
POLITECNICO DI TORINO
Master’s Degree in Biomedical Engineering

Master’s Degree Thesis

FusionFlow: gene fusion detection
pipeline in RNA and DNA sequencing
data leveraging Nextflow and Docker

Supervisors

Prof. Elisa FICARRA

Ph.D. Marta LOVINO

Candidate

Federica CITARRELLA

December 2021

Abstract

Gene fusion is a phenomenon that occurs when two or more previously independent
genes become juxtaposed, forming a single hybrid gene or transcript.
Although several gene fusions detection tools have been developed over the past
years, there is still no gold standard for gene fusion discovery. The typical practice
is to execute multiple tools and use the union or intersection of their results. This
approach is computationally demanding because each tool on its own has specific
requirements and generally takes many hours or even days to run.
Several pipelines for gene fusions detection from RNA-seq data were developed.
However, analyzing RNA-seq data alone has its limitations. Otherwise, integrating
RNA-seq and WGS data leads to a sensitive approach for detecting gene fusion
predictions.
The core of this master thesis is the development of a bioinformatic pipeline
for the analysis of RNA-seq and WGS data to detect gene fusions. The goal
was to realize an easy-to-use, scalable, and highly reproducible pipeline. The
proposed workflow includes five gene fusion detection tools: EricScript, Arriba,
FusionCatcher, Integrate, and GeneFuse. The main technologies used to build
the pipeline are Nextflow, Docker container, and Conda virtual environments to
achieve the proposed goal.

Table of Contents

List of Tables 5

List of Figures 6

Acronyms 8

1 Introduction 11
1.1 Background . 11
1.2 Gene fusion detection state of art and challenges 11
1.3 Thesis outline . 12

2 Gene Fusions 14
2.1 Definition . 14
2.2 Mechanisms involved in the formation of gene fusions 15
2.3 Gene fusions detection and applications in cancer 17

3 Materials and Methods 19
3.1 Materials . 19
3.2 Methods . 20

4 Pipeline 21
4.1 Introduction . 21
4.2 Technologies . 22

4.2.1 Nextflow . 22
4.2.2 Docker . 25
4.2.3 Conda . 27

3

4.3 Tools . 28
4.4 Pipeline inputs . 31

4.4.1 Reads . 32
4.4.2 Tools’ required files . 33

4.5 Pipeline outputs . 33
4.6 Pipeline configuration . 35

4.6.1 Profiles . 35
4.6.2 Other attributes . 36

4.7 Pipeline execution . 38
4.7.1 Files preparation . 39
4.7.2 Running modes . 39

4.8 Minimum system requirements . 40
4.9 Pipeline availability and GitHub support 40

5 Pipeline architecture 42
5.1 General architecture . 42
5.2 Tools architecture . 44

5.2.1 EricScript . 44
5.2.2 Arriba . 47
5.2.3 FusionCatcher . 50
5.2.4 GeneFuse . 53
5.2.5 INTEGRATE . 56

6 Results and discussion 63
6.1 Files . 63
6.2 Tests and results . 64

7 Conclusions and future works 70

A Dockerfile 73

Bibliography 75

4

List of Tables

3.1 Server’s technical specifications. 19

4.1 Environments dependencies and versioning. 28
4.2 Tools required files. 33
4.3 Pipeline attributes. 38

5

List of Figures

2.1 Balanced (A) and unbalanced (B) chromosome rearrangements. . . 16

3.1 Iterative approach steps. 20

4.1 Standard process syntax. 24
4.2 Docker layers. 26
4.3 Fastq format. 32
4.4 TSV format. 34
4.5 VCF format. 34
4.6 Docker profile solution. 35
4.7 Local profile solution in server. 36
4.8 Local profile solution in Docker. 36
4.9 Shell standard execution command. 38
4.10 GitHub files’ organization. 41

5.1 Pipeline architecture parallelization. 43
5.2 EricScript processes architecture. 44
5.3 Arriba processes architecture. 47
5.4 FusionCatcher processes architecture. 50
5.5 GeneFuse processes architecture. 53
5.6 Integrate processes architecture. 57

6.1 fusions.tsv Arriba output file (peptide sequence and read identifiers
are not shown). 65

6.2 MyEric.results.total.tsv EricScript output file (junction sequences
are not shown). 66

6

6.3 summary_candidate_fusions.txt FusionCatcher summary output file. 67
6.4 summary.tsv Integrate summary output file. 67
6.5 result GeneFuse output file. 68

7

Acronyms

RNA

ribonucleic acid

DNA

deoxyribonucleic acid

WGS

whole-genome sequencing

CML

chronic myelogenous leukemia

ALK

anaplastic lymphoma kinase

FDA

food and drug administration

ALL

acute lymphoblastic leukemia

HPC

high performance computing

8

FIFO

first in first out

BWA

burrows-wheeler alignment

BLAT

BLAST-like alignment tool

PCR

polymerase chain reaction

BAM

binary alignment map

HDFS

hadoop distributed file system

TSV

tab separate value

VGF

variant call format

OS

operating system

ML

machine learning

9

Chapter 1

Introduction

1.1 Background

Gene fusion is a phenomenon that occurs when two or more previously independent
genes become juxtaposed, forming a single hybrid gene or transcript. This process
is the result of deoxyribonucleic acid- or ribonucleic acid-derived rearrangements.
Gene fusions remarkably contribute to the evolutionary process by providing a
continuous source of new genes. However, at the same time, they often lead to
genomic disorders or cancer.
Numerous gene fusions have been recognized as important drivers for a wide array
of cancer types. Thus, the discovery of novel gene fusions can better comprehend
tumor development and progression. For these reasons, gene fusion detection has
become critical to bioinformatics research. [1]

1.2 Gene fusion detection state of art and
challenges

Significant advancements have been made in computational methods for fusion
gene discovery over the past years due to the widespread applications of Next
Generation Sequencing (NGS) technologies. However, bioinformatics analysis of
genomic and transcriptomic data is a complex task, and the development of proper
bioinformatics tools is necessary. Although many gene fusions detection tools have
been developed over the past years, there is still no gold standard. In addition,

11

Introduction

the RNA-seq artifacts introduced with library preparation and sequence alignment
make it challenging to obtain reliable gene fusions predictions. Therefore, the tools
implement rigid filters to maintain the number of false-positive predictions low,
causing the side effect that occasionally driver fusions are discarded.
The typical practice is to execute multiple tools and use the union or intersection of
their results. Unfortunately, this approach is computationally demanding because
each tool on its own has specific requirements and generally takes many hours
or even days to run [2]. During the last years, bioinformatics pipelines were
developed to deal with these issues. A bioinformatics pipeline is a wide array
of algorithms executed in a predefined sequence to process NGS raw sequencing
data and generate a list of annotated sequence variants [3]. NGS is the primary
technology for discovering gene fusions, and its reducing costs have resulted in an
increasing quantity of patients with whole transcriptome sequencing (RNA-seq)
and whole-genome sequencing (WGS) data.
Several pipelines for gene fusions detection from RNA-seq data have been developed.
However, analyzing RNA-seq alone has its limitations. Otherwise, integrating RNA-
seq and WGS data leads to a sensitive approach for detecting gene fusion predictions
[4]. Indeed, being generated separately, WGS and RNA-seq data do not present
the same artifacts and noise, and their integration can result in better analysis.
Furthermore, this process makes the prioritization of biologically relevant gene
fusion easier, often masked by false positives.

1.3 Thesis outline

The core of this master thesis is the development of a bioinformatics pipeline for the
analysis of RNA-seq and WGS data to detect gene fusions. The goal was to realize
an easy-to-use, scalable, and highly reproducible pipeline. The proposed pipeline in-
cludes five gene fusion detection tools: EricScript, Arriba, FusionCatcher, Integrate,
and GeneFuse. In order to achieve the proposed goal, the leading technologies used
to build the pipeline are Nextflow, Docker container, and Conda virtual environ-
ments. Nextflow was used to obtain an easily reproducible and scalable pipeline.
It permits the creation of complex processes running sequentially or concurrently,
giving the possibility to install the tools directly inside the pipeline before execution

12

Introduction

and, at the same time, to parallelize the different tools in the interest of time.
Docker container technology was introduced to run operations inside the pipeline
quickly and reliably. Finally, Conda was exploited to create environments and
easily switch between them, allowing flexible environment management.

13

Chapter 2

Gene Fusions

2.1 Definition

The expression gene fusion refers to hybrid genes formed when two or more
previously independent genes become juxtaposed. It can occur due to different
biological phenomena such as translocation, interstitial deletion, or chromosomal
inversion. A fusion can be found at the DNA level or RNA level. Gene fusions
transcription is not the only cause of chimeric RNA origination: they can also derive
from trans-splicing of two pre-mRNAs and alternative splicing of a read-through
transcript, known as cis-splicing of adjacent genes.
Among the most widely studied genomic variations, gene fusions have been of great
interest due to their correlations with tumorigenesis. A canonical example of fusion
genes is BCR-ABL, which is translated into an abnormal tyrosine kinase that leads
to the development of chronic myelogenous leukemia (CML). A BCR-ABL targeting
drug, Gleevec/Glivec, was very successful in the treatment of CML, prompting
the search for other fusion genes to be used as tumor-specific biomarkers or drug
targets [5].
Gene fusions oncogenic properties are expressed by either forming a hybrid protein
with oncogenic functionalities (e.g., by causing the activation of a specific enzyme),
deregulating one of the implicated genes (e.g., by fusing a strong promoter to
a proto-oncogene), or inducing a loss of function (e.g., by truncating a tumor
suppressor gene). One estimate states that translocations and gene fusions are
responsible for 20% of global cancer morbidity.

14

Gene Fusions

The prevalence of gene fusions differs extensively between different cancer types:
gene fusions cause 90% of all lymphomas, more than 50% of leukemias, and 30%
of soft tissue tumors. For example, in prostate cancer, the most common genetic
alteration is the TMPRSS2-ERG, being found in over 50% of patients, but many
recurrent gene fusions occur at low frequencies, such as the KIF5B-RET fusion,
which is present in less than 3% of lung adenocarcinomas.
Gene fusions have also been important in classifying molecular subtypes of cancers,
monitoring enduring disease post-treatment, and predicting eventual relapse. Fusion
transcripts are also emerging as therapeutic targets. For example, a significant
patient outcome improvement was followed by drug development targeting the
ATP-binding sites and allosteric regions of the BCR-ABL fusion kinase, an active
tyrosine kinase, and the driving mutation in chronic myelogenous leukemia. Another
example is shown by the inhibitors of the anaplastic lymphoma kinase (ALK)
protein; they have greatly improved prospects for patients with EML4-ALK fusion
positive non-small cell lung tumors [6], [1].

2.2 Mechanisms involved in the formation of
gene fusions

The generation of a chimeric gene generally occurs in two phases. The partial
(or complete) sequences that will eventually compose the new single hybrid gene
must be placed in proximity on a chromosome unless the fusion is generated by
trans-splicing or occurs between two genes already adjacent to each other. Although
this step alone may form a new gene structure with a chimeric transcript, a second
step is often required: it may involve deletions, acquisition of new splice sites,
and/or engagement of non-coding regions. Importantly, duplicated gene copies are
often involved in the formation of new genes because, in this case, new chimeric
proteins can be generated without the disruption of the original gene functions [1].

Chromosome structural variations may result in the exchange of coding or
regulatory DNA sequences between genes. The chromosome rearrangements that
lead to gene fusions can be balanced and unbalanced. Balanced rearrangements
include insertions (in which a chromosomal portion is moved to a new interstitial

15

Gene Fusions

position in the same or another chromosome), inversions (which involve rotation of
a chromosomal portion by 180°), and balanced translocations (which involve the
transfer of chromosomal segments between chromosomes). Unbalanced rearrange-
ments include deletions (characterized by the deficiency of a chromosomal segment),
duplications (in which a chromosome portion repeats within the same chromosome),
and unbalanced translocations (in which chromosomal segments are transferred
between chromosomes to cause partial monosomy and partial trisomy)(Figure
2.1)[7].

Figure 2.1: Balanced (A) and unbalanced (B) chromosome rearrangements.

