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A B S T R A C T

Glioblastoma Multiforme (GBM) is among the most aggressive
forms of brain tumours. The prognosis for GBM patients re-
mains poor despite advances in therapies, as they have proven
unable to prolong patient survival more than a few months.

The World Health Organization classification of GBM is a
necrosis-predisposed grade IV cancer that is mitotically active,
which means its cells are proliferating at a higher rate than
normal tissue cells. During mitosis prophase, the cell prepares
to divide by condensing its chromosomes and starting the for-
mation of the mitotic spindle, of which microtubules are the
main component. In vivo nucleation of microtubules begins with
a complex called γ-TuRC (γ Tubulin Ring Complex) formed by
accessory proteins recalled by γ tubulin, which is therefore es-
sential for the formation of microtubules. As γ tubulin has been
found to be overexpressed in GBM, identifying a compound
that can inhibit its functions could benefit patients greatly.

The present work aims at identifying the binding sites and
binding modes of gatastatin, a potential γ tubulin inhibitor, and
its recently developed derivatives. Computational modelling,
particularly molecular docking simulations, has proven a valu-
able tool to explore and compare the compounds’ binding to γ

and α-β tubulin.
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1
I N T R O D U C T I O N

This introductory section is an overview of the organization of the work.

Introduction

Biological Background

Overview on Computational Methods

Modelling of Human Tubulin Isotypes

Molecular Docking

ADMET Properties Analysis
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chapter 1 is the present introductory section.

chapter 2 describes the biological basis of the work. Micro-
tubules structure and functions are first discussed, focus-
ing on their essential role in cell mitosis which makes them
a long-studied target for chemotherapics. The link between
microtubules and γ tubulin is then explored, together with
the potential for therapeutic applications targeting γ tubu-
lin, especially for potential treatment of Glioblastoma Mul-
tiforme. Lastly, a brief overview of current therapeutic
strategies in the treatment of GBM is provided.

chapter 3 focuses on computational methods, with particular
attention to homology modelling, molecular docking, and
ADMET properties prediction. A general description of
these methods is provided in this section.

chapter 4 goes into the details of homology modelling and
reviews the steps required to obtain human tubulin isotype
models. An analysis of the differences between human and
animal β tubulin in the colchicine binding site is provided.

chapter 5 is devoted to describing the adopted molecular
docking approaches, namely consensus and blind docking,
and to analyse the scores of the resulting poses. The
consensus docking protocol is explained in details.

1



introduction

chapter 6 is dedicated to the analysis of the compounds’
pharmacokinetics through ADMET properties analysis.
The results from three different tools are compared.

chapter 7 is a brief discussion on docking and ADMET pre-
diction results. Where applicable, a comparison with avail-
able experimental data is provided.
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2
B I O L O G I C A L B A C K G R O U N D

This section aims at providing a better understanding of the correla-
tion between Glioblastoma Multiforme and γ tubulin and the possible
therapeutic benefit that would derive from targeting it.

Microtubules (MT) are part of cytoskeletal filaments in cells.
They branch off from the centrosome, near the cell nucleus, and
develop as a network up to the sub-membrane region. Being
connection structures, they are involved in many cell life pro-
cesses as motility, signal sensing, cell organisation and structural
strength, intracellular transport, and chromosome segregation
during mitosis.
From a structural, biophysical and chemical point of view, cy-
toskeletal filaments can be defined biopolimers: they are assem-
blies of monomers (that in this case are proteins) linked by
non-covalent bonds. The nature of the monomers characterises
the filament: microtubules are composed by heterodimers of α α and β tubulin are

part of the so-called
tubulin
superfamily
including γ, δ, ε, ν,
and others. Some of
these tubulins are
widespread among
eukaryotes, but the
superfamily
members other than
α, β and γ are still
being explored [44].

and β tubulin; both are globular subunits of approximately 50

kDa of mass and around 4 nm long. The interaction between
α and β tubulin inside the heterodimer is high energy, despite
not being a covalent one, so chemical treatments are required to
break it.
The dimers organise in proto-filaments that in turn place side
by side to form a hollow cylinder structure with an external
diameter of about 25 nm, as schematised in figure 1.

Figure 1: Microtubules assembly from α-β tubulin dimers.

Tubulin polymerises in a head-to-tail fashion, with the α sub-
unit of a dimer binding the β subunit of the following one.

3



biological background

Therefore, MTs are polar structures with a fast-growing plus
end, where the β subunit is exposed, and a slow-growing minus-
end exposes α tubulin.

Microtubules polymerisation is regulated by a molecule
called guanosine triphosphate (GTP), whose structure is shown in
figure 2. It is a purine nucleoside triphosphate exerting various
functions in the cell, from being an energy source (similarly
to ATP) for protein synthesis and gluconeogenesis to acting as
a signal transducer. Concerning microtubules, GTP is respon-
sible for the mechanism known as dynamic instability, i.e. the
alternation of assembly and disassembly cycles.

Figure 2: Chemical structure of GTP.

The α-β heterodimer hosts a GTP molecule at the dimeriza-
tion interface in a non-exchangeable site. Upon formation of
the dimer, another GTP binds to the exposed β subunit in the
exchangeable site located at the inter-dimer interface, as shown
in figure 3. This second GTP molecule, being more exposed
to solvent, will be hydrolysed to GDP during or shortly after
polymerisation; GTP hydrolysis is thought to provide MTs with
the flexibility needed to undergo rapid turnover cycles poly-
merisation and depolymerisation. Indeed, hydrolysis leads to a
change in the angle of the longitudinal assembly, which desta-
bilises lateral interactions between adjacent proto-filaments. The
formed microtubule structure can be stabilised by binding a
GTP cap to the exposed β tubulin.

Above a critical α-β tubulin concentration, heterodimers
spontaneously assemble into microtubules in vitro, resulting
in MTs having different diameters because varying numbers of
adjacent protofilaments form them.
Conversely, microtubule nucleation in vivo is initiated from a
ring-like template of γ tubulin, which guides the polymerisa-γ tubulin is another

member of the
tubulin superfamily.

It shares 34%
similarity with β

tubulin.

tion of MTs formed by exactly 13 proto-filaments by exposing
as many γ tubulin units. The nucleation process likely occurs
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biological background

Figure 3: Structure of the α-β tubulin heterodimer in complex with
GTP at the non-exchangeable site and GDP at the exchangeable site
on β.

through the recruiting of α-β dimers via α-γ interactions, which
are regulated by GTP similarly to the regulation of α-β polymeri-
sation [33]. Thanks to the spatial organisation of the γ tubulins
inside the complex, the heterodimers are arranged to support
lateral contacts between forming adjacent proto-filaments. These
γ tubulin complexes, called γ-TuCs, are able to promote micro-
tubule nucleation at concentrations below those required for
spontaneous assembly; moreover, they define the cellular sites
for microtubule nucleation and stabilise the MT minus end (the
one exposing α tubulin).
γ tubulin recruits the so-called γ tubulin complex proteins
(GCPs), GCP2 and GCP3 to form a tetrameric 2:1:1 complex
called the small γ tubulin complex, or γ-TuSC. In higher eu-
karyotes, γ-TuSC recruits other GCP paralogues, namely GCP4,
5, and 6, to form the stable γ tubulin ring complex (γ-TuRC),
whose structure is shown in figure 4.

Among their various functions, perhaps the most critical
role of microtubules is the formation of the mitotic spindle, as
they comprise the most abundant components of the spindle
apparatus. During mitosis, the already duplicated chromosomes
condense and attach to spindle fibres that pull one copy of each
chromosome to opposite sides of the cell, resulting in two daugh-
ter nuclei. The cell may then divide by cytokinesis to produce
two daughter cells. During the prophase of the mitosis, the
centrosome duplicates into two microtubules organising centres,

5



biological background

Figure 4: Model of γ-TuRC from PDB entry 6V6S [1]; GCPs, γ tubulin
units, and GDP molecules are depicted.

which recruit γ-TuRC units in the pericentrosomal regions to
polymerise MTs and stabilise their minus end so that they are
anchored to the centrosome.
An increase in tubulin turnover during mitosis indicates that
microtubule dynamics is pivotal to the mitotic process: their
ability to rapidly assemble and disassemble is key to the forma-
tion of the mitotic spindle, as the microtubules array present in
interphase cells disassembles and the free tubulin subunits are
recruited by γ-TuRC and polymerise to form the spindle [2, 3].

Given their essential role in cell duplication, both micro-
tubules and free tubulin have long been targeted by chemother-
apeutic anti-mitotic agents that act by disrupting normal MTs
dynamics by either stabilising or destabilising them. Any fail-
ure in microtubule assembly during spindle formation or the
subsequent chromosome segregation phase leads typically to
mitotic arrest and cell death.
Some examples of well-known anti-mitotic agents are taxanes
and Vinca alkaloids; both target primarily β tubulin. Several
human β tubulin isotypes exist: information from the Human
Protein Atlas [4] on their expression and tissue distribution in
normal cells is summarised by table 3.

The taxanes in clinical use include paclitaxel (Taxol, by Bristol-
Myers Squibb), which is a natural product, and docetaxel (Tax-
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biological background

otere, by Sanofi-Aventis), a semi-synthetic analogue. These drugs
exert an anticancer effect by stabilising MTs [50].

Vinca alkaloids such as vinblastine, vinorelbine, vindesine, and
vincristine are naturally extracted from the Madagascar peri-
winkle plant. Their mechanism of action is to arrest dividing
cells in metaphase by binding free tubulin and preventing its
polymerization into microtubules [54].
Lastly, colchicine is a natural pharmaceutical alkaloid. Despite its
clinical use in cancer treatment being limited by toxicity, it can
block mitotic cells in metaphase. Unlike taxanes, colchicine’s
mechanism of action is microtubule destabilisation: it binds to
free tubulin heterodimers (establishing most of the interactions
with β tubulin), forming a stable complex that at low concentra-
tions arrests microtubule growth and at higher concentrations
promotes microtubule depolymerisation.

These compounds are effective anticancer agents, as they
tend to impact dividing cells more. However, being the struc-
tural components of microtubules, α and β tubulin are abundant
proteins and make approximately 2.5% of the cell’s total protein
content, so these agents affect both cancerous and normal cells
by binding tubulin indiscriminately and lead to often severe side
effects. These unwanted effects may be reduced by increasing
the drugs’ specificity for tubulin within cancerous cells only.

For some tumours, a possible way to discriminate between
normal and cancerous cells may be to target γ tubulin instead of
the α-β dimer: since γ tubulin exerts an essential role in mitosis,
inhibiting its functions would have an anti-mitotic effect as well.
γ has been found to be overexpressed in glioblastoma multiforme
and breast lesions and carcinomas, while in normal tissue cells,
it is less abundant than α-β, making less than 1% of the total
tubulin content of the cell. Therefore, a compound having
a strong specificity for γ tubulin would have fewer off-target
interactions.

In their study from 2015, Chinen et al. identified a poten-
tial γ tubulin inhibitor. Based on γ and β tubulin similarity,
they screened a library of β tubulin colchicine site-binding com-
pounds, namely colchicine itself, nocodazole, plinabulin, and
glaziovianin A (AG1), to assess whether some of them were able
to bind γ tubulin as well. AG1 was found to bind to both γ

and β tubulin with similar affinity, so it was derivatised to look
for selective γ tubulin binders. The AG1 derivative gatastatin
seemed to bind to γ tubulin with a 12-fold higher affinity than
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for the α-β dimer. The results of their drug-binding assay for
colchicine, AG1 and gatastatin are shown in table 1. The lower
the dissociation constant Kd, the higher the binding affinity;
Kd values were calculated from changes in tryptophan fluores-
cence of the proteins from three experiments. Results were
then averaged, and the table reports the mean value ± standard
deviation.

Chinen et al. suggested that gatastatin’s mode of action is
blocking GTP binding to γ tubulin, thus inhibiting its microtubule-
nucleation activity [21].

Table 1: Results of the drug-binding analysis by Chinen et al.

Compound Kd
αβ (µM) Kd

γ (µM) Kd
αβ/Kd

γ

Colchicine 17.5± 2.7 196.4± 47.9 0.09
AG1 51.9± 36.4 85.3± 22.8 0.61
Gatastatin 42.5± 36.7 3.6± 1.3 11.81

A microscale thermophoresis assay comparing colchicine andMicroscale
thermophoresis is a

technology for the
biophysical analysis

of interactions
between

biomolecules, based
on the detection of a

temperature-
induced change in

fluorescence of a
target as a function
of the concentration
of a non-fluorescent

ligand.

gatastatin binding to α-β tubulin was also performed in 2019

by Qian Wang1. Three and six replicates were performed for
colchicine and gatastatin, respectively, and their averaged values
are reported by figure 5. According to these results, colchicine
and gatastatin bind the tubulin heterodimer with higher affini-
ties than what was reported by Chinen et al., but their ratio is
similar in the two cases. Results of the two studies are compared
in table 2.
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Figure 5: Results of the drug-binding assay by Q. Wang.

A previous study by Friesen et al. had already investigated
the binding of colchicine-site binders to γ tubulin and, con-
versely to the results by Chinen et al., they found that colchicine

1 Personal communication.
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Table 2: Comparison of drug-binding assays results.

Compound Kd
αβ (µM)

Chinen et al. Qian Wang

Colchicine 17.5± 2.7 0.676± 0.11
Gatastatin 42.5± 36.7 2.16± 0.47

seems to bind with equal affinity to α-β and γ tubulin. Based on
the high structure similarity (75%) between β and γ tubulin, they
also identified a homologous region on γ tubulin corresponding
to the binding site of colchicine on β tubulin [31].

Two main isoforms of human γ tubulin exist: γI, encoded
by gene TUBG1, and γII, encoded by gene TUBG2. They share
over 97% sequence identity, so any pharmacological agent target-
ing one isoform would likely target both [60]. Mouse studies by
Yuba-Kubo et al. showed that mouse γ tubulin-expressing genes
are orthologs of human TUBG1 and TUBG2, and it emerged
from knockout experiments that γI, conversely to γII, is essential
to proper mitotic division [61]. In addition to this, the studies
by Katsetos et al. showed that both TUBG1 and TUBG2 are
overexpressed in glioblastoma [37, 39], therefore the analysis of
the binding sites will be focused entirely on tubulin γI.

Katsetos et al. found that also tubulin βIII is overexpressed
and forms complexes with γ tubulin in glioblastomas, and
suggested that aberrant expression and interactions of tubulins
γ and βIII may be linked to malignant changes in glial cells [38].

Moreover, a differential gene expression study by Drs A.
Wang and G. Zhang found isotypes βIIa and IVa to be differ-
entially expressed in glioblastoma compared to healthy brain
tissue. They also analysed the protein-protein interactions (PPIs) PPIs are high

specificity physical
contacts between
two or more protein
molecules.

of the differentially expressed genes products and identified
a protein interaction network made by thirty proteins, among
which tubulin βIIa and βIVa are predicted to be relatively im-
portant [58].

More on GBM

Gliomas are the most commonly occurring form of brain tumour;
GBM is the most malignant one. The typical onset age is around
62-64 years, but it can occur at any age, including paediatric
populations. The vast majority of cases, approximately 90%,
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occur de novo as a primary tumour, while less than 5% of cases
are secondary tumours progressing from different neural cells.

