasmic activities. Despite we focus on this integrin-mediated migration, it has been
also showed that in three-dimensional (3D) confinement, migration is possible without
the formation of integrin-based attachments, within the so called adhesion-independent
migration [37, 38].

The initiation of the whole process that leads to cell migration requires a polarization
of the cell in order to discriminate the leading edge from the trailing edge and implies a
loss of symmetry from the stationary nonmoving configuration [17,19].
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1.1 – Biological background

Cell polarization can be either self-regulated, leading to a biased persistent random
walk in the absence of external signals, or triggered by various stimuli, including diffusible
chemical cues (chemotaxis [28, 40]), substrate-bound chemicals or cellular adhesion sites
(haptotaxis [28,41]), mechanical substrate compliance (durotaxis [2,8]), mechanical strains
on the substrate (tensotaxis [2, 22]), geometric features of the substrate (topotaxis [28,
42]), electric fields (galvanotaxis [28,43]), gradients of light intensity (phototaxis [44,45]),
currents of fluids (rheotaxis [46, 47]). The external stimulus is converted into internal
gradients of signaling molecules that guide the cytoskeleton mechanisms performing the
motile response.

For the purpose of this Thesis, we will focus on cell movement driven by mechanical
stimuli, i.e. durotaxis and tensotaxis. It is important to clarify that in the model we
will develop we do not focus on the subcellular mechanisms involved in the migration,
but we give a phenomenological description of them at the cellular scale. Therefore, the
mechanisms of motion are treated separately even though they likely involve similar or
analogous subcellular mechanisms.

1.1.2 Cell movement is guided by the rigidity of the substrate:
durotaxis

One of the first experimental studies about the infuence of mechanical stimuli on cell
migration was developed by Lo et al. [2]. They evaluated the infuence of the stiffness
gradient on cellular locomotion and firstly termed durotaxis this rigidity-guided cell move-
ment [3, 8–10,13, 14, 18, 23, 24, 28, 31–33]. As shown in Fig. 1.2, fibroblasts were placed in
the middle of a collagen-coated polyacrylamide substrate sheet, half of which was soft and
the other half of which was stiff, under conditions such that the only way the cells can
detect this stiffness discontinuity is by a process of active tactile exploration. The results
showed that the cells either migrated onto the stiffer side when they are initially placed
on the soft side or stayed on the stiffer side when they are seeded there. In doing so, they
showed that fibroblasts tend to prefer stiff matrices to softer ones. Similiar results have
been obtained more recently in [14] for pancreatic cells.

It is still not completely understood which molecular mechanisms regulate such cellular
response to ECM stiffness. Cells are able to sense matrix stiffness through integrins and
FAs, that dynamically assemble and disassemble, at a rate that is regulated biochemically
and mechanically. The disassembly rate is higher on soft ECMs and is lower on stiffer
ECMs, so that FAs stabilize more easily on stiffer ECMs [8] (Fig. 1.3). The stronger
mechanical feedback pull the cell towards the stiffer region and cause a bias in directional
movement and have other consequences on cytoskeletal and focal adhesion organization [2].

It has been revealed that individual focal adhesions do not necessarily exert stable
traction forces in response to unchanging ECM stiffness. In fact, while some individual
focal adhesions may display stable traction forces, others exhibit tugging traction in the
manner of a repeated cycle of tugging and release. Each focal adhesion acts autonomously
and its stability do not depend on its neighbors. This tugging traction has been shown
to be dispensable to other forms of cell migration, such as chemotaxis, but required for
durotaxis. The FA proteins are required in order to exhibit high traction and tugging
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Figure 1.2: Figure showing experiments by Lo et al. [2] in which cells are seeded on a
matrix with two different stiffnesses. Panel (a) shows a cell that is placed on the softer
side of the matrix and then over time migrates onto the stiffer side. Panel (b) shows a
cell that is placed on the stiffer side of the matrix initially and over time moves toward
the discontinuity, but then stays on the stiffer side.

traction across a wide range of ECM rigidities. Furthermore, a reduction in FA tension by
transferring cells to softer ECM results in a switching from stable to tugging states [13].

The mechanosensitive growth of FAs is key to our understanding of cellular responses
to ECM stiffness, but how FAs and cytoskeletal force generation work together to regulate
cell spreading, cell shape, and durotaxis is still to be elucidated [28].

1.1.3 Cell migration due to substrate strains and stresses: ten-
sotaxis

Cells respond to external forces applied on the substrate by changing shape and direction
of motion. When stresses are induced on the substrate a protrusion first and then the
entire cell tend to move towards tensile stresses and away from compressive stresses. This
process is known as tensotaxis [2, 3, 10, 12,20–22,25,26,30].

One of the first experimental evidence that mechanical tension influences the behavior
of cells can be found in [21]. To determine the effects of tension on epithelial motility
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1.1 – Biological background

Figure 1.3: The cell forms protrusions (cyan) and it experiences a stiffer substrate on the
right, so forces develop much faster on the right, allowing FAs to stabilize there. At the
left, FAs fail to stabilize, allowing the cell to retract in order to propel itself forward and
generate new FAs at the front. This continues and the cell moves to the right. Adapted
from [8].

and cytoskeletal organization, small, motile clusters of epidermal cells were artificially
extended with a micromanipulated needle; the authors observed that protrusive activity
perpendicular to the axis of tension was dramatically suppressed and cytoskeletal micro-
filaments aligned themselves parallel to the tension.

Furthermore in [26] the authors investigated the effect of the tension arisen inside a
mesodermal cell by pulling the cell body unidirectionally along the substratum. They
proved that migratory cells tended to move in the direction away from the tractive force
parallel to the substratum, suggesting that advancement of a leading lamella is accelerated
when it is stretched along the direction of projection by a mechanical force of sufficient
strength.

Further insights into this process were provided by Belussov et al. in [12]. They
evaluated the behavior of the cells in a ventral ectodermic explant under stress and they
observed that the cells moved to more strained regions of the substrate and showed that
integrins were activated during migration. They also observed a stimulation of FAs when
the substrate was strained.

Moreover, in a second series of experiments in the same article analyzed for durotaxis
[2], Lo and co-workers externally pulled or pushed the substrate away or toward the
cells center with a microneedle, and found a migration towards or away from the needle,
respectively (see Fig. 1.4). They supposed that in the first case less motion is produced
since cells experience a softening of the substrate, whereas in the second case the overall
motion is increased since cells perceive the substrate as stiffer. They supposed then that
durotaxis and tensotaxis are two processes linked each other. In this respect, it has been
proposed that the process of mechanosensing could be mediated also by the energy of
deformation involved in the cell–material interplay, in addition to stress and stiffness [3].

For what concerns the biological process involved in cell tenostaxis, the application of
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Figure 1.4: Figure showing experiments by Lo et al. [2] in which the substrate is stretched
with a blunted microneedle. In panel (a) the needle was inserted near the rear part of
a cell that was migrating away from it. The needle was then moved away from the cell,
which changed its polarization and moved toward the needle. In panel (b) the needle was
inserted near the front end of a cell that was migrating toward it. The needle was then
moved toward the cell, which changed its polarization and moved away from the needle.
The direction of movement of the microneedle is indicated by an arrow, and regions of
lamellipodia development are indicated by arrowheads.

external stress/strain on the cell stimulates FAs formation and increases the tension that
the submembrane plaque withstands. This tension can trigger molecular reorganization
at the adhesion sites or alterations in the conformation of plaque proteins or integrins.
That is the reason why the integrin-mediated submembrane plaque tension-dependent
mechanism has been hypothesized as a possible mechanosensitive path [22].

1.2 Mathematical modeling background

Biology is one of the most fruitful field of study of applied mathematics: the formalization
of biological processes through mathematical models is very helpful in order to better
understand them and to be able to reproduce them for engineering and medical purposes.
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Regarding the mechanism of chemotaxis, the mathematical models developed are innu-
merable and very diverse. From the Keller-Segel model [51], numerous continuous models,
via partial differential equations systems for the evolving densities of cells and the con-
centrations of attractants/repellents, have been proposed in the last decades [40, 50]. In
addition to continuous models, discrete models have also had significant development,
both those describing the motion of a single cell and a collection of cells [49, 50]. For the
purpose of this Thesis, among these single-cell discrete models, we cite the one presented
by Colombi et al. in [1], that is an integro-differential non-local model in which a rep-
resentative cell moves on a bidimensional substrate sensing signals from the surrounding
environment in a non-local and non-isotropic way. The work of Colombi et al. [1] considers
only chemical cues guiding cell motion. We will review in details the model in Section 2.1
explaining how this model could be adapt to describe the response of cells to mechanical
stimuli.

Also for what concerns the area of cell motion driven by mechanical stimuli, theoretical
and computational modeling approaches have provided insights, even if not comparable
to those related to the process of chemotaxis. Moreo et al. [22] developed one of the
first continuum mechanobiological model to study the adherent cell migration in a 2D
environment. In this work, the cell–ECM interaction was characterized as an elastic
spring system, representing the main components of the cell and matrix: microtubules of
the cytoskeleton, actin bundles and the actomyosin machinery. The model predicted the
phenomena of durotaxis and tensotaxis and suggested that their mechanisms involve the
same cellular and matrix components. In [25] the authors generalized the same model
to study the adherent cell migration in a porous medium, considering the influence of
interstitial fluid on the behavior of cells and the extracellular matrix.

In the recent years several different models exploiting many mathematical and com-
putational techniques have been proposed in order to study durotaxis and tensotaxis.
In [8,9] the authors proposed a Cellular Potts Model to simulate single cell migration over
flat substrates with variable stiffness, comparing the numerical results to specific exper-
imental observations and showing a consistent agreement. In [18] the authors proposed
a force-based, individual-based modeling framework that links single-cell migration with
matrix fibers and cell-matrix interactions, highlighting the effect of the cell’s environment
on its migration. A model of a similar structure can be found in [33]: the authors devel-
oped a computational biomechanical model without any cell decision making to illumi-
nate intrinsic mechanisms of durotactic behaviors of cells migrating on a two-dimensional
substrate. The model consists of a simplified cell generating contractile forces and a de-
formable substrate coarse-grained into an irregular triangulated mesh. Using the model,
they demonstrated that durotactic behaviors emerge from purely mechanical interactions
between the cell and the underlying substrate and they investigated how durotactic migra-
tion is regulated by biophysical properties of the substrate, including elasticity, viscosity,
and stiffness profile.

A hybrid discrete-continuum description of cells migrating on a substrate has been
developed in [30]: an agent-based model for cell migration is developed, with moving
probabilities that are influenced by deformations within the substrate and cells preferen-
tially follow the direction of highest strain. A very different mathematical technique has
been used in [10]: the authors used the level set method to study keratocyte evolution
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Main author Reference Model Processes Dimensions
Merks [8] Hybrid CPM and

FEM extended
with ODE-based
models of FA
turnover

Durotaxis, FA
evolution

2D

Scianna [9] CPM Durotaxis 2D

Rosakis [10] Level set method Durotaxis, tenso-
taxis, cell shape
evolution

2D

Schluter [18] IBM Durotaxis, cell-
matrix interaction

2D

Bueno [20] Continuum model
of fluid-structure
interaction

Tensotaxis 2D, 3D

Moreo [22] Continuum Durotaxis, tenso-
taxis

2D

De Santis [24] Tensegrity Durotaxis, tenso-
taxis

1D, 3D

Rosalem [25] Continuum Tensotaxis 2D

Chauviere [30] Hybrid discrete-
continuum

Tensotaxis 2D

Malik [31] Stochastic,
Fokker-Plank
equation

Durotaxis 1D

Yu [32] Stochastic,
Fokker-Plank
equation

Durotaxis 2D

Hassan [33] Discrete Durotaxis 2D

Table 1.1: Summary table with the models for cell migration due to mechanical stimuli
reviewed in Section 1.2.
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on flexible substrates, using mechanosensing concepts: cells apply contractile forces onto
the elastic substrate, while cell shape evolution depends locally on the substrate stress
generated by themselves or external mechanical stimuli acting on the substrate. They
predict a number of distinct phenomena observed in experiments, among which there are
durotaxis and tensotaxis.

