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Abstract

Life testing is a fundamental procedure to know the reliability of the devices, to
ensure their operation in all conditions. At Kompetenzzentrum Automobil- und
Industrie-Elektronik (KAI), a new test system is under development, which is
described by a test-plan created and verified by a visual software. Each test-plan
is composed of finite-state machines (FSMs), which allow a modular composition
and extension of a test sequence. The states of an FSM contain Lua code, a script
language used for executing test routines.

Over the time, it became necessary to adapt the tool to build test-plans to new
technologies, make it more performing and improve it to be used in a more complex
context. The tool is divided into two separated modules: the Test-plan Builder,
which provides a graphical user interface (GUI) to graphically create a test-plan;
the Test-plan Checker, used to verify the correctness of the whole test structure.

This thesis focuses both on the user interface and the functionalities. The goal is
to support the hierarchical design of the FSMs, in order to create a simplified view
of more complex test-plans and to better compact their representation. Moreover,
the entire visual platform is redesigned to make it more responsive and user-friendly.
This is obtained by creating the interface from scratch, making a more efficient graph
design tool, improving the code writing thanks to a real-time code suggestion and
completion, and adding several enhancements like a modular layout, an undo-redo
system, and a clever search function. Finally, it is necessary to update the Checker
to support the Lua version 5.3, improve the syntax error recognition ability, and
the verification speed.
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Chapter 1

Introduction

Stress testing is a core activity of semiconductor industries to understand the
reliability of their devices, typically performed using automated test systems. At
KAI, a test system called modular power stress (MoPS) is currently being studied
and developed [1], [2]. It is a distributed test system capable of running different
tests on multiple Devices Under Test (DUTs) controlled by a single local machine.
MoPS is divided into two hierarchical layers: the Host Layer and the Target Layer,
as shown in Figure 1.1.

Host Layer Represents the host machine, which controls the overall test flow,
communicates with the targets, reads the measured data.

Target Layer Contains the list of targets. Each target executes the test, drives
and monitors a DUT. They are accessed via Ethernet from the Host Layer.

The test system consists of FSMs, one for the Host and one for each Target,
and it is stored using the JavaScript object notation (JSON) format. The FSM
attached to a Target defines the test code to be executed on the device, based on
the triggered state. The states of the FSM contain Lua code, while the transitions
allow moving to the next state to be executed. Through specific Lua commands it
is possible to trigger a transition to the specified Target FSMs, in order to define
the test execution flow.

Before the implementation of the test system configuration tool, the test-plans
were manually written in a text editor. Writing complex test-plans was really hard
and uncomfortable, and checking the correctness of the FSMs structure and Lua
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Figure 1.1. MoPS Software Architecture (Image created by Benjamin Steinwender
[3] and modified by Giuseppe Pipero)

code was frustrating. The current tool solved this problem by providing a GUI
to design the FSMs, and a verification system to check for errors, giving a visual
feedback to the user [4]. This really helped test engineers to write complex MoPS
specific test plans and verify the entire structure, obtaining a robust and error
resistant test-plan.

1.1 Motivation

The current Test-plan Builder simplifies drawing FSM diagrams for the MoPS layer.
With time, however, it became necessary to optimize the test design process to meet
the growing need for performance and design. Creating a complex test-plan could
be difficult due to the slow responsiveness of the drawing tool, and the high delay
of the checking phase in case of large FSMs.

The tool should provide an easier graph representation and a more modern
and user-friendly GUI, guaranteeing a smoother graph design mechanism and
better performances in terms of speed. Additionally, it should offer the possibility to
define really large and complex test-plans through sub-FSMs organized hierarchically.
Finally, the updates of the Lua language require an adaptation of the Lua verification
system to support the last introduced features.

2
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1.2 Goals

The goal of this thesis can be summarized into two sub-tasks. First, redesigning the
user interface to improve usability and introduce new visual features. This includes
the following steps:

• Creating a modern GUI,

• Changing the FSM graphical representation,

• Improving the visual graph designing process, in terms of fluency and simple-
ness,

• Introducing hierarchical representation of FSMs,

• Creating a better code suggestion and code completion mechanism,

• Improving the test-plan error visibility giving an overview of all generated
errors,

• Generating a better automatic layout for graphs, and

• Designing a search/replace panel.

The second task includes the test-plan validation update and performance im-
provements. This step should be accountable of the following:

• Upgrading the Lua parser to recognize Lua 5.3 features,

• Updating the validation mechanism to check the correctness of sub-FSMs,

• Improving the error recognition supporting new types of errors,

• Improving the undo/redo functionality to make it more robust, and

• Optimizing the overall performances by reducing the validation time.

The entire application is developed using Java, relying on the JavaFX platform
for representing the GUI.

3
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1.3 Problem Statement

This thesis focuses on the graphical and functional improvements of the existing
Test-plan Builder. Therefore, the following questions arise:

• How to improve the user interface and the graph design?

– How to organize the main layout?

– How to visualize the different FSMs?

– How to optimize the responsiveness of the FSMs’ building process?

– How to improve the FSM representation?

• Which strategy should be adopted to implement hierarchical FSMs?

– How many hierarchical layers should be supported?

– How to graphically represent a sub-FSM?

– How to save/export a project with hierarchical FSMs?

– How to validate the test-plan structure?

• How to improve the test-plan validation?

– How to support Lua 5.3?

– How to speed up the checking process?

– What other Lua errors should be recognized?

1.4 Thesis Outline

This section gives some advice, to better understand the structure of this thesis.
Chapter 1 represents the introduction, where the motivation, goals, and problem
statement are explained. It is really important for getting an overview of the
thesis project. Chapter 2 presents some basic concepts about the technologies used
to implement the system. An expert in coding can skip most of these concepts,
but it is important to read Section 2.7 and Section 2.8. The former is related
to a fundamental library widely used in the project, whereas the latter helps to
understand how the user interface was created. Chapter 3 explains the theoretical

4



1.4 – Thesis Outline

concepts of the system and of the test-plan structure, which are fundamental to
understand the goal of the thesis. Chapter 4 proposes a solution for implementing
the tasks described in Section 1.2, whereas the specific implementation, related
both to the functional and graphical aspects, is explained in Chapter 5. Finally,
Chapter 6 contains an evaluation of the developed tool, and the conclusion follows
in Chapter 7.
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Chapter 2

Technologies used

This chapter illustrates some basic concepts of the technologies used in the project,
focusing on the reason why they were adopted. The key features of the chosen
programming language are also explained. Finally, the framework to build the User
Interface (UI), and its relevant libraries are presented.

2.1 JSON

JSON is a data-interchange format built as a collection of attribute-value pairs and
array data types, used to store and transmit data objects. It is human-readable and
easy to be parsed and generated by machines [5]. Compared to eXtensible Markup
Language (XML), it has some advantages, as it is easier to read and write, and
supports arrays [6].

Gson is a Java library developed by Google to convert Java Objects into their
JSON representation, and vice versa [7]. Its main advantage is the ability to
parse a JSON string directly to a class instance, based on a matching between
the document attributes with the class ones. In some cases, however, the Gson
default representation is not suitable, especially when dealing with library classes (i.e.
DateTime), or when an object contains custom nested objects, and a proper output
format is required. Gson allows, therefore, the registration of custom serializers and
deserializers for a specific class. Listing 2.1 shows how Gson can be used with a
user-defined serializer: lines one to five define the serializer for the DateTime class.
It implements the method serialize, which receives the source object and returns a
JsonElement. Lines nine to ten register the adapter to the DateTime class of the
GsonBuilder instance.

7
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Listing 2.1: Gson example

1 private class DateTimeSerializer implements JsonSerializer<DateTime> {
2 public JsonElement serialize(DateTime src, Type typeOfSrc,
3 JsonSerializationContext context) {
4 return new JsonPrimitive(src.toString());
5 }
6 }
7

8 //...
9

10 GsonBuilder gson = new GsonBuilder();
11 gson.registerTypeAdapter(DateTime.class, new DateTimeSerializer());

2.2 Lua

Lua is an efficient, powerful, and lightweight scripting language, designed to be used
as a general-purpose extension language. It provides a small set of general features
that can be extended to fit different contexts and problem types. Thus, it presents
a mechanism of fallbacks that allows programmers to extend the semantic of the
language. For example, it does not support object-oriented features, like classes and
inheritance, but they can be implemented with metatables [8]. It also implements
advanced features such as automatic memory management with incremental garbage
collection, and coroutines, to support parallel programming [9].

Lua is the language adopted by the MoPS system (see Chapter 1) for executing
test routines [3]. MoPS has recently switched to Lua 5.3, as it implemented the
integer data type, the native support for bitwise operation (previously possible only
through a specific library), and support for both 64-bit and 32-bit platforms [10].

2.3 Reflection

Reflection is a feature of the Java programming language which allows an executing
Java program to examine itself and manipulate internal properties of the program
(i.e. object attributes) [11]. Reflection has several drawbacks, especially in terms
of speed and traceability, since reflection calls are slower than direct calls, and it
can be tricky to find the portion of code that caused a reflective method call to fail.
Anyhow, it can be adopted where the performance is not important. It is used in the

8
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project to define a flexible Settings page and to alter the application configuration
with a user-defined file. The same goal can be achieved without exploiting Reflection,
but it would require much more effort, and a lot more lines of code. Listing 2.2
shows how Reflection can be used to get the name and value of the fields of an
object.

Listing 2.2: Reflection example

1 public void getObjectFields(Object o){
2 for (Field f : o.getClass().getDeclaredFields()){
3 String fieldName = f.getName();
4 Object fieldValue = f.get(o);
5 }
6 }

2.4 Singleton

The Singleton pattern restricts the instantiation of a class to one single instance,
usually accessible globally [12]. The class is responsible for instantiating itself only
once. The constructor is declared private or protected, to ensure that the class can
never be instantiated from outside itself. It is typically used to manage access to
shared resources, like a database, or the configuration settings of an application.
An example of a Java Singleton class is shown in Listing 2.3.

2.5 Stream

The Stream application programming interface (API) is one of the main features
introduced in Java 8 [13], and it is used to process collections of objects. A Stream
is not a data structure and never changes the original one. It is made of a pipeline
of intermediate operations lazily executed, and each intermediate operation returns
a stream as result; the pipeline ends with a terminal operation which consumes
the stream and returns the actual result1. This allows the expression of the code
in a more compact and declarative style. Listing 2.4 shows how Streams can be
used to convert a list of Person objects into a HashMap where the key is the person
identifier, and the value is the person object.

1A Guide to Java Streams: https://stackify.com/streams-guide-java-8/
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Listing 2.3: Singleton class example

1 public class MySingleton {
2

3 //create class instance
4 private static final MySingleton instance = new MySingleton();
5

6 private EagerInitializedSingleton() {
7 //...
8 }
9

10 //get class instance
11 public static MySingleton getInstance() {
12 return instance;
13 }
14 }

Listing 2.4: Stream example

1 public Map<Integer, Person> listToMap(List<Person> list) {
2 Map<Integer, Person> map = list.stream().collect(
3 Collectors.toMap(Person::getId,Function.identity()));
4 return map;
5 }

2.6 Thread pool

A thread pool is a software design pattern for achieving concurrent execution of
operations. Using multiple threads for performing short-lived tasks can affect the
performance due to the creation and destruction overhead. A thread pool, instead,
can be used to execute multiple tasks on a fixed number of threads, that are created
just once when the pool is instantiated and then are reused to execute an operation.
Therefore, the overhead due to the thread handling is restricted to the initial creation
of the pool, resulting in better performances and stability2. It also allows better
control of the threads and their lifecycle. The thread pool is initialized with a fixed
number of threads and then, each time a new operation is scheduled, a task is put
in a queue and will wait until a thread becomes available to execute it.

2Thread pool: https://w.wiki/42nH

10
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Java provides several implementations of a thread pool, each one with different
characteristics [14]. Among these, the ExecutorService allows the creation of a
thread pool with a fixed size, and defines some methods to control the state of each
task and to get the result of its execution. An example of the implementation of an
ExecutorService is shown in Listing 2.5.

Listing 2.5: Thread Pool example

1 ExecutorService executorService = Executors.newFixedThreadPool(5);
2 Future<String> future = executorService.submit(() -> "Hello World");
3 // some operations
4 String result = future.get();

The first line instantiates a thread pool with five threads, while the second line
submits a runnable task for execution and returns a Future object representing that
task. The Future can be later used to get the execution result of the task.

2.7 LuaJ

LuaJ is a lightweight Java interpreter for the Lua language, which implements
a virtual machine to run the Lua source code3. It also defines a parser, based
on a JavaCC grammar. It is the core element of the code verification and error
recognition of the Test-plan Builder. The parser analyzes the code and creates a
structured representation of it, in order to recognize and access the different parts
of the source code.

LuaJ implements a strategy to traverse the source code based on the Visitor
pattern [15]. It can be used by defining a class which inherit the Visitor class and
overrides a visit method for each type of syntax element to be visited. When a
specific syntax element is encountered, the corresponding visit method is triggered.

An example of a Visitor capable of recognizing function call expressions is shown
in Listing 2.6.