Despite considerable research investment over the last thirty
years, the life expectancy of GBM patients has not been im-
proved, and the 5-year survival rate is below 5%.

The tumour heterogeneity and its location in the brain make
its treatment complex and very costly. To date, only a few thera-
pies are approved for treating glioblastoma; current approaches
include surgical resection followed by chemo and radiother-
apy. Due to the risk of postoperative neurologic deficits and
the infiltrative tendency of the disease, complete tumour resec-
tion is often not possible. Together with its aggressivity and the
development of drug resistance, this leads to tumour recurrence.

Currently, the pharmacological treatment of choice is temo-
zolomide (TMZ), an oral drug approved in 2005, but in the past
also taxanes have been proposed [42]. TMZ is an alkylating
agent that targets DNA and induces its methylation, leading
to cell death. Being a small and lipophilic compound, TMZ
is a rather efficacious treatment because it is able to cross the
blood-brain barrier. However, a large percentage of patients do
not respond favourably to it.

Many strategies have been explored to improve brain drug
delivery, such as chemical modification, efflux transporter inhi-
bition, direct intra-tumoural injections, and blood-brain barrier
disruption through ultrasound. The major challenge in using
these approaches is to deliver the drug successfully without com-
promising brain function. Other emerging strategies include
nanomedicines, and immunotherapy [36].
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3
O V E RV I E W O N C O M P U TAT I O N A L M E T H O D S

This section presents an overview on some computational methods and
their applications, followed by a more detailed discussion on the ones
that were most used during the project.

Molecular Mechanics

Homology Modelling

Molecular Docking

ADMET Properties

3.1

3.2

3.3

3.4

The advantage of computational models is that they maximise
the gathering of information. The avail of a model is not pre-
cisely reproducing reality but providing means of understanding
the mechanisms that bring to a particular result.

Biological systems are defined to be complex. The term
complexity indicates the presence of emergent properties, which
depend on the interaction between the parts composing the
system: the outcome of a complex system thus depends on the
interaction between its components. It is unpredictable unless
one can model both its parts and their interactions in a dynamic
way.

Complex systems organise hierarchically. Molecular mod-
elling encompasses theoretical and computational methods to
predict a system’s macroscopic properties by describing its or-
ganisation and behaviour at a microscopic level.
The common feature of these methods is to describe molecular
systems at an atomistic level.
Atomistic resolution models may be accomplished by:

• Explicitly modelling sub-atomic particles. At the quantum
level, the model has a resolution that allows the evaluation
of electronic interaction. The most accurate solution is
obtained by solving Schrödinger equation (the so-called ab
initio method). However, this is nearly impossible for any
system that is larger than the hydrogen atom. Opportune

13



overview on computational methods

simplifications make small structures (several hundreds of
atoms) manageable.

• Treating atoms as the fundamental unit. This approach is
known as Molecular Mechanics (MM). It uses Newton’s me-
chanics to model molecular systems by applying classical
dynamics and kinematics to mass-spring systems (which
model atoms and bonds, respectively).
This approach has the advantage that one can use it to
study small molecules as well as large biological assem-
blies, from hundreds of thousands to millions of atoms.

The immediate extension of Molecular Mechanics is Molecular
Dynamics (MD), which allows the analysis of the dynamic evo-
lution of a system. It is based on the resolution of Newton’s
motion equations for a system of interacting atoms.
MD is a computational approach to calculate the mean proper-
ties of a system by sampling microstates over time in a specific
statistical ensemble. A microstate is a specific arrangement of a
molecular system: a system’s mechanical or microscopic state
is defined by atom locations (either Cartesian or internal gener-
alised coordinates) and momenta. These coordinates exist in a
multi-dimensional space called phase space. A single point in the
phase space describes the state the system is in. A set of points
in the phase space that satisfy a specific thermodynamic state is
called a thermodynamic or statistical ensemble.

Figure 6 summarises the main steps of a molecular dynam-
ics simulation. New positions, velocities and a new potential
energy value are calculated by integrating Newton’s equation
starting from the initial positions, velocity distribution and po-
tential energy functions of the atoms. Molecular dynamics is
thus a deterministic method, which means that its present state
entirely determines the system’s future state. The output of the
simulation is a trajectory. Different trajectories exist for a single
system; the basic idea is that if the simulation is long enough
(or multiple simulations with different initial conditions are per-
formed), all these trajectories are able to sample the phase space.
By getting all possible trajectories, one can identify the ones
that are crossed by a higher number of trajectories as the most
probable states that will contribute the most in determining the
macroscopic properties of the system.

For proteins, the system’s initial configuration is obtained
from experimental data of X-ray crystallography or nuclear mag-
netic resonance. These data are collected in databases such as
the Protein Data Bank (PDB). On a practical level, to have a model

14



overview on computational methods

Figure 6: Molecular dynamics flowchart.

of a protein’s structure means identifying the positions of all its
atoms with respect to an arbitrary reference. PDB format files
(with .pdb extension) are widely used to store information on
the molecular structure of proteins. A typical .pdb file contains
a header with bibliographic information, then lists Cartesian co-
ordinates of all atoms and data on how the atoms are connected,
as shown in figure 7. HETATM means heteroatom and indicates
atoms not belonging to the protein but, for example, to a ligand
(or solvent). The second column enumerates atoms, the third
one identifies them, and the fourth one identifies the monomer
the atom belongs to. The last three columns are atomic coordi-
nates expressed in Å. The CONECT label introduces the section
of the PDB file that describes the structure’s topology, i.e. how
atoms are bound. Atom 1, for example, is bound to atoms 2, 6
and 13.

If one wants to analyse a protein that is a potential target
for clinical application, it is best to work on the human protein
structure. However, it is not always available: the structures of
some proteins are hard to resolve. If the protein sequence is
known, one can overcome this problem by creating a homology
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Figure 7: Example of PDB file main sections.

model of the protein. Homology modelling is also known as com-
parative modelling; its purpose is to obtain an atomic-resolution
model of the target protein starting from its aminoacidic se-
quence and an experimental three-dimensional structure of a
related homologous protein.

Once the target structure is known, several methods can be
applied to analyse compounds that can be potential therapeutic
agents and their interactions with the target. Molecular Docking is
a computational approach to predict the most probable binding
mode of a compound, referred to as ligand, in a protein called
receptor. Its two main goals are to predict the geometry of the
interaction, i.e. the binding pose, and estimate the binding
energy.

If different potential drug candidates are available, they can
be analysed based on their pharmacokinetics. Pharmacokinetics
(PK) is the study of the disposition of a drug; in simpler words,
it is ”what the body does to the drug” upon administration: the
pharmacokinetics of a drug determines whether it is able to get
to the site of action. It includes the so-called ADME processes:

• Absorption;
• Distribution in blood plasma and in tissues;
• Metabolism or biotransformation: it transforms a molecu-

lar species into another one;
• Excretion.

These four processes, together with Toxicity, make up the AD-
MET properties that can be used to predict whether a compound
would be a viable therapeutic agent. They are, in fact, key ele-
ments that determine the safety, uptake, elimination, metabolic
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behaviour, and effectiveness of drugs. ADMET analysis is thus
a critically important step in drug discovery and development.

3.1 molecular mechanics

As previously stated, molecular mechanics describes molecular
systems with classical mechanics. It calculates the energy of
molecules using empirical functions containing parameters. The The most widely

used forcefields for
modelling
macromolecules are
AMBER,
CHARMM and
GROMOS.

set of parameters needed to define the potential energy of a
system is called forcefield. The system’s energy is thus described
as a function of the spatial coordinates of all its constitutive par-
ticles. The forcefield also includes electrostatic interactions; this
way, it is possible to evaluate the behaviour of the system with
respect to a particular environment, in a specific conformation,
or towards another molecule.

3.1.1 Potential energy function

The particles that form the system are considered spherical
masses of a given radius. Several parameters are used to define
a particle, namely the geometry of the system and the atom
type.
Each particle will be located in space with respect to a reference.
The potential energy function depends on particles’ locations
in three-dimensional space and their properties, and it can be
written as the sum of two fundamental contributions:

V = Vbond +Vnon−bond

Where bond refers to bonded interactions and non-bond to non-
bonded interactions.
Bonded interactions are parameters that model the effects of an
interatomic bond. They are:

• Bonds
• Angles
• Dihedrals
• Improper dihedrals

Non-bonded interactions are:

• Van der Waals
• Coulomb forces
• Hydrogen bonds
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Bonded interactions

A bonded interaction describes a covalent interatomic bond.
Molecular mechanics models bonds as springs so that the as-
sociated potential energy term is a harmonic potential. It is a
function of the bond length:

V(l) = ∑
bonds

1
2kl(l − l0)2

Where kl is the force constant, l0 is the reference length of the
bond, i.e. the length it assumes when every other term of the
forcefield is zero; l is the equilibrium bond length.
This parabolic model is a good approximation around l0. How-
ever, the farther from the minimum, the worse it reflects reality:
when atoms are separated by an infinite distance, according to
the model, energy would be infinite as well, while in reality, it
should increase with l then start decreasing again and come
back to zero because of the bond rupture. Alternative models
exist, which offer a better approximation far from the minimum,
such as cubic and Morse.

Bonds model interactions between two atoms. Angles con-
sider relative motion between three atoms that describe an angle
on a plane. Since atom types identify bond angles, a correction
term is needed that adds an energy penalty when the angle
changes. Several models exist, but the most common is a har-
monic potential around an equilibrium angle.

Relative motion between four bonded atoms is modelled by
dihedral (or torsional angle) terms. They describe the relative
rotation of two planes, which are identified by bonds. A sinu-
soidal function describes the dihedral contribute to the potential
energy function.
These terms are called proper dihedrals because they contemplate
an accessible rotation of 360◦ of an atom with respect to the
other three. Another set of dihedrals, called improper dihedrals,
must be considered for atoms involved in a cyclic structure.
Improper dihedral terms are needed to maintain the planarity
of external atoms bond to cycles. They are again modelled with
a harmonic potential.
Bonded terms of the potential energy function can be written
as:

Vbond = Vbonds +Vangles +Vdihedrals +Vimpropdihedrals
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Non-bonded interactions

Bonded interactions have less of an impact on the potential
energy function because they are less numerous. Apart from co-
valent bonds, however, each particle’s behaviour is influenced by
the interaction with its surroundings: if an atom is moved from
its position, not only bonded interactions terms must change but
also those that describe interactions with all other particles in
the system. The latter are called non-bonded interactions; they
model van der Waals and Coulomb electrostatic interactions.

van der Waals interactions can occur between particles not
having net charge. They are short-range interactions if compared
with electrostatics because their effect is strong within 1− 2 nm.
The model describes that each particle interacts with other atoms
and reaches an equilibrium distance corresponding to an energy
minimum.
Short-range interactions further divide into very short-range
interactions, repulsive, which avoid atoms interpenetration, and
”long” (up to 1.5 nm) range, also known as London dispersion
forces, which are attractive.
Lennard-Jones potential models well the physical behaviour of
van der Waals forces. Some forcefields such as AMBER use a
modified version of this function to model also hydrogen bonds.

Electrostatic interactions are calculated using Coulomb’s law:

V(r) =
N

∑
i=1

N

∑
j=1

qiqj

4πε0εrrij

Electrostatic interaction is the most difficult to address in molec-
ular mechanics simulations. Since it is a long-range interaction
(acts over 10 nm or more), there will be a huge number of inter-
actions to calculate in a molecular system, which originates a
computational difficulty.
Several solutions have been proposed to make a particle ”blind”
beyond a certain distance in order to reduce the number of
calculations:

• Plain cutoff: non-bonded interactions are set to zero be-
yond the cutoff distance. It is an inaccurate and, therefore,
outdated method.

• Shifted or Switched potential: these approaches apply
modifications to the electrostatic term of the potential
energy function in order to make it null at the cutoff
distance.
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• Cell multipole method: exploits calculation of electric
moments of a higher order as we move further away from
the particle under analysis.

• Ewalds summations: it is the fastest method and therefore
the most used one. Several numerical implementations
exist.

3.1.2 Environment simulation

Biological macromolecules exist in an aqueous environment.
Water has a fundamental role in determining the molecules’
structure and function.
There are two main reasons why the solvent is difficult to model.
The first is water’s very peculiar properties that make it hard
to describe with a classical model, leading to bigger errors in
the model compared to macromolecules. Another reason is the
huge number of water molecules to simulate.

Two different approaches have been proposed to simulate
water:

• Explicit solvent: water molecules are explicitly simulated
and included in the model. This approach is accurate
but computationally expensive. One of the most widely
used explicit models is the three-site model (such as TIP3P
by Jorgensen) that describes water as composed of three
particles.

• Implicit solvent: these methods use a continuous medium
to represent water. Damping factors are then added to
simulate the solute’s diffusion in water. Another property
the model has to recreate is the solvent’s effect on the sur-
face of the molecule it contacts: when a protein comes into
contact with water, as an example, hydrophobic portions
move to its core while hydrophilic ones move towards
the surface. This effect is maintained in explicit models
thanks to partial charges that express a polar characteristic.
Implicit models can reproduce it based on Solvent Accessi-
ble Surface Area (SASA) or by modelling electrostatics at a
continuous level.

3.1.3 Energy minimization

A molecular mechanics model aims to ”draw” the Potential
Energy Surface (PES). PES is a multi-dimensional function of
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molecular coordinate systems. It is also called potential energy
landscape.

It is essential to characterise its stationary points, particularly
the points of minimum. There is a great number of minima in a
landscape, and they can be local or global. To localise minimum
points is very important because equilibrium points are where
the biological system tends to work: a local minimum can
correspond to a protein’s active state.

An energy minimisation algorithm can be used to reach a min-
imum point that is near where the structure is on the energy
landscape. Several approaches exist; they are divided into non-
derivative and derivative methods.

Non-derivative methods

The SIMPLEX method is based on constructing a geometric
figure having N + 1 interconnected vertices, where N is the di-
mensionality of the potential energy function under analysis.
For a two-dimensional function, as an example, the figure will
be a triangle. Each vertex corresponds to a specific coordinate
set for which energy can be computed.
The geometric figure has a set of allowed moves such as re-
flection, contraption, expansion, et cetera, through which it ap-
proaches the minimum point. This method is not particularly
efficient, so it is usually applied when the structure is far from
a minimum.

Derivative methods

These methods overcome the limitation of non-derivative ones
that do not contain any information on the slope. They are
further divided into:

• First order derivative methods, such as Steepest Descent and
Conjugate Gradient algorithms. They impose modifications
in atomic coordinates to move the system towards lower
energies. The starting point of each iteration is derived
from the previous one.
Steepest Descent and Conjugate Gradient are often used
in sequence.

• Second order derivative methods, such as Newton-Raphson
and L-BFGS. These algorithms are based on the inver-
sion of the Hessian matrix and involve a relatively strong
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approximation. The Hessian matrix contains the second-
order derivatives of the potential energy. They are used
for relatively small systems (1, 000− 5, 000 atoms) because
the Hessian inversion has a high computational cost.

First-order algorithms are faster, especially if the structure is
far from the minimum. Second-order methods are potentially
more complete because by diagonalising the Hessian matrix,
one obtains information on all the function’s minima but are
not always applicable due to the high computational power they
require.