16

Gene Fusions

2.3 Gene fusion detection and applications
in cancer

Gene fusions play significant roles in the first steps of tumorigenesis. The first
gene fusions were originally identified in the early 1980s in B cell lymphomas. At
that time, gene fusions mainly referred to leukemia and sarcomas, in which single-
nucleotide variants burden is limited. These cancers contain conserved gene fusions,
some of which were found in almost 100% of cancer subtypes. The development of
research on NGS drives a vast number of new gene fusions discovery in all kinds of
neoplasia. In 2018, Gao used STAR-Fusion, EricScript, and Breakfast as detection
tools to identify 25,664 fusions based on RNA-seq data from 9624 tumors. Many
gene fusions are solid driver mutations in neoplasia and have provided fundamental
insights into tumorigenesis.
The tight association between specific gene fusions and their related tumor phe-
notypes makes gene fusions ideal for (a) diagnostic purposes, such as BCR-ABL1
fusion protein derived from Philadelphia chromosome 9–22 translocation in chronic
myeloid leukemia (CML) and EWSR1-FLI1 in Ewing’s sarcoma; (b) risk stratifica-
tion, such as findings that fusions strongly stratified patients of prostate cancer
across low and intermediate/high-risk groups and levels of TMPRSS2/ERG fusion
transcript in urine can be used to stratify prostate cancer risk in men with elevated
serum PSA; (c) targeted drugs. Nowadays, gene fusions are essential for treating
cancer patients, as many drugs selectively target the proteins encoded by these
genes. Imatinib, a tyrosine kinase inhibitor accepted by the US Food and Drug
Administration (FDA) in 2001, was the first drug designed to target BCR-ABL1
fusion protein in CML. Imatinib significantly improved CML patients’ lifespan and
quality of life and effectively treated other tumors. After the success of Imatinib,
several new drugs have been realized to treat cancers with fusion genes. For
example, Dasatinib, Nilotinib, Bosutinib, and Ponatinib have been approved to
treat CML or acute lymphoblastic leukemia (ALL) with the BRC-ABL1 fusion
protein. Crizotinib, Ceritinib, Alectinib, Brigatinib, Lorlatinib, the first-, second-,
third-generation ALK inhibitors, have been approved to treat NSCLC with ALK
fusions. The first-generation TRK inhibitors, Larotrectinib and Entrectinib, were
approved to treat various adult and pediatric cancers with TRK fusion in 2018 and

17

Gene Fusions

2019.
In general, tumors with gene fusions show a high level of malignancy and progress
rapidly. Although targeted drugs work well for some fusions, no functional therapies
exist for many tumors with gene fusions. For this reason, it is necessary to develop
new therapies to treat tumors with gene fusions. Recently, tumor neoantigens
immunotherapy has become a promising cancer treatment. Furthermore, in most
types of cancer, fusion neoantigens have higher immunogenic potential than SNV
and Indel (SNVIndel) neoantigens, suggesting that gene fusions may be suitable
targets for cancer immunotherapy [7].

18

Chapter 3

Materials and Methods

3.1 Materials

Executing gene fusion detection tools is a computationally demanding task. Thus,
high computer performances are required to run these tools.
For this thesis, Hactar cluster of HPC@POLITO Academic Computing Center and
POLITO Philae sever were used. The HPC Politecnico di Torino project is an Aca-
demic Computing center that provides computing resources and technical support
for academic research activities. Philae is a POLITO internal development server.
The disk quotas of the servers were adapted to make the system compliant with
the necessary resources. Hactar Cluster and Philae server’s technical specifications
are shown in Table 3.1.

HACTAR PHILAE

OS CentOS 7.6 - OpenHPC
1.3.8.1 Ubuntu Linux 18.04

RAM 3.7 TB 131 GB

CPU
2x Xeon E5-2680 v3 2.50
GHz (turbo 3.3 GHz) 12
cores

Intel Xeon E5-2630 v3 2.40
GHz 8 cores

Table 3.1: Server’s technical specifications.

Visual Studio Code was used to realize the Nextflow code, the Dockerfile, the
YAML Conda environment files and to interact with the remote repository.
GitHub and DockerHub were used as hosted repository to store and exchange files

19

Materials and Methods

related to the pipeline.

3.2 Methods

The approach used for the realization of the pipeline is based on four main steps:

1. analysis;

2. design;

3. development;

4. validation.

The analysis step represents the preliminary stage in which several investigations
are performed. In this first step, the pipeline requirements are defined, and the gene
fusion tools are firstly collected and then analyzed through their documentation.
Subsequently, the design step occurs. In this phase, a theoretical model of the
pipeline is realized. The theoretical model is built considering the requirements
defined in the previous step. The third step is the development of the code. In this
stage, the pipeline is realized according to the model early defined. The last step
regards the validation of the pipeline. In this phase, several tests are performed in
order to verify that the pipeline works correctly.
These steps were iteratively repeated several times to obtain the most functional
model. The pipeline development life-cycle is shown in Figure 3.1.

Figure 3.1: Iterative approach steps.

20

Chapter 4

Pipeline

4.1 Introduction

The discovery of novel gene fusions can lead to a better comprehension of tumor
progression and development. However, detecting them through gene fusion tools
is quite a challenging task. There are several limitations in traditional tools usage:

• each tool has specific installation requirements and version dependencies that
must be precisely adhered to;

• files and databases downloads and tools execution are time-consuming;

• distinct tools can require different input data formats;

• multiple complementary fusion detection tools are needed to improve sensitiv-
ity.

Bioinformatics algorithms and processes executed in a specific sequence to process
NGS data are collectively referred to as the NGS bioinformatics pipeline. A bioin-
formatics pipeline processes numerous sequence data and their associated metadata
through multiple transformations using a series of software components, databases,
and operation environments (hardware and operating system) [5].

FusionFlow is an easily reproducible and scalable bioinformatics pipeline for detect-
ing gene fusions from both RNA-seq and WGS data. It includes five fusion detection
tools executed through fifteen processes. The processes are built using Nextflow

21

Pipeline

and exploit Docker and Conda technologies. Docker and Conda engines are used to
create virtual environments precisely configured for each tool. In addition, Nextflow
allows running tools downloads, installation, and execution concurrently in the
interest of time constraints. Finally, the pipeline inputs standard data formats and
eventually converts them directly inside specific converter processes.

4.2 Technologies

In order to realize an easy-to-use, scalable, and highly reproducible pipeline, the
main technologies used to build the pipeline are Nextflow, Docker container, and
Conda virtual environments.

4.2.1 Nextflow

Using Bash scripts would be the simplest way to create a processing pipeline, but
this approach is limited. A Bash script does not parallelize to multiple subjects
and is challenging to maintain over time. Numerous pipelining tools exist and
allow to develop a pipeline more easily than with Bash script, such as Luigi [8]
or Nextflow [9]. Generally, Luigi pipelines creation and maintenance are more
complex than a Nextflow pipeline [10]. FusionFlow is built using Nextflow. Nextflow
is an open-source software used to write, deploy and share workflows in a very
portable manner. Its Domain Specific Language (DSL) enables the development
and implementation of parallel workflows on clusters and clouds. Thus, Nextflow
enables scalable and reproducible scientific workflows wrapping every task of the
workflow inside a container. Indeed, Nextflow supports the usage of Docker and
Singularity containers. The main Nextflow components are processes and channels.

Prosesses

In Nextflow, a process is the basic element to execute a user script. A process
statement begins with the keyword "process", followed by the chosen process name,
and lastly, the process body is enclosed in curly brackets. The process body must
include a script that is executed by it. The script block is a string declaration that
includes the command that is executed by the process. A process presents just one
script block, and it must be the last declaration when the process also contains

22

Pipeline

other declarations such as input and output. The entered string is executed in
the host system as Bash script by default. It can be a command, a script, or a
combination of them, generally used in a terminal shell or a Bash script. The script
block can include just a simple string or multi-line string. Nextflow strings can
be enclosed in single-quotes or double-quotes, and multi-line strings are defined
by three single-quote or three double-quote characters. Strings enclosed in double-
quotes support variable substitutions, while strings delimited by single-quotes do
not.
The script block does not allow the direct usage of both Nextflow and Bash variables.
To escape this problem shell block can be used, instead of the common script block.
The shell block is a string declaration that describes the shell command executed
by the process. Differently from the script definition, it uses the exclamation mark
! character as a placeholder for Nextflow variables instead of the usual dollar $
symbol. In this way, it is possible to use both Nextflow and Bash variables in the
same part of code, maintaining process scripts readable and easy to fix.
Nextflow processes are isolated from each other. Communication between channels
is possible through Nextflow channels. Inside the process definition, the input block
indicates from which channels the process expects to receive data. It can be defined
as one input block at a time, and it must contain one or more input declarations. An
input declaration includes an input qualifier and the input name, then it is followed
by the keyword "from" and the channel name over which inputs are expected.
Finally, to enable specific functionalities, other input optional attributes can be
specified. The input qualifier defines the type of data to be received. Nextflow uses
this information in order to apply the semantic rules associated with qualifiers and
adequately handle them.
The "val" qualifier allows the handling of data of any type as input. The "file"
qualifier allows receiving file values in the process execution context. In this case,
Nextflow stages the file in the process execution directory allowing its usage in the
script by calling the name in the input declaration. The "tuple" qualifier allows
handling multiple parameters in a single parameter definition. It can be useful
when a process receives input values that need to be managed separately. Each
element in the tuple definition is associated with a corresponding element with the
tuple definition.

23

Pipeline

The output declaration block allows specifying the channels used by the process
to send out the results obtained. One output block at a time can be defined,
and it must contain one or more output declarations. Output definitions start
with an output qualifier and the output name, followed by the keyword "into"
and one or more channels over which outputs are sent. Finally, to enable specific
functionalities, other input optional attributes can be specified.
If the keyword "val" is used as a qualifier, then a value defined in the script context
is given as output. The "file" qualifier is used, then one or more files produced by
the process are given as output over the specified channel. The "tuple" qualifier
allows sending multiple values into a single channel. This feature is useful when
there is the needing to collect together the results of multiple executions of the
same process.
The when declaration allows to specify a condition that must be verified in order
to execute the process. This aspect can be any variable that evaluates a boolean
value. Generally, it is useful to enable the process execution according to the state
of specific inputs and parameters.
The standard process syntax is shown in Figure 4.1. [9]

Figure 4.1: Standard process syntax.

24

Pipeline

Channels

Nextflow uses the Dataflow programming model in which processes communicate
through channels. A channel has two principal properties:

1. sending a message is an asynchronous operation that happens immediately,
without having to wait for the receiving process;

2. receiving data is a blocking operation that stops the receiving process until
the data have arrived.

Nextflow provides two different types of channels: queue channels and value
channels.
A queue channel is a non-blocking FIFO queue that unidirectionally connects two
processes or operators. It is generally created using methods such as a from or
fromPath. A queue channel can also be chained with channel operators such as map
or flatMap. This type of channel is also generated by process output declarations
using the into clause.
A value channel by definition is bound to a single value, and it can be read
unlimited times without consuming its content. A value channel is created using
value methods or by operators returning a single value, such as first, last, or collect.
[9]

4.2.2 Docker

Docker is a platform that allows developers and systems operators to develop,
deploy, and execute virtualized applications in sandbox environments known as
containers. Containers are instances of an image, abstractions at the app layer that
wraps code and dependencies together, so the application runs quickly and reliably
from one computing environment to another. An image contains all the components
necessary to execute the application: a) the application itself, b) the libraries and
packages needed, c) the environment variables, and d) the configuration files. The
underlying technology behind Docker is a sandbox environment that virtualizes
the underlying host without the need for a total revision of the application (Figure
4.2).

25

Pipeline

Figure 4.2: Docker layers.

This technology is mainly designed for security and isolation from the host. The
main properties that make containers a leader in virtualization technologies are
[11] [12]:

• Flexibility: docker technology allows to virtualize and instantiate lightweight
applications that use only a few libraries up to heavy applications with images
reaching GB in terms of size.

• Lightweight: containers share the host kernel. This step allows them to excel
in lightweight application provisioning. It also reduces the size and processing
times.

• Interchangeable: docker flexibility enables developers to deploy program
updates and upgrades quickly. While the application itself is running, its
newer version is deployed. Subsequently, the newer version takes over the
tasks of the previous one.