3LuaJ: http://luaj.sourceforge.net
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Listing 2.6: Visitor example

1 public class FunctionCall extends Visitor {
2

3 @Override
4 public void visit(Exp.FuncCall exp) {
5 super.visit(exp);
6

7 //scan passed arguments
8 for (Exp arg : exp.args.exps) {
9 //do something

10 }
11 }
12 }

2.8 JavaFX

The following GUI libraries were evaluated to implement the graphical part of the
project:

AWT It is the oldest Java GUI framework, mature and well documented. Anyhow,
it is outdated and not the best option to create a rich and modern user interface.

Swing It is the successor to AWT, providing a richer set of graphical components.
It was widely used in the past, but has now been replaced by more modern
frameworks. The existing Test-plan Builder was built using Swing.

JavaFX It is the latest UI library, offering a more modern layout rather than the
other tools. It supports mobile devices, therefore, any application written in
JavaFX can be executed on a mobile operating system. Since it is one of the
newest Java GUI libraries, it is suitable for creating more complex and modern
user interfaces than the older frameworks like Swing and AWT. The only
disadvantage is that, being younger than its counterparts, it offers a smaller
set of third-party components.

JavaFX defines several interfaces to directly bind the components to the data, in
order to have a robust and consistent layout [16]. Some of these interfaces are:

Property wraps an existing Java object, adding some functionalities for observing
and binding it. Each property has methods to listen for changes to its value,

12
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Listing 2.7: Property usage example

1 DoubleProperty zoomLevel = new SimpleDoubleProperty(100);
2 zoomLevel.addListener((observable, oldValue, newValue) -> {
3 doSomething(newValue.doubleValue());
4 });

link it to another property, get and set its value. Listing 2.7 shows how a
ChangeListener can be attached to a property in order to be notified each time
that its value changes.

Bindings are a way to link objects together, enforcing a relationship in which one
object is dependent on at least another one. When an object is bound, its
value is automatically updated each time the object to which it is bound to is
modified, without worrying about the implementation of the updating process4.
The main strength of JavaFX is that even the GUI components can be bound.
This means that the value shown by a component can be directly linked to
a property and automatically updated each time that the property changes.
Properties and Bindings are widely used to build the project UI consistently,
and to automatically update it. An example of how a Label can be bound to a
string representing the title of a graph is shown in Listing 2.8.

Listing 2.8: Bindings example

1 public class Graph {
2 private final StringProperty name = new SimpleStringProperty();
3 //...
4 }
5

6 //UI showing a graph
7 public class GraphPanel{
8 public GraphPanel(Graph graph){
9 //...

10 Label name = new Label();
11 name.textProperty().bind(graph.getName());
12 }
13 }

The third-party JavaFX components used in this project are:

4JavaFX Properties and Bindings: https://edencoding.com/
javafx-properties-and-binding-a-complete-guide
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FXGraph A graph visualizer supporting node dragging and resizing, zooming,
panning, directed edges5.

RichTextFX A memory-efficient and customizable text area, supporting different
text styling and syntax highlighting6.

ControlsFX A library providing a rich set of custom UI elements and APIs for
JavaFX7.

5FXGraph: https://git.io/JuzSD
6RichTextFX: https://git.io/Juz9B
7ControlsFX: https://controlsfx.github.io/
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Chapter 3

State of the Art

This chapter presents the state of the art of the current system. First, an overview
of the MoPS test structure is presented. Afterward, the test-plan designing process
and its output format are fully described. Finally, the test-plan verification strategy
is explained.

3.1 The MoPS FSM

The MoPS test system is described by FSMs, one for the Host and one for each
Target. An FSM consists of states, containing Lua code, and events, to determine
the next state to be executed. When the MoPS system is in a state, its Lua code is
executed. At the end of the execution, a check for triggered events is performed.
If an event related to an existing transition is found, the FSM changes its state
moving to the destination node of that transition. If there are no triggered events,
the @else one is executed [3].

The typical structure of a MoPS FSM is composed of the IDLE state, where the
execution starts, and a start event from the IDLE to the next state. The IDLE state
has no code and its start event is triggered to move to the next state connected
to it. The start state is also the final one and, at this point, the controller can be
stopped, or the FSM structure may be changed. Thus, in order to design a valid
FSM, each node in the path must be able to reach the IDLE state. Each state has
an @else event that can be connected to itself or to another state. This state is
executed when no other transitions are triggered, to keep the execution flow. There
are two different types of events:

15
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• Hardware events, expressed with the prefix @, that are triggered in the hard-
ware.

• Software events, triggered in the software via the corresponding APIs used in
Lua code.

An example of a MoPS FSM is shown in Figure 3.1.

IDLE INIT RUN

CLEAN

@else

start @else

@else

stop@else

Figure 3.1. MoPS FSM example

3.2 The MoPS TestPlan

The MoPS system defines a specific format to store a test-plan, using the JSON
syntax. The goal of the Test-plan Builder, indeed, is to produce an output conforming
to this format. Figure 3.2 describes the data structure of a test-plan.

The most relevant fields are:

FSM Represents an FSM. It is identified by the type (Host, Target), and by a label.
An FSM is also composed of a list of states and events.

16
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Function Represents a state of an FSM. It is described by a name, to uniquely
identify the state, and by the code, which is the Lua code invoked when the
MoPS system executes the state.

Transition Is a transition between two nodes. When it is triggered, the connected
node is executed. It is identified by three attributes: current, representing
the source node of the transition; event, describing the transition name; next,
representing the target node.

OvenPlan Represents the connection point between the hardware devices and the
corresponding FSMs. The relevant fields of an OvenPlan instance are:

Slot The location of the DUT in the test system.

DUT The name assigned to the DUT.

HW Target IP or hostname address of the physical device to be linked to an
FSM.

uC FSM The FSM linked to the specified Hardware (HW) target.
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Test Name: String 
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Transition Function 
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DUTBoard: String 
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Figure 3.2. MoPS TestPlan structure (Image created by Klaus Plankensteiner [4]
and modified by Giuseppe Pipero)
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3.3 MoPS and SAM APIs

MoPS-CORE and software architecture for MoPS (SAM) APIs provide the required
functions to control and execute a test. In particular, SAM is used in the Host
controller to coordinate the Target machines, whereas the MoPS-CORE API is
used to test the hardware devices belonging to the CORE family. These APIs are
described in an online documentation, which is fetched by the Test-plan Builder to
populate the network data cache, used by the autocomplete system and during the
graph check.

3.4 Electronic Data Sheets

The Electronic Data Sheet (EDS) is a file which describes the specifications of a HW
target. These files are located on a web server and used by the Test-plan Builder
for the test-plan verification process (see Section 5.5.4). The most relevant fields of
an EDS are:

hwInfo Describes some information about the device, like the MoPS-CORE API
version supported by the Micro Controller (µC), the IP, and the MAC address
of the target device. The IP address (or the hostname) is used in the OvenPlan
to select the target device to be mapped to an FSM.

events Represents the list of hardware events supported by the device. This
information is exploited by the checker to verify if the hardware events used in
the FSM are valid.

modules Defines the list of supported modules that can be instantiated, and the
possible instance names. Among the modules provided by the MoPS-CORE
API documentation, only the ones specified in this list can be used.

3.5 TestPlan generation

This section summarizes the test-plan designing phase of the existing system. It
provides a GUI containing two main components: a toolbar and the main panel.
The toolbar defines some actions to interact with the graph, whereas the main
panel, implemented as a tabbed layout, is used to render the primary parts of the
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application. The core part is the TestPlan tab, where it is possible to define the
FSMs. The TestPlan is divided into two fixed graph areas, one showing the Host
machine and another one containing the list of Targets. Therefore, the Host is
always present and only one Target at a time can be visible. The area containing
the Targets is enclosed in a tabbed panel, showing the list of available Targets.
Moreover, a new target graph can be added via the plus tab. An example of this
interface is shown in Figure 3.3.

3.5.1 FSM drawing

Each graph area is split into two parts:

Graph Panel Provides a drawing space to draw and connect nodes. Each node
is represented as a rounded square, and the IDLE state is the start and stop
state, thus, in order to define a valid FSM, a loop must be formed and each
node must be able to reach the IDLE state.

Code Area Contains a text area with a Lua syntax highlighter, and it is used
to show and edit the code of the selected node. Code warnings/errors are
highlighted and listed in an error panel at the bottom of the component.

The drawing panel is represented by a (possibly) infinite canvas, zoomable and
pannable, whose size is dynamically increased each time a node goes over the border.
The main graphical elements that can be drawn to create an FSM are:

Node Represents an FSM state. It is internally described as a class containing a
name (that must be unique), and the Lua code as a string. The main graphical
properties are the color, size and position in the canvas. It can also be selected,
resized and dragged in the Graph Panel.

Edge Represents an FSM transition, mainly described by a name, a source and a
target node, that must be unique among all edges starting from the same node.
It is not allowed to have multiple transitions between two nodes. The list of
transitions of the selected node is visible above the Code Area. This is the
only place where edges can be renamed or removed, since transitions are not
selectable.

Note It is a graphical comment used to describe a part of the FSM. Its goal is to
increase the readability of the graph, but it is not part of the FSM, thus it is
not exported in the test-plan file.
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Toolbar 

Graph Panel 

Code Area 

Figure 3.3. Test-plan Builder - Main interface

Multiple nodes selection is allowed through shortcuts. Selected nodes can be
dragged, copied or removed. Copied nodes, that preserve the transitions among
them, can be pasted in the same or in another graph. Additionally, a select area is
implemented to select all nodes enclosed in the drawn area.

When the application starts, or a new project is initialized, two graphs are created
by default: a Host FSM named HOST, and a Target one named TARGET. The
graph names must be unique.

3.5.2 Lua code input

When a single node is selected, its code is shown in the Code Area of its FSM. This
area contains the list of transitions having the selected node as source, a text area to
display and edit the Lua code and, below, a list showing code warnings/errors. This
text area is implemented using a third-party library, named RSyntaxTextArea1,
which provides line numbering and automatic Lua code highlighting. The auto-
suggestion of modules, instead, is achieved through the AutoComplete library,

1RSyntaxTextArea: https://git.io/vprA5
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released by the same creators of RSyntaxTextArea. This guarantees that the two
libraries can be easily configured and interconnected2.

The autocomplete system is not automatically activated while the user is typing,
but it must be opened through the shortcut Ctrl + Space . The suggested
modules are retrieved from the SAM and MoPS-CORE APIs, downloaded and
cached by the application from their remote location. Additionally, the variables
storing class instances are suggested. Other variables and custom functions, instead,
are not recognized.

The code editing process is tightly connected to the Test-plan Checker module,
in order to identify syntax errors in runtime. This heavy operation, executed in
background, is triggered every time that the code, or the graph changes. The process
uses the LuaJ visitors, implemented in the Checker part, to analyze the code and
find possible errors, that are returned to the Code Area. These errors are shown in
the error list and highlighted in the code, as shown in Figure 3.4.

Figure 3.4. TestPlan Builder - Code area

3.5.3 OvenPlan

Defining the OvenPlan is one of the main steps of the test-plan generation. It
resembles a table where each entry creates a connection between a HW target, and
its FSM. The structure of an OvenPlan instance is defined in Section 3.2. An FSM
can be linked to more than one HW targets, if they all belong to the same family,
but a hardware device can be coupled only to one FSM.

When an FSM is linked to a HW target (based on its hostname or IP address), its
EDS is loaded, and the corresponding modules are retrieved from the MoPS-CORE

2AutoComplete: https://git.io/JuNGa
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API cache, based on the version indicated in the EDS. In this way, these modules
are recognized in the Code Area of the linked FSM, and also suggested in the
autocomplete panel. In the case of multiple HW targets linked to the same Target,
only the modules in common between their EDSs are loaded.

3.6 TestPlan verification

The verification of the test-plan is perhaps the most important and critical part of
the tool. Generating a robust and working test file is, indeed, one of the main goals
of the project. This section describes more in detail how the test-plan is verified in
terms of correctness. The Test-plan Checker is implemented as a separated module,
therefore, it can also be executed independently of the Builder part. The verification
process receives the input in a suitable data structure, which emulates the format
described in Section 3.2. If the Checker is used as standalone software to check
a test-plan file, its JSON content is parsed into the supported data structure; if
the Checker is used in the Test-plan Builder, instead, the data is already provided
in the correct format. In the Test-plan Builder most of the checks are performed
during the export phase. In runtime, indeed, only the code syntax and the graph
structure are analyzed. In the following, the different type of checks are described.

3.6.1 FSM check

Checking the FSM means verifying the correctness of its structure, and the possible
execution flow, defined by triggering events. The following checks are performed:

Dead end nodes These are nodes which cannot reach the IDLE state.

Lonely nodes These are nodes that cannot be visited, since an incoming transition
is missing.

Undefined Hardware events The list of valid hardware events is defined in the
EDS file. If a Target FSM uses an event that is not present in the list, an error
is detected.

Undefined Software events These events are triggered in the Lua code using
specific functions. An event can be triggered in the own FSM, using the
function setEvent(name), or from the Host to one or more Targets, using the
function sendEvent(name). If a software event on a Target is not triggered,
or the Target FSM triggers an invalid event on itself, an error is generated.
This process does not check if the events triggered by the Host, using either
setEvent or sendEvent, are valid.
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3.6.2 Lua check

The Lua check recognizes syntax errors as well as bad coding practices, in order to
generate a correct and valid script. It is important to highlight that the code of a
single node is not independent, but it is tied to the previous nodes in the same path.
A variable, for example, can be declared in a state and used by a subsequent one.
Moreover, multiple paths, from the start to the final state, are possible. Therefore,
the code of all nodes in a path is merged and checked, and the same operation is
performed for each possible path. Since proprietary APIs are used, it is necessary
to prepend an additional code to the merged script, containing the definition of the
API functions, otherwise, a call to an API function will not be recognized by the
code analyzer, as its declaration is missing.