The reached energy minimum not necessarily corresponds with
an active state of the molecule. Nevertheless, it can be useful to
bring the structure to a minimum point if one wants to study the
dynamics of a system because there is a derivative relationship
between potential energy and force. To be in an energy mini-
mum means to have lower forces on the atoms. Forces acting
on atoms are important because when the dynamics simulation
begins, they define the acceleration (i.e. the speed variation) at
the beginning of the trajectory, as the system starts moving from
a standstill. If there are very intense forces, the atoms will have
high accelerations, which can rupture the structure.

3.2 homology modelling

The primary structure of a protein, i.e. its amino acid sequence,
largely defines its three-dimensional conformation. Therefore,
two proteins sharing similar sequences will have similar struc-
tures and functions as the structure is oriented to a specific
function.
Homology modelling is based on the assumption that a simi-
lar sequence means a similar structure. This method provides
means of reliably predicting the tertiary structure of a protein.

Methodology

The comparative modelling process can be broken down into
four main steps:

• Template selection
• Alignment
• Model construction
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• Quality assessment

The first requirement for the creation of a homology model is a
template, i.e. the three-dimensional structure of a protein whose
sequence shares a certain amount of similarity with the target
one and is, therefore, likely to have a similar structure. A good
starting point is 40% sequence identity (i.e. 40% of amino acids
are identical in the template and target sequences). With a se-
quence identity percentage below 40%, the model’s applicability
and accuracy decrease, and just the general folding of the target
can be predicted. With higher similarity, especially above 60%,
the accuracy of the model is comparable with crystallography.
If the identity percentage is above 80-90%, the task becomes
trivial.

The target and template sequences are aligned to locate
common subsequences that are then used as guides for the mod-
elling process: structural features of identical subsequences are
maintained in the final model. More than a template can be
used, as in the segment-matching approach, which divides the
target into a series of short segments and matches each to its
own template.
Highly variable regions such as loops are less likely to match
a template and are modelled by loop modelling. Loops are
the most susceptible to modelling inaccuracies that occur more
frequently when the target and template have low sequence iden-
tity. Loop databases exist, but the coordinates determined by
loop modelling are generally less accurate than those obtained
from copying the coordinates of a known structure, especially if
the loop is ten residues or longer.
Sidechains are modelled based on the template. Rotamer li-
braries can be used for this purpose; rotamers are positional
isomers of side chains with the right torsional angles for the
backbone torsions.
Lastly, an energy minimisation step can be helpful to relieve
strains, solve atom clashes, and bring the structure towards an
energy minimum.

Validation

Several tools to assess the models’ quality exist. The SAVES
server [5], provided by UCLA-DOE Institute, offers some:

• ERRAT [22] differentiates between correctly and incorrectly
determined regions of protein structures. It uses statistical
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methods to identify model errors, which lead to more
randomised distributions of the different atom types with
respect to actual structures.

• Verify3D assesses the model quality by comparing it to
its amino-acid sequence using a 3D profile. The 3D pro-
file of a structure is a position-dependent scoring matrix
computed from the atomic coordinates of the structure.
Each residue position in the model is characterised by its
environment and is represented by a row of twenty num-
bers, or 3D-1D scores, indicating the statistical preferences
for the environment of each of the 20 amino acids. The
environment of a residue is defined by its buried area, the
fraction of sidechain area covered by polar atoms, and the
local secondary structure [28]. The software computes 3D-
1D scores for the model and compares it to good quality
structures. The Verify3D test is passed if at least 80% of
the amino acids score >= 0.2 in the 3D-1D profile.

• PROCHECK [41] provides a detailed check on the stereo-
chemistry of a protein structure by analysing residue-by-
residue and overall structure geometry. One of the most
informative and used outputs is the Ramachandran plot:
a good quality model is expected to have over 90% of the
amino acids in the most favoured regions.

• WHATCHECK [34] is derived from some of the protein
verification tools of the WHAT IF software. It extensively
checks many stereochemical parameters of the residues in
the model.

Another useful metrics is the QMEAN score, available on the
Swiss-Model website [6] by Biozentrum at the University of
Basel. QMEAN stands for Qualitative Model Energy ANalysis
and is a combined scoring function. The QMEAN4 score is
a linear combination of four statistical potential terms: two
distance-dependent interaction potentials of mean force, one at
residue-level and one on all-atom types, are used to assess long-
range interactions; the other two terms are a solvation potential
and a torsion angle potential.
QMEAN6 score features two additional terms describing the
agreement of the predicted and observed secondary structure
and solvent accessibility, respectively [18, 19]. Both global scores
are initially in a range [0, 1], with one being good. They are then
transformed into Z-scores to compare them with high-resolution
X-ray structures.
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3.3 molecular docking

Docking tries to find the energetically most feasible three-dimensional
arrangement of two molecules in close contact with each other
and predict their binding energy. As previously stated, when
investigating potential drugs’ interactions with targets, the two
molecules will be a ligand and a receptor (i.e. the protein).
So, molecular docking has two main goals:

• Predicting the geometry of the interaction using a search
algorithm;

• Estimating the binding energy.

Inputs for a molecular docking simulation are:

• Three-dimensional protein structure model. One can con-
sider more than one structure to improve predictions.

• The ligand structure: it can be 2D or 3D independently
because, unlike the protein, most of the time, the ligand
is assumed to be flexible in docking, so all possible con-
formations of the ligand will be explored a priori by the
docking program.

• Some information about the location and the size of the
binding site. This is not a fundamental requirement be-
cause blind docking approaches exist. However, it is usu-
ally better to already have some information about the
binding site in order to focus on the relevant region of the
interaction space.

After running a docking calculation, the output is a set of the
most probable 3D structures for the complex. These are usually
called ligand poses because the receptor is generally fixed. Each
pose is associated with a binding score which can then be used
to rank and prioritise the poses.

The score is given as Gibbs Free Energy ∆G. It can be related
to the experimentally derived dissociation constant Kd with the
following equation:

∆G = RT ln(Kd)

Where R is the universal gas constant and T is the temperature R = 8.314 J
mol⋅K

in Kelvin degrees. The law of mass action can be expressed as:

Kd =
[ligand] ⋅ [protein]

[ligand− protein complex]
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So the smaller the value of Kd, the stronger the ligand-protein
interaction will be.
Moreover, ∆G is the difference between enthalpic and entropic
contributions:

∆G = ∆H − T∆S

Entropic contributions have to do with the degrees of freedom;
it is best for the equilibrium to have high entropy, so a more
negative value of ∆G indicates a higher binding affinity.

However, it should be noted that the ∆G reported by a
docking software is no more than a scoring function and can just
give an idea of how preferable a pose is. Docking can provide
some hypotheses that should be assessed with a thorough in
silico analysis with other tools and experimentally.

3.3.1 Docking programs

There are several docking programs commercially or freely
available with different characteristics.
These programs differ in many ways:

• Protein representation
• Flexibility
• Search method
• Scoring function

Protein representation

The first thing one has to think of is how to represent the system:
if the aim is to predict where a ligand can fit on the protein,
then maybe just the surface of the target is relevant, and the
internal residues can be neglected.

The first docking software, named DOCK, developed by J.
Janin and S. Wodak in the early 80s and designed for protein-
protein docking, used an explicit representation of the protein.
This means it described each atom by its three-dimensional
coordinates; this method has now fallen into disuse due to its
computational and time requests.

A more efficient representation method is the grid-based one:
it consists of the discretisation of the protein onto a grid whose
resolution is decided directly by the grid spacing. It allows a
more efficient sampling and scoring of the ligand poses. The
sampling can be performed with an equally spaced grid by ap-
plying Fast Fourier Transform (FFT). AutoDock and AutoDock
Vina use this representation method.
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Another quite commonly used approach is the representa-
tion by constructing the molecular surface of the protein. The
molecular surface (MS) is also well-used to visualise the pro-
tein and have an idea of the cavities inside the structures since
binding sites are more likely to be located inside hydrophobic
cavities. The MS is typically obtained by considering all atoms’
van der Waals radii and by rolling a solvent probe sphere on this
van der Waals surface. The MS will be the locus of the points
where the sphere gets in contact with the surface. The molecular
surface method is exploited in docking to locate cavities by fill-
ing them with the so-called gap spheres. These spheres are then
used to place the ligand atoms during the sampling. The idea
is to place ligand atoms one by one in the centre of the spheres
while keeping interatomic distance reasonable. This way, the ex-
ploration of the interaction space is limited and makes for more
efficient sampling. MOE (Molecular Operating Environment)
uses this approach.

Flexibility

Most docking programs implement almost full flexibility for
the ligand while keeping the target completely rigid except for
thermal fluctuation. As previously stated, all possible ligand
conformations are explored by the software prior to proceeding
with the docking simulation. This exploration is computation-
ally feasible thanks to the small size of the ligand; protein
flexibility requires different approaches that include soft docking
andinduced-fit docking.

Soft docking changes the coefficient of the repulsive part
of the van der Waals interaction by attenuating the Lennard-
Jones repulsion parameters to allow the ligand to penetrate the
protein surface slightly, thus permitting steric clashes. After the
docking, the structure can be equilibrated by relaxing it through
minimisation, allowing the protein to adapt to the binding.

Induced fit docking first performs a rigid docking step, then
optimises the protein side chains and goes ahead with a second
docking step.

AutoDock Vina and AutoDock4 include a certain amount
of flexibility in the target. AutoDockFR (AutoDock for Flexible
Receptors, ADFR) is a docking engine based on the AutoDock4

scoring function; it is specifically designed to handle receptor
flexibility efficiently. It encodes molecular flexibility through a
tree-like data structure called the Flexibility Tree. Each node of
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the tree represents a set of atoms and can be assigned its motion
information. The hierarchical structure of the tree allows for
multi-resolution handling of flexibility [62].

Search algorithms

The goal of docking simulations is to identify the most favourable
pose of a ligand towards a target. This is obtained by exploring
many possible conformations of the ligand; these conformations
can be automatically generated by placement, or search algorithm-
s/methods.
Some placement methods are:

• Matching algorithms use probable binding sites on the pro-
tein surface to place ligand atoms until a complementarity
of shape and electrostatic properties is found. Ligand
atoms must be placed accordingly to the interatomic dis-
tance in the original structure of the ligand. Pharma-
cophore approaches can also be used to place the ligand.

• Dynamics simulation-based methods are better suited for post-
docking minimisation and rescoring purposes.

• Systematic search algorithms divide into:
– Exhaustive search of the conformational space of the

ligand at regular intervals;
– Fragment-based search splits the ligand into fragments

and adds them incrementally by docking one at a
time and linking it to the existing fragments;

– Ensemble-based methods pre-generates poses, then per-
form rigid docking with them.

• Stochastic algorithms sample the conformational space of a
ligand by generating random variations in the orientation
of all rotatable bonds and sometimes random translations
of the whole ligand within the binding site. This procedure
can be applied to a single ligand or a population of con-
formations derived from the same molecular structure of
the ligand. Each resultant confirmation is then evaluated
according to a probability distribution or by estimating
its binding affinity for the target. These methods usually
implement a two-step iterative process: a random global
change in the ligand coordinates followed by local optimi-
sation. Among the search methods offered by AutoDock,
the Lamarckian Genetic Algorithm follows this approach.
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Scoring functions

Scoring functions quantify the energy of protein-ligand inter-
actions such as hydrogen bonds, electrostatics, van der Waals,
hydrophobic, π − π et cetera.
The main types of scoring functions are:

• Forcefield-based functions are directly based on standard
molecular dynamics forcefields. For non-covalent docking,
only the non-bonded contribution to the potential is used.
A drawback of this method is that the coefficients of the
forcefield are optimised based on protein structures alone
and not on protein-ligand complexes.

• Empirical scoring functions count the number of interac-
tions and assing a score based on the number of occur-
rences.

• Knowledge-based methods consider a large dataset of known
protein-ligand complex structures and compute the prob-
ability of the interaction between their atoms at a given
distance, based on the observations in the dataset.

• Machine learning approaches exploit non-analytical func-
tions obtained from regression models aimed to reproduce
experimental binding energies.

• Consensus docking merges different approaches/scoring
functions and assesses whether there is an agreement be-
tween them.

Consensus docking was introduced to overcome the limi-
tations of docking in generating binding modes similar to the
native ones and correctly ranking compounds. It consists in
comparing the top-scoring poses generated by two or more
docking programs. In cases where the poses are similar, usually
within a given Root-Mean Square Deviation (RMSD) threshold,
they are kept; otherwise, they are discarded. It was shown that
poses passing some kind of consensus filter were more likely to
correspond to the native binding mode of the ligand [35].
RMSD is calculated as the square root of the squared sum of
pairwise differences between the positions of the particles be-
longing to the two structures a and b, divided by the number of
particles.

RMSD =

√
1
Ni

∑
i
(rai − rbi)2
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3.4 admet properties

3.4.1 Absorption

Among the most common routes of administration of a drug,
such as intravenous (IV) or intramuscular injection, and topical
application, oral administration is the most used. When a drug
is taken orally, it must cross the membranes of many cells to
reach its target.
The plasma membrane of a cell is a lipid bilayer where phospho-
lipids self-assembly with the hydrophobic tails inside and the
polar heads towards the outside, in contact with either the extra-
or intracellular aqueous solution. The drug molecule must be
hydrophobic and rather small to diffuse across the membrane.
Uncharged and non-polar drugs cross the plasma membrane
with a mechanism called passive transport, i.e. diffusion along
the concentration gradient: they move from a high concentra-
tion compartment to a low concentration one, thanks to their
solubility in the lipid bilayer.Lipophilic and

hydrophobic are
not actually

synonyms as some
substances, namely

silicones, are
hydrophobic but not

lipophilic. These
substances, however,

are rare and here,
the two terms can be
treated as synonyms.

A means to calculate the lipophilicity/hydrophobicity is the
partition coefficient. It is the ratio of concentrations of a com-
pound in a mixture of two immiscible phases at equilibrium.
Therefore, this ratio is a measure of the difference in solubility
of the compound in these two phases. The following equation
calculates it:

P =

[drug]
octanol

[drug]
water

Octanol is a suitable solvent for the treatment of lipophilicity.
ADMET predictors usually calculate the logarithm of P:

logP = log[drug]
octanol

− log[drug]
water

The more positive the value of logP, the more hydrophobic
the compound, and vice versa. Most drugs have a logP value
between 1 and 6. logP can be predicted using computational
models from a sum of fragmental, topological, knowledge- or
atom-based terms plus various corrective terms.
A measure of the lipophilicity of a potential drug compound is
of great importance because it correlates with many biological
properties.

Another descriptor that correlates well with passive molecu-
lar transport through membranes is the molecular polar surface
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area (PSA), i.e. the surface belonging to polar atoms. Calculat-
ing it with a ”traditional” approach requires the generation of a
3D model and the actual calculation of the surface once polar
atoms have been identified, making it rather time-consuming.
Therefore a fragment-based approach, called TPSA (Topological
Polar Surface Area), has been proposed. It is based on the sum-
mation of tabulated surface contributions of polar fragments.
Its results are nearly identical to the ”traditional” ones, but the
computation speed is increased up to 3 orders of magnitude
[29].