• Portable: docker technology provides a sandbox environment that allows
to build applications locally and upload to the cloud, download and execute

26

Pipeline

them anywhere.

• Scalable: the increase and decrease of instances can be automated, so the
number of replicas can be dynamically adjusted to the requirements of users.

• Stackable: Docker enables the possibility to create a stack to share dependen-
cies that can be orchestrated together. This property wraps services together
in order to save time, resources, and container size. This stacking can also be
performed while the application runs.

It is required a file known as Dockerfile to create a Docker image. The Dockerfile
contains all information on how to build the image. The Dockerfile used to build
the image for FusionFlow is shown in Appendix A.
The image is stored and publicly available on the DockerHub repository (https://hub
.docker.com/layers/177825516/federicacitarrella/pipeline/latest/images/sha256-fc2
8abaa76c86772dd92088a93a6c0652fc35a0c926cc234b8698d240258a040?context=re
po).

4.2.3 Conda

Tools generally require different software packages and dependencies. Setting up
an environment and installing all dependencies can be long, tedious, and difficult,
especially for beginners and non-technical experts. Several users configure their
environment without specifying the package version number. Some tools such as
virtual environments exist to realize several working environments with proper
package versioning. However, this multi-environment concept can be difficult for
most non-computer-scientist users. Therefore, the proposed pipeline includes the
creation of virtual environments with specific versions for each tool, making the
execution easy for everyone.
To correctly manage software packages and dependencies, Conda technology is
used. Conda is a flexible open-source package management and environmental
management system. It easily creates and switches between environments, allowing
flexible management of environments.

For the pipeline, five Conda virtual environments were created. These environments

27

https://hub.docker.com/layers/177825516/federicacitarrella/pipeline/latest/images/sha256-fc28abaa76c86772dd92088a93a6c0652fc35a0c926cc234b8698d240258a040?context=repo
https://hub.docker.com/layers/177825516/federicacitarrella/pipeline/latest/images/sha256-fc28abaa76c86772dd92088a93a6c0652fc35a0c926cc234b8698d240258a040?context=repo
https://hub.docker.com/layers/177825516/federicacitarrella/pipeline/latest/images/sha256-fc28abaa76c86772dd92088a93a6c0652fc35a0c926cc234b8698d240258a040?context=repo
https://hub.docker.com/layers/177825516/federicacitarrella/pipeline/latest/images/sha256-fc28abaa76c86772dd92088a93a6c0652fc35a0c926cc234b8698d240258a040?context=repo

Pipeline

were defined through five yml files. Yml files include three sections: a) name, b)
channels and c) dependences. The first section defines the name of the environment.
The second specifies the channels where packages are stored and the last one defines
the package to be installed and their specific version. Table 4.1 are shown the
packages installed in each environment and their version.

Environment Dependencies Versions
ericscript

ericscript 0.5.5
gdown 3.13.0

arriba
arriba 2.1.0

fusioncatcher
fusioncatcher 1.33

genefuse
genefuse 0.6.1
samtools 1.13
gdown 3.13.0

integrate
cmake 3.18.2
parallel 20210822
boost 1.76.0
samtools 1.14
bowtie2 2.4.4
bwa 0.7.17
gdown 3.13.0

Table 4.1: Environments dependencies and versioning.

4.3 Tools

FusionFlow includes five fusion detection tools: EricScript, Arriba, FusionCatcher,
GeneFuse and Integrate. Three of them, EricScript, Arriba, and FusionCatcher,
accept as input just RNA-seq data, GeneFuse accepts just WGS data, and Integrate
can accept as input just RNA data or both RNA and WGS data.

• Arriba: is a linear workflow with just a single alignment process followed

28

Pipeline

by a filtering step. Arriba is based on the ultrafast STAR RNA-seq aligner
[13]. STAR can search for two types of chimeric alignments: split reads and
spanning reads. The chimeric alignments are stored in a separate output file
or in the main output file. Arriba analyzes the chimeric alignments from
either of these files and finds gene fusions. STAR aligns reads that support
these fusions as if the fused genes were obtained by splicing because STAR
defines the type of alignment just by analyzing the dimension of the gap rather
than the gene annotation. Moreover, to avoid fusions resulting from focal
deletions, Arriba screens for alignments spanning the annotated genes’ edges.
Unlike many other fusion detection pipelines, Arriba can reuse already existing
alignments of STAR rather than align reads exclusively to call gene fusions.
Once the candidate alignments have been stored, Arriba utilizes a set of filters
to reach high-confidence predictions and remove artifacts. [2]

• Ericscript: a computational framework that identifies fusion transcript sig-
natures using a combination of four alignment processes. It comprises the
following steps: (1) mapping of the reads to the transcriptome, (2) finding of
discordant alignments and building of the exon junction reference (3) recali-
bration of the exon junction reference, (4) scoring and filtering the candidate
gene fusions. The first alignment is used to find discordant alignments and
to build an exon junction reference, it is performed by Burrows–Wheeler
Alignment (BWA) [14]. This step precedes the mapping of all the reads to this
novel reference to discover reads that are not properly mapped. To accurately
estimate the junctions positions, EricScript performs a further local alignment
of the not properly mapped reads against the exon junction reference using
BLAT [15]. The last mapping step allows for the detection of the spanning
reads, that is, the reads that span across the junctions and generate a list of
candidate fusions. Finally, EricScript calculates a probability score for each
predicted fusion and removes analysis artifacts using several heuristic filters.
[16]

• FusionCatcher: a software tool for finding somatic fusion that achieves
competitive detection rates and real-time PCR validation rates in RNA-seq
data from tumor cells. Firstly, some pre-processing and filtering are performed

29

Pipeline

on the input data. Quality filtering is performed by four steps: (1) removing
unnecessary reads, (2) trimming the reads which contain adapters and poly-
A/C/G/T tails, (3) clipping the reads valuating quality scores, (4) removing the
reads which are considered as bad quality by Illumina sequencer. FusionCatcher
performs most of the data analysis at the RNA level by aligning the reads
on transcriptome using Ensembl genome annotation [17], and Bowtie aligner
[18]. The reads that show a better alignment, with just a few mismatches, at
the genome level will have their transcriptome mappings removed. Likewise,
the reads which map simultaneously on several transcripts of different genes
have their mappings removed. The unmapped reads, which are the reads
that succeed the quality filtering and do not map on the transcriptome and
the genome, are kept for additional analyses. The reads mapping on the
transcriptome are collected and used further to create the first list of candidate
fusion. Pairs of genes are removed from the preliminary list of candidate fusion
genes using specific biological criteria. FusionCatcher approach consists of
four different methods and aligners for detecting the fusion junctions. The
aligners are Bowtie [18], BLAT [15], STAR [13], and Bowtie2 [19], each method
corresponds to one of them. [20]

• GeneFuse: a tool to detect and visualize target gene fusions by analyzing
DNA-seq data. GeneFuse is based on four major steps: (1) indexing, (2)
matching, (3) filtering, and (4) reporting. Firstly, GeneFuse extracts the
sequences from the reference genome within the fusion gene areas. A k-mer of
all these sequences is computed, and each element of the k-mer is associated
with a list of genome coordinates that it matches. A hashmap is produced,
and it is used for mapping a read to the target genes. In the matching step, a
set of sequences is computed for each read by storing all its subsequences with
a length of k. Then the associated genes of this read can be discovered by
mapping the subsequences to the genome coordinate using the index computed
in the previous step. When the fusion match prediction list is created, a newer
k-mer is formed by enumerating all subsequences of the reads supporting
the fusions. Then the entire reference genome is analyzed for searching the
same k-mer elements, and the matched genome coordinates will similarly be

30

Pipeline

collected to prepare a new global index G. For each read in the fusion match
candidate list, it is mapped to G, and if it could be mapped to a reference
genome, it is removed from the fusion match candidate list. Other filters can
also be applied to eliminate false callings. In the reporting step, the fusion
matches are firstly clustered as fusion results respect the fusion points. Each
fusion result is further analyzed and subjected to other filters and the ones
passing these are considered qualified fusions, for which the exon or intron of
the fusion breakpoint will be located. [21]

• INTEGRATE: a tool finding gene fusions with exact fusion junctions and
genomic breakpoints using RNA-seq and WGS paired-end sequencing data
aligned to the reference genome in BAM format. INTEGRATE is a flexible
tool admitting to use reads aligned by different tools, including GSNAP
[22], TopHat2 [23], and STAR [13]. Considering that gene fusions expression
is relevant, INTEGRATE primarily analyzes mapped and unmapped RNA-
seq reads, then analyzes WGS reads from tumor and a normal sample, if
available. INTEGRATE is based on the following steps: (1) build gene fusion
graph using encompassing, or discordant, RNA-seq reads; (2) remove borders
corresponding to discordant reads that show a concordant suboptimal mapping
or present low weights due to multi mapping; (3) map previously unaligned
RNA-seq reads between gene nodes as split-reads to obtain fusion junctions; (4)
retrieve encompassing WGS reads corresponding to focal regions near fusion
junctions; (5) map spanning WGS reads to focal regions using encompassing
WGS reads to reconstruct genomic breakpoints. Finally, the tool produces as
output the gene fusion predictions with the fusion junctions sorted according
to the quantity of supporting WGS and RNA-seq reads. INTEGRATE divides
fusions into tiers related to the level of sequencing support and potential
biology to prioritize gene fusion candidates.[4]

4.4 Pipeline inputs

In ideal conditions, to make the pipeline usage as simple as possible, the only
mandatory inputs the user must insert are the reads to be analyzed. In this case,
the pipeline looks for tools’ required files in default paths. If the files are found, the

31

Pipeline

gene fusion detection tools are directly executed. Otherwise, the tools are installed,
and the required files are downloaded before the tools’ execution. Optionally, the
user can give as input the specific local paths to tools’ required files.

4.4.1 Reads

FusionFlow is projected to receive as input just RNA-seq, just WGS, or both
RNA-seq and WGS data. NGS technology has resulted in enormous amounts of
proteomics and genomics data. These data are analyzed and reported in specific
formats. Different algorithms require input data in specific formats. The pipeline
supports two formats: the RNA-seq reads format must be Fastq, while the WGS
data supported format is Fastq and BAM.

• Fastq Format: it is a text format for the storage of DNA, RNA and Genome
sequence data, showing their quality. Fastq format is described in Figure
4.3. It is used in multiple and sequence alignment for Bioinformatics data
collection, and it helps compare multiple sequences. In this dataset format,
the first line starts with @ character that is sequence ID, the second line
presents sequence letters, the third line starts with + character, the fourth
line describes quality scores of the sequence letters shown in the second row.
Quality score is based on ASCII (American Standard Code for Information
Interchange). Fastq compressed files are in GNU zip format. Compression of
quality scores is very significant for reducing storage requirements. Fastq data
can be found with extensions “.fq” and “.fastq”. [24]

Figure 4.3: Fastq format.

• BAM (Binary Alignment Map) File Format: it is used for the collection
of text data into Sequence (Aligned or Unaligned) for Genome in single node
elaboration for direct access. Data cannot be collected in HDFS (Hadoop

32

Pipeline

Distributed File System) without accessing BAM Library. After data is
collected on Hadoop platform, Spark queries are used for sequencing data.
Since BAM files are binary, they are not human readable. [24]

4.4.2 Tools’ required files

Optionally, the user can give as input the tools’ required files. These files must
be collected in specific folders, and the user should specify the directories in the
command line. If the files are found, these will be given as input directly to the
tools’ execution processes. Tools’ required files, relative command-line arguments,
and standard directories are reported in table 4.2.

Tool name Input files Command line
argument Default directory

Arriba

reference genome in
Fasta format, gene
annotation in GTF
format, STAR in-
dex

--arriba_ref results/arriba/files

EricScript ensembl database of
a genome --ericscript_ref results/ericscript/files

FusionCatcher FusionCatcher hu-
man built data

--fusioncatcher-
_ref

results/fusioncatcher/-
files

GeneFuse fusion files --genefuse_ref results/genefuse/files

Integrate

Integrate source
code, genome index
file, annotation file,
built BWTs

--integrate_ref --
integrate_- bwts results/integrate/files

Table 4.2: Tools required files.