Once the script is ready, it is analyzed by the LuaJ parser, described in Section 2.7.
A Visitor is used for each type of element to be recognized. This approach makes
the Lua checker a modular system, as more visitors can be added to improve the
recognition. The following situations, related to general Lua syntax, are analyzed:

Always the same It is related to a statement that produces always the same value
(i.e. a + 0 or a == a).

Bad coding practice It is not a syntax error and does not lead to a wrong code,
but some code practices should be avoided since they can generate vulnerabilities
and stability issues. For example, the goto instruction should not be used and,
therefore, an error is raised in that case.

Empty code block It indicates a block that the user has (most probably) forgotten
to fill, like an empty function or a conditional branch without any code. As
well as the bad coding practices, it is not a syntax error, but it is important to
report this situation to the user.

Undefined functions It is related to the call of a function that is neither defined
in the current scope, nor in the outer visible scopes.

Undefined class Lua is not an object-oriented programming language, but it is
possible to emulate the concept of a class by defining meta-tables [17]. Class
methods can be defined and accessed using the syntax instance:functionName().
Therefore, it is important to analyze the correct use of classes and methods.

Undefined tables In Lua is possible to define tables and assign functions to them,
that can be called using the syntax table.functionName(). Thus, it is necessary
to verify that used tables and table functions are previously declared.
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Infinite loops To guarantee the generation of a working code, a check for infinite
loops is performed. In particular, it checks if the condition is always true or if
no variable of the condition statement is modified in the body, preventing the
script to leave the loop block.

Uninitialized variables Last but not least, it is necessary to check if used variables
are initialized in a visible scope.

In addition to these checks, some project-specific Lua errors, related to the usage
of MoPS and SAM APIs, are recognized:

MoPS-CORE API It provides both modules and classes. Therefore, a strategy to
check if functions called from MoPS modules or classes are valid is implemented.
Valid elements are computed based on the MoPS-CORE API assigned to the
considered FSM.

SAM API It provides functions for the Host FSM. As well as for the MoPS-CORE,
it is necessary to check if functions used from a SAM module exist. Valid
SAM functions are retrieved from the cached SAM API, based on the selected
version.

3.6.3 OvenPlan check

The OvenPlan, explained in Section 3.5.3, has specific constraints and, therefore,
must be checked before exporting the test. In particular, the DUT field must
be unique, since it represents a physical device, and there should be at most one
OvenPlan entry for each HW target. The following checks are performed to verify
the OvenPlan structure:

Missing values It is not allowed to have entries with empty fields. Therefore, a
check is executed to guarantee that all rows are completely filled.

Double values The fields Slot and DUT must be unique, since they represent
respectively the location of a DUT, and a physical device to be tested. The
same check is also applied to the HW Target, as a physical device can be
assigned to only one Target FSM.

Target FSM It is necessary to check if the used FSMs exist and if they are of type
Target. This is very difficult to happen if the visual builder is used, as it allows
specifying only the right FSMs, but it could occur when the Checker is used to
verify a test file, since it may have been manually modified.

Finally, it is important to highlight that the OvenPlan checking is not executed in
runtime, but only before exporting the test.
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Chapter 4

Proposed solution

This chapter describes the implementation choices of the new project, focusing
on the functionalities to be kept from the previous tool, and the graphical and
functional parts to be improved.

4.1 Implementation choices

The first question that comes to mind is how to improve the tool. It is better to
modify the existing project or to redesign the entire platform starting from scratch?
This is sometimes a difficult choice, which depends, among other things, on the
available time and on the desired level of freedom in the project modifications.
Modifying the existing project means to be much more constrained on the previous
technologies and, in some cases, finding and improving an unknown code related to
a specific functionality may need more time than recreating it. Since the goal of
the thesis doesn’t focus only on the back-end functionalities but also on the UI, in
order to build a modern and flexible interface, with a more responsive graph design
tool, the choice of recreating the entire project from scratch was followed.

Java was chosen as the main programming language, as it provides easy and rich
frameworks to build the UI, and it would also allow keeping some functionalities
of the previous software. Therefore, the Test-plan Builder, was totally recreated,
whereas the Checker part, already working, was extended and improved. Regarding
the GUI framework to adopt, among the alternatives described in Section 2.8,
JavaFX was chosen, as it is more suitable for modern layouts.

25



Proposed solution

4.2 Analysis of improvements

4.2.1 Graphical improvements

Concerning the application layout in general, a more modern and single-page
application can be designed, optimizing the available space and improving the
overall usability of the system. In the previous tool, indeed, only two FSMs can
be shown at the same time: the Host and one Target. The goal, instead, is to
provide a modular interface where it is possible to open all the desired graphs and
reorganize their position on the page. Another functionality to be improved is the
graph designing process: it is difficult to deal with a large graph since it becomes too
lagging. Furthermore, pan and zoom operations can behave differently to provide
better usability of the design tool. When zooming in, for example, it does not
follow the caret position, and this can be annoying to the user. This goal can be
achieved using a lightweight and responsive third-party library to manage the graph,
extended and modified to meet the project requirements.

Concerning the graph designing, the FSM graphical representation could be
improved: currently, to preserve the structure of the MoPS FSM, a loop must be
created to define a valid graph. This may reduce the readability, and the ease
of interaction with the graph, especially in the case of a large FSM, where many
transitions must reach the IDLE state. In this thesis, a representation without
loops is proposed, thanks to the implementation of final states. This representation
offers the opportunity to implement a better auto layout system, as in the current
tool, when a test file is imported, it is rendered using a circular layout, which is
not clearly readable. By removing the loop, instead, it is possible to introduce an
automatic hierarchical layout, placing the nodes as a tree structure.

The autocompletion mechanism is also an area that could be improved. In the
current tool, it can be triggered only through a specific shortcut, and the dynamic
suggestion is limited to the class instances. Additionally, since the scope is not
considered, a class instance is suggested even if it is not reachable, confusing the user
who will think that, instead, the element is usable in that piece of code. The idea
is to improve the overall suggestion system triggering it automatically, while the
user is typing the code, in order to guarantee an experience similar to an integrated
development environment (IDE). Furthermore, the dynamic recognition should be
expanded to recognize custom variables, functions and class instances based on the
current scope.

Concerning the visual feedback of errors, the system could be better: currently,
the only way to check if a graph contains some errors is to open it and search for
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nodes with a red border, indicating the presence of errors. When dealing with many
Targets and/or large graphs, it may be difficult to have immediate feedback about
the correctness of the test-plan. This issue can be addressed by implementing a
list of all detected errors, in order to give an instant notification to the user about
the existing errors, without the need to analyze each graph. One last important
graphical feature that could be improved is the search panel, as it does not allow
searching either locally in the open Code area, or to specify the set of FSMs where
to search.

4.2.2 Functional improvements

The second part of improvements is related to the functionalities. First, since the
Lua version used in the MoPS system was updated to version 5.3, it is necessary
to adapt the Test-plan Builder to support it. The supported version does not
depend on the tool itself but on the library used to parse the Lua code. In fact,
LuaJ can recognize up to version 5.2, and the current tool is constrained to this.
The search for a new Lua parser capable of supporting the latest Lua versions was
unsuccessful, since most of them are outdated, and the most updated still remains
LuaJ. Therefore, the idea is to extend the current LuaJ project, as the code is freely
accessible, in order to recognize the syntax elements of Lua 5.3.

The test-plan validation, already robust, can be improved: the check related to
the events used is not complete, since it does not verify the correctness of events
triggered from the Host (to itself or to a Target), and this could lead to a wrong
test file in output. Therefore, a live check on the validity of used events is necessary.
Furthermore, some controls are currently performed only during the export phase,
and the user does not realize the errors until the test is exported. Thus, it is
better to perform more live checks (i.e. the OvenPlan structure) to improve the
robustness of the tool. Another challenge concerns the performance improvements
of the validation process, in terms of speed. The current system takes a few seconds
to check the entire test-plan in case of a large graph. Since a check is executed at
every change, this could be frustrating as it reduces the usability of the tool. After
an analysis of the system, it turned out that the bottleneck in the verification is
the execution of the LuaJ visitors to find code errors. To improve the performances
a parallel solution can be adopted, in order to execute all checks concurrently, as
it may drastically reduce the execution time. Finally, the undo/redo functionality
could work better: it currently makes a snapshot of the entire test every time that
something is modified. The proposed solution is to implement a local history of
changes for each graph and for the OvenPlan, so that each undo or redo operation
affects only a specific area of the project. Moreover, a page showing all changes can
be implemented, to directly restore the graph to a specific snapshot.
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4.2.3 Sub FSM

A separate explanation must be done for the main functionality implemented in this
thesis: the hierarchical design of an FSM. It is a graphical feature which allows the
definition of very complex graphs, compacting the representation and simplifying
the readability. The general idea is to have a different kind of node that can be
opened to put other states inside it. In order to start implementing this feature,
several questions come to mind. How a sub-FSM should be graphically represented,
internally and externally? How many hierarchical levels should be supported? To
answer these questions it is possible to start from a first assumption: a sub-FSM
internally holds a common FSM, with entering transitions coming from the parent
graph, and exiting transition directed to the parent. Therefore, a sub-FSM can be
drawn as a node containing input and output ports. Each transition directed to
that node determines an input port, whereas each transition leaving the sub-FSM
(internally) creates an output port. Figure 4.1 shows a mockup of the described
idea.
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Figure 4.1. Sub FSM external (left) and internal (right) representation

To better understand how it works, it is important to notice that a sub-FSM is
not independent, but it is strictly connected to the parent, since the execution flow
from the IDLE to a final state in the root graph must be preserved. This means
that the parent should provide a transition to connect itself to a specific node of
the sub-FSM, and the latter must define an exit point to come back to the parent
FSM. After considering different alternatives, it turned out that the best solution
to represent it externally is through a node with multiple entering and exiting
transitions, respectively related to input and output ports. Internally, instead, the
same data structure used for an FSM can be used, with the only difference that
it should contain some entering points, one per input port, and an exit point, to
connect a node to an external one. Thanks to this implementation a sub-FSM is
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considered a normal FSM, and it can be rendered in a Graph panel and opened
as a new tab. At this point, the second question is not important anymore, as a
sub graph is stored and manipulated as a normal graph and, therefore, can contain
other sub-FSMs inside, obtaining a (possibly) infinite number of nested layers. It is
worth noting that this is a graphical feature only, since the original plain structure
of the FSM must be preserved when the test-plan is exported, as the software used
to execute it does not support hierarchical FSMs.
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Chapter 5

Implementation

This chapter presents the implementation details of the new Test-plan Builder,
based on the proposed solution described in Chapter 4. First, the extension of the
LuaJ library and the adaptation of the graph design library to meet the MoPS
FSM structure are presented. After that, an overview of the user interface, with
the related modules and their interconnections, is shown. Then, these modules are
explained from a more detailed point of view. The explanation continues with a
detailed description of the sub-FSM, the core modules of the application, concluding
with the checker improvements.

5.1 LuaJ extension

The current Test-plan Builder relies on LuaJ to verify the code and check for syntax
errors. As explained in Section 4.2.2, the MoPS system moved to Lua 5.3, whereas
the maximum version supported by LuaJ is 5.2. Therefore, the LuaJ library was
extended to support the bitwise operation recognition, the main new feature of
Lua 5.3 (see Section 2.2). To achieve this goal, some preliminary research about
how LuaJ works was necessary. It turned out that the LuaJ parser works using a
grammar compiled with JavaCC, which is a parser generator for Java applications.
It takes a grammar file as input, containing lexical specification and parsing rules,
and generates a Java parser. Thus, the grammar was modified by adding the bitwise
operators of Lua 5.3 (and, or, xor, left shift, right shift), and the unary not operator
to the corresponding parsing rule, as shown in Listing 5.1. In this way, each operator
is converted into a specific token so that the parser can recognize it. Then, the new
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grammar was compiled into a Java program using JavaCC and imported in the
LuaJ project, replacing the old parser with the new one.

It is important to notice that LuaJ is not only a parser, but it is able to run any
Lua code. However, this improvement affects only the parser, since it is the part
useful for the project goals.

Listing 5.1: LuaJ bitwise operators

1 int Binop():
2 {}
3 {
4 | "&" { return Lua.OP_BAND; }
5 | "|" { return Lua.OP_BOR; }
6 | "~" { return Lua.OP_XOR; }
7 | "<<" { return Lua.OP_SL; }
8 | ">>" { return Lua.OP_SR; }
9 //...

10 }

Finally, the modified LuaJ was deployed and imported as a library in the new
Test-plan Builder project.