Among other different kind of models in literature, we can find stochastic models that
exploit Fokker-Planck equation [31,32], a tensegrity model to study the cell sensing of the
elasticity of the substrate [24], a multiphysics phase-field model of fluid–solid interaction
to understand the physics of tensotaxis [20].

Each model proposed in the literature focuses on different biological aspects of cellular
motion and compares with experimental evidence, attempting to capture certain aspects.
Each model must be considered taking into account its assumptions of validity, with the
awareness that no model is perfect, but with the stimulus to try to approach models that
are able to capture the most important aspects of the phenomenology under consideration
while remaining as simple as possible. In Table 1.1 we gather the models for cell migration
due to mechanical stimuli reviewed in this Section.

1.3 Aim and structure of the Thesis

The review done so far has focused on mathematical models that attempt to capture the
mechanical aspects that stimulate cellular motion. On the other hand, with regard to
the mechanism of chemotaxis, the work is certainly more advanced both from a biological
and modeling perspective, as mentioned at the beginning of the previous Section. It
seems therefore reasonable to adapt an established model of chemotaxis to account for
the influence of mechanical stimuli on cell migration.

The aim of this Thesis is to present a new model for cell migration in response to
mechanical cues, by combining the model proposed in [1] suitably modified with a model
describing substrate mechanical behavior and its response in terms of deformations and
stresses. The model is phenomenological and focuses more on the cellular scale than the
subcellular mechanisms involved in the motion process. Despite its simplicity the model
could be used to qualitative reproduce the experimental observations reported in [2].

The rest of the Thesis is organized as it follows. In Chapter 2 the mathematical model
is presented. The equations of motion of the cell are 2D nonlocal integro-differential
equations, with integral terms that are in charge of describing the nonlocal evaluation
of the considered mechanical cue by the cell in its neighbourhood. While in the case of
durotaxis the cell moves by changing its direction of polarization according to the different
stiffness of the substrate, in the case of tensotaxis the substrate is appropriately deformed
and the cell polarizes and migrates in response to proper scalar measures of the substrate
strain or stress. In order to do so, the mass and momentum balance equations for the
substrate are defined neglecting the mutual mechanical interaction between the cell and
the substrate itself, that is modeled either as a linear elastic solid or as a hyperelastic
Yeoh’s solid.

In Chapter 3 the numerical implementation both of mechanical problem and of cell
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migration model is addressed. The former is solved with the software COMSOL Multipyh-
sics® and the quantities of interest are imported into a MATLAB® code that numerically
implements the equations of motion. In particular the evaluation of the the integral terms
calls for explicit numerical methods, as well as appropriate quadrature techniques to ac-
count for possible singularities of the integrand functions. In addition, it must be taken
into account that the integrand functions may be defined only pointwise, and therefore
their interpolation at quadrature nodes is necessary.

In Chapter 4 we set all the parameters involved and we validate the numerical imple-
mentation of the cell migration model, proposing the addition of a random term to the
discretized equation of evolution of the cell center in order to obtain more realistic results.
We then show the numerical simulations, which qualitatively agree with the experimental
observations both in the case of durotaxis and tensotaxis.

In Chapter 5 we conclude the dissertation by summarizing the results we obtained,
recalling the assumptions made and the limitations of our model. Finally we propose
some possible modifications and expansions of the model for possible future works.
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Chapter 2

The mathematical model

In this Chapter the mathematical model for 2D cell migration in response to mechanical
stimuli is developed. As outlined in Section 1.3, our model combines the one proposed
in [1] with a model describing substrate mechanical behavior and its response in terms
of deformations and stresses. In Section 2.1 the original model is reviewed and properly
adapted to our purposes and the equations of motion are derived in a general setting, so
that several different mechanical stimuli can be taken into account.

While in the case of durotaxis it is sufficient to define the stiffness distribution over
the substrate, if we want to account for the manipulation of the substrate its balance
equations after the application of the load have to be solved in order to compute stresses,
strains and energy. In Section 2.2 some basic notions of continuum mechanics are reviewed
and the mass and momentum balance equations of the substrate (considered as an elastic
media) are derived, following [7, 27].

We choose to decouple the mechanical problem of the substrate and the cell migra-
tion model, in the following sense: the load firstly acts on the substrate and deforms it,
generating stresses and accumulating elastic energy, then the representative cell moves in
response to these mechanical stimuli, without changing its shape or exerting a force on
the substrate itself.

2.1 The model for cell migration

The position of the representative cell at time t > 0 is identified by the vector xp(t) ∈ R2,
whereas its dimensions are taken into account by a sensing radius R > 0, representing
the maximum extension of cell protrusions and identifying the sensing area S(xp) of the
cell, that is the circle centered in xp and with radius R. Although we know that the cell
sensing area is related to the cell shape and thus it is not necessarily circular, modeling
its evolution along with its motion is not among the goals of our model, as it would
complicate it unjustifiably. In fact, considering that we neglet the mechanical interaction
between cell and substrate, assuming the shape of the cell to be constant and circular
seems to be a fair compromise that does not considerably affect the trajectory of motion.
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The cell velocity is defined as

dxp(t)
dt = v(t;m) w(t; c) , (2.1)

in order to outline the cell actual scalar speed v ∈ R and its polarization w ∈ R2, that
identifies the direction of motion. While the former is related to cell motility, the latter is
related to the process of organization of cell cytoskeletal filaments, which are able to align
in response to external stimuli and to identify a preferred direction of locomotion [17].
Both quantities depends then on functions c : R+

0 × R2 → R and m : R+
0 × R2 →

[0,1], respectively. In [1], c is the concentration of a chemoattractants and m is the
density fraction of extracellular proteins. Here we do not specify what these two functions
physically represent, so that we will be able to simulate the different causes of motion with
the same model, definig c and m as proper mechanical cues on the substrate in order to
consider the case of durotaxis and tensotaxis. Following the original model in [1] we will
properly normalize the function m we are going to choose, so that it can assume values
in the interval [0,1]. In the following we will omit the dependence of w and v on c and m
respectively, taking

w(t; c) = w(t) , v(t;m) = v(t) . (2.2)

The polarization vector of the cell evolves according to

dw(t)
dt = 1

τ

(
W(t,xp(t),w(t))

‖W(t,xp(t),w(t))‖+ ε
−w(t)

)
, (2.3)

where W ∈ R2 is the preferred axis of cell migration and it will be soon defined, the
persistence time τ can be seen as the time needed by the cell to re-orient and 0 < ε� 1
is a small parameter that ensures that ‖w(t)‖ ≤ 1 (being ‖·‖ the euclidean norm in R2)
for any t > 0 if initially ‖w(t = 0)‖ =: w0 ∈ (0,1]. In fact, the inner product of Eq. (2.3)
by w(t) gives

w(t) · dw(t)
dt = 1

τ

(
W(t,xp(t),w(t)) ·w(t)
‖W(t,xp(t),w(t))‖+ ε

− ‖w(t)‖2
)

≤ 1
τ

(
‖W(t,xp(t),w(t))‖
‖W(t,xp(t),w(t))‖+ ε

− ‖w(t)‖
)
‖w(t)‖ .

(2.4)

Since
w(t) · dw(t)

dt = ‖w(t)‖ d ‖w(t)‖
dt , (2.5)

it follows that

d ‖w(t)‖
dt ≤ 1

τ

(
‖W(t,xp(t),w(t))‖
‖W(t,xp(t),w(t))‖+ ε

− ‖w(t)‖
)
≤ 1
τ

(1− ‖w(t)‖) , (2.6)

which in the end gives ‖w(t)‖ ≤ 1 − (1 − w0)e−t/τ ≤ 1 for any t > 0, as we intended to
prove.

26



2.1 – The model for cell migration

From Eq. (2.1) we may notice then that a partial polarization, that is ‖w(t)‖ < 1,
results in a slow down of cell displacement: if the cytoskeleton is not fully organized, the
effective migratory capacity of the individual is in fact downregulated, since it is subjected
to inputs coming from different directions that may inhibit each other.

In the following we will often omit time dependence of xp and w to simplify the
notation.

We define the cell preferred axis introduced in Eq. (2.3) as

W(t,xp,w) = 1
A

∫
S(xp)

K

(
‖y− xp‖ ,

y− xp
‖y− xp‖

· w
‖w‖

)
c(t,y) y− xp

‖y− xp‖
dy

= 1
A

∫ R

0
r

∫ 2π

0
K

(
r,n(θ) · w

‖w‖

)
c(t,xp + rn(θ)) n(θ) dθ dr ,

(2.7)

where y = xp + rn, r = ‖y− xp‖ and n = (y − xp)/ ‖y− xp‖ = (cos θ, sin θ). The
scalar kernel K : [0, R] × [−1,1] → [0,1] is a weight function that measures the capacity
of the cell to sense the quantity given by c in a non-local and non-isotropic way, since its
support actually identifies the individual sensing region. The constant A is nothing but a
normalization constant, defined as

A :=
∫
S(xp)

K

(
‖y− xp‖ ,

y− xp
‖y− xp‖

· w
‖w‖

)
dy

=
∫ R

0
r

∫ 2π

0
K

(
r,n(θ) · w

‖w‖

)
dθ dr ,

(2.8)

as usual in this kind of kernels of integral terms. The two arguments of K are the
distance from the cell center of mass (non-local sensing) and the scalar product between
the direction n and the normalized polarization vector (non-isotropic sensing): assuming
the independence of these two variations, we choose to model

K(r, u) = Kr(r)Kθ(u) , (2.9)

with Kr : [0, R] → [0,1] and Kθ : [−1,1] → [0,1]. In doing so, the cell preferred axis
defined in Eq. (2.7) may be rewritten as

W(t,xp,w) = 1
A

∫ R

0
rKr(r)

∫ 2π

0
Kθ

(
n(θ) · w

‖w‖

)
c(t,xp + rn(θ)) n(θ) dθ dr , (2.10)

where the weight function components, Kr and Kθ, and the distribution c should be
suitably defined to result in a Riemann integrable integrand function. In Fig. 2.1, on the
left, a representative case of the cell polarization process from [1] is shown.

For what concerns cell motility, we define the quantity

M(t,xp(t),w(t)) = 1
R

∫ R

0
m

(
xp(t) + r

w(t)
‖w(t)‖

)
dr , (2.11)

that is the mean of m perceived by the cell ahead along its polarization direction w(t) at
time t (see Fig. 2.1, on the right), and we model v(t) in Eq. (2.1) as

v(t) = v(t;m) = Vmaxf(M) , (2.12)
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where Vmax > 0 is the maximal cell speed and f : [0,1] → [0,1] measures the function m
through the mean M non locally and it has to be modeled taking into account the cell
mechanosensing system, as we will do in Chapter 4. For different choices of the quantity
m we will use different functions f .

Figure 2.1: On the left, cell polarization process (i.e. the actual polarization w and the
preferred axis W) is regulated only by the spatial distribution of the quantity c (see the
orange shadow) within the cell sensing region S(xp(t)) (see the blue circle), as perceived
by the individual according to the weight functionK (see the green shadow). On the right,
cell intrinsic motility (i.e. the actual speed v(t)) depends only on the spatial distribution
m non-locally perceived at its leading front. Both figure are reproduced from [1].