4.5 Pipeline outputs

The FusionFlow pipeline produces several files that can be divided into two cat-
egories: tools’ required files and gene fusions’ output files. The first category
includes all the files that are needed for the execution of the tools. These files can
be directly provided to the pipeline, skipping their downloads processes, or can be

33

Pipeline

downloaded running the pipeline for the first time. Then, the files will be saved in
a specific path to be available to the pipeline for the subsequent runs. The second
category of output includes the files that are produced as output from the gene
fusion tools. Each tool gives as output one or more files in specific formats. The
most diffused formats are Tab Separated Value (TSV), Variant Call Format (VCF),
and standard text format.

• TSV (Tab Separate Value): it is a common method to exchange data
using Mail-merge functions. Every single row represents a record, and every
single field value is reported as a text. Different fields in a specific record are
delimited from each other by a tab character. TSV format is described in
Figure 4.4. [24]

Figure 4.4: TSV format.

• VCF (Variant Call Format): it is designed for the collection of large
Genomics data in the form of text including some special keyword, introduced
with the character, in MapReduce or Spark Framework. In this format, every
row is represented in the array. VCF provides a different speed when large
genome data is stored depending on the Framework used. Generally, Spark
allows better speed instead of MapReduce. VCF is described in Figure 4.5.
[24]

Figure 4.5: VCF format.

34

Pipeline

4.6 Pipeline configuration
4.6.1 Profiles

Nextflow allows to create one or more profiles. A profile is a set of configuration
options that can be activated or chosen when launching a pipeline execution by using
the -profile command line option. FusionFlow is associated with a configuration
file nextflow.config that contains the description of four profiles:

• docker: this profile allows to run all the processes in a specific Docker
container (Figure 4.6); in this case, all the virtual environments needed to
install the tools and execute them are already set up in the Docker container
and ready to use. The Docker image is publicly available, thus, if it is not
already downloaded, it will be automatically pulled from the Docker Hub;

Figure 4.6: Docker profile solution.

• local: this profile allows to run all the processes locally. It can be used directly

35

Pipeline

inside the running Docker container or in case the virtual environments are
already properly created locally (Figure 4.7, Figure 4.8);

Figure 4.7: Local profile solution in
server.

Figure 4.8: Local profile solution in
Docker.

• test_docker: this profile allows to test the docker profile using test samples;

• test_local: this profile allows to test the local profile using test samples.

4.6.2 Other attributes

The nextflow.config configuration file sets all the other standard arguments used in
the different processes. However, these parameters are available at the command
line. The command-line arguments, a brief description, and the default value are
shown in Table 4.3.

Argument name Description Default value

--help Flag to show the help
message. false

36

Pipeline

--dnabam
Flag to specify the dna
reads are in bam for-
mat.

false

--single_end Flag to specify reads
are single-end. false

--outdir
The utput directory
where the results will
be saved.

"results/"

--referenceGenome The path to the refer-
ence genome

"results/reference_genome/-
hg38.fa"

--referenceGenome_index The path to the refer-
ence genome indexes. "results/reference_genome/index"

--ericscript_ref The path to the Eric-
Script files.

"results/ericscript/files/ericscript-
_db_homosapiens_ensembl84"

--arriba_ref The path to Arriba
files. "results/arriba/files"

--fusioncatcher_ref The path to Fusion-
Catcher files. "results/fusioncatcher/files"

--integrate_ref The path to Integrate
files. "results/integrate/files"

--integrate_bwts The path to Integrate
bwts files. "results/integrate/files/bwts"

--genefuse_ref The path to GeneFuse
files. "results/genefuse/files"

--rnareads The path to RNA-seq
reads. ""

--dnareads_tumor The path to WGS tu-
mour reads. ""

--dnareads_normal The path to WGS nor-
mal reads. ""

--envPath_ericscript The path to EricScript
virtual environment.. "/opt/conda/envs/ericscript/bin"

--envPath_arriba The path to Arriba vir-
tual environment. "/opt/conda/envs/arriba/"

--envPath_fusioncatcher
The path to Fusion-
Catcher virtual envi-
ronment.

"/opt/conda/envs/fusioncatcher/
bin"

37

Pipeline

--envPath_integrate The path to Integrate
virtual environment. "/opt/conda/envs/integrate/bin"

--envPath_genefuse The path to GeneFuse
virtual environment. "/opt/conda/envs/genefuse/bin"

--nthreads Number of threads. 8
--arriba Flag to run Arriba. false
--ericscript Flag to run EricScript. false

--fusioncatcher Flag to run Fusion-
Catcher. false

--genefuse Flag to run GeneFuse. false

--integrate Flag to run INTE-
GRATE. false

Table 4.3: Pipeline attributes.

4.7 Pipeline execution

The pipeline can be executed by entering in the shell terminal the command shown
in Figure 4.9.

Figure 4.9: Shell standard execution command.

Firstly, the path to Nextflow executable file is specified, followed by the run
command and pipeline path. Then paths to RNA and DNA reads must be included.
The tools flags should be specified just if not all the tools are involved in the current
analysis. Otherwise, all the tools will be involved in the gene fusions detection if
no flag is specified. Then other optional arguments can be included, and lastly, the
profile definition.
Launching the described command, Nextflow looks for the main pipeline file in the
path specified. If that file does not exist, Nextflow searches for a public repository

38

Pipeline

with the same name on GitHub. If it is found, the repository is automatically
downloaded and the pipeline executed. The repository found is stored in the
Nextflow home directory, which is by default the $HOME/.nextflow path, and thus
will be called for any further executions.

4.7.1 Files preparation

The FusionFlow pipeline can be run for three different purposes depending on the
type of input received:

1. detect gene fusions in RNA data;

2. detect gene fusions in DNA data;

3. detect gene fusions in RNA and DNA data.

In the first case, just RNA data are needed to execute the pipeline. The input
must be paired-end Fastq files. The two RNA mates files must be named with the
pair ID, followed by "_1" and "_2" suffix, before the extension characters (e.g.,
SRR12345_1.fq.gz and SRR12345_2.fq.gz).
In the second case, just DNA data are required. The DNA data can be given in
input as paired-end Fastq files or as BAM files. If they are given as Fastq files, the
two DNA tumor mates files must be named with the pair ID, followed by "_3" and
"_4" suffix, while the two DNA normal mates files must be named with the pair
ID, followed by "_5" and "_6" suffix.
In the third case, both RNA and DNA data are needed. They must be named as
described earlier for the other cases.
Quotes are always required to enclose files paths in the command line.

4.7.2 Running modes

The pipeline can be run in two modes:

• single mode;

• batch mode.

39

Pipeline

In single mode, the pipeline receives as input and analyzes just a file pair. The
batch mode is used when the pipeline receives input files with more than one pair
ID. In this case, the pipeline sequentially executes the analysis for every pair reads.
For each pair ID, the outputs are stored in the output path into specific folders
named as the pair ID associated to distinguish the various output.

4.8 Minimum system requirements

FusionFlow includes five gene fusion detection tools. For each tool, the pipeline can
perform both the installation and the tool execution. These steps require different
minimum specifications.
Minimum system requirements of three different conditions are reported:

• To execute the entire pipeline >=8 CPU cores and >=45GB RAM are required.

• To run at least the installation and the execution of a single tool (EricScript)
>=4 CPU cores and >=16GB RAM are required.

• To run just the tools execution, skipping the installations >=8 CPU cores
and >=31GB RAM are required.

4.9 Pipeline availability and GitHub support

The FusionFlow pipeline for gene fusion detection from RNA-seq and WGS data
has been developed using Nextflow and Docker, and can be executed on any
UNIX-based OS with Nextflow and Docker installed. The workflow is freely
available on GitHub (https://github.com/federicacitarrella/FusionFlow.git), and
the Docker image required for execution can be found on the DockerHub server
(https://hub.docker.com/repository/docker/federicacitarrella/pipeline).

Nextflows integrates with GitHub hosted code repositories. This feature allows to
manage the project code more consistently and to use it quickly and transparently.
The organization of the files within the GitHub repository is shown in Figure 4.10.
In the /federicacitarrella/FusionFlow path, there are the actual Nextflow pipeline
file pipeline.nf and the configuration file nextflow.config. In the same directory,

40

Pipeline

there are also the Dockerfile, a shell script to build the Docker image build.sh,
a text file README.txt and finally the five YML files, one for each gene fusion
detection tool, to create the Conda virtual environments. A folder named "tutorial"
contains all the test files used in test_docker and test_local profiles to verify the
correct functioning of the pipeline.

Figure 4.10: GitHub files’ organization.

41

Chapter 5

Pipeline architecture

5.1 General architecture

The pipeline run is based on two files, the Nextflow pipeline file pipeline.nf and
the configuration file nextflow.config. The Nextflow pipeline.nf file contains the
actual pipeline, while the nextflow.config file provides the configuration needed to
run the pipeline. The pipeline is composed of fifteen processes. These processes
can be divided into three main categories:

• downloaders: are responsible for the tools installation and download in-
put files. The downloaders processes are: referenceGenome_downloader,
arriba_downloader, ericscript_downloader, fusioncatcher_downloader, inte-
grate_downloader and genefuse_downloader ;

• converters: are responsible for the file preparation and format conversion if
needed. The converters processes are: integrate_converter and genefuse_con-
verter ;

• runners: allow the code and tools execution. The runner processes are:
arriba, ericscript, fusioncatcher, integrate, genefuse, referenceGenom_index,
integrate_builder.

The fifteen processes are structured into six main parallel lines shown in green in
Figure 5.1.
Executing the script with Nextflow, the algorithm will look for the required files in
the paths specified in nextflow.config configuration file or in the paths specified in

42

Pipeline architecture

the command line. If the files are found, the associated downloader is skipped, and
the next processes are run.
Nextflow processes are normally executed concurrently. Nextflow queue channels
are used to execute sequentially downloaders, converters, and runners and provide
inter-communication between processes. A queue channel creates an asynchronous
unidirectional FIFO queue and allows to connect two processes or operators. The
usage of a combination of queue channels permits the creation of predefined
sequences of processes. The processes expect to receive inputs data from the
channels specified in the input block. When the inputs are emitted, the processes
run.

Figure 5.1: Pipeline architecture parallelization.

43

Pipeline architecture

5.2 Tools architecture

FusionFlow includes five fusion detection tools. Each tool in the pipeline has
associated several processes that communicate through Nextflow queue channels.
The processes are triggered by input and, after the script block execution, provide
output to trigger the subsequent processes.

5.2.1 EricScript

EricScript is a bioinformatic framework for the discovery of gene fusions in paired
end RNA-seq data.
Two pipeline processes are associated with EricScript: ericscript_downloader

Figure 5.2: EricScript processes architecture.

44

Pipeline architecture

and ericscript. Six channels are associated with EricScript: rna_reads_ericscript,
input_ch_ericscript, ch1_ericscript, ch2_ericscript, ch3_ericscript and ericscript-
_fusions.
Firstly, the rna_reads_ericscript channel is created. If RNA data are given as
input through the rnareads Nextflow parameter, the rna_reads_ericscript channel
is created using the fromFilePairs function. While, if no RNA data are given as
input, the rna_reads_ericscript channel is created as an empty channel blocking
the ericscript process execution. Then the input_ch_channel is created. The path
specified in the ericscript_ref param is used to look for the EricScript database.
Depending on the existence of the ericscript database, different cases are possible as
shown in Figure 5.2. If the defined database is found, then the database is given as
input to the input_ch_ericscript channel, the ch1_ericscript is created as an empty
channel and the ch2_ericscript channel is created equal to the input_ch_channel.
Being empty, the ch1_ericscript does not trigger the ericscript_downloader, while
the ch2_ericscript is activated and triggers the ericscript runner process. If
the database is not found, then the ch1_ericscript channel is activated and the
ch2_ericscript channel is set to empty. Thus, the ch1_ericscript channel triggers
the downloader that downloads the database and decompresses it and gives it as
input to ch3_ericscript that emits the database to the ericscript runner. Then, after
the ericscript script block execution, the output produced is given as input to the
ericscript_fusions channel and it is stored in the outdir local directory (Listing 5.1).