5.2 Graph design mechanism

Another preliminary action is related to the implementation of a visual component
to draw an FSM and interact with it. After some research, it emerged that there are
no external libraries with the specific purpose of creating and representing an FSM.
Therefore, the decision was to use a third-party and open-source library as a starting
point, customizing it based on the project needs. The FXGraph library, a simple
graph visualizer, was chosen for this goal. The advantage of following this strategy
instead of creating the entire component from scratch is that the back-end logic to
store and render the data is already implemented. Furthermore, this tool already
offers an infinite, zoomable and pannable pane where the graphical components are
rendered and, above all, provides a structured way to implement different kinds
of shapes and edges. The library, indeed, defines two interfaces, ICell and IEdge
that are implemented by two corresponding abstract classes which provide the main
properties (name, size, color, etc.) of nodes and transitions. By inheriting these
classes, it is possible to define concrete classes that deal with the graphical properties
only, in order to represent a specific shape. Nodes and transitions are stored in
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separated lists defined in a Model class. The core module is, instead, the Graph
class which interconnects the Canvas (the pane where the items are drawn) with
the Model and returns the component to be attached to the UI to display the graph.

Before implementing custom shapes, the default abstract class of a cell was
modified adding a string to hold the Lua code. Then, three types of nodes have
been created:

CircleCell Represents a standard FSM state with a circular shape.

CommentCell Represents a rectangular area to write a comment. It uses a
WebView to render a string comment written in HyperText Markup Language
(HTML). This allows customizing the text changing the size, adding a list of
items, etc.

RectangleCell Defines the external representation of a sub-FSM. Thanks to a
different shape, it can be easily distinguished among the other nodes.

Some interaction events are already applied for each node and the Canvas, to
allow node dragging, resizing, as well as panning and zooming of the drawing area.
These events, mainly related to mouse and keyboard actions, were extended to
improve the interaction with the graph. In particular:

• The Canvas click event was improved to allow the insertion of a state in the
clicked area, and to draw a transition between two nodes.

• The selection of multiple nodes has been implemented, as well as the dragging
and deletion of the selected nodes.

• The selection of a single edge was supported.

• A select area was implemented in the Canvas to select all nodes enclosed in
the drawn area.

The select area was created as a rectangle with a semitransparent color, and its
visualization depends on the evolution of the mouse interaction with the Canvas,
caught by the following events: mousePressed, mouseDragged and mouseReleased.
When the user simulates the drawing of a shape using the mouse, the mousePressed
event is called: at this point, the select area is shown and relocated on the clicked
point. While the user is dragging the mouse keeping the button clicked, the
mouseDragged event is triggered. The difference between the new position of the
cursor and the start position of the select area is used to compute the size of the
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rectangle, which is modified accordingly. At the same time, all nodes enclosed in
the rectangle are selected. A node is considered inside the rectangle either if it
intersects the area, or if it is totally contained on it. Finally, the action ends when
the user releases the mouse button: the mouseReleased function is called, and the
select area is hidden.

A final improvement concerns the transition drawing. The graphical representa-
tion of an edge was modified by adding an attach point at the beginning of the line.
By pressing and dragging this point it is possible to connect the line to another
node. Furthermore, with a double click on the point, the line is removed.

5.3 Main interface

This section describes the user interface of the system, starting from a high-level
description of the different modules, proceeding with a detailed analysis of each of
them. The GUI, inspired by a typical IDE, was designed as a single-page application,
with the aim of maximizing the user experience and making the system more user-
friendly, trying to avoid as many external dialogs as possible. It is divided into four
main areas, as represented in Figure 5.1:

Menu bar Contains the Menu items, and a toolbar to interact with the graph area.

Vertical panel Can be shown and hidden through a specific button on the left side
of the window. It is made of two fundamental components: the Test Application,
which contains the project tree used to navigate among the application modules
(FSMs, OvenPlan); the Metadata panel, used to show and edit the properties
of the selected element, like a graph, state or transition.

Main panel It is the main area of interaction with the system, where the principal
components, like graphs and the OvenPlan, are displayed.

Bottom panel It is a horizontal panel used to quickly access some functionalities
like the Event log, and the Error list of the whole test-plan. The specific feature
can be shown/hidden through the corresponding button located in the status
bar at the bottom of the application window.

Thanks to the separation of the window in main areas, it is possible to improve
the application usability by keeping all features on one single page. The bottom
panel, indeed, allows access to some important functionalities, like the application
log, without losing the focus from the main view, giving to the user the opportunity
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Figure 5.1. Main interface

to modify the system while reading the log. Furthermore, the application modularity
is improved, as the programmer can easily add additional visual components to
these panels with a corresponding button to enable/disable them. The secondary
panels can also be collapsed to have the main component in fullscreen. In the next
sections, each UI area is fully explained.

5.3.1 Vertical Panel

The Vertical panel is a core element of the system, as it contains the project structure
and properties. It can be opened via the Project button in the left bar of the window.
This panel contains two components, the Test Application and the Metadata.

The Test Application displays the project structure, organized as a TreeView.
Each test-plan is composed of a Host FSM, one or more Targets, and an OvenPlan,
and they are accessible from this component. All FSMs are grouped in the FSM
node of the project tree, where a plus icon can be used to create a Target FSM: if
clicked, a new, editable, item appears in the tree, where the user must insert the
FSM name. Then, pressing Enter the changes are committed, otherwise everything
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is discarded. The inserted name must be unique among all FSMs, and a notification
error is shown in case a duplicated name is entered. By clicking on an entry of the
project structure, the associated component is displayed in the main panel. An
example of a simple project structure where a new FSM is being inserted is shown
in Figure 5.2.

Figure 5.2. Example of a Project structure

The Metadata section is used to show and modify the properties of the active
component. It improves the organization of the UI and its ease of use, as the charac-
teristics of an element are concentrated on a single area. Each list of characteristics
of a component is referred to as a Property Sheet, of which there are three types:

FSM Property Sheet Contains the name, SAM version (only for the Host FSM),
and the list of nodes of the active FSM or sub-FSM. By clicking on a node in
the list, it will be selected and centered in the graph area. It can be comfortable,
indeed, to directly jump to a specific node, especially in the case of a large
graph. Finally, this is the only point where it is possible to change the desired
SAM API version.

Node Property Sheet Contains the name and color of the active node, as well as
the list of transitions which start from the selected node. The name must be
unique among all nodes of the same graph (including the children FSMs), and
a notification is raised in case the user tries to rename a node using an existing
name. Each transition in the list can be renamed or deleted. Furthermore, the
list of events triggered by the selected state is displayed. In case the active
node is of type Comment, the only editable property is the color. An example
of a Node Property Sheet is shown in Figure 5.3.

Edge Property Sheet Shows the name of the selected edge, as well as the name
of its source and target nodes.

5.3.2 Main Panel

The Main panel is the widest area of the application window which shows all the
core components of the system. It is mainly used to interact with the graphs and
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Figure 5.3. Node Property Sheet

the OvenPlan. All the other features are accessible from the secondary panels, in
the same application page, or through dialogs. Therefore, two kind of pages can be
displayed in the Main panel: the one for showing the graphs, and the OvenPlan
table.

The Graph Page is the area where the selected FSMs are shown. It is implemented
as a list of tabbed panels (called TabPane), in order to provide a modular and
flexible layout. When an FSM is selected from the project tree, and there are no
other FSMs displayed, a TabPane is inserted in the Graph Page and a new Tab
rendering the graph is added to it. If instead, at least a TabPane is already present,
a double click on the FSM in the project tree is required to open it as a new Tab in
the last used TabPane. Thanks to this strategy, a Tab can be moved into another
TabPane, to freely organize the view and open all the desired FSMs at the same
time. This approach increases the system usability, as the user can concurrently
open all the graphs to work on. Figure 5.4 shows an example of a Graph Page with
three opened graphs, shown one next to the other.

Figure 5.4. Layout organization example with three TabPanes
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The content rendered in a Tab is referred to as a Graph Panel. It is the core
element of an FSM, as it allows the representation and interaction with the graph. It
is made of two components: the Graph area, where the graph is displayed, and the
Code area, used to write the Lua code to be executed on the selected node. Before
going into the details of these components, it is important to explain how the graph
representation was changed. A standard node, holding Lua code, was implemented
as a circular shape with the name in the center. It shows a loop icon on top of the
circle, to represent the default @else transition pointing to itself. Furthermore, two
icons indicating the status of the node can be displayed at the bottom of the circle:
the first is shown if the node’s code is empty, whereas the second appears if the Lua
code contains some errors. An example of a node containing all icons is shown in
Figure 5.5.

Figure 5.5. FSM node example

Another change involves the graph structure. In the MoPS system, the IDLE
node is the start and the final state of the FSM, and a loop is required to obtain
a valid graph. Therefore, the graph structure was changed to avoid the manual
creation of a loop by introducing final states, which are distinguishable by a darker
border. It is important to notice that the loop is removed only graphically, as the
standard test structure must be preserved. To guarantee this representation, an
@else transition from the final states to the IDLE is actually inserted and hidden,
thus the user does not notice the presence of the loop, and the default behavior is
preserved, since the @else edge of the final state will be automatically triggered in
hardware to jump back to the first node. Figure 5.6 clearly shows the explained
structure: from the visual (and the user) point of view, the CLEAN state is the
final one, and it is implicitly connected to the IDLE one through an edge which is
not rendered (represented in the figure as a dashed transition).

Graph Area

The Graph area, representing the first half of the Graph Panel, is a rectangular
shape where the corresponding FSM is shown. The content of each Tab in Figure 5.4
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Figure 5.6. New graph structure example

is a Graph area. The element rendered inside that area is the Canvas generated
by the modified FXGraph library, as described in Section 5.2. Therefore, the user
can directly interact with the drawing area to visualize, draw and modify an FSM.
The graph visualization is supported by simple mouse actions: it is possible to pan
the area using the right-click, and to zoom towards the part pointed by the caret
by scrolling the mouse wheel. The Toolbar, shown in Figure 5.7, provides the main
actions to interact with the graph Canvas. Some of these actions are also accessible
through shortcuts, to increase the application usability.

Figure 5.7. Application Toolbar

The first four items of the Toolbar are used to choose the type of element to be
added to the graph. Only one of these items can be selected at a time. The aim of
the other items, instead, is to adjust the graph visualization and to copy/paste the
selected items. In the following, all graph interaction actions are fully explained.

Select nodes The item W is chosen when the user wants to navigate among
the graph, without doing specific actions. Furthermore, the cursor is used to
draw a rectangle to select all nodes enclosed on it. Multiple items can also be
selected/deselected by clicking on a node while holding the key, in order to
select the desired set of nodes.

Add a node To add a standard node, the item � can be selected. The cursor
icon of all active graph areas becomes a cross, to give visual feedback to the user

39



Implementation

which indicates that an insert action can be done. After clicking on a point of the
Canvas, a dialog (represented in Figure 5.8) appears to request the node properties,
which are the name, the color, and a flag to indicate if the node should be a final
state. The name must be unique, therefore a different value is requested each time
the user inserts an existing one.

Figure 5.8. New node dialog

When the node properties are confirmed, the coordinates of the clicked point are
retrieved and used to insert the node in the desired area. The same action can be
triggered through the shortcut Ctrl + click on the Canvas area.

Add a transition The arrow button � can be selected to switch to the edge
drawing mode. At this point, the user can draw an arrow in the Canvas, and the
line is shown in the meanwhile. To add a valid transition, it must be drawn between
two nodes, otherwise the line is discarded and deleted from the area. This operation
works thanks to the mouse listener events attached to each graphical node, and
through the LineContext class, which stores the source and target nodes of the
drawn transition. First, the mousePressed event associated with the clicked node is
triggered. Then, if the edge drawing mode is enabled, the state is saved as a source
node of the lineContext object. After that, if the user releases the line dragging on
another node, the mouseEntered event of the destination state is called, and the
latter is used as target node of the lineContext. Finally, a dialog appears to request
the edge’s name, which must be unique among all edges having the same source
node. When confirmed, the information stored in the lineContext is used to insert
the transition in the graph. It is also possible to draw an edge holding the Ctrl key
while dragging the cursor in the graph Canvas. An existing transition can also be
connected to a different target node by pressing on its attach point, in the source
state, and dragging it to another node. Then, a dialog appears to eventually change
the name of the moved edge.

Add a comment A comment is a pure graphical element used to add a text
note into the graph. It can be useful to describe a specific part of the FSM, or to
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remember something to do. It can be added through the 4 item of the toolbar. A
comment node emulates the sticky note layout, and contains a WebView to render
pure HTML text. Figure 5.9 shows an example of a comment.

Figure 5.9. Example of a comment

Adjust the zoom The zoom can be adjusted by changing the scale of the graph
Canvas. This operation is typically done using the mouse wheel, which is more
comfortable. Anyhow, the toolbar provides three buttons to increase ß , decrease
Þ, and reset Û the zoom. The latter is the most useful as it sets the scale to 1 and
moves the Canvas to have the graph centered in the graph area, which is the initial
configuration of each FSM layout. These three actions are also accessible through
the shortcuts Ctrl + + , Ctrl + - , and Ctrl + 0 .

Fit to space The aim of the item 1 ( Ctrl + R ) is to fit the graph in the available
graph area. In this way, the user can visualize the entire FSM in the current space.
This functionality is implemented by computing the right scaling and shifting value
of the graph Canvas: first, the coordinates of the lowest and the highest points in
the area are computed. Then, the width of the current graph area is divided by the
range between the minimum and the maximum x values of the computed points, to
obtain the correct scaling value to fit the graph to the available space with respect
to the x-axis. The same operation is applied considering the height and the y axis,
and the smallest among the two values is used as a scale factor. Finally, the Canvas
is aligned to the first node (the one with the smallest coordinates) in order to see
the whole FSM in the available space.