Charged or large polar molecules do not diffuse across the
plasma membrane and are usually carried by specific proteins,
which mediate another important transport mechanism called
active transport. Unlike passive diffusion, this type of transport
requires energy because the movement is opposed to a gradient.
Active transport can also lead to unwanted effects. The perme-
ability glycoprotein (P-glycoprotein or P-gp), for example, limits
the oral absorption of some drugs. It is a membrane protein
with a pump function that effluxes xenobiotics out of cells, thus
reducing the effective concentration of the drug. It is extensively
distributed in most tissues, with most abundance in the adrenal
gland, and there is a distinct expression in endothelial cells
of the central nervous system, contributing to the blood-brain
barrier [7]. Suitable ADMET predictions indicate if a given
compound is likely to be a substrate or an inhibitor of P-gp.

Other important parameters for drug absorption are water
solubility, gastrointestinal absorption, and skin permeability:

• Water solubility is significant for orally administered drugs,
especially enteral ones, as water-soluble compounds are
better absorbed. It can be predicted with topological or
fragment-based approaches, as well as with machine learn-
ing techniques.
A common solubility unit is log S, corresponding to the 10-
based logarithm of the solubility of a molecule measured
in mol/L.

• Gastrointestinal (GI) absorption is important because the
intestine is generally the primary absorption site for an
orally administered drug.

• Skin permeability is of interest for the development of
transdermal drug delivery.
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Bioavailability

Bioavailability is the fraction of the administered drug dose that
effectively reaches the systemic circulation upon any adminis-
tration route. When a drug is administered via IV injection, the
entire dose enters directly into the bloodstream, but for an oral
drug, it can be reduced by metabolism when it passes through
the liver; this is called the first-pass effect.
Many guidelines have been proposed to help develop orally
bioavailable drugs. Among these, the most widely known and
used is Lipinski’s Rule of Five, a set of empirical rules proposed
in the late 1990s by Chris Lipinski, a medicinal chemist working
for Pfizer, and his research group. These rules are so-called
because they are five and the number 5 recurs in each:

• Molecular Weight (MW) ≤ 500 Da
• Number of rotatable bonds ≤ 5: the molecule must be

flexible, but not too much. This rule is about specificity
(the probability of binding to the target) and selectivity
(the probability of binding to the target and not to other
targets).

• Number of hydrogen bond acceptors ≤ 10

• Number of hydrogen bond donors ≤ 5

• -2 < log P < 5: if the compound is too hydrophilic, it will
bind to the surface of many proteins; if it is too hydropho-
bic, it can get stuck in the inner layer of membranes. In
both cases, the drug would not reach its target.

A set of less stringent rules was later proposed, in which the
accepted MW is 550 Da, and the number of rotatable bonds rises
to 7. These rules are generally used in oncology.
Other rules are the Ghose filter, which takes into account the
molar refractivity and the number of atoms of the compound;
the Veber filter, developed by a GlaxoSmithKline group, that
focuses on rotatable bonds and topological polar surface area;
the Egan filter, and the Muegge filter.

3.4.2 Distribution

The circulatory system distributes the compound to its site of
action after absorption (for an oral drug) or systemic adminis-
tration (for IV drugs). A compound will likely exist in plasma at
an equilibrium between an unbound state and bound to serum
proteins. The unbound drug exerts the therapeutic effect, so
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knowing which fraction of the dose is free is essential. The Frac-
tion Unbound predicts the amount of a compound that would be
unbound in plasma.
Many drugs accumulate in tissues, too. The Volume of Distri-
bution at steady state (VDss) is the volume that the dose of the
drug should have to be uniformly distributed to give the same
concentration as in blood plasma. The higher this parameter is,
the more drug is distributed in tissues rather than in plasma.
This accumulation could lead to local toxicity phenomena.
ADMET distribution parameters also indicate the ability of the
compound to reach some body districts. The brain is protected
from exogenous compounds by the blood-brain barrier (BBB);
the ability of a drug to cross it, called BBB permeability, is a vital
parameter to help predict potential side effects or to improve
the efficacy of a drug whose target is within the brain.

3.4.3 Metabolism

Since drugs are foreign substances to the body, they are metabolised
by a large number of enzymes. These enzymes catalyse the
chemical transformation of the compounds into more polar and
water-soluble ones, called metabolites. This transformative pro-
cess is called metabolism or biotransformation, and it can occur
before or after the drug has reached its site of action; for exam-
ple, an inactive prodrug can be converted into an active drug
through a metabolic reaction.
Metabolic reactions are generally divided into two phases:

1. Phase I enzymes modify the functional groups of the com-
pound through oxidation, reduction, hydrolysis, and car-
boxylation. The oxidation reactions are carried out by cy-
tochrome P450 (CYP). CYP are a superfamily of enzymes,
including approximately a hundred isoforms, involved
in the oxidative reactions of many compounds. Twelve
human CYPs are known to be important in the metabolism
of xenobiotics, among which the most active are CYP2C,
CYP2D, and CYP3A families. ADMET tools can predict
whether a given compound is likely to be a substrate of
CYPs. Higher lipophilicity increases the likeness of being
metabolised by CYPs.
It is also important to predict whether a drug candidate
could be a CYPs inhibitor because, in the case of coadminis-
tration with other drugs, inhibiting a metabolising enzyme
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causes another molecule that is usually metabolised by
that enzyme to accumulate, potentially leading to adverse
effects [63].

2. Phase II reactions are generally conjugation reactions pro-
ducing a very water-soluble metabolite.

3.4.4 Excretion

Excretion, or elimination, indicates the irreversible removal of
a drug from the body, which of course, reduces its concentra-
tion at the site of action. Total clearance mainly occurs as a
combination of hepatic (i.e. metabolism in the liver and biliary
clearance) and renal clearance, i.e. urinal excretion, and it is
related to bioavailability. Having a parameter that predicts the
Total Clearance is important for determining drug dosage.
Renal clearance is an important means of excretion. The Organic
Cation Transporter 2 (OCT2) is a renal uptake transporter play-
ing an essential role in the clearance of both endogenous and
exogenous compounds. It is of interest to predict whether a po-
tential drug is likely to be a Renal OCT2 substrate because it could
lead to adverse effects if OCT2 inhibitors are coadministered.

3.4.5 Toxicity

A drug molecule is expected to be efficacious and to have a good
toxicity profile as well. Several ADMET indicators have been
developed to describe the toxicity of a drug. Some are derived
from animal-based assays:

• AMES toxicity predicts whether a given compound is likely
to be mutagenic. This prediction is based on the Ames test,
which assesses the mutagenic potential using bacteria.

• Minnow toxicity indicator predicts the molecule concentra-
tion necessary to cause the death of 50% of the Flathead
Minnows (LC50, Lethal Concentration 50). A low value of
this concentration indicates high acute toxicity.

• Rat acute toxicity predicts the LD50 for rats, i.e. the amount
of a compound given at once that causes the death of 50%
of a group of test animals.

• T. Pyriformis toxicity predicts the negative logarithm of the
concentration required to inhibit the 50% of the growth of
Tetrahymena Pyriformis protozoa bacteria.
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More important, though more difficult to predict, are toxicity
predictors in humans:

• Maximum Tolerated Dose: the Maximum Recommended
Tolerated Dose (MRTD) is an estimate of the toxic dose
in humans; it is the highest dose of a drug or treatment
that does not cause unacceptable side effects. The com-
putational models are based on data from human clinical
trials.

• Maximum Therapeutic Dose: estimates the upper limit be-
yond which a drug’s efficacy is not increased and side
effects begin to outweigh beneficial effects.

• Hepatotoxicity predicts if a given compound’s effect could
disrupt the normal function of the liver.

• Skin Sensitisation is a potential undesired effect of topically
administered drugs.

• Cardiotoxicity is a major safety concern. This indicator
predicts whether a given compound is likely to inhibit the
potassium ion channels in cardiomyocytes. This channel
is encoded by the human Ether-à-go-go-Related Gene or
hERG, and thus commonly called hERG itself. Inhibition
of hERG channels is the leading cause of developing a
potentially fatal disorder called long QT syndrome: since
the channel mediates repolarisation of the heart muscle,
which helps coordinate the heart’s beating, inhibiting its
conductive ability leads to ventricular arrhythmia.
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4
M O D E L L I N G O F H U M A N T U B U L I N I S O T Y P E S

This section focuses on the methods used to obtain and prepare models
of human tubulin structures.

γ tubulin

α-β tubulin dimer

4.1

4.2

Despite bovine and porcine tubulin being the cheapest and
most common choices when it comes to lab experiments, it is
essential to investigate human tubulin if the focus is on clinical
applications. While some experimentally resolved structures
of human γ tubulin exist, human α-β dimers were obtained by
comparative modelling.

4.1 γ tubulin

4.1.1 Materials and Methods

Template selection

Four PDB entries for human tubulin γ chain were taken into
consideration:

• 1Z5V: Crystal structure of γ-tubulin bound to GTPγS
• 1Z5W: Crystal structure of γ-tubulin bound to GTP
• 3CB2: Crystal structure of human γ-tubulin bound to GDP
• 6V5V: Structure of γ-tubulin in the native human γ-tubulin

ring complex

They all refer to human tubulin γI chain, encoded by the gene
TUBG1. The structures were compared according to these three
criteria, listed in order of importance:

1. Resolution: any resolution between 1.5 and 2.5 Å is con-
sidered to be excellent.

2. Number of missing residues (MRES): a structure with
fewer missing residues is preferred. Moreover, it is best
if these missing residues are not in or near known or
probable active sites.
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3. Publication date: compatibly with the other criteria, a
more recent structure is preferable.

Table 4 shows these features for the four PDB structures. The
entries are ordered from the least to the most recent.

Table 4: PDB entries comparison for γ tubulin.

PDB entry Resolution (Å) Publication date Number of MRES

1Z5V 2.71 2005 39
1Z5W 3 2005 42
3CB2 2.3 2008 19 (chain A)
6V5V 3.8 2020 82

Supplementary figure A shows the missing residues loca-
tions in these proteins relative to the position of the residues
forming the GDP binding site.

PDB entry 3CB2 was selected because it has the best charac-
teristics in terms of resolution and number of missing residues,
and it is fairly recent as well. The original PDB entry contains
two γ chains; the A chain was selected to undergo the following
steps because it had fewer missing residues than the B chain.
The structure 6V5V was also taken into consideration as a means
to compare the folding of the selected template since it is the
structure of the protein in the native ring complex. Unlike
the other three models, this structure was obtained by electron
microscopy.

Structure inspection and optimization

The MOE Align/Superpose option in the SEQ panel was used to
compare the high resolution γ tubulin structure 3CB2 with the
native one in 6V5V. Since they both refer to the same protein,
Sequence and Structural alignment was selected to proceed with
the superposition. The RMSD (Root Mean Squared Deviation)
value was used as a metric for structure similarity.

The 3CB2 structure was then prepared using the Structure

preparation panel in MOE. The major fixes made during this
process are listed below.

1. Alternates: residues with alternate locations were cor-
rected by using the highest occupancy one.

2. Termini: missing backbone atoms in the protein chain C-
or N- termini were deleted, and the terminus was capped.
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3. Breaks: missing residues inside the chain were corrected
by building a loop.

4. Library: inconsistencies between the residue name and its
structure or missing atoms were corrected by using the
sequence information over the structure.

The Protonate 3D application was then used to assign ionization
states and position-optimized hydrogens. An energy minimiza-
tion step was performed to relieve strains in the structure.

4.1.2 Results

The RMSD between 3CB2 and 6V5V γ tubulin equals 1.185 Å.
This result indicates a good grade of similarity between the
structures. As shown in figure 8, some of the per-residue RMSD
values are found near gaps due to missing residues. Figure 9

shows these results graphically: by selecting Ribbon → RMSD

in the main MOE window upon superposition, the structures
are represented according to a colour map in which a deeper
shade of green indicates a lower RMSD value, while yellow,
orange and red tones mean progressively higher values. Since
6V5V has more missing residues, some portions of 3CB2 that
do not match any 3D structure in 6V5V are depicted in white.

Figure 8: RMSD by residue. a. shows the RMSD real value; b. reports
the averaged RMSD.

4.2 α-β tubulin dimer

4.2.1 Materials and Methods

Template selection

Since gatastatin is a derivative of a colchicine site-binding com-
pound, the search for templates of α-β tubulin for consensus
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Figure 9: Structure superposition of 3CB2 and 6V5V. The complexed
ligand GDP is shown in blue for 3CB2 and magenta for 6V5V.

docking simulations was oriented towards colchicine bound pro-
tein complexes. Many such structures have been deposited in
the Protein Data Bank over the last two decades. As for γ tubu-
lin, the PDB entries have been inspected in terms of resolution,
number of missing residues, and publication date:

Table 5: PDB entries comparison for α-β tubulin.

PDB entry Resolution (Å) Publication date Number of MRES

1SA0 3.58 2004
24/29 (chains A/C)

26 (chains B/D)

4O2B 2.30 2014
12 (chains A/C)
24 (chains B/D)

5EYP 1.90 2016
23 (chain A)
20 (chain B)

5NM5 2.05 2017
29 (chain A)
28 (chain B)

PDB entry 5EYP was selected, mainly for its best resolution.
This structure is representative of free tubulin; 3J6F was selected
as a second template to have a means of comparison with the
tubulin dimer as it is inside microtubules. PDB entry 3J6F

is an average structure of dynamic pig microtubules obtained
by electron microscopy, with a resolution of 4.90 Å. The low
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number of unmodeled residues (11 in α and just one in the
β subunit) makes up for the sub-optimal resolution. Fewer
missing residues mean that less computational modelling has
to be performed on the initial template, leading to a lower
probability of introducing errors in the structure.
Being a microtubule structure, 9 α-β heterodimers are present
in it; chains A and B were used as the template structure.

Homology modelling

The selected templates were prepared following the procedure
previously described in section 4.1.1.

The target sequences of human tubulin were downloaded
as FASTA files from the UniProt KnowledgeBased (UniProtKB The FASTA file

format is a nearly
universal standard
in the field of
bioinformatics. It
represents
nucleotide or protein
sequences in a
text-based format in
which nucleotides or
amino acids are
represented using
single-letter codes.

[8]) database. A homology model for each β tubulin isotype
was built for both templates. Tubulin α1A chain was used for
the α subunit in all the models. A library of human α-β tubulin
structures was obtained; the models feature tubulin α-1A in
complex with:

• tubulin βI
• tubulin βIIa
• tubulin βIIb
• tubulin βIII
• tubulin βIVa
• tubulin βIVb
• tubulin βV
• tubulin βVI
• tubulin βVIII

for a total of nine structures for each of the selected templates.

Below is an outline of the steps required to obtain a homol-
ogy model in MOE starting from the prepared template and the
target sequences.

1. Open the template structure and the two target sequences
- that is, tubulin α-1A and one of the β isotypes - in MOE.

2. Open the Sequence Editor panel using the SEQ button in
MOE main window. This panel shows the sequences of all
the items in MOE System.