Summarizing, the whole model is a system of non-linear integro-differential equations
made by Eqs. (2.1), (2.3), (2.10), (2.11), (2.12), an explicit expression of f in Eq. (2.12),
and initial conditions xp(0) = xp0,w(0) = w0. A proof for existence and uniqueness of
the solution, as well as its continuous dependence on the initial condition, can be found
in [1], in the case of a positive field c.

2.2 Substrate mechanics
After the introduction of the discrete model for cell migration, we need to model substrate
mechanics to define its rigidity and to derive its equilibrium equations.

Because of their tunable mechanical properties, polyacrylamide gels (PAG) are fre-
quently used for studying cell adhesion and migratory responses to extracellular substrate
stiffness [2,4,5], mainly because PAG’s elasticity can be easily and reproducibly tuned by
adjusting the ratio of acrylamide and bis-acrylamide. In [4] it is outlined the fact that
it is necessary to consider a non-linear elastic behaviour of the PAG in the context of
cell traction force quantification and an explicit strain energy function is proposed. For
the purposes of our model and according to the forces exerted in [2] to manipulate the
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substrate, we will consider either a linear elastic behaviour or a hyperelastic behaviour as
proposed in [4].

2.2.1 Finite deformations
Deformation and kinematics

In order to study the deformation and the motion of a continuum media, let B∗ be its
reference configuration and let us denote the coordinates (XL) of a particle in this con-
figuration as Lagrangian (or material) coordinates. Then, we identify with Bt the current
configuration of the continuum at time t and we denote the coordinates (xi) of a particle
in this configuration as Eulerian (or spatial) coordinates. The motion is defined through
a smooth map χ that assign to each material point X at time t a point

x = χ(X, t) ∈ Bt , with (X, t) ∈ B∗ × [0, T ] . (2.13)

Equivalently, we can express Eq. (2.13) as

x(X, t) = X + u(X, t) , (2.14)

where u is the displacement field and its components read

u(X, t) =

u(X, Y, Z, t)
v(X, Y, Z, t)
w(X, Y, Z, t)

 , (2.15)

since it is a function of the material point X and of time. Differentiating Eq. (2.14) with
respect to X we get

F = I + Gradu , (2.16)

being Gradu the gradient of the displacement field

(Gradu)iL = ∂ui
∂XL

, (2.17)

I the second order identity tensor, and F the deformation gradient tensor, whose repre-
sentative matrix in the Cartesian reference system is

F = (FiL) = ∂xi
∂XL

, (2.18)

and it can be seen as a linear application that associates each infinitesimal vector dX in
X with the correspondent infinitesimal vector dx in x, i.e.

dx = FdX . (2.19)

We furthermore require that J := detF > 0, to be consistent with the finite deformation
hypotesis.
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Given an infinitesimal surface element dΣ∗ and an infinitesimal volume element dV∗
on B∗, and the corresponding elements dΣ and dV on B, the following relations hold

dΣ = JF−>dΣ∗ , dV = JdV∗ . (2.20)

Other tensors that will be useful for our purposes are the right Cauchy-Green defor-
mation tensor

C := F>F , (2.21)

and the Green-Lagrange finite strain tensor

E := 1
2
(
F>F− I

)
= 1

2
(
Gradu + (Gradu)>

)
+ 1

2 (Gradu)>Gradu , (2.22)

that measures how much the deformed body differs from the undeformed one.
Focusing on kinematics, every quantity h associated to the motion can be expressed

either in Lagrangian form if seen as a function of (X, t) or in Eulerian form if seen as a
function of (x, t), i. e.

h(x, t) = h(χ(X, t), t) = h̃(X, t) . (2.23)

The variation of h̃ in time, that is ∂h̃
∂t (X, t), will mantain the material point fixed, whereas

∂h
∂t (x, t) will mantain the spatial coordinate fixed. To link these two variations we need to
follow the point in its motion computing

dh
dt (x(t), t) = ∂h

∂t
(x(t), t) + v(x(t), t) · ∇h(x(t), t) , (2.24)

where
v := ∂χ

∂t
(X, t) (2.25)

is the velocity field. In this way we may define the acceleration (in Lagrangian form) of
the particle X at the time instant t as

a(X, t) = ∂2χ

∂t2
(X, t) , (2.26)

or in Eulerian form as

a(x, t) = ∂v
∂t

(x(t), t) + v(x(t), t) · ∇v(x(t), t) . (2.27)

Balance laws

In a continuum body we suppose the mass to be distributed all over the region Bt. Then,
we suppose the existence of a density mass function ρ(x, t) and the mass balance law can
be written either in integral form as

d
dt

∫
Vt

ρ(x, t) dV = 0 , ∀Vt ⊆ Bt , (2.28)
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or in local form in Eulerian coordinates as

∂ρ

∂t
+∇ · (ρv) = 0 , in Bt , (2.29)

where∇· denotes the divergence operator with respect to the Eulerian coordinates. Equiv-
alently, the mass balance law can be expressed in Lagrangian form equating

ρ∗(X)dV∗ = ρ(x, t)dV , (2.30)

and exploiting Eq. (2.20) we get
ρ∗ = ρJ , (2.31)

being ρ∗(X) the density mass function over the reference configuration B∗.
Let us now consider the continuum subject to a body load per unit volume b and a

surface load per unit surface t. The first cardinal equation, or balance of momentum, can
be expressed in integral form as

d
dt

∫
Vt

ρv dV =
∫
Vt

b dV +
∫
∂Vt

t dΣ (2.32)

where Vt ⊆ Bt is a subdomain of the body and ∂Vt is its closed and smooth surface.
We follow the Cauchy hypothesis of simple continuum, that ensures the dependence

t = t(x, t,n) , x ∈ ∂Vt , (2.33)

being n the outward normal vector to the surface. Under this hypothesis the well known
Cauchy theorem garantees the existence and uniqueness of the second order stress tensor
T, such that the surface load may be written as

t = Tn . (2.34)

Thanks to the second cardinal equation, or balance of angular momentum, that ensures
that T is a symmetric tensor, and to Gauss divergence theorem, Eq. (2.32) may be easily
rewritten in local Eulerian form as

ρa = ∇ · T + b , in Bt . (2.35)

In order to write Eq. (2.35) in Lagrangian coordinates, we exploit the relations (2.20)
and rewrite the balance of momentum as

d
dt

∫
V∗

ρvJ dV∗ =
∫
V∗

bJ dV∗ +
∫
∂V∗

PN dΣ∗ , (2.36)

where
P = JTF−> (2.37)

is the first Piola-Kirchhoff stress tensor. Eq. (2.36) can be written in local form as

ρ∗a = bJ + DivP , (2.38)
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being Div(·) the divergence operator with respect to the Lagrangian coordinates, whereas
the balance of angular momentum reads

PF> = FP> , (2.39)

since P is a two-point tensor and it cannot be symmetric. Indeed, it relates forces in the
current configuration with areas in the reference configuration, whereas the Cauchy stress
tensor T relates forces in the current configuration with areas in the current configuration
itself.

Principal stresses and strains

At every point in a stressed body there are at least three planes, called principal planes,
with normal vectors n, called principal directions, where the corresponding stress vector
is perpendicular to the plane, i.e. parallel to the normal vector n, and where there are
no normal shear stresses. The three stresses normal to these principal planes are called
principal stresses. Then, finding these principal directions and stresses is equivalent to
solve the eigenvalues equation

Tn = σnn , (2.40)

with n /= 0. In a Cartesian coordinate system the symmetric tensor T has the generical
matricial representation

T =

σxx σxy σxz
σxy σyy σyz
σxz σyz σzz

 , (2.41)

and solving Eq. (2.40) requiring

det(T− σnI) = 0 (2.42)

(being det(·) the determinant operator and I the second order identity tensor), leads to
the cubic algebraic equation

σ3
n − I1σ

2
n + I2σn − I3 = 0 , (2.43)

where

I1 = σxx + σyy + σzz = trT , (2.44)

I2 = σxxσyy + σxxσzz + σyyσzz − σ2
xy − σ2

xz − σ2
yz = 1

2
(
(trT)2 − tr(T2)

)
, (2.45)

I3 = σxxσyyσzz + 2σxyσxzσyz − σ2
xyσzz − σ2

xzσyy − σ2
yzσzz = detT (2.46)

are the first, second, and third stress invariants, respectively (being tr(·) the trace op-
erator), and they always have the same value regardless of the coordinate system’s ori-
entation. In particular, the first stress invariant is a measure of the mean stress applied
to the body. Due to the stress tensor symmetry, Eq. (2.43) leads to three real solutions
σ1, σ2, σ3, that can be inserted in Eq. (2.40) in order to compute the three principal direc-
tions n1,n2,n3. A coordinate system with axes oriented to the principal directions implies
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that the normal stresses are the principal stresses and the stress tensor is represented by
a diagonal matrix

T =

σ1 0 0
0 σ2 0
0 0 σ3

 , (2.47)

and also the stress invariants may be written in terms of the principal stresses as

I1 = σ1 + σ2 + σ3 , (2.48)
I2 = σ1σ2 + σ1σ3 + σ2σ3 , (2.49)
I3 = σ1σ2σ3 . (2.50)

We can proceed in an anologous way with the symmetric right Cauchy-Green defor-
mation tensor C = F>F denoting its eigenvalues with λ1, λ2, λ3 and its invariants with

J1 = λ1 + λ2 + λ3 , (2.51)
J2 = λ1λ2 + λ1λ3 + λ2λ3 , (2.52)
J3 = λ1λ2λ3 . (2.53)

However, it is important to highlight that the principal directions of the stress are defined
over the deformed configuration, whereas the principal directions of the strain are defined
over the undeformed one.

Hyperelastic solid

Solving the continuum balance laws means computing the density ρ, the displacement
field u (or equivalently the map χ) and the stress tensor T (or equivalently P). In order
to do so, we need to add a relation between the deformations and the stresses, that is we
need to specify the constitutive relation of the material.

As said at the beginning of the Chapter, we model the substrate as a hyperelastic solid.
Among all the possible choice of stress-strain relations, we define a solid to be hyperelastic
if there exists a strain energy density function W (E) such that

P(E) = F
∂W

∂E
. (2.54)

This choice is useful because we will solve the balance equations (2.38) in Lagrangian
form, as usual in the context of solid mechanics due to the presence of a well defined
reference configuration.

It is then sufficient to define the function W (E) to close properly the system of equa-
tions. We assume the isotropy of the material, that garantees that there are no preferred
directions for stresses: an applied force will give the same displacements no matter the
direction in which the force is applied. Thanks to this assumption and to the objectivity
principle [27] it can be proved that the energy W depends only on the invariants of E, or
equivalently on the invariants of C, and on J = detF, that is

W (E) = W̃ (J1, J2, J3, J) . (2.55)
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Following [4], we choose to use Yeoh’s energy density function

W̃ (J1, J2, J3, J) = Ŵ (J1, J) =
3∑

n=1
cn(J−2/3J1 − 3)n + c4(J − 1)2 , (2.56)

where the material coefficients c1, c2, c3, c4 have to be defined.

2.2.2 Small deformations
To account also for a linearly elastic behaviour of the substrate, we consider here the case
of small deformations.