FSM autolayout The autolayout is a powerful functionality which places the
nodes based on a tree structure. This function is automatically used when a test-plan
is imported, since there is no information about the nodes’ placement, but can also
be accessed through the toolbar item #. Thanks to the removal of the loop, the
FSM can be structured as a tree: first, the root node is visited, and each child is
recursively visited to explore all nodes. The nodes in the same layer are placed in
the same row (or column, depending on the tree orientation) and spaced apart.
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Copy and paste Copy and paste is a core action that simplifies the drawing
process. All properties of the copied nodes are cloned, whereas the name is modified
appending a number, to keep the names unique. When the selected nodes are copied,
through the shortcut Ctrl + C or the button ç, a new graph Model (the object
used to store the graph data, as explained in Section 5.2) is created, to temporarily
store the structure of the copied area. The states enclosed to the copied area are
added to the Model, together with the edges among those nodes. The Model is then
serialized using Gson, to obtain a deep copy, represented in JSON, of the structure.
The serialized copy can be pasted into the same or another FSM, using the shortcut
Ctrl + V or through the button q. After that, the Model represented in JSON
is parsed and visited, and each time a node/edge is encountered is added to the
graph. The convenience of using the serialization is that a deep copy of the Model
is computed, and it also easily scale to a large number of nodes to be copied.

Elements deletion The last important feature related to the graph interaction is
the removal of graphical elements. Selected nodes can be deleted by pressing the
Del. key. First, all edges connected to these nodes are removed and only then the
states are deleted from the graph. If a transition is selected, the deletion action will
remove it from the graph.

Code area

The second half of the Graph Panel is referred to as Code area. It is implemented
using the RichTextFX library which supports, among the other features, custom
text styling and a line number indicator. It does not perform automatic syntax
highlighting for a specific programming language, therefore it must be implemented
manually by applying a custom style to a specific range of characters of the text.
To achieve this goal, a set of regular expressions to match all the relevant parts,
like strings, comments, data types, etc., of the code, was defined. Then, the
corresponding styling rules, defining custom text colors for the recognized parts,
were created and added to a stylesheet. At this point, the custom event listeners
supported by the RichTextFX library were exploited: an event is triggered each
time that the text in the area changes, but only after that 100 ms have passed from
the last typed character. This strategy reduces the computational cost as it avoids
continuous calls of the same operation. When the event is triggered, the text is
matched against the defined regular expressions, and the corresponding styling rule
is applied to each found match. Furthermore, a code autocompletion mechanism
was implemented to simplify the code writing, as explained in Section 5.5.5.
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The same listener also executes the Checker to the current FSM, to recognize the
code errors defined in Section 3.6.2. A detailed explanation about how the FSM is
checked can be found in Section 5.6. The recognized problems, distinguished among
errors and warnings, are highlighted in the code and listed in the Problems section,
located below the Code area. Clicking an entry of the list, the Code area jumps to
the affected line and selects the error in the code.

Finally, a context menu was added to the component to support advanced text
manipulation actions. Some of them are already built-in, like the copy/cut & paste,
and the undo/redo functionalities. Other useful features, instead, were created to
increase the usability of the coding process, like the indentation, duplication and
comment of the selected text. An example of a Code area containing some errors
and warnings is shown in Figure 5.10.

Figure 5.10. Code area

OvenPlan table

The OvenPlan table is accessible from the Project structure of the Vertical panel,
and opened in the Main panel of the application. Its content is rendered as an
editable table which emulates the structure of the OvenPlan described in Section 3.2.
Therefore, the table contains a column per each field of an OvenPlan entry. A new
entry can be defined by filling the first empty row. Some fields like the Slot and the
DUT are normal text fields, whereas HW Target and Target FSM are implemented
as ComboBox, since their value is constrained to an existing value.

It is worth noticing that the OvenPlan page uses the properties supported by
JavaFX, and explained in Section 2.8, to make the user interface more responsive and
consistent. The list of OvenPlan entries, indeed, is stored in the application Database
as an ObservableArrayList, so that it can be observed for changes and bound to
the table. The interconnection among these components is shown in Figure 5.11.
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This means that every change performed in the table is directly propagated to the
OvenPlan list, and vice versa. This strategy also reduces the implementation effort,
since it is not necessary to define custom functions to properly update the data
when something changes in the table. 

 

 

 

 

 

 

  

DB ovenplan: ObservableList OvenPlanTableView 

bind 

modify 

Figure 5.11. OvenPlan data binding

A context menu was also defined to interact with the selected rows, as well as
export the table into an Excel file. An example of an OvenPlan page, showing also
the context menu options, is represented in Figure 5.12.

Figure 5.12. OvenPlan page

Finally, the OvenPlan structure is automatically using the existing checker
described in Section 3.6.3: each time that the data changes, a new Thread executes
the checker in background, and the found errors are listed in the general error list,
accessible from the Bottom panel.

5.3.3 Bottom Panel

The Bottom panel guarantees access to important functionalities on the same
application page, avoiding altering the content of the Main panel. It is implemented
as a horizontal container populated with a specific component, based on the selected
item in the status bar, located below the Bottom panel. The status bar contains
a button for each feature that, when it is clicked, opens the Bottom panel, and
the corresponding component is rendered. If the active button is clicked again, the
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Bottom panel is collapsed. This panel is also implemented in a modular way, as
new visual components can be added and attached to a new item in the status bar.
Currently, the view contains two elements:

Event Log It shows the list of logs generated by the Logger (see Section 5.5.2).
It can be useful to check the application status or to read the details of an
exception when it occurs. Each log entry shows the time it was generated, and
its description.

All Problems It shows the errors of all graphs. This component aims to provide an
overview of all existing problems, giving immediate feedback to the user about
the test-plan correctness, without the need to open and inspect every single
FSM looking for possible errors in the nodes. It is implemented as a TreeView,
where each root element represents a graph and shows all its problems, grouped
by nodes. Furthermore, the icon of the corresponding button in the status bar,
represented as a warning circle, turns red in case there are errors, and the total
number of problems is indicated. Clicking on an item, the source of the problem
is opened, and the corresponding error is highlighted. This is also the area
where the OvenPlan errors are reported: in that case, an OvenPlan root item is
created and its errors are listed inside. Finally, a scope area was implemented
at the top of the component, to allow choosing which kinds of errors to show
(FSMs only, OvenPlan only, or both). An example of the described component
is shown in Figure 5.13.

Figure 5.13. All Problems panel

5.3.4 Additional features

Some additional graphical components were defined to make the system more
user-friendly. Among these are:
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Status Bar It is located at the bottom of the window and contains, in addition to
the Bottom panel items, a progress bar, and a status label. The progress bar
notifies the download status of the application data, whereas the label shows
the last logged event message.

Notifications A notification system, provided by the ControlsFX library, was
implemented. Notifications, shown in the bottom center of the application
window, are used to notify errors, warnings, or success events. For example,
when a drawing action violates a constraint, a notification appears to indicate
the type of error, without blocking the user interaction with the application.
They are also used to notify the status of a save or an export operation, to
give immediate feedback to the user about the outcome.

5.4 Hierarchical FSM

The core topic of the graphical tool relates to the hierarchical design of an FSM,
following the proposed solution explained in Section 4.2.3. It is represented as a
block with input and output ports, which correspond to the transitions entering and
leaving the sub-FSM. Every time that an edge is drawn from a state to the sub-FSM
block, an input port is created in the child graph, which must be connected to one
of its states. In this way, a state can be connected to another one in a deeper layer.
The child graph also contains an exit point to link a node to another one in a parent
graph. When a state is connected to the exit point, indeed, an output port appears
in the sub-FSM block of the parent graph, that must be linked to another node.

While designing hierarchical FSMs, the standard rule of the MoPS FSM must
be preserved. This means that each node, whatever its level of depth, must be
reachable by the start state of the root graph, and must be connected to a final
state of the latter. Furthermore, the name of each state must be unique among the
entire hierarchical structure. To properly support the hierarchical design, the graph
library was extended adding the following graphical components:

RectangleCell Represents the block containing a child graph. Like the standard
nodes, it has a unique name, and shows an error icon in case of problems inside
it (or in any of its nested layers).

AttachCell It is a small circle which represents an input port. It contains the
reference to the corresponding edge in the parent graph, which has triggered
the creation of the port itself. It also has a name which is directly bound to
the name of the transition it is related to.
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OutputPortEdge It is a point created in the sub-FSM block each time that a
state of its graph is connected to the exit point. It stores the reference of the
inner edge it is related to, and its name is bound to it. Therefore, if the name
of the exiting transition is changed, the modification is reflected directly to the
output port name in the parent graph. Moreover, by pressing and dragging
the point, it is possible to connect it to the target node.

5.4.1 Create a sub-FSM

A sub-FSM block cannot be added from scratch, since the idea is to start grouping
together a set of existing nodes. Therefore, in order to create a sub-FSM, it is
necessary to select at least one state, open the context menu from one of them, and
press the Convert to sub-FSM option. At this point, a function that tries to move
the selected nodes into a nested layer is triggered. First, a dialog appears to enter
the name of the sub-FSM block, which must be unique. Therefore, a function that
recursively traverses all layers, looking for the entered name, is executed. Then
it creates a RectangleCell instance, and attaches a Graph object to it. The latter
will contain the structure (nodes and edges) of the child graph. Furthermore, the
name of the sub-graph is bound to the name of the RectangleCell, so that it is
automatically changed when the sub-FSM block is renamed.

The next step concerns the population of the sub-graph. First of all, the selected
nodes are moved to the child graph, excluding the start and final states from
the selection, as they cannot be part of an inner graph. Then, the edges whose
source and target states belong to the added nodes are computed and moved to
the child graph, to preserve the existing connections among the nodes. After that,
the function computes the entering edges, that are the transitions having only the
target node included in the group of nodes now moved into the sub-FSM. This
means that these edges start from a node in the parent graph and enter into the
sub-FSM block. For each of these edges, its destination node becomes the sub-FSM
block, and an AttachCell, representing an input port, is created into the child graph,
binding its name to the edge itself. Then the input port is connected to the node
in the sub-FSM which was the original destination of the entering edge. The same
operation is applied for the exiting edges, which are the ones having as target a node
belonging to the parent graph. In this case, a transition is added from the source
node in the child graph to the exit point, and this operation triggers the creation of
the corresponding output port in the parent graph, which is then connected to the
original target node of the exiting edge.

A sub-FSM can be opened as a new Tab in the Graph Page by double-clicking
its block. Then, the user can freely organize the graph panels to better work with
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them. For example, it can be convenient to open the parent on the left side of
the area, and one of its children on the right side, to efficiently operate with them.
Figure 5.14 shows how a sub-FSM is graphically represented, both from the external
point of view, in the parent graph, and internally.

Figure 5.14. Example of a hierarchical FSM

To add an input port it is necessary to draw a transition from a state to the
sub-FSM block, in the parent graph. When a node is connected to the exit point,
instead, an output port is added to the RectangleCell. Each port can be connected
to a node by pressing and dragging its point. Furthermore, it is possible to delete an
arrow from a port to a node by double-clicking on the port’s point. The input ports
are always placed on the left side of the graph area and equally spaced, whereas the
exit point is positioned on the right side. These points are fixed on the page, so that
the user never loses them, even if the graph area is panned/zoomed. It is worth
noticing that every time that an operation involves the sub-FSM, all the affected
graphical items are consistently updated. For example, if a transition is added to
the sub-FSM node, the AttachCell representing the input port immediately appears
in the child graph. In the same way, when an edge is removed, its corresponding
input/output port is automatically deleted.

The explained strategy used to create hierarchical FSMs, based on nested Graph
objects and parent/child relationship of edges, imposes no limits either on the
number of sub-FSMs per graph or on the number of nested layers. Thus, the group
of nodes to be moved into a sub-graph can include a sub-FSM node, which will be
then moved into a deeper layer. Furthermore, to guarantee a correct output, the
following rules must be followed:

• A sub-FSM can contain neither the IDLE nor final states.

• Multiple transitions from the same external node to a sub-FSM node are
allowed.
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• Multiple transitions from an external node to the same internal node are not
allowed, and vice versa.

• It is not possible to draw a transition having a sub-FSM node as source, as
only the output ports can be used to connect it.

Finally, a specific function was implemented to safely remove a sub-FSM. It
deletes all nodes in the sub-graph, and recursively calls the same function for all
sub-FSM blocks among its nodes. In the end, all states and transitions from the
level of the deleted sub-FSM and below are removed.

5.4.2 Flat a sub-FSM

Since the creation of a sub-FSM is represented as a grouping operation, it can be
useful to have the opposite function, to ungroup a sub-FSM block. This function is
accessible from the context menu of a sub-FSM node, which provides two strategies
for flatting a graph: a shallow and a recursive one. The shallow flat takes all nodes
of the child graph, add moves them to the parent graph, including the connections
among them. Then, for each input port, its source node in the parent graph is
retrieved, and an edge is created from that node to the target one, which has been
moved to the parent. Finally, a similar operation is applied for the output ports,
and the sub-FSM node is removed, as it became empty. The recursive flat acts like
the shallow one, but it recursively calls the flat function for each sub-FSM node, in
order to ungroup the entire hierarchy from the selected node.