3. Using the Set Up Chains button that comes with the
Align/Superpose tool, it is possible to split the window
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into two sub-figures, each dedicated to a protein subunit.
Chains can be assigned to a subunit by either selecting
the By Tag button that splits the sequences based on their
letter tag (A and B, for example), or by selecting them and
changing their destination with the Subunits buttons in
the bottom-left corner of the window. These tools were
used to assign the α subunit and the αIA sequence to one
sub-window and the β subunit and FASTA sequence to
the other.
Ligands were set to be ignored by the alignment tool using
the dedicated i red button.

4. At this point, the sequences can be aligned by clicking on
Align. It is possible to observe and adjust the sequence
alignments, and Alignment → Similarity. . . can be selected
to get a report of sequence identity and similarity.

Other than with the Align/Superpose application in MOE,
the human isotypes sequences were compared with animal ones
in order to inspect their differences in the colchicine binding
site. Pig and ovine β tubulin, from 3J6F and 5EYP respectively,
were used as means of comparison in this analysis. Just the β

subunit was considered because α tubulin makes little contact
with colchicine with respect to β.
The Clustal Omega application for multiple alignment was used
to do so. It is provided by the European Bioinformatics Institution
[45] and is freely available online [9].

5. By clicking Protein → Homology Model. . . , the panel ded-
icated to comparative models will show. Here, the se-
quences and corresponding template chains were set.
The ligands and the magnesium ions were set to be Used

as Environment. This option includes the selected atoms in
the energy tests and minimization stages of the process so
that clashes and superimpositions with the co-complexed
atoms are prevented.
Both experimentally derived structures had several (10 to
around 20 depending on the isotype) missing residues at
the carboxy terminus of the sequence. This outgap was not
modelled as these regions are not involved in colchicine
binding. Moreover, these regions are likely to be very mo-
bile, which is probably why the crystallography could not
resolve them in the first place, so trying to model them
could result in errors that worsen the overall quality of the
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model without adding useful information.
In Settings, the number of sidechain samples was increased
to 5. Since human and animal tubulins share above 80%
similarity in all cases, they do not differ in the main chain,
so just one model would have been created if the sidechain
sample number option was left to the default value of 1.
This way, five models were created and ranked for each
template-target combination.
Optimization of ionization states and proton placement
with the Protonate 3D application and the subsequent re-
finement step were applied to all intermediates.

6. After settings and options in the Homology Model panel
were adjusted, calculations were started by clicking OK.

A database containing five models resulted from these steps.
No changes were made to the default Model Scoring option, so
homology models were ranked according to the GB/VI score,
which is a generalized Born model for estimating the free energy
of hydration developed in 2008 by Labute et al. [40].
GB/VI stands for Generalized Born/Volume Integral; it esti-
mates the free energy of hydration as a classical electrostatic
energy contribution plus a cavitation energy contribution based
upon a VI London dispersion energy instead of the atomic
surface area (SA) used in GB/SA hydration models.

The best model was selected based on the GB/VI score
and geometric parameters such as the number of atom clashes,
rotamer, and bond length outliers. It was then imported into
the MOE main window. An energy minimization step was
performed to relieve strains and atom clashes in the structure
while tethering the backbone heavy atoms to avoid losing the
complexed protein folding.

Validation

Each homology model was carefully inspected using the tools
described in section 3.2. The structures were saved as .pdb

files and uploaded on the SAVES server [5] to obtain ERRAT,
Verify3D, WHATCHECK and PROCHECK insights, and on the
QMEAN website [6].
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4.2.2 Results

Differences between human and animal β tubulin in the colchicine
binding site

Figure 10 shows the results of the sequence analysis made with
Clustal Omega. The residues making up the colchicine binding
site on β tubulin are reported. Dots indicate perfect identity,
while mismatches are colour-coded as follows:

• Green highlighted residues indicate conservative replace-
ments that scored above 0.5 in the PAM250 matrix, indi-PAM is the acronym

for Point Accepted
Mutation. In a

PAM matrix, each
column and row

represents one of the
twenty standard

amino acids. PAM
matrices are used in

Bioinformatics as
substitution

matrices to score
sequence alignments

for proteins.

cating strong similarity.
• Orange means weak similarity: these replacements have a

PAM250 score of 0.5 or less and are called semi-conservative.
• Red residues are not conserved.
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Figure 10: Comparison between animal β tubulins and the human
isotypes over the residues forming the colchicine binding site.

44



4.2 α-β tubulin dimer

For the most part, mismatches are conservative or semi-
conservative, except for the one in position 315. Non-conservative
replacements could cause a change in the cleft’s charge or polar-
ity that, in turn, would affect the ligands’ modes of binding and
binding affinities.

Validation

For the sake of brevity, in this section, homology models will
be indicated just with the β tubulin isotype they feature, so for
example, the model of the heterodimer α-1A and β-1 will be
called β-1.

All models obtained from 5EYP got an ERRAT score of
around 94%, and those obtained from 3J6F scored above 96%,
indicating that the percentage of errors in the computational
models is reasonably low in both cases.
All models passed the Verify3D test, i.e. at least 80% of each
structure’s amino acids scored 0.2 or above in the 3D-1D profile.
All models from 3J6F scored above 97% and the ones from
5EYP scored around 99%.
All homology models had around 91% of their amino acids
in the most favoured (core) regions according to the analysis
with PROCHECK, and none showed residues in unfavourable
regions.
These scores, along with QMEAN4 and QMEAN6 normalized
scores, are reported in more detail in tables 6 and 7.
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M O L E C U L A R D O C K I N G

This section describes the molecular docking procedure, with particular
attention to the adopted consensus docking protocol.

Input files preparation

Methods

Results

5.1

5.2

5.3

5.1 input files preparation

5.1.1 Receptors

The prepared 3CB2 structure of γ tubulin was used for both
consensus docking and blind docking simulations.
As gatastatin is derived from a colchicine site-binding com-
pound, consensus docking on the α-β dimer focused on the
colchicine binding site. Homology models obtained from 5EYP,
representing unpolymerised tubulin heterodimers, were used
for this purpose. Blind docking was performed on homology
models from 3J6F to investigate the compounds’ binding to
microtubules.

Regarding MOE, for γ tubulin the outputs of the optimiza-
tion step described in section 4.1.1 were used; input files for α-β
tubulin were the energy minimized homology models. These
structures were converted from the proprietary .moe format
to .pdb files so that the program AutoDockTools could handle
them and produce .pdbqt format input files for AutoDock and
AutoDock Vina. The PDBQT file format is very similar to PDB,
but it includes additional information on partial charges and
AutoDock 4 atom types. The prepare receptor4.py script, that is
part of the AutoDockTools (ADT) package, was used to obtain
them. For docking simulations in the colchicine binding site of
α-β tubulin, options were set to maintain the native GTP ligand
at the interface between the subunits.
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5.1.2 Ligands

The co-complexed ligands - colchicine for the models obtained
by 5EYP and GDP for γ tubulin, shown in figure 11 - were
extracted from the original PDB files.

(a) 2D colchicine structure. (b) 2D GDP structure.

Figure 11: Chemical structures of co-complexed ligands for α-β and γ

tubulin.

The 3D structure of gatastatin, as first identified by Chinen
et al. in 2015 [21], was downloaded from PubChem [10]. ThisPubChem is an open

chemistry database
at the National

Institutes of Health
(NIH), containing

mostly small
molecules.

structure was then used as the base to build all its derivatives,
developed by Shintani et al. and described in their 2020 article
[52]; the Builder application in MOE was used to obtain them.
The derivatives can be divided into three main groups based on
the modifications made to the gatastatin structure:

• B-ring substituted derivatives;
• O6 modified derivatives;
• O6 modified, 3’-4’ acetonide derivatives.

Their 2D structures are shown in tables 8, 9 and 10, respectively.
Figure 12 shows the substitution points: the ring, shaded in
blue, and O6, highlighted in red.

To proceed with docking simulations in MOE, once gatastatin
derivatives’ structures were obtained, all ligands were imported
into a MOE database. Following MOE’s guidelines for database
preparation, three steps were applied:

1. Database washing to correct possible structural errors in
the ligands imported from external sources;

2. Partial Charges calculation using AM1-BCC forcefield;
3. Energy Minimization.

Ligand input files for AutoDock and Vina must be in the .pdbqt

format as well. The ADT prepare ligand4.py script was used to
convert PDB ligand files into PDBQT.
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Figure 12: 2D structure of gatastatin with highlighted points of deriva-
tion.

Among the O6 modified structures, the authors identified O6-
propargyl gatastatin, i.e. S9, as a more potent γ tubulin specific
inhibitor than gatastatin; therefore, it was renamed gatastatin
G2, and it will be called G2 in the following, while the original
gatastatin molecule will be referred to as G1.

Table 8: 2D structures of B-ring modified gatastatin derivatives.

Derivative Structure

S3

S4

S5

49



molecular docking

Table 9: 2D structures of O6 modified gatastatin derivatives.

Derivative Structure

S6

S7

S8

S9

S10
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Table 10: 2D structures of O6 modified, 3’-4’ acetonide gatastatin
derivatives.

Derivative Structure

S11

S12

S13

S14

S15

5.2 methods

5.2.1 Consensus Docking

The outputs from the three docking engines were compared to
look for a possible consensus to seek more reliable results.
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Search space definition

Most of the consensus docking simulations were applied as re-
docking, i.e. the compounds were docked in the cleft occupied
by a co-complexed ligand in the PDB structure. In the case of γ

tubulin, this ligand was the native GDP, while it was colchicine
for the α-β dimer. The co-complexed ligands from PDB were
also redocked, and the results were used as a benchmark to
assess the docking process reliability. Using MOE, it is sufficient
to select the co-complexed ligand in the Dock panel to define
the binding site. AutoDock and Vina, on the other hand, require
the definition of a 3D box in which to focus the search. The pro-
gram AMDock, freely available online [11], was used to calculate
optimal box size and placement for each receptor-ligand pair
though the Center on Hetero option. The AMDock application
implements a script developed by W. P. Feinstein to optimise
the box size [30, 56].

Other possible binding sites than the GDP one were explored
on γ tubulin: to do so, the results from the Site Finder applica-
tion in MOE were used. It is a geometric method - meaning it
does not use energy models - to identify possible active sites
in a receptor. It is based upon α-shapes, which are piecewise
linear curves families in the Euclidean plane, associated with the
shape of a finite set of points [26]. The method identifies regions
of tight atomic packing and proceeds to filter out unlikely sites
such as protrusions, inaccessible regions or too solvent-exposed
ones. The potential sites are then ranked according to their
Propensity for Ligand Binding (PLB) score, based on their amino
acid composition, that was implemented from [53].

Among the 30 Site Finder results for γ tubulin, six have a
positive PLB score and of these the first three scored above 1,
as summarised in table 11. Site 1 overlaps with the GTP-GDP
binding site identified by the co-complexed GDP molecule, so
binding of gatastatin G1 and G2 in sites 2 and 3 was analysed:
for docking simulations in MOE, the option Dummies... in the
Site Finder panel was used to create dummy atoms correspond-
ing to the α spheres; these dummies were subsequently used to
guide ligand placement during the docking simulation.

For AutoDock and Vina, the search space was prepared using
the Center on Residue(s) option in AMDock: this application
obtains the list of residues forming the cleft as input and centres
the box on their geometric centre.
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Table 11: Top-scoring Site Finder results for γ tubulin.

Site PLB Residues

1 4.56 10-17; 68-70; 98-102; 139-147; 171-185; 207-216;
221-225; 228-229; 232; 394; 397-398; 404

2 1.15 270; 298; 300; 303; 305; 307-317; 345-347; 377;
381; 383; 386

3 1.02 24; 27-28; 217-218; 227; 320-231; 234; 237-238;
273; 275-280; 283; 325; 367-371; 374

Lastly, the putative colchicine site on γ tubulin predicted by
Friesen et al. was also investigated for gatastatin G1 and G2

binding. Colchicine was docked in this cleft, too, in order to
compare the predicted binding affinity for γ and α-β tubulin.

Consensus Docking Protocol

The adopted consensus scheme is similar, at least in the early
stages, to the one described in [35]: the top-scoring poses from
different docking engines were compared in terms of RMSD
and just the similar ones - that is, the ones that differ less than a
given RMSD threshold - were kept.
Below is a more detailed description of the first steps of the
process, which are also graphically summarised in figure 13.

1 . The five highest-scoring poses were extracted from each mol2 format files are
plain text (ASCII)
tabular files storing
atomic coordinates,
chemical bond
information, and
metadata about a
single or multiple
chemical
compounds.

program’s run, converted to mol2 format and stored in a folder.
The poses are named as follows: x⟨program⟩y, where x is the
number of the docking run from which the pose was extracted,
⟨program⟩ is autodock, moe or vina, and y indicates the number
of the pose inside the single docking simulation (1-5 for MOE
and Vina, random for AutoDock since the output poses are not
sorted according to their score).

2 . All the stored poses were compared to one another by
computing the RMSD between them in a pairwise fashion. The
program DockRMSD, freely available online [12], was used to
calculate RMSD values. It is particularly suitable for comparing
poses generated by different programs thanks to the atomic
correspondence search it implements. Moreover, it features a
symmetry correction that allows fair comparison for molecules
with symmetric functional groups [17].

53

https://zhanggroup.org/DockRMSD/


molecular docking

Different poses from the same docking program were also
compared to assess the consistency between intra- and inter-
programs results.

3 . For each comparison between two docking results, if the
calculated RMSD value was below 2 Å, then the names of the
two poses were stored in a row of a text file. The resulting list
of pose pairs constituted the input for the subsequent steps.

Figure 13: Preliminary steps of the adopted consensus protocol.

Since three docking programs were used, a clustering ap-
proach was adopted to find a consensus. The clique problem
theory was exploited to do so: in computer science, the clique
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problem is the computational problem of finding cliques in a
graph. Cliques, also called complete subgraphs, are subsets of
vertices in the graph that are all adjacent, i.e. connected to one
another by means of so-called edges. Despite originating to dis-
cover groups of mutual acquaintances in social networks, the
clique problem has found many applications in bioinformatics
and computational chemistry.
In this particular problem, the set of poses is assimilated to a
graph, and the list of pose pairs represents its edges, so the
concept of adjacency is represented by similarity in terms of
RMSD: two vertices (i.e. poses) that differ less than 2 Å are
considered to be adjacent.
The second part of the process was performed as follows:

4 . A Python script was used to identify all the cliques of
size three or more. The code was adapted from an algorithm
to find cliques of a given size that was published online on
the opengenus website [13]. The combinations of pose names
forming the cliques were stored as rows of a text file that could
be quickly processed in the following filtering step.

5 . Another Python script was used to filter the obtained
cliques: only clusters meeting the simple criteria of including at
least a pose from each docking program are retained and thus
represent a consensus.

If no cliques survived the filtering process, steps 1-5 were
repeated by adding the newly generated poses to the previously
obtained ones. This way, the pool of possible docking results
was widened with each iteration.
If after eight runs (meaning that 40 poses from each docking
program were compared) no filtered clusters were found, steps
2 to 5 were repeated while relaxing the RMSD threshold from
2 to 2.5 Å. If no clusters resulted from this additional analysis,
it was considered very unlikely to obtain a consensus for that
particular ligand in the analysed binding site.