A deformation between two different configurations of the continuum body is infinites-
imal if ‖Gradu‖ � 1. This means that we can approximate at the first order Eq. (2.16)
to

F ≈ I (2.57)

and we can therefore use equivalently either Lagrangian or Eulerian coordinates. Further-
more the stress tensors T and P approximately coincide. In doing so, Eq. (2.54) for the
elasticity assumption can be written as

T(ε) = ∂W

∂ε
, (2.58)

being ε the infinitesimal strain tensor, nothing but the linearization of E:

E ≈ 1
2
(
Gradu + (Gradu)>

)
=: ε . (2.59)

Through the small deformations approximation it can be proved that the energy is a
quadratic function of the strain, in formulas

W (ε) = 1
2 ε · C ε , (2.60)

where the symbol “·” denotes the tensor inner product and C is a fourth-order tensor called
elasticity tensor. It has 34 = 81 components, but through considerations on its symmetries
it can be shown that there are 21 independent components, in a general setting, depending
on the solid mechanical properties. The stress tensor can now derived as

T(ε) = C ε , (2.61)

that is nothing but a generalization of the well known Hooke’s law for linear elasticity.
Assuming isotropy it can be shown that the independent components of the elasticity

tensor C reduce to two. Among all possibilites, we choose to use the Young modulus E
and the Poisson coefficient ν, so that the stress tensor reads

T(ε) = E

1 + ν
ε + νE

(1 + ν)(1− 2ν) tr(ε) I . (2.62)
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The modulus E and the coefficient ν are in general function of the material point of the
body; however, if the solid is homogeneous they are independent of position and reduce
to simple costants, depending on the material. In particular, E is a mechanical property
that measures the tensile or compressive stiffness of a solid material when the force is
applied lengthwise.

Inserting Eq. (2.62) in the balance of momentum we derive an explicit equation for the
displacement field

ρ
∂2u
∂t2

= E

2(1 + ν)

(
∇2u + 1

1− 2ν∇ (∇ · u)
)

+ b , (2.63)

known as Navier-Cauchy equation.

2.2.3 Plane stress approximation
Many problems in elasticity can be simplified as two-dimensional problems described by
plane theory of elasticity. In general there are two types of problems we may encounter in
plane analysis: plane stress and plane strain. The first problem arises in analysis of thin
plates loaded in the plane of the plate, while the second is used for elongated bodies of
constant cross section subject to uniform loading. The mechanical problem we will deal
with is part of the former case, so we now develop the approximated equations for the
plane stress conditions.

Plane stress distributions build on the assumption that the normal stress and shear
stresses directed perpendicular to the XY plane are negligible. Referring on a Cartesian
coordinate system as in Eq. (2.41) we have

σxz = σyz = σzz = 0 . (2.64)

It is also assumed that all the functions do not vary through the thickness of the substrate,
so that they are spatial functions of X and Y only:

u = u(X, Y ) , v = v(X, Y ) , (2.65)
εxx = εxx(X, Y ) , εyy = εyy(X, Y ) , εxy = εxy(X, Y ) , (2.66)
σxx = σxx(X, Y ) , σyy = σyy(X, Y ) , σxy = σxy(X, Y ) . (2.67)

These assumptions are approximations, but they are still sufficiently accurate for practical
applications if the substrate is thin and if the interaction with the cell is neglected, as in
the case we are dealing with. Furthermore, we highlight that the displacement w and the
strains εxz, εyz, εzz along the Z axis are not necessary null, but within the context of plane
stress approximation they become secondary variables and we will not compute them.

Taking these considerations into account, with straightforward computations we can
derive the balance equation for the plane stress approximation in a similar way as done
for Eq. (2.63) and we get:

ρ
∂2u
∂t2

= E

2(1 + ν)

(
∇2u + 1 + ν

1− ν∇ (∇ · u)
)

+ b , (2.68)
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in which we have renamed u = (u, v)> for simplicity. Unlike Eq. (2.63), Eq. (2.68) has to
be solved in a two-dimensional domain and the boundary conditions must be set in the
same domain too, simplifying the problem. For what concerns the body force b, in order
to deal with the 2D approximation we set

b = bs
h
, (2.69)

where h is the substrate thickness and bs is the force per unit surface applied on the
bidimensional domain.

Within the context of finite deformation, the assumptions made on the tensors T and
ε can be generalized for the tensors P and E. We do not derive a simplified equations as
Eq. (2.68), but the advantages of dealing with a bidimensional domain are the same.
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Chapter 3

Numerical implementation

The model proposed in the previous Chapter cannot be solved analitically, so a numerical
implementation is needed. Specifically, we will deal with the mechanical problem of the
substrate in the case of tensotaxis in Section 3.1, in order to compute stresses and strains
and to be able to choose the proper scalar measures c and m for the cell migration model.
The numerical implementation of the latter is analyzed in Section 3.2 for generic stimuli,
taking account of several different numerical issues.

3.1 Mechanical manipolation of the substrate
We model the substrate on which the cell migrates as a thin parallelepiped of thickness h
and with square faces of length L. Since the mechanical load we will apply is a microneedle
inserted in the substrate and moved along its plane as in [2], we are in a plane stress
approximation regime as outlined in Subsection 2.2.3 and the problem can be solved in
the bidimensional squared domain Ω = [0, L] × [0, L]. Assuming a static load condition,
if we consider a non-linear elastic behaviour of the substrate the system of mechanical
equations in Lagrangian form reads

bs
h
J + DivP = 0 , (3.1)

P(E) = F
∂W

∂E
, (3.2)

W (E) = Ŵ (J1, J) =
3∑

n=1
cn(J−2/3J1 − 3)n + c4(J − 1)2 , (3.3)

E = 1
2
(
F>F− I

)
, F = I + Gradu , (3.4)

where J = detF and J1 is the trace of C = F>F. The system reduces to the equation

E

2(1 + ν)

(
∇2u + 1 + ν

1− ν∇ (∇ · u)
)

+ bs
h

= 0 , (3.5)
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if the substrate is modeled as linearly elastic. In both cases, the unknown is the displace-
ment field u = (u, v)>, that must satisfy the boundary condition

u = 0 on ∂Ω , (3.6)

since it is experimentally detected that the edges of the substrate are fixed [2].
The manipulation with the microneedle is modeled in the load per unite surface bs.

The needle pushes or pulls the substrate along a direction identified by an angle β ∈ [0,2π),
localized in a circleD ⊂ Ω sufficiently far from the boundary, and with intensity fb. Taking
all these considerations in account, the load is

bs = fb

(cos β
sin β

)
1D , (3.7)

being 1D the characteristic function of the set D. A representative case of the domain
and an applied load is shown in Fig. 3.1.

Figure 3.1: The squared domain Ω = [0, L]× [0, L] with a small circle D in the center that
models the manipulation with the needle (β = π/2 in Eq. 3.7) and with the boundary
condition u = 0 on ∂Ω.

The problem is then solved with the Finite Element Method (FEM), using the Struc-
tural Mechanics Module of the software COMSOL Multiphysics®. The Physics-controlled
mesh is automatically generated, with Finer element size [34]. A representative case of a
meshed domain is shown in panel (a) of Fig. 3.2.

The solution or any quantity of interest is then exported in a Λ × Λ tensor grid with
the length step ∆y = L/Λ in both directions, as shown in panel (b) of Fig. 3.2, so that it
can be used as external signal for the cell migration model. In this way an interpolation
automatically performed by the software is implied, from the vertices of the mesh to the
regular tensor grid.
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(a) Meshed domain (b) Regular undeformed grid (c) Deformed grid

Figure 3.2: Panel (a) shows an example of a triangular mesh for the domain Ω automati-
cally generated by the software COMSOL Multiphysics® to solve the mechanical problem.
Panel (b) shows an example of a Λ×Λ tensor grid with Λ = 70. Panel (c) shows the same
grid of panel (b) when deformed as defined in Eq. (3.13).

3.2 Time-integration for the cell migration model
The numerical implementation of the model for cell migration derived in Section 2.1 is
here tackled, referring to [6] for the theoretical numerical methods involved. We recall
here the model is

dxp(t)
dt = v(t) w(t) , (3.8)

dw(t)
dt = 1

τ

(
W(t,xp(t),w(t))

‖W(t,xp(t),w(t))‖+ ε
−w(t)

)
, (3.9)

W(t,xp,w) = 1
A

∫ R

0
rKr(r)

∫ 2π

0
Kθ

(
n(θ) · w

‖w‖

)
c(t,xp + rn(θ)) n(θ) dθ dr , (3.10)

M(t,xp(t),w(t)) = 1
R

∫ R

0
m

(
xp(t) + r

w(t)
‖w(t)‖

)
dr , (3.11)

v(t) = Vmaxf(M) , (3.12)

with explicit expressions of Kr, Kθ and f that will be given in Chapter 4.
First of all, the numerical approximation of the integrals W and M in Eqs. (3.10) and

(3.11) respectively requires suitable quadrature formulas, able to handle possible non-
regularities of the integrand functions. In order to simplify the problem, we require the
kernels Kr and Kθ to be continuous, but the functions c and m can be discontinuous, even
if piecewise regular, e.g. a piecewise constant substrate stiffness. A tailored application
of the Gauss-Legendre quadrature formula is proposed and adapted from [1], consisting
in applying the formula in each subregion of the integration domains (S(xp) and [0, R],
respectively) where the integrand functions are actually smooth. Having in mind that
the accuracy of a Gaussian quadrature rule depends on the smoothness of the integrand
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(i.e., the higher the regularity of the integrand function is, the faster the convergence of
the quadrature formula is), we expect that such an ad hoc approach turns out to be more
accurate and efficient than a standard application of the quadrature formula to the entire
domain of integration.

Furthermore, the time integration of the proposed model involves at each time step
the evaluation of the integral terms W and M : it requires then an explicit ODE solver,
e.g. the first and second-order explicit Runge–Kutta methods, known as Euler and Heun
method respectively.

Besides, the functions c and m may not be analitically defined, e.g. experimental
measured or imported from the software in which the mechanical problem for the substrate
is solved. If this is the case, they are defined only over a finite amount of points, that may
not coincide in general with the quadrature nodes needed to evaluate the integral terms
(see Fig. 3.3): it is then necessary to use a suitable interpolation method to approximate
the missing data, preserving the accuracy and efficiency of the overall numerical scheme.

Figure 3.3: Representative case where the distribution c is defined only over a finite
amount of points (i.e. the orange dots) which do not coincide with the quadrature nodes
(i.e. the blue dots) required to evaluate W (from [1]).

In particular, if the signals come from the mechanical problem, they are defined over a
tensor grid as in Panel (b) of Fig. 3.2 in Lagrangian coordinates. However, the cell migrates
over the substrate already deformed sensing those mechanical signals, so it migrates over
the current configuration of the substrate. Then, the quantities of interest have to be
considered as functions of the Eulerian coordinates as in Eq. (2.23).

To tackle this issue it is sufficient to properly deform the grid taking into account the
computed deformation field u. Denoting by Xij ∈ Ω the points of the regular grid, with
i, j = 1, . . . ,Λ, the deformed one is identified by the points

xij = Xij + u(Xij) , (3.13)

such that
c(t,Xij) = c(t,xij) , m(t,Xij) = m(t,xij) . (3.14)
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A representative example of a deformed grid is shown in panel (c) of Fig. 3.2, and an
example of a field in both Lagrangian and Eulerian form (or plotted on the undeformed
grid or on the deformed one, equivalently) is shown in Fig. 3.4.

Figure 3.4: On the left, a stress field in Lagrangian form (or plotted on the undeformed
tensor grid as in panel (b) of Fig. 3.2, equivalently). On the right, the same stress field in
Eulerian form (or plotted on the correspondent deformed grid as in panel (c) of Fig. 3.2,
equivalently).