1 refFile_ericscript = file(params . ericscript_ref)
2 params . skip_ericscript = refFile_ericscript . exists ()
3

4 rna_reads_ericscript = (params . rnareads ? [Channel . fromFilePairs (
params . rnareads)] : [Channel .empty ()])

5 Channel . fromPath (params . ericscript_ref).set{ input_ch_ericscript }
6 (ch1_ericscript , ch2_ericscript) = (params . skip_ericscript ? [

Channel .empty (), input_ch_ericscript] : [input_ch_ericscript ,
Channel .empty ()])

7

8 process ericsctipt_downloader {
9 tag " Downloading "

10

11 publishDir "${ params . outdir }/ ericscript / references ", mode: ’
copy ’

12

45

Pipeline architecture

13 input:
14 val x from ch1_ericscript
15

16 output :
17 file " ericscript_db_homosapiens_ensembl84 " into ch3_ericscript
18

19 when: params . ericscript || params .all
20

21 script :
22 """
23 #!/ bin/bash
24 export PATH=’${ params . envPath_ericscript }: $PATH ’
25

26 gdown ’https :// drive. google .com/uc? export = download & confirm =
qgOc&id=1 VENACpUv_81HbIB8xZN0frasrAS7M4SP ’

27 tar -xf ericscript_db_homosapiens_ensembl84 .tar.bz2
28 rm ericscript_db_homosapiens_ensembl84 .tar.bz2
29 """
30 }
31 process ericscript {
32 tag "${ pair_id }"
33

34 publishDir "${ params . outdir }/ ericscript ", mode: ’copy ’
35

36 input:
37 tuple pair_id , file(rna_reads), file(ericscript_db) from

rna_reads_ericscript . combine (ch2_ericscript .mix(ch3_ericscript)
)

38

39 output :
40 file " output /${ pair_id }" optional true into ericscript_fusions
41

42 when: params . ericscript || params .all
43

44 script :
45 reads = params . single_end ? rna_reads [0] : "../${ rna_reads [0]}

../${ rna_reads [1]}"
46 """
47 #!/ bin/bash
48 export PATH=’${ params . envPath_ericscript }: $PATH ’
49

50 mkdir output && cd output
51 ericscript .pl -o ./${ pair_id } -db ../${ ericscript_db } ${reads}
52 """
53 }

Listing 5.1: EricScript processes.

46

Pipeline architecture

5.2.2 Arriba

Arriba is a command-line tool for the detection of gene fusions from RNA-Seq data.
Two pipeline processes are associated with Arriba: arriba_downloader and ar-
riba. Six channels are associated with Arriba: rna_reads_arriba, input_ch_arriba,
ch1_arriba, ch2_arriba, ch3_arriba and arriba_fusions.

Figure 5.3: Arriba processes architecture.

47

Pipeline architecture

The Arriba architecture is similar to the Ericscript structure. Firstly, the rna_reads-
_arriba channel is created. If RNA data are given as input through the rnareads
Nextflow parameter, the rna_reads_arriba channel is created using the fromFile-
Pairs function. While, if no RNA data are given as input, the rna_reads_arriba
channel is created as an empty channel blocking the arriba process execution. Then
the input_ch_arriba is created. The path specified in the arriba_ref param is
used to look for the Arriba required files. Depending on the existence of the files
directory, different cases are possible as shown in Figure 5.3. If the defined directory
is found, then the files are given as input to the input_ch_arriba channel, the
ch1_arriba is created as an empty channel and the ch2_arriba channel is created
equal to the input_ch_arriba. Being empty, the ch1_arriba does not trigger the
arriba_downloader, while the ch2_arriba is activated and triggers the arriba runner
process. If the directory is not found, then the ch1_arriba channel is activated and
the ch2_arriba channel is set to empty. Thus, the ch1_arriba channel triggers the
downloader that downloads the required files and gives them as input to ch3_arriba
which emits the database to the arriba runner. Then, after the arriba script block
execution, the output produced is given as input to the arriba_fusions channel
(Listing 5.2).

1 refDir_arriba = file(params . arriba_ref)
2 params . skip_arriba = refDir_arriba . exists ()
3

4 rna_reads_ericscript = (params . rnareads ? [Channel . fromFilePairs (
params . rnareads)] : [Channel .empty ()])

5 Channel . fromPath (params . arriba_ref).set{ input_ch_arriba }
6 (ch1_arriba , ch2_arriba) = (params . skip_arriba ? [Channel .empty ()

, input_ch_arriba] : [input_ch_arriba , Channel .empty ()])
7

8 process arriba_downloader {
9 tag " Downloading "

10

11 publishDir "${ params . outdir }/ arriba ", mode: ’copy ’
12

13 input:
14 val x from ch1_arriba
15

16 output :
17 file " references " into ch3_arriba
18

19 when: params . arriba || params .all

48

Pipeline architecture

20

21 shell:
22 ’’’
23 #!/ bin/bash
24 export PATH ="!{ params . envPath_arriba }bin:$PATH"
25

26 mkdir references && cd "$_"
27 !{ params . envPath_arriba }var/lib/ arriba / download_references .sh

GRCh38 + ENSEMBL93
28 ’’’
29 }
30 process arriba {
31 tag "${ pair_id }"
32

33 publishDir "${ params . outdir }/ arriba ", mode: ’copy ’
34

35 input:
36 tuple pair_id , file(rna_reads), file(arriba_ref) from

rna_reads_arriba . combine (ch2_arriba .mix(ch3_arriba))
37

38 output :
39 file " output /${ pair_id }" optional true into arriba_fusions
40

41 when: params . arriba || params .all
42

43 script :
44 """
45 #!/ bin/bash
46 export PATH=’${ params . envPath_arriba }bin:$PATH ’
47

48 run_arriba .sh ${ arriba_ref }/ STAR_index_GRCh38_ENSEMBL93 / ${
arriba_ref }/ ENSEMBL93 .gtf ${ arriba_ref }/ GRCh38 .fa ${ params .
envPath_arriba }var/lib/ arriba / blacklist_hg19_hs37d5_GRCh37_v2
.1.0. tsv.gz ${ params . envPath_arriba }var/lib/ arriba /
known_fusions_hg19_hs37d5_GRCh37_v2 .1.0. tsv.gz ${ params .
envPath_arriba }var/lib/ arriba /
protein_domains_hg19_hs37d5_GRCh37_v2 .1.0. gff3 ${ params .
nthreads } ${ rna_reads }

49 mkdir output && mkdir output /${ pair_id }
50 mv *. out output /${ pair_id }
51 mv *. tsv output /${ pair_id }
52 mv *. out output /${ pair_id }
53 mv *bam* output /${ pair_id }
54 """
55 }

Listing 5.2: Arriba processes.

49

Pipeline architecture

5.2.3 FusionCatcher

FusionCatcher is a bioinformatcs tool that searches for novel or known somatic
fusion genes, translocations, and chimeras in RNA-seq data from diseased samples.
Two pipeline processes are associated with FusionCatcher: fusioncatcher_download-
er and fusioncatcher. Six channels are associated with FusionCatcher: rna_reads-
_fusioncatcher, input_ch_fusioncatcher, ch1_fusioncatcher, ch2_fusioncatcher,
ch3_fusioncatcher and fusioncatcher_fusions.
The FusionCatcher architecture is similar to the other RNA tools. Firstly, the

Figure 5.4: FusionCatcher processes architecture.

50

Pipeline architecture

rna_reads_fusioncatcher channel is created. If RNA data are given as input
through the rnareads Nextflow parameter, the rna_reads_fusioncatcher channel is
created using the fromFilePairs function. While, if no RNA data are given as input,
the rna_reads_fusioncatcher channel is created as an empty channel blocking the
fusioncatcher process execution. Then the input_ch_fusioncatcher is created. The
path specified in the fusioncatcher_ref param is used to look for the FusionCatcher
required files. Depending on the existence of the files directory, different cases are
possible as shown in Figure 5.4. If the defined directory is found, then the files are
given as input to the input_ch_fusioncatcher channel, the ch1_fusioncatcher is
created as an empty channel and the ch2_fusioncatcher channel is created equal
to the input_ch_fusioncatcher. Being empty, the ch1_fusioncatcher does not
trigger the fusioncatcher_downloader, while the ch2_fusioncatcher is activated
and triggers the fusioncatcher runner process. If the directory is not found, then
the ch1_fusioncatcher channel is activated and the ch2_fusioncatcher channel is
set to empty. Thus, the ch1_fusioncatcher channel triggers the downloader that
downloads the required files and gives them as input to ch3_fusioncatcher which
emits the database to the fusioncatcher runner. Then, after the fusioncatcher script
block execution, the output produced is given as input to the fusioncatcher_fusions
channel (Listing 5.3).

1 refDir_fusioncatcher = file(params . fusioncatcher_ref)
2 params . skip_fusioncatcher = refDir_fusioncatcher . exists ()
3 rna_reads_fusioncatcher = (params . rnareads ? [Channel .

fromFilePairs (params . rnareads)] : [Channel .empty ()])
4 Channel . fromPath (params . fusioncatcher_ref).set{

input_ch_fusioncatcher }
5 (ch1_fusioncatcher , ch2_fusioncatcher) = (params .

skip_fusioncatcher ? [Channel .empty (), input_ch_fusioncatcher]
: [input_ch_fusioncatcher , Channel .empty ()])

6

7 process fusioncatcher_downloader {
8 tag " Downloading "
9

10 publishDir "${ params . outdir }/ fusioncatcher ", mode: ’copy ’
11

12 input:
13 val x from ch1_fusioncatcher
14

15 output :

51

Pipeline architecture

16 file " references " into ch3_fusioncatcher
17

18 when: params . fusioncatcher || params .all
19

20 shell:
21 ’’’
22 #!/ bin/bash
23 mkdir -p references && cd "$_"
24 wget http :// sourceforge .net/ projects / fusioncatcher /files/data/

human_v102 .tar.gz.aa
25 wget http :// sourceforge .net/ projects / fusioncatcher /files/data/

human_v102 .tar.gz.ab
26 wget http :// sourceforge .net/ projects / fusioncatcher /files/data/

human_v102 .tar.gz.ac
27 wget http :// sourceforge .net/ projects / fusioncatcher /files/data/

human_v102 .tar.gz.ad
28 cat human_v102 .tar.gz.* | tar xz
29 ln -s human_v102 current
30 ’’’
31 }
32 process fusioncatcher {
33 tag "${ pair_id }"
34

35 publishDir "${ params . outdir }/ fusioncatcher ", mode: ’copy ’
36

37 input:
38 tuple pair_id , file(rna_reads), file(fusioncatcher_db) from

rna_reads_fusioncatcher . combine (ch2_fusioncatcher .mix(
ch3_fusioncatcher))

39

40 output :
41 file " output /${ pair_id }" optional true into

fusioncatcher_fusions
42

43 when: params . fusioncatcher || params .all
44

45 script :
46 reads = params . single_end ? rna_reads [0] : "${ rna_reads [0]} ,${

rna_reads [1]}"
47 """
48 #!/ bin/bash
49 export PATH=’${ params . envPath_fusioncatcher }: $PATH ’
50

51 fusioncatcher -d ${ fusioncatcher_db }/ human_v102 -i ${reads} -o
output /${ pair_id }

52 """
53 }

Listing 5.3: FusionCatcher processes.

52

Pipeline architecture

5.2.4 GeneFuse

GeneFuse is a tool to detect target gene fusions by scanning Fastq DNA files.
In FusionFlow three processes are associated with GeneFuse: genefuse_downloader,

Figure 5.5: GeneFuse processes architecture.

53

Pipeline architecture

genefuse_converter and genefuse. genefuse_converter process is also dependent on
referenceGenome_downloader. Thirteen channels are associated with GeneFuse:
dna_reads_tumor_genefuse, input_ch1_genefuse, input_ch2_genefuse, refgen-
_genefuse, refgen_genefuse_down, ch1_genefuse, ch2_genefuse, ch3_genefuse,
input_ch1_genefuse, input_ch2_genefuse, genefuse_input and genefuse_fusions.
Firstly, the dna_reads_tumor_genefuse channel is created. If DNA data are given
as input through the dnareads_tumor Nextflow parameter, the dna_reads_tumor-
_genefuse channel is created using the fromFilePairs function. While, if no DNA
data are given as input, the dna_reads_tumor_genefuse channel is created as
an empty channel blocking the genefuse process execution. Subsequently, the
input_ch1_genefuse, input_ch2_genefuse, refgen_genefuse, ch1_genefuse and
ch2_genefuse channels are created. The paths specified in the genefuse_ref and ref-
erenceGenome params are used to look for the GeneFuse required files. Depending
on the existence of the files directories, different cases are possible as shown in Fig-
ure 5.5. If the defined directories are found, then the files are given as input to the
previously mentioned channels, triggering the running processes. If the directories
are not found, then the downloader processes are run. In this case, the runners are
executed after the downloader execution. After the genefuse script block execution,
the output produced is given as input to the genefuse_fusions channel (Listing 5.4).