Results analysis

The poses forming each cluster were imported in MOE as a
database in order to inspect ligand-protein interactions through
Protein-Ligand Interactions Fingerprints, or PLIF. This tool clas-
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sifies interactions such as hydrogen bonds and ionic ones and
builds them into a fingerprint scheme.

Given the binding energies (∆G) predicted by the docking
engines and expressed in kcal/mol, the equivalent Kd value was
calculated using the following relation:

∆G = RT ln Kd → Kd = exp
∆G
RT

with a temperature of 310 K. Since differently sized clusters were
obtained, the average score values were calculated considering
the best-scoring pose of each program to obtain a non-biased
mean. The equivalent Kd values were calculated and averaged
accordingly.

5.2.2 Blind Docking

Given the larger receptor size, MOE was used to perform all
blind docking simulations on α-β tubulin as it provides the best
trade-off between accuracy and computation time. Each run
generated one hundred poses, and the top-scoring 30 poses
were retained for further analysis.

Blind docking simulations on γ tubulin were also performed
in AutoDock and Vina.

In order to verify the actual preference for the GDP binding
site, both on γ and on β tubulin, a blind docking run was
performed upon removing the co-complexed GDP molecule
from the structure.

Search space definition

As the MOE guidelines for binding site identification recom-
mend to indicate as the docking site a subset, rather than all, of
the receptor, the Site Finder application was used; dummy atoms
were generated in all the resulting sites to define a search space
that samples the entire accessible surface of the receptor(s).

For AutoDock and Vina, a search box large enough to con-
tain the whole receptor was created using the AutoDockTools

graphical interface. To get a further mean of comparison, the
Automatic mode on AMDock was also used. Its definition of
the search space is similar to the one applied in MOE: the Au-

toLigand application is used to predict possible binding sites,
and search boxes are placed at the centre of each.
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5.3 results

5.3.1 γ Tubulin

Consensus docking: GDP binding site

GDP redocking produced a consensus both among the programs
and with the co-complexed pose, meaning that all three docking
engines could reproduce the ligand’s native binding conforma-
tion. On average, the predicted binding energy is −9.61± 1.14
kcal/mol and the corresponding predicted Kd value is 0.49±0.74
µM.

Regarding colchicine, a consensus was reached within 3 runs;
the average binding energy value is −6.48± 0.16 kcal/mol, and
the mean Kd is 27.72± 6.52 µM.

For gatastatin G1 and G2, 1 and 3 runs were needed to get a
consensus, respectively; table 12 reports their mean scores and
Kd values.

Table 12: G1 and G2 binding affinities to the GDP site on γ tubulin.

Compound Score (kcal/mol) Equivalent Kd (µM)

Gatastatin G1 −8.42± 0.57 1.64± 1.10
Gatastatin G2 −8.11± 0.44 2.43± 1.56

All gatastatin derivatives were docked against γ tubulin in
the GDP binding site; all yielded a consensus, except for the
compound S15. For each of them, table 13 lists the number
of runs required to get a consensus, the average score on the
cluster, and the mean predicted Kd value. Compound S11 has
the highest predicted affinity, but it took four runs to obtain
a consensus, possibly indicating some variability in the bind-
ing poses of this ligand. Among the compounds that yielded
a consensus within the first run, S5 has the lowest Kd value.
Figure 14 shows the PLIF of the MOE poses of gatastatin and
its derivatives, except S15. The compound forming the highest
number of interactions is S4, but as its binding affinity is among
the lowest predicted ones, these interactions may not be high
energy.

Consensus Docking: Site Finder results

Except for gatastatin G2 in site 2, which required eight runs,
no clear consensus was obtained. A high degree of variability
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was noticeable through visual inspection of the docked poses
in MOE, suggesting that binding to these sites may not be very
specific. For gatastatin G1, this hypothesis is supported by the
docking scores, which were lower than the binding energy in
the GDP binding site. Table 14 summarises this analysis; for the
compounds that did not yield a consensus cluster, the scores and
equivalent Kd values of the top-scoring MOE pose are reported.
It should be noted that, since no consensus was obtained, these
results are even more purely indicative.

Table 13: Gatastatin derivatives consensus results.

Compound Number of runs
Score

(kcal/mol)
Equivalent Kd

(µM)

S3 1 −8.23± 0.48 2.11± 1.51
S4 4 −7.58± 0.50 5.85± 3.20
S5 1 −9.42± 0.63 0.39± 0.39
S6 2 −8.96± 0.74 0.87± 0.80
S7 2 −8.88± 0.83 1.27± 1.42
S8 3 −8.29± 0.58 2.02± 1.24
S10 5 −8.59± 0.42 1.10± 0.68
S11 4 −9.29± 0.72 0.45± 0.29
S12 1 −9.04± 0.82 0.75± 0.49
S13 2 −8.68± 0.51 0.99± 0.54
S14 3 −7.94± 0.41 3.04± 1.47

Figure 14: PLIF of gatastatin and its derivatives in the GDP binding
site.

Consensus Docking: putative colchicine site

Three runs were required to obtain a consensus for colchicine.
The average score value on the cluster was −6.01±0.05 kcal/mol,
which resulted in a mean Kd of 58.16± 4.99 µM.
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Table 14: Docking scores in the binding sites from Site Finder.

Compound Site 2 Site 3
Score

(kcal/mol)
Kd

(µM)
Score

(kcal/mol)
Kd

(µM)

G1 −7.46 5.50 −7.43 5.78
G2 −7.14± 0.11 9.46± 1.69 −8.35 1.30

Regarding gatastatin G1 and G2, a single run was enough
to identify a consensus among the three programs. Their mean
scores and Kd values are listed in table 15. Overall, they showed
similar affinities, and both seem to have a higher affinity to γ

than colchicine in this site.

Table 15: G1 and G2 binding affinities to the putative colchicine site
on γ tubulin.

Compound Score (kcal/mol) Equivalent Kd (µM)

Gatastatin G1 −7.31± 0.24 7.48± 2.79
Gatastatin G2 −7.26± 0.20 8.08± 2.91

Blind Docking

As shown in figure 15, which shows MOE results, the vast major-
ity of the poses resulting from docking simulations performed
in the absence of the co-complexed GDP were located within its
binding site, which is shaded in red. A gatastatin G2 pose was
also arranged near the putative colchicine site. Few gatastatin
G2 poses are located in the Site Finder site 2, shown in green,
while a single G1 pose is docked into site 3 (blue). Vina and
AutoDock agreed with MOE in identifying the GDP cleft as the
primary interaction site, as the best scoring poses are located
there. However, some more variability was observed as more
poses arranged in Site Finder sites 2 and 3 and identified the
putative colchicine site, too.

5.3.2 α-β Tubulin

Consensus Docking

As stated previously, consensus docking simulations on the α-β
dimer were entirely focused on the colchicine binding site.
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Figure 15: G1 and G2 blind docking poses on γ tubulin.

Redocking of colchicine resulted in a clear inter-program
consensus, and all redocked poses were highly similar to the co-
complexed one (RMSD < 1 Å). Mean binding energy values were
around −9.9 kcal/mol (Kd around 0.14 µM) for all receptors.

Table 16 provides an overview of the number of runs re-
quired to obtain a consensus for each ligand in the nine human
tubulin models. All gatastatin derivatives were investigated.
Such compounds as gatastatin G1, S3, S7, and S8 gave a clear
consensus within the first five runs in all receptors while other
ligands, especially S13-15, did not yield a consensus for most
α-β structures.

As they are considered important in glioblastoma multiforme
(ref. chapter 2), consensus docking results for tubulin α-βIIa, III,
and IVa are discussed more in-depth. Their average scores and
Kd values are reported in table 17. A consensus for compounds
S11, 13, 14, and 15 was not frequently found. The other ligands
have similar predicted affinities, with S4 on the lowest end of
the range of affinities and S10 on the highest one. It should also

60



5.3 results

be noted that a consensus for gatastatin G2 was reached only by
relaxing the RMSD threshold for both α-βIIa and III.

Results for all other α-β structures are reported in the Sup-
plementary Material (A) in tables 33-38.

Blind Docking

Similarly to what was observed for γ tubulin, gatastatin dock-
ing on the α-β polymerised dimer in the absence of the GDP
molecule in the exchangeable site on β resulted in the major-
ity of the docked poses located in this same cleft. Figure 16

illustrates these results for α-βIII; similar results were obtained
for the other models. Gatastatin G1 is depicted in magenta,
G2 in cyan. The GTP molecule at the non-exchangeable site is
depicted in red.

Figure 16: Blind docking results on α-βIII.
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6
A D M E T P R O P E RT I E S A N A LY S I S

This section focuses on the analysis of the pharmacokinetic properties
of gatastatin and its derivatives.

6.1 materials and methods

Physicochemical descriptors, pharmacokinetic properties and
drug-likeness of gatastatin and its derivatives were predicted
using the commercial software ADMET Predictor 10.2 by Sim-
ulations Plus and the online resources SwissADME [14] and
pkCSM [15].
The results from the three tools were then compared.

6.1.1 SwissADME

SwissADME is an online tool developed by the Swiss Institute
of Bioinformatics to compute physicochemical descriptors and
pharmacokinetics of one or multiple small molecules.
Inputs can be provided either in a list of SMILES or by directly
drawing the molecule in a specific window.
Upon prediction completion, a panel summing up its properties
will appear for each compound. The properties are divided as
follows:

graphical overview : 2D depiction of the compound, canon-
ical SMILES and Bioavailability Radar, shown in figure 17. This
first section gives a graphical description of the molecule and
its drug-likeness.
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admet properties analysis

Figure 17: Example of SwissADME Bioavailability Radar.

The pink area represents the optimal range for each of the
listed properties:

• Lipophilicity: XLOGP3 between -0.7 and +5.0;
• Size: molecular weight between 150 and 500 g/mol;
• Polarity: Topological Polar Surface Area (TPSA) between

20 and 130 Å2;
• Solubility: logS lower than 6;
• Saturation: fraction of carbons in the sp3 hybridization not

less than 0.25;
• Flexibility: no more than 9 rotatable bonds.

The compound in the example of figure 17 is predicted not to
be orally available because it is too flexible and too polar [24].

physicochemical properties :

• Formula
• Molecular weight
• Number of heavy atoms
• Number of heavy aromatic atoms
• Fraction of carbons in the sp3 hybridisation
• Number of rotatable bonds
• Number of hydrogen bond acceptors
• Number of hydrogen bond donors
• Molar refractivity, i.e. the measure of the total polarizabil-

ity of a mole of the given compound
• TPSA
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lipophilicity : results from five different partition coeffi-
cient predictors are reported.

• iLOGP: implicit logP method developed by the Swiss Insti-
tute of Bioinformatics. It is a physics-based multiple linear
model based on two GB/SA (Generalized Born/Solvent
Accessible Surface Area, among the most commonly used
implicit solvent model combinations) parameters [23].

• XLOGP3: atomistic and knowledge-based approach calcu-
lated by the XLOGP program, version 3.2.2, provided by
the Shanghai Institute of Organic Chemistry.

• WLOGP: atomistic method based on the atom type classi-
fication system developed in 1999 by S. A. Wildman and
G. M. Crippen [59].

• MLOGP: predictive structure-log P model obtained by mul-
tiple regression analysis. The topological method provided
by SwissADME was implemented from [48, 47, 43].

• SILICOS-IT: hybrid fragmental/topological method calcu-
lated by FILTER-IT program, version 1.0.2, provided by
SILICOS-IT.

A consensus is calculated by averaging the five predictors.

water solubility : results from three different approaches
are provided.

• ESOL: it stands for Estimated SOLubility. It is a method
for estimating the aqueous solubility of a molecule directly
from its structure. The model was implemented based on
the work of J. S. Delaney [25].

• Ali: topological method implemented from the study of
Ali et al. [16].

• SILICOS-IT: a fragmental method calculated by FILTER-IT
program, version 1.0.2, provided by SILICOS-IT.

Along with the log S value, a Solubility Class is given for each
predictor. In log S scale, it is calculated as follows:

Insoluble <− 10 < Poorly < −6 < Moderately < −4 <
< Soluble <− 2 < Very < 0 < Highly

pharmacokinetics : this section lists such ADME proper-
ties as gastrointestinal (GI) absorption, skin permeation, inter-
action with cytochromes P450 and permeability glycoprotein
(P-gp), and blood-brain barrier (BBB) permeation.
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Interactions with P-gp and cytochromes are predicted through
an SVM (Support Vector Machine) model, i.e. a machine learn-
ing classifier, while skin permeation is provided as log Kp, where
Kp indicates the skin permeability, i.e. the rate of a chemical pen-
etrating the stratum corneum. It is calculated with a Quantitative
Structure-Property Relationship (QSPR) model implemented
from [51].

druglikeness estimations : qualitative assessments of
the chance for a molecule to become an oral drug with respect
to bioavailability, based on several filters:

Lipinski (Pfizer) filter, implemented from [43]:
• Molecular weight ≤ 500

• MLOGP ≤ 4.15

• Number of hydrogen bond acceptors (expressed as the
sum of nitrogen and oxygen atoms) ≤ 10

• Number of hydrogen bond donors (expressed as the sum
of NH and OH groups) ≤ 5

Ghose filter, implemented from [32]:
• 160 ≤ molecular weight ≤ 480

• -0.4 ≤ WLOGP ≤ 5.6
• 40 ≤ molar refractivity ≤ 130

• 20 ≤ number of atoms ≤ 70

Veber (GSK) filter, implemented from [57]:
• Number of rotatable bonds ≤ 10

• TPSA ≤ 140

Egan (Pharmacia) filter, implemented from [27]:
• WLOGP ≤ 5.88

• TPSA ≤ 131.6

Muegge (Bayer) filter, implemented from [49]:
• 200 ≤ molecular weight ≤ 600

• -2 ≤ XLOGP ≤ 5

• TPSA ≤ 150

• Number of rings ≤ 7

• Number of carbon atoms > 4

• Number of heteroatoms > 1

• Number of rotatable bonds ≤ 15

• Number of hydrogen bond acceptors ≤ 10

• Number of hydrogen bond donors ≤ 5
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Along with the Abbott bioavailability score, which predicts a
compound’s probability of having at least 10% oral bioavailabil-
ity in rats [46].

medicinal chemistry : parameters that help to understand
whether a molecule is suitable for optimisation.

• PAINS: Pan Assay Interference Structures are chemical
compounds that often give false-positive results in high-
throughput screens.

• Brenk: Structural Alert consists in a list of 105 fragments
identified by Brenk et al. [20] to bear properties responsi-
ble for poor pharmacokinetics such as toxicity, chemical
reactivity, and metabolic instability.

• Leadlikeness filter: a compound passes this test if it has a
molecular weight between 250 and 350 g/mol, XLOGP ≤

3.5, and 7 or less rotatable bonds. [55]
The concept of leadlikeness is similar to drug-likeness
yet focusing on physicochemical boundaries defining a
good lead, i.e. a molecular entity suitable for optimisation.
Leads are subjected to chemical modifications that will
most likely increase size and lipophilicity; therefore, they
are required to be smaller and less hydrophobic than drug-
like molecules.

• Synthetic accessibility: this calculation provides a score
from 1 (very easy) to 10 (very difficult).