3.2.1 Explicit Runge-Kutta methods
In order to apply the proper method, we first rewrite Eqs. (3.8) and (3.9) in the following
canonical form 

dz(t)
dt = F(t, z(t)) , t ∈ (0, T ] ,

z(0) = z0 ,
(3.15)

defining

z(t) :=
(

xp(t)
w(t)

)
, F(t, z(t)) :=

(
gx(t,xp(t),w(t))
gw(t,xp(t),w(t))

)
, (3.16)

where gx and gw denote the right hand sides of Eqs. (3.8) and (3.9), respectively. We
then introduce a uniform partitioning of the time interval (0, T ] into N subintervals of
length ∆t = T/N and we denote by tn = n∆t, with n = 0, . . . , N the N + 1 time
instants associated to the discretization. As usual in numerical integration of ODE, we will
compute the solution z(t) only over the time instants tn, denoting by zn the approximated
value of z(tn). Starting from the initial value z0 = (xp0,w0)> we may apply either the
Euler method computing

zn+1 = zn + ∆tF(tn, zn) , (3.17)
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or the Heun method computing

zn+1 = zn + ∆t
2
[
F(tn, zn) + F(tn+1, zn + ∆tF(tn, zn))

]
, (3.18)

for n = 0, . . . , N − 1.
If a mechanical manipulation of the substrate occours, it is necessary to clarify that

the initial position xp0 ∈ Ω of the cell is defined before the deformation. Then, similarly
as done in Eq. (3.13), we must replace the initial condition xp0 with

xp0 + u(xp0) , (3.19)

since the cell is anchored to the substrate during the deformation.

3.2.2 Tailored Gauss-Legendre quadrature formula
As highlighted before, we note that the the evaluation of the functions gx and gw is needed
at each time step, and this requires the computation of the integrals W and M defined in
Eqs. (3.10) and (3.11), respectively (see Fig. 3.3). For what concerns the double integral
Wn := W(tn,xpn,wn), we apply a ν × ν̄ Gauss-Legendre quadrature formula, that is

Wn = 1
A

∫ R

0
rKr(r)

∫ 2π

0
Kθ

(
n(θ) · wn

‖wn‖

)
c(tn,xpn + rn(θ)) n(θ) dθ dr

≈ 1
A

ν∑
p=1

wprpKr(rp)
ν̄∑
q=1

w̄qKθ

(
n(θq) ·

wn

‖wn‖

)
c(tn,xpn + rpn(θq)) n(θq) ,

(3.20)

where wp and rp, w̄q and θq (p = 1, . . . , ν, q = 1, . . . , ν̄) are the weights and the nodes of
the ν-point and ν̄-point Gauss-Legendre formula in [0, R] and [0,2π], respectively.

In an analogous way, we apply the same ν-point Gauss-Legendre quadrature rule to
compute the single integral Mn := M(tn,xpn,wn), which reads

Mn = 1
R

∫ R

0
m

(
xpn + r

wn

‖wn‖

)
dr ≈ 1

R

ν∑
p=1

wpm

(
xpn + rp

wn

‖wn‖

)
. (3.21)

The computation of the integral terms as in Eqs. (3.20) and (3.21) has to be intended
just in case the integrand functions are regular. If a function is piecewise regular the
tailored application of the quadrature rule constists of applying the formulas in each
subregion of the integration domains where the integrand functions are actually smooth.

In [1] possible discontinuities of the kernels Kr and Kθ and of the function m are taken
into account. Instead, here we will assume the kernels to be smooth, but we will deal with
possible singularities of the functions c and m.

For example, if the field c is defined as

c(t,y) =
{
c1 if y1 ≤ d ,

c2 otherwise ,
(3.22)
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being d < L and c1 /= c2, and at time tn the cell center xpn = (x1
pn, x

2
pn)> is such

that |x1
pn − d| < R, the cell senses the discontinuity inside the sensing region S(xpn).

Setting ν = 3 and ν̄ = 4 for the sake of simplicity, and considering the case in which the
discontinuity d is placed to the right of cell center, the nodes of the tailored quadrature
formula for the computation of Wn are shown in Fig. 3.5.

Figure 3.5: An example of quadrature nodes (blue, red, and green dots) used inside the
sensing region S(xpn) (blue circle) for the computation of Wn if the field c is defined as
in Eq. (3.22) and the cell senses the discontinuity to the right of its center.

For the sake of clarity, we write in the following the explicit computation of Wn in the
case mentioned above, that is if x1

pn < d < x1
pn + R. If x1

pn − R < d < x1
pn or if x1

pn = d
the computation can be easily generalized from this case, as well as the computation of
Mn in case the field m has a vertical discontinuity as in Eq. (3.22), which are the only
discontinuity we will take account of.

Referring to Fig. 3.5, being γ := arccos
(
(x1
pn − d)/R

)
and −γ the angles that individ-

uate the discontinuity (red thick lines), the integral can be splitted as

Wn = c1

A

∫ R

0
rKr(r)

∫ 2π−γ

γ
Kθ

(
n(θ) · wn

‖wn‖

)
n(θ)dθ dr

+ c1

A

∫ γ

−γ
Kθ

(
n(θ) · wn

‖wn‖

)
n(θ)

∫ r̄(θ)

0
rKr(r)dr dθ

+ c2

A

∫ γ

−γ
Kθ

(
n(θ) · wn

‖wn‖

)
n(θ)

∫ R

r̄(θ)
rKr(r)dr dθ =: I1

n + I2
n + I3

n ,

(3.23)
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where the distance

r̄(θ) =
√

(x1
pn − d)2 +

[
(d− x1

pn) tan θ
]2
, θ ∈ [−γ, γ] , (3.24)

individuates radially the jump of the field c.
Then, we use ν̄ nodes θq in the interval [γ, 2π − γ] (red thin lines) and ν̄ nodes θ∗q in

the interval [−γ, γ] (blue thin lines) and we denote with w̄q and w̄∗q the respective weights.
For each angle θq we use ν nodes rp and weights wp in [0, R] (red dots) because the field
c is regular, computing

I1
n ≈

c1

A

 ν∑
p=1

wprpKr(rp)

 ν̄∑
q=1

w̄qKθ

(
n(θq) ·

wn

‖wn‖

)
n(θq)

 . (3.25)

Instead, for each angle θ∗q we use ν nodes in both intervals [0, r̄(θ∗q)] and [r̄(θ∗q), R]. De-
noting with r∗p, w∗p and with r∗∗p , w∗∗p the respective nodes and weights, we compute

I2
n ≈

c1

A

ν̄∑
q=1

w̄∗qKθ

(
n(θ∗q) ·

wn

‖wn‖

)
n(θ∗q)

ν∑
p=1

w∗pr
∗
pKr(r∗p) , (3.26)

and

I3
n ≈

c2

A

ν̄∑
q=1

w̄∗qKθ

(
n(θ∗q) ·

wn

‖wn‖

)
n(θ∗q)

ν∑
p=1

w∗∗p r
∗∗
p Kr(r∗∗p ) . (3.27)

3.2.3 Interpolation methods
As seen, the computation of the terms Wn and Mn requires at each time step tn the
evaluation of the functions c and m on the proper quadrature nodes, but if the functions
are not known in those points we need a proper interpolation process. We distinguish two
different cases.

• If the functions c and m are known over the points yij of a regular grid, a reasonable
choice is to interpolate the unknown nodal values of with a bi-dimensional cubic
spline, using not-a-knot conditions [6].

• If the functions c and m are known over the points ŷij of a deformed grid due to
the mechanical manipulation of the substrate, it is necessary to use interpolation
methods that work on irregular grids. Among all possibilities, two choices are the
linear interpolation, C0 continuous, and the natural neighbor interpolation, C1 con-
tinuous. Both methods are implemented in MATLAB® by the scatteredInterpolant
function [52], and we refer to [53, 54] for details concerning theoretical results and
their implementation, respectively.

We briefly review here these latter interpolation methods for a generic set of points in
2D, that we rename as xi, for i = 1, . . . , n, for the sake of simplicity.

The linear interpolation bases on a triangulation of the scattered data points, in which
the value of the function to be interpolated at the generic point x inside a triangle is given
by the only plane that passes through the values known at its vertexes.
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3.2 – Time-integration for the cell migration model

Figure 3.6: The Voronoi tiles of a scattered point set {x1, . . . ,x9}, within the addition of
a new point x (see Eqs. (3.28), (3.29), (3.30)). Bold lines indicate the new tile of point x;
the dotted lines inside it show the old tile boundaries before the addition of point x. The
Delaunay triangles associated with the Voronoi tesselation are also shown, indicated by
thin dashed lines; the triangle edges are perpendicular bisectors of the tile edges. Figure
reproduced from [54].

The natural neighbor interpolation method is based on the Voronoi tesselation of the
given scattered point set. The Voronoi tesselation partitions the plane into a set of tiles
(polygons), each tile Ti enclosing one point xi of the given point set. The tile Ti is defined
as the area that is closer to the point xi than to any other scatter point, i.e.

Ti := {x ∈ R2| ‖x− xi‖ ≤ ‖x− xj‖ ∀j = 1, . . . , n} . (3.28)

Point xi of our point set is said to be a natural neighbor of point xj of the set if their
respective tiles Ti and Tj have a common edge or point of contact.

Once the Voronoi tesselation of our point set has been constructed, all that we need
in order to evaluate the interpolated value at a new point x is simply to add x to the set
of scatter points, defining its new tile as

T (x) := {z ∈ R2| ‖z− x‖ ≤ ‖z− xj‖ ∀j = 1, . . . , n} , (3.29)

and its intersections with the old tiles as

Ti(x) := T (x) ∩ Ti , (3.30)

as shown in Fig. 3.6 in a representative case. Now, denoting the area of a tile T as A(T ),
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the natural neighbor interpolant at the point x could be defined as

f̂(x) =
∑

i neigh

hi(x)zi , (3.31)

where
hi(x) := A(Ti(x))

A(T (x)) , zi := f(xi) , (3.32)

and the sum is intended only over the natural neighbors of x.
The interpolant of Eq. (3.31) is only C0 continuous, since its derivatives are discontin-

uous at the points xi. In order to obtain a C1 continuous interpolant we must take into
account also the gradient at each of the points. It can be shown that in this case the
interpolant reads

f̂(x) =
∑

i neigh

wi(x)gi(x) , (3.33)

where

wi(x) :=

hi(x)
‖x− xi‖∑

j neigh

hj(x)
‖x− xj‖

, gi(x) := zi +∇z(xi) · (x− xi) , (3.34)

and where ∇z(xi) is an estimate value of the gradient of the underlying function z(x) at
point xi. All sums are intended over the natural neighbors of x.
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Chapter 4

Numerical simulations

After the presentation of the complete model and the analysis of the numerical issues,
in this Chapter we finally show some numerical simulations performed for both processes
of durotaxis and tensotaxis. Before that, we choose all the parameteres and the kernels
involved in the equations, as well as the numerical parameters and methods that preserve
the overall accuracy and computational cost for the cell migration model.

4.1 Parameters and kernels Kr and Kθ

We refer to [1] to set the parameter involved in the cell migration model. The length of the
squared domain Ω = [0, L]×[0, L] is L = 700 µm, whereas the extension of cell protrusions
R is assumed equal to 20 µm. The representative cell is able to reach a maximum speed
of Vmax = 0.009 µm/s and to re-orient in a period τ equal to 300 s (see Eqs. (3.12) and
(3.9), respectively). The Michaelis–Menten constant ε in Eq. (3.9) is fixed to 0.001. All
the other parameters involved will be specified in the proper sections; in particular we
remark that the final time T will be chosen to avoid that the cell (as well as its sensing
region) reaches the domain boundaries.

Concerning the choice of the kernels Kr and Kθ in Eq. (3.10), we remind that they
measure the capacity of the cell to sense the field c in a non-local and non-isotropic way
on the individual sensing region. The choice of these kernels must therefore take account
of the reason why the cell migrates, i.e. which are the stimuli perceived by the cell and
how the cell perceive them.