1 refDir_refgen = file(params . referenceGenome)
2 refDir_genefuse = file(params . genefuse_ref)
3 params . skip_refgen = refDir_refgen . exists ()
4 params . skip_genefuse = refDir_genefuse . exists ()
5 Channel . fromPath (params . referenceGenome).into{ input_ch4_refgen }
6 Channel . fromPath (params . genefuse_ref).set{ input_ch1_genefuse }
7 dna_reads_tumor_genefuse = (params . dnareads_tumor ? [Channel .

fromFilePairs (params . dnareads_tumor)] : [Channel .empty ()])
8 (refgen_downloader , refgen_genefuse) = (params . skip_refgen ? [

Channel .empty (), input_ch4_refgen] : [input_ch4_refgen , Channel
.empty ()])

9 (ch1_genefuse , ch2_genefuse) = (params . skip_genefuse ? [Channel .
empty () , input_ch1_genefuse] : [input_ch1_genefuse , Channel .
empty ()])

10

11 process genefuse_downloader {
12 tag " Downloading "
13

14 publishDir "${ params . outdir }/ genefuse ", mode: ’copy ’

54

Pipeline architecture

15

16 input:
17 val x from ch1_genefuse
18

19 output :
20 file " references " into ch3_genefuse
21

22 when: params . genefuse || params .all
23

24 shell:
25 ’’’
26 #!/ bin/bash
27 export PATH ="!{ params . envPath_integrate }: $PATH"
28

29 mkdir references && cd "$_"
30 gdown "https :// drive. google .com/uc? export = download & confirm =

qgOc&id=1 OBLTo - yGZ88UGcF0F3v_7n8mLTQblWg8 "
31 chmod a+x ./ genefuse
32 gdown "https :// drive. google .com/uc? export = download & confirm =

qgOc&id=1 eRI5lAw0qntj0EbEpaNpvRA7saw_iyY3 "
33 ’’’
34 }
35 process genefuse_converter {
36 tag "${ pair_id }"
37

38 publishDir "${ params . outdir }/ genefuse ", mode: ’copy ’
39

40 input:
41 tuple pair_id , file(wgstinput) from dna_reads_tumor_genefuse
42

43 output :
44 tuple pair_id , file("input/${ pair_id }") into genefuse_input
45

46 when: params . genefuse || params .all
47

48 script :
49 """
50 #!/ bin/bash
51 export PATH=’${ params . envPath_genefuse }: $PATH ’
52

53 mkdir input && mkdir input/${ pair_id }
54 if ${ params . dnabam } && ${ integrateWGSt }; then
55 samtools sort -n -o ${ wgstinput }
56 samtools fastq -@ ${ params . nthreads } ${ wgstinput } -1 ${

pair_id }_3.fq.gz -2 ${ pair_id }_4.fq.gz -0 /dev/null -s /dev/
null -n

57 cp *.fq.gz input/${ pair_id }
58 elif ${ integrateWGSt }; then
59 cp ${ wgstinput } input/${ pair_id }

55

Pipeline architecture

60 fi
61 """
62 }
63 process genefuse {
64 tag "${ pair_id }"
65

66 publishDir "${ params . outdir }/ genefuse ", mode: ’copy ’
67

68 input:
69 tuple pair_id , file(input), file(refgen), file(genefuse_db)

from genefuse_input . combine (refgen_genefuse .mix(
refgen_genefuse_down)). combine (ch2_genefuse .mix(ch3_genefuse))

70

71 output :
72 file " output /${ pair_id }" optional true into genefuse_fusions
73

74 when: params . genefuse || params .all
75

76 script :
77 """
78 #!/ bin/bash
79 export PATH=’${ params . envPath_genefuse }: $PATH ’
80

81 cp ${input }/* .
82 ${ genefuse_db }/ genefuse -r ${ refgen } -f ${ genefuse_db }/

druggable .hg38.csv -1 ${ pair_id }_3.* -2 ${ pair_id }_4.* -h
report .html > result

83 mkdir output && mkdir output /${ pair_id }
84 cp report .html output /${ pair_id }
85 cp result output /${ pair_id }
86 """
87 }

Listing 5.4: GeneFuse processes.

5.2.5 INTEGRATE

INTEGRATE is a tool for gene fusions discovery that finds exact fusion junctions
and genomic breakpoints by combining RNA-Seq and WGS data.
In FusionFlow four processes are associated with INTEGRATE: integrate_downloa-
der, integrate_builder, integrate_converter and integrate. integrate_builder and
integrate_converter processes are also dependent on referenceGenome_downloader
and referenceGenome_index processes. Twenty-three channels are associated with
INTEGRATE: rna_reads_integrater, dna_reads_tumor_integrate, dna_reads_-
normal_integrate, input_ch1_integrate, input_ch2_integrate, input_ch3_integrate,

56

Pipeline architecture

Figure 5.6: Integrate processes architecture.

57

Pipeline architecture

input_ch1_bwts, refgen_integrate, refgen_integrate_builder, refgen_integrate_buil-
der_down, refgen_integrate_converter, ch1_integrate, ch2_integrate, ch3_integrate,
ch4_integrate, ch5_integrate, ch6_integrate, ch7_integrate, ch8_integrate, ref-
gen_index, refgen_index_down, integrate_input and integrate_fusions.
Firstly, the rna_reads_integrate channel is created. If RNA data are given as
input through the rnareads Nextflow parameter, the rna_reads_integrate chan-
nel is created using the fromFilePairs function. While, if no RNA data are
given as input, the rna_reads_integrate channel is created as an empty channel
blocking the integrate process execution. Then the same process is repeated for
dna_reads_tumor_integrate and dna_reads_normal_integrate channels. Subse-
quently, the input_ch1_integrate, input_ch2_integrate, input_ch3_integrate, in-
put_ch1_bwts, refgen_integrate, refgen_integrate_builder, refgen_integrate- _con-
verter channels are created. The paths specified in the integrate_ref, integrate_bwts,
referenceGenome params are used to look for the Integrate required files. Depending
on the existence of the files directories, different cases are possible as shown in Fig-
ure 5.6. If the defined directories are found, then the files are given as input to the
previously mentioned channels, triggering the running processes. If the directories
are not found, then the downloader processes are run. In this case, the runners are
executed after the downloader execution. After the integrate script block execution,
the output produced is given in input to the integrate_fusions channel (Listing 5.5).

1 refDir_refgen = file(params . referenceGenome)
2 refDir_refgen_index = file(params . referenceGenome_index)
3 refDir_integrate = file(params . integrate_ref)
4 refDir_integrate_bwts = file(params . integrate_bwts)
5 params . skip_refgen = refDir_refgen . exists ()
6 params . skip_refgen_index = refDir_refgen_index . exists ()
7 params . skip_integrate = refDir_integrate . exists ()
8 params . skip_integrate_bulder = refDir_integrate_bwts . exists ()
9

10 integrateWGSt = false
11 integrateWGSn = false
12 command1 = ""
13 command2 = ""
14 if (params . dnareads_tumor) {
15 integrateWGSt = true
16 command1 = "dna.tumor.bam"
17 }
18 if (params . dnareads_normal) {

58

Pipeline architecture

19 integrateWGSn = true
20 command2 = "dna. normal .bam"
21 }
22

23 rna_reads_integrate = (params . rnareads ? [Channel . fromFilePairs (
params . rnareads) ,] : [Channel .empty ()])

24 dna_reads_tumor_integrate = (params . dnareads_tumor ? [Channel .
fromFilePairs (params . dnareads_tumor)] : [support1 .map{id ,reads
-> tuple(id ,"1")}])

25 dna_reads_normal_integrate = (params . dnareads_normal ? [Channel .
fromFilePairs (params . dnareads_normal)] : [support2 .map{id ,reads

-> tuple(id ,"1")}])
26 Channel . fromPath (params . referenceGenome).into{ input_ch1_refgen ;

input_ch2_refgen ; input_ch3_refgen ; input_ch4_refgen ;
input_ch5_refgen }

27 Channel . fromPath (params . referenceGenome_index).set{
input_ch1_refgen_index }

28 Channel . fromPath (params . integrate_ref).into{ input_ch1_integrate ;
input_ch2_integrate ; input_ch3_integrate }

29 Channel . fromPath (params . integrate_bwts).set{ input_ch1_bwts }
30 (refgen_integrate , refgen_integrate_builder ,

refgen_integrate_converter) = (params . skip_refgen ? [
input_ch1_refgen , input_ch2_refgen , input_ch3_refgen] : [
Channel .empty (), Channel .empty (), Channel .empty ()])

31 (refgen_index_trigger , refgen_index) = ((params .
skip_refgen_index || params . dnabam) ? [Channel .empty (),
input_ch1_refgen_index] : [input_ch1_refgen_index , Channel .
empty ()])

32 (ch1_integrate , ch2_integrate , ch3_integrate , ch4_integrate) = (
params . skip_integrate ? [Channel .empty (), input_ch1_integrate ,
input_ch2_integrate , input_ch3_integrate] : [

input_ch1_integrate , Channel .empty (), Channel .empty (), Channel .
empty ()])

33 (ch1_integrate_bwts , ch2_integrate_bwts) = (params .
skip_integrate_bulder ? [Channel .empty (), input_ch1_bwts] : [
input_ch1_bwts , Channel .empty ()])

34

35 process integrate_downloader {
36 tag " Downloading "
37

38 publishDir "${ params . outdir }/ integrate ", mode: ’copy ’
39

40 input:
41 val x from ch1_integrate
42

43 output :
44 file " references " into ch5_integrate , ch6_integrate ,

ch7_integrate
45

59

Pipeline architecture

46 when: params . integrate || params .all
47

48 shell:
49 ’’’
50 #!/ bin/bash
51 export PATH ="!{ params . envPath_integrate }: $PATH"
52

53 mkdir references && cd "$_"
54 wget https :// genome -idx.s3. amazonaws .com/bt/ GRCh38_noalt_as .

zip
55 unzip GRCh38_noalt_as .zip
56 rm GRCh38_noalt_as .zip
57 gdown "https :// drive. google .com/uc? export = download & confirm =

qgOc&id =18 SUV1abrk_MhYGOG6kzJPIeIJ5Zs5Yvb "
58 gdown "https :// drive. google .com/uc? export = download & confirm =

qgOc&id =14 VCiEYWCl5m9bo_tsvNGQDUNUgtLje9Y "
59 tar -xvf INTEGRATE .0.2.6. tar.gz
60 rm INTEGRATE .0.2.6. tar.gz
61 cd INTEGRATE_0_2_6 && mkdir INTEGRATE -build && cd "$_"
62 cmake ../ Integrate / -DCMAKE_BUILD_TYPE = release
63 make
64 ’’’
65 }
66 process integrate_builder {
67 tag " Building "
68

69 publishDir "${ params . outdir }/ integrate / references ", mode: ’
copy ’

70

71 input:
72 val x from ch1_integrate_bwts
73 file refgen from refgen_integrate_builder .mix(

refgen_integrate_builder_down)
74 file integrate_db from ch4_integrate .mix(ch7_integrate)
75

76 output :
77 file "bwts" into ch8_integrate
78

79 when: params . integrate || params .all
80

81 shell:
82 ’’’
83 #!/ bin/bash
84 export PATH ="!{ params . envPath_integrate }: $PATH"
85

86 LD_LIBRARY_PATH =/ usr/local/lib
87 LD_LIBRARY_PATH = $LD_LIBRARY_PATH :!{ integrate_db }/

INTEGRATE_0_2_6 /INTEGRATE -build/ vendor /src/ libdivsufsort -2.0.1 -
build/lib/