When all inputs have been processed, a Show BOILED-Egg

(acronym for Brain Or IntestinaL EstimateD permeation) button
appears. The resulting image shows the graphical output of
two important ADME parameters: the passive gastrointestinal
absorption and the BBB permeation. It is an egg-shaped classi-
fication plot in which the yolk represents the physicochemical
space for highly probable BBB permeation and the white is for
GI absorption. The Egg is based on just two descriptors, namely
WLOGP for lipophilicity and TPSA for apparent polarity.
Moreover, colour-coding gives information about active efflux
from the brain or the GI lumen: blue for P-gp substrates and
red for non-substrates.

6.1.2 pkCSM

pkCSM is another tool available online. Its calculations rely on
graph-based signatures: chemical entities can be mathematically
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represented through a graph model having atoms as nodes and
covalent bonds as edges. The graph can then be decorated
with labels indicating physicochemical properties of said atoms
and bonds, and structural patterns can be identified. Several
descriptors can thus be extracted from the graph model of a
compound; these descriptors, along with experimental data on
ADMET properties, can be used to train predictive models via
machine learning methods. pkCSM calculates physicochemical
properties (molecular weight, partition coefficient, et cetera) and
30 such predictors, divided into five major classes:

absorption

• Caco-2 permeability: predicts the logarithm of the ap-Caco-2 cells are a
human epithelial

colorectal
adenocarcinoma cell
line. A monolayer of
these cells is used as
an in vitro model of

the human
intestinal mucosa to

predict oral drugs
absorption.

parent permeability coefficient (log Papp, where Papp is
expressed in cm/s); it is considered high if the predicted
values are greater than 0.90.

• Intestinal absorption: the predicted proportion of the com-
pound absorbed through the small intestine is given. A
compound with absorbance less than 30% is predicted to
be poorly absorbed.

• Water solubility: the log S value is given, i.e. the 10-based
logarithm of the molar concentration.

• P-glycoprotein substrate and P-glycoprotein I and II in-
hibitor: a categorical (yes/no) value is provided.

• Skin permeability: the log Kp value is provided. A log
Kp value greater than 2.5 indicates a relatively low skin
permeability.

distribution

• VDss (Volume of Distribution at a steady-state): log VDss
is provided. The predicted value is considered to be low
if below -0.15 (VDss < 0.71 L/kg) and high if above 0.45

(VDss > 2.81 L/kg).
• Fraction unbound (Fu): the fraction that would be un-

bound in plasma is predicted.
• BBB permeability: this parameter is provided as log BB,

i.e. the logarithmic ratio of brain-to-plasma drug concen-
trations. Compounds having log BB < -1 are predicted
to be poorly distributed to the brain, while log BB > 0.3
indicates a rapid crossing of the barrier.

• CNS permeability: the log PS, i.e. blood-brain permeability-
surface area product, is calculated. A compound having
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log PS < -3 is predicted to be unable to penetrate the cen- The experimental
derivation of PS is a
more direct
measurement of
brain penetration:
since it is obtained
from in situ brain
perfusions by
injecting the
compound directly
into the carotid
artery, it lacks the
systemic
distribution effects
that may distort
brain penetration
measurements.

tral nervous system, while log PS values above -2 indicate
CNS permeation.

metabolism : a categorical value (yes/no) predicts whether
the compound is likely to be an inhibitor of the isoforms CYP1A2,
CYP2C19, CYP2C9, CYP2D6, CYP3A4 of the cytochrome P450,
or a substrate of the CYP2D6 and CYP3A4 isoforms. A com-
pound is considered a CYP450 inhibitor if a concentration under
10 µM results in 50% inhibition.

excretion

• Renal organic cation transporter 2 (OCT2) substrate: a
categorical value indicating whether the molecule is likely
to be an OCT2 substrate.

• Total clearance: the prediction is given as the logarithm of
the total clearance CLtot, which is expressed in mL/min/kg.

toxicity

• Rat LD50: given in mol/kg
• AMES toxicity: mutagenicity prediction (categorical value)
• T. Pyriformis toxicity: the prediction is given in log µg/L;

a value above -0.5 is considered toxic.
• Minnow toxicity: the model calculates the logarithm of

LC50. Values below -0.3 (LC50 < 0.5 mM) indicate high
acute toxicity.

• Maximum Recommended Tolerated Dose (MRTD): in log-
arithmic scale, MRTD ≤ 0.477 log(mg/kg/day) is regarded
as low, while a MRTD above 0.477 is considered high.

• Oral rat chronic toxicity, given in log(mg/kgbw/day)
• Hepatotoxicity: categorical value
• Skin sensitization: categorical value
• Cardiotoxicity: hERG I and II inhibitors (categorical value)

Inputs can be provided either in a SMILES file or by simply
entering a single SMILES string. The user is free to decide which
of the ADMET properties he wants to obtain as output.

6.1.3 ADMET Predictor

Simulations Plus ADMET Predictor is a state-of-the-art ADMET
property prediction software. It is a machine learning software
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tool that quickly and accurately predicts over 175 pharmacoki-
netic properties starting simply from the 2D structure of the
compound.
Loading a SMILES file containing the ligands of interest isSMILES is the

acronym for
Simplified

Molecular Input
Line Entry System.

It is a means to
represent a

molecule’s structure
with a short ASCII

string.

enough to get started. Upon selecting the ADMET button in
the main window, the software will prompt the selection of
the desired features, and the Calculate button will start the
calculations. The resulting table can be exported as an Excel
spreadsheet.
Along with most of the properties also provided by the other
two tools, Simulations Plus offers some interesting cumulative
scores linked to the compound’s risk of failing as a drug due
to ADMET issues and the related codes explaining which these
issues are. These scores are:

• Absn Risk: a score between 0 and 8, indicating the number
of potential oral absorption problems the compound is
likely to have.

• RuleOf5: a score indicating the number of potential prob-
lems a compound is expected to have with passive oral
absorption, according to Lipinski’s Rule of Five.

• CYP Risk: risk connected with cytochromes P450 oxida-
tion. The score is in the range 0-6 and indicates the number
of potential problems the compound might have due to
metabolism by one or more of the five major cytochrome
P450 isoforms.

• MUT Risk: a score in the 0-5.4 range indicating the risk of
mutagenicity.

• TOX Risk: a score in the 0-6 range indicating the number
of predicted toxicity problems.

The ADMET Risk prediction aggregates all these results in a full
ADMET risk score. This score is in the range 0-22 and indicates
the number of potential ADMET problems the investigated
compound may have.

6.2 results

This section presents the most relevant ADMET properties for
the analysis of gatastatin and its derivatives. Where applicable,
the outputs of the three predictors are compared. Given its
reliability, Simulations Plus is regarded as a golden standard
and is used as a means of comparison for the other two tools.
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6.2.1 Absorption

Overall, the compounds were predicted moderately to poorly
soluble, with some variability among the results of the different
tools. As shown in table 18, which reports the log S values, most
results from SwissADME seem to be in line with the Simulations
Plus predictor, while pkCSM differs some more. However, it
must be noted that a consensus is not achieved even among the
three predictors provided by SwissADME (i.e. ESOL, Ali, and
SILICOS-IT), with the results from the SILICOS-IT tool being
the ones that differ the most.

Table 18: Log S values.

Compound Simulations Plus pkCSM ESOL Ali SILICOS-IT

G1 −6.50 −5.54 −5.48 −5.88 −8.79
G2 −6.66 −4.32 −5.61 −6.01 −8.86
S3 −6.72 −3.99 −5.34 −5.56 −8.59
S4 −5.68 −4.25 −5.51 −6.02 −6.53
S5 −6.79 −3.93 −6.02 −6.53 −9.52
S6 −6.77 −3.65 −6.33 −6.97 −9.22
S7 −6.20 −3.68 −5.27 −5.78 −8.10
S8 −6.59 −4.37 −5.89 −6.56 −9.22
S10 −7.64 −3.60 −6.80 −7.44 −11.24
S11 −7.04 −3.80 −6.87 −7.61 −9.95
S12 −6.47 −3.90 −5.80 −6.42 −8.84
S13 −6.90 −4.65 −6.42 −7.19 −9.96
S14 −6.97 −4.60 −6.14 −6.64 −9.60
S15 −7.88 −3.77 −7.33 −8.07 −11.96

According to pkCSM, all compounds are well absorbed by
the human intestine since their predicted absorbed percentage
is well above 30%, as shown in figure 18.

Results of the prediction of the interaction with P-glycoprotein
are reported in table 19, which reports Yes if the compound is
likely to be a P-glycoprotein substrate, and No otherwise. There
is a reasonable degree of agreement between Simulations Plus
and SwissADME, while the results from pkCSM are almost
entirely unrelated.
Regarding the prediction of P-glycoprotein inhibitors, on the
other hand, there is a complete consensus between Simulations
Plus and pkCSM, that both predict all compounds to be P-gp
inhibitors, while SwissADME does not provide this parameter.
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To sum up, according to Simulations Plus ADMET predictor,
all investigated compounds are likely to be both substrates and
inhibitors of P-gp.

Figure 18: Intestinal absorption as calculated by pkCSM.

Table 19: P-glycoprotein substrate prediction.

Compound Simulations Plus SwissADME pkCSM

G1 Yes Yes No
G2 Yes Yes No
S3 Yes Yes No
S4 Yes Yes No
S5 Yes Yes No
S6 Yes Yes No
S7 Yes Yes Yes
S8 Yes Yes No
S10 Yes No Yes
S11 Yes Yes No
S12 Yes Yes Yes
S13 Yes Yes No
S14 Yes Yes No
S15 Yes Yes No
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Lastly, Absn Risk and RuleOf5 scores by Simulations Plus
are reported in figure 19 and tables 20 and 21.

Figure 19: Absn Risk scores.

Table 20: Absn Risk codes.

Compound Absn Risk code

G1 Size, Lipophilicity, Water solubility
G2 Size, Lipophilicity, Water solubility
S3 Lipophilicity, Water solubility
S4 Size, Lipophilicity, Water solubility
S5 Size, Lipophilicity, Water solubility
S6 Size, Lipophilicity, Water solubility, H-bond acceptors
S7 Size, Lipophilicity, Water solubility
S8 Size, Lipophilicity, Water solubility
S10 Size, Lipophilicity, Water solubility
S11 Size, Lipophilicity, Water solubility, H-bond acceptors
S12 Size, Lipophilicity, Water solubility
S13 Size, Lipophilicity, Water solubility
S14 Size, Lipophilicity, Water solubility
S15 Size, Lipophilicity, Water solubility
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Table 21: Lipiski’s Rule of Five violations.

Compound RuleOf5 Risk score RuleOf5 Risk code

G1 0
G2 0
S3 0
S4 0
S5 0
S6 1 Molecular weight
S7 0
S8 0
S10 1 Molecular weight
S11 1 Molecular weight
S12 0
S13 1 Molecular weight
S14 1 Molecular weight
S15 1 Molecular weight

6.2.2 Distribution

Volume of distribution (VDss) and fraction unbound (Fu) values
from Simulations Plus and pkCSM are reported in tables 22

and 23. SwissADME does not provide information about these
parameters.
Again, the results of pkCSM highly differ from the values pro-
vided by Simulations Plus.
As stated in section 6.1.2, pkCSM provides some guidelines to
interpret numeric values: log VDss is low if below -0.15 and
high if above 0.45. According to these rules, all VDss values as
calculated by pkCSM would be low; those provided by Simu-
lations Plus would be much higher, but not so much as to be
considered high by the pkCSM guidelines.

Blood-brain barrier permeation is among the most critical
parameters for this application. Table 24 presents a comparison
between the values of log BB provided by Simulations Plus and
pkCSM. As previously noted for other predictors, there is some
variability between the two tools, both in pairwise comparisons
and in the overall range of the values.
According to the pkCSM guidelines, a log BB lower than -1 indi-
cates poor distribution to the brain, while compounds having
log BB > 0.3 are predicted to cross the BBB readily. None of
the analysed compounds shows a high capability to cross the
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blood-brain barrier, as most of them have a log BB value smaller
than -1; the highest log BB value, -0.111 of the derivative S3, is
still quite far from the 0.3 threshold.

Table 22: Log VDss predictions.

Compound Simulations Plus pkCSM

G1 0.139 −0.470
G2 0.164 −0.555
S3 0.182 −0.335
S4 0.175 −0.606
S5 0.208 −0.451
S6 0.120 −0.601
S7 0.234 −0.542
S8 0.211 −0.506
S10 0.129 −1.023
S11 0.191 −0.526
S12 0.322 −0.484
S13 0.279 −0.411
S14 0.235 −0.464
S15 0.203 −0.950

Table 23: Fraction unbound predictions.

Compound Simulations Plus pkCSM

G1 5.1% 25.4 %
G2 4.0% 22.1 %
S3 3.6% 26.3 %
S4 5.3% 14.8 %
S5 5.1% 20.5 %
S6 4.4% 26.6 %
S7 4.8% 22.5 %
S8 4.7% 22.3 %
S10 3.1% 35.6 %
S11 4.4% 24.2 %
S12 4.8% 19.9 %
S13 4.7% 19.7 %
S14 4.1% 19.5 %
S15 3.1% 34.2 %
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Table 24: Comparison between the Simulations Plus and pkCSM logBB
predicted values.

Compound Simulations Plus pkCSM

G1 −0.589 −1.244
G2 −0.716 −1.182
S3 −0.515 −0.111
S4 −0.715 −1.234
S5 −0.558 −1.195
S6 −0.607 −1.399
S7 −0.652 −0.863
S8 −0.659 −1.226
S10 −0.374 −1.232
S11 −0.584 −1.389
S12 −0.641 −0.820
S13 −0.627 −1.217
S14 −0.692 −1.173
S15 −0.353 −1.222

Table 25: Log PS values calculated by pkCSM, indicating CNS pene-
tration.

Compound Log PS

G1 −3.010
G2 −3.070
S3 −2.052
S4 −3.197
S5 −3.082
S6 −3.339
S7 −3.234
S8 −3.047
S10 −2.787
S11 −3.212
S12 −3.107
S13 −2.929
S14 −2.952
S15 −2.669

In addition to the log BB value, pkCSM provides a log PS
value that may hold a more truthful measure of the capability
to penetrate the brain. Results from this predictor are shown
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in table 25. Most of the compounds have a log PS value under
-3, indicating that they cannot penetrate the brain. Again, the
highest value is the log PS of derivative S3, closer to the -2
threshold, indicating good CNS permeability.

SwissADME summarises GI absorption, BBB permeation,
and P-glycoprotein interaction predicted values in the Boiled-
EGG shown in figure 20.
The results of the BBB permeability predictions from Swis-
sADME are in line with the calculations by pkCSM in the fact
that the only derivative that is predicted to be able to cross the
barrier is the one having the highest log BB value in pkCSM.
Again, no compound is predicted to be able to cross the blood-
brain barrier readily.
Regarding intestinal absorption, there is a consensus between
SwissADME and pkCSM on all compounds except S11 and S15;
SwissADME predicts these two molecules to be poorly absorbed,
while according to pkCSM (ref. to figure 18), their absorbed
percentage is high.

Figure 20: Boiled-EGG calculated by SwissADME.