As already outlined, in [1] the field c is the concentration of a chemoattractant, so the
cell moves due to chemotaxis. In that case it is reasonable to consider Kr a decreasing
function, since the cell perceives the chemoattractant less intensely as the distance from
its center of mass increases. Instead, we hypothesize that the local amount of mechanical
receptors increases with the distance from the cell center, since integrins and FAs assemble
and disassemble with an higher rate at the end of cell protrusions [8]. Among all the
possible choices, we set

Kr(r) = −2
(
r

R

)3
+ 3

(
r

R

)2
, for r ∈ [0, R] , (4.1)
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4 – Numerical simulations

which is nothing but increasing (in its domain) degree 3 polynomial with the conditions
Kr(0) = 0 , Kr(R) = 1 , K ′r(0) = K ′r(R) = 0 , (4.2)

and it is shown in Fig. 4.1. We recall that r is the distance from the cell center of mass.

Figure 4.1: Kernel Kr defined in Eq.(4.1) and used for the computation of cell preferred
direction of motion in Eq. (3.10).

For what concerns the choice of Kθ(u), where u = n(θ) ·w/ ‖w‖ is the scalar product
between the vector n(θ) = (cos θ, sin θ) (with θ ∈ [0, 2π)) and the normalized polarization
w/ ‖w‖, we consider two different possibilities:

1. we assume that the amount of receptors is higher towards cell’s front than toward
its tail, and consistently we take

Kθ(u) = −1
4u

3 + 3
4u+ 1

2 , for u ∈ [−1,1] , (4.3)

so that the cell is biased to migrate towards its actual direction of motion. In the
following we will refer to (4.3) as “biased kernel”;

2. we assume that the amount of receptors is the same towards the cell’s head and tail
and gradually vanishes, taking

Kθ(u) = u2k1 , for u ∈ [−1,1] , (4.4)
with k1 ∈ N \ {0}. If this is the case, the cell does not distinguish between its head
or tail for the choice of its preferred axis. For example, if the field c is constant over
the circular sensing region, with the latter choice of Kθ the integral W in Eq. (3.10)
vanishes, and this leads ‖w(t)‖ to rapidly decrease to zero. In the following we will
refer to (4.4) as “unbiased kernel”.

We plotted both kernels Kθ of Eqs. (4.3) and (4.4) in Fig. 4.2. In the following we will
consider k1 = 1.
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Figure 4.2: Different choices for the kernel Kθ used for the computation of cell preferred
direction of motion in Eq. (3.10). The “unbiased kernel” defined in Eq. (4.4) is shown on
the left for k1 ∈ {1,2,4}, whereas the “biased kernel” defined in Eq. (4.3) is shown on the
right.

4.2 Validation and choice of the numerical methods
The numerical approach for the cell migration model proposed in Section 3.2 has already
been validated in [1] if the fields c and m are known analitically or they are defined over a
regular grid. In particular, the choice of discretization parameters ∆t and ∆y sufficiently
small leads to the theoretical quadratic order of convergence of the Heun method and the
linear order of convergence of the Euler method when the spline interpolation is considered.

If a deformation of the grid occurs, as outlined in Subsection 3.2.3, we need different
interpolation methods. Here, we aim to understand if it is possible to obtain the theoretical
orders of convergence of both methods when coupled with a linear interpolation or natural
neighbor interpolation. With this purpose, we set the same benchmark test as in [1],
defining the following test field as

c(t,y) = c0
ey1/

√
δ − e(2L−y1)/

√
δ

1− e2L/
√
δ

, (4.5)

with c0 = 0.027 µM and δ = 33250 µm2, and the ECM protein density as

m(t,y) =
{

0.75 if y1 ≤ L/2 ,
0.5 otherwise .

(4.6)

We assume the explicit form of the kernels Kr and Kθ as in Eqs. (4.1) and (4.3), respec-
tively, we define the function f of Eq. (3.12) as

f(M) = 4M(1−M) (4.7)
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(the justification for this choice will be given in Section 4.3), and we set xp(0) = (3/4L,L/4),
w(0) = (0,1) as initial conditions, and the final time T = 16 h.

We assume as reference trajectory the solution obtained with N̄ = 3200 time-steps, and
we consider a sequence of approximated cell trajectories obtained with N time steps. To
easily compare the resulting approximated trajectories with the reference one, we require
that N is a divisor of N̄ (i.e., there exists k ∈ N such that N̄ = kN). We then introduce
the relative error

errN,Λx := max
n=0,...,N

∥∥∥x̄kn − xΛ
n

∥∥∥
‖x̄kn‖

, (4.8)

where xΛ
n with n = 0, . . . , N , denotes the approximated cell trajectory obtained by ap-

plying, at any time step, ν = ν̄ = 16 nodes for the computation of the integral terms,
and by replacing the variable c either with its linear or its natural neighbor interpola-
tion, assuming that the field c is known over a regular grid with ∆y = L/Λ. Conversely,
x̄kn, with n = 0, . . . , N , denotes the reference solution obtained by dividing the period
of observation into N̄ = kN = 3200 time steps, and by using ν = ν̄ = 32 nodes and
the analytic expression of c for the quadrature nodes. In denoting cell trajectories we
suppressed the subscript p for simplicity. The reference trajectory, as well as the fields
defined in Eqs. (4.5) and (4.6), is shown in Fig. 4.3.

Figure 4.3: Reference trajectory of a cell initially located at xp(0) = (3/4L,L/4) (white
circle) and with w(0) = (0,1) (red arrow), computed with N̄ = 3200 time-steps and
T = 16 h. The fields c and m are defined in Eqs. (4.5) and (4.6), respectively, and the
kernels Kr and Kθ in Eqs. (4.1) and (4.3), respectively. The colored symbols denote the
position at the instants T/4 (yellow square), T/2 (red diamond), 3T/4 (green circle).
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Finally, we compute the estimated order of convergence as

EOCΛ := log2

(
errN,Λx /err2N,Λ

x

)
. (4.9)

For N ∈ {100, 200, 400, 800, 1600} and Λ ∈ {20, 40, 80}, the results are shown in Ta-
bles 4.1 and 4.2 for Euler method coupled with linear and natural neighbor interpolation,
respectively, and in Tables 4.3 and 4.4 for Heun method coupled with linear and natural
neighbor interpolation, respectively.

N errN,20
x EOC20 errN,40

x EOC40 errN,80
x EOC80

100 3.44e-03 3.66e-03 3.64e-03
1.16 1.07 1.07

200 1.54e-03 1.75e-03 1.73e-03
0.78 1.09 1.11

400 8.96e-04 8.19e-04 8.01e-04
0.29 1.18 1.22

800 7.31e-04 3.62e-04 3.43e-04
0.06 1.42 1.56

1600 7.01e-04 1.36e-04 1.16e-04

Table 4.1: Relative error errN,Λx defined in Eq. (4.8) and estimated order of convergence
EOCΛ given in Eq. (4.9) for the solution of the benchmark test defined in Section 4.2
obtained with Euler method coupled with a linear interpolation.

N errN,20
x EOC20 errN,40

x EOC40 errN,80
x EOC80

100 3.41e-03 3.65e-03 3.64e-03
1.19 1.07 1.07

200 1.50e-03 1.74e-03 1.73e-03
1.00 1.10 1.11

400 7.49e-04 8.14e-04 8.00e-04
-0.22 1.19 1.22

800 8.74e-04 3.57e-04 3.43e-04
-0.15 1.36 1.57

1600 9.70e-04 1.39e-04 1.16e-04

Table 4.2: Relative error errN,Λx defined in Eq. (4.8) and estimated order of convergence
EOCΛ given in Eq. (4.9) for the solution of the benchmark test defined in Section 4.2
obtained with Euler method coupled with a natural neighbor interpolation.

The values reported in Tables 4.1 and 4.2 show that the estimated order of convergence
of Euler method coincides with the linear theoretical order if the spatial discretization
parameter is at least 40. For what concerns Heun method, from Tables 4.3 and 4.4 we
notice that the parameter Λ = 80 is not sufficient to recover the quadratic order of the
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N errN,20
x EOC20 errN,40

x EOC40 errN,80
x EOC80

100 5.37e-04 4.75e-04 4.43e-04
-0.55 2.47 1.94

200 7.86e-04 8.58e-05 1.16e-04
0.12 1.21 2.20

400 7.22e-04 3.72e-05 2.52e-05
0.04 -0.53 2.82

800 7.04e-04 5.37e-05 3.56e-06
0.01 -0.14 -0.74

1600 6.99e-04 5.92e-05 5.95e-06

Table 4.3: Relative error errN,Λx defined in Eq. (4.8) and estimated order of convergence
EOCΛ given in Eq. (4.9) for the solution of the benchmark test defined in Section 4.2
obtained with Heun method coupled with a linear interpolation.

N errN,20
x EOC20 errN,40

x EOC40 errN,80
x EOC80

100 1.06e-03 5.00e-04 4.42e-04
0.23 3.12 1.83

200 9.04e-04 5.77e-05 1.24e-04
-0.14 -0.87 1.88

400 9.95e-04 1.06e-04 3.37e-05
-0.03 -0.28 1.74

800 1.02e-03 1.28e-04 1.00e-05
0.01 -0.07 1.08

1600 1.02e-03 1.34e-04 4.76e-06

Table 4.4: Relative error errN,Λx defined in Eq. (4.8) and estimated order of convergence
EOCΛ given in Eq. (4.9) for the solution of the benchmark test defined in Section 4.2
obtained with Heun method coupled with a natural neighbor interpolation.

method, that must be satisfied for every choice of N . Although a further analysis with
higher values of Λ, N, N̄ might be possible to check whether it is possible to recover the
theoretical quadratic order, for the purposes of this Thesis we will restrict to use Euler
method coupled with a linear interpolation if a deformation of the grid occurs, being sure
that at least the linear order is guaranteed.

Summing up, having in mind that a sufficiently accurate approximation of the cell tra-
jectory is reasonably identified by a relative error approximatively 1.0e-03, in the following
numerical simulations we will consider:

• Heun method if the fields c and m are known analitically;

• Euler method coupled with a linear interpolation if the fields c and m are known
over a deformed grid, with Λ = 70 in the correspondent undeformed grid.
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4.3 – Durotaxis

Unless otherwise specified, in both cases we will use ν = ν̄ = 16 quadrature nodes and we
will set T = 16 h and N = 100 time steps (or T = 32 h and N = 200), which correspond
to a time discretization parameter ∆t = 576 s.

4.2.1 Addition of a random term in cell direction
Once the numerical approach has been validated and the numerical parameter has been
set, we aim to simulate the cell migration process in response to mechanical stimuli.
However, the model presented so far is purely deterministic and does not account for a
Brownian crawling, typical of biological individuals. We aim to consider this process too,
in order to simulate more realistic trajectories, having in mind that the analytical results
of [1] do not hold in this case.

We may add then a random term to the discretized equation of evolution of the cell
center (3.8), i.e. we may redefine the right hand side of the equation at time tn as

gx(tn,xpn,wn) = v(tn) wn + ηnqn , (4.10)

where the random direction qn is defined as

qn =
(cosαtn

sinαtn

)
, (4.11)

being αtn a different realization of a random variable uniformly distribuited in [0,2π) at
each time step. The parameter ηn measures the magnitude of this random effect, and to
be consistent with the model it is reasonable to consider ηn ∈ [ηmin, Vmax], being Vmax
the maximum cell speed defined in Eq. (3.12) and ηmin > 0 to be defined. In particular,
we choose to model ηn as a linear function of ‖wn‖, taking into account that if at time
tn the cell is fully polarized, i.e. ‖wn‖ = 1, the random effect reaches its minimum, and
vice versa. Then, its definition reads

ηn = Vmax − (Vmax − ηmin) ‖wn‖ . (4.12)

In the following numerical simulations we will always specify whether we will take
account of this additional random term or not, and we will set ηmin = 0.3Vmax. It is
worthwhile to outline that if the random term is added to the model the solution is
not unique anymore. However, with this choice of ηn, we expect to have a trajectory
qualitatively similar to the case without the random term if the cell is almost completely
polarized, while we expect a random Brownian crawling if the cell is not polarized.