5.5 Core Modules

The entire system works thanks to the interconnection of a set of modules, which
can be either graphical or internal components. In the following, the main modules
are explained, focusing on their goal and implementation.

5.5.1 Database

The Database class is the heart of the entire system, as it stores all relevant
application properties and elements. It is defined as a Singleton class, in order to be
accessed anywhere in the project. Among the other things, it contains the OvenPlan
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data, the list of graphs, the selected SAM version, and the list of Undo managers.
It also defines the methods to create, rename, duplicate, and delete FSMs, as well
as the functions to save, export and import a test-plan. The initNewGraph, for
example, receives the FSM type and name and creates an instance of a Graph. Then,
it is populated with the default graph structure, as explained in Figure 5.6, and
saved into the Graph list. At the application startup, the Database is initialized
and two FSMs are created, one of type Host and another of type Target.

This module is also in charge of properly updating the SAM version and the
OvenPlan, to consistently update all the affected modules. Therefore, when the
SAM version is changed, it reloads the autocomplete values of the Host FSM and,
recursively, of all its sub-graphs. A similar operation is executed when the OvenPlan
changes, updating the supported hardware APIs of the Targets.

5.5.2 Logging

A single Logger is defined and used by the application to track all important events,
as well as runtime exceptions. Its goal is to let the user understand what happens,
especially in case of problems. Those events are registered with a different severity
level, based on their relevance. The application is set by default to the INFO level,
which means that less serious events, like debug messages, are not handled. Anyhow,
the Logger level can be changed on the Settings page.

A handler is attached to the Logger to handle all captured events. For each of
them, it triggers a function which adds the log into the Event Log in the format of
Date & Time - Message, as explained in Section 5.3.3.

5.5.3 Application settings

The application properties are handled by several configuration classes, each of
which deals with a specific part of the system. The configuration is split into three
modules:

Network Configuration To configure the application data downloaded from the
remote repositories.

TPBuilder Configuration To customize the default graphical properties of the
FSMs, like colors and sizes of nodes/edges.
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TPModel Configuration To configure specific parameters of the test-plan model,
like the default name of the else event, or the hardware event prefix.

All these settings are persistently stored into a JSON file, and mapped into the
corresponding classes during the application startup. If a property does not exist in
the configuration file, its default value is used. Furthermore, the output file can be
altered manually, as the JSON syntax is human-readable.

Settings page

The settings can be directly customized from the visual application through a
Settings dialog, accessible from the menu File Settings , or using the shortcut Ctrl
+ Alt + S . The window, shown in Figure 5.15, is divided into two parts: the left
bar used to select the module to configure, and the right panel to edit the related
properties.

Figure 5.15. Settings window

The settings page uses a flexible approach to render and edit the application
properties, relying on Java Reflection (see Section 2.3). First, the instances of the
configuration classes are cloned, to avoid affecting the original ones. Then, for each

51



Implementation

class, the list of attributes is retrieved, and a specific graphical field is created, based
on the attribute’s data type. This field is populated with the current value of the
attribute. After that, a listener is attached to each field, and the corresponding
setter method is called in the cloned configuration class to update the parameter
value. The setter function is retrieved from the configuration class by its name using
Reflection, as functions are named prepending the word set to the name of the
attribute. Thanks to the usage of cloned classes it is possible to discard the changes
by clicking the Cancel button. In that case, the real classes are not manipulated. If
instead, the Apply button is pressed, the cloned classes are assigned to the real ones,
and the application is restarted to guarantee that the new settings are properly
loaded. The code snippet shown in Listing 5.2 explains how the setter method
associated with a field is retrieved.

Listing 5.2: Settings through Reflection

1 //object is the instance of a configuration class
2 Field[] fields = object.getClass().getDeclaredFields();
3

4 for (int i = 0; i < fields.length - 1; i++) {
5 Field field = object.getClass().getDeclaredField(fields[i].getName());
6 //...
7 //build the setter name
8 String methodName = "set"
9 + field.getName().substring(0, 1).toUpperCase()

10 + field.getName().substring(1);
11 //get the method with the computed name
12 Method m = object.getClass().getMethod(methodName, String.class);
13 //invoke the object passing the new value as argument
14 m.invoke(object, "newValue");
15 }

5.5.4 Application data

The application data is retrieved from a web server and stored in a related JSON file.
During the program startup, several threads are executed in parallel to download
and cache the application APIs and the list of EDS of the devices. Each thread
retrieves the cached versions of a specific module (i.e. the SAM documentation)
from the corresponding JSON file, and stores them into a HashMap, where the
key is the version and the value is the related documentation. Then, it contacts a
remote uniform resource locator (URL) to get the actual versions, downloading the
ones that do not exist locally and removing the local versions that are no longer
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supported online. This works by checking, for each remote version, if it exists in
the HashMap, and vice versa. For each API version to be downloaded, its data is
retrieved and saved into a proper object using the Jsoup HTML parser. Finally, the
cached file is replaced with the new data, serializing it in JSON.

During the data caching process, a progress bar is shown in the Status bar to
notify the user that the application is still loading the required data. When all
threads finish their execution, the progress bar is hidden. Each thread is encapsulated
into a specific class implemented using the Singleton pattern, which also represents
the access point to the cached documentation.

Loading of local documentation

To allow the testers to use APIs not yet published on the remote server, a mechanism
to load the documentation from a local source was implemented. It can be enabled
from the Settings page, ticking the option load local documentation, in the Network
section. Then, the user has to specify the paths of the local documentation to be
loaded. Three directories are possible: one for the SAM versions, another for the
Hardware APIs, and the last one for the EDSs, but it is not necessary to insert all
of them. The directory three of each path emulates the corresponding remote one.
For example, the root folder of the local SAM API must contain the list of versions
wrapped in a folder named with the API version. Regarding the Hardware APIs,
instead, the versions must be grouped by their family type and encapsulated in a
folder with the name of the family, as shown in the following:

/
CORE

6.0.0
index.html
modules

7.0.0
...

SoM
1.0.0

index.html
modules

When the application is started, each thread checks if the load local documentation
option is enabled and the path related to the type of documentation it is in charge of
is specified. If not, it proceeds by downloading the data from the server; otherwise,
it explores all folders in the specified local directory, and uses the same function of
the remote data caching, connecting the HTML parser to the local files. Using this
strategy, the data is loaded but not cached, as it is meant for testing purposes only.
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5.5.5 Code Autocompletion

The code autocompletion is one of the main components of a visual code editor, as it
improves the user experience and simplifies the code writing process. In the Test-plan
Builder, it is particularly useful to suggest the MoPS-CORE and SAM APIs, offering
also the documentation of each module/function. As explained in Section 4.2.1,
an autocomplete component was developed from scratch. It is composed of two
panels, wrapped together into a container: the left one, implemented as a ListView,
which contains the list of suggestions, and the right one, which uses a WebView to
show the documentation of the selected entry. Among the other things, the most
important elements to be suggested are API modules and functions, as they have a
proper implementation and description. Therefore, a specific class hierarchy was
defined to represent an autocomplete entity:

CodeCompletion Represents a general entity, like a Lua keyword, or a shortcut
to insert a block of code, like a condition or a loop. The input field indicates
the name that should match the written word in the Code area to suggest
the element. The replacement string, instead, is the block of code that must
be inserted if the suggestion is confirmed. If empty, the confirmation of the
suggestion will just complete the written word using the input string.

ModuleCompletion It is a child of the CodeCompletion class and represents an
API module/class. Its fields contain the proper data to show the corresponding
documentation in the right panel.

FunctionCompletion Defined as a child of CodeCompletion, represents the special-
ized class for an API function. Therefore, its fields define the set of arguments,
the return type, etc.

The ListView of the left panel accepts instances of the CodeCompletion class.

When a Graph panel is created for a specific FSM, an autocomplete component
is attached to it. Then, Lua keywords and APIs are added to the suggestions
list. In particular, if the FSM is of type Host, the SAM modules are retrieved
from the cached data and added to the list, mapping them into ModuleCompletion
instances. After that, all methods related to each module are explored and inserted
as FunctionCompletion objects. If instead, the FSM is of type Target, all its
EDSs (related to the Hardware targets linked to the FSM) are retrieved, and the
intersection among the modules supported by each EDS is computed, in order to
obtain a list of common modules working in all linked boards. At this point, the
computed modules and functions are loaded as with the Host graph. Every time
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that a ModuleCompletion or FunctionCompletion instance is created, its fields are
properly filled and formatted in HTML, so that the documentation can be directly
rendered in the description panel. Since the suggested APIs depend on the selected
SAM version and the OvenPlan, the suggestions list is reloaded every time that this
information changes.

In addition to the API elements, a dynamic suggestion of user-defined variables,
tables, functions, etc., was implemented. This feature represents a big improvement
of the code autocompletion with respect to the previous system. To achieve this goal,
only the nodes that can reach the selected one should be considered, otherwise the
risk is to suggest elements declared in subsequent nodes. Furthermore, to guarantee
a correct suggestion, it is necessary to take into account the code scope where the
user is writing. Therefore, a recursive function was implemented to get all nodes
that can reach the current one, starting from the latter and visiting the source nodes
of the transitions directed to it. The operation is repeated for each encountered
state, and a list of visited edges is kept to avoid loops. The code of the previous
nodes is then merged and analyzed to find all global declarations, since local scopes
are not visible by others, whereas the code of the selected node is considered from
the beginning to the current position, where the user is currently writing, since
the subsequent declarations cannot be reached. The local code is then analyzed
separately to take only the data visible by the current scope.

LuaJ parser is used to analyze the code by implementing a custom Visitor named
VariableVisitor. The Visitor visits variable assignments and function declarations,
storing them into a list which is then returned to the autocomplete component.
After that, each entry is mapped into a CodeCompletion and added to the suggestion
list. In order to consider the current scope, it is important to highlight how the
declaration works in Lua. In particular, it is necessary to prepend the local keyword
to declare something locally, otherwise the declaration is intended as global, and
the element is reachable even outside its scope.

Regarding the code of the previous nodes, only the not-local declarations are
considered. For analyzing the local code, instead, the following strategy was
implemented to consider the scope. First, the Visitor visits each block, which
corresponds to a scope, and adds it to a list of scopes. Then, global and local
declarations are caught and stored in the list of results. For each scope object,
LuaJ stores the list of variables declared inside it, and a pointer to its parent scope.
Thus, given a variable and a scope, it is possible to know if it is visible by that
scope checking if the variable is contained into the scope’s variable list or in one
of its ancestors. At this point, it is just necessary to find the block being modified
by the user and filter the list of declarations keeping only the ones reachable by
it. To accomplish this task, a trick is used to get the index of the current scope,
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based on the fact that the parser generates a ParseException if the code is not
syntactically correct. Since the local code is cut, its scopes are not closed properly,
and an error is thrown every time it is parsed. Thus, when the exception is caught,
an end keyword is added to close a scope, and a scopeIndex variable is incremented.
This operation is repeated until there are no more opened blocks. At this point, the
code is correctly parsed, and the current scope in the VariableVisitor ’s scope list
corresponds to the one at position scopeIndex. Once the scope is found, all elements
visible inside it are added to the list of suggestions.

When the text in the Code area changes, an event is triggered, and the last
inserted word is computed, which is used to filter all suggestions which start with
that string. In case there are some results, the autocomplete panel is automatically
shown and placed below the row where the user is writing to. Furthermore, if a
module name plus a dot is written, its methods are shown. Additionally, in case of a
function suggestion is confirmed, the required parameters are also inserted, and the
first one is selected. To let the user understand the meaning, each row in the list can
contain a symbol to indicate its type (i.e. m indicates a module, v a variable, etc.).
The panel can also be manually opened through the Ctrl + Space shortcut.
Moreover, its location is automatically re-adapted to correctly fit it in the window.
Figure 5.16 shows an example of an autocomplete panel.

Figure 5.16. Code Autocompletion example

The autocomplete component can also be filled with custom values to use it in
different contexts. For example, every time that a setEvent function is inserted, the
autocomplete suggests all possible event names. Finally, when the mouse pointer is
over an API function or an error, the description panel appears as a popup to show
the description of the pointed item.
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5.5.6 Search function

Searching a portion of code among the whole test-plan is an important feature to
be implemented, as finding a specific string may be difficult and time-consuming,
especially in the case of large tests. Therefore, a search and replace system was
developed to accomplish this goal. It can be opened through the Menu bar or using
the shortcut Ctrl + F , and it is graphically represented as a dialog which does
not block the main window, so that the user can continue using the application
while searching the data through the dialog. The component contains two text
areas, one to define to text to be searched, and the other to additionally specify the
replacement text. Furthermore, the following searching options were specified to
refine the search:

Match case Used to make the search case sensitive.

Whole word To match whole words only.

Regular expression To find all matches of a custom-defined regular expression.

Scope To define the set of FSMs to search on.