60

Pipeline architecture

88 export LD_LIBRARY_PATH
89 mkdir ./ bwts
90 !{ integrate_db }/ INTEGRATE_0_2_6 /INTEGRATE -build/bin/ Integrate

mkbwt !{ refgen }
91 ’’’
92 }
93 process integrate_converter {
94 tag "${ pair_id }"
95

96 publishDir "${ params . outdir }/ integrate ", mode: ’copy ’
97

98 input:
99 tuple pair_id , file(rna_reads), file(integrate_db), file(

refgen), file(index), file(wgstinput), file(wgsninput) from
rna_reads_integrate . combine (ch2_integrate .mix(ch5_integrate)).
combine (refgen_integrate_converter .mix(
refgen_integrate_converter_down)). combine (refgen_index .mix(
refgen_index_down)).join(dna_reads_tumor_integrate).join(
dna_reads_normal_integrate)

100

101 output :
102 tuple pair_id , file("input/${ pair_id }") into integrate_input
103

104 when: params . integrate || params .all
105

106 script :
107 """
108 #!/ bin/bash
109 export PATH=’${ params . envPath_integrate }: $PATH ’
110

111 tophat --no -coverage - search ${ integrate_db }/ GRCh38_noalt_as /
GRCh38_noalt_as ${ rna_reads }

112 mkdir input && mkdir input/${ pair_id }
113 cp tophat_out / accepted_hits .bam input/${ pair_id }
114 cp tophat_out / unmapped .bam input/${ pair_id }
115 if ${ params . dnabam }; then
116 if ${ integrateWGSt }; then
117 cp ${ wgstinput } input/${ pair_id }/ dna.tumor.bam
118 fi
119 if ${ integrateWGSn }; then
120 cp ${ wgsninput } input/${ pair_id }/ dna. normal .bam
121 fi
122 elif ${ integrateWGSt } || ${ integrateWGSn }; then
123 mkdir index_dir
124 cp ${index }/* index_dir
125 if ${ integrateWGSt }; then
126 bwa mem index_dir /hg38.fa ${ wgstinput } | samtools sort -o

input/${ pair_id }/ dna.tumor.bam
127 fi

61

Pipeline architecture

128 if ${ integrateWGSn }; then
129 bwa mem index_dir /hg38.fa ${ wgsninput } | samtools sort -o

input/${ pair_id }/ dna. normal .bam
130 fi
131 fi
132 """
133 }
134 process integrate {
135 tag "${ pair_id }"
136

137 publishDir "${ params . outdir }/ integrate ", mode: ’copy ’
138

139 input:
140 tuple pair_id , file(input), file(integrate_db), file(refgen),

file(bwts) from integrate_input . combine (ch3_integrate .mix(
ch6_integrate)). combine (refgen_integrate .mix(
refgen_integrate_down)). combine (ch2_integrate_bwts .mix(
ch8_integrate))

141

142 output :
143 file " output /${ pair_id }" optional true into integrate_fusions
144

145 when: params . integrate || params .all
146

147 shell:
148 ’’’
149 #!/ bin/bash
150 export PATH ="!{ params . envPath_integrate }: $PATH"
151

152 cp !{ input }/* .
153 parallel samtools index ::: *. bam
154 LD_LIBRARY_PATH =/ usr/local/lib
155 LD_LIBRARY_PATH = $LD_LIBRARY_PATH :!{ integrate_db }/

INTEGRATE_0_2_6 /INTEGRATE -build/ vendor /src/ libdivsufsort -2.0.1 -
build/lib/

156 export LD_LIBRARY_PATH
157 !{ integrate_db }/ INTEGRATE_0_2_6 /INTEGRATE -build/bin/ Integrate

fusion !{ refgen } !{ integrate_db }/ annot. refseq .txt !{ bwts}
accepted_hits .bam unmapped .bam !{ command1 } !{ command2 }

158 mkdir output && mkdir output /!{ pair_id }
159 cp *. tsv output /!{ pair_id }
160 cp *. txt output /!{ pair_id }
161 ’’’
162 }

Listing 5.5: Integrate processes.

62

Chapter 6

Results and discussion

The first part of this chapter is dedicated to describing the files used to test the
FusionFlow pipeline. Subsequently, the pipeline output files and results are reported
and discussed.

6.1 Files

Simulated trial files were used to perform the tests. These files are publicly available
(https://github.com/ndaniel/fusioncatcher/tree/master/test) and can
also be found in the FusionFlow GitHub repository. Moreover, these files are
used in test_docker and test_local profiles to verify the correct functioning of the
pipeline. The test files are two Fastq compressed paired-end files. The short reads
were selected manually such that they cover 17 already known fusion genes:

• FGFR3 - TACC3

• FIP1L1 - PDGFRA

• GOPC - ROS1

• IGH - CRLF2

• HOOK3 - RET

• AKAP9 - BRAF

• EWSR1 - ATF1

63

https://github.com/ndaniel/fusioncatcher/tree/master/test

Results and discussion

• TMPRSS2 - ETV1

• EWSR1 - FLI1

• ETV6 - NTRK3

• BRD4 - NUTM1

• CD74 - ROS1

• CIC - DUX4

• DUX4 - IGH

• EML4 - ALK

• MALT1 - IGH

• NPM1 - ALK

6.2 Tests and results

The tests were performed in two different conditions: on the Polito Philae server
and the Polito Philae server inside a Docker container.
In the first case, the Conda virtual environments were manually created on the
server. The environments paths, the test files, and the local profile were specified
in the command line to perform the test.
In the second case, the Conda virtual environments were created inside the Docker
container directly by the Dockerfile shown in appendix A. The default environments
paths already point to the Docker environments. Thus, it is not needed to specify
the environments paths in the command line in this case. The test files and the
local profile were specified in the command line to execute this test.
In both test cases, the outputs obtained were satisfactory. The outputs obtained
in the two cases were the same and are shown in Figure 6.1, 6.2, 6.3, 6.4, 6.5.

64

Results and discussion

Figure 6.1: fusions.tsv Arriba output file (peptide sequence and read identifiers
are not shown).

65

Results and discussion

Figure 6.2: MyEric.results.total.tsv EricScript output file (junction sequences are
not shown).

66

Results and discussion

Figure 6.3: summary_candidate_fusions.txt FusionCatcher summary output file.

Figure 6.4: summary.tsv Integrate summary output file.

67

Results and discussion

Figure 6.5: result GeneFuse output file.

Each gene fusion discovery tool gives as output one or more files in specific formats.
Generally, a summary file is also produced in output to allow a quick predictions
overview.
The outputs obtained from the tools are concordant with the gene fusions previously
specified. All the tools in the pipeline recognize at least ten predictions out of
seventeen fusions, except for GeneFuse that recognizes just three of them. This
aspect is related to the different gene fusions discovery algorithm used for DNA
data instead of RNA data.
In order to select the final gene fusions prediction drivers, different approaches
can be used. The typical practice is to use the union or intersection of tools
predictions. The union of the results gives a numerous set of predictions. This
approach increases the probability of including the real drivers of cancer processes.
However, it enhances the possibilities to incorporate also false positives or passenger

68

Results and discussion

mutations. Using the intersection approach, conversely, decreases the number of
predictions radically. This approach allows discarding false positives and passenger
mutations. However, this selection could also cause the discarding of the cancer
drivers.
In this test case, the union of the results contains nineteen gene fusions predictions,
while the intersection includes just two of them (ETV6-NTRK3 and GOPC-ROS1).
The tests performed were used to validate the pipeline and can be repeated in
test_docker and test_local profiles to check the correct functioning of the pipeline.

69

Chapter 7

Conclusions and future
works

In this thesis work, a novel pipeline for gene fusions discovery was designed.
FusionFlow is an easy-to-use, flexible, highly reproducible, and integrated pipeline.
The pipeline includes five gene fusion discovery tools that take as input both
RNA and DNA data. Docker and Conda technologies allow performing tools
installations, avoiding version conflicts. In addition, the Nextflow pipelining tool
allows the execution of the five tools in parallel, optimizing time and resources
usage and managing the tools installations and the files allocation. The pipeline
was tested using publicly available test files. The tests were performed using a
local profile in two conditions: on the Polito Philae server and the Polito Philae
server inside a docker container. In both cases, the outputs were satisfactory. Thus,
the FusionFlow pipeline is available for further validation over real DNA and RNA
genomic data.

This work represents a foundation on which improvements and future works
can be built. Indeed, one of the main problems related to gene fusion discovery
is determining which gene fusions are drivers of cancer processes and not just
passenger mutations. The fusion detection tools already provide a first step for the
solution of this problem. Indeed, fusion detection tools filter the candidate gene
fusions based on the sample’s reads, trying to decrease as much as possible the
number of false positives. However, generally, this step is insufficient to determine
the cancer drivers. Thus, a second step is required. This step is provided by

70

Conclusions and future works

specific post-processing tools, known as prioritization tools, that predict a gene
fusion’s oncogenic potential. There is a high number of prioritization tools such as
Oncofuse [25], and Pegasus [26]. These tools are based on machine learning (ML)
algorithms trained with the protein domains of the fusion proteins and allow the
selection of the most probable cancer drivers. The post-processing step could also
be completed by adding a further algorithm. This algorithm performs comparisons
between the outputs of the tool and selects the more probable driver of cancer
processes analyzing the union and the intersection and taking into account the
different characteristics of the gene fusion detection tools.
Another crucial question is the one related to the visualization tools. Humans
are efficient in distinguishing true positives from false positives if the evidence is
provided in an easily interpretable form. These tools also allow better to interpret
the potential consequence of gene fusions events. Several visualization tools were
released in the last years, such as INTEGRATE-vis [27], FGviewer [28], and FuSpot
[29].

71

Appendix A

Dockerfile

1 FROM continuumio / anaconda3
2

3 LABEL description =" Docker image containing all requirements for
genefusion pipeline "

4

5 RUN apt -get update
6 RUN apt -get install -y wget
7 RUN apt -get install unzip
8 RUN apt -get install make
9 RUN apt -get install -y build - essential

10 RUN apt -get install -y python2
11 RUN apt -get install -y zlib1g -dev
12 RUN apt -get install -y libtbb -dev libtbb2 libc6 -dev
13 RUN apt -get install -y libncurses5 -dev
14

15 RUN apt -get install -y locales
16 RUN localedef -i en_US -c -f UTF -8 -A /usr/share/ locale / locale .

alias en_US.UTF -8
17

18 RUN pip install gdown
19

20 # Install Nextflow
21 RUN apt update && apt -y install default -jre && apt -y install

openjdk -11-jre - headless
22 RUN curl -s https :// get. nextflow .io | bash
23 RUN cd /home/ && curl -s https :// get. nextflow .io | bash
24

25 # Install the conda environment for EricScript
26 COPY environment_ericscript .yml /
27 RUN conda env create -f / environment_ericscript .yml && conda clean

-a
28

29 # Install the conda environment for Arriba

73

Dockerfile

30 COPY environment_arriba .yml /
31 RUN conda env create -f / environment_arriba .yml && conda clean -a
32

33 # Install the conda environment for FusionCatcher
34 COPY environment_fusioncatcher .yml /
35 RUN conda env create -f / environment_fusioncatcher .yml && conda

clean -a
36

37 RUN wget https :// github .com/ ndaniel / fastqtk / archive /refs/tags/v0
.27. zip

38 RUN unzip v0 .27. zip && rm v0 .27. zip
39 WORKDIR fastqtk -0.27
40 RUN make
41 RUN mv fastqtk /opt/conda/envs/ fusioncatcher /bin/ && cd ..
42 WORKDIR /home
43

44 # Install the conda environment for INTEGRATE
45 COPY environment_integrate .yml /
46 RUN conda env create -f / environment_integrate .yml && conda clean

-a
47

48 RUN wget https :// ccb.jhu.edu/ software / tophat / downloads /tophat
-2.1.1. Linux_x86_64 .tar.gz

49 RUN tar -xvzf tophat -2.1.1. Linux_x86_64 .tar.gz
50 RUN rm tophat -2.1.1. Linux_x86_64 .tar.gz && rm tophat -2.1.1.

Linux_x86_64 / tophat
51 RUN cp -r tophat -2.1.1. Linux_x86_64 /* /opt/conda/envs/ integrate /

bin/
52

53 RUN gdown "https :// drive. google .com/uc? export = download & confirm =
qgOc&id=1 A4JyTwjnwqDjWqVuEgt1sfDQrwU3oNbv "

54 RUN chmod +x tophat
55 RUN mv tophat /opt/conda/envs/ integrate /bin/
56

57 # Install the conda environment for GeneFuse
58 COPY environment_genefuse .yml /
59 RUN conda env create -f / environment_genefuse .yml && conda clean -

a

74

Bibliography

[1] Anna Williford and Esther Betrán. Gene Fusion. May 2013. doi: 10.1002/
9780470015902.a0005099.pub3. url: https://onlinelibrary.wiley.
com/doi/10.1002/9780470015902.a0005099.pub3 (cit. on pp. 11, 15).