4.3 Durotaxis
In this Section we aim to simulate the process of durotaxis. As outlined in Chapter 1,
cells can sense the rigidity of the substrate they are anchored on and move towards stiffer
regions. The simplest choice of the field c, the quantity that the cell senses to identify a
preferred direction of locomotion, is then the stiffness distribution on the substrate

c(t,y) = E(y) . (4.13)
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On the other hand, the field m is related to cell motility and a reasonable choice is to
follow the chemotactic model of [1] considering the local fraction of ECM proteins, that
influences the retraction/expansion cycles of cell motility structures. Within this context,
the function f in Eq. (3.12) is modeled as

f(M) = 4M(1−M) , (4.14)

whereM has been defined in Eq. (3.11). This assumption is consistent since at low density
of matrix elements (i.e., M ≈ 0), the cell is unable to find sufficient protein sites to hold
onto and to use for traction, being therefore unable to significantly displace. At the other
extremum, an abundance of ECM proteins (i.e., M ≈ 1) typically leads to the formation
of stable focal adhesions and, hence, to low detachment and migration rates. Intermediate
amounts of ECM densities instead result in optimal attachment–detachment cycles and
maximal cell speed (i.e., M ≈ 0.5). The parabola of Eq. (4.14) is shown in Fig. 4.4.

Figure 4.4: Function f defined in Eq. (4.14) and used in Eq. (3.12) for the constitutive
relation of cell motility.

Since the fields E (or c, equivalently) and m will be analitically defined, as outlined
in Section 4.2 we will compute the solution using Heun method and setting the final time
T = 16 h and using N = 100 time-steps (or T = 32 h and N = 200). Furthermore,
the choice of a piecewise constant rigidity and of the polynomial kernel Kr of degree 3 in
Eq. (4.1) allows us to use just ν = 3 quadrature nodes for the computation of W along
the radial direction. In fact, the Guass-Legendre quadrature formula ensures the exact
integration of the 4 degree polynomial∫ b

a
rKr(r) dr (4.15)

with 3 nodes [6], whether if the integration interval is [0, R] as in Eq. (3.25), or [0, r̄(θ∗q)]
as in Eq. (3.26), or [r̄(θ∗q), R] as in Eq. (3.27).
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4.3 – Durotaxis

4.3.1 Piecewise constant rigidity
Several authors considered a piecewise constant rigidity defined on the substrate to test
their durotactic models [8, 9, 18, 33], also because this setup is used for biological exper-
iments [2, 14]. We will consider a setup in which a strip of stiffer substrate is placed
between two softer sides of substrate. That is, we define the substrate rigidity as

E(y) =
{
E1 if L/2− d ≤ y1 ≤ L/2 + d ,

E2 otherwise ,
(4.16)

with d = 50 µm, and we set E1 = 30 kPa and E2 = 13 kPa as in [2]. The distribution of
the fixed ECM substance reads arbitrarily

m(t,y) =
{

0.5 if L/2− d ≤ y1 ≤ L/2 + d ,

0.75 otherwise ,
(4.17)

so that the cell move faster on the stiffer side of the substrate. We investigate the solution
with initial conditions

xp(0) = (450, 450) µm , w(0) =
(
−
√

2
2 ,−

√
2

2

)
. (4.18)

We firstly investigate the choice of the “biased kernel” Kθ as in Eq. (4.3), so that the
cell is biased to move towards its actual direction of polarization. The left panel of Fig. 4.5
shows the solution obtained with no additional random term, while the right panel shows a
solution with the additional random term as explained in Subsection 4.2.1. Furthermore,
in Fig. 4.6 we show 10 different trajectories with the addition of the random term, all
with the same parameters and initial conditions. Without the additional random term,
we notice that the cell’s trajectory is nearly straight, with changes in direction as the cell
senses the stiffness discontinuity within its sensing region. In particular, once the cell
enters the stiffer substrate strip, it continues its motion without returning to the softer
part. With the additional random term the behaviour is qualitatively the same, with less
regular trajectories.

If we set the “ unbiased kernel” Kθ as in Eq. (4.4), neither the kernels nor the stiffness
field induce a polarization of the cell. Thus, as outlined in Section 4.1, without the random
term the norm ‖w(t)‖ rapidly decreases to zero and the displacement of the cell is almost
null. Instead, with the addition of the random term a small value of ‖w(t)‖ leads the
parameter ηn in Eq. (4.12) to a value near to the maximum cell speed Vmax, and thus
the cell begins to move randomly. The results in Fig. 4.7 show that if the cell senses the
stiffness discontinuity within its sensing region, it moves rapidly towards the stiffer strip
and continues there the Brownian crawling. For the sake of clarity, we placed the cell at
different initial position (with the same distance from the stiffness discontinuity) in order
to avoid overlapping trajectories.

4.3.2 Regular smooth rigidity
Another setup we may consider is a regular rigidity field, varying between the two values
E1 and E2 from one side of the substrate to the other. The simplest assumption is a linear

55



4 – Numerical simulations

Figure 4.5: Solution with initial conditions set in Eq. (4.18) (white circle and red arrow),
computed with N = 100 time-steps and T = 16 h. The fields c (or E) and m are defined
in Eqs. (4.16) and (4.17), respectively, and the kernels Kr and Kθ in Eqs. (4.1) and
(4.3), respectively. The colored symbols denote the position at the instants T/4 (yellow
square), T/2 (red diamond), 3T/4 (green circle). On the left, the solution without the
random term. On the right, the solution with the additional random term defined in
Subsection 4.2.1.

Figure 4.6: 10 different trajectories solutions of the problem set as on the right panel of
Fig. 4.5.
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Figure 4.7: 10 different trajectories computed with N = 200 time-steps and T = 32 h.
The fields c (or E) and m are defined in Eqs. (4.16) and (4.17), respectively, and the
kernels Kr and Kθ in Eqs. (4.1) and (4.4), respectively. The white circles are the initial
positions of the cell, that are always placed 50 µm from the stiffness discontinuity.

variation [33], i.e. we define

E(y) = E1 − E2

L
y1 + E2 . (4.19)

Having no precise biological justification for the relation between ECM density and sub-
strate stiffness, in this case we assume a uniform fieldm(t,y) = 0.5 for any t and y, having
in mind that a different choice results in a slowdown of the cell.

We investigate the solution with initial conditions

xp(0) = (100, 200) µm , w(0) = (0,1) , (4.20)

and we show in Fig. 4.8 and 4.9 the results for the “biased kernel” Kθ as defined in
Eq. (4.3), and in Fig. 4.10 and 4.11 the results for the “unbiased kernel” Kθ as defined in
Eq. (4.4). Within the stiffness field defined in Eq. (4.19) the cell is almost fully polarized,
so that with the additonal random term the trajectory is qualitatively similar. Finally, we
note that the choice of the kernel Kθ as in Eq. (4.4) makes the choice of initial polarization
irrelevant, since the cell immediately polarizes to the right following the linear field of
stiffness.
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Figure 4.8: Solution with initial conditions set in Eq. (4.20) (white circle and red arrow),
computed with N = 100 time-steps and T = 16 h. The field c (or E) is defined in
Eq. (4.19), while we set m = 0.5 uniformly. The kernels Kr and Kθ are defined in
Eqs. (4.1) and (4.3), respectively. The colored symbols denote the position at the instants
T/4 (yellow square), T/2 (red diamond), 3T/4 (green circle). On the left, the solution
without the random term. On the right, the solution with the additional random term
defined in Subsection 4.2.1.

Figure 4.9: 10 different trajectories solutions of the problem set as on the right panel of
Fig. 4.8.
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Figure 4.10: Solution with initial conditions set in Eq. (4.20) (white circle and red arrow),
computed with N = 100 time-steps and T = 16 h. The field c (or E) is defined in
Eq. (4.19), while we set m = 0.5 uniformly. The kernels Kr and Kθ are defined in
Eqs. (4.1) and (4.4), respectively. The colored symbols denote the position at the instants
T/4 (yellow square), T/2 (red diamond), 3T/4 (green circle). On the left, the solution
without the random term. On the right, the solution with the additional random term
defined in Subsection 4.2.1.

Figure 4.11: 10 different trajectories solutions of the problem set as on the right panel of
Fig. 4.10.
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4.4 Tensotaxis
In this Section we aim to simulate the process of tensotaxis, that is the migration of cells
towards tensile stresses and away from compressive stresses induced on the substrate.
As outlined in Section 1.2, several models have been proposed in literature to study and
reproduce this phenomenon. In our model all the stimuli the cell senses must be included
in the fields c andm. In particular the cell must sense wheter the substrate is either pushed
away from it or pulled towards it, and must migrate in response to this information. We
choose to include this information in the field c and we set c to be equal to the first
invariant of the stress tensor introduced in Eq. (2.43), that is a scalar measure of the
mean stress applied to the substrate, i.e.

c = trT = tr
(
J−1PF>

)
. (4.21)

Thus, a positive value of the stress corresponds to a tensile stress, and the cell is attracted
by it, whereas a negative value corresponds to a compressive stress and the cell is repelled
from it.

For what concerns cell motility, a reasonable choice is to link m to the strain energy
density stored by the substrate when stretched [3], so that the cell velocity increases if it
is in a region with a high level of energy, both if the substrate is pulled or pushed. Taking
into account that the function m must assume values in [0,1] for modelistic reasons as
explained in Section 2.1, we choose

m(t,y) = W (y)1/k2

max
y∈Ω

[
W (y)1/k2

] , (4.22)

where k2 ≥ 1 and W is the strain energy density function defined either in Eq. (2.56)
if we assume a non-linear behavior of the substrate, or in Eq. (2.60) if the response is
considered linear. We consider the exponent 1/k2 because, within the mechanical load we
deal with, the energy is extremely localized in the region D in which the load is applied,
and the cell would not sense it properly. We assume k2 = 2 and we show qualitatively the
differences between the fields W and W 1/2 in a representative case in Fig. 4.12.

The function f in Eq. (3.12) has to be modeled taking into account that the velocity
is large if the cell is in a region with a high level of energy. We choose to introduce a
minimal cell speed vmin ∈ [0, Vmax) and we define

f(M) = (2vmin − 2)M3 + (3− 3vmin)M2 + vmin . (4.23)

We may note that f is nothing but a degree 3 polynomial with the conditions

f(0) = vmin , f(1) = 1 , f ′(0) = f ′(1) = 0 , (4.24)

as shown in Fig. 4.13, similarly as done in the choice of the kernels Kr and Kθ in Eqs. (4.1)
and (4.3).

With these assumptions we model the cell to have a minimal speed vmin even if it
does not perceive any energy, the speed increases monotonically as the amount of energy
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Figure 4.12: Qualitative differences between the substrate strain energy density (on the
left) and its square root (on the right) in a representative case, in Lagrangian coordinates.

Figure 4.13: Function f defined in Eq. (4.23) for vmin = 0.3Vmax and used in Eq. (3.12)
for the constitutive relation of cell motility.

perceived increases, and it reaches the maximal value Vmax when the strain energy reaches
its maximum. In the following we will consider vmin = 0.3Vmax.