6.2.3 Metabolism

All three tools provide a prediction on whether the investigated
compounds are inhibitors of the five major cytochromes P450

through a categorical value. The results are compared in table 26.
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For most compounds, there is some degree of agreement among
the predictions by the three tools on CYP2C19 and CYP3A4. Re-
garding CYP1A2 and CYP2C9, SwissADME and pkCSM agree
on most compounds but provide a result opposite to Simulations
Plus. Lastly, results for cytochrome CYP2D6 are a combination
of the cases described previously.

Table 26: Cytochromes P450 inhibitors.

Compound CYP1A2 CYP2C19 CYP2C9 CYP2D6 CYP3A4

G1 s n l s n l s n l s n l s n l

G2 s n l s n l s n l s n l s n l

S3 s n l s n l s n l s n l s n l

S4 s n l s n l s n l s n l s n l

S5 s n l s n l s n l s n l s n l

S6 s n l s n l s n l s n l s n l

S7 s n l s n l s n l s n l s n l

S8 s n l s n l s n l s n l s n l

S10 s n l s n l s n l s n l s n l

S11 s n l s n l s n l s n l s n l

S12 s n l s n l s n l s n l s n l

S13 s n l s n l s n l s n l s n l

S14 s n l s n l s n l s n l s n l

S15 s n l s n l s n l s n l s n l

Legend: s Simulations Plus n SwissADME l pkCSM
Colour coding: Yes / No

pkCSM provides a prediction on whether the compounds
are CYP2D6 or CYP3A4 substrates. The tool predicted all com-
pounds to be substrates of CYP3A4 and not of CYP2D6. These
results agree with the Simulations Plus software except for the
S3 derivative, which is predicted to be a CYP2D6 substrate by
Simulations Plus.

Figure 21 reports the results of the CYP Risk score prediction.
All compounds have an alert about high microsomal clearance,
and most of them are predicted to have a high CYP1A2 clearance.
Derivative S3, which has the highest CYP Risk score, has also
an alert about CYP2D6 clearance.
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Figure 21: Simulations Plus CYP Risk.

6.2.4 Excretion

Table 27: OCT2 substrates.

Compound Simulations Plus pkCSM

G1 No No
G2 Yes No
S3 No No
S4 Yes No
S5 No No
S6 No No
S7 No No
S8 No No
S10 No No
S11 No No
S12 No No
S13 No No
S14 Yes No
S15 No No

Simulations Plus predicts the clearance mechanism to be pri-
marily due to metabolism and not to renal or hepatic uptake,
for all compounds.
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Predictions on whether the compounds are likely to be Or-
ganic Cation Transporter 2 (OCT2) are compared in table 27,
while table 28 reports the total clearance as calculated by pkCSM.
Only results from Simulations Plus and pkCSM are reported, as
SwissADME does not provide information about excretion.

Table 28: Total clearance.

Compound
Total Clearance
log(mL/min/kg)

G1 0.246
G2 0.407
S3 0.249
S4 0.533
S5 0.523
S6 0.417
S7 0.307
S8 0.380
S10 0.337
S11 −0.199
S12 0.462
S13 0.536
S14 0.563
S15 0.493

6.2.5 Toxicity

Only Simulations Plus and pkCSM predictions are reported for
toxicity, as SwissADME does not provide such information.

Animal-based assays derived indicators

Figure 22 summarises the results of Minnow toxicity predictions
graphically. Once again, it is noticeable how often pkCSM’s
results differ from Simulations Plus. All compounds other than
S7 and S12 are predicted by pkCSM to cause high acute toxicity,
while results from Simulations Plus are much lower in all cases.

Regarding Ames toxicity, according to pkCSM, no compound
is expected to be mutagenic, while Simulations Plus predicts
gatastatin G2 and derivatives S7 and S14 to be Ames positive.
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Figure 22: Comparison of Minnow toxicity predictions. Simulations
Plus results are depicted in dark grey, while pkCSM is in light grey.

Toxicity predictors in humans

pkCSM provides predictions of the Maximum Recommended
Tolerated Dose on a logarithmic scale. Simulations Plus reports
the Maximum Recommended Therapeutic Dose qualitatively
to indicate whether the MRTD is higher or lower than 3.16

mg/kg/day (circa 0.5 in logarithmic scale). These results are
presented in table 29.

The two tools agree that no compound is considered likely
to cause skin sensitisation or hepatotoxicity, except for the S10

derivative, which pkCSM predicts to be hepatotoxic.
Regarding cardiotoxicity, both tools provide a categorical

value indicating potential hERG inhibition. pkCSM distin-
guishes between hERG I and II channels, while Simulations
Plus refers simply to hERG. According to the Human Protein
Atlas, hERG I, encoded by gene KCNH2, is almost 4-fold more
expressed in cardiomyocytes than hERG II, encoded by KCNH6.
Results of the cardiotoxicity evaluation are compared in table
30.

Lastly, table 31 report the Simulations Plus TOX Risk and
figure 23 shows the ADMET Risk codes, summarising all Risk

predictions.
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Table 29: Maximum Recommended Tolerated and Therapeutic Dose
predictions by pkCSM and Simulations Plus, respectively.

Compound
pkCSM

log(mg/kg/day)
Simulations Plus

above/below

G1 0.577 ↑

G2 0.767 ↓

S3 0.739 ↑

S4 0.673 ↑

S5 0.700 ↑

S6 0.705 ↑

S7 0.558 ↑

S8 0.788 ↓

S10 0.613 ↑

S11 0.682 ↓

S12 0.511 ↑

S13 0.750 ↓

S14 0.726 ↓

S15 0.592 ↓

Table 30: Cardiotoxicity prediction.

Compound Simulations Plus pkCSM

G1 l I II
G2 l I II
S3 l I II
S4 l I II
S5 l I II
S6 l I II
S7 l I II
S8 l I II
S10 l I II
S11 l I II
S12 l I II
S13 l I II
S14 l I II
S15 l I II

Colour coding: Not inhibitor Inhibitor
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Figure 23: Full ADMET Risk scores. Original range: 0-22, truncated
to 10 for clarity.
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7
D I S C U S S I O N

This concluding section summarises and integrates docking and AD-
MET properties prediction results.

While not as accurate as other prediction methods, blind dock-
ing suggests gatastatin’s preference towards the GTP binding
site on γ tubulin. The Kd values calculated from consensus
docking results support this hypothesis: as shown in table 32,
the lowest values are those obtained in the cleft. The gatastatin
G2 score in site 3 is the absolute least, but since it was not ob-
tained from a consensus, it was considered less reliable than the
average scores.

Table 32: Comparison of predicted Kd values of gatastatin G1 and G2

on γ tubulin identified sites.

Compound Kd (µM)
GDP site Putative colch. site Site 2 Site 3

G1 1.64± 1.10 7.48± 2.79 5.50 5.78
G2 2.43± 1.56 8.08± 2.91 9.46± 1.69 1.30

Chinen et al. attributed gatastatin’s specificity for γ tubulin
to the O7 benzyl group. The PLIF analysis performed on the
consensus poses in the GDP binding site on γ tubulin gave
similar results: figure 24 shows a G1 and a G2 pose, and the O7

benzyl ring is highlighted in both, meaning it is involved in the
interaction with the protein. As shown in figure 25 for gatastatin
G2, the ring forms an arene-H interaction. The blue-shaded
regions in figure 25 are solvent-exposed areas. Shintani et al.
considered gatastatin G2 the most promising derivative based
on a cytotoxicity analysis on HeLa cells [52] and identified the
O6 as an important position for γ tubulin inhibition. However,
the propargyl group in position O6 does not seem to interact
with the receptor in any of the analysed docking poses.
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(a) Gatastatin G1. (b) Gatastatin G2.

Figure 24: Substructures of G1 and G2 interacting with γ tubulin in
the GDP site.

Figure 25: G2 interactions summary

According to the consensus docking results, gatastatin does
not show a clear preference towards γ tubulin: the predicted
binding affinities for α-β are similar, when not higher, than on
γ tubulin. These results do not agree with the binding assay
results by Chinen et al., which showed gatastatin G1’s 12-fold
higher affinity for γ than to α-β.

Moreover, some results of the pharmacokinetic analysis
showed that neither G1 nor G2 seem to be able to cross the
blood-brain barrier, which would make them unsuitable can-
didates for a possible therapeutic application for glioblastoma
multiforme. Also, Simulations Plus predicted G2 to be an hERG
inhibitor.
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Of all the analysed compounds, the only one predicted to
cross the BBB is S3, which also has a better toxicity profile than
G2. Its predicted binding affinity to γ in the GDP binding site is
an intermediate value between gatastatin G1 and G2: S3 scored
−8.23± 0.48 kcal/mol and the mean equivalent Kd is 2.11± 1.51
µM. Its interaction profile is shown in figure 26. Similarly to
G2, the O7 benzyl group makes a strong arene-H interaction,
but it does not interact with the same residue as the molecule
has a different orientation inside the cleft. As shown in figure
27, the O7 benzyl rings of the two docked poses do not overlap.
In agreement with Shintani et al. observations, as they do not
establish interactions with the receptor, the O6 position and the
dioxolane seem suitable sites for derivatisation.

As shown in figure 28, S3 is the smallest of all gatastatin
derivatives, leaving room for further derivatisation to improve
its binding, but the results of BBB permeability (figure 20) sug-
gest there is a limited scope to do so. In order to readily cross
the blood-brain barrier, in fact, a molecule ought to be relatively
small.

Figure 26: S3 interaction profile.

Comparison with available experimental data

Comparison of predicted colchicine and gatastatin binding affini-
ties for α-β tubulin are closer to Q. Wang’s results than to what
was reported by Chinen et al.

89



discussion

Figure 27: S3-G2 comparison in the GDP binding site.

On the other hand, colchicine docking results on α-β led
to much higher predicted binding affinities than those on γ

tubulin, similarly to the binding assay results by Chinen et al.

As previously stated, no indication of the specificity of the
compound for γ tubulin emerged from the comparison of gatas-
tatin binding to γ and α-β. Again, this result is in contrast with
what was found by Chinen et al.

In addition to this, it must be noted that α-β tubulin expres-
sion is constitutive to all cells, while γ makes less than 1% of the
total tubulin content of the cell. Even when it is overexpressed,
as it was found for glioblastoma multiforme cancer cells, high
specificity for γ tubulin would be needed to target it in vivo.
This is all the more true if one considers that the proposed in-
hibitory mode of action of gatastatin is to prevent GTP binding
to γ tubulin: the most probable way it could succeed in doing
so within tolerable doses is by having a higher binding affinity
to γ tubulin than GTP itself. As GDP redocking predicted it to
have a higher affinity than gatastatin, and γ has a preference to
bind to GTP than GDP [31], this situation may be considered
unlikely. Figure 29 shows that GDP has a higher number of
interaction points with the receptor.
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Figure 28: Molecular weights of gatastatin and its derivatives, in
ascending order.

Figure 29: Interactions made by GDP in its native binding site on γ.

No conclusive interpretation can be given based on just
computational results, and given their varying degree of agree-
ment with past experiments, further experimental evaluation is
needed to assess them.
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Table 33: Consensus docking results for α-βI.

Compound Score (kcal/mol) Equivalent Kd (µM)

G1 −8.03± 0.89 4.16± 2.87
G2 −9.22± 0.89 0.85± 1.02
S3 −8.48± 0.20 1.10± 0.32
S4 −7.87± 1.26 8.77± 7.73
S5 −8.48± 0.15 1.08± 0.26
S6 - -
S7 −8.60± 0.35 0.99± 0.47
S8 −8.74± 0.79 1.26± 1.07
S10 −10.39± 0.60 0.07± 0.07
S11 - -
S12 −8.95± 0.29 0.54± 0.24
S13 - -
S14 - -
S15 −9.19± 0.65 0.58± 0.58

Table 34: Consensus docking results for α-βIIb.

Compound Score (kcal/mol) Equivalent Kd (µM)

G1 −8.93± 0.58 0.73± 0.52
G2 −9.00± 0.66 0.68± 0.45
S3 −8.89± 0.52 0.74± 0.51
S4 −7.91± 0.43 3.26± 1.72
S5 - -
S6 - -
S7 −8.68± 0.11 0.78± 0.13
S8 −9.00± 0.64 0.68± 0.41
S10 −9.22± 0.63 0.47± 0.32
S11 −9.04± 0.60 0.59± 0.34
S12 −9.04± 0.26 0.46± 0.17
S13 - -
S14 - -
S15 - -
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Table 35: Consensus docking results for α-βIVb.

Compound Score (kcal/mol) Equivalent Kd (µM)

G1 −9.27± 0.38 0.62± 0.41
G2 −9.23± 0.40 0.38± 0.25
S3 −8.85± 0.58 0.81± 0.51
S4 −7.90± 1.00 5.95± 4.63
S5 −8.96± 0.12 0.49± 0.10
S6 −9.99± 0.96 0.27± 0.33
S7 −8.98± 0.40 0.55± 0.26
S8 −9.02± 0.66 0.69± 0.54
S10 −10.37± 0.68 0.09± 0.10
S11 - -
S12 −9.03± 0.27 0.47± 0.17
S13 - -
S14 −9.66± 0.51 0.22± 0.19
S15 −9.67± 0.90 0.44± 0.54

Table 36: Consensus docking results for α-βV.

Compound Score (kcal/mol) Equivalent Kd (µM)

G1 −8.25± 0.38 1.82± 1.02
G2 −9.07± 0.23 0.42± 0.15
S3 −8.91± 0.59 0.78± 0.64
S4 - -
S5 −8.61± 0.15 0.87± 0.23
S6 −9.69± 0.78 0.33± 0.38
S7 −9.11± 0.38 0.44± 0.20
S8 −9.47± 0.76 0.42± 0.43
S10 −9.68± 0.53 0.20± 0.11
S11 −9.26± 0.62 0.50± 0.49
S12 −8.75± 0.32 0.76± 0.31
S13 - -
S14 - -
S15 −9.15± 0.68 0.61± 0.57
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Table 37: Consensus docking results for α-βVI.

Compound Score (kcal/mol) Equivalent Kd (µM)

G1 −8.71± 0.82 1.33± 1.06
G2 - -
S3 −8.71± 0.33 0.82± 0.35
S4 - -
S5 - -
S6 −8.94± 1.27 2.20± 2.74
S7 −9.02± 0.24 0.47± 0.19
S8 −8.66± 1.36 2.53± 1.83
S10 −9.02± 1.16 1.32± 1.34
S11 - -
S12 −8.42± 0.13 1.18± 0.22
S13 - -
S14 - -
S15 - -

Table 38: Consensus docking results for α-βVIII.

Compound Score (kcal/mol) Equivalent Kd (µM)

G1 −8.52± 0.51 1.43± 1.23
G2 −9.73± 0.20 0.14± 0.04
S3 −8.81± 0.52 0.82± 0.50
S4 −7.87± 1.02 6.58± 5.49
S5 - -
S6 −8.96± 0.99 1.26± 1.36
S7 −8.78± 0.13 0.66± 0.14
S8 −9.32± 1.01 0.96± 1.23
S10 −10.22± 0.41 0.08± 0.05
S11 - -
S12 −8.54± 0.32 1.07± 0.44
S13 −8.22± 0.91 4.33± 5.16
S14 - -
S15 −9.06± 1.03 1.55± 2.01
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