[2] Sebastian Uhrig et al. Accurate and efficient detection of gene fusions 1 from
RNA sequencing data Corresponding authors 20 Keywords (cit. on pp. 12,
29).

[3] Somak Roy et al. Standards and Guidelines for Validating Next-Generation
Sequencing Bioinformatics Pipelines: A Joint Recommendation of the Associ-
ation for Molecular Pathology and the College of American Pathologists. Jan.
2018. doi: 10.1016/j.jmoldx.2017.11.003 (cit. on p. 12).

[4] Jin Zhang, Nicole M. White, Heather K. Schmidt, Robert S. Fulton, Chad
Tomlinson, Wesley C. Warren, Richard K. Wilson, and Christopher A. Maher.
«INTEGRATE: Gene fusion discovery using whole genome and transcriptome
data». In: Genome Research 26 (1 Jan. 2016), pp. 108–118. issn: 15495469.
doi: 10.1101/gr.186114.114 (cit. on pp. 12, 31).

[5] Qingguo Wang, Junfeng Xia, Peilin Jia, William Pao, and Zhongming Zhao.
«Application of next generation sequencing to human gene fusion detection:
Computational tools, features and perspectives». In: Briefings in Bioinformat-
ics 14 (4 July 2013), pp. 506–519. issn: 14675463. doi: 10.1093/bib/bbs044
(cit. on p. 14).

[6] Natasha S. Latysheva and M. Madan Babu. «Discovering and understanding
oncogenic gene fusions through data intensive computational approaches».
In: Nucleic Acids Research 44 (10 June 2016), pp. 4487–4503. issn: 13624962.
doi: 10.1093/nar/gkw282 (cit. on p. 15).

[7] Yue Wang, Tao Shi, Xueru Song, Baorui Liu, and Jia Wei. Gene fusion
neoantigens: Emerging targets for cancer immunotherapy. May 2021. doi:
10.1016/j.canlet.2021.02.023 (cit. on pp. 16, 18).

[8] The Luigi Authors. Luigi. url: https://luigi.readthedocs.io/en/
stable/ (cit. on p. 22).

75

https://doi.org/10.1002/9780470015902.a0005099.pub3
https://doi.org/10.1002/9780470015902.a0005099.pub3
https://onlinelibrary.wiley.com/doi/10.1002/9780470015902.a0005099.pub3
https://onlinelibrary.wiley.com/doi/10.1002/9780470015902.a0005099.pub3
https://doi.org/10.1016/j.jmoldx.2017.11.003
https://doi.org/10.1101/gr.186114.114
https://doi.org/10.1093/bib/bbs044
https://doi.org/10.1093/nar/gkw282
https://doi.org/10.1016/j.canlet.2021.02.023
https://luigi.readthedocs.io/en/stable/
https://luigi.readthedocs.io/en/stable/

BIBLIOGRAPHY

[9] Centre for Genomic Regulation (CRG). Nextflow Documentation. url: https:
//www.nextflow.io/docs/latest/index.html (cit. on pp. 22, 24, 25).

[10] Guillaume Theaud, Jean Christophe Houde, Arnaud Boré, François Rheault,
Felix Morency, and Maxime Descoteaux. «TractoFlow: A robust, efficient
and reproducible diffusion MRI pipeline leveraging Nextflow Singularity». In:
NeuroImage 218 (Sept. 2020). issn: 10959572. doi: 10.1016/j.neuroimage.
2020.116889 (cit. on p. 22).

[11] Alexander Kropp and Roberto Torre. Docker: containerize your application.
2020. doi: 10.1016/b978-0-12-820488-7.00026-8 (cit. on p. 26).

[12] Docker Official Website (cit. on p. 26).
[13] Alexander Dobin, Carrie A. Davis, Felix Schlesinger, Jorg Drenkow, Chris

Zaleski, Sonali Jha, Philippe Batut, Mark Chaisson, and Thomas R. Gingeras.
«STAR: Ultrafast universal RNA-seq aligner». In: Bioinformatics 29 (1 Jan.
2013), pp. 15–21. issn: 13674803. doi: 10.1093/bioinformatics/bts635
(cit. on pp. 29–31).

[14] Heng Li and Richard Durbin. «Fast and accurate short read alignment with
Burrows-Wheeler transform». In: Bioinformatics 25 (14 July 2009), pp. 1754–
1760. issn: 13674803. doi: 10.1093/bioinformatics/btp324 (cit. on p. 29).

[15] W. J. Kent. «BLAT—The BLAST-Like Alignment Tool». In: Genome Re-
search 12 (4 Mar. 2002), pp. 656–664. issn: 1088-9051. doi: 10.1101/gr.
229202 (cit. on pp. 29, 30).

[16] Matteo Benelli, Chiara Pescucci, Giuseppina Marseglia, Marco Severgnini,
Francesca Torricelli, and Alberto Magi. «Discovering chimeric transcripts in
paired-end RNA-seq data by using EricScript». In: Bioinformatics 28 (24
Dec. 2012), pp. 3232–3239. issn: 13674803. doi: 10.1093/bioinformatics/
bts617 (cit. on p. 29).

[17] Paul Flicek et al. «Ensembl 2013». In: Nucleic Acids Research 41 (D1 Jan.
2013). issn: 03051048. doi: 10.1093/nar/gks1236 (cit. on p. 30).

[18] Ben Langmead, Cole Trapnell, Mihai Pop, and Steven L. Salzberg. «Ul-
trafast and memory-efficient alignment of short DNA sequences to the hu-
man genome». In: Genome Biology 10 (3 Mar. 2009). issn: 14747596. doi:
10.1186/gb-2009-10-3-r25 (cit. on p. 30).

[19] Ben Langmead and Steven L. Salzberg. «Fast gapped-read alignment with
Bowtie 2». In: Nature Methods 9 (4 Apr. 2012), pp. 357–359. issn: 15487091.
doi: 10.1038/nmeth.1923 (cit. on p. 30).

76

https://www.nextflow.io/docs/latest/index.html
https://www.nextflow.io/docs/latest/index.html
https://doi.org/10.1016/j.neuroimage.2020.116889
https://doi.org/10.1016/j.neuroimage.2020.116889
https://doi.org/10.1016/b978-0-12-820488-7.00026-8
https://doi.org/10.1093/bioinformatics/bts635
https://doi.org/10.1093/bioinformatics/btp324
https://doi.org/10.1101/gr.229202
https://doi.org/10.1101/gr.229202
https://doi.org/10.1093/bioinformatics/bts617
https://doi.org/10.1093/bioinformatics/bts617
https://doi.org/10.1093/nar/gks1236
https://doi.org/10.1186/gb-2009-10-3-r25
https://doi.org/10.1038/nmeth.1923

BIBLIOGRAPHY

[20] Daniel Nicorici, Mihaela Satalan, Henrik Edgren, Sara Kangaspeska, Astrid
Murumagi, Olli Kallioniemi, Sami Virtanen, and Olavi Kilkku. «FusionCatcher
- a tool for finding somatic fusion genes in paired-end RNA-sequencing data».
In: bioRxiv (2014), p. 011650. doi: 10.1101/011650 (cit. on p. 30).

[21] Shifu Chen, Ming Liu, Tanxiao Huang, Wenting Liao, Mingyan Xu, and
Jia Gu. «Genefuse: Detection and visualization of target gene fusions from
DNA sequencing data». In: International Journal of Biological Sciences 14 (8
May 2018), pp. 843–848. issn: 14492288. doi: 10.7150/ijbs.24626 (cit. on
p. 31).

[22] Thomas D. Wu and Serban Nacu. «Fast and SNP-tolerant detection of
complex variants and splicing in short reads». In: Bioinformatics 26 (7 Feb.
2010), pp. 873–881. issn: 13674803. doi: 10.1093/bioinformatics/btq057
(cit. on p. 31).

[23] Daehwan Kim, Geo Pertea, Cole Trapnell, Harold Pimentel, Ryan Kelley,
and Steven L Salzberg. TopHat2: accurate alignment of transcriptomes in
the presence of insertions, deletions and gene fusions. 2013. url: http :
//ccb.jhu.edu/software/tophat. (cit. on p. 31).

[24] Shahzad Ahmed, M Usman Ali, Javed Ferzund, Muhammad Atif Sarwar,
Abbas Rehman, and Atif Mehmood. Modern Data Formats for Big Bioinfor-
matics Data Analytics. 2017. url: www.ijacsa.thesai.org (cit. on pp. 32–
34).

[25] Mikhail Shugay, Iñigo Ortiz De Mendíbil, José L. Vizmanos, and Francisco
J. Novo. «Oncofuse: A computational framework for the prediction of the
oncogenic potential of gene fusions». In: Bioinformatics 29 (20 Oct. 2013),
pp. 2539–2546. issn: 13674803. doi: 10.1093/bioinformatics/btt445 (cit.
on p. 71).

[26] Francesco Abate et al. «Pegasus: A comprehensive annotation and prediction
tool for detection of driver gene fusions in cancer». In: BMC Systems Biology
8 (1 Sept. 2014). issn: 17520509. doi: 10.1186/s12918-014-0097-z (cit. on
p. 71).

[27] Jin Zhang, Teng Gao, and Christopher A. Maher. «INTEGRATE-Vis: A tool
for comprehensive gene fusion visualization». In: Scientific Reports 7 (1 Dec.
2017). issn: 20452322. doi: 10.1038/s41598-017-18257-2 (cit. on p. 71).

[28] Pora Kim, Ke Yiya, and Xiaobo Zhou. «FGviewer: An online visualization tool
for functional features of human fusion genes». In: Nucleic Acids Research 48
(1 2021), W313–W320. issn: 13624962. doi: 10.1093/NAR/GKAA364 (cit. on
p. 71).

77

https://doi.org/10.1101/011650
https://doi.org/10.7150/ijbs.24626
https://doi.org/10.1093/bioinformatics/btq057
http://ccb.jhu.edu/software/tophat.
http://ccb.jhu.edu/software/tophat.
www.ijacsa.thesai.org
https://doi.org/10.1093/bioinformatics/btt445
https://doi.org/10.1186/s12918-014-0097-z
https://doi.org/10.1038/s41598-017-18257-2
https://doi.org/10.1093/NAR/GKAA364

BIBLIOGRAPHY

[29] Jackson A. Killian, Taha M. Topiwala, Alex R. Pelletier, David E. Frankhouser,
Pearlly S. Yan, and Ralf Bundschuh. «FuSpot: A web-based tool for visual
evaluation of fusion candidates». In: BMC Genomics 19 (1 Feb. 2018). issn:
14712164. doi: 10.1186/s12864-018-4486-3 (cit. on p. 71).

78

https://doi.org/10.1186/s12864-018-4486-3

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Background
	Gene fusion detection state of art and challenges
	Thesis outline

	Gene Fusions
	Definition
	Mechanisms involved in the formation of gene fusions
	Gene fusions detection and applications in cancer

	Materials and Methods
	Materials
	Methods

	Pipeline
	Introduction
	Technologies
	Nextflow
	Docker
	Conda

	Tools
	Pipeline inputs
	Reads
	Tools' required files

	Pipeline outputs
	Pipeline configuration
	Profiles
	Other attributes

	Pipeline execution
	Files preparation
	Running modes

	Minimum system requirements
	Pipeline availability and GitHub support

	Pipeline architecture
	General architecture
	Tools architecture
	EricScript
	Arriba
	FusionCatcher
	GeneFuse
	INTEGRATE

	Results and discussion
	Files
	Tests and results

	Conclusions and future works
	Dockerfile
	Bibliography