The search is automatically executed, each time that the text in the search area
changes, or the search options are modified. In that case, the right pattern, based
on the search parameters, is computed and searched among all nodes of the specified
graphs. The occurrences are searched using the Java Matcher class, which finds
all matches to a given regular expression. Therefore, the search pattern is always
specified as a regular expression, and it is properly defined to match the exact text
in case the regex option is not selected. All results are shown into a ListView, where
each entry reports the line of code related to the found match, and the information
about its location (in the format <FSM>.<Node>: <lineNumber>). Once an entry
is selected, its code is directly shown in a Code area in the search dialog itself, to
offer the possibility to immediately modify the node’s code. The content of this
text area is bound to the Code area of the Graph panel of the FSM the selected
occurrence belongs to. This increases the consistency of the application, as the
code modified from the local area in the search dialog is directly propagated to
the Code area of the corresponding Graph panel, if visible. Furthermore, when an
entry is double-clicked, it jumps to the corresponding node in the Main panel, and
the affected code is selected in the Code area. The last important feature of the
search component is the replacement function: the Replace and Replace All buttons
are placed at the bottom of the dialog to affect respectively the selected entry, or
all occurrences. Figure 5.17 shows an example of a Search dialog containing some
results.
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Figure 5.17. Search dialog example

It is worth noticing that the dialog is automatically closed when the user clicks
outside it, or double-click on an entry. To prevent the default behavior, it is possible
to pin the window, keeping it always on top of the main application, toggling the
pin button in the top-right corner of the dialog.

Local search area

The search dialog is intended to search something in the entire test-plan, but it is
not suitable for performing a local search on the current Code area. For this reason,
a local search component was implemented in the Graph panel. It can be opened
using the shortcut Ctrl + F inside a Code area, and it is rendered on top of it. The
search options are the same as the search dialog, but the occurrences are searched
only in the current code. Each found occurrence is highlighted in the text, and it is
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possible to navigate through the other results using the arrow buttons defined in
the component, or pressing enter. Figure 5.18 shows an example of this component.

Figure 5.18. Local search area example

5.5.7 Undo Manager

The history of changes is a really useful functionality that every application should
have. Making a mistake during the FSM definition is something common, and
reverting the changes would make the life of a user easier. This goal was achieved
by implementing a general undo/redo system, applicable in different contexts. As
described in Section 4.2.2, a local history of changes must be kept for each FSM
and for the OvenPlan, to avoid affecting the whole system during a undo or redo.
First, an UndoManager class was implemented, which defines the logic to navigate
through the history of changes. It keeps a list of changes, and an index that indicates
the last applied change. In this way, every time that an undo is performed, the
index is decremented and the component is reverted to the change in that position.
Likewise, the index is incremented if a redo is requested.

An Operation is an object which describes a change, storing the state of the
component before and after the modification. Since the UndoManager should
work with every component regardless of its implementation and data type, a
UndoOperation interface representing an Operation was defined, so that the manager
can hold in the history list every object implementing that interface. Then, an
abstract class defining the common properties of an Operation was defined. It stores
the state of the object before and after the edit, a description of the operation and
the creation date. The only function which is component-dependent is how the
undo or redo is executed. Furthermore, the functions to set the component’s state
can be overridden to customize the way the state is saved. Thus, a specialized class
was defined for a Graph and the Ovenplan, overriding the execute method of the
interface, in order to define the specific strategy to change the state of a component
to a previous or subsequent one. Both classes also reimplement the setUndo and
setRedo methods to serialize the state of the object in JSON, so that it can be
easily rebuilt. Figure 5.19 provides an overview of the whole system. This modular
approach guarantees that the UndoManager can be used with any kind of object, as
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the only required action is to create a class for the desired component which inherits
the Operation class and defines the execution logic of the undo/redo operation.

UndoManager
- history: ArrayList<UndoOperation>
- index: Integer
+ addOperation(op: UndoOperation)
+ executeOperation(idx: Integer)
+ undo()
+ redo()

<<interface>>
UndoOperation

execute(undo: Boolean)
setUndo(object: Object)
setRedo(object: Object)

Operation
- description: String
# undo : Object
# redo : Object
# undoManager : UndoManager

GraphUndoOperation

+ execute(undo: Boolean)
+ setUndo(object: Object)
+ setRedo(object: Object)

OvenPlanUndoOperation

+ execute(undo: Boolean)
+ setUndo(object: Object)
+ setRedo(object: Object)

Figure 5.19. UML class diagram - Undo Manager

When an FSM is created, an UndoManager is attached to it. Then, every time
that the graph is modified, a GraphUndoOperation is created and added into the
manager’s history. In particular, the instance of the transaction is created before
editing the graph, and the setUndo method of the operation is called, passing
the graph object as an argument, to store the snapshot of the graph before the
modification. After the FSM has been edited, the setRedo function is called to
serialize the new version of the graph. Despite these operations might seem complex,
they do not affect the performance and responsiveness of the system, as the object
serialization in JSON is very fast. Furthermore, the object is serialized twice only
for the first added operation, as the redo of the subsequent ones is equal to the
undo of the previous operation, therefore it is copied from it. In the case of a
graph containing sub-FSMs, the UndoManager is created only in the root, since
the serialization of the root graph hierarchically involves all children. A similar
behavior was implemented for the OvenPlan. In that case, when the table is
modified, a OvenPlanUndoOperation is inserted into its UndoManager, after storing
the serialization of the entries before and after the edit.

An undo/redo action can be triggered through the Edit menu, or using the
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shortcuts Ctrl + Z / Ctrl + Y . Then, the undo or redo function is called from
the UndoManager of the focused item, according to the requested action. These
functions update the index value, take the corresponding operation, and call the
execute method on it, that will invoke, at runtime, the right concrete method.
Furthermore, a dialog to show the history of the current UndoManger, offering also
the possibility to restore a specific snapshot of the object, was created. It contains
the list of operations with their description and creation date, which is directly
bound to the history list of the manager. In this way, every time that something is
modified, the corresponding operation immediately appears in that list. Moreover,
by pressing the ✓ button, it is possible to restore the object to the snapshot of the
selected item. It triggers the executeOperation function of the manager, which is
capable of executing an arbitrary operation, corresponding to the received index.
The history of changes, shown in Figure 5.20, can be accessed using the menu item
Edit Show History , or through the shortcut Ctrl + H . Finally, the managers are used
to check if the project was modified, in order to ask the user to save the changes
before closing it.

Figure 5.20. History of changes example

5.5.8 Main actions

The application provides all useful functionalities to create, save, export, etc., a
test-plan. The implementation of these actions, accessible from the File menu, is
explained in the following sections.
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New Project

This action, also accessible through the shortcut Ctrl + N , creates a blank project.
If the current project was modified, the user is asked to save or discard the changes
before proceeding. Whenever this function is triggered, the Database instance is
reset, and two FSMs (a Host and a Target) are created. Then, the SAM version is
set with the latest, and the documentation is subsequently loaded to the appropriate
FSMs. Finally, the content of the Project Tree is reloaded, and the Host FSM is
automatically selected. This function is also invoked at the program startup, to
create an empty project.

Save

A project can be saved either from the menu File Save , or using the shortcut Ctrl
+ S . The path of the current project is stored into the Database object, which
is not set in case the project has never been saved before. In that case, a dialog
appears to select the directory where to save the file, and that path is stored in the
application. If instead, a project file already exists, it is just replaced with the new
one. Anyhow, it is always possible to save the project as a new filename through the
Save As option. Saving a project is different from exporting it, as the file format is
application dependent and it is meant to be reopened and modified, preserving the
whole structure of the test-plan. The project is saved, after having been serialized in
JSON, in a file with the extension .mtp. The output contains the OvenPlan entries,
the SAM version, and the FSMs. For each FSM, the lists of edges and nodes are
stored, together with their styling attributes, like the color, position, whether the
node is a start or final state, etc. If a node is a sub-FSM, its graph is added as an
attribute of the node itself, preserving the hierarchical structure of the FSM.

The save function uses Gson to serialize the most relevant Database data. Since
a custom output should be created, to avoid storing useless information and to
insert the required data to rebuild the hierarchical layers, some custom adapters
(see Listing 2.1) were implemented to define how edges and nodes are serialized.
The most important ones are:

EdgeAdapter defines the output format of an edge. It contains the name of the
source and the target node, plus a piece of information that tells if these states
are in the current FSM or the parent one. If the latter condition is true, it
means that the edge comes from/is directed to the parent FSM. Such that
information will be useful to recreate the graphical FSM from the opened
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project file.

RectangleCellAdapter specifies how a sub-FSM node should be saved. In par-
ticular, it creates an entry to store its graph, serialized using the same rules as
the root one.

Export Project

This command, accessible from the menu File Export project or with the shortcut
Ctrl + E , generates a valid test-plan compliant to the standard MoPS format (see
Section 3.2), and stores it in a JSON file. Since the generated test must be robust,
all checks mentioned in Section 3.6 are executed before exporting the project. Thus,
in addition to what is automatically checked, other verifications regarding the FSM
structure and the code are performed. In case of errors, the output is not generated,
and a notification appears to notify the failure.

The export procedure creates a Testplan object, whose structure emulates the
MoPS test format (see Figure 3.2). Then, each field (i.e. SAM version, OvenPlan,
list of FSMs) is populated with the corresponding content. The hierarchical repre-
sentation of FSMs is not supported by the MoPS system, therefore, each graph is
flattened to remove all nested layers. It means that all states, regardless of their
depth level, are inserted into a single, plain, graph. This flatting procedure is also
used by the live checker, and a better explanation of how it works can be found in
Section 5.6.1.

Open

An existing project, saved in .mtp extension, can be reopened through the menu
item File Open , or with the shortcut Ctrl + O . When this action is triggered, a
dialog to choose a file appears. Then, the content of the selected file is parsed into
a JSON Object and manually analyzed to graphically build the FSM. First, the
SAM version and the OvenPlan entries are retrieved and stored in appropriate data
structures. Subsequently, the FSMs are rebuilt: it starts traversing the list of nodes,
creating and adding the corresponding objects to the Graph, based on their type.
After that, the edges are analyzed and added between their source and target states,
which are retrieved from the added nodes by their name. If the encountered node
is a sub-FSM, the procedure is repeated recursively to visit it. To correctly create
the hierarchical structure, it is necessary to entirely build a layer of FSMs before
proceeding with the subsequent layers, since the transitions entering or leaving a
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sub-FSM are linked to the corresponding ones in the parent graph, which must
already exist. This is not guaranteed in general, as a sub-FSM node may appear
before the list of edges of a graph and, therefore, it is visited before finishing to
build its parent. To ensure the correct behavior, each time that a sub-FSM node is
visited, the execution of the recursive call for visiting the sub-graph is delegated to
a thread. The threads are then started only when the parent graph was completely
built, ensuring an ordered reconstruction of the hierarchical layers.

Import Project

An exported test-plan can also be imported and reconstructed by the system through
the menu item File Import Testplan , or using the shortcut Ctrl + I . It can be useful
when, for example, the project .mtp file is not available or its format is malformed, or
to visually check the correctness of the test structure. When this action is triggered
on a test-plan JSON file, its content is parsed into a JSON Object and visited. The
graph creation process is simpler than the one used to open a project, as the file does
not contain hierarchical FSMs. Therefore, for each visited state, a graphical node
is created and styled using the default values defined in the application settings.
When an edge is found, instead, the two instances of the source and target states
are retrieved by their name and passed to the created Edge object. Since there is
no graphical information about the nodes’ placement, the autolayout feature (see
section 5.3.2, FSM autolayout) is used to obtain a readable graph.

5.6 Test-plan check

The Test-plan Checker is an independent module able to verify the correctness of
the entire test-plan, as explained in Section 3.6. It is used to automatically check
the correctness of the code and the FSMs’ structure, and during the export phase,
where further checks are executed. To perform the verification, the test-plan must
be converted into a specific format supported by the Checker, before being analyzed.
During the live check, this conversion is performed by the FSMChecker class, which
represents a bridge between the Builder and the Checker modules. An instance
of this class is attached to each Graph object, and it is run every time that its
FSM structure is modified, triggering the corresponding update method. First, this
function rewrites the FSM into the proper format supported by the Checker. Then,
each possible path from the IDLE node to itself is computed, the code of its nodes
is merged, parsed and analyzed by the LuaJ visitors, looking for errors. For each
error, a specific token object is created and stored into a list. The main information
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provided by the token is the error description, the affected node, and its location
in the code, in case of a syntax error. Furthermore, if a path does not reach the
final state, it is considered invalid, and an error is generated. The latter check is
required to verify if the FSM meets the requirement of the MoPS system. Since the
verification mechanism requires a lot of resources and, therefore, it is not immediate,
the update function is executed in a secondary thread. At the end of the process, all
nodes present in the list of errors are marked as wrong, and the error icon is shown
on them. When a node is clicked, the list of errors is filtered, looking for the tokens
related to the selected state, which are then listed in the Problems list, as shown in
Figure 5.10.

The following sections describe how the Checker was adapted to support the
verification of hierarchical FSMs, as well as the implemented optimizations and
extensions to improve the Test-plan Checker module.