Furthermore, for the solution of the mechanical problem we fix the substrate thickness
in Eqs. (3.1) and (3.5) as h = 35 µm [4,5, 16].

Since the fields c and m will not be analitically defined, but they will be known on a
deformed grid with Λ = 70, as outlined in Section 4.2 we will compute the solution using
Euler method coupled with a linear interpolation, setting the final time T = 16 h and
using N = 100 time-steps (or T = 32 h and N = 200).
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4.4.1 Differences in substrate’s mechanical behaviour
First of all we aim to outline the differences between a linear or non-linear behaviour of
the substrate. Following the relation proposed in [4] we fix the material constant of the
energy defined in Eq. (3.3)

c2 = 0 , c4 = 2c1(1 + ν)
3(1− 2ν) , (4.25)

where ν is the Poisson ratio, which is assigned the value ν = 0.48 due to the quasi-
incompressibility of polyacrylamide gels (PAG) [5]. Furthermore, in [4] it is shown that
the coefficient c1 is related to the linear behaviour of the substrate, in the sense that we
can approximate its Young modulus as

E ≈ 6c1 , (4.26)

whereas c3 is linked to the non-linear response. This information is helpful to compare
the different responses of the substrate.

Besides, as mentioned in Section 2.2, the coefficients c1 and c3 are related to the
concentrations of acrylamide and bis-acrylamide of the gel. In [4] the concentration of
acrylamide is 10% and the concentration of bis-acrylamide changes between 0.03% and
0.1%, giving the values of the coefficient c1 and c3 as shown in Table 4.5.

[Bis] (%) c1 (kPa) c3 (kPa) E (kPa)
0.10 4.66± 0.88 5.40± 4.80 27.96± 5.28
0.05 2.48± 0.28 2.50± 1.10 14.88± 1.68
0.04 1.46± 0.27 0.25± 0.10 8.76± 1.62
0.03 1.13± 0.12 0.10± 0.03 6.78± 0.72

Table 4.5: Means and standard deviations of the values of the constants c1 and c3 in
Eq. (3.3) and E in Eq. (4.26), identified in [4] when fitting measurements on poly-
acrylamide gels (PAG) made with 10% of acrylamide and varying concentrations of bis-
acrylamide [Bis].

In experimental observations [2,14] the substrate is treated as a linear elastic material
with Young modulus varying from 1 kPa to 30 kPa. Then, a reasonable choice to compare
the different behaviours is to consider the second row of Table 4.5 and assume c1 = 2.48
kPa and c3 = 2.50 kPa for the non-linear response, and E = 14.88 kPa for the linear
response.

For what concerns the manipulation of the substrate, we refer to the surface load
defined in Eq. (3.7) and we consider the circle D placed in the center of Ω and with radius
23.33 µm, pulled upwards (β = π/2). About the force magnitude fb, we do not have in
literature a precise value for the manipulation with a microneedle as in [2]. If we assume
this value to be close to the cell traction force exerted on the substrate in response to the
tension applied, a reasonable choice from [2] is fb = 6.1 kPa. The stress, displacement and
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Figure 4.14: Results from the mechanical problem of the substrate, with load in Eq. (3.7)
identified by fb = 6.1 kPa, β = π/2, and being D placed in the center of Ω and with radius
23.33 µm. The left and right columns refer to a linear or non-linear response, respectively.
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Mechanical response max I1 (kPa) max |u| (µm) max λE1
Linear 3.03 17.6 0.18

Non-linear 3.25 17.8 0.22

Table 4.6: Maximum values of first principal invariant of stress, displacement magnitude
and first principal strain (that is the trace of E), referring to the results of Fig. 4.14.

strain fields, solutions of both mechanical problems, are shown in Fig. 4.14. Qualitatively,
the results are similar; the maximum values are reported in Table 4.6.

Although the results are similar, we mainly notice two issues:

• the maximum displacement magnitude can be compared to the radius of the cell sens-
ing region (20 µm), and this confirms the necessity to display the fields in Eulerian
coordinates for the cell migration model;

• in the linear case, we expected small values of displacement and strain, in order to
be consistent with the hypotesis of Subsection 2.2.2, but a value 0.18 in strain is too
high to be included in a small strain regime. Furthermore, if we take a value of fb
close to the one considered in [4], in which an aspirations of PAG were performed
with a micropipette, we may assume fb = 15.7 kPa. In this case the maximum values
are shown in Table 4.7, and the necessity for a non-linear response within these loads
and stiffnesses is much more evident.

Mechanical response max I1 (kPa) max |u| (µm) max λ1

Linear 7.80 45.3 0.47
Non-linear 8.69 42.9 0.49

Table 4.7: Maximum values of first principal invariant of stress, displacement magnitude
and first principal strain, referring to the same problem of Fig. 4.14, but considering
fb = 15.7 kPa.

Taking all these considerations into account, in the following we will assume a non-
linear behaviour of the substrate when deformed, even if for smaller loads or higher stiff-
nesses a linear response could be considered.

4.4.2 Pulling or pushing the substrate
We consider now the same mechanical problem discussed in the previous Subsection (with
fb = 6.1 kPa) and simulate the cell migration process. The first principal invariant of stress
and the square root of the strain energy density, i.e. the fields c and m, are shown in
Eulerian coordinates in Fig. 4.15. For what concerns the choice of the kernel Kθ, the
presence of a negative field c leads necessarily to use the “unbiased kernel” as in Eq. (4.4).
In fact, with the “biased kernel” as in Eq. (4.3) possible negative values of c in Eq. (3.10)
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would bias the cell to reverse its actual direction of polarization at each time t, leading to
a null displacement of the cell center or to unstable trajectories, that strongly depend on
the numerical method adopted and on the time discretization parameter ∆t.

Figure 4.15: The square root of the strain energy density (on the left) and the first
principal invariant of stress (on the right) of the substrate, i.e. the fields c and m, are
plotted in Eulerian coordinates, for the mechanical problem discussed in Subsection 4.4.1,
with fb = 6.1 kPa.

The results presented in this Subsection aim to reproduce qualitatively the experiments
of [2] shown in Fig. 1.4, despite the fact that the spatial and temporal scales of the
experiment and of our model are not exactly the same.

In Fig. 4.16 and 4.17 we show the trajectories with initial conditions

xp(0) = (200, 200) µm , w(0) = (0,−1) , (4.27)

in order to simulate that the cell is attracted by tensile positive stresses on the substrate,
even if it is initially polarized towards a different direction, as in panel (a) of Fig. 1.4.

On the other hand, in Fig. 4.18 and 4.19 we show the trajectories with initial conditions

xp(0) = (250, 450) µm , w(0) = (1,0) , (4.28)

in order to simulate that the cell is repelled by compressive negative stresses on the
substrate, even if it is initially polarized towards a different direction, as in panel (b) of
Fig. 1.4. In particular, from the colored symbols of Fig. 4.16 and 4.18 we notice that the
cell considerably increases its velocity when it is close to the center of the domain (where
the load is applied), as the strain energy reaches its maximum value.
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Figure 4.16: Solution with initial conditions set in Eq. (4.27) (white circle and red arrow),
computed with N = 100 time-steps and T = 16 h. The fields c and m are shown
in Fig. 4.15. The kernels Kr and Kθ are defined in Eqs. (4.1) and (4.4), respectively.
The colored symbols denote the position at the instants T/4 (yellow square), T/2 (red
diamond), 3T/4 (green circle). On the left, the solution without the random term. On
the right, the solution with the additional random term defined in Subsection 4.2.1.

Figure 4.17: 10 different trajectories solutions of the problem set as on the right panel of
Fig. 4.16.
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Figure 4.18: Solution with initial conditions set in Eq. (4.28) (white circle and red arrow),
computed with N = 200 time-steps and T = 32 h. The fields c and m are shown
in Fig. 4.15. The kernels Kr and Kθ are defined in Eqs. (4.1) and (4.4), respectively.
The colored symbols denote the position at the instants T/4 (yellow square), T/2 (red
diamond), 3T/4 (green circle). On the left, the solution without the random term. On
the right, the solution with the additional random term defined in Subsection 4.2.1.

Figure 4.19: 10 different trajectories solutions of the problem set as on the right panel of
Fig. 4.18.
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Chapter 5

Conclusions and perspectives

Cell migration is essential all along an individual’s life, from embryogenesis to tissue
repair and cancer metastasis. Thus, due to its biomedical relevance [11, 23], this process
is currently under intense research both from the biological and modeling perspectives.

In this dissertation, we have presented a new phenomenological model for cell migra-
tion on 2D substrates in response to mechanical stimuli, adapted from the chemotactic
model in [1]. In our model a single representative cell changes its motility and its direc-
tion of polarization sensing different mechanical cues in a non-local and non-isotropic way
through its protrusions in a circular sensing region. We were able to numerically simulate
the processes of durotaxis, i.e. the motion towards stiffer regions of the substrate, and
tensotaxis, i.e. the motion towards tensile stresses and away from compressive stresses
of the substrate itself, and our results qualitatively agree with the experimental observa-
tions. We investigated different ways in which the cell can perceive the mechanical cues
anisotropically, and we were able to reproduce a typical random Brownian crawling when
the cell is not fully polarized. Within the phenomenon of tensotaxis, we showed that a
non-linear elastic behaviour of the substrate must be considered in order to deal with all
possible mechanical loads found in the literature.

However, our study has many simplifications and limitations, which might be inter-
esting to address in future works. From the modeling point of view, the model is purely
phenomenological, and does not take into account the subcellular mechanisms involved in
the migration process. In this respect, a multiscale model that succeeds in capturing both
levels is certainly a goal, even if, as outlined in Chapter 1, a considerable amount of work
has to be done also in understanding the molecular mechanisms involved in the process.

Future works should also focus on the mechanical interaction between the cell and
the substrate neglected in the present model. Indeed, we know that cell’s mechanical
response (elastic or viscoelastic) could also be examinated in order to create a more
realistic model, since it is known that cells exert traction forces on the substrate they
are anchored on [15, 16]. This interaction could be taken into account since it modifies
stresses and strains of the substrate itself. This could be captured by our model with
the introduction of a mechanical feedback describing forces exchange between the cell and
the substrate, since the stress that makes the cell change its polarization and migrate
is influenced by the migration process itself. Furthermore, we modeled the substrate

69



5 – Conclusions and perspectives

as isotropic. This assumption is true for polyacrylamide gels, but we know that the
extracellular matrix may show inhomogeneity and anisotropy [18].

It would be interesting to address time dependent loads and mechanical cues, too.
The cell migration model accounts already for possible time dependence of the fields c
and m, but a mechanical load that varies over time means a deformation of the substrate
that varies over time. This should be addressed within the numerical implementation of
the model, since the grid would deform at each different time step. Furthermore, the
time interpolation of the fields should be taken into account too, as well as the spatial
interpolation already addressed in our model.

Moreover, the simulations we have performed aimed to reproduce the processes of
durotaxis and tensotaxis, treating them separetely. However, they likely involve similar
or analogous subcellular mechanisms and they should be treated congruently and perhaps
simulated simultaneously. In general, since cells migrating in vivo are exposed to an
environment composed of a convolution of biochemical, biophysical, and topological cues,
it is likely that cells migrate by performing a sort of “mixotaxis” [48], and it would be
interesting to consider more signals in our model, changing properly the fields c and m,
or considering different choices of the parameters and of the functions Kr, Kθ and f .

Finally, from the analytical point of view, it would be necessary to investigate more
rigorously what a negative field c entails within the existence and uniqueness of the so-
lution, and one could formalize the random term added in Subsection 4.2.1 by writing a
proper stochastic differential equation rather than an ODE for Eq. (3.8).
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