5.6.1 Hierarchical FSM verification

With the implementation of the hierarchical design of FSMs, a new verification
mechanism, able to support multiple layers, was required. A solution could be
to check the sub-graph independently, but it is not viable since its paths are not
independent, but are connected to the start state of the root graph. Furthermore, the
modification of the sub-FSM also affects the ancestors (and vice versa), which should
be accordingly rechecked every time. To overcome these problems, and to avoid
running too many threads (one per sub-FSM) at every modification, the FSMChecker
was modified to merge all hierarchical layers into a single graph. Therefore, every
time that the graph (or a sub-graph) is modified, the entire hierarchy is flattened,
and the resulting FSM is checked. Thus, the FSMChecker receives always the root
graph, and uses a recursive function to visit all sub-FSM nodes of each layer. For
each encountered node that is connected to a state located in a different layer, it
retraces the path to get the state to which it is connected to, and adds a direct
link among them. For example, considering the hierarchical structure described in
Figure 5.21 (above), where node A is connected to node B, which is linked to node
CLEAN, the following actions are applied. When it visits node A, it traverses the
nested layers to find the destination node, by following the @else transition in the
subsequent layers. The traversal ends when node B is reached, which is added to
the flat FSM and linked to node A. The process continues visiting recursively the
sub-FMSs, applying the same mechanism to the encountered nodes. As soon as
node B is visited, indeed, its stop transition is traversed among the different layers,
until the destination node is found. The latter, which corresponds to the CLEAN
node in the root graph, is added and linked to node B. The result of the flatting
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procedure is shown in Figure 5.21 (image below).

12021-10-21             restricted Copyright © Infineon Technologies AG 2021. All rights reserved.
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Figure 5.21. Hierarchical FSM (above) and its corresponding flat structure (below)

Furthermore, for each sub-FSM block, the function checks if all input/output
ports are connected, throwing an error otherwise. These errors are visible either
clicking on the sub-FSM node, or through the All Problems panel.

5.6.2 Checker optimization

The live verification of the test-plan is a heavy process, as it visits each possible
path multiple times, looking for wrong paths, unused nodes, and code errors. This
operation can require a relatively long time, especially in the case of large graphs,
reducing the responsiveness and the usability of the system. After analyzing the
checking process, it turned out that the slowest operation is the visit of the Lua
code, and the execution of several Visitors, one after the other, to the same code,
negatively affects the performances. Since each code visit is independent of the
others, the mechanism was improved by executing all Visitors of a path in parallel,
using a Thread pool system implemented through the Java ExecutorService (see
Section 2.6). In particular, for each path, a thread pool with a number of threads
equal to the number of Visitors is created. Then, each Visitor is submitted to the
ExecutorService, and its Future object, immediately returned by the service to catch

66



5.6 – Test-plan check

the return value of the executed thread, is stored in a list. After submitting all
threads, the result of their computation, which corresponds to the list of found
errors in the visited code, is obtained through the get method of the Future object.
Finally, the thread pool is closed, and the list of tokens is returned. The source
code of the explained operation is shown in Listing 5.3.

Listing 5.3: Parallel execution of the LuaJ Visitors using an ExecutorService

1 //create thread pool
2 ExecutorService executorService = Executors
3 .newFixedThreadPool(visitors.size());
4 //create list of futures
5 List<Future<List<GraphErrorToken>>> futures = new ArrayList<>();
6 try{
7 for (MyVisitor v : visitors) {
8 v.reset();
9 //submit the visitor to the thread pool

10 futures.add(executorService
11 .submit(() -> LuaChecker.parse(v, mergedLua)));
12 }
13 //store the visitors' return value
14 for (Future<List<GraphErrorToken>> f : futures){
15 tokens.addAll(f.get());
16 }
17 executorService.shutdown();
18 }catch (InterruptedException | ExecutionException e){
19 e.printStackTrace();
20 }

This strategy, which also improves the export phase, as it uses the same mech-
anism to check the Lua code, has drastically reduced the verification time, as
explained in Section 6.2.

5.6.3 Checker extension

As mentioned in Section 4.2.2, the Test-plan Checker was extended to cover other
possible errors, in order to guarantee an output that was as robust as possible. The
previous version, for example, was not able to check if the triggered events existed
or not. Therefore, it could recognize a test-plan as valid, even if it was not, violating
the robustness property of the system. For this reason, a mechanism to validate the
used events was implemented and exploited both in the live checking and during
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the export phase. In particular, the following situations must be checked:

• In case a node triggers an event belonging to its graph, through the setEvent
method, it must verify whether the written event name exists or not.

• If instead, an event is triggered to one or more Target FSMs, using the sendEvent
function, it is necessary to check if the event is present in all the specified
graphs.

To accomplish this task, the Lua code is further analyzed by the TriggeredEventsVis-
itor. It visits all function calls of the parsed code, looking for a function used
to trigger an event. If a setEvent is found, it extracts the first argument, which
corresponds to the event name, and checks if it is included in the list of events of
the FSM the node that triggered the event belongs to, generating an error otherwise.
If the Visitor encounters a sendEvent function in which the second argument is not
specified (and, therefore, the event is triggered in all Targets), it verifies that the
event name exists in all Target FSMs, reporting the ones where it is not present. It
is also possible to trigger an event only to the desired Targets, specifying a list of
their physical addresses to the sendEvent function. In this case, the Visitor obtains
the FSM linked to each address, through the OvenPlan, and checks if the event
exists in that graph. Furthermore, it notifies an error if a physical address is not
mapped to any FSMs.
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Chapter 6

Evaluations

This chapter covers the evaluation of the implementation of the system. First, the
results obtained by the new GUI of the Test-plan Builder are presented. The second
part, instead, focuses on the improvements of the Test-plan Checker, comparing the
performances with the previous system.

6.1 Test-plan Builder

The new user interface adopted for the system turned out to be more intuitive
and user-friendly than the previous system. The implementation of a single-page
application increased the simplicity and convenience of use, as the user can access
all application components in the same window, without losing the focus from the
main panel, where the test-plan is defined. Furthermore, the main interface, shown
in Figure 6.1, is divided into specific areas, as described in Section 5.3.

On the vertical side, there is a panel used to access the project structure. From
there, the user can easily manage the FSMs of the test-plan, and select the ones to
be shown in the main area. On the bottom side, instead, the user can quickly check
the application’s log and errors, to get immediate feedback about the test-plan
correctness. These side panels can be hidden to give more space to the main area,
which can be comfortable in case a large graph needs to be represented.

The main area is the widest panel used to interact with the graphs and the
OvenPlan. While in the previous system only two FSMs can be shown at the
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Figure 6.1. Test-plan Builder

same time, the Host and one Target, the new Test-plan Builder is more modular,
as all the desired graphs can be opened concurrently, increasing the usability of
the application. For example, the user can close the Host FSM, and open more
Targets, one after the other. Finally, it is worth noticing that, thanks to the usage
of the Binding properties of JavaFX (see Section 2.8), the graphical components
are always updated automatically, reflecting the data changes.

The interaction with the FSMs resulted much faster and smoother than before,
especially in the case of pan and zoom operations. Drawing and editing the graph
has also been simplified: using final states, for example, the user can immediately
complete a path, without the need to connect the last state to the IDLE one.
Moreover, it is possible to change the destination of an existing edge dragging it to
another node, avoiding deleting it and creating a new one to accomplish the task.
Finally, the sub-FSM definition is really intuitive, as the entire process is graphical
and based on interconnections of input/output ports through mouse actions.

Another remarkable improvement regards Lua code writing. Thanks to a smarter
autocompletion mechanism (see Section 5.5.5), the user automatically receives the
possible suggestions based on the inserted text. Those suggestions include variables,
functions, as well as API classes/modules. Moreover, only the elements reachable
by the scope where the user is writing are suggested. In this way, the user can also
receive immediate feedback about the variables/functions that can be used on a
specific part of the code.
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6.2 Test-plan Checker

The modifications of the Checker module have resulted in a more error-resistant test-
plan, improving the overall performances of the validation process. The introduction
of a check to validate the triggered events (see Section 5.6.3) increased the robustness
of the system, which is one of the main requirements of the application. The previous
system, indeed, was not able to verify the correctness of the triggered events. For
example, the Host FSM could trigger an event which did not exist in one or more
of the specified Targets, without recognizing the error and generating, therefore, a
wrong test-plan. Another improvement regards the live checking: the new event
check, together with the OvenPlan verification, is also executed during the automatic
check. Thus, the user does not have to export the project to realize the presence of
wrong events, or OvenPlan related errors.

The most relevant result obtained by the improvement of the Test-plan Checker
is the significant increase of the validation speed. The general optimization of the
checking function, the removal of repeated paths, and the parallelization of the
source code’s visit operations, have drastically reduced the time to check the entire
test-plan, especially in the case of large graphs. Some tests were performed to
measure the validation time during the export phase, the command line check, and
the real-time check of a single FSM. Each measurement was repeated five times,
and the average was considered. The tests were executed either with the new and
the previous version of the system, considering both a small and a large graph. The
detailed results are presented in Table 6.1.

Test-plan Operation Old time (ms) New time (ms) Improvement (x)
large Export 4849.8 897.8 5.4
large FSM check 2912.4 395.8 7.4
large Cmd check 7437.4 1915.8 3.9
small Export 234.4 105.4 2.2
small FSM check 105.4 56 1.9
small Cmd check 1153.4 457.6 2.5

Table 6.1. Comparison of the performances

It turned out that, in case of a live check of a large graph, the old system takes
few seconds, whereas the new Checker needs less than half a second, becoming more
than 7 times faster. Similar results were achieved for the export phase, and the
command line check. Even the tests conducted in the small graph show significant
improvements, as the new system is up to 2.5 times faster. Anyhow, the speed
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difference is lower in small test-plans due to the delay introduced by the creation of
the threads.

Finally, the extension of the validation mechanism to support the hierarchical
checking turned out to be fast and efficient. This check is executed only in the root
graph, considering the hierarchical structure as a unique, flat, FSM. Thanks to this
strategy, explained in Section 5.6.1, the original validation process was preserved,
avoiding the introduction of an overhead due to multiple checking for every nested
layer.
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Chapter 7

Conclusion & Outlook

7.1 Conclusion

A desktop application has been developed during this master thesis project, which
is related to the improvement of an existing system. It is made of two modules: the
Test-plan Builder, a graphical tool that was recreated from scratch; the Test-plan
Checker, which was modified to optimize the overall performances. All problems
stated in Section 1.3 have been answered and solved during the implementation,
following the solution proposed in Chapter 4.

The user interface was created using a more modern and efficient framework,
which guarantees a better and smoother layout. The Test-plan Builder provides
a user-friendly GUI, made of well-defined sections which increase the ease of use
of the system. The creation of an FSM is really intuitive, as the user can draw it
inserting states and connecting them through transitions. Additionally, the render
quality of the graph is higher than in the previous system, and the overall design
process is much smoother, even in the case of big graphs.

The goal of implementing the hierarchical design of FSMs was achieved suc-
cessfully, keeping the process simple. A sub-FSM, indeed, is opened, rendered
and populated as a normal graph, so that a user does not need much effort to
familiarize with it. Furthermore, hierarchical FSMs were implemented as general as
possible, avoiding constraints both in the number of sub-FSMs per layer, and in the
depth of the structure. Therefore, this functionality allows the compactness of the
representation, as well as the creation of more complex graphs.
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The overall user experience in the code writing process has been improved
successfully, making the environment more professional and similar to an IDE.
The autosuggestion component, totally created from scratch, implements a smart
suggestion strategy, as it is able to recognize which elements (i.e. APIs, custom
variables/functions) can be inserted on a specific part of the code, based on what
is visible on that scope. This system involved a complex mechanism which takes
only the valid code for each selected state, and exploits the Lua parser to get the
declared items.

Finally, the improvement of the test-plan validation to increase the global per-
formances of the checking process, obtained very good results. This operation
involved the upgrade of the original LuaJ library, a separate work, independent of
the Test-plan Builder, usable in different projects. The optimization of the process,
which removed redundant paths and parallelized the checking operation, drastically
reduced the validation time. This achievement made the overall test-plan design
better and smoother, as the live check, executed at every modification, became
much faster. Additionally, more sanity checks were created to cover more errors and
improve the robustness of the system.

7.2 Outlook

The implemented system works very well and all goals were met successfully. Anyhow,
there is always space for improvements. A first improvement concerns the Test-plan
Checker, as more sophisticated checks could be added to cover other errors. For
example, an inspection regarding the correctness of the data type of the arguments
passed to an API function could be implemented. Moreover, the Checker can
be optimized, or recreated from scratch, to further increase the validation speed.
Another improvement is related to the graph drawing, introducing a grid layout and
cornered edges, to avoid overlaps and optimize the FSM visualization.

Additionally, the coding environment can be improved, increasing the link between
the code and the IDE. This feature can be useful, for example, to directly jump to
a variable/function declaration, or to find all usages of it. In the same way, it could
recognize more bugs and code smells, both general and project-specific, proposing
also an auto-fix. Last but not least, the overall user interface, already modern and
dynamic, can be optimized organizing the layout more freely, giving, for example,
the possibility to move the side panels in other areas of the window.
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Acronyms

µC Micro Controller

API Application Programming Interface

DUT Device Under Test

EDS Electronic Data Sheet

FSM Finite-State Machine

GUI Graphical User Interface

HTML HyperText Markup Language

HW Hardware

IDE Integrated Development Environment

JSON JavaScript Object Notation

KAI Kompetenzzentrum Automobil- und Industrie-Elektronik

MoPS Modular Power Stress

SAM Software Architecture for MoPS

UI User Interface

URL Uniform Resource Locator

XML eXtensible Markup Language